1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "utilities/top.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 // Declaration and definition of StubGenerator (no .hpp file).
  47 // For a more detailed description of the stub routine structure
  48 // see the comment in stubRoutines.hpp
  49 
  50 #define __ _masm->
  51 #define a__ ((Assembler*)_masm)->
  52 
  53 #ifdef PRODUCT
  54 #define BLOCK_COMMENT(str) /* nothing */
  55 #else
  56 #define BLOCK_COMMENT(str) __ block_comment(str)
  57 #endif
  58 
  59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
  62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
  63 
  64 // -------------------------------------------------------------------------------------------------------------------------
  65 // Stub Code definitions
  66 
  67 static address handle_unsafe_access() {
  68   JavaThread* thread = JavaThread::current();
  69   address pc  = thread->saved_exception_pc();
  70   // pc is the instruction which we must emulate
  71   // doing a no-op is fine:  return garbage from the load
  72   // therefore, compute npc
  73   address npc = Assembler::locate_next_instruction(pc);
  74 
  75   // request an async exception
  76   thread->set_pending_unsafe_access_error();
  77 
  78   // return address of next instruction to execute
  79   return npc;
  80 }
  81 
  82 class StubGenerator: public StubCodeGenerator {
  83  private:
  84 
  85 #ifdef PRODUCT
  86 #define inc_counter_np(counter) (0)
  87 #else
  88   void inc_counter_np_(int& counter) {
  89     __ incrementl(ExternalAddress((address)&counter));
  90   }
  91 #define inc_counter_np(counter) \
  92   BLOCK_COMMENT("inc_counter " #counter); \
  93   inc_counter_np_(counter);
  94 #endif //PRODUCT
  95 
  96   void inc_copy_counter_np(BasicType t) {
  97 #ifndef PRODUCT
  98     switch (t) {
  99     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
 100     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
 101     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
 102     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
 103     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
 104     }
 105     ShouldNotReachHere();
 106 #endif //PRODUCT
 107   }
 108 
 109   //------------------------------------------------------------------------------------------------------------------------
 110   // Call stubs are used to call Java from C
 111   //
 112   //    [ return_from_Java     ] <--- rsp
 113   //    [ argument word n      ]
 114   //      ...
 115   // -N [ argument word 1      ]
 116   // -7 [ Possible padding for stack alignment ]
 117   // -6 [ Possible padding for stack alignment ]
 118   // -5 [ Possible padding for stack alignment ]
 119   // -4 [ mxcsr save           ] <--- rsp_after_call
 120   // -3 [ saved rbx,            ]
 121   // -2 [ saved rsi            ]
 122   // -1 [ saved rdi            ]
 123   //  0 [ saved rbp,            ] <--- rbp,
 124   //  1 [ return address       ]
 125   //  2 [ ptr. to call wrapper ]
 126   //  3 [ result               ]
 127   //  4 [ result_type          ]
 128   //  5 [ method               ]
 129   //  6 [ entry_point          ]
 130   //  7 [ parameters           ]
 131   //  8 [ parameter_size       ]
 132   //  9 [ thread               ]
 133 
 134 
 135   address generate_call_stub(address& return_address) {
 136     StubCodeMark mark(this, "StubRoutines", "call_stub");
 137     address start = __ pc();
 138 
 139     // stub code parameters / addresses
 140     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
 141     bool  sse_save = false;
 142     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
 143     const int     locals_count_in_bytes  (4*wordSize);
 144     const Address mxcsr_save    (rbp, -4 * wordSize);
 145     const Address saved_rbx     (rbp, -3 * wordSize);
 146     const Address saved_rsi     (rbp, -2 * wordSize);
 147     const Address saved_rdi     (rbp, -1 * wordSize);
 148     const Address result        (rbp,  3 * wordSize);
 149     const Address result_type   (rbp,  4 * wordSize);
 150     const Address method        (rbp,  5 * wordSize);
 151     const Address entry_point   (rbp,  6 * wordSize);
 152     const Address parameters    (rbp,  7 * wordSize);
 153     const Address parameter_size(rbp,  8 * wordSize);
 154     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
 155     sse_save =  UseSSE > 0;
 156 
 157     // stub code
 158     __ enter();
 159     __ movptr(rcx, parameter_size);              // parameter counter
 160     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
 161     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
 162     __ subptr(rsp, rcx);
 163     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
 164 
 165     // save rdi, rsi, & rbx, according to C calling conventions
 166     __ movptr(saved_rdi, rdi);
 167     __ movptr(saved_rsi, rsi);
 168     __ movptr(saved_rbx, rbx);
 169     // save and initialize %mxcsr
 170     if (sse_save) {
 171       Label skip_ldmx;
 172       __ stmxcsr(mxcsr_save);
 173       __ movl(rax, mxcsr_save);
 174       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 175       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 176       __ cmp32(rax, mxcsr_std);
 177       __ jcc(Assembler::equal, skip_ldmx);
 178       __ ldmxcsr(mxcsr_std);
 179       __ bind(skip_ldmx);
 180     }
 181 
 182     // make sure the control word is correct.
 183     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 184 
 185 #ifdef ASSERT
 186     // make sure we have no pending exceptions
 187     { Label L;
 188       __ movptr(rcx, thread);
 189       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 190       __ jcc(Assembler::equal, L);
 191       __ stop("StubRoutines::call_stub: entered with pending exception");
 192       __ bind(L);
 193     }
 194 #endif
 195 
 196     // pass parameters if any
 197     BLOCK_COMMENT("pass parameters if any");
 198     Label parameters_done;
 199     __ movl(rcx, parameter_size);  // parameter counter
 200     __ testl(rcx, rcx);
 201     __ jcc(Assembler::zero, parameters_done);
 202 
 203     // parameter passing loop
 204 
 205     Label loop;
 206     // Copy Java parameters in reverse order (receiver last)
 207     // Note that the argument order is inverted in the process
 208     // source is rdx[rcx: N-1..0]
 209     // dest   is rsp[rbx: 0..N-1]
 210 
 211     __ movptr(rdx, parameters);          // parameter pointer
 212     __ xorptr(rbx, rbx);
 213 
 214     __ BIND(loop);
 215 
 216     // get parameter
 217     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
 218     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
 219                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
 220     __ increment(rbx);
 221     __ decrement(rcx);
 222     __ jcc(Assembler::notZero, loop);
 223 
 224     // call Java function
 225     __ BIND(parameters_done);
 226     __ movptr(rbx, method);           // get Method*
 227     __ movptr(rax, entry_point);      // get entry_point
 228     __ mov(rsi, rsp);                 // set sender sp
 229     BLOCK_COMMENT("call Java function");
 230     __ call(rax);
 231 
 232     BLOCK_COMMENT("call_stub_return_address:");
 233     return_address = __ pc();
 234 
 235 #ifdef COMPILER2
 236     {
 237       Label L_skip;
 238       if (UseSSE >= 2) {
 239         __ verify_FPU(0, "call_stub_return");
 240       } else {
 241         for (int i = 1; i < 8; i++) {
 242           __ ffree(i);
 243         }
 244 
 245         // UseSSE <= 1 so double result should be left on TOS
 246         __ movl(rsi, result_type);
 247         __ cmpl(rsi, T_DOUBLE);
 248         __ jcc(Assembler::equal, L_skip);
 249         if (UseSSE == 0) {
 250           // UseSSE == 0 so float result should be left on TOS
 251           __ cmpl(rsi, T_FLOAT);
 252           __ jcc(Assembler::equal, L_skip);
 253         }
 254         __ ffree(0);
 255       }
 256       __ BIND(L_skip);
 257     }
 258 #endif // COMPILER2
 259 
 260     // store result depending on type
 261     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 262     __ movptr(rdi, result);
 263     Label is_long, is_float, is_double, exit;
 264     __ movl(rsi, result_type);
 265     __ cmpl(rsi, T_LONG);
 266     __ jcc(Assembler::equal, is_long);
 267     __ cmpl(rsi, T_FLOAT);
 268     __ jcc(Assembler::equal, is_float);
 269     __ cmpl(rsi, T_DOUBLE);
 270     __ jcc(Assembler::equal, is_double);
 271 
 272     // handle T_INT case
 273     __ movl(Address(rdi, 0), rax);
 274     __ BIND(exit);
 275 
 276     // check that FPU stack is empty
 277     __ verify_FPU(0, "generate_call_stub");
 278 
 279     // pop parameters
 280     __ lea(rsp, rsp_after_call);
 281 
 282     // restore %mxcsr
 283     if (sse_save) {
 284       __ ldmxcsr(mxcsr_save);
 285     }
 286 
 287     // restore rdi, rsi and rbx,
 288     __ movptr(rbx, saved_rbx);
 289     __ movptr(rsi, saved_rsi);
 290     __ movptr(rdi, saved_rdi);
 291     __ addptr(rsp, 4*wordSize);
 292 
 293     // return
 294     __ pop(rbp);
 295     __ ret(0);
 296 
 297     // handle return types different from T_INT
 298     __ BIND(is_long);
 299     __ movl(Address(rdi, 0 * wordSize), rax);
 300     __ movl(Address(rdi, 1 * wordSize), rdx);
 301     __ jmp(exit);
 302 
 303     __ BIND(is_float);
 304     // interpreter uses xmm0 for return values
 305     if (UseSSE >= 1) {
 306       __ movflt(Address(rdi, 0), xmm0);
 307     } else {
 308       __ fstp_s(Address(rdi, 0));
 309     }
 310     __ jmp(exit);
 311 
 312     __ BIND(is_double);
 313     // interpreter uses xmm0 for return values
 314     if (UseSSE >= 2) {
 315       __ movdbl(Address(rdi, 0), xmm0);
 316     } else {
 317       __ fstp_d(Address(rdi, 0));
 318     }
 319     __ jmp(exit);
 320 
 321     return start;
 322   }
 323 
 324 
 325   //------------------------------------------------------------------------------------------------------------------------
 326   // Return point for a Java call if there's an exception thrown in Java code.
 327   // The exception is caught and transformed into a pending exception stored in
 328   // JavaThread that can be tested from within the VM.
 329   //
 330   // Note: Usually the parameters are removed by the callee. In case of an exception
 331   //       crossing an activation frame boundary, that is not the case if the callee
 332   //       is compiled code => need to setup the rsp.
 333   //
 334   // rax,: exception oop
 335 
 336   address generate_catch_exception() {
 337     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 338     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
 339     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
 340     address start = __ pc();
 341 
 342     // get thread directly
 343     __ movptr(rcx, thread);
 344 #ifdef ASSERT
 345     // verify that threads correspond
 346     { Label L;
 347       __ get_thread(rbx);
 348       __ cmpptr(rbx, rcx);
 349       __ jcc(Assembler::equal, L);
 350       __ stop("StubRoutines::catch_exception: threads must correspond");
 351       __ bind(L);
 352     }
 353 #endif
 354     // set pending exception
 355     __ verify_oop(rax);
 356     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
 357     __ lea(Address(rcx, Thread::exception_file_offset   ()),
 358            ExternalAddress((address)__FILE__));
 359     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
 360     // complete return to VM
 361     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
 362     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 363 
 364     return start;
 365   }
 366 
 367 
 368   //------------------------------------------------------------------------------------------------------------------------
 369   // Continuation point for runtime calls returning with a pending exception.
 370   // The pending exception check happened in the runtime or native call stub.
 371   // The pending exception in Thread is converted into a Java-level exception.
 372   //
 373   // Contract with Java-level exception handlers:
 374   // rax: exception
 375   // rdx: throwing pc
 376   //
 377   // NOTE: At entry of this stub, exception-pc must be on stack !!
 378 
 379   address generate_forward_exception() {
 380     StubCodeMark mark(this, "StubRoutines", "forward exception");
 381     address start = __ pc();
 382     const Register thread = rcx;
 383 
 384     // other registers used in this stub
 385     const Register exception_oop = rax;
 386     const Register handler_addr  = rbx;
 387     const Register exception_pc  = rdx;
 388 
 389     // Upon entry, the sp points to the return address returning into Java
 390     // (interpreted or compiled) code; i.e., the return address becomes the
 391     // throwing pc.
 392     //
 393     // Arguments pushed before the runtime call are still on the stack but
 394     // the exception handler will reset the stack pointer -> ignore them.
 395     // A potential result in registers can be ignored as well.
 396 
 397 #ifdef ASSERT
 398     // make sure this code is only executed if there is a pending exception
 399     { Label L;
 400       __ get_thread(thread);
 401       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 402       __ jcc(Assembler::notEqual, L);
 403       __ stop("StubRoutines::forward exception: no pending exception (1)");
 404       __ bind(L);
 405     }
 406 #endif
 407 
 408     // compute exception handler into rbx,
 409     __ get_thread(thread);
 410     __ movptr(exception_pc, Address(rsp, 0));
 411     BLOCK_COMMENT("call exception_handler_for_return_address");
 412     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 413     __ mov(handler_addr, rax);
 414 
 415     // setup rax & rdx, remove return address & clear pending exception
 416     __ get_thread(thread);
 417     __ pop(exception_pc);
 418     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 419     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 420 
 421 #ifdef ASSERT
 422     // make sure exception is set
 423     { Label L;
 424       __ testptr(exception_oop, exception_oop);
 425       __ jcc(Assembler::notEqual, L);
 426       __ stop("StubRoutines::forward exception: no pending exception (2)");
 427       __ bind(L);
 428     }
 429 #endif
 430 
 431     // Verify that there is really a valid exception in RAX.
 432     __ verify_oop(exception_oop);
 433 
 434     // continue at exception handler (return address removed)
 435     // rax: exception
 436     // rbx: exception handler
 437     // rdx: throwing pc
 438     __ jmp(handler_addr);
 439 
 440     return start;
 441   }
 442 
 443 
 444   //----------------------------------------------------------------------------------------------------
 445   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
 446   //
 447   // xchg exists as far back as 8086, lock needed for MP only
 448   // Stack layout immediately after call:
 449   //
 450   // 0 [ret addr ] <--- rsp
 451   // 1 [  ex     ]
 452   // 2 [  dest   ]
 453   //
 454   // Result:   *dest <- ex, return (old *dest)
 455   //
 456   // Note: win32 does not currently use this code
 457 
 458   address generate_atomic_xchg() {
 459     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 460     address start = __ pc();
 461 
 462     __ push(rdx);
 463     Address exchange(rsp, 2 * wordSize);
 464     Address dest_addr(rsp, 3 * wordSize);
 465     __ movl(rax, exchange);
 466     __ movptr(rdx, dest_addr);
 467     __ xchgl(rax, Address(rdx, 0));
 468     __ pop(rdx);
 469     __ ret(0);
 470 
 471     return start;
 472   }
 473 
 474   //----------------------------------------------------------------------------------------------------
 475   // Support for void verify_mxcsr()
 476   //
 477   // This routine is used with -Xcheck:jni to verify that native
 478   // JNI code does not return to Java code without restoring the
 479   // MXCSR register to our expected state.
 480 
 481 
 482   address generate_verify_mxcsr() {
 483     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 484     address start = __ pc();
 485 
 486     const Address mxcsr_save(rsp, 0);
 487 
 488     if (CheckJNICalls && UseSSE > 0 ) {
 489       Label ok_ret;
 490       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 491       __ push(rax);
 492       __ subptr(rsp, wordSize);      // allocate a temp location
 493       __ stmxcsr(mxcsr_save);
 494       __ movl(rax, mxcsr_save);
 495       __ andl(rax, MXCSR_MASK);
 496       __ cmp32(rax, mxcsr_std);
 497       __ jcc(Assembler::equal, ok_ret);
 498 
 499       __ warn("MXCSR changed by native JNI code.");
 500 
 501       __ ldmxcsr(mxcsr_std);
 502 
 503       __ bind(ok_ret);
 504       __ addptr(rsp, wordSize);
 505       __ pop(rax);
 506     }
 507 
 508     __ ret(0);
 509 
 510     return start;
 511   }
 512 
 513 
 514   //---------------------------------------------------------------------------
 515   // Support for void verify_fpu_cntrl_wrd()
 516   //
 517   // This routine is used with -Xcheck:jni to verify that native
 518   // JNI code does not return to Java code without restoring the
 519   // FP control word to our expected state.
 520 
 521   address generate_verify_fpu_cntrl_wrd() {
 522     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
 523     address start = __ pc();
 524 
 525     const Address fpu_cntrl_wrd_save(rsp, 0);
 526 
 527     if (CheckJNICalls) {
 528       Label ok_ret;
 529       __ push(rax);
 530       __ subptr(rsp, wordSize);      // allocate a temp location
 531       __ fnstcw(fpu_cntrl_wrd_save);
 532       __ movl(rax, fpu_cntrl_wrd_save);
 533       __ andl(rax, FPU_CNTRL_WRD_MASK);
 534       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
 535       __ cmp32(rax, fpu_std);
 536       __ jcc(Assembler::equal, ok_ret);
 537 
 538       __ warn("Floating point control word changed by native JNI code.");
 539 
 540       __ fldcw(fpu_std);
 541 
 542       __ bind(ok_ret);
 543       __ addptr(rsp, wordSize);
 544       __ pop(rax);
 545     }
 546 
 547     __ ret(0);
 548 
 549     return start;
 550   }
 551 
 552   //---------------------------------------------------------------------------
 553   // Wrapper for slow-case handling of double-to-integer conversion
 554   // d2i or f2i fast case failed either because it is nan or because
 555   // of under/overflow.
 556   // Input:  FPU TOS: float value
 557   // Output: rax, (rdx): integer (long) result
 558 
 559   address generate_d2i_wrapper(BasicType t, address fcn) {
 560     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
 561     address start = __ pc();
 562 
 563   // Capture info about frame layout
 564   enum layout { FPUState_off         = 0,
 565                 rbp_off              = FPUStateSizeInWords,
 566                 rdi_off,
 567                 rsi_off,
 568                 rcx_off,
 569                 rbx_off,
 570                 saved_argument_off,
 571                 saved_argument_off2, // 2nd half of double
 572                 framesize
 573   };
 574 
 575   assert(FPUStateSizeInWords == 27, "update stack layout");
 576 
 577     // Save outgoing argument to stack across push_FPU_state()
 578     __ subptr(rsp, wordSize * 2);
 579     __ fstp_d(Address(rsp, 0));
 580 
 581     // Save CPU & FPU state
 582     __ push(rbx);
 583     __ push(rcx);
 584     __ push(rsi);
 585     __ push(rdi);
 586     __ push(rbp);
 587     __ push_FPU_state();
 588 
 589     // push_FPU_state() resets the FP top of stack
 590     // Load original double into FP top of stack
 591     __ fld_d(Address(rsp, saved_argument_off * wordSize));
 592     // Store double into stack as outgoing argument
 593     __ subptr(rsp, wordSize*2);
 594     __ fst_d(Address(rsp, 0));
 595 
 596     // Prepare FPU for doing math in C-land
 597     __ empty_FPU_stack();
 598     // Call the C code to massage the double.  Result in EAX
 599     if (t == T_INT)
 600       { BLOCK_COMMENT("SharedRuntime::d2i"); }
 601     else if (t == T_LONG)
 602       { BLOCK_COMMENT("SharedRuntime::d2l"); }
 603     __ call_VM_leaf( fcn, 2 );
 604 
 605     // Restore CPU & FPU state
 606     __ pop_FPU_state();
 607     __ pop(rbp);
 608     __ pop(rdi);
 609     __ pop(rsi);
 610     __ pop(rcx);
 611     __ pop(rbx);
 612     __ addptr(rsp, wordSize * 2);
 613 
 614     __ ret(0);
 615 
 616     return start;
 617   }
 618 
 619 
 620   //---------------------------------------------------------------------------
 621   // The following routine generates a subroutine to throw an asynchronous
 622   // UnknownError when an unsafe access gets a fault that could not be
 623   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 624   address generate_handler_for_unsafe_access() {
 625     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 626     address start = __ pc();
 627 
 628     __ push(0);                       // hole for return address-to-be
 629     __ pusha();                       // push registers
 630     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 631     BLOCK_COMMENT("call handle_unsafe_access");
 632     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 633     __ movptr(next_pc, rax);          // stuff next address
 634     __ popa();
 635     __ ret(0);                        // jump to next address
 636 
 637     return start;
 638   }
 639 
 640 
 641   //----------------------------------------------------------------------------------------------------
 642   // Non-destructive plausibility checks for oops
 643 
 644   address generate_verify_oop() {
 645     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 646     address start = __ pc();
 647 
 648     // Incoming arguments on stack after saving rax,:
 649     //
 650     // [tos    ]: saved rdx
 651     // [tos + 1]: saved EFLAGS
 652     // [tos + 2]: return address
 653     // [tos + 3]: char* error message
 654     // [tos + 4]: oop   object to verify
 655     // [tos + 5]: saved rax, - saved by caller and bashed
 656 
 657     Label exit, error;
 658     __ pushf();
 659     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 660     __ push(rdx);                                // save rdx
 661     // make sure object is 'reasonable'
 662     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
 663     __ testptr(rax, rax);
 664     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
 665 
 666     // Check if the oop is in the right area of memory
 667     const int oop_mask = Universe::verify_oop_mask();
 668     const int oop_bits = Universe::verify_oop_bits();
 669     __ mov(rdx, rax);
 670     __ andptr(rdx, oop_mask);
 671     __ cmpptr(rdx, oop_bits);
 672     __ jcc(Assembler::notZero, error);
 673 
 674     // make sure klass is 'reasonable', which is not zero.
 675     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
 676     __ testptr(rax, rax);
 677     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
 678     // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
 679 
 680     // return if everything seems ok
 681     __ bind(exit);
 682     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 683     __ pop(rdx);                                 // restore rdx
 684     __ popf();                                   // restore EFLAGS
 685     __ ret(3 * wordSize);                        // pop arguments
 686 
 687     // handle errors
 688     __ bind(error);
 689     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 690     __ pop(rdx);                                 // get saved rdx back
 691     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
 692     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
 693     BLOCK_COMMENT("call MacroAssembler::debug");
 694     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 695     __ popa();
 696     __ ret(3 * wordSize);                        // pop arguments
 697     return start;
 698   }
 699 
 700   //
 701   //  Generate pre-barrier for array stores
 702   //
 703   //  Input:
 704   //     start   -  starting address
 705   //     count   -  element count
 706   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
 707     assert_different_registers(start, count);
 708     BarrierSet* bs = Universe::heap()->barrier_set();
 709     switch (bs->kind()) {
 710       case BarrierSet::G1SATBCT:
 711       case BarrierSet::G1SATBCTLogging:
 712         // With G1, don't generate the call if we statically know that the target in uninitialized
 713         if (!uninitialized_target) {
 714            __ pusha();                      // push registers
 715            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
 716                            start, count);
 717            __ popa();
 718          }
 719         break;
 720       case BarrierSet::CardTableModRef:
 721       case BarrierSet::CardTableExtension:
 722       case BarrierSet::ModRef:
 723         break;
 724       default      :
 725         ShouldNotReachHere();
 726 
 727     }
 728   }
 729 
 730 
 731   //
 732   // Generate a post-barrier for an array store
 733   //
 734   //     start    -  starting address
 735   //     count    -  element count
 736   //
 737   //  The two input registers are overwritten.
 738   //
 739   void  gen_write_ref_array_post_barrier(Register start, Register count) {
 740     BarrierSet* bs = Universe::heap()->barrier_set();
 741     assert_different_registers(start, count);
 742     switch (bs->kind()) {
 743       case BarrierSet::G1SATBCT:
 744       case BarrierSet::G1SATBCTLogging:
 745         {
 746           __ pusha();                      // push registers
 747           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
 748                           start, count);
 749           __ popa();
 750         }
 751         break;
 752 
 753       case BarrierSet::CardTableModRef:
 754       case BarrierSet::CardTableExtension:
 755         {
 756           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
 757           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 758 
 759           Label L_loop;
 760           const Register end = count;  // elements count; end == start+count-1
 761           assert_different_registers(start, end);
 762 
 763           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
 764           __ shrptr(start, CardTableModRefBS::card_shift);
 765           __ shrptr(end,   CardTableModRefBS::card_shift);
 766           __ subptr(end, start); // end --> count
 767         __ BIND(L_loop);
 768           intptr_t disp = (intptr_t) ct->byte_map_base;
 769           Address cardtable(start, count, Address::times_1, disp);
 770           __ movb(cardtable, 0);
 771           __ decrement(count);
 772           __ jcc(Assembler::greaterEqual, L_loop);
 773         }
 774         break;
 775       case BarrierSet::ModRef:
 776         break;
 777       default      :
 778         ShouldNotReachHere();
 779 
 780     }
 781   }
 782 
 783 
 784   // Copy 64 bytes chunks
 785   //
 786   // Inputs:
 787   //   from        - source array address
 788   //   to_from     - destination array address - from
 789   //   qword_count - 8-bytes element count, negative
 790   //
 791   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
 792     assert( UseSSE >= 2, "supported cpu only" );
 793     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 794     // Copy 64-byte chunks
 795     __ jmpb(L_copy_64_bytes);
 796     __ align(OptoLoopAlignment);
 797   __ BIND(L_copy_64_bytes_loop);
 798 
 799     if(UseUnalignedLoadStores) {
 800       __ movdqu(xmm0, Address(from, 0));
 801       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
 802       __ movdqu(xmm1, Address(from, 16));
 803       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
 804       __ movdqu(xmm2, Address(from, 32));
 805       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
 806       __ movdqu(xmm3, Address(from, 48));
 807       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
 808 
 809     } else {
 810       __ movq(xmm0, Address(from, 0));
 811       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
 812       __ movq(xmm1, Address(from, 8));
 813       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
 814       __ movq(xmm2, Address(from, 16));
 815       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
 816       __ movq(xmm3, Address(from, 24));
 817       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
 818       __ movq(xmm4, Address(from, 32));
 819       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
 820       __ movq(xmm5, Address(from, 40));
 821       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
 822       __ movq(xmm6, Address(from, 48));
 823       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
 824       __ movq(xmm7, Address(from, 56));
 825       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
 826     }
 827 
 828     __ addl(from, 64);
 829   __ BIND(L_copy_64_bytes);
 830     __ subl(qword_count, 8);
 831     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 832     __ addl(qword_count, 8);
 833     __ jccb(Assembler::zero, L_exit);
 834     //
 835     // length is too short, just copy qwords
 836     //
 837   __ BIND(L_copy_8_bytes);
 838     __ movq(xmm0, Address(from, 0));
 839     __ movq(Address(from, to_from, Address::times_1), xmm0);
 840     __ addl(from, 8);
 841     __ decrement(qword_count);
 842     __ jcc(Assembler::greater, L_copy_8_bytes);
 843   __ BIND(L_exit);
 844   }
 845 
 846   // Copy 64 bytes chunks
 847   //
 848   // Inputs:
 849   //   from        - source array address
 850   //   to_from     - destination array address - from
 851   //   qword_count - 8-bytes element count, negative
 852   //
 853   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
 854     assert( VM_Version::supports_mmx(), "supported cpu only" );
 855     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 856     // Copy 64-byte chunks
 857     __ jmpb(L_copy_64_bytes);
 858     __ align(OptoLoopAlignment);
 859   __ BIND(L_copy_64_bytes_loop);
 860     __ movq(mmx0, Address(from, 0));
 861     __ movq(mmx1, Address(from, 8));
 862     __ movq(mmx2, Address(from, 16));
 863     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
 864     __ movq(mmx3, Address(from, 24));
 865     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
 866     __ movq(mmx4, Address(from, 32));
 867     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
 868     __ movq(mmx5, Address(from, 40));
 869     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
 870     __ movq(mmx6, Address(from, 48));
 871     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
 872     __ movq(mmx7, Address(from, 56));
 873     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
 874     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
 875     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
 876     __ addptr(from, 64);
 877   __ BIND(L_copy_64_bytes);
 878     __ subl(qword_count, 8);
 879     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 880     __ addl(qword_count, 8);
 881     __ jccb(Assembler::zero, L_exit);
 882     //
 883     // length is too short, just copy qwords
 884     //
 885   __ BIND(L_copy_8_bytes);
 886     __ movq(mmx0, Address(from, 0));
 887     __ movq(Address(from, to_from, Address::times_1), mmx0);
 888     __ addptr(from, 8);
 889     __ decrement(qword_count);
 890     __ jcc(Assembler::greater, L_copy_8_bytes);
 891   __ BIND(L_exit);
 892     __ emms();
 893   }
 894 
 895   address generate_disjoint_copy(BasicType t, bool aligned,
 896                                  Address::ScaleFactor sf,
 897                                  address* entry, const char *name,
 898                                  bool dest_uninitialized = false) {
 899     __ align(CodeEntryAlignment);
 900     StubCodeMark mark(this, "StubRoutines", name);
 901     address start = __ pc();
 902 
 903     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
 904     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
 905 
 906     int shift = Address::times_ptr - sf;
 907 
 908     const Register from     = rsi;  // source array address
 909     const Register to       = rdi;  // destination array address
 910     const Register count    = rcx;  // elements count
 911     const Register to_from  = to;   // (to - from)
 912     const Register saved_to = rdx;  // saved destination array address
 913 
 914     __ enter(); // required for proper stackwalking of RuntimeStub frame
 915     __ push(rsi);
 916     __ push(rdi);
 917     __ movptr(from , Address(rsp, 12+ 4));
 918     __ movptr(to   , Address(rsp, 12+ 8));
 919     __ movl(count, Address(rsp, 12+ 12));
 920 
 921     if (entry != NULL) {
 922       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
 923       BLOCK_COMMENT("Entry:");
 924     }
 925 
 926     if (t == T_OBJECT) {
 927       __ testl(count, count);
 928       __ jcc(Assembler::zero, L_0_count);
 929       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
 930       __ mov(saved_to, to);          // save 'to'
 931     }
 932 
 933     __ subptr(to, from); // to --> to_from
 934     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
 935     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
 936     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 937       // align source address at 4 bytes address boundary
 938       if (t == T_BYTE) {
 939         // One byte misalignment happens only for byte arrays
 940         __ testl(from, 1);
 941         __ jccb(Assembler::zero, L_skip_align1);
 942         __ movb(rax, Address(from, 0));
 943         __ movb(Address(from, to_from, Address::times_1, 0), rax);
 944         __ increment(from);
 945         __ decrement(count);
 946       __ BIND(L_skip_align1);
 947       }
 948       // Two bytes misalignment happens only for byte and short (char) arrays
 949       __ testl(from, 2);
 950       __ jccb(Assembler::zero, L_skip_align2);
 951       __ movw(rax, Address(from, 0));
 952       __ movw(Address(from, to_from, Address::times_1, 0), rax);
 953       __ addptr(from, 2);
 954       __ subl(count, 1<<(shift-1));
 955     __ BIND(L_skip_align2);
 956     }
 957     if (!VM_Version::supports_mmx()) {
 958       __ mov(rax, count);      // save 'count'
 959       __ shrl(count, shift); // bytes count
 960       __ addptr(to_from, from);// restore 'to'
 961       __ rep_mov();
 962       __ subptr(to_from, from);// restore 'to_from'
 963       __ mov(count, rax);      // restore 'count'
 964       __ jmpb(L_copy_2_bytes); // all dwords were copied
 965     } else {
 966       if (!UseUnalignedLoadStores) {
 967         // align to 8 bytes, we know we are 4 byte aligned to start
 968         __ testptr(from, 4);
 969         __ jccb(Assembler::zero, L_copy_64_bytes);
 970         __ movl(rax, Address(from, 0));
 971         __ movl(Address(from, to_from, Address::times_1, 0), rax);
 972         __ addptr(from, 4);
 973         __ subl(count, 1<<shift);
 974       }
 975     __ BIND(L_copy_64_bytes);
 976       __ mov(rax, count);
 977       __ shrl(rax, shift+1);  // 8 bytes chunk count
 978       //
 979       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
 980       //
 981       if (UseXMMForArrayCopy) {
 982         xmm_copy_forward(from, to_from, rax);
 983       } else {
 984         mmx_copy_forward(from, to_from, rax);
 985       }
 986     }
 987     // copy tailing dword
 988   __ BIND(L_copy_4_bytes);
 989     __ testl(count, 1<<shift);
 990     __ jccb(Assembler::zero, L_copy_2_bytes);
 991     __ movl(rax, Address(from, 0));
 992     __ movl(Address(from, to_from, Address::times_1, 0), rax);
 993     if (t == T_BYTE || t == T_SHORT) {
 994       __ addptr(from, 4);
 995     __ BIND(L_copy_2_bytes);
 996       // copy tailing word
 997       __ testl(count, 1<<(shift-1));
 998       __ jccb(Assembler::zero, L_copy_byte);
 999       __ movw(rax, Address(from, 0));
1000       __ movw(Address(from, to_from, Address::times_1, 0), rax);
1001       if (t == T_BYTE) {
1002         __ addptr(from, 2);
1003       __ BIND(L_copy_byte);
1004         // copy tailing byte
1005         __ testl(count, 1);
1006         __ jccb(Assembler::zero, L_exit);
1007         __ movb(rax, Address(from, 0));
1008         __ movb(Address(from, to_from, Address::times_1, 0), rax);
1009       __ BIND(L_exit);
1010       } else {
1011       __ BIND(L_copy_byte);
1012       }
1013     } else {
1014     __ BIND(L_copy_2_bytes);
1015     }
1016 
1017     if (t == T_OBJECT) {
1018       __ movl(count, Address(rsp, 12+12)); // reread 'count'
1019       __ mov(to, saved_to); // restore 'to'
1020       gen_write_ref_array_post_barrier(to, count);
1021     __ BIND(L_0_count);
1022     }
1023     inc_copy_counter_np(t);
1024     __ pop(rdi);
1025     __ pop(rsi);
1026     __ leave(); // required for proper stackwalking of RuntimeStub frame
1027     __ xorptr(rax, rax); // return 0
1028     __ ret(0);
1029     return start;
1030   }
1031 
1032 
1033   address generate_fill(BasicType t, bool aligned, const char *name) {
1034     __ align(CodeEntryAlignment);
1035     StubCodeMark mark(this, "StubRoutines", name);
1036     address start = __ pc();
1037 
1038     BLOCK_COMMENT("Entry:");
1039 
1040     const Register to       = rdi;  // source array address
1041     const Register value    = rdx;  // value
1042     const Register count    = rsi;  // elements count
1043 
1044     __ enter(); // required for proper stackwalking of RuntimeStub frame
1045     __ push(rsi);
1046     __ push(rdi);
1047     __ movptr(to   , Address(rsp, 12+ 4));
1048     __ movl(value, Address(rsp, 12+ 8));
1049     __ movl(count, Address(rsp, 12+ 12));
1050 
1051     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1052 
1053     __ pop(rdi);
1054     __ pop(rsi);
1055     __ leave(); // required for proper stackwalking of RuntimeStub frame
1056     __ ret(0);
1057     return start;
1058   }
1059 
1060   address generate_conjoint_copy(BasicType t, bool aligned,
1061                                  Address::ScaleFactor sf,
1062                                  address nooverlap_target,
1063                                  address* entry, const char *name,
1064                                  bool dest_uninitialized = false) {
1065     __ align(CodeEntryAlignment);
1066     StubCodeMark mark(this, "StubRoutines", name);
1067     address start = __ pc();
1068 
1069     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1070     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1071 
1072     int shift = Address::times_ptr - sf;
1073 
1074     const Register src   = rax;  // source array address
1075     const Register dst   = rdx;  // destination array address
1076     const Register from  = rsi;  // source array address
1077     const Register to    = rdi;  // destination array address
1078     const Register count = rcx;  // elements count
1079     const Register end   = rax;  // array end address
1080 
1081     __ enter(); // required for proper stackwalking of RuntimeStub frame
1082     __ push(rsi);
1083     __ push(rdi);
1084     __ movptr(src  , Address(rsp, 12+ 4));   // from
1085     __ movptr(dst  , Address(rsp, 12+ 8));   // to
1086     __ movl2ptr(count, Address(rsp, 12+12)); // count
1087 
1088     if (entry != NULL) {
1089       *entry = __ pc(); // Entry point from generic arraycopy stub.
1090       BLOCK_COMMENT("Entry:");
1091     }
1092 
1093     // nooverlap_target expects arguments in rsi and rdi.
1094     __ mov(from, src);
1095     __ mov(to  , dst);
1096 
1097     // arrays overlap test: dispatch to disjoint stub if necessary.
1098     RuntimeAddress nooverlap(nooverlap_target);
1099     __ cmpptr(dst, src);
1100     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1101     __ jump_cc(Assembler::belowEqual, nooverlap);
1102     __ cmpptr(dst, end);
1103     __ jump_cc(Assembler::aboveEqual, nooverlap);
1104 
1105     if (t == T_OBJECT) {
1106       __ testl(count, count);
1107       __ jcc(Assembler::zero, L_0_count);
1108       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1109     }
1110 
1111     // copy from high to low
1112     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1113     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1114     if (t == T_BYTE || t == T_SHORT) {
1115       // Align the end of destination array at 4 bytes address boundary
1116       __ lea(end, Address(dst, count, sf, 0));
1117       if (t == T_BYTE) {
1118         // One byte misalignment happens only for byte arrays
1119         __ testl(end, 1);
1120         __ jccb(Assembler::zero, L_skip_align1);
1121         __ decrement(count);
1122         __ movb(rdx, Address(from, count, sf, 0));
1123         __ movb(Address(to, count, sf, 0), rdx);
1124       __ BIND(L_skip_align1);
1125       }
1126       // Two bytes misalignment happens only for byte and short (char) arrays
1127       __ testl(end, 2);
1128       __ jccb(Assembler::zero, L_skip_align2);
1129       __ subptr(count, 1<<(shift-1));
1130       __ movw(rdx, Address(from, count, sf, 0));
1131       __ movw(Address(to, count, sf, 0), rdx);
1132     __ BIND(L_skip_align2);
1133       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1134       __ jcc(Assembler::below, L_copy_4_bytes);
1135     }
1136 
1137     if (!VM_Version::supports_mmx()) {
1138       __ std();
1139       __ mov(rax, count); // Save 'count'
1140       __ mov(rdx, to);    // Save 'to'
1141       __ lea(rsi, Address(from, count, sf, -4));
1142       __ lea(rdi, Address(to  , count, sf, -4));
1143       __ shrptr(count, shift); // bytes count
1144       __ rep_mov();
1145       __ cld();
1146       __ mov(count, rax); // restore 'count'
1147       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1148       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1149       __ mov(to, rdx);   // restore 'to'
1150       __ jmpb(L_copy_2_bytes); // all dword were copied
1151    } else {
1152       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1153       __ testptr(end, 4);
1154       __ jccb(Assembler::zero, L_copy_8_bytes);
1155       __ subl(count, 1<<shift);
1156       __ movl(rdx, Address(from, count, sf, 0));
1157       __ movl(Address(to, count, sf, 0), rdx);
1158       __ jmpb(L_copy_8_bytes);
1159 
1160       __ align(OptoLoopAlignment);
1161       // Move 8 bytes
1162     __ BIND(L_copy_8_bytes_loop);
1163       if (UseXMMForArrayCopy) {
1164         __ movq(xmm0, Address(from, count, sf, 0));
1165         __ movq(Address(to, count, sf, 0), xmm0);
1166       } else {
1167         __ movq(mmx0, Address(from, count, sf, 0));
1168         __ movq(Address(to, count, sf, 0), mmx0);
1169       }
1170     __ BIND(L_copy_8_bytes);
1171       __ subl(count, 2<<shift);
1172       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1173       __ addl(count, 2<<shift);
1174       if (!UseXMMForArrayCopy) {
1175         __ emms();
1176       }
1177     }
1178   __ BIND(L_copy_4_bytes);
1179     // copy prefix qword
1180     __ testl(count, 1<<shift);
1181     __ jccb(Assembler::zero, L_copy_2_bytes);
1182     __ movl(rdx, Address(from, count, sf, -4));
1183     __ movl(Address(to, count, sf, -4), rdx);
1184 
1185     if (t == T_BYTE || t == T_SHORT) {
1186         __ subl(count, (1<<shift));
1187       __ BIND(L_copy_2_bytes);
1188         // copy prefix dword
1189         __ testl(count, 1<<(shift-1));
1190         __ jccb(Assembler::zero, L_copy_byte);
1191         __ movw(rdx, Address(from, count, sf, -2));
1192         __ movw(Address(to, count, sf, -2), rdx);
1193         if (t == T_BYTE) {
1194           __ subl(count, 1<<(shift-1));
1195         __ BIND(L_copy_byte);
1196           // copy prefix byte
1197           __ testl(count, 1);
1198           __ jccb(Assembler::zero, L_exit);
1199           __ movb(rdx, Address(from, 0));
1200           __ movb(Address(to, 0), rdx);
1201         __ BIND(L_exit);
1202         } else {
1203         __ BIND(L_copy_byte);
1204         }
1205     } else {
1206     __ BIND(L_copy_2_bytes);
1207     }
1208     if (t == T_OBJECT) {
1209       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1210       gen_write_ref_array_post_barrier(to, count);
1211     __ BIND(L_0_count);
1212     }
1213     inc_copy_counter_np(t);
1214     __ pop(rdi);
1215     __ pop(rsi);
1216     __ leave(); // required for proper stackwalking of RuntimeStub frame
1217     __ xorptr(rax, rax); // return 0
1218     __ ret(0);
1219     return start;
1220   }
1221 
1222 
1223   address generate_disjoint_long_copy(address* entry, const char *name) {
1224     __ align(CodeEntryAlignment);
1225     StubCodeMark mark(this, "StubRoutines", name);
1226     address start = __ pc();
1227 
1228     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1229     const Register from       = rax;  // source array address
1230     const Register to         = rdx;  // destination array address
1231     const Register count      = rcx;  // elements count
1232     const Register to_from    = rdx;  // (to - from)
1233 
1234     __ enter(); // required for proper stackwalking of RuntimeStub frame
1235     __ movptr(from , Address(rsp, 8+0));       // from
1236     __ movptr(to   , Address(rsp, 8+4));       // to
1237     __ movl2ptr(count, Address(rsp, 8+8));     // count
1238 
1239     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1240     BLOCK_COMMENT("Entry:");
1241 
1242     __ subptr(to, from); // to --> to_from
1243     if (VM_Version::supports_mmx()) {
1244       if (UseXMMForArrayCopy) {
1245         xmm_copy_forward(from, to_from, count);
1246       } else {
1247         mmx_copy_forward(from, to_from, count);
1248       }
1249     } else {
1250       __ jmpb(L_copy_8_bytes);
1251       __ align(OptoLoopAlignment);
1252     __ BIND(L_copy_8_bytes_loop);
1253       __ fild_d(Address(from, 0));
1254       __ fistp_d(Address(from, to_from, Address::times_1));
1255       __ addptr(from, 8);
1256     __ BIND(L_copy_8_bytes);
1257       __ decrement(count);
1258       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1259     }
1260     inc_copy_counter_np(T_LONG);
1261     __ leave(); // required for proper stackwalking of RuntimeStub frame
1262     __ xorptr(rax, rax); // return 0
1263     __ ret(0);
1264     return start;
1265   }
1266 
1267   address generate_conjoint_long_copy(address nooverlap_target,
1268                                       address* entry, const char *name) {
1269     __ align(CodeEntryAlignment);
1270     StubCodeMark mark(this, "StubRoutines", name);
1271     address start = __ pc();
1272 
1273     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1274     const Register from       = rax;  // source array address
1275     const Register to         = rdx;  // destination array address
1276     const Register count      = rcx;  // elements count
1277     const Register end_from   = rax;  // source array end address
1278 
1279     __ enter(); // required for proper stackwalking of RuntimeStub frame
1280     __ movptr(from , Address(rsp, 8+0));       // from
1281     __ movptr(to   , Address(rsp, 8+4));       // to
1282     __ movl2ptr(count, Address(rsp, 8+8));     // count
1283 
1284     *entry = __ pc(); // Entry point from generic arraycopy stub.
1285     BLOCK_COMMENT("Entry:");
1286 
1287     // arrays overlap test
1288     __ cmpptr(to, from);
1289     RuntimeAddress nooverlap(nooverlap_target);
1290     __ jump_cc(Assembler::belowEqual, nooverlap);
1291     __ lea(end_from, Address(from, count, Address::times_8, 0));
1292     __ cmpptr(to, end_from);
1293     __ movptr(from, Address(rsp, 8));  // from
1294     __ jump_cc(Assembler::aboveEqual, nooverlap);
1295 
1296     __ jmpb(L_copy_8_bytes);
1297 
1298     __ align(OptoLoopAlignment);
1299   __ BIND(L_copy_8_bytes_loop);
1300     if (VM_Version::supports_mmx()) {
1301       if (UseXMMForArrayCopy) {
1302         __ movq(xmm0, Address(from, count, Address::times_8));
1303         __ movq(Address(to, count, Address::times_8), xmm0);
1304       } else {
1305         __ movq(mmx0, Address(from, count, Address::times_8));
1306         __ movq(Address(to, count, Address::times_8), mmx0);
1307       }
1308     } else {
1309       __ fild_d(Address(from, count, Address::times_8));
1310       __ fistp_d(Address(to, count, Address::times_8));
1311     }
1312   __ BIND(L_copy_8_bytes);
1313     __ decrement(count);
1314     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1315 
1316     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1317       __ emms();
1318     }
1319     inc_copy_counter_np(T_LONG);
1320     __ leave(); // required for proper stackwalking of RuntimeStub frame
1321     __ xorptr(rax, rax); // return 0
1322     __ ret(0);
1323     return start;
1324   }
1325 
1326 
1327   // Helper for generating a dynamic type check.
1328   // The sub_klass must be one of {rbx, rdx, rsi}.
1329   // The temp is killed.
1330   void generate_type_check(Register sub_klass,
1331                            Address& super_check_offset_addr,
1332                            Address& super_klass_addr,
1333                            Register temp,
1334                            Label* L_success, Label* L_failure) {
1335     BLOCK_COMMENT("type_check:");
1336 
1337     Label L_fallthrough;
1338 #define LOCAL_JCC(assembler_con, label_ptr)                             \
1339     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1340     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1341 
1342     // The following is a strange variation of the fast path which requires
1343     // one less register, because needed values are on the argument stack.
1344     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1345     //                                  L_success, L_failure, NULL);
1346     assert_different_registers(sub_klass, temp);
1347 
1348     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1349 
1350     // if the pointers are equal, we are done (e.g., String[] elements)
1351     __ cmpptr(sub_klass, super_klass_addr);
1352     LOCAL_JCC(Assembler::equal, L_success);
1353 
1354     // check the supertype display:
1355     __ movl2ptr(temp, super_check_offset_addr);
1356     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1357     __ movptr(temp, super_check_addr); // load displayed supertype
1358     __ cmpptr(temp, super_klass_addr); // test the super type
1359     LOCAL_JCC(Assembler::equal, L_success);
1360 
1361     // if it was a primary super, we can just fail immediately
1362     __ cmpl(super_check_offset_addr, sc_offset);
1363     LOCAL_JCC(Assembler::notEqual, L_failure);
1364 
1365     // The repne_scan instruction uses fixed registers, which will get spilled.
1366     // We happen to know this works best when super_klass is in rax.
1367     Register super_klass = temp;
1368     __ movptr(super_klass, super_klass_addr);
1369     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1370                                      L_success, L_failure);
1371 
1372     __ bind(L_fallthrough);
1373 
1374     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1375     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1376 
1377 #undef LOCAL_JCC
1378   }
1379 
1380   //
1381   //  Generate checkcasting array copy stub
1382   //
1383   //  Input:
1384   //    4(rsp)   - source array address
1385   //    8(rsp)   - destination array address
1386   //   12(rsp)   - element count, can be zero
1387   //   16(rsp)   - size_t ckoff (super_check_offset)
1388   //   20(rsp)   - oop ckval (super_klass)
1389   //
1390   //  Output:
1391   //    rax, ==  0  -  success
1392   //    rax, == -1^K - failure, where K is partial transfer count
1393   //
1394   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1395     __ align(CodeEntryAlignment);
1396     StubCodeMark mark(this, "StubRoutines", name);
1397     address start = __ pc();
1398 
1399     Label L_load_element, L_store_element, L_do_card_marks, L_done;
1400 
1401     // register use:
1402     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1403     //  rdi, rsi      -- element access (oop, klass)
1404     //  rbx,           -- temp
1405     const Register from       = rax;    // source array address
1406     const Register to         = rdx;    // destination array address
1407     const Register length     = rcx;    // elements count
1408     const Register elem       = rdi;    // each oop copied
1409     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1410     const Register temp       = rbx;    // lone remaining temp
1411 
1412     __ enter(); // required for proper stackwalking of RuntimeStub frame
1413 
1414     __ push(rsi);
1415     __ push(rdi);
1416     __ push(rbx);
1417 
1418     Address   from_arg(rsp, 16+ 4);     // from
1419     Address     to_arg(rsp, 16+ 8);     // to
1420     Address length_arg(rsp, 16+12);     // elements count
1421     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1422     Address  ckval_arg(rsp, 16+20);     // super_klass
1423 
1424     // Load up:
1425     __ movptr(from,     from_arg);
1426     __ movptr(to,         to_arg);
1427     __ movl2ptr(length, length_arg);
1428 
1429     if (entry != NULL) {
1430       *entry = __ pc(); // Entry point from generic arraycopy stub.
1431       BLOCK_COMMENT("Entry:");
1432     }
1433 
1434     //---------------------------------------------------------------
1435     // Assembler stub will be used for this call to arraycopy
1436     // if the two arrays are subtypes of Object[] but the
1437     // destination array type is not equal to or a supertype
1438     // of the source type.  Each element must be separately
1439     // checked.
1440 
1441     // Loop-invariant addresses.  They are exclusive end pointers.
1442     Address end_from_addr(from, length, Address::times_ptr, 0);
1443     Address   end_to_addr(to,   length, Address::times_ptr, 0);
1444 
1445     Register end_from = from;           // re-use
1446     Register end_to   = to;             // re-use
1447     Register count    = length;         // re-use
1448 
1449     // Loop-variant addresses.  They assume post-incremented count < 0.
1450     Address from_element_addr(end_from, count, Address::times_ptr, 0);
1451     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1452     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1453 
1454     // Copy from low to high addresses, indexed from the end of each array.
1455     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1456     __ lea(end_from, end_from_addr);
1457     __ lea(end_to,   end_to_addr);
1458     assert(length == count, "");        // else fix next line:
1459     __ negptr(count);                   // negate and test the length
1460     __ jccb(Assembler::notZero, L_load_element);
1461 
1462     // Empty array:  Nothing to do.
1463     __ xorptr(rax, rax);                  // return 0 on (trivial) success
1464     __ jmp(L_done);
1465 
1466     // ======== begin loop ========
1467     // (Loop is rotated; its entry is L_load_element.)
1468     // Loop control:
1469     //   for (count = -count; count != 0; count++)
1470     // Base pointers src, dst are biased by 8*count,to last element.
1471     __ align(OptoLoopAlignment);
1472 
1473     __ BIND(L_store_element);
1474     __ movptr(to_element_addr, elem);     // store the oop
1475     __ increment(count);                // increment the count toward zero
1476     __ jccb(Assembler::zero, L_do_card_marks);
1477 
1478     // ======== loop entry is here ========
1479     __ BIND(L_load_element);
1480     __ movptr(elem, from_element_addr);   // load the oop
1481     __ testptr(elem, elem);
1482     __ jccb(Assembler::zero, L_store_element);
1483 
1484     // (Could do a trick here:  Remember last successful non-null
1485     // element stored and make a quick oop equality check on it.)
1486 
1487     __ movptr(elem_klass, elem_klass_addr); // query the object klass
1488     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1489                         &L_store_element, NULL);
1490       // (On fall-through, we have failed the element type check.)
1491     // ======== end loop ========
1492 
1493     // It was a real error; we must depend on the caller to finish the job.
1494     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1495     // Emit GC store barriers for the oops we have copied (length_arg + count),
1496     // and report their number to the caller.
1497     __ addl(count, length_arg);         // transfers = (length - remaining)
1498     __ movl2ptr(rax, count);            // save the value
1499     __ notptr(rax);                     // report (-1^K) to caller
1500     __ movptr(to, to_arg);              // reload
1501     assert_different_registers(to, count, rax);
1502     gen_write_ref_array_post_barrier(to, count);
1503     __ jmpb(L_done);
1504 
1505     // Come here on success only.
1506     __ BIND(L_do_card_marks);
1507     __ movl2ptr(count, length_arg);
1508     __ movptr(to, to_arg);                // reload
1509     gen_write_ref_array_post_barrier(to, count);
1510     __ xorptr(rax, rax);                  // return 0 on success
1511 
1512     // Common exit point (success or failure).
1513     __ BIND(L_done);
1514     __ pop(rbx);
1515     __ pop(rdi);
1516     __ pop(rsi);
1517     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1518     __ leave(); // required for proper stackwalking of RuntimeStub frame
1519     __ ret(0);
1520 
1521     return start;
1522   }
1523 
1524   //
1525   //  Generate 'unsafe' array copy stub
1526   //  Though just as safe as the other stubs, it takes an unscaled
1527   //  size_t argument instead of an element count.
1528   //
1529   //  Input:
1530   //    4(rsp)   - source array address
1531   //    8(rsp)   - destination array address
1532   //   12(rsp)   - byte count, can be zero
1533   //
1534   //  Output:
1535   //    rax, ==  0  -  success
1536   //    rax, == -1  -  need to call System.arraycopy
1537   //
1538   // Examines the alignment of the operands and dispatches
1539   // to a long, int, short, or byte copy loop.
1540   //
1541   address generate_unsafe_copy(const char *name,
1542                                address byte_copy_entry,
1543                                address short_copy_entry,
1544                                address int_copy_entry,
1545                                address long_copy_entry) {
1546 
1547     Label L_long_aligned, L_int_aligned, L_short_aligned;
1548 
1549     __ align(CodeEntryAlignment);
1550     StubCodeMark mark(this, "StubRoutines", name);
1551     address start = __ pc();
1552 
1553     const Register from       = rax;  // source array address
1554     const Register to         = rdx;  // destination array address
1555     const Register count      = rcx;  // elements count
1556 
1557     __ enter(); // required for proper stackwalking of RuntimeStub frame
1558     __ push(rsi);
1559     __ push(rdi);
1560     Address  from_arg(rsp, 12+ 4);      // from
1561     Address    to_arg(rsp, 12+ 8);      // to
1562     Address count_arg(rsp, 12+12);      // byte count
1563 
1564     // Load up:
1565     __ movptr(from ,  from_arg);
1566     __ movptr(to   ,    to_arg);
1567     __ movl2ptr(count, count_arg);
1568 
1569     // bump this on entry, not on exit:
1570     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1571 
1572     const Register bits = rsi;
1573     __ mov(bits, from);
1574     __ orptr(bits, to);
1575     __ orptr(bits, count);
1576 
1577     __ testl(bits, BytesPerLong-1);
1578     __ jccb(Assembler::zero, L_long_aligned);
1579 
1580     __ testl(bits, BytesPerInt-1);
1581     __ jccb(Assembler::zero, L_int_aligned);
1582 
1583     __ testl(bits, BytesPerShort-1);
1584     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1585 
1586     __ BIND(L_short_aligned);
1587     __ shrptr(count, LogBytesPerShort); // size => short_count
1588     __ movl(count_arg, count);          // update 'count'
1589     __ jump(RuntimeAddress(short_copy_entry));
1590 
1591     __ BIND(L_int_aligned);
1592     __ shrptr(count, LogBytesPerInt); // size => int_count
1593     __ movl(count_arg, count);          // update 'count'
1594     __ jump(RuntimeAddress(int_copy_entry));
1595 
1596     __ BIND(L_long_aligned);
1597     __ shrptr(count, LogBytesPerLong); // size => qword_count
1598     __ movl(count_arg, count);          // update 'count'
1599     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1600     __ pop(rsi);
1601     __ jump(RuntimeAddress(long_copy_entry));
1602 
1603     return start;
1604   }
1605 
1606 
1607   // Perform range checks on the proposed arraycopy.
1608   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1609   void arraycopy_range_checks(Register src,
1610                               Register src_pos,
1611                               Register dst,
1612                               Register dst_pos,
1613                               Address& length,
1614                               Label& L_failed) {
1615     BLOCK_COMMENT("arraycopy_range_checks:");
1616     const Register src_end = src_pos;   // source array end position
1617     const Register dst_end = dst_pos;   // destination array end position
1618     __ addl(src_end, length); // src_pos + length
1619     __ addl(dst_end, length); // dst_pos + length
1620 
1621     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1622     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1623     __ jcc(Assembler::above, L_failed);
1624 
1625     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1626     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1627     __ jcc(Assembler::above, L_failed);
1628 
1629     BLOCK_COMMENT("arraycopy_range_checks done");
1630   }
1631 
1632 
1633   //
1634   //  Generate generic array copy stubs
1635   //
1636   //  Input:
1637   //     4(rsp)    -  src oop
1638   //     8(rsp)    -  src_pos
1639   //    12(rsp)    -  dst oop
1640   //    16(rsp)    -  dst_pos
1641   //    20(rsp)    -  element count
1642   //
1643   //  Output:
1644   //    rax, ==  0  -  success
1645   //    rax, == -1^K - failure, where K is partial transfer count
1646   //
1647   address generate_generic_copy(const char *name,
1648                                 address entry_jbyte_arraycopy,
1649                                 address entry_jshort_arraycopy,
1650                                 address entry_jint_arraycopy,
1651                                 address entry_oop_arraycopy,
1652                                 address entry_jlong_arraycopy,
1653                                 address entry_checkcast_arraycopy) {
1654     Label L_failed, L_failed_0, L_objArray;
1655 
1656     { int modulus = CodeEntryAlignment;
1657       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1658       int advance = target - (__ offset() % modulus);
1659       if (advance < 0)  advance += modulus;
1660       if (advance > 0)  __ nop(advance);
1661     }
1662     StubCodeMark mark(this, "StubRoutines", name);
1663 
1664     // Short-hop target to L_failed.  Makes for denser prologue code.
1665     __ BIND(L_failed_0);
1666     __ jmp(L_failed);
1667     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1668 
1669     __ align(CodeEntryAlignment);
1670     address start = __ pc();
1671 
1672     __ enter(); // required for proper stackwalking of RuntimeStub frame
1673     __ push(rsi);
1674     __ push(rdi);
1675 
1676     // bump this on entry, not on exit:
1677     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1678 
1679     // Input values
1680     Address SRC     (rsp, 12+ 4);
1681     Address SRC_POS (rsp, 12+ 8);
1682     Address DST     (rsp, 12+12);
1683     Address DST_POS (rsp, 12+16);
1684     Address LENGTH  (rsp, 12+20);
1685 
1686     //-----------------------------------------------------------------------
1687     // Assembler stub will be used for this call to arraycopy
1688     // if the following conditions are met:
1689     //
1690     // (1) src and dst must not be null.
1691     // (2) src_pos must not be negative.
1692     // (3) dst_pos must not be negative.
1693     // (4) length  must not be negative.
1694     // (5) src klass and dst klass should be the same and not NULL.
1695     // (6) src and dst should be arrays.
1696     // (7) src_pos + length must not exceed length of src.
1697     // (8) dst_pos + length must not exceed length of dst.
1698     //
1699 
1700     const Register src     = rax;       // source array oop
1701     const Register src_pos = rsi;
1702     const Register dst     = rdx;       // destination array oop
1703     const Register dst_pos = rdi;
1704     const Register length  = rcx;       // transfer count
1705 
1706     //  if (src == NULL) return -1;
1707     __ movptr(src, SRC);      // src oop
1708     __ testptr(src, src);
1709     __ jccb(Assembler::zero, L_failed_0);
1710 
1711     //  if (src_pos < 0) return -1;
1712     __ movl2ptr(src_pos, SRC_POS);  // src_pos
1713     __ testl(src_pos, src_pos);
1714     __ jccb(Assembler::negative, L_failed_0);
1715 
1716     //  if (dst == NULL) return -1;
1717     __ movptr(dst, DST);      // dst oop
1718     __ testptr(dst, dst);
1719     __ jccb(Assembler::zero, L_failed_0);
1720 
1721     //  if (dst_pos < 0) return -1;
1722     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1723     __ testl(dst_pos, dst_pos);
1724     __ jccb(Assembler::negative, L_failed_0);
1725 
1726     //  if (length < 0) return -1;
1727     __ movl2ptr(length, LENGTH);   // length
1728     __ testl(length, length);
1729     __ jccb(Assembler::negative, L_failed_0);
1730 
1731     //  if (src->klass() == NULL) return -1;
1732     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1733     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1734     const Register rcx_src_klass = rcx;    // array klass
1735     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1736 
1737 #ifdef ASSERT
1738     //  assert(src->klass() != NULL);
1739     BLOCK_COMMENT("assert klasses not null");
1740     { Label L1, L2;
1741       __ testptr(rcx_src_klass, rcx_src_klass);
1742       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1743       __ bind(L1);
1744       __ stop("broken null klass");
1745       __ bind(L2);
1746       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1747       __ jccb(Assembler::equal, L1);      // this would be broken also
1748       BLOCK_COMMENT("assert done");
1749     }
1750 #endif //ASSERT
1751 
1752     // Load layout helper (32-bits)
1753     //
1754     //  |array_tag|     | header_size | element_type |     |log2_element_size|
1755     // 32        30    24            16              8     2                 0
1756     //
1757     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1758     //
1759 
1760     int lh_offset = in_bytes(Klass::layout_helper_offset());
1761     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1762 
1763     // Handle objArrays completely differently...
1764     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1765     __ cmpl(src_klass_lh_addr, objArray_lh);
1766     __ jcc(Assembler::equal, L_objArray);
1767 
1768     //  if (src->klass() != dst->klass()) return -1;
1769     __ cmpptr(rcx_src_klass, dst_klass_addr);
1770     __ jccb(Assembler::notEqual, L_failed_0);
1771 
1772     const Register rcx_lh = rcx;  // layout helper
1773     assert(rcx_lh == rcx_src_klass, "known alias");
1774     __ movl(rcx_lh, src_klass_lh_addr);
1775 
1776     //  if (!src->is_Array()) return -1;
1777     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1778     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1779 
1780     // At this point, it is known to be a typeArray (array_tag 0x3).
1781 #ifdef ASSERT
1782     { Label L;
1783       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1784       __ jcc(Assembler::greaterEqual, L); // signed cmp
1785       __ stop("must be a primitive array");
1786       __ bind(L);
1787     }
1788 #endif
1789 
1790     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1791     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1792 
1793     // TypeArrayKlass
1794     //
1795     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1796     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1797     //
1798     const Register rsi_offset = rsi; // array offset
1799     const Register src_array  = src; // src array offset
1800     const Register dst_array  = dst; // dst array offset
1801     const Register rdi_elsize = rdi; // log2 element size
1802 
1803     __ mov(rsi_offset, rcx_lh);
1804     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1805     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1806     __ addptr(src_array, rsi_offset);  // src array offset
1807     __ addptr(dst_array, rsi_offset);  // dst array offset
1808     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1809 
1810     // next registers should be set before the jump to corresponding stub
1811     const Register from       = src; // source array address
1812     const Register to         = dst; // destination array address
1813     const Register count      = rcx; // elements count
1814     // some of them should be duplicated on stack
1815 #define FROM   Address(rsp, 12+ 4)
1816 #define TO     Address(rsp, 12+ 8)   // Not used now
1817 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1818 
1819     BLOCK_COMMENT("scale indexes to element size");
1820     __ movl2ptr(rsi, SRC_POS);  // src_pos
1821     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1822     assert(src_array == from, "");
1823     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1824     __ movl2ptr(rdi, DST_POS);  // dst_pos
1825     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1826     assert(dst_array == to, "");
1827     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1828     __ movptr(FROM, from);      // src_addr
1829     __ mov(rdi_elsize, rcx_lh); // log2 elsize
1830     __ movl2ptr(count, LENGTH); // elements count
1831 
1832     BLOCK_COMMENT("choose copy loop based on element size");
1833     __ cmpl(rdi_elsize, 0);
1834 
1835     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1836     __ cmpl(rdi_elsize, LogBytesPerShort);
1837     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1838     __ cmpl(rdi_elsize, LogBytesPerInt);
1839     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1840 #ifdef ASSERT
1841     __ cmpl(rdi_elsize, LogBytesPerLong);
1842     __ jccb(Assembler::notEqual, L_failed);
1843 #endif
1844     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1845     __ pop(rsi);
1846     __ jump(RuntimeAddress(entry_jlong_arraycopy));
1847 
1848   __ BIND(L_failed);
1849     __ xorptr(rax, rax);
1850     __ notptr(rax); // return -1
1851     __ pop(rdi);
1852     __ pop(rsi);
1853     __ leave(); // required for proper stackwalking of RuntimeStub frame
1854     __ ret(0);
1855 
1856     // ObjArrayKlass
1857   __ BIND(L_objArray);
1858     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1859 
1860     Label L_plain_copy, L_checkcast_copy;
1861     //  test array classes for subtyping
1862     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1863     __ jccb(Assembler::notEqual, L_checkcast_copy);
1864 
1865     // Identically typed arrays can be copied without element-wise checks.
1866     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1867     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1868 
1869   __ BIND(L_plain_copy);
1870     __ movl2ptr(count, LENGTH); // elements count
1871     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1872     __ lea(from, Address(src, src_pos, Address::times_ptr,
1873                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1874     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1875     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1876                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1877     __ movptr(FROM,  from);   // src_addr
1878     __ movptr(TO,    to);     // dst_addr
1879     __ movl(COUNT, count);  // count
1880     __ jump(RuntimeAddress(entry_oop_arraycopy));
1881 
1882   __ BIND(L_checkcast_copy);
1883     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1884     {
1885       // Handy offsets:
1886       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
1887       int sco_offset = in_bytes(Klass::super_check_offset_offset());
1888 
1889       Register rsi_dst_klass = rsi;
1890       Register rdi_temp      = rdi;
1891       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1892       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1893       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1894 
1895       // Before looking at dst.length, make sure dst is also an objArray.
1896       __ movptr(rsi_dst_klass, dst_klass_addr);
1897       __ cmpl(dst_klass_lh_addr, objArray_lh);
1898       __ jccb(Assembler::notEqual, L_failed);
1899 
1900       // It is safe to examine both src.length and dst.length.
1901       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1902       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1903       // (Now src_pos and dst_pos are killed, but not src and dst.)
1904 
1905       // We'll need this temp (don't forget to pop it after the type check).
1906       __ push(rbx);
1907       Register rbx_src_klass = rbx;
1908 
1909       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1910       __ movptr(rsi_dst_klass, dst_klass_addr);
1911       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1912       Label L_fail_array_check;
1913       generate_type_check(rbx_src_klass,
1914                           super_check_offset_addr, dst_klass_addr,
1915                           rdi_temp, NULL, &L_fail_array_check);
1916       // (On fall-through, we have passed the array type check.)
1917       __ pop(rbx);
1918       __ jmp(L_plain_copy);
1919 
1920       __ BIND(L_fail_array_check);
1921       // Reshuffle arguments so we can call checkcast_arraycopy:
1922 
1923       // match initial saves for checkcast_arraycopy
1924       // push(rsi);    // already done; see above
1925       // push(rdi);    // already done; see above
1926       // push(rbx);    // already done; see above
1927 
1928       // Marshal outgoing arguments now, freeing registers.
1929       Address   from_arg(rsp, 16+ 4);   // from
1930       Address     to_arg(rsp, 16+ 8);   // to
1931       Address length_arg(rsp, 16+12);   // elements count
1932       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1933       Address  ckval_arg(rsp, 16+20);   // super_klass
1934 
1935       Address SRC_POS_arg(rsp, 16+ 8);
1936       Address DST_POS_arg(rsp, 16+16);
1937       Address  LENGTH_arg(rsp, 16+20);
1938       // push rbx, changed the incoming offsets (why not just use rbp,??)
1939       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1940 
1941       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1942       __ movl2ptr(length, LENGTH_arg);    // reload elements count
1943       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1944       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1945 
1946       __ movptr(ckval_arg, rbx);          // destination element type
1947       __ movl(rbx, Address(rbx, sco_offset));
1948       __ movl(ckoff_arg, rbx);          // corresponding class check offset
1949 
1950       __ movl(length_arg, length);      // outgoing length argument
1951 
1952       __ lea(from, Address(src, src_pos, Address::times_ptr,
1953                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1954       __ movptr(from_arg, from);
1955 
1956       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1957                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1958       __ movptr(to_arg, to);
1959       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1960     }
1961 
1962     return start;
1963   }
1964 
1965   void generate_arraycopy_stubs() {
1966     address entry;
1967     address entry_jbyte_arraycopy;
1968     address entry_jshort_arraycopy;
1969     address entry_jint_arraycopy;
1970     address entry_oop_arraycopy;
1971     address entry_jlong_arraycopy;
1972     address entry_checkcast_arraycopy;
1973 
1974     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
1975         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
1976                                "arrayof_jbyte_disjoint_arraycopy");
1977     StubRoutines::_arrayof_jbyte_arraycopy =
1978         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
1979                                NULL, "arrayof_jbyte_arraycopy");
1980     StubRoutines::_jbyte_disjoint_arraycopy =
1981         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
1982                                "jbyte_disjoint_arraycopy");
1983     StubRoutines::_jbyte_arraycopy =
1984         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
1985                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
1986 
1987     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
1988         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
1989                                "arrayof_jshort_disjoint_arraycopy");
1990     StubRoutines::_arrayof_jshort_arraycopy =
1991         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
1992                                NULL, "arrayof_jshort_arraycopy");
1993     StubRoutines::_jshort_disjoint_arraycopy =
1994         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
1995                                "jshort_disjoint_arraycopy");
1996     StubRoutines::_jshort_arraycopy =
1997         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
1998                                &entry_jshort_arraycopy, "jshort_arraycopy");
1999 
2000     // Next arrays are always aligned on 4 bytes at least.
2001     StubRoutines::_jint_disjoint_arraycopy =
2002         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
2003                                "jint_disjoint_arraycopy");
2004     StubRoutines::_jint_arraycopy =
2005         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
2006                                &entry_jint_arraycopy, "jint_arraycopy");
2007 
2008     StubRoutines::_oop_disjoint_arraycopy =
2009         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2010                                "oop_disjoint_arraycopy");
2011     StubRoutines::_oop_arraycopy =
2012         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2013                                &entry_oop_arraycopy, "oop_arraycopy");
2014 
2015     StubRoutines::_oop_disjoint_arraycopy_uninit =
2016         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2017                                "oop_disjoint_arraycopy_uninit",
2018                                /*dest_uninitialized*/true);
2019     StubRoutines::_oop_arraycopy_uninit =
2020         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2021                                NULL, "oop_arraycopy_uninit",
2022                                /*dest_uninitialized*/true);
2023 
2024     StubRoutines::_jlong_disjoint_arraycopy =
2025         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
2026     StubRoutines::_jlong_arraycopy =
2027         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
2028                                     "jlong_arraycopy");
2029 
2030     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2031     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2032     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2033     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2034     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2035     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2036 
2037     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
2038     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
2039     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
2040     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
2041 
2042     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
2043     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
2044     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
2045     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
2046 
2047     StubRoutines::_checkcast_arraycopy =
2048         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2049     StubRoutines::_checkcast_arraycopy_uninit =
2050         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
2051 
2052     StubRoutines::_unsafe_arraycopy =
2053         generate_unsafe_copy("unsafe_arraycopy",
2054                                entry_jbyte_arraycopy,
2055                                entry_jshort_arraycopy,
2056                                entry_jint_arraycopy,
2057                                entry_jlong_arraycopy);
2058 
2059     StubRoutines::_generic_arraycopy =
2060         generate_generic_copy("generic_arraycopy",
2061                                entry_jbyte_arraycopy,
2062                                entry_jshort_arraycopy,
2063                                entry_jint_arraycopy,
2064                                entry_oop_arraycopy,
2065                                entry_jlong_arraycopy,
2066                                entry_checkcast_arraycopy);
2067   }
2068 
2069   void generate_math_stubs() {
2070     {
2071       StubCodeMark mark(this, "StubRoutines", "log");
2072       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2073 
2074       __ fld_d(Address(rsp, 4));
2075       __ flog();
2076       __ ret(0);
2077     }
2078     {
2079       StubCodeMark mark(this, "StubRoutines", "log10");
2080       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2081 
2082       __ fld_d(Address(rsp, 4));
2083       __ flog10();
2084       __ ret(0);
2085     }
2086     {
2087       StubCodeMark mark(this, "StubRoutines", "sin");
2088       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
2089 
2090       __ fld_d(Address(rsp, 4));
2091       __ trigfunc('s');
2092       __ ret(0);
2093     }
2094     {
2095       StubCodeMark mark(this, "StubRoutines", "cos");
2096       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2097 
2098       __ fld_d(Address(rsp, 4));
2099       __ trigfunc('c');
2100       __ ret(0);
2101     }
2102     {
2103       StubCodeMark mark(this, "StubRoutines", "tan");
2104       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2105 
2106       __ fld_d(Address(rsp, 4));
2107       __ trigfunc('t');
2108       __ ret(0);
2109     }
2110     {
2111       StubCodeMark mark(this, "StubRoutines", "exp");
2112       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2113 
2114       __ fld_d(Address(rsp, 4));
2115       __ exp_with_fallback(0);
2116       __ ret(0);
2117     }
2118     {
2119       StubCodeMark mark(this, "StubRoutines", "pow");
2120       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
2121 
2122       __ fld_d(Address(rsp, 12));
2123       __ fld_d(Address(rsp, 4));
2124       __ pow_with_fallback(0);
2125       __ ret(0);
2126     }
2127   }
2128 
2129   // AES intrinsic stubs
2130   enum {AESBlockSize = 16};
2131 
2132   address generate_key_shuffle_mask() {
2133     __ align(16);
2134     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2135     address start = __ pc();
2136     __ emit_data(0x00010203, relocInfo::none, 0 );
2137     __ emit_data(0x04050607, relocInfo::none, 0 );
2138     __ emit_data(0x08090a0b, relocInfo::none, 0 );
2139     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
2140     return start;
2141   }
2142 
2143   // Utility routine for loading a 128-bit key word in little endian format
2144   // can optionally specify that the shuffle mask is already in an xmmregister
2145   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2146     __ movdqu(xmmdst, Address(key, offset));
2147     if (xmm_shuf_mask != NULL) {
2148       __ pshufb(xmmdst, xmm_shuf_mask);
2149     } else {
2150       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2151     }
2152   }
2153 
2154   // aesenc using specified key+offset
2155   // can optionally specify that the shuffle mask is already in an xmmregister
2156   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2157     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2158     __ aesenc(xmmdst, xmmtmp);
2159   }
2160 
2161   // aesdec using specified key+offset
2162   // can optionally specify that the shuffle mask is already in an xmmregister
2163   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2164     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2165     __ aesdec(xmmdst, xmmtmp);
2166   }
2167 
2168 
2169   // Arguments:
2170   //
2171   // Inputs:
2172   //   c_rarg0   - source byte array address
2173   //   c_rarg1   - destination byte array address
2174   //   c_rarg2   - K (key) in little endian int array
2175   //
2176   address generate_aescrypt_encryptBlock() {
2177     assert(UseAES && (UseAVX > 0), "need AES instructions and misaligned SSE support");
2178     __ align(CodeEntryAlignment);
2179     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2180     Label L_doLast;
2181     address start = __ pc();
2182 
2183     const Register from        = rsi;      // source array address
2184     const Register to          = rdx;      // destination array address
2185     const Register key         = rcx;      // key array address
2186     const Register keylen      = rax;
2187     const Address  from_param(rbp, 8+0);
2188     const Address  to_param  (rbp, 8+4);
2189     const Address  key_param (rbp, 8+8);
2190 
2191     const XMMRegister xmm_result = xmm0;
2192     const XMMRegister xmm_temp   = xmm1;
2193     const XMMRegister xmm_key_shuf_mask = xmm2;
2194 
2195     __ enter(); // required for proper stackwalking of RuntimeStub frame
2196     __ push(rsi);
2197     __ movptr(from , from_param);
2198     __ movptr(to   , to_param);
2199     __ movptr(key  , key_param);
2200 
2201     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2202     // keylen = # of 32-bit words, convert to 128-bit words
2203     __ shrl(keylen, 2);
2204     __ subl(keylen, 11);   // every key has at least 11 128-bit words, some have more
2205 
2206     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2207     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
2208 
2209     // For encryption, the java expanded key ordering is just what we need
2210 
2211     load_key(xmm_temp, key, 0x00, xmm_key_shuf_mask);
2212     __ pxor(xmm_result, xmm_temp);
2213     for (int offset = 0x10; offset <= 0x90; offset += 0x10) {
2214       aes_enc_key(xmm_result, xmm_temp, key, offset, xmm_key_shuf_mask);
2215     }
2216     load_key  (xmm_temp, key, 0xa0, xmm_key_shuf_mask);
2217     __ cmpl(keylen, 0);
2218     __ jcc(Assembler::equal, L_doLast);
2219     __ aesenc(xmm_result, xmm_temp);                   // only in 192 and 256 bit keys
2220     aes_enc_key(xmm_result, xmm_temp, key, 0xb0, xmm_key_shuf_mask);
2221     load_key(xmm_temp, key, 0xc0, xmm_key_shuf_mask);
2222     __ subl(keylen, 2);
2223     __ jcc(Assembler::equal, L_doLast);
2224     __ aesenc(xmm_result, xmm_temp);                   // only in 256 bit keys
2225     aes_enc_key(xmm_result, xmm_temp, key, 0xd0, xmm_key_shuf_mask);
2226     load_key(xmm_temp, key, 0xe0, xmm_key_shuf_mask);
2227 
2228     __ BIND(L_doLast);
2229     __ aesenclast(xmm_result, xmm_temp);
2230     __ movdqu(Address(to, 0), xmm_result);        // store the result
2231     __ xorptr(rax, rax); // return 0
2232     __ pop(rsi);
2233     __ leave(); // required for proper stackwalking of RuntimeStub frame
2234     __ ret(0);
2235 
2236     return start;
2237   }
2238 
2239 
2240   // Arguments:
2241   //
2242   // Inputs:
2243   //   c_rarg0   - source byte array address
2244   //   c_rarg1   - destination byte array address
2245   //   c_rarg2   - K (key) in little endian int array
2246   //
2247   address generate_aescrypt_decryptBlock() {
2248     assert(UseAES && (UseAVX > 0), "need AES instructions and misaligned SSE support");
2249     __ align(CodeEntryAlignment);
2250     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2251     Label L_doLast;
2252     address start = __ pc();
2253 
2254     const Register from        = rsi;      // source array address
2255     const Register to          = rdx;      // destination array address
2256     const Register key         = rcx;      // key array address
2257     const Register keylen      = rax;
2258     const Address  from_param(rbp, 8+0);
2259     const Address  to_param  (rbp, 8+4);
2260     const Address  key_param (rbp, 8+8);
2261 
2262     const XMMRegister xmm_result = xmm0;
2263     const XMMRegister xmm_temp   = xmm1;
2264     const XMMRegister xmm_key_shuf_mask = xmm2;
2265 
2266     __ enter(); // required for proper stackwalking of RuntimeStub frame
2267     __ push(rsi);
2268     __ movptr(from , from_param);
2269     __ movptr(to   , to_param);
2270     __ movptr(key  , key_param);
2271 
2272     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2273     // keylen = # of 32-bit words, convert to 128-bit words
2274     __ shrl(keylen, 2);
2275     __ subl(keylen, 11);   // every key has at least 11 128-bit words, some have more
2276 
2277     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2278     __ movdqu(xmm_result, Address(from, 0));
2279 
2280     // for decryption java expanded key ordering is rotated one position from what we want
2281     // so we start from 0x10 here and hit 0x00 last
2282     // we don't know if the key is aligned, hence not using load-execute form
2283     load_key(xmm_temp, key, 0x10, xmm_key_shuf_mask);
2284     __ pxor  (xmm_result, xmm_temp);
2285     for (int offset = 0x20; offset <= 0xa0; offset += 0x10) {
2286       aes_dec_key(xmm_result, xmm_temp, key, offset, xmm_key_shuf_mask);
2287     }
2288     __ cmpl(keylen, 0);
2289     __ jcc(Assembler::equal, L_doLast);
2290     // only in 192 and 256 bit keys
2291     aes_dec_key(xmm_result, xmm_temp, key, 0xb0, xmm_key_shuf_mask);
2292     aes_dec_key(xmm_result, xmm_temp, key, 0xc0, xmm_key_shuf_mask);
2293     __ subl(keylen, 2);
2294     __ jcc(Assembler::equal, L_doLast);
2295     // only in 256 bit keys
2296     aes_dec_key(xmm_result, xmm_temp, key, 0xd0, xmm_key_shuf_mask);
2297     aes_dec_key(xmm_result, xmm_temp, key, 0xe0, xmm_key_shuf_mask);
2298 
2299     __ BIND(L_doLast);
2300     // for decryption the aesdeclast operation is always on key+0x00
2301     load_key(xmm_temp, key, 0x00, xmm_key_shuf_mask);
2302     __ aesdeclast(xmm_result, xmm_temp);
2303 
2304     __ movdqu(Address(to, 0), xmm_result);  // store the result
2305 
2306     __ xorptr(rax, rax); // return 0
2307     __ pop(rsi);
2308     __ leave(); // required for proper stackwalking of RuntimeStub frame
2309     __ ret(0);
2310 
2311     return start;
2312   }
2313 
2314   void handleSOERegisters(bool saving) {
2315     const int saveFrameSizeInBytes = 4 * wordSize;
2316     const Address saved_rbx     (rbp, -3 * wordSize);
2317     const Address saved_rsi     (rbp, -2 * wordSize);
2318     const Address saved_rdi     (rbp, -1 * wordSize);
2319 
2320     if (saving) {
2321       __ subptr(rsp, saveFrameSizeInBytes);
2322       __ movptr(saved_rsi, rsi);
2323       __ movptr(saved_rdi, rdi);
2324       __ movptr(saved_rbx, rbx);
2325     } else {
2326       // restoring
2327       __ movptr(rsi, saved_rsi);
2328       __ movptr(rdi, saved_rdi);
2329       __ movptr(rbx, saved_rbx);
2330     }
2331   }
2332 
2333   // Arguments:
2334   //
2335   // Inputs:
2336   //   c_rarg0   - source byte array address
2337   //   c_rarg1   - destination byte array address
2338   //   c_rarg2   - K (key) in little endian int array
2339   //   c_rarg3   - r vector byte array address
2340   //   c_rarg4   - input length
2341   //
2342   address generate_cipherBlockChaining_encryptAESCrypt() {
2343     assert(UseAES && (UseAVX > 0), "need AES instructions and misaligned SSE support");
2344     __ align(CodeEntryAlignment);
2345     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
2346     address start = __ pc();
2347 
2348     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
2349     const Register from        = rsi;      // source array address
2350     const Register to          = rdx;      // destination array address
2351     const Register key         = rcx;      // key array address
2352     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2353                                            // and left with the results of the last encryption block
2354     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2355     const Register pos         = rax;
2356 
2357     // xmm register assignments for the loops below
2358     const XMMRegister xmm_result = xmm0;
2359     const XMMRegister xmm_temp   = xmm1;
2360     // first 6 keys preloaded into xmm2-xmm7
2361     const int XMM_REG_NUM_KEY_FIRST = 2;
2362     const int XMM_REG_NUM_KEY_LAST  = 7;
2363     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2364 
2365     __ enter(); // required for proper stackwalking of RuntimeStub frame
2366     handleSOERegisters(true /*saving*/);
2367 
2368     // load registers from incoming parameters
2369     const Address  from_param(rbp, 8+0);
2370     const Address  to_param  (rbp, 8+4);
2371     const Address  key_param (rbp, 8+8);
2372     const Address  rvec_param (rbp, 8+12);
2373     const Address  len_param  (rbp, 8+16);
2374     __ movptr(from , from_param);
2375     __ movptr(to   , to_param);
2376     __ movptr(key  , key_param);
2377     __ movptr(rvec , rvec_param);
2378     __ movptr(len_reg , len_param);
2379 
2380     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
2381     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2382     // load up xmm regs 2 thru 7 with keys 0-5
2383     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2384       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2385       offset += 0x10;
2386     }
2387 
2388     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
2389 
2390     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2391     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2392     __ cmpl(rax, 44);
2393     __ jcc(Assembler::notEqual, L_key_192_256);
2394 
2395     // 128 bit code follows here
2396     __ movptr(pos, 0);
2397     __ align(OptoLoopAlignment);
2398     __ BIND(L_loopTop_128);
2399     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2400     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2401 
2402     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2403     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2404       __ aesenc(xmm_result, as_XMMRegister(rnum));
2405     }
2406     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
2407       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2408     }
2409     load_key(xmm_temp, key, 0xa0);
2410     __ aesenclast(xmm_result, xmm_temp);
2411 
2412     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2413     // no need to store r to memory until we exit
2414     __ addptr(pos, AESBlockSize);
2415     __ subptr(len_reg, AESBlockSize);
2416     __ jcc(Assembler::notEqual, L_loopTop_128);
2417 
2418     __ BIND(L_exit);
2419     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
2420 
2421     handleSOERegisters(false /*restoring*/);
2422     __ movl(rax, 0);                             // return 0 (why?)
2423     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
2424     __ ret(0);
2425 
2426   __ BIND(L_key_192_256);
2427   // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2428     __ cmpl(rax, 52);
2429     __ jcc(Assembler::notEqual, L_key_256);
2430 
2431     // 192-bit code follows here (could be changed to use more xmm registers)
2432     __ movptr(pos, 0);
2433   __ align(OptoLoopAlignment);
2434   __ BIND(L_loopTop_192);
2435     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2436     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2437 
2438     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2439     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2440       __ aesenc(xmm_result, as_XMMRegister(rnum));
2441     }
2442     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
2443       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2444     }
2445     load_key(xmm_temp, key, 0xc0);
2446     __ aesenclast(xmm_result, xmm_temp);
2447 
2448     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2449     // no need to store r to memory until we exit
2450     __ addptr(pos, AESBlockSize);
2451     __ subptr(len_reg, AESBlockSize);
2452     __ jcc(Assembler::notEqual, L_loopTop_192);
2453     __ jmp(L_exit);
2454 
2455   __ BIND(L_key_256);
2456     // 256-bit code follows here (could be changed to use more xmm registers)
2457     __ movptr(pos, 0);
2458   __ align(OptoLoopAlignment);
2459   __ BIND(L_loopTop_256);
2460     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2461     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2462 
2463     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2464     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2465       __ aesenc(xmm_result, as_XMMRegister(rnum));
2466     }
2467     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
2468       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2469     }
2470     load_key(xmm_temp, key, 0xe0);
2471     __ aesenclast(xmm_result, xmm_temp);
2472 
2473     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2474     // no need to store r to memory until we exit
2475     __ addptr(pos, AESBlockSize);
2476     __ subptr(len_reg, AESBlockSize);
2477     __ jcc(Assembler::notEqual, L_loopTop_256);
2478     __ jmp(L_exit);
2479 
2480     return start;
2481   }
2482 
2483 
2484   // CBC AES Decryption.
2485   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
2486   //
2487   // Arguments:
2488   //
2489   // Inputs:
2490   //   c_rarg0   - source byte array address
2491   //   c_rarg1   - destination byte array address
2492   //   c_rarg2   - K (key) in little endian int array
2493   //   c_rarg3   - r vector byte array address
2494   //   c_rarg4   - input length
2495   //
2496 
2497   address generate_cipherBlockChaining_decryptAESCrypt() {
2498     assert(UseAES && (UseAVX > 0), "need AES instructions and misaligned SSE support");
2499     __ align(CodeEntryAlignment);
2500     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
2501     address start = __ pc();
2502 
2503     Label L_exit, L_key_192_256, L_key_256;
2504     Label L_singleBlock_loopTop_128;
2505     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
2506     const Register from        = rsi;      // source array address
2507     const Register to          = rdx;      // destination array address
2508     const Register key         = rcx;      // key array address
2509     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2510                                            // and left with the results of the last encryption block
2511     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2512     const Register pos         = rax;
2513 
2514     // xmm register assignments for the loops below
2515     const XMMRegister xmm_result = xmm0;
2516     const XMMRegister xmm_temp   = xmm1;
2517     // first 6 keys preloaded into xmm2-xmm7
2518     const int XMM_REG_NUM_KEY_FIRST = 2;
2519     const int XMM_REG_NUM_KEY_LAST  = 7;
2520     const int FIRST_NON_REG_KEY_offset = 0x70;
2521     const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2522 
2523     __ enter(); // required for proper stackwalking of RuntimeStub frame
2524     handleSOERegisters(true /*saving*/);
2525 
2526     // load registers from incoming parameters
2527     const Address  from_param(rbp, 8+0);
2528     const Address  to_param  (rbp, 8+4);
2529     const Address  key_param (rbp, 8+8);
2530     const Address  rvec_param (rbp, 8+12);
2531     const Address  len_param  (rbp, 8+16);
2532     __ movptr(from , from_param);
2533     __ movptr(to   , to_param);
2534     __ movptr(key  , key_param);
2535     __ movptr(rvec , rvec_param);
2536     __ movptr(len_reg , len_param);
2537 
2538     // the java expanded key ordering is rotated one position from what we want
2539     // so we start from 0x10 here and hit 0x00 last
2540     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
2541     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2542     // load up xmm regs 2 thru 6 with first 5 keys
2543     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2544       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2545       offset += 0x10;
2546     }
2547 
2548     // inside here, use the rvec register to point to previous block cipher
2549     // with which we xor at the end of each newly decrypted block
2550     const Register  prev_block_cipher_ptr = rvec;
2551 
2552     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2553     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2554     __ cmpl(rax, 44);
2555     __ jcc(Assembler::notEqual, L_key_192_256);
2556 
2557 
2558     // 128-bit code follows here, parallelized
2559     __ movptr(pos, 0);
2560   __ align(OptoLoopAlignment);
2561   __ BIND(L_singleBlock_loopTop_128);
2562     __ cmpptr(len_reg, 0);           // any blocks left??
2563     __ jcc(Assembler::equal, L_exit);
2564     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2565     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2566     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2567       __ aesdec(xmm_result, as_XMMRegister(rnum));
2568     }
2569     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
2570       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2571     }
2572     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2573     __ aesdeclast(xmm_result, xmm_temp);
2574     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2575     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2576     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2577     // no need to store r to memory until we exit
2578     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2579     __ addptr(pos, AESBlockSize);
2580     __ subptr(len_reg, AESBlockSize);
2581     __ jmp(L_singleBlock_loopTop_128);
2582 
2583 
2584     __ BIND(L_exit);
2585     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2586     __ movptr(rvec , rvec_param);                                     // restore this since used in loop
2587     __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
2588     handleSOERegisters(false /*restoring*/);
2589     __ movl(rax, 0);                                                  // return 0 (why?)
2590     __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
2591     __ ret(0);
2592 
2593 
2594     __ BIND(L_key_192_256);
2595     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2596     __ cmpl(rax, 52);
2597     __ jcc(Assembler::notEqual, L_key_256);
2598 
2599     // 192-bit code follows here (could be optimized to use parallelism)
2600     __ movptr(pos, 0);
2601     __ align(OptoLoopAlignment);
2602     __ BIND(L_singleBlock_loopTop_192);
2603     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2604     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2605     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2606       __ aesdec(xmm_result, as_XMMRegister(rnum));
2607     }
2608     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
2609       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2610     }
2611     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2612     __ aesdeclast(xmm_result, xmm_temp);
2613     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2614     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2615     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2616     // no need to store r to memory until we exit
2617     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2618     __ addptr(pos, AESBlockSize);
2619     __ subptr(len_reg, AESBlockSize);
2620     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
2621     __ jmp(L_exit);
2622 
2623     __ BIND(L_key_256);
2624     // 256-bit code follows here (could be optimized to use parallelism)
2625     __ movptr(pos, 0);
2626     __ align(OptoLoopAlignment);
2627     __ BIND(L_singleBlock_loopTop_256);
2628     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2629     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2630     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2631       __ aesdec(xmm_result, as_XMMRegister(rnum));
2632     }
2633     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
2634       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2635     }
2636     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2637     __ aesdeclast(xmm_result, xmm_temp);
2638     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2639     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2640     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2641     // no need to store r to memory until we exit
2642     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2643     __ addptr(pos, AESBlockSize);
2644     __ subptr(len_reg, AESBlockSize);
2645     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
2646     __ jmp(L_exit);
2647 
2648     return start;
2649   }
2650 
2651 
2652  public:
2653   // Information about frame layout at time of blocking runtime call.
2654   // Note that we only have to preserve callee-saved registers since
2655   // the compilers are responsible for supplying a continuation point
2656   // if they expect all registers to be preserved.
2657   enum layout {
2658     thread_off,    // last_java_sp
2659     arg1_off,
2660     arg2_off,
2661     rbp_off,       // callee saved register
2662     ret_pc,
2663     framesize
2664   };
2665 
2666  private:
2667 
2668 #undef  __
2669 #define __ masm->
2670 
2671   //------------------------------------------------------------------------------------------------------------------------
2672   // Continuation point for throwing of implicit exceptions that are not handled in
2673   // the current activation. Fabricates an exception oop and initiates normal
2674   // exception dispatching in this frame.
2675   //
2676   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2677   // This is no longer true after adapter frames were removed but could possibly
2678   // be brought back in the future if the interpreter code was reworked and it
2679   // was deemed worthwhile. The comment below was left to describe what must
2680   // happen here if callee saves were resurrected. As it stands now this stub
2681   // could actually be a vanilla BufferBlob and have now oopMap at all.
2682   // Since it doesn't make much difference we've chosen to leave it the
2683   // way it was in the callee save days and keep the comment.
2684 
2685   // If we need to preserve callee-saved values we need a callee-saved oop map and
2686   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2687   // If the compiler needs all registers to be preserved between the fault
2688   // point and the exception handler then it must assume responsibility for that in
2689   // AbstractCompiler::continuation_for_implicit_null_exception or
2690   // continuation_for_implicit_division_by_zero_exception. All other implicit
2691   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2692   // either at call sites or otherwise assume that stack unwinding will be initiated,
2693   // so caller saved registers were assumed volatile in the compiler.
2694   address generate_throw_exception(const char* name, address runtime_entry,
2695                                    Register arg1 = noreg, Register arg2 = noreg) {
2696 
2697     int insts_size = 256;
2698     int locs_size  = 32;
2699 
2700     CodeBuffer code(name, insts_size, locs_size);
2701     OopMapSet* oop_maps  = new OopMapSet();
2702     MacroAssembler* masm = new MacroAssembler(&code);
2703 
2704     address start = __ pc();
2705 
2706     // This is an inlined and slightly modified version of call_VM
2707     // which has the ability to fetch the return PC out of
2708     // thread-local storage and also sets up last_Java_sp slightly
2709     // differently than the real call_VM
2710     Register java_thread = rbx;
2711     __ get_thread(java_thread);
2712 
2713     __ enter(); // required for proper stackwalking of RuntimeStub frame
2714 
2715     // pc and rbp, already pushed
2716     __ subptr(rsp, (framesize-2) * wordSize); // prolog
2717 
2718     // Frame is now completed as far as size and linkage.
2719 
2720     int frame_complete = __ pc() - start;
2721 
2722     // push java thread (becomes first argument of C function)
2723     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2724     if (arg1 != noreg) {
2725       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
2726     }
2727     if (arg2 != noreg) {
2728       assert(arg1 != noreg, "missing reg arg");
2729       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
2730     }
2731 
2732     // Set up last_Java_sp and last_Java_fp
2733     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
2734 
2735     // Call runtime
2736     BLOCK_COMMENT("call runtime_entry");
2737     __ call(RuntimeAddress(runtime_entry));
2738     // Generate oop map
2739     OopMap* map =  new OopMap(framesize, 0);
2740     oop_maps->add_gc_map(__ pc() - start, map);
2741 
2742     // restore the thread (cannot use the pushed argument since arguments
2743     // may be overwritten by C code generated by an optimizing compiler);
2744     // however can use the register value directly if it is callee saved.
2745     __ get_thread(java_thread);
2746 
2747     __ reset_last_Java_frame(java_thread, true, false);
2748 
2749     __ leave(); // required for proper stackwalking of RuntimeStub frame
2750 
2751     // check for pending exceptions
2752 #ifdef ASSERT
2753     Label L;
2754     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2755     __ jcc(Assembler::notEqual, L);
2756     __ should_not_reach_here();
2757     __ bind(L);
2758 #endif /* ASSERT */
2759     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2760 
2761 
2762     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2763     return stub->entry_point();
2764   }
2765 
2766 
2767   void create_control_words() {
2768     // Round to nearest, 53-bit mode, exceptions masked
2769     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
2770     // Round to zero, 53-bit mode, exception mased
2771     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
2772     // Round to nearest, 24-bit mode, exceptions masked
2773     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
2774     // Round to nearest, 64-bit mode, exceptions masked
2775     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
2776     // Round to nearest, 64-bit mode, exceptions masked
2777     StubRoutines::_mxcsr_std           = 0x1F80;
2778     // Note: the following two constants are 80-bit values
2779     //       layout is critical for correct loading by FPU.
2780     // Bias for strict fp multiply/divide
2781     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
2782     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
2783     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
2784     // Un-Bias for strict fp multiply/divide
2785     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
2786     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
2787     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
2788   }
2789 
2790   //---------------------------------------------------------------------------
2791   // Initialization
2792 
2793   void generate_initial() {
2794     // Generates all stubs and initializes the entry points
2795 
2796     //------------------------------------------------------------------------------------------------------------------------
2797     // entry points that exist in all platforms
2798     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
2799     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
2800     StubRoutines::_forward_exception_entry      = generate_forward_exception();
2801 
2802     StubRoutines::_call_stub_entry              =
2803       generate_call_stub(StubRoutines::_call_stub_return_address);
2804     // is referenced by megamorphic call
2805     StubRoutines::_catch_exception_entry        = generate_catch_exception();
2806 
2807     // These are currently used by Solaris/Intel
2808     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
2809 
2810     StubRoutines::_handler_for_unsafe_access_entry =
2811       generate_handler_for_unsafe_access();
2812 
2813     // platform dependent
2814     create_control_words();
2815 
2816     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
2817     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
2818     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
2819                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
2820     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
2821                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
2822 
2823     // Build this early so it's available for the interpreter
2824     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
2825   }
2826 
2827 
2828   void generate_all() {
2829     // Generates all stubs and initializes the entry points
2830 
2831     // These entry points require SharedInfo::stack0 to be set up in non-core builds
2832     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
2833     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
2834     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
2835     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
2836 
2837     //------------------------------------------------------------------------------------------------------------------------
2838     // entry points that are platform specific
2839 
2840     // support for verify_oop (must happen after universe_init)
2841     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
2842 
2843     // arraycopy stubs used by compilers
2844     generate_arraycopy_stubs();
2845 
2846     generate_math_stubs();
2847 
2848     // don't bother generating these AES intrinsic stubs unless global flag is set
2849     if (UseAESIntrinsics) {
2850       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
2851 
2852       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
2853       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
2854       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
2855       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
2856     }
2857   }
2858 
2859 
2860  public:
2861   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
2862     if (all) {
2863       generate_all();
2864     } else {
2865       generate_initial();
2866     }
2867   }
2868 }; // end class declaration
2869 
2870 
2871 void StubGenerator_generate(CodeBuffer* code, bool all) {
2872   StubGenerator g(code, all);
2873 }