1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "utilities/top.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 // Declaration and definition of StubGenerator (no .hpp file).
  47 // For a more detailed description of the stub routine structure
  48 // see the comment in stubRoutines.hpp
  49 
  50 #define __ _masm->
  51 #define a__ ((Assembler*)_masm)->
  52 
  53 #ifdef PRODUCT
  54 #define BLOCK_COMMENT(str) /* nothing */
  55 #else
  56 #define BLOCK_COMMENT(str) __ block_comment(str)
  57 #endif
  58 
  59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
  62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
  63 
  64 // -------------------------------------------------------------------------------------------------------------------------
  65 // Stub Code definitions
  66 
  67 static address handle_unsafe_access() {
  68   JavaThread* thread = JavaThread::current();
  69   address pc  = thread->saved_exception_pc();
  70   // pc is the instruction which we must emulate
  71   // doing a no-op is fine:  return garbage from the load
  72   // therefore, compute npc
  73   address npc = Assembler::locate_next_instruction(pc);
  74 
  75   // request an async exception
  76   thread->set_pending_unsafe_access_error();
  77 
  78   // return address of next instruction to execute
  79   return npc;
  80 }
  81 
  82 class StubGenerator: public StubCodeGenerator {
  83  private:
  84 
  85 #ifdef PRODUCT
  86 #define inc_counter_np(counter) (0)
  87 #else
  88   void inc_counter_np_(int& counter) {
  89     __ incrementl(ExternalAddress((address)&counter));
  90   }
  91 #define inc_counter_np(counter) \
  92   BLOCK_COMMENT("inc_counter " #counter); \
  93   inc_counter_np_(counter);
  94 #endif //PRODUCT
  95 
  96   void inc_copy_counter_np(BasicType t) {
  97 #ifndef PRODUCT
  98     switch (t) {
  99     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
 100     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
 101     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
 102     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
 103     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
 104     }
 105     ShouldNotReachHere();
 106 #endif //PRODUCT
 107   }
 108 
 109   //------------------------------------------------------------------------------------------------------------------------
 110   // Call stubs are used to call Java from C
 111   //
 112   //    [ return_from_Java     ] <--- rsp
 113   //    [ argument word n      ]
 114   //      ...
 115   // -N [ argument word 1      ]
 116   // -7 [ Possible padding for stack alignment ]
 117   // -6 [ Possible padding for stack alignment ]
 118   // -5 [ Possible padding for stack alignment ]
 119   // -4 [ mxcsr save           ] <--- rsp_after_call
 120   // -3 [ saved rbx,            ]
 121   // -2 [ saved rsi            ]
 122   // -1 [ saved rdi            ]
 123   //  0 [ saved rbp,            ] <--- rbp,
 124   //  1 [ return address       ]
 125   //  2 [ ptr. to call wrapper ]
 126   //  3 [ result               ]
 127   //  4 [ result_type          ]
 128   //  5 [ method               ]
 129   //  6 [ entry_point          ]
 130   //  7 [ parameters           ]
 131   //  8 [ parameter_size       ]
 132   //  9 [ thread               ]
 133 
 134 
 135   address generate_call_stub(address& return_address) {
 136     StubCodeMark mark(this, "StubRoutines", "call_stub");
 137     address start = __ pc();
 138 
 139     // stub code parameters / addresses
 140     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
 141     bool  sse_save = false;
 142     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
 143     const int     locals_count_in_bytes  (4*wordSize);
 144     const Address mxcsr_save    (rbp, -4 * wordSize);
 145     const Address saved_rbx     (rbp, -3 * wordSize);
 146     const Address saved_rsi     (rbp, -2 * wordSize);
 147     const Address saved_rdi     (rbp, -1 * wordSize);
 148     const Address result        (rbp,  3 * wordSize);
 149     const Address result_type   (rbp,  4 * wordSize);
 150     const Address method        (rbp,  5 * wordSize);
 151     const Address entry_point   (rbp,  6 * wordSize);
 152     const Address parameters    (rbp,  7 * wordSize);
 153     const Address parameter_size(rbp,  8 * wordSize);
 154     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
 155     sse_save =  UseSSE > 0;
 156 
 157     // stub code
 158     __ enter();
 159     __ movptr(rcx, parameter_size);              // parameter counter
 160     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
 161     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
 162     __ subptr(rsp, rcx);
 163     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
 164 
 165     // save rdi, rsi, & rbx, according to C calling conventions
 166     __ movptr(saved_rdi, rdi);
 167     __ movptr(saved_rsi, rsi);
 168     __ movptr(saved_rbx, rbx);
 169     // save and initialize %mxcsr
 170     if (sse_save) {
 171       Label skip_ldmx;
 172       __ stmxcsr(mxcsr_save);
 173       __ movl(rax, mxcsr_save);
 174       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 175       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 176       __ cmp32(rax, mxcsr_std);
 177       __ jcc(Assembler::equal, skip_ldmx);
 178       __ ldmxcsr(mxcsr_std);
 179       __ bind(skip_ldmx);
 180     }
 181 
 182     // make sure the control word is correct.
 183     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 184 
 185 #ifdef ASSERT
 186     // make sure we have no pending exceptions
 187     { Label L;
 188       __ movptr(rcx, thread);
 189       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 190       __ jcc(Assembler::equal, L);
 191       __ stop("StubRoutines::call_stub: entered with pending exception");
 192       __ bind(L);
 193     }
 194 #endif
 195 
 196     // pass parameters if any
 197     BLOCK_COMMENT("pass parameters if any");
 198     Label parameters_done;
 199     __ movl(rcx, parameter_size);  // parameter counter
 200     __ testl(rcx, rcx);
 201     __ jcc(Assembler::zero, parameters_done);
 202 
 203     // parameter passing loop
 204 
 205     Label loop;
 206     // Copy Java parameters in reverse order (receiver last)
 207     // Note that the argument order is inverted in the process
 208     // source is rdx[rcx: N-1..0]
 209     // dest   is rsp[rbx: 0..N-1]
 210 
 211     __ movptr(rdx, parameters);          // parameter pointer
 212     __ xorptr(rbx, rbx);
 213 
 214     __ BIND(loop);
 215 
 216     // get parameter
 217     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
 218     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
 219                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
 220     __ increment(rbx);
 221     __ decrement(rcx);
 222     __ jcc(Assembler::notZero, loop);
 223 
 224     // call Java function
 225     __ BIND(parameters_done);
 226     __ movptr(rbx, method);           // get Method*
 227     __ movptr(rax, entry_point);      // get entry_point
 228     __ mov(rsi, rsp);                 // set sender sp
 229     BLOCK_COMMENT("call Java function");
 230     __ call(rax);
 231 
 232     BLOCK_COMMENT("call_stub_return_address:");
 233     return_address = __ pc();
 234 
 235 #ifdef COMPILER2
 236     {
 237       Label L_skip;
 238       if (UseSSE >= 2) {
 239         __ verify_FPU(0, "call_stub_return");
 240       } else {
 241         for (int i = 1; i < 8; i++) {
 242           __ ffree(i);
 243         }
 244 
 245         // UseSSE <= 1 so double result should be left on TOS
 246         __ movl(rsi, result_type);
 247         __ cmpl(rsi, T_DOUBLE);
 248         __ jcc(Assembler::equal, L_skip);
 249         if (UseSSE == 0) {
 250           // UseSSE == 0 so float result should be left on TOS
 251           __ cmpl(rsi, T_FLOAT);
 252           __ jcc(Assembler::equal, L_skip);
 253         }
 254         __ ffree(0);
 255       }
 256       __ BIND(L_skip);
 257     }
 258 #endif // COMPILER2
 259 
 260     // store result depending on type
 261     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 262     __ movptr(rdi, result);
 263     Label is_long, is_float, is_double, exit;
 264     __ movl(rsi, result_type);
 265     __ cmpl(rsi, T_LONG);
 266     __ jcc(Assembler::equal, is_long);
 267     __ cmpl(rsi, T_FLOAT);
 268     __ jcc(Assembler::equal, is_float);
 269     __ cmpl(rsi, T_DOUBLE);
 270     __ jcc(Assembler::equal, is_double);
 271 
 272     // handle T_INT case
 273     __ movl(Address(rdi, 0), rax);
 274     __ BIND(exit);
 275 
 276     // check that FPU stack is empty
 277     __ verify_FPU(0, "generate_call_stub");
 278 
 279     // pop parameters
 280     __ lea(rsp, rsp_after_call);
 281 
 282     // restore %mxcsr
 283     if (sse_save) {
 284       __ ldmxcsr(mxcsr_save);
 285     }
 286 
 287     // restore rdi, rsi and rbx,
 288     __ movptr(rbx, saved_rbx);
 289     __ movptr(rsi, saved_rsi);
 290     __ movptr(rdi, saved_rdi);
 291     __ addptr(rsp, 4*wordSize);
 292 
 293     // return
 294     __ pop(rbp);
 295     __ ret(0);
 296 
 297     // handle return types different from T_INT
 298     __ BIND(is_long);
 299     __ movl(Address(rdi, 0 * wordSize), rax);
 300     __ movl(Address(rdi, 1 * wordSize), rdx);
 301     __ jmp(exit);
 302 
 303     __ BIND(is_float);
 304     // interpreter uses xmm0 for return values
 305     if (UseSSE >= 1) {
 306       __ movflt(Address(rdi, 0), xmm0);
 307     } else {
 308       __ fstp_s(Address(rdi, 0));
 309     }
 310     __ jmp(exit);
 311 
 312     __ BIND(is_double);
 313     // interpreter uses xmm0 for return values
 314     if (UseSSE >= 2) {
 315       __ movdbl(Address(rdi, 0), xmm0);
 316     } else {
 317       __ fstp_d(Address(rdi, 0));
 318     }
 319     __ jmp(exit);
 320 
 321     return start;
 322   }
 323 
 324 
 325   //------------------------------------------------------------------------------------------------------------------------
 326   // Return point for a Java call if there's an exception thrown in Java code.
 327   // The exception is caught and transformed into a pending exception stored in
 328   // JavaThread that can be tested from within the VM.
 329   //
 330   // Note: Usually the parameters are removed by the callee. In case of an exception
 331   //       crossing an activation frame boundary, that is not the case if the callee
 332   //       is compiled code => need to setup the rsp.
 333   //
 334   // rax,: exception oop
 335 
 336   address generate_catch_exception() {
 337     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 338     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
 339     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
 340     address start = __ pc();
 341 
 342     // get thread directly
 343     __ movptr(rcx, thread);
 344 #ifdef ASSERT
 345     // verify that threads correspond
 346     { Label L;
 347       __ get_thread(rbx);
 348       __ cmpptr(rbx, rcx);
 349       __ jcc(Assembler::equal, L);
 350       __ stop("StubRoutines::catch_exception: threads must correspond");
 351       __ bind(L);
 352     }
 353 #endif
 354     // set pending exception
 355     __ verify_oop(rax);
 356     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
 357     __ lea(Address(rcx, Thread::exception_file_offset   ()),
 358            ExternalAddress((address)__FILE__));
 359     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
 360     // complete return to VM
 361     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
 362     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 363 
 364     return start;
 365   }
 366 
 367 
 368   //------------------------------------------------------------------------------------------------------------------------
 369   // Continuation point for runtime calls returning with a pending exception.
 370   // The pending exception check happened in the runtime or native call stub.
 371   // The pending exception in Thread is converted into a Java-level exception.
 372   //
 373   // Contract with Java-level exception handlers:
 374   // rax: exception
 375   // rdx: throwing pc
 376   //
 377   // NOTE: At entry of this stub, exception-pc must be on stack !!
 378 
 379   address generate_forward_exception() {
 380     StubCodeMark mark(this, "StubRoutines", "forward exception");
 381     address start = __ pc();
 382     const Register thread = rcx;
 383 
 384     // other registers used in this stub
 385     const Register exception_oop = rax;
 386     const Register handler_addr  = rbx;
 387     const Register exception_pc  = rdx;
 388 
 389     // Upon entry, the sp points to the return address returning into Java
 390     // (interpreted or compiled) code; i.e., the return address becomes the
 391     // throwing pc.
 392     //
 393     // Arguments pushed before the runtime call are still on the stack but
 394     // the exception handler will reset the stack pointer -> ignore them.
 395     // A potential result in registers can be ignored as well.
 396 
 397 #ifdef ASSERT
 398     // make sure this code is only executed if there is a pending exception
 399     { Label L;
 400       __ get_thread(thread);
 401       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 402       __ jcc(Assembler::notEqual, L);
 403       __ stop("StubRoutines::forward exception: no pending exception (1)");
 404       __ bind(L);
 405     }
 406 #endif
 407 
 408     // compute exception handler into rbx,
 409     __ get_thread(thread);
 410     __ movptr(exception_pc, Address(rsp, 0));
 411     BLOCK_COMMENT("call exception_handler_for_return_address");
 412     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 413     __ mov(handler_addr, rax);
 414 
 415     // setup rax & rdx, remove return address & clear pending exception
 416     __ get_thread(thread);
 417     __ pop(exception_pc);
 418     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 419     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 420 
 421 #ifdef ASSERT
 422     // make sure exception is set
 423     { Label L;
 424       __ testptr(exception_oop, exception_oop);
 425       __ jcc(Assembler::notEqual, L);
 426       __ stop("StubRoutines::forward exception: no pending exception (2)");
 427       __ bind(L);
 428     }
 429 #endif
 430 
 431     // Verify that there is really a valid exception in RAX.
 432     __ verify_oop(exception_oop);
 433 
 434     // continue at exception handler (return address removed)
 435     // rax: exception
 436     // rbx: exception handler
 437     // rdx: throwing pc
 438     __ jmp(handler_addr);
 439 
 440     return start;
 441   }
 442 
 443 
 444   //----------------------------------------------------------------------------------------------------
 445   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
 446   //
 447   // xchg exists as far back as 8086, lock needed for MP only
 448   // Stack layout immediately after call:
 449   //
 450   // 0 [ret addr ] <--- rsp
 451   // 1 [  ex     ]
 452   // 2 [  dest   ]
 453   //
 454   // Result:   *dest <- ex, return (old *dest)
 455   //
 456   // Note: win32 does not currently use this code
 457 
 458   address generate_atomic_xchg() {
 459     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 460     address start = __ pc();
 461 
 462     __ push(rdx);
 463     Address exchange(rsp, 2 * wordSize);
 464     Address dest_addr(rsp, 3 * wordSize);
 465     __ movl(rax, exchange);
 466     __ movptr(rdx, dest_addr);
 467     __ xchgl(rax, Address(rdx, 0));
 468     __ pop(rdx);
 469     __ ret(0);
 470 
 471     return start;
 472   }
 473 
 474   //----------------------------------------------------------------------------------------------------
 475   // Support for void verify_mxcsr()
 476   //
 477   // This routine is used with -Xcheck:jni to verify that native
 478   // JNI code does not return to Java code without restoring the
 479   // MXCSR register to our expected state.
 480 
 481 
 482   address generate_verify_mxcsr() {
 483     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 484     address start = __ pc();
 485 
 486     const Address mxcsr_save(rsp, 0);
 487 
 488     if (CheckJNICalls && UseSSE > 0 ) {
 489       Label ok_ret;
 490       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 491       __ push(rax);
 492       __ subptr(rsp, wordSize);      // allocate a temp location
 493       __ stmxcsr(mxcsr_save);
 494       __ movl(rax, mxcsr_save);
 495       __ andl(rax, MXCSR_MASK);
 496       __ cmp32(rax, mxcsr_std);
 497       __ jcc(Assembler::equal, ok_ret);
 498 
 499       __ warn("MXCSR changed by native JNI code.");
 500 
 501       __ ldmxcsr(mxcsr_std);
 502 
 503       __ bind(ok_ret);
 504       __ addptr(rsp, wordSize);
 505       __ pop(rax);
 506     }
 507 
 508     __ ret(0);
 509 
 510     return start;
 511   }
 512 
 513 
 514   //---------------------------------------------------------------------------
 515   // Support for void verify_fpu_cntrl_wrd()
 516   //
 517   // This routine is used with -Xcheck:jni to verify that native
 518   // JNI code does not return to Java code without restoring the
 519   // FP control word to our expected state.
 520 
 521   address generate_verify_fpu_cntrl_wrd() {
 522     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
 523     address start = __ pc();
 524 
 525     const Address fpu_cntrl_wrd_save(rsp, 0);
 526 
 527     if (CheckJNICalls) {
 528       Label ok_ret;
 529       __ push(rax);
 530       __ subptr(rsp, wordSize);      // allocate a temp location
 531       __ fnstcw(fpu_cntrl_wrd_save);
 532       __ movl(rax, fpu_cntrl_wrd_save);
 533       __ andl(rax, FPU_CNTRL_WRD_MASK);
 534       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
 535       __ cmp32(rax, fpu_std);
 536       __ jcc(Assembler::equal, ok_ret);
 537 
 538       __ warn("Floating point control word changed by native JNI code.");
 539 
 540       __ fldcw(fpu_std);
 541 
 542       __ bind(ok_ret);
 543       __ addptr(rsp, wordSize);
 544       __ pop(rax);
 545     }
 546 
 547     __ ret(0);
 548 
 549     return start;
 550   }
 551 
 552   //---------------------------------------------------------------------------
 553   // Wrapper for slow-case handling of double-to-integer conversion
 554   // d2i or f2i fast case failed either because it is nan or because
 555   // of under/overflow.
 556   // Input:  FPU TOS: float value
 557   // Output: rax, (rdx): integer (long) result
 558 
 559   address generate_d2i_wrapper(BasicType t, address fcn) {
 560     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
 561     address start = __ pc();
 562 
 563   // Capture info about frame layout
 564   enum layout { FPUState_off         = 0,
 565                 rbp_off              = FPUStateSizeInWords,
 566                 rdi_off,
 567                 rsi_off,
 568                 rcx_off,
 569                 rbx_off,
 570                 saved_argument_off,
 571                 saved_argument_off2, // 2nd half of double
 572                 framesize
 573   };
 574 
 575   assert(FPUStateSizeInWords == 27, "update stack layout");
 576 
 577     // Save outgoing argument to stack across push_FPU_state()
 578     __ subptr(rsp, wordSize * 2);
 579     __ fstp_d(Address(rsp, 0));
 580 
 581     // Save CPU & FPU state
 582     __ push(rbx);
 583     __ push(rcx);
 584     __ push(rsi);
 585     __ push(rdi);
 586     __ push(rbp);
 587     __ push_FPU_state();
 588 
 589     // push_FPU_state() resets the FP top of stack
 590     // Load original double into FP top of stack
 591     __ fld_d(Address(rsp, saved_argument_off * wordSize));
 592     // Store double into stack as outgoing argument
 593     __ subptr(rsp, wordSize*2);
 594     __ fst_d(Address(rsp, 0));
 595 
 596     // Prepare FPU for doing math in C-land
 597     __ empty_FPU_stack();
 598     // Call the C code to massage the double.  Result in EAX
 599     if (t == T_INT)
 600       { BLOCK_COMMENT("SharedRuntime::d2i"); }
 601     else if (t == T_LONG)
 602       { BLOCK_COMMENT("SharedRuntime::d2l"); }
 603     __ call_VM_leaf( fcn, 2 );
 604 
 605     // Restore CPU & FPU state
 606     __ pop_FPU_state();
 607     __ pop(rbp);
 608     __ pop(rdi);
 609     __ pop(rsi);
 610     __ pop(rcx);
 611     __ pop(rbx);
 612     __ addptr(rsp, wordSize * 2);
 613 
 614     __ ret(0);
 615 
 616     return start;
 617   }
 618 
 619 
 620   //---------------------------------------------------------------------------
 621   // The following routine generates a subroutine to throw an asynchronous
 622   // UnknownError when an unsafe access gets a fault that could not be
 623   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 624   address generate_handler_for_unsafe_access() {
 625     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 626     address start = __ pc();
 627 
 628     __ push(0);                       // hole for return address-to-be
 629     __ pusha();                       // push registers
 630     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 631     BLOCK_COMMENT("call handle_unsafe_access");
 632     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 633     __ movptr(next_pc, rax);          // stuff next address
 634     __ popa();
 635     __ ret(0);                        // jump to next address
 636 
 637     return start;
 638   }
 639 
 640 
 641   //----------------------------------------------------------------------------------------------------
 642   // Non-destructive plausibility checks for oops
 643 
 644   address generate_verify_oop() {
 645     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 646     address start = __ pc();
 647 
 648     // Incoming arguments on stack after saving rax,:
 649     //
 650     // [tos    ]: saved rdx
 651     // [tos + 1]: saved EFLAGS
 652     // [tos + 2]: return address
 653     // [tos + 3]: char* error message
 654     // [tos + 4]: oop   object to verify
 655     // [tos + 5]: saved rax, - saved by caller and bashed
 656 
 657     Label exit, error;
 658     __ pushf();
 659     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 660     __ push(rdx);                                // save rdx
 661     // make sure object is 'reasonable'
 662     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
 663     __ testptr(rax, rax);
 664     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
 665 
 666     // Check if the oop is in the right area of memory
 667     const int oop_mask = Universe::verify_oop_mask();
 668     const int oop_bits = Universe::verify_oop_bits();
 669     __ mov(rdx, rax);
 670     __ andptr(rdx, oop_mask);
 671     __ cmpptr(rdx, oop_bits);
 672     __ jcc(Assembler::notZero, error);
 673 
 674     // make sure klass is 'reasonable', which is not zero.
 675     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
 676     __ testptr(rax, rax);
 677     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
 678     // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
 679 
 680     // return if everything seems ok
 681     __ bind(exit);
 682     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 683     __ pop(rdx);                                 // restore rdx
 684     __ popf();                                   // restore EFLAGS
 685     __ ret(3 * wordSize);                        // pop arguments
 686 
 687     // handle errors
 688     __ bind(error);
 689     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 690     __ pop(rdx);                                 // get saved rdx back
 691     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
 692     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
 693     BLOCK_COMMENT("call MacroAssembler::debug");
 694     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 695     __ popa();
 696     __ ret(3 * wordSize);                        // pop arguments
 697     return start;
 698   }
 699 
 700   //
 701   //  Generate pre-barrier for array stores
 702   //
 703   //  Input:
 704   //     start   -  starting address
 705   //     count   -  element count
 706   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
 707     assert_different_registers(start, count);
 708     BarrierSet* bs = Universe::heap()->barrier_set();
 709     switch (bs->kind()) {
 710       case BarrierSet::G1SATBCT:
 711       case BarrierSet::G1SATBCTLogging:
 712         // With G1, don't generate the call if we statically know that the target in uninitialized
 713         if (!uninitialized_target) {
 714            __ pusha();                      // push registers
 715            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
 716                            start, count);
 717            __ popa();
 718          }
 719         break;
 720       case BarrierSet::CardTableModRef:
 721       case BarrierSet::CardTableExtension:
 722       case BarrierSet::ModRef:
 723         break;
 724       default      :
 725         ShouldNotReachHere();
 726 
 727     }
 728   }
 729 
 730 
 731   //
 732   // Generate a post-barrier for an array store
 733   //
 734   //     start    -  starting address
 735   //     count    -  element count
 736   //
 737   //  The two input registers are overwritten.
 738   //
 739   void  gen_write_ref_array_post_barrier(Register start, Register count) {
 740     BarrierSet* bs = Universe::heap()->barrier_set();
 741     assert_different_registers(start, count);
 742     switch (bs->kind()) {
 743       case BarrierSet::G1SATBCT:
 744       case BarrierSet::G1SATBCTLogging:
 745         {
 746           __ pusha();                      // push registers
 747           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
 748                           start, count);
 749           __ popa();
 750         }
 751         break;
 752 
 753       case BarrierSet::CardTableModRef:
 754       case BarrierSet::CardTableExtension:
 755         {
 756           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
 757           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 758 
 759           Label L_loop;
 760           const Register end = count;  // elements count; end == start+count-1
 761           assert_different_registers(start, end);
 762 
 763           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
 764           __ shrptr(start, CardTableModRefBS::card_shift);
 765           __ shrptr(end,   CardTableModRefBS::card_shift);
 766           __ subptr(end, start); // end --> count
 767         __ BIND(L_loop);
 768           intptr_t disp = (intptr_t) ct->byte_map_base;
 769           Address cardtable(start, count, Address::times_1, disp);
 770           __ movb(cardtable, 0);
 771           __ decrement(count);
 772           __ jcc(Assembler::greaterEqual, L_loop);
 773         }
 774         break;
 775       case BarrierSet::ModRef:
 776         break;
 777       default      :
 778         ShouldNotReachHere();
 779 
 780     }
 781   }
 782 
 783 
 784   // Copy 64 bytes chunks
 785   //
 786   // Inputs:
 787   //   from        - source array address
 788   //   to_from     - destination array address - from
 789   //   qword_count - 8-bytes element count, negative
 790   //
 791   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
 792     assert( UseSSE >= 2, "supported cpu only" );
 793     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 794     // Copy 64-byte chunks
 795     __ jmpb(L_copy_64_bytes);
 796     __ align(OptoLoopAlignment);
 797   __ BIND(L_copy_64_bytes_loop);
 798 
 799     if (UseUnalignedLoadStores) {
 800       if (UseAVX >= 2) {
 801         __ vmovdqu(xmm0,Address(from,  0));
 802         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
 803         __ vmovdqu(xmm1,Address(from, 32));
 804         __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
 805       } else {
 806         __ movdqu(xmm0, Address(from, 0));
 807         __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
 808         __ movdqu(xmm1, Address(from, 16));
 809         __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
 810         __ movdqu(xmm2, Address(from, 32));
 811         __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
 812         __ movdqu(xmm3, Address(from, 48));
 813         __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
 814       }
 815     } else {
 816       __ movq(xmm0, Address(from, 0));
 817       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
 818       __ movq(xmm1, Address(from, 8));
 819       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
 820       __ movq(xmm2, Address(from, 16));
 821       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
 822       __ movq(xmm3, Address(from, 24));
 823       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
 824       __ movq(xmm4, Address(from, 32));
 825       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
 826       __ movq(xmm5, Address(from, 40));
 827       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
 828       __ movq(xmm6, Address(from, 48));
 829       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
 830       __ movq(xmm7, Address(from, 56));
 831       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
 832     }
 833 
 834     __ addl(from, 64);
 835   __ BIND(L_copy_64_bytes);
 836     __ subl(qword_count, 8);
 837     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 838     __ addl(qword_count, 8);
 839     __ jccb(Assembler::zero, L_exit);
 840     //
 841     // length is too short, just copy qwords
 842     //
 843   __ BIND(L_copy_8_bytes);
 844     __ movq(xmm0, Address(from, 0));
 845     __ movq(Address(from, to_from, Address::times_1), xmm0);
 846     __ addl(from, 8);
 847     __ decrement(qword_count);
 848     __ jcc(Assembler::greater, L_copy_8_bytes);
 849   __ BIND(L_exit);
 850   }
 851 
 852   // Copy 64 bytes chunks
 853   //
 854   // Inputs:
 855   //   from        - source array address
 856   //   to_from     - destination array address - from
 857   //   qword_count - 8-bytes element count, negative
 858   //
 859   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
 860     assert( VM_Version::supports_mmx(), "supported cpu only" );
 861     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 862     // Copy 64-byte chunks
 863     __ jmpb(L_copy_64_bytes);
 864     __ align(OptoLoopAlignment);
 865   __ BIND(L_copy_64_bytes_loop);
 866     __ movq(mmx0, Address(from, 0));
 867     __ movq(mmx1, Address(from, 8));
 868     __ movq(mmx2, Address(from, 16));
 869     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
 870     __ movq(mmx3, Address(from, 24));
 871     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
 872     __ movq(mmx4, Address(from, 32));
 873     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
 874     __ movq(mmx5, Address(from, 40));
 875     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
 876     __ movq(mmx6, Address(from, 48));
 877     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
 878     __ movq(mmx7, Address(from, 56));
 879     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
 880     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
 881     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
 882     __ addptr(from, 64);
 883   __ BIND(L_copy_64_bytes);
 884     __ subl(qword_count, 8);
 885     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 886     __ addl(qword_count, 8);
 887     __ jccb(Assembler::zero, L_exit);
 888     //
 889     // length is too short, just copy qwords
 890     //
 891   __ BIND(L_copy_8_bytes);
 892     __ movq(mmx0, Address(from, 0));
 893     __ movq(Address(from, to_from, Address::times_1), mmx0);
 894     __ addptr(from, 8);
 895     __ decrement(qword_count);
 896     __ jcc(Assembler::greater, L_copy_8_bytes);
 897   __ BIND(L_exit);
 898     __ emms();
 899   }
 900 
 901   address generate_disjoint_copy(BasicType t, bool aligned,
 902                                  Address::ScaleFactor sf,
 903                                  address* entry, const char *name,
 904                                  bool dest_uninitialized = false) {
 905     __ align(CodeEntryAlignment);
 906     StubCodeMark mark(this, "StubRoutines", name);
 907     address start = __ pc();
 908 
 909     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
 910     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
 911 
 912     int shift = Address::times_ptr - sf;
 913 
 914     const Register from     = rsi;  // source array address
 915     const Register to       = rdi;  // destination array address
 916     const Register count    = rcx;  // elements count
 917     const Register to_from  = to;   // (to - from)
 918     const Register saved_to = rdx;  // saved destination array address
 919 
 920     __ enter(); // required for proper stackwalking of RuntimeStub frame
 921     __ push(rsi);
 922     __ push(rdi);
 923     __ movptr(from , Address(rsp, 12+ 4));
 924     __ movptr(to   , Address(rsp, 12+ 8));
 925     __ movl(count, Address(rsp, 12+ 12));
 926 
 927     if (entry != NULL) {
 928       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
 929       BLOCK_COMMENT("Entry:");
 930     }
 931 
 932     if (t == T_OBJECT) {
 933       __ testl(count, count);
 934       __ jcc(Assembler::zero, L_0_count);
 935       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
 936       __ mov(saved_to, to);          // save 'to'
 937     }
 938 
 939     __ subptr(to, from); // to --> to_from
 940     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
 941     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
 942     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 943       // align source address at 4 bytes address boundary
 944       if (t == T_BYTE) {
 945         // One byte misalignment happens only for byte arrays
 946         __ testl(from, 1);
 947         __ jccb(Assembler::zero, L_skip_align1);
 948         __ movb(rax, Address(from, 0));
 949         __ movb(Address(from, to_from, Address::times_1, 0), rax);
 950         __ increment(from);
 951         __ decrement(count);
 952       __ BIND(L_skip_align1);
 953       }
 954       // Two bytes misalignment happens only for byte and short (char) arrays
 955       __ testl(from, 2);
 956       __ jccb(Assembler::zero, L_skip_align2);
 957       __ movw(rax, Address(from, 0));
 958       __ movw(Address(from, to_from, Address::times_1, 0), rax);
 959       __ addptr(from, 2);
 960       __ subl(count, 1<<(shift-1));
 961     __ BIND(L_skip_align2);
 962     }
 963     if (!VM_Version::supports_mmx()) {
 964       __ mov(rax, count);      // save 'count'
 965       __ shrl(count, shift); // bytes count
 966       __ addptr(to_from, from);// restore 'to'
 967       __ rep_mov();
 968       __ subptr(to_from, from);// restore 'to_from'
 969       __ mov(count, rax);      // restore 'count'
 970       __ jmpb(L_copy_2_bytes); // all dwords were copied
 971     } else {
 972       if (!UseUnalignedLoadStores) {
 973         // align to 8 bytes, we know we are 4 byte aligned to start
 974         __ testptr(from, 4);
 975         __ jccb(Assembler::zero, L_copy_64_bytes);
 976         __ movl(rax, Address(from, 0));
 977         __ movl(Address(from, to_from, Address::times_1, 0), rax);
 978         __ addptr(from, 4);
 979         __ subl(count, 1<<shift);
 980       }
 981     __ BIND(L_copy_64_bytes);
 982       __ mov(rax, count);
 983       __ shrl(rax, shift+1);  // 8 bytes chunk count
 984       //
 985       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
 986       //
 987       if (UseXMMForArrayCopy) {
 988         xmm_copy_forward(from, to_from, rax);
 989       } else {
 990         mmx_copy_forward(from, to_from, rax);
 991       }
 992     }
 993     // copy tailing dword
 994   __ BIND(L_copy_4_bytes);
 995     __ testl(count, 1<<shift);
 996     __ jccb(Assembler::zero, L_copy_2_bytes);
 997     __ movl(rax, Address(from, 0));
 998     __ movl(Address(from, to_from, Address::times_1, 0), rax);
 999     if (t == T_BYTE || t == T_SHORT) {
1000       __ addptr(from, 4);
1001     __ BIND(L_copy_2_bytes);
1002       // copy tailing word
1003       __ testl(count, 1<<(shift-1));
1004       __ jccb(Assembler::zero, L_copy_byte);
1005       __ movw(rax, Address(from, 0));
1006       __ movw(Address(from, to_from, Address::times_1, 0), rax);
1007       if (t == T_BYTE) {
1008         __ addptr(from, 2);
1009       __ BIND(L_copy_byte);
1010         // copy tailing byte
1011         __ testl(count, 1);
1012         __ jccb(Assembler::zero, L_exit);
1013         __ movb(rax, Address(from, 0));
1014         __ movb(Address(from, to_from, Address::times_1, 0), rax);
1015       __ BIND(L_exit);
1016       } else {
1017       __ BIND(L_copy_byte);
1018       }
1019     } else {
1020     __ BIND(L_copy_2_bytes);
1021     }
1022 
1023     if (t == T_OBJECT) {
1024       __ movl(count, Address(rsp, 12+12)); // reread 'count'
1025       __ mov(to, saved_to); // restore 'to'
1026       gen_write_ref_array_post_barrier(to, count);
1027     __ BIND(L_0_count);
1028     }
1029     inc_copy_counter_np(t);
1030     __ pop(rdi);
1031     __ pop(rsi);
1032     __ leave(); // required for proper stackwalking of RuntimeStub frame
1033     __ xorptr(rax, rax); // return 0
1034     __ ret(0);
1035     return start;
1036   }
1037 
1038 
1039   address generate_fill(BasicType t, bool aligned, const char *name) {
1040     __ align(CodeEntryAlignment);
1041     StubCodeMark mark(this, "StubRoutines", name);
1042     address start = __ pc();
1043 
1044     BLOCK_COMMENT("Entry:");
1045 
1046     const Register to       = rdi;  // source array address
1047     const Register value    = rdx;  // value
1048     const Register count    = rsi;  // elements count
1049 
1050     __ enter(); // required for proper stackwalking of RuntimeStub frame
1051     __ push(rsi);
1052     __ push(rdi);
1053     __ movptr(to   , Address(rsp, 12+ 4));
1054     __ movl(value, Address(rsp, 12+ 8));
1055     __ movl(count, Address(rsp, 12+ 12));
1056 
1057     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1058 
1059     __ pop(rdi);
1060     __ pop(rsi);
1061     __ leave(); // required for proper stackwalking of RuntimeStub frame
1062     __ ret(0);
1063     return start;
1064   }
1065 
1066   address generate_conjoint_copy(BasicType t, bool aligned,
1067                                  Address::ScaleFactor sf,
1068                                  address nooverlap_target,
1069                                  address* entry, const char *name,
1070                                  bool dest_uninitialized = false) {
1071     __ align(CodeEntryAlignment);
1072     StubCodeMark mark(this, "StubRoutines", name);
1073     address start = __ pc();
1074 
1075     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1076     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1077 
1078     int shift = Address::times_ptr - sf;
1079 
1080     const Register src   = rax;  // source array address
1081     const Register dst   = rdx;  // destination array address
1082     const Register from  = rsi;  // source array address
1083     const Register to    = rdi;  // destination array address
1084     const Register count = rcx;  // elements count
1085     const Register end   = rax;  // array end address
1086 
1087     __ enter(); // required for proper stackwalking of RuntimeStub frame
1088     __ push(rsi);
1089     __ push(rdi);
1090     __ movptr(src  , Address(rsp, 12+ 4));   // from
1091     __ movptr(dst  , Address(rsp, 12+ 8));   // to
1092     __ movl2ptr(count, Address(rsp, 12+12)); // count
1093 
1094     if (entry != NULL) {
1095       *entry = __ pc(); // Entry point from generic arraycopy stub.
1096       BLOCK_COMMENT("Entry:");
1097     }
1098 
1099     // nooverlap_target expects arguments in rsi and rdi.
1100     __ mov(from, src);
1101     __ mov(to  , dst);
1102 
1103     // arrays overlap test: dispatch to disjoint stub if necessary.
1104     RuntimeAddress nooverlap(nooverlap_target);
1105     __ cmpptr(dst, src);
1106     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1107     __ jump_cc(Assembler::belowEqual, nooverlap);
1108     __ cmpptr(dst, end);
1109     __ jump_cc(Assembler::aboveEqual, nooverlap);
1110 
1111     if (t == T_OBJECT) {
1112       __ testl(count, count);
1113       __ jcc(Assembler::zero, L_0_count);
1114       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1115     }
1116 
1117     // copy from high to low
1118     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1119     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1120     if (t == T_BYTE || t == T_SHORT) {
1121       // Align the end of destination array at 4 bytes address boundary
1122       __ lea(end, Address(dst, count, sf, 0));
1123       if (t == T_BYTE) {
1124         // One byte misalignment happens only for byte arrays
1125         __ testl(end, 1);
1126         __ jccb(Assembler::zero, L_skip_align1);
1127         __ decrement(count);
1128         __ movb(rdx, Address(from, count, sf, 0));
1129         __ movb(Address(to, count, sf, 0), rdx);
1130       __ BIND(L_skip_align1);
1131       }
1132       // Two bytes misalignment happens only for byte and short (char) arrays
1133       __ testl(end, 2);
1134       __ jccb(Assembler::zero, L_skip_align2);
1135       __ subptr(count, 1<<(shift-1));
1136       __ movw(rdx, Address(from, count, sf, 0));
1137       __ movw(Address(to, count, sf, 0), rdx);
1138     __ BIND(L_skip_align2);
1139       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1140       __ jcc(Assembler::below, L_copy_4_bytes);
1141     }
1142 
1143     if (!VM_Version::supports_mmx()) {
1144       __ std();
1145       __ mov(rax, count); // Save 'count'
1146       __ mov(rdx, to);    // Save 'to'
1147       __ lea(rsi, Address(from, count, sf, -4));
1148       __ lea(rdi, Address(to  , count, sf, -4));
1149       __ shrptr(count, shift); // bytes count
1150       __ rep_mov();
1151       __ cld();
1152       __ mov(count, rax); // restore 'count'
1153       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1154       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1155       __ mov(to, rdx);   // restore 'to'
1156       __ jmpb(L_copy_2_bytes); // all dword were copied
1157    } else {
1158       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1159       __ testptr(end, 4);
1160       __ jccb(Assembler::zero, L_copy_8_bytes);
1161       __ subl(count, 1<<shift);
1162       __ movl(rdx, Address(from, count, sf, 0));
1163       __ movl(Address(to, count, sf, 0), rdx);
1164       __ jmpb(L_copy_8_bytes);
1165 
1166       __ align(OptoLoopAlignment);
1167       // Move 8 bytes
1168     __ BIND(L_copy_8_bytes_loop);
1169       if (UseXMMForArrayCopy) {
1170         __ movq(xmm0, Address(from, count, sf, 0));
1171         __ movq(Address(to, count, sf, 0), xmm0);
1172       } else {
1173         __ movq(mmx0, Address(from, count, sf, 0));
1174         __ movq(Address(to, count, sf, 0), mmx0);
1175       }
1176     __ BIND(L_copy_8_bytes);
1177       __ subl(count, 2<<shift);
1178       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1179       __ addl(count, 2<<shift);
1180       if (!UseXMMForArrayCopy) {
1181         __ emms();
1182       }
1183     }
1184   __ BIND(L_copy_4_bytes);
1185     // copy prefix qword
1186     __ testl(count, 1<<shift);
1187     __ jccb(Assembler::zero, L_copy_2_bytes);
1188     __ movl(rdx, Address(from, count, sf, -4));
1189     __ movl(Address(to, count, sf, -4), rdx);
1190 
1191     if (t == T_BYTE || t == T_SHORT) {
1192         __ subl(count, (1<<shift));
1193       __ BIND(L_copy_2_bytes);
1194         // copy prefix dword
1195         __ testl(count, 1<<(shift-1));
1196         __ jccb(Assembler::zero, L_copy_byte);
1197         __ movw(rdx, Address(from, count, sf, -2));
1198         __ movw(Address(to, count, sf, -2), rdx);
1199         if (t == T_BYTE) {
1200           __ subl(count, 1<<(shift-1));
1201         __ BIND(L_copy_byte);
1202           // copy prefix byte
1203           __ testl(count, 1);
1204           __ jccb(Assembler::zero, L_exit);
1205           __ movb(rdx, Address(from, 0));
1206           __ movb(Address(to, 0), rdx);
1207         __ BIND(L_exit);
1208         } else {
1209         __ BIND(L_copy_byte);
1210         }
1211     } else {
1212     __ BIND(L_copy_2_bytes);
1213     }
1214     if (t == T_OBJECT) {
1215       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1216       gen_write_ref_array_post_barrier(to, count);
1217     __ BIND(L_0_count);
1218     }
1219     inc_copy_counter_np(t);
1220     __ pop(rdi);
1221     __ pop(rsi);
1222     __ leave(); // required for proper stackwalking of RuntimeStub frame
1223     __ xorptr(rax, rax); // return 0
1224     __ ret(0);
1225     return start;
1226   }
1227 
1228 
1229   address generate_disjoint_long_copy(address* entry, const char *name) {
1230     __ align(CodeEntryAlignment);
1231     StubCodeMark mark(this, "StubRoutines", name);
1232     address start = __ pc();
1233 
1234     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1235     const Register from       = rax;  // source array address
1236     const Register to         = rdx;  // destination array address
1237     const Register count      = rcx;  // elements count
1238     const Register to_from    = rdx;  // (to - from)
1239 
1240     __ enter(); // required for proper stackwalking of RuntimeStub frame
1241     __ movptr(from , Address(rsp, 8+0));       // from
1242     __ movptr(to   , Address(rsp, 8+4));       // to
1243     __ movl2ptr(count, Address(rsp, 8+8));     // count
1244 
1245     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1246     BLOCK_COMMENT("Entry:");
1247 
1248     __ subptr(to, from); // to --> to_from
1249     if (VM_Version::supports_mmx()) {
1250       if (UseXMMForArrayCopy) {
1251         xmm_copy_forward(from, to_from, count);
1252       } else {
1253         mmx_copy_forward(from, to_from, count);
1254       }
1255     } else {
1256       __ jmpb(L_copy_8_bytes);
1257       __ align(OptoLoopAlignment);
1258     __ BIND(L_copy_8_bytes_loop);
1259       __ fild_d(Address(from, 0));
1260       __ fistp_d(Address(from, to_from, Address::times_1));
1261       __ addptr(from, 8);
1262     __ BIND(L_copy_8_bytes);
1263       __ decrement(count);
1264       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1265     }
1266     inc_copy_counter_np(T_LONG);
1267     __ leave(); // required for proper stackwalking of RuntimeStub frame
1268     __ xorptr(rax, rax); // return 0
1269     __ ret(0);
1270     return start;
1271   }
1272 
1273   address generate_conjoint_long_copy(address nooverlap_target,
1274                                       address* entry, const char *name) {
1275     __ align(CodeEntryAlignment);
1276     StubCodeMark mark(this, "StubRoutines", name);
1277     address start = __ pc();
1278 
1279     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1280     const Register from       = rax;  // source array address
1281     const Register to         = rdx;  // destination array address
1282     const Register count      = rcx;  // elements count
1283     const Register end_from   = rax;  // source array end address
1284 
1285     __ enter(); // required for proper stackwalking of RuntimeStub frame
1286     __ movptr(from , Address(rsp, 8+0));       // from
1287     __ movptr(to   , Address(rsp, 8+4));       // to
1288     __ movl2ptr(count, Address(rsp, 8+8));     // count
1289 
1290     *entry = __ pc(); // Entry point from generic arraycopy stub.
1291     BLOCK_COMMENT("Entry:");
1292 
1293     // arrays overlap test
1294     __ cmpptr(to, from);
1295     RuntimeAddress nooverlap(nooverlap_target);
1296     __ jump_cc(Assembler::belowEqual, nooverlap);
1297     __ lea(end_from, Address(from, count, Address::times_8, 0));
1298     __ cmpptr(to, end_from);
1299     __ movptr(from, Address(rsp, 8));  // from
1300     __ jump_cc(Assembler::aboveEqual, nooverlap);
1301 
1302     __ jmpb(L_copy_8_bytes);
1303 
1304     __ align(OptoLoopAlignment);
1305   __ BIND(L_copy_8_bytes_loop);
1306     if (VM_Version::supports_mmx()) {
1307       if (UseXMMForArrayCopy) {
1308         __ movq(xmm0, Address(from, count, Address::times_8));
1309         __ movq(Address(to, count, Address::times_8), xmm0);
1310       } else {
1311         __ movq(mmx0, Address(from, count, Address::times_8));
1312         __ movq(Address(to, count, Address::times_8), mmx0);
1313       }
1314     } else {
1315       __ fild_d(Address(from, count, Address::times_8));
1316       __ fistp_d(Address(to, count, Address::times_8));
1317     }
1318   __ BIND(L_copy_8_bytes);
1319     __ decrement(count);
1320     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1321 
1322     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1323       __ emms();
1324     }
1325     inc_copy_counter_np(T_LONG);
1326     __ leave(); // required for proper stackwalking of RuntimeStub frame
1327     __ xorptr(rax, rax); // return 0
1328     __ ret(0);
1329     return start;
1330   }
1331 
1332 
1333   // Helper for generating a dynamic type check.
1334   // The sub_klass must be one of {rbx, rdx, rsi}.
1335   // The temp is killed.
1336   void generate_type_check(Register sub_klass,
1337                            Address& super_check_offset_addr,
1338                            Address& super_klass_addr,
1339                            Register temp,
1340                            Label* L_success, Label* L_failure) {
1341     BLOCK_COMMENT("type_check:");
1342 
1343     Label L_fallthrough;
1344 #define LOCAL_JCC(assembler_con, label_ptr)                             \
1345     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1346     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1347 
1348     // The following is a strange variation of the fast path which requires
1349     // one less register, because needed values are on the argument stack.
1350     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1351     //                                  L_success, L_failure, NULL);
1352     assert_different_registers(sub_klass, temp);
1353 
1354     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1355 
1356     // if the pointers are equal, we are done (e.g., String[] elements)
1357     __ cmpptr(sub_klass, super_klass_addr);
1358     LOCAL_JCC(Assembler::equal, L_success);
1359 
1360     // check the supertype display:
1361     __ movl2ptr(temp, super_check_offset_addr);
1362     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1363     __ movptr(temp, super_check_addr); // load displayed supertype
1364     __ cmpptr(temp, super_klass_addr); // test the super type
1365     LOCAL_JCC(Assembler::equal, L_success);
1366 
1367     // if it was a primary super, we can just fail immediately
1368     __ cmpl(super_check_offset_addr, sc_offset);
1369     LOCAL_JCC(Assembler::notEqual, L_failure);
1370 
1371     // The repne_scan instruction uses fixed registers, which will get spilled.
1372     // We happen to know this works best when super_klass is in rax.
1373     Register super_klass = temp;
1374     __ movptr(super_klass, super_klass_addr);
1375     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1376                                      L_success, L_failure);
1377 
1378     __ bind(L_fallthrough);
1379 
1380     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1381     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1382 
1383 #undef LOCAL_JCC
1384   }
1385 
1386   //
1387   //  Generate checkcasting array copy stub
1388   //
1389   //  Input:
1390   //    4(rsp)   - source array address
1391   //    8(rsp)   - destination array address
1392   //   12(rsp)   - element count, can be zero
1393   //   16(rsp)   - size_t ckoff (super_check_offset)
1394   //   20(rsp)   - oop ckval (super_klass)
1395   //
1396   //  Output:
1397   //    rax, ==  0  -  success
1398   //    rax, == -1^K - failure, where K is partial transfer count
1399   //
1400   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1401     __ align(CodeEntryAlignment);
1402     StubCodeMark mark(this, "StubRoutines", name);
1403     address start = __ pc();
1404 
1405     Label L_load_element, L_store_element, L_do_card_marks, L_done;
1406 
1407     // register use:
1408     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1409     //  rdi, rsi      -- element access (oop, klass)
1410     //  rbx,           -- temp
1411     const Register from       = rax;    // source array address
1412     const Register to         = rdx;    // destination array address
1413     const Register length     = rcx;    // elements count
1414     const Register elem       = rdi;    // each oop copied
1415     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1416     const Register temp       = rbx;    // lone remaining temp
1417 
1418     __ enter(); // required for proper stackwalking of RuntimeStub frame
1419 
1420     __ push(rsi);
1421     __ push(rdi);
1422     __ push(rbx);
1423 
1424     Address   from_arg(rsp, 16+ 4);     // from
1425     Address     to_arg(rsp, 16+ 8);     // to
1426     Address length_arg(rsp, 16+12);     // elements count
1427     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1428     Address  ckval_arg(rsp, 16+20);     // super_klass
1429 
1430     // Load up:
1431     __ movptr(from,     from_arg);
1432     __ movptr(to,         to_arg);
1433     __ movl2ptr(length, length_arg);
1434 
1435     if (entry != NULL) {
1436       *entry = __ pc(); // Entry point from generic arraycopy stub.
1437       BLOCK_COMMENT("Entry:");
1438     }
1439 
1440     //---------------------------------------------------------------
1441     // Assembler stub will be used for this call to arraycopy
1442     // if the two arrays are subtypes of Object[] but the
1443     // destination array type is not equal to or a supertype
1444     // of the source type.  Each element must be separately
1445     // checked.
1446 
1447     // Loop-invariant addresses.  They are exclusive end pointers.
1448     Address end_from_addr(from, length, Address::times_ptr, 0);
1449     Address   end_to_addr(to,   length, Address::times_ptr, 0);
1450 
1451     Register end_from = from;           // re-use
1452     Register end_to   = to;             // re-use
1453     Register count    = length;         // re-use
1454 
1455     // Loop-variant addresses.  They assume post-incremented count < 0.
1456     Address from_element_addr(end_from, count, Address::times_ptr, 0);
1457     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1458     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1459 
1460     // Copy from low to high addresses, indexed from the end of each array.
1461     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1462     __ lea(end_from, end_from_addr);
1463     __ lea(end_to,   end_to_addr);
1464     assert(length == count, "");        // else fix next line:
1465     __ negptr(count);                   // negate and test the length
1466     __ jccb(Assembler::notZero, L_load_element);
1467 
1468     // Empty array:  Nothing to do.
1469     __ xorptr(rax, rax);                  // return 0 on (trivial) success
1470     __ jmp(L_done);
1471 
1472     // ======== begin loop ========
1473     // (Loop is rotated; its entry is L_load_element.)
1474     // Loop control:
1475     //   for (count = -count; count != 0; count++)
1476     // Base pointers src, dst are biased by 8*count,to last element.
1477     __ align(OptoLoopAlignment);
1478 
1479     __ BIND(L_store_element);
1480     __ movptr(to_element_addr, elem);     // store the oop
1481     __ increment(count);                // increment the count toward zero
1482     __ jccb(Assembler::zero, L_do_card_marks);
1483 
1484     // ======== loop entry is here ========
1485     __ BIND(L_load_element);
1486     __ movptr(elem, from_element_addr);   // load the oop
1487     __ testptr(elem, elem);
1488     __ jccb(Assembler::zero, L_store_element);
1489 
1490     // (Could do a trick here:  Remember last successful non-null
1491     // element stored and make a quick oop equality check on it.)
1492 
1493     __ movptr(elem_klass, elem_klass_addr); // query the object klass
1494     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1495                         &L_store_element, NULL);
1496       // (On fall-through, we have failed the element type check.)
1497     // ======== end loop ========
1498 
1499     // It was a real error; we must depend on the caller to finish the job.
1500     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1501     // Emit GC store barriers for the oops we have copied (length_arg + count),
1502     // and report their number to the caller.
1503     __ addl(count, length_arg);         // transfers = (length - remaining)
1504     __ movl2ptr(rax, count);            // save the value
1505     __ notptr(rax);                     // report (-1^K) to caller
1506     __ movptr(to, to_arg);              // reload
1507     assert_different_registers(to, count, rax);
1508     gen_write_ref_array_post_barrier(to, count);
1509     __ jmpb(L_done);
1510 
1511     // Come here on success only.
1512     __ BIND(L_do_card_marks);
1513     __ movl2ptr(count, length_arg);
1514     __ movptr(to, to_arg);                // reload
1515     gen_write_ref_array_post_barrier(to, count);
1516     __ xorptr(rax, rax);                  // return 0 on success
1517 
1518     // Common exit point (success or failure).
1519     __ BIND(L_done);
1520     __ pop(rbx);
1521     __ pop(rdi);
1522     __ pop(rsi);
1523     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1524     __ leave(); // required for proper stackwalking of RuntimeStub frame
1525     __ ret(0);
1526 
1527     return start;
1528   }
1529 
1530   //
1531   //  Generate 'unsafe' array copy stub
1532   //  Though just as safe as the other stubs, it takes an unscaled
1533   //  size_t argument instead of an element count.
1534   //
1535   //  Input:
1536   //    4(rsp)   - source array address
1537   //    8(rsp)   - destination array address
1538   //   12(rsp)   - byte count, can be zero
1539   //
1540   //  Output:
1541   //    rax, ==  0  -  success
1542   //    rax, == -1  -  need to call System.arraycopy
1543   //
1544   // Examines the alignment of the operands and dispatches
1545   // to a long, int, short, or byte copy loop.
1546   //
1547   address generate_unsafe_copy(const char *name,
1548                                address byte_copy_entry,
1549                                address short_copy_entry,
1550                                address int_copy_entry,
1551                                address long_copy_entry) {
1552 
1553     Label L_long_aligned, L_int_aligned, L_short_aligned;
1554 
1555     __ align(CodeEntryAlignment);
1556     StubCodeMark mark(this, "StubRoutines", name);
1557     address start = __ pc();
1558 
1559     const Register from       = rax;  // source array address
1560     const Register to         = rdx;  // destination array address
1561     const Register count      = rcx;  // elements count
1562 
1563     __ enter(); // required for proper stackwalking of RuntimeStub frame
1564     __ push(rsi);
1565     __ push(rdi);
1566     Address  from_arg(rsp, 12+ 4);      // from
1567     Address    to_arg(rsp, 12+ 8);      // to
1568     Address count_arg(rsp, 12+12);      // byte count
1569 
1570     // Load up:
1571     __ movptr(from ,  from_arg);
1572     __ movptr(to   ,    to_arg);
1573     __ movl2ptr(count, count_arg);
1574 
1575     // bump this on entry, not on exit:
1576     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1577 
1578     const Register bits = rsi;
1579     __ mov(bits, from);
1580     __ orptr(bits, to);
1581     __ orptr(bits, count);
1582 
1583     __ testl(bits, BytesPerLong-1);
1584     __ jccb(Assembler::zero, L_long_aligned);
1585 
1586     __ testl(bits, BytesPerInt-1);
1587     __ jccb(Assembler::zero, L_int_aligned);
1588 
1589     __ testl(bits, BytesPerShort-1);
1590     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1591 
1592     __ BIND(L_short_aligned);
1593     __ shrptr(count, LogBytesPerShort); // size => short_count
1594     __ movl(count_arg, count);          // update 'count'
1595     __ jump(RuntimeAddress(short_copy_entry));
1596 
1597     __ BIND(L_int_aligned);
1598     __ shrptr(count, LogBytesPerInt); // size => int_count
1599     __ movl(count_arg, count);          // update 'count'
1600     __ jump(RuntimeAddress(int_copy_entry));
1601 
1602     __ BIND(L_long_aligned);
1603     __ shrptr(count, LogBytesPerLong); // size => qword_count
1604     __ movl(count_arg, count);          // update 'count'
1605     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1606     __ pop(rsi);
1607     __ jump(RuntimeAddress(long_copy_entry));
1608 
1609     return start;
1610   }
1611 
1612 
1613   // Perform range checks on the proposed arraycopy.
1614   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1615   void arraycopy_range_checks(Register src,
1616                               Register src_pos,
1617                               Register dst,
1618                               Register dst_pos,
1619                               Address& length,
1620                               Label& L_failed) {
1621     BLOCK_COMMENT("arraycopy_range_checks:");
1622     const Register src_end = src_pos;   // source array end position
1623     const Register dst_end = dst_pos;   // destination array end position
1624     __ addl(src_end, length); // src_pos + length
1625     __ addl(dst_end, length); // dst_pos + length
1626 
1627     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1628     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1629     __ jcc(Assembler::above, L_failed);
1630 
1631     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1632     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1633     __ jcc(Assembler::above, L_failed);
1634 
1635     BLOCK_COMMENT("arraycopy_range_checks done");
1636   }
1637 
1638 
1639   //
1640   //  Generate generic array copy stubs
1641   //
1642   //  Input:
1643   //     4(rsp)    -  src oop
1644   //     8(rsp)    -  src_pos
1645   //    12(rsp)    -  dst oop
1646   //    16(rsp)    -  dst_pos
1647   //    20(rsp)    -  element count
1648   //
1649   //  Output:
1650   //    rax, ==  0  -  success
1651   //    rax, == -1^K - failure, where K is partial transfer count
1652   //
1653   address generate_generic_copy(const char *name,
1654                                 address entry_jbyte_arraycopy,
1655                                 address entry_jshort_arraycopy,
1656                                 address entry_jint_arraycopy,
1657                                 address entry_oop_arraycopy,
1658                                 address entry_jlong_arraycopy,
1659                                 address entry_checkcast_arraycopy) {
1660     Label L_failed, L_failed_0, L_objArray;
1661 
1662     { int modulus = CodeEntryAlignment;
1663       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1664       int advance = target - (__ offset() % modulus);
1665       if (advance < 0)  advance += modulus;
1666       if (advance > 0)  __ nop(advance);
1667     }
1668     StubCodeMark mark(this, "StubRoutines", name);
1669 
1670     // Short-hop target to L_failed.  Makes for denser prologue code.
1671     __ BIND(L_failed_0);
1672     __ jmp(L_failed);
1673     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1674 
1675     __ align(CodeEntryAlignment);
1676     address start = __ pc();
1677 
1678     __ enter(); // required for proper stackwalking of RuntimeStub frame
1679     __ push(rsi);
1680     __ push(rdi);
1681 
1682     // bump this on entry, not on exit:
1683     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1684 
1685     // Input values
1686     Address SRC     (rsp, 12+ 4);
1687     Address SRC_POS (rsp, 12+ 8);
1688     Address DST     (rsp, 12+12);
1689     Address DST_POS (rsp, 12+16);
1690     Address LENGTH  (rsp, 12+20);
1691 
1692     //-----------------------------------------------------------------------
1693     // Assembler stub will be used for this call to arraycopy
1694     // if the following conditions are met:
1695     //
1696     // (1) src and dst must not be null.
1697     // (2) src_pos must not be negative.
1698     // (3) dst_pos must not be negative.
1699     // (4) length  must not be negative.
1700     // (5) src klass and dst klass should be the same and not NULL.
1701     // (6) src and dst should be arrays.
1702     // (7) src_pos + length must not exceed length of src.
1703     // (8) dst_pos + length must not exceed length of dst.
1704     //
1705 
1706     const Register src     = rax;       // source array oop
1707     const Register src_pos = rsi;
1708     const Register dst     = rdx;       // destination array oop
1709     const Register dst_pos = rdi;
1710     const Register length  = rcx;       // transfer count
1711 
1712     //  if (src == NULL) return -1;
1713     __ movptr(src, SRC);      // src oop
1714     __ testptr(src, src);
1715     __ jccb(Assembler::zero, L_failed_0);
1716 
1717     //  if (src_pos < 0) return -1;
1718     __ movl2ptr(src_pos, SRC_POS);  // src_pos
1719     __ testl(src_pos, src_pos);
1720     __ jccb(Assembler::negative, L_failed_0);
1721 
1722     //  if (dst == NULL) return -1;
1723     __ movptr(dst, DST);      // dst oop
1724     __ testptr(dst, dst);
1725     __ jccb(Assembler::zero, L_failed_0);
1726 
1727     //  if (dst_pos < 0) return -1;
1728     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1729     __ testl(dst_pos, dst_pos);
1730     __ jccb(Assembler::negative, L_failed_0);
1731 
1732     //  if (length < 0) return -1;
1733     __ movl2ptr(length, LENGTH);   // length
1734     __ testl(length, length);
1735     __ jccb(Assembler::negative, L_failed_0);
1736 
1737     //  if (src->klass() == NULL) return -1;
1738     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1739     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1740     const Register rcx_src_klass = rcx;    // array klass
1741     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1742 
1743 #ifdef ASSERT
1744     //  assert(src->klass() != NULL);
1745     BLOCK_COMMENT("assert klasses not null");
1746     { Label L1, L2;
1747       __ testptr(rcx_src_klass, rcx_src_klass);
1748       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1749       __ bind(L1);
1750       __ stop("broken null klass");
1751       __ bind(L2);
1752       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1753       __ jccb(Assembler::equal, L1);      // this would be broken also
1754       BLOCK_COMMENT("assert done");
1755     }
1756 #endif //ASSERT
1757 
1758     // Load layout helper (32-bits)
1759     //
1760     //  |array_tag|     | header_size | element_type |     |log2_element_size|
1761     // 32        30    24            16              8     2                 0
1762     //
1763     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1764     //
1765 
1766     int lh_offset = in_bytes(Klass::layout_helper_offset());
1767     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1768 
1769     // Handle objArrays completely differently...
1770     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1771     __ cmpl(src_klass_lh_addr, objArray_lh);
1772     __ jcc(Assembler::equal, L_objArray);
1773 
1774     //  if (src->klass() != dst->klass()) return -1;
1775     __ cmpptr(rcx_src_klass, dst_klass_addr);
1776     __ jccb(Assembler::notEqual, L_failed_0);
1777 
1778     const Register rcx_lh = rcx;  // layout helper
1779     assert(rcx_lh == rcx_src_klass, "known alias");
1780     __ movl(rcx_lh, src_klass_lh_addr);
1781 
1782     //  if (!src->is_Array()) return -1;
1783     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1784     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1785 
1786     // At this point, it is known to be a typeArray (array_tag 0x3).
1787 #ifdef ASSERT
1788     { Label L;
1789       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1790       __ jcc(Assembler::greaterEqual, L); // signed cmp
1791       __ stop("must be a primitive array");
1792       __ bind(L);
1793     }
1794 #endif
1795 
1796     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1797     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1798 
1799     // TypeArrayKlass
1800     //
1801     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1802     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1803     //
1804     const Register rsi_offset = rsi; // array offset
1805     const Register src_array  = src; // src array offset
1806     const Register dst_array  = dst; // dst array offset
1807     const Register rdi_elsize = rdi; // log2 element size
1808 
1809     __ mov(rsi_offset, rcx_lh);
1810     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1811     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1812     __ addptr(src_array, rsi_offset);  // src array offset
1813     __ addptr(dst_array, rsi_offset);  // dst array offset
1814     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1815 
1816     // next registers should be set before the jump to corresponding stub
1817     const Register from       = src; // source array address
1818     const Register to         = dst; // destination array address
1819     const Register count      = rcx; // elements count
1820     // some of them should be duplicated on stack
1821 #define FROM   Address(rsp, 12+ 4)
1822 #define TO     Address(rsp, 12+ 8)   // Not used now
1823 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1824 
1825     BLOCK_COMMENT("scale indexes to element size");
1826     __ movl2ptr(rsi, SRC_POS);  // src_pos
1827     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1828     assert(src_array == from, "");
1829     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1830     __ movl2ptr(rdi, DST_POS);  // dst_pos
1831     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1832     assert(dst_array == to, "");
1833     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1834     __ movptr(FROM, from);      // src_addr
1835     __ mov(rdi_elsize, rcx_lh); // log2 elsize
1836     __ movl2ptr(count, LENGTH); // elements count
1837 
1838     BLOCK_COMMENT("choose copy loop based on element size");
1839     __ cmpl(rdi_elsize, 0);
1840 
1841     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1842     __ cmpl(rdi_elsize, LogBytesPerShort);
1843     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1844     __ cmpl(rdi_elsize, LogBytesPerInt);
1845     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1846 #ifdef ASSERT
1847     __ cmpl(rdi_elsize, LogBytesPerLong);
1848     __ jccb(Assembler::notEqual, L_failed);
1849 #endif
1850     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1851     __ pop(rsi);
1852     __ jump(RuntimeAddress(entry_jlong_arraycopy));
1853 
1854   __ BIND(L_failed);
1855     __ xorptr(rax, rax);
1856     __ notptr(rax); // return -1
1857     __ pop(rdi);
1858     __ pop(rsi);
1859     __ leave(); // required for proper stackwalking of RuntimeStub frame
1860     __ ret(0);
1861 
1862     // ObjArrayKlass
1863   __ BIND(L_objArray);
1864     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1865 
1866     Label L_plain_copy, L_checkcast_copy;
1867     //  test array classes for subtyping
1868     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1869     __ jccb(Assembler::notEqual, L_checkcast_copy);
1870 
1871     // Identically typed arrays can be copied without element-wise checks.
1872     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1873     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1874 
1875   __ BIND(L_plain_copy);
1876     __ movl2ptr(count, LENGTH); // elements count
1877     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1878     __ lea(from, Address(src, src_pos, Address::times_ptr,
1879                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1880     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1881     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1882                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1883     __ movptr(FROM,  from);   // src_addr
1884     __ movptr(TO,    to);     // dst_addr
1885     __ movl(COUNT, count);  // count
1886     __ jump(RuntimeAddress(entry_oop_arraycopy));
1887 
1888   __ BIND(L_checkcast_copy);
1889     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1890     {
1891       // Handy offsets:
1892       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
1893       int sco_offset = in_bytes(Klass::super_check_offset_offset());
1894 
1895       Register rsi_dst_klass = rsi;
1896       Register rdi_temp      = rdi;
1897       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1898       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1899       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1900 
1901       // Before looking at dst.length, make sure dst is also an objArray.
1902       __ movptr(rsi_dst_klass, dst_klass_addr);
1903       __ cmpl(dst_klass_lh_addr, objArray_lh);
1904       __ jccb(Assembler::notEqual, L_failed);
1905 
1906       // It is safe to examine both src.length and dst.length.
1907       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1908       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1909       // (Now src_pos and dst_pos are killed, but not src and dst.)
1910 
1911       // We'll need this temp (don't forget to pop it after the type check).
1912       __ push(rbx);
1913       Register rbx_src_klass = rbx;
1914 
1915       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1916       __ movptr(rsi_dst_klass, dst_klass_addr);
1917       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1918       Label L_fail_array_check;
1919       generate_type_check(rbx_src_klass,
1920                           super_check_offset_addr, dst_klass_addr,
1921                           rdi_temp, NULL, &L_fail_array_check);
1922       // (On fall-through, we have passed the array type check.)
1923       __ pop(rbx);
1924       __ jmp(L_plain_copy);
1925 
1926       __ BIND(L_fail_array_check);
1927       // Reshuffle arguments so we can call checkcast_arraycopy:
1928 
1929       // match initial saves for checkcast_arraycopy
1930       // push(rsi);    // already done; see above
1931       // push(rdi);    // already done; see above
1932       // push(rbx);    // already done; see above
1933 
1934       // Marshal outgoing arguments now, freeing registers.
1935       Address   from_arg(rsp, 16+ 4);   // from
1936       Address     to_arg(rsp, 16+ 8);   // to
1937       Address length_arg(rsp, 16+12);   // elements count
1938       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1939       Address  ckval_arg(rsp, 16+20);   // super_klass
1940 
1941       Address SRC_POS_arg(rsp, 16+ 8);
1942       Address DST_POS_arg(rsp, 16+16);
1943       Address  LENGTH_arg(rsp, 16+20);
1944       // push rbx, changed the incoming offsets (why not just use rbp,??)
1945       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1946 
1947       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1948       __ movl2ptr(length, LENGTH_arg);    // reload elements count
1949       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1950       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1951 
1952       __ movptr(ckval_arg, rbx);          // destination element type
1953       __ movl(rbx, Address(rbx, sco_offset));
1954       __ movl(ckoff_arg, rbx);          // corresponding class check offset
1955 
1956       __ movl(length_arg, length);      // outgoing length argument
1957 
1958       __ lea(from, Address(src, src_pos, Address::times_ptr,
1959                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1960       __ movptr(from_arg, from);
1961 
1962       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1963                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1964       __ movptr(to_arg, to);
1965       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1966     }
1967 
1968     return start;
1969   }
1970 
1971   void generate_arraycopy_stubs() {
1972     address entry;
1973     address entry_jbyte_arraycopy;
1974     address entry_jshort_arraycopy;
1975     address entry_jint_arraycopy;
1976     address entry_oop_arraycopy;
1977     address entry_jlong_arraycopy;
1978     address entry_checkcast_arraycopy;
1979 
1980     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
1981         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
1982                                "arrayof_jbyte_disjoint_arraycopy");
1983     StubRoutines::_arrayof_jbyte_arraycopy =
1984         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
1985                                NULL, "arrayof_jbyte_arraycopy");
1986     StubRoutines::_jbyte_disjoint_arraycopy =
1987         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
1988                                "jbyte_disjoint_arraycopy");
1989     StubRoutines::_jbyte_arraycopy =
1990         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
1991                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
1992 
1993     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
1994         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
1995                                "arrayof_jshort_disjoint_arraycopy");
1996     StubRoutines::_arrayof_jshort_arraycopy =
1997         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
1998                                NULL, "arrayof_jshort_arraycopy");
1999     StubRoutines::_jshort_disjoint_arraycopy =
2000         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
2001                                "jshort_disjoint_arraycopy");
2002     StubRoutines::_jshort_arraycopy =
2003         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
2004                                &entry_jshort_arraycopy, "jshort_arraycopy");
2005 
2006     // Next arrays are always aligned on 4 bytes at least.
2007     StubRoutines::_jint_disjoint_arraycopy =
2008         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
2009                                "jint_disjoint_arraycopy");
2010     StubRoutines::_jint_arraycopy =
2011         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
2012                                &entry_jint_arraycopy, "jint_arraycopy");
2013 
2014     StubRoutines::_oop_disjoint_arraycopy =
2015         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2016                                "oop_disjoint_arraycopy");
2017     StubRoutines::_oop_arraycopy =
2018         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2019                                &entry_oop_arraycopy, "oop_arraycopy");
2020 
2021     StubRoutines::_oop_disjoint_arraycopy_uninit =
2022         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2023                                "oop_disjoint_arraycopy_uninit",
2024                                /*dest_uninitialized*/true);
2025     StubRoutines::_oop_arraycopy_uninit =
2026         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2027                                NULL, "oop_arraycopy_uninit",
2028                                /*dest_uninitialized*/true);
2029 
2030     StubRoutines::_jlong_disjoint_arraycopy =
2031         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
2032     StubRoutines::_jlong_arraycopy =
2033         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
2034                                     "jlong_arraycopy");
2035 
2036     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2037     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2038     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2039     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2040     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2041     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2042 
2043     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
2044     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
2045     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
2046     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
2047 
2048     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
2049     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
2050     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
2051     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
2052 
2053     StubRoutines::_checkcast_arraycopy =
2054         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2055     StubRoutines::_checkcast_arraycopy_uninit =
2056         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
2057 
2058     StubRoutines::_unsafe_arraycopy =
2059         generate_unsafe_copy("unsafe_arraycopy",
2060                                entry_jbyte_arraycopy,
2061                                entry_jshort_arraycopy,
2062                                entry_jint_arraycopy,
2063                                entry_jlong_arraycopy);
2064 
2065     StubRoutines::_generic_arraycopy =
2066         generate_generic_copy("generic_arraycopy",
2067                                entry_jbyte_arraycopy,
2068                                entry_jshort_arraycopy,
2069                                entry_jint_arraycopy,
2070                                entry_oop_arraycopy,
2071                                entry_jlong_arraycopy,
2072                                entry_checkcast_arraycopy);
2073   }
2074 
2075   void generate_math_stubs() {
2076     {
2077       StubCodeMark mark(this, "StubRoutines", "log");
2078       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2079 
2080       __ fld_d(Address(rsp, 4));
2081       __ flog();
2082       __ ret(0);
2083     }
2084     {
2085       StubCodeMark mark(this, "StubRoutines", "log10");
2086       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2087 
2088       __ fld_d(Address(rsp, 4));
2089       __ flog10();
2090       __ ret(0);
2091     }
2092     {
2093       StubCodeMark mark(this, "StubRoutines", "sin");
2094       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
2095 
2096       __ fld_d(Address(rsp, 4));
2097       __ trigfunc('s');
2098       __ ret(0);
2099     }
2100     {
2101       StubCodeMark mark(this, "StubRoutines", "cos");
2102       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2103 
2104       __ fld_d(Address(rsp, 4));
2105       __ trigfunc('c');
2106       __ ret(0);
2107     }
2108     {
2109       StubCodeMark mark(this, "StubRoutines", "tan");
2110       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2111 
2112       __ fld_d(Address(rsp, 4));
2113       __ trigfunc('t');
2114       __ ret(0);
2115     }
2116     {
2117       StubCodeMark mark(this, "StubRoutines", "exp");
2118       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2119 
2120       __ fld_d(Address(rsp, 4));
2121       __ exp_with_fallback(0);
2122       __ ret(0);
2123     }
2124     {
2125       StubCodeMark mark(this, "StubRoutines", "pow");
2126       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
2127 
2128       __ fld_d(Address(rsp, 12));
2129       __ fld_d(Address(rsp, 4));
2130       __ pow_with_fallback(0);
2131       __ ret(0);
2132     }
2133   }
2134 
2135   // AES intrinsic stubs
2136   enum {AESBlockSize = 16};
2137 
2138   address generate_key_shuffle_mask() {
2139     __ align(16);
2140     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2141     address start = __ pc();
2142     __ emit_data(0x00010203, relocInfo::none, 0 );
2143     __ emit_data(0x04050607, relocInfo::none, 0 );
2144     __ emit_data(0x08090a0b, relocInfo::none, 0 );
2145     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
2146     return start;
2147   }
2148 
2149   // Utility routine for loading a 128-bit key word in little endian format
2150   // can optionally specify that the shuffle mask is already in an xmmregister
2151   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2152     __ movdqu(xmmdst, Address(key, offset));
2153     if (xmm_shuf_mask != NULL) {
2154       __ pshufb(xmmdst, xmm_shuf_mask);
2155     } else {
2156       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2157     }
2158   }
2159 
2160   // aesenc using specified key+offset
2161   // can optionally specify that the shuffle mask is already in an xmmregister
2162   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2163     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2164     __ aesenc(xmmdst, xmmtmp);
2165   }
2166 
2167   // aesdec using specified key+offset
2168   // can optionally specify that the shuffle mask is already in an xmmregister
2169   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2170     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2171     __ aesdec(xmmdst, xmmtmp);
2172   }
2173 
2174 
2175   // Arguments:
2176   //
2177   // Inputs:
2178   //   c_rarg0   - source byte array address
2179   //   c_rarg1   - destination byte array address
2180   //   c_rarg2   - K (key) in little endian int array
2181   //
2182   address generate_aescrypt_encryptBlock() {
2183     assert(UseAES, "need AES instructions and misaligned SSE support");
2184     __ align(CodeEntryAlignment);
2185     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2186     Label L_doLast;
2187     address start = __ pc();
2188 
2189     const Register from        = rdx;      // source array address
2190     const Register to          = rdx;      // destination array address
2191     const Register key         = rcx;      // key array address
2192     const Register keylen      = rax;
2193     const Address  from_param(rbp, 8+0);
2194     const Address  to_param  (rbp, 8+4);
2195     const Address  key_param (rbp, 8+8);
2196 
2197     const XMMRegister xmm_result = xmm0;
2198     const XMMRegister xmm_key_shuf_mask = xmm1;
2199     const XMMRegister xmm_temp1  = xmm2;
2200     const XMMRegister xmm_temp2  = xmm3;
2201     const XMMRegister xmm_temp3  = xmm4;
2202     const XMMRegister xmm_temp4  = xmm5;
2203 
2204     __ enter();   // required for proper stackwalking of RuntimeStub frame
2205     __ movptr(from, from_param);
2206     __ movptr(key, key_param);
2207 
2208     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2209     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2210 
2211     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2212     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
2213     __ movptr(to, to_param);
2214 
2215     // For encryption, the java expanded key ordering is just what we need
2216 
2217     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
2218     __ pxor(xmm_result, xmm_temp1);
2219 
2220     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2221     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2222     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2223     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2224 
2225     __ aesenc(xmm_result, xmm_temp1);
2226     __ aesenc(xmm_result, xmm_temp2);
2227     __ aesenc(xmm_result, xmm_temp3);
2228     __ aesenc(xmm_result, xmm_temp4);
2229 
2230     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2231     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2232     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2233     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2234 
2235     __ aesenc(xmm_result, xmm_temp1);
2236     __ aesenc(xmm_result, xmm_temp2);
2237     __ aesenc(xmm_result, xmm_temp3);
2238     __ aesenc(xmm_result, xmm_temp4);
2239 
2240     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2241     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2242 
2243     __ cmpl(keylen, 44);
2244     __ jccb(Assembler::equal, L_doLast);
2245 
2246     __ aesenc(xmm_result, xmm_temp1);
2247     __ aesenc(xmm_result, xmm_temp2);
2248 
2249     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2250     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2251 
2252     __ cmpl(keylen, 52);
2253     __ jccb(Assembler::equal, L_doLast);
2254 
2255     __ aesenc(xmm_result, xmm_temp1);
2256     __ aesenc(xmm_result, xmm_temp2);
2257 
2258     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2259     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2260 
2261     __ BIND(L_doLast);
2262     __ aesenc(xmm_result, xmm_temp1);
2263     __ aesenclast(xmm_result, xmm_temp2);
2264     __ movdqu(Address(to, 0), xmm_result);        // store the result
2265     __ xorptr(rax, rax); // return 0
2266     __ leave(); // required for proper stackwalking of RuntimeStub frame
2267     __ ret(0);
2268 
2269     return start;
2270   }
2271 
2272 
2273   // Arguments:
2274   //
2275   // Inputs:
2276   //   c_rarg0   - source byte array address
2277   //   c_rarg1   - destination byte array address
2278   //   c_rarg2   - K (key) in little endian int array
2279   //
2280   address generate_aescrypt_decryptBlock() {
2281     assert(UseAES, "need AES instructions and misaligned SSE support");
2282     __ align(CodeEntryAlignment);
2283     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2284     Label L_doLast;
2285     address start = __ pc();
2286 
2287     const Register from        = rdx;      // source array address
2288     const Register to          = rdx;      // destination array address
2289     const Register key         = rcx;      // key array address
2290     const Register keylen      = rax;
2291     const Address  from_param(rbp, 8+0);
2292     const Address  to_param  (rbp, 8+4);
2293     const Address  key_param (rbp, 8+8);
2294 
2295     const XMMRegister xmm_result = xmm0;
2296     const XMMRegister xmm_key_shuf_mask = xmm1;
2297     const XMMRegister xmm_temp1  = xmm2;
2298     const XMMRegister xmm_temp2  = xmm3;
2299     const XMMRegister xmm_temp3  = xmm4;
2300     const XMMRegister xmm_temp4  = xmm5;
2301 
2302     __ enter(); // required for proper stackwalking of RuntimeStub frame
2303     __ movptr(from, from_param);
2304     __ movptr(key, key_param);
2305 
2306     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2307     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2308 
2309     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2310     __ movdqu(xmm_result, Address(from, 0));
2311     __ movptr(to, to_param);
2312 
2313     // for decryption java expanded key ordering is rotated one position from what we want
2314     // so we start from 0x10 here and hit 0x00 last
2315     // we don't know if the key is aligned, hence not using load-execute form
2316     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2317     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2318     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2319     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2320 
2321     __ pxor  (xmm_result, xmm_temp1);
2322     __ aesdec(xmm_result, xmm_temp2);
2323     __ aesdec(xmm_result, xmm_temp3);
2324     __ aesdec(xmm_result, xmm_temp4);
2325 
2326     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2327     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2328     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2329     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2330 
2331     __ aesdec(xmm_result, xmm_temp1);
2332     __ aesdec(xmm_result, xmm_temp2);
2333     __ aesdec(xmm_result, xmm_temp3);
2334     __ aesdec(xmm_result, xmm_temp4);
2335 
2336     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2337     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2338     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
2339 
2340     __ cmpl(keylen, 44);
2341     __ jccb(Assembler::equal, L_doLast);
2342 
2343     __ aesdec(xmm_result, xmm_temp1);
2344     __ aesdec(xmm_result, xmm_temp2);
2345 
2346     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2347     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2348 
2349     __ cmpl(keylen, 52);
2350     __ jccb(Assembler::equal, L_doLast);
2351 
2352     __ aesdec(xmm_result, xmm_temp1);
2353     __ aesdec(xmm_result, xmm_temp2);
2354 
2355     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2356     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2357 
2358     __ BIND(L_doLast);
2359     __ aesdec(xmm_result, xmm_temp1);
2360     __ aesdec(xmm_result, xmm_temp2);
2361 
2362     // for decryption the aesdeclast operation is always on key+0x00
2363     __ aesdeclast(xmm_result, xmm_temp3);
2364     __ movdqu(Address(to, 0), xmm_result);  // store the result
2365     __ xorptr(rax, rax); // return 0
2366     __ leave(); // required for proper stackwalking of RuntimeStub frame
2367     __ ret(0);
2368 
2369     return start;
2370   }
2371 
2372   void handleSOERegisters(bool saving) {
2373     const int saveFrameSizeInBytes = 4 * wordSize;
2374     const Address saved_rbx     (rbp, -3 * wordSize);
2375     const Address saved_rsi     (rbp, -2 * wordSize);
2376     const Address saved_rdi     (rbp, -1 * wordSize);
2377 
2378     if (saving) {
2379       __ subptr(rsp, saveFrameSizeInBytes);
2380       __ movptr(saved_rsi, rsi);
2381       __ movptr(saved_rdi, rdi);
2382       __ movptr(saved_rbx, rbx);
2383     } else {
2384       // restoring
2385       __ movptr(rsi, saved_rsi);
2386       __ movptr(rdi, saved_rdi);
2387       __ movptr(rbx, saved_rbx);
2388     }
2389   }
2390 
2391   // Arguments:
2392   //
2393   // Inputs:
2394   //   c_rarg0   - source byte array address
2395   //   c_rarg1   - destination byte array address
2396   //   c_rarg2   - K (key) in little endian int array
2397   //   c_rarg3   - r vector byte array address
2398   //   c_rarg4   - input length
2399   //
2400   address generate_cipherBlockChaining_encryptAESCrypt() {
2401     assert(UseAES, "need AES instructions and misaligned SSE support");
2402     __ align(CodeEntryAlignment);
2403     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
2404     address start = __ pc();
2405 
2406     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
2407     const Register from        = rsi;      // source array address
2408     const Register to          = rdx;      // destination array address
2409     const Register key         = rcx;      // key array address
2410     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2411                                            // and left with the results of the last encryption block
2412     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2413     const Register pos         = rax;
2414 
2415     // xmm register assignments for the loops below
2416     const XMMRegister xmm_result = xmm0;
2417     const XMMRegister xmm_temp   = xmm1;
2418     // first 6 keys preloaded into xmm2-xmm7
2419     const int XMM_REG_NUM_KEY_FIRST = 2;
2420     const int XMM_REG_NUM_KEY_LAST  = 7;
2421     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2422 
2423     __ enter(); // required for proper stackwalking of RuntimeStub frame
2424     handleSOERegisters(true /*saving*/);
2425 
2426     // load registers from incoming parameters
2427     const Address  from_param(rbp, 8+0);
2428     const Address  to_param  (rbp, 8+4);
2429     const Address  key_param (rbp, 8+8);
2430     const Address  rvec_param (rbp, 8+12);
2431     const Address  len_param  (rbp, 8+16);
2432     __ movptr(from , from_param);
2433     __ movptr(to   , to_param);
2434     __ movptr(key  , key_param);
2435     __ movptr(rvec , rvec_param);
2436     __ movptr(len_reg , len_param);
2437 
2438     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
2439     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2440     // load up xmm regs 2 thru 7 with keys 0-5
2441     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2442       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2443       offset += 0x10;
2444     }
2445 
2446     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
2447 
2448     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2449     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2450     __ cmpl(rax, 44);
2451     __ jcc(Assembler::notEqual, L_key_192_256);
2452 
2453     // 128 bit code follows here
2454     __ movl(pos, 0);
2455     __ align(OptoLoopAlignment);
2456     __ BIND(L_loopTop_128);
2457     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2458     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2459 
2460     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2461     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2462       __ aesenc(xmm_result, as_XMMRegister(rnum));
2463     }
2464     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
2465       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2466     }
2467     load_key(xmm_temp, key, 0xa0);
2468     __ aesenclast(xmm_result, xmm_temp);
2469 
2470     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2471     // no need to store r to memory until we exit
2472     __ addptr(pos, AESBlockSize);
2473     __ subptr(len_reg, AESBlockSize);
2474     __ jcc(Assembler::notEqual, L_loopTop_128);
2475 
2476     __ BIND(L_exit);
2477     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
2478 
2479     handleSOERegisters(false /*restoring*/);
2480     __ movl(rax, 0);                             // return 0 (why?)
2481     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
2482     __ ret(0);
2483 
2484     __ BIND(L_key_192_256);
2485     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2486     __ cmpl(rax, 52);
2487     __ jcc(Assembler::notEqual, L_key_256);
2488 
2489     // 192-bit code follows here (could be changed to use more xmm registers)
2490     __ movl(pos, 0);
2491     __ align(OptoLoopAlignment);
2492     __ BIND(L_loopTop_192);
2493     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2494     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2495 
2496     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2497     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2498       __ aesenc(xmm_result, as_XMMRegister(rnum));
2499     }
2500     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
2501       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2502     }
2503     load_key(xmm_temp, key, 0xc0);
2504     __ aesenclast(xmm_result, xmm_temp);
2505 
2506     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2507     // no need to store r to memory until we exit
2508     __ addptr(pos, AESBlockSize);
2509     __ subptr(len_reg, AESBlockSize);
2510     __ jcc(Assembler::notEqual, L_loopTop_192);
2511     __ jmp(L_exit);
2512 
2513     __ BIND(L_key_256);
2514     // 256-bit code follows here (could be changed to use more xmm registers)
2515     __ movl(pos, 0);
2516     __ align(OptoLoopAlignment);
2517     __ BIND(L_loopTop_256);
2518     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2519     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2520 
2521     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2522     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2523       __ aesenc(xmm_result, as_XMMRegister(rnum));
2524     }
2525     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
2526       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2527     }
2528     load_key(xmm_temp, key, 0xe0);
2529     __ aesenclast(xmm_result, xmm_temp);
2530 
2531     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2532     // no need to store r to memory until we exit
2533     __ addptr(pos, AESBlockSize);
2534     __ subptr(len_reg, AESBlockSize);
2535     __ jcc(Assembler::notEqual, L_loopTop_256);
2536     __ jmp(L_exit);
2537 
2538     return start;
2539   }
2540 
2541 
2542   // CBC AES Decryption.
2543   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
2544   //
2545   // Arguments:
2546   //
2547   // Inputs:
2548   //   c_rarg0   - source byte array address
2549   //   c_rarg1   - destination byte array address
2550   //   c_rarg2   - K (key) in little endian int array
2551   //   c_rarg3   - r vector byte array address
2552   //   c_rarg4   - input length
2553   //
2554 
2555   address generate_cipherBlockChaining_decryptAESCrypt() {
2556     assert(UseAES, "need AES instructions and misaligned SSE support");
2557     __ align(CodeEntryAlignment);
2558     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
2559     address start = __ pc();
2560 
2561     Label L_exit, L_key_192_256, L_key_256;
2562     Label L_singleBlock_loopTop_128;
2563     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
2564     const Register from        = rsi;      // source array address
2565     const Register to          = rdx;      // destination array address
2566     const Register key         = rcx;      // key array address
2567     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2568                                            // and left with the results of the last encryption block
2569     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2570     const Register pos         = rax;
2571 
2572     // xmm register assignments for the loops below
2573     const XMMRegister xmm_result = xmm0;
2574     const XMMRegister xmm_temp   = xmm1;
2575     // first 6 keys preloaded into xmm2-xmm7
2576     const int XMM_REG_NUM_KEY_FIRST = 2;
2577     const int XMM_REG_NUM_KEY_LAST  = 7;
2578     const int FIRST_NON_REG_KEY_offset = 0x70;
2579     const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2580 
2581     __ enter(); // required for proper stackwalking of RuntimeStub frame
2582     handleSOERegisters(true /*saving*/);
2583 
2584     // load registers from incoming parameters
2585     const Address  from_param(rbp, 8+0);
2586     const Address  to_param  (rbp, 8+4);
2587     const Address  key_param (rbp, 8+8);
2588     const Address  rvec_param (rbp, 8+12);
2589     const Address  len_param  (rbp, 8+16);
2590     __ movptr(from , from_param);
2591     __ movptr(to   , to_param);
2592     __ movptr(key  , key_param);
2593     __ movptr(rvec , rvec_param);
2594     __ movptr(len_reg , len_param);
2595 
2596     // the java expanded key ordering is rotated one position from what we want
2597     // so we start from 0x10 here and hit 0x00 last
2598     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
2599     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2600     // load up xmm regs 2 thru 6 with first 5 keys
2601     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2602       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2603       offset += 0x10;
2604     }
2605 
2606     // inside here, use the rvec register to point to previous block cipher
2607     // with which we xor at the end of each newly decrypted block
2608     const Register  prev_block_cipher_ptr = rvec;
2609 
2610     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2611     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2612     __ cmpl(rax, 44);
2613     __ jcc(Assembler::notEqual, L_key_192_256);
2614 
2615 
2616     // 128-bit code follows here, parallelized
2617     __ movl(pos, 0);
2618     __ align(OptoLoopAlignment);
2619     __ BIND(L_singleBlock_loopTop_128);
2620     __ cmpptr(len_reg, 0);           // any blocks left??
2621     __ jcc(Assembler::equal, L_exit);
2622     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2623     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2624     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2625       __ aesdec(xmm_result, as_XMMRegister(rnum));
2626     }
2627     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
2628       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2629     }
2630     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2631     __ aesdeclast(xmm_result, xmm_temp);
2632     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2633     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2634     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2635     // no need to store r to memory until we exit
2636     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2637     __ addptr(pos, AESBlockSize);
2638     __ subptr(len_reg, AESBlockSize);
2639     __ jmp(L_singleBlock_loopTop_128);
2640 
2641 
2642     __ BIND(L_exit);
2643     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2644     __ movptr(rvec , rvec_param);                                     // restore this since used in loop
2645     __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
2646     handleSOERegisters(false /*restoring*/);
2647     __ movl(rax, 0);                                                  // return 0 (why?)
2648     __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
2649     __ ret(0);
2650 
2651 
2652     __ BIND(L_key_192_256);
2653     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2654     __ cmpl(rax, 52);
2655     __ jcc(Assembler::notEqual, L_key_256);
2656 
2657     // 192-bit code follows here (could be optimized to use parallelism)
2658     __ movl(pos, 0);
2659     __ align(OptoLoopAlignment);
2660     __ BIND(L_singleBlock_loopTop_192);
2661     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2662     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2663     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2664       __ aesdec(xmm_result, as_XMMRegister(rnum));
2665     }
2666     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
2667       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2668     }
2669     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2670     __ aesdeclast(xmm_result, xmm_temp);
2671     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2672     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2673     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2674     // no need to store r to memory until we exit
2675     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2676     __ addptr(pos, AESBlockSize);
2677     __ subptr(len_reg, AESBlockSize);
2678     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
2679     __ jmp(L_exit);
2680 
2681     __ BIND(L_key_256);
2682     // 256-bit code follows here (could be optimized to use parallelism)
2683     __ movl(pos, 0);
2684     __ align(OptoLoopAlignment);
2685     __ BIND(L_singleBlock_loopTop_256);
2686     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2687     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2688     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2689       __ aesdec(xmm_result, as_XMMRegister(rnum));
2690     }
2691     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
2692       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2693     }
2694     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2695     __ aesdeclast(xmm_result, xmm_temp);
2696     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2697     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2698     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2699     // no need to store r to memory until we exit
2700     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2701     __ addptr(pos, AESBlockSize);
2702     __ subptr(len_reg, AESBlockSize);
2703     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
2704     __ jmp(L_exit);
2705 
2706     return start;
2707   }
2708 
2709 
2710  public:
2711   // Information about frame layout at time of blocking runtime call.
2712   // Note that we only have to preserve callee-saved registers since
2713   // the compilers are responsible for supplying a continuation point
2714   // if they expect all registers to be preserved.
2715   enum layout {
2716     thread_off,    // last_java_sp
2717     arg1_off,
2718     arg2_off,
2719     rbp_off,       // callee saved register
2720     ret_pc,
2721     framesize
2722   };
2723 
2724  private:
2725 
2726 #undef  __
2727 #define __ masm->
2728 
2729   //------------------------------------------------------------------------------------------------------------------------
2730   // Continuation point for throwing of implicit exceptions that are not handled in
2731   // the current activation. Fabricates an exception oop and initiates normal
2732   // exception dispatching in this frame.
2733   //
2734   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2735   // This is no longer true after adapter frames were removed but could possibly
2736   // be brought back in the future if the interpreter code was reworked and it
2737   // was deemed worthwhile. The comment below was left to describe what must
2738   // happen here if callee saves were resurrected. As it stands now this stub
2739   // could actually be a vanilla BufferBlob and have now oopMap at all.
2740   // Since it doesn't make much difference we've chosen to leave it the
2741   // way it was in the callee save days and keep the comment.
2742 
2743   // If we need to preserve callee-saved values we need a callee-saved oop map and
2744   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2745   // If the compiler needs all registers to be preserved between the fault
2746   // point and the exception handler then it must assume responsibility for that in
2747   // AbstractCompiler::continuation_for_implicit_null_exception or
2748   // continuation_for_implicit_division_by_zero_exception. All other implicit
2749   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2750   // either at call sites or otherwise assume that stack unwinding will be initiated,
2751   // so caller saved registers were assumed volatile in the compiler.
2752   address generate_throw_exception(const char* name, address runtime_entry,
2753                                    Register arg1 = noreg, Register arg2 = noreg) {
2754 
2755     int insts_size = 256;
2756     int locs_size  = 32;
2757 
2758     CodeBuffer code(name, insts_size, locs_size);
2759     OopMapSet* oop_maps  = new OopMapSet();
2760     MacroAssembler* masm = new MacroAssembler(&code);
2761 
2762     address start = __ pc();
2763 
2764     // This is an inlined and slightly modified version of call_VM
2765     // which has the ability to fetch the return PC out of
2766     // thread-local storage and also sets up last_Java_sp slightly
2767     // differently than the real call_VM
2768     Register java_thread = rbx;
2769     __ get_thread(java_thread);
2770 
2771     __ enter(); // required for proper stackwalking of RuntimeStub frame
2772 
2773     // pc and rbp, already pushed
2774     __ subptr(rsp, (framesize-2) * wordSize); // prolog
2775 
2776     // Frame is now completed as far as size and linkage.
2777 
2778     int frame_complete = __ pc() - start;
2779 
2780     // push java thread (becomes first argument of C function)
2781     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2782     if (arg1 != noreg) {
2783       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
2784     }
2785     if (arg2 != noreg) {
2786       assert(arg1 != noreg, "missing reg arg");
2787       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
2788     }
2789 
2790     // Set up last_Java_sp and last_Java_fp
2791     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
2792 
2793     // Call runtime
2794     BLOCK_COMMENT("call runtime_entry");
2795     __ call(RuntimeAddress(runtime_entry));
2796     // Generate oop map
2797     OopMap* map =  new OopMap(framesize, 0);
2798     oop_maps->add_gc_map(__ pc() - start, map);
2799 
2800     // restore the thread (cannot use the pushed argument since arguments
2801     // may be overwritten by C code generated by an optimizing compiler);
2802     // however can use the register value directly if it is callee saved.
2803     __ get_thread(java_thread);
2804 
2805     __ reset_last_Java_frame(java_thread, true, false);
2806 
2807     __ leave(); // required for proper stackwalking of RuntimeStub frame
2808 
2809     // check for pending exceptions
2810 #ifdef ASSERT
2811     Label L;
2812     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2813     __ jcc(Assembler::notEqual, L);
2814     __ should_not_reach_here();
2815     __ bind(L);
2816 #endif /* ASSERT */
2817     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2818 
2819 
2820     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2821     return stub->entry_point();
2822   }
2823 
2824 
2825   void create_control_words() {
2826     // Round to nearest, 53-bit mode, exceptions masked
2827     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
2828     // Round to zero, 53-bit mode, exception mased
2829     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
2830     // Round to nearest, 24-bit mode, exceptions masked
2831     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
2832     // Round to nearest, 64-bit mode, exceptions masked
2833     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
2834     // Round to nearest, 64-bit mode, exceptions masked
2835     StubRoutines::_mxcsr_std           = 0x1F80;
2836     // Note: the following two constants are 80-bit values
2837     //       layout is critical for correct loading by FPU.
2838     // Bias for strict fp multiply/divide
2839     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
2840     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
2841     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
2842     // Un-Bias for strict fp multiply/divide
2843     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
2844     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
2845     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
2846   }
2847 
2848   //---------------------------------------------------------------------------
2849   // Initialization
2850 
2851   void generate_initial() {
2852     // Generates all stubs and initializes the entry points
2853 
2854     //------------------------------------------------------------------------------------------------------------------------
2855     // entry points that exist in all platforms
2856     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
2857     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
2858     StubRoutines::_forward_exception_entry      = generate_forward_exception();
2859 
2860     StubRoutines::_call_stub_entry              =
2861       generate_call_stub(StubRoutines::_call_stub_return_address);
2862     // is referenced by megamorphic call
2863     StubRoutines::_catch_exception_entry        = generate_catch_exception();
2864 
2865     // These are currently used by Solaris/Intel
2866     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
2867 
2868     StubRoutines::_handler_for_unsafe_access_entry =
2869       generate_handler_for_unsafe_access();
2870 
2871     // platform dependent
2872     create_control_words();
2873 
2874     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
2875     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
2876     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
2877                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
2878     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
2879                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
2880 
2881     // Build this early so it's available for the interpreter
2882     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
2883   }
2884 
2885 
2886   void generate_all() {
2887     // Generates all stubs and initializes the entry points
2888 
2889     // These entry points require SharedInfo::stack0 to be set up in non-core builds
2890     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
2891     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
2892     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
2893     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
2894 
2895     //------------------------------------------------------------------------------------------------------------------------
2896     // entry points that are platform specific
2897 
2898     // support for verify_oop (must happen after universe_init)
2899     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
2900 
2901     // arraycopy stubs used by compilers
2902     generate_arraycopy_stubs();
2903 
2904     generate_math_stubs();
2905 
2906     // don't bother generating these AES intrinsic stubs unless global flag is set
2907     if (UseAESIntrinsics) {
2908       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
2909 
2910       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
2911       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
2912       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
2913       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
2914     }
2915   }
2916 
2917 
2918  public:
2919   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
2920     if (all) {
2921       generate_all();
2922     } else {
2923       generate_initial();
2924     }
2925   }
2926 }; // end class declaration
2927 
2928 
2929 void StubGenerator_generate(CodeBuffer* code, bool all) {
2930   StubGenerator g(code, all);
2931 }