1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "utilities/top.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 // Declaration and definition of StubGenerator (no .hpp file).
  47 // For a more detailed description of the stub routine structure
  48 // see the comment in stubRoutines.hpp
  49 
  50 #define __ _masm->
  51 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  52 #define a__ ((Assembler*)_masm)->
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #else
  57 #define BLOCK_COMMENT(str) __ block_comment(str)
  58 #endif
  59 
  60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  61 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  62 
  63 // Stub Code definitions
  64 
  65 static address handle_unsafe_access() {
  66   JavaThread* thread = JavaThread::current();
  67   address pc = thread->saved_exception_pc();
  68   // pc is the instruction which we must emulate
  69   // doing a no-op is fine:  return garbage from the load
  70   // therefore, compute npc
  71   address npc = Assembler::locate_next_instruction(pc);
  72 
  73   // request an async exception
  74   thread->set_pending_unsafe_access_error();
  75 
  76   // return address of next instruction to execute
  77   return npc;
  78 }
  79 
  80 class StubGenerator: public StubCodeGenerator {
  81  private:
  82 
  83 #ifdef PRODUCT
  84 #define inc_counter_np(counter) (0)
  85 #else
  86   void inc_counter_np_(int& counter) {
  87     // This can destroy rscratch1 if counter is far from the code cache
  88     __ incrementl(ExternalAddress((address)&counter));
  89   }
  90 #define inc_counter_np(counter) \
  91   BLOCK_COMMENT("inc_counter " #counter); \
  92   inc_counter_np_(counter);
  93 #endif
  94 
  95   // Call stubs are used to call Java from C
  96   //
  97   // Linux Arguments:
  98   //    c_rarg0:   call wrapper address                   address
  99   //    c_rarg1:   result                                 address
 100   //    c_rarg2:   result type                            BasicType
 101   //    c_rarg3:   method                                 Method*
 102   //    c_rarg4:   (interpreter) entry point              address
 103   //    c_rarg5:   parameters                             intptr_t*
 104   //    16(rbp): parameter size (in words)              int
 105   //    24(rbp): thread                                 Thread*
 106   //
 107   //     [ return_from_Java     ] <--- rsp
 108   //     [ argument word n      ]
 109   //      ...
 110   // -12 [ argument word 1      ]
 111   // -11 [ saved r15            ] <--- rsp_after_call
 112   // -10 [ saved r14            ]
 113   //  -9 [ saved r13            ]
 114   //  -8 [ saved r12            ]
 115   //  -7 [ saved rbx            ]
 116   //  -6 [ call wrapper         ]
 117   //  -5 [ result               ]
 118   //  -4 [ result type          ]
 119   //  -3 [ method               ]
 120   //  -2 [ entry point          ]
 121   //  -1 [ parameters           ]
 122   //   0 [ saved rbp            ] <--- rbp
 123   //   1 [ return address       ]
 124   //   2 [ parameter size       ]
 125   //   3 [ thread               ]
 126   //
 127   // Windows Arguments:
 128   //    c_rarg0:   call wrapper address                   address
 129   //    c_rarg1:   result                                 address
 130   //    c_rarg2:   result type                            BasicType
 131   //    c_rarg3:   method                                 Method*
 132   //    48(rbp): (interpreter) entry point              address
 133   //    56(rbp): parameters                             intptr_t*
 134   //    64(rbp): parameter size (in words)              int
 135   //    72(rbp): thread                                 Thread*
 136   //
 137   //     [ return_from_Java     ] <--- rsp
 138   //     [ argument word n      ]
 139   //      ...
 140   // -28 [ argument word 1      ]
 141   // -27 [ saved xmm15          ] <--- rsp_after_call
 142   //     [ saved xmm7-xmm14     ]
 143   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 144   //  -7 [ saved r15            ]
 145   //  -6 [ saved r14            ]
 146   //  -5 [ saved r13            ]
 147   //  -4 [ saved r12            ]
 148   //  -3 [ saved rdi            ]
 149   //  -2 [ saved rsi            ]
 150   //  -1 [ saved rbx            ]
 151   //   0 [ saved rbp            ] <--- rbp
 152   //   1 [ return address       ]
 153   //   2 [ call wrapper         ]
 154   //   3 [ result               ]
 155   //   4 [ result type          ]
 156   //   5 [ method               ]
 157   //   6 [ entry point          ]
 158   //   7 [ parameters           ]
 159   //   8 [ parameter size       ]
 160   //   9 [ thread               ]
 161   //
 162   //    Windows reserves the callers stack space for arguments 1-4.
 163   //    We spill c_rarg0-c_rarg3 to this space.
 164 
 165   // Call stub stack layout word offsets from rbp
 166   enum call_stub_layout {
 167 #ifdef _WIN64
 168     xmm_save_first     = 6,  // save from xmm6
 169     xmm_save_last      = 15, // to xmm15
 170     xmm_save_base      = -9,
 171     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 172     r15_off            = -7,
 173     r14_off            = -6,
 174     r13_off            = -5,
 175     r12_off            = -4,
 176     rdi_off            = -3,
 177     rsi_off            = -2,
 178     rbx_off            = -1,
 179     rbp_off            =  0,
 180     retaddr_off        =  1,
 181     call_wrapper_off   =  2,
 182     result_off         =  3,
 183     result_type_off    =  4,
 184     method_off         =  5,
 185     entry_point_off    =  6,
 186     parameters_off     =  7,
 187     parameter_size_off =  8,
 188     thread_off         =  9
 189 #else
 190     rsp_after_call_off = -12,
 191     mxcsr_off          = rsp_after_call_off,
 192     r15_off            = -11,
 193     r14_off            = -10,
 194     r13_off            = -9,
 195     r12_off            = -8,
 196     rbx_off            = -7,
 197     call_wrapper_off   = -6,
 198     result_off         = -5,
 199     result_type_off    = -4,
 200     method_off         = -3,
 201     entry_point_off    = -2,
 202     parameters_off     = -1,
 203     rbp_off            =  0,
 204     retaddr_off        =  1,
 205     parameter_size_off =  2,
 206     thread_off         =  3
 207 #endif
 208   };
 209 
 210 #ifdef _WIN64
 211   Address xmm_save(int reg) {
 212     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 213     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 214   }
 215 #endif
 216 
 217   address generate_call_stub(address& return_address) {
 218     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 219            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 220            "adjust this code");
 221     StubCodeMark mark(this, "StubRoutines", "call_stub");
 222     address start = __ pc();
 223 
 224     // same as in generate_catch_exception()!
 225     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 226 
 227     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 228     const Address result        (rbp, result_off         * wordSize);
 229     const Address result_type   (rbp, result_type_off    * wordSize);
 230     const Address method        (rbp, method_off         * wordSize);
 231     const Address entry_point   (rbp, entry_point_off    * wordSize);
 232     const Address parameters    (rbp, parameters_off     * wordSize);
 233     const Address parameter_size(rbp, parameter_size_off * wordSize);
 234 
 235     // same as in generate_catch_exception()!
 236     const Address thread        (rbp, thread_off         * wordSize);
 237 
 238     const Address r15_save(rbp, r15_off * wordSize);
 239     const Address r14_save(rbp, r14_off * wordSize);
 240     const Address r13_save(rbp, r13_off * wordSize);
 241     const Address r12_save(rbp, r12_off * wordSize);
 242     const Address rbx_save(rbp, rbx_off * wordSize);
 243 
 244     // stub code
 245     __ enter();
 246     __ subptr(rsp, -rsp_after_call_off * wordSize);
 247 
 248     // save register parameters
 249 #ifndef _WIN64
 250     __ movptr(parameters,   c_rarg5); // parameters
 251     __ movptr(entry_point,  c_rarg4); // entry_point
 252 #endif
 253 
 254     __ movptr(method,       c_rarg3); // method
 255     __ movl(result_type,  c_rarg2);   // result type
 256     __ movptr(result,       c_rarg1); // result
 257     __ movptr(call_wrapper, c_rarg0); // call wrapper
 258 
 259     // save regs belonging to calling function
 260     __ movptr(rbx_save, rbx);
 261     __ movptr(r12_save, r12);
 262     __ movptr(r13_save, r13);
 263     __ movptr(r14_save, r14);
 264     __ movptr(r15_save, r15);
 265 #ifdef _WIN64
 266     for (int i = 6; i <= 15; i++) {
 267       __ movdqu(xmm_save(i), as_XMMRegister(i));
 268     }
 269 
 270     const Address rdi_save(rbp, rdi_off * wordSize);
 271     const Address rsi_save(rbp, rsi_off * wordSize);
 272 
 273     __ movptr(rsi_save, rsi);
 274     __ movptr(rdi_save, rdi);
 275 #else
 276     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 277     {
 278       Label skip_ldmx;
 279       __ stmxcsr(mxcsr_save);
 280       __ movl(rax, mxcsr_save);
 281       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 282       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
 283       __ cmp32(rax, mxcsr_std);
 284       __ jcc(Assembler::equal, skip_ldmx);
 285       __ ldmxcsr(mxcsr_std);
 286       __ bind(skip_ldmx);
 287     }
 288 #endif
 289 
 290     // Load up thread register
 291     __ movptr(r15_thread, thread);
 292     __ reinit_heapbase();
 293 
 294 #ifdef ASSERT
 295     // make sure we have no pending exceptions
 296     {
 297       Label L;
 298       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 299       __ jcc(Assembler::equal, L);
 300       __ stop("StubRoutines::call_stub: entered with pending exception");
 301       __ bind(L);
 302     }
 303 #endif
 304 
 305     // pass parameters if any
 306     BLOCK_COMMENT("pass parameters if any");
 307     Label parameters_done;
 308     __ movl(c_rarg3, parameter_size);
 309     __ testl(c_rarg3, c_rarg3);
 310     __ jcc(Assembler::zero, parameters_done);
 311 
 312     Label loop;
 313     __ movptr(c_rarg2, parameters);       // parameter pointer
 314     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 315     __ BIND(loop);
 316     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 317     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 318     __ decrementl(c_rarg1);             // decrement counter
 319     __ push(rax);                       // pass parameter
 320     __ jcc(Assembler::notZero, loop);
 321 
 322     // call Java function
 323     __ BIND(parameters_done);
 324     __ movptr(rbx, method);             // get Method*
 325     __ movptr(c_rarg1, entry_point);    // get entry_point
 326     __ mov(r13, rsp);                   // set sender sp
 327     BLOCK_COMMENT("call Java function");
 328     __ call(c_rarg1);
 329 
 330     BLOCK_COMMENT("call_stub_return_address:");
 331     return_address = __ pc();
 332 
 333     // store result depending on type (everything that is not
 334     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 335     __ movptr(c_rarg0, result);
 336     Label is_long, is_float, is_double, exit;
 337     __ movl(c_rarg1, result_type);
 338     __ cmpl(c_rarg1, T_OBJECT);
 339     __ jcc(Assembler::equal, is_long);
 340     __ cmpl(c_rarg1, T_LONG);
 341     __ jcc(Assembler::equal, is_long);
 342     __ cmpl(c_rarg1, T_FLOAT);
 343     __ jcc(Assembler::equal, is_float);
 344     __ cmpl(c_rarg1, T_DOUBLE);
 345     __ jcc(Assembler::equal, is_double);
 346 
 347     // handle T_INT case
 348     __ movl(Address(c_rarg0, 0), rax);
 349 
 350     __ BIND(exit);
 351 
 352     // pop parameters
 353     __ lea(rsp, rsp_after_call);
 354 
 355 #ifdef ASSERT
 356     // verify that threads correspond
 357     {
 358       Label L, S;
 359       __ cmpptr(r15_thread, thread);
 360       __ jcc(Assembler::notEqual, S);
 361       __ get_thread(rbx);
 362       __ cmpptr(r15_thread, rbx);
 363       __ jcc(Assembler::equal, L);
 364       __ bind(S);
 365       __ jcc(Assembler::equal, L);
 366       __ stop("StubRoutines::call_stub: threads must correspond");
 367       __ bind(L);
 368     }
 369 #endif
 370 
 371     // restore regs belonging to calling function
 372 #ifdef _WIN64
 373     for (int i = 15; i >= 6; i--) {
 374       __ movdqu(as_XMMRegister(i), xmm_save(i));
 375     }
 376 #endif
 377     __ movptr(r15, r15_save);
 378     __ movptr(r14, r14_save);
 379     __ movptr(r13, r13_save);
 380     __ movptr(r12, r12_save);
 381     __ movptr(rbx, rbx_save);
 382 
 383 #ifdef _WIN64
 384     __ movptr(rdi, rdi_save);
 385     __ movptr(rsi, rsi_save);
 386 #else
 387     __ ldmxcsr(mxcsr_save);
 388 #endif
 389 
 390     // restore rsp
 391     __ addptr(rsp, -rsp_after_call_off * wordSize);
 392 
 393     // return
 394     __ pop(rbp);
 395     __ ret(0);
 396 
 397     // handle return types different from T_INT
 398     __ BIND(is_long);
 399     __ movq(Address(c_rarg0, 0), rax);
 400     __ jmp(exit);
 401 
 402     __ BIND(is_float);
 403     __ movflt(Address(c_rarg0, 0), xmm0);
 404     __ jmp(exit);
 405 
 406     __ BIND(is_double);
 407     __ movdbl(Address(c_rarg0, 0), xmm0);
 408     __ jmp(exit);
 409 
 410     return start;
 411   }
 412 
 413   // Return point for a Java call if there's an exception thrown in
 414   // Java code.  The exception is caught and transformed into a
 415   // pending exception stored in JavaThread that can be tested from
 416   // within the VM.
 417   //
 418   // Note: Usually the parameters are removed by the callee. In case
 419   // of an exception crossing an activation frame boundary, that is
 420   // not the case if the callee is compiled code => need to setup the
 421   // rsp.
 422   //
 423   // rax: exception oop
 424 
 425   address generate_catch_exception() {
 426     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 427     address start = __ pc();
 428 
 429     // same as in generate_call_stub():
 430     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 431     const Address thread        (rbp, thread_off         * wordSize);
 432 
 433 #ifdef ASSERT
 434     // verify that threads correspond
 435     {
 436       Label L, S;
 437       __ cmpptr(r15_thread, thread);
 438       __ jcc(Assembler::notEqual, S);
 439       __ get_thread(rbx);
 440       __ cmpptr(r15_thread, rbx);
 441       __ jcc(Assembler::equal, L);
 442       __ bind(S);
 443       __ stop("StubRoutines::catch_exception: threads must correspond");
 444       __ bind(L);
 445     }
 446 #endif
 447 
 448     // set pending exception
 449     __ verify_oop(rax);
 450 
 451     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 452     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 453     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 454     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 455 
 456     // complete return to VM
 457     assert(StubRoutines::_call_stub_return_address != NULL,
 458            "_call_stub_return_address must have been generated before");
 459     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 460 
 461     return start;
 462   }
 463 
 464   // Continuation point for runtime calls returning with a pending
 465   // exception.  The pending exception check happened in the runtime
 466   // or native call stub.  The pending exception in Thread is
 467   // converted into a Java-level exception.
 468   //
 469   // Contract with Java-level exception handlers:
 470   // rax: exception
 471   // rdx: throwing pc
 472   //
 473   // NOTE: At entry of this stub, exception-pc must be on stack !!
 474 
 475   address generate_forward_exception() {
 476     StubCodeMark mark(this, "StubRoutines", "forward exception");
 477     address start = __ pc();
 478 
 479     // Upon entry, the sp points to the return address returning into
 480     // Java (interpreted or compiled) code; i.e., the return address
 481     // becomes the throwing pc.
 482     //
 483     // Arguments pushed before the runtime call are still on the stack
 484     // but the exception handler will reset the stack pointer ->
 485     // ignore them.  A potential result in registers can be ignored as
 486     // well.
 487 
 488 #ifdef ASSERT
 489     // make sure this code is only executed if there is a pending exception
 490     {
 491       Label L;
 492       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 493       __ jcc(Assembler::notEqual, L);
 494       __ stop("StubRoutines::forward exception: no pending exception (1)");
 495       __ bind(L);
 496     }
 497 #endif
 498 
 499     // compute exception handler into rbx
 500     __ movptr(c_rarg0, Address(rsp, 0));
 501     BLOCK_COMMENT("call exception_handler_for_return_address");
 502     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 503                          SharedRuntime::exception_handler_for_return_address),
 504                     r15_thread, c_rarg0);
 505     __ mov(rbx, rax);
 506 
 507     // setup rax & rdx, remove return address & clear pending exception
 508     __ pop(rdx);
 509     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 510     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 511 
 512 #ifdef ASSERT
 513     // make sure exception is set
 514     {
 515       Label L;
 516       __ testptr(rax, rax);
 517       __ jcc(Assembler::notEqual, L);
 518       __ stop("StubRoutines::forward exception: no pending exception (2)");
 519       __ bind(L);
 520     }
 521 #endif
 522 
 523     // continue at exception handler (return address removed)
 524     // rax: exception
 525     // rbx: exception handler
 526     // rdx: throwing pc
 527     __ verify_oop(rax);
 528     __ jmp(rbx);
 529 
 530     return start;
 531   }
 532 
 533   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
 534   //
 535   // Arguments :
 536   //    c_rarg0: exchange_value
 537   //    c_rarg0: dest
 538   //
 539   // Result:
 540   //    *dest <- ex, return (orig *dest)
 541   address generate_atomic_xchg() {
 542     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 543     address start = __ pc();
 544 
 545     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
 546     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
 547     __ ret(0);
 548 
 549     return start;
 550   }
 551 
 552   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
 553   //
 554   // Arguments :
 555   //    c_rarg0: exchange_value
 556   //    c_rarg1: dest
 557   //
 558   // Result:
 559   //    *dest <- ex, return (orig *dest)
 560   address generate_atomic_xchg_ptr() {
 561     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
 562     address start = __ pc();
 563 
 564     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 565     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
 566     __ ret(0);
 567 
 568     return start;
 569   }
 570 
 571   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
 572   //                                         jint compare_value)
 573   //
 574   // Arguments :
 575   //    c_rarg0: exchange_value
 576   //    c_rarg1: dest
 577   //    c_rarg2: compare_value
 578   //
 579   // Result:
 580   //    if ( compare_value == *dest ) {
 581   //       *dest = exchange_value
 582   //       return compare_value;
 583   //    else
 584   //       return *dest;
 585   address generate_atomic_cmpxchg() {
 586     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 587     address start = __ pc();
 588 
 589     __ movl(rax, c_rarg2);
 590    if ( os::is_MP() ) __ lock();
 591     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
 592     __ ret(0);
 593 
 594     return start;
 595   }
 596 
 597   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
 598   //                                             volatile jlong* dest,
 599   //                                             jlong compare_value)
 600   // Arguments :
 601   //    c_rarg0: exchange_value
 602   //    c_rarg1: dest
 603   //    c_rarg2: compare_value
 604   //
 605   // Result:
 606   //    if ( compare_value == *dest ) {
 607   //       *dest = exchange_value
 608   //       return compare_value;
 609   //    else
 610   //       return *dest;
 611   address generate_atomic_cmpxchg_long() {
 612     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 613     address start = __ pc();
 614 
 615     __ movq(rax, c_rarg2);
 616    if ( os::is_MP() ) __ lock();
 617     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
 618     __ ret(0);
 619 
 620     return start;
 621   }
 622 
 623   // Support for jint atomic::add(jint add_value, volatile jint* dest)
 624   //
 625   // Arguments :
 626   //    c_rarg0: add_value
 627   //    c_rarg1: dest
 628   //
 629   // Result:
 630   //    *dest += add_value
 631   //    return *dest;
 632   address generate_atomic_add() {
 633     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 634     address start = __ pc();
 635 
 636     __ movl(rax, c_rarg0);
 637    if ( os::is_MP() ) __ lock();
 638     __ xaddl(Address(c_rarg1, 0), c_rarg0);
 639     __ addl(rax, c_rarg0);
 640     __ ret(0);
 641 
 642     return start;
 643   }
 644 
 645   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
 646   //
 647   // Arguments :
 648   //    c_rarg0: add_value
 649   //    c_rarg1: dest
 650   //
 651   // Result:
 652   //    *dest += add_value
 653   //    return *dest;
 654   address generate_atomic_add_ptr() {
 655     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
 656     address start = __ pc();
 657 
 658     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 659    if ( os::is_MP() ) __ lock();
 660     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
 661     __ addptr(rax, c_rarg0);
 662     __ ret(0);
 663 
 664     return start;
 665   }
 666 
 667   // Support for intptr_t OrderAccess::fence()
 668   //
 669   // Arguments :
 670   //
 671   // Result:
 672   address generate_orderaccess_fence() {
 673     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 674     address start = __ pc();
 675     __ membar(Assembler::StoreLoad);
 676     __ ret(0);
 677 
 678     return start;
 679   }
 680 
 681   // Support for intptr_t get_previous_fp()
 682   //
 683   // This routine is used to find the previous frame pointer for the
 684   // caller (current_frame_guess). This is used as part of debugging
 685   // ps() is seemingly lost trying to find frames.
 686   // This code assumes that caller current_frame_guess) has a frame.
 687   address generate_get_previous_fp() {
 688     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 689     const Address old_fp(rbp, 0);
 690     const Address older_fp(rax, 0);
 691     address start = __ pc();
 692 
 693     __ enter();
 694     __ movptr(rax, old_fp); // callers fp
 695     __ movptr(rax, older_fp); // the frame for ps()
 696     __ pop(rbp);
 697     __ ret(0);
 698 
 699     return start;
 700   }
 701 
 702   // Support for intptr_t get_previous_sp()
 703   //
 704   // This routine is used to find the previous stack pointer for the
 705   // caller.
 706   address generate_get_previous_sp() {
 707     StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
 708     address start = __ pc();
 709 
 710     __ movptr(rax, rsp);
 711     __ addptr(rax, 8); // return address is at the top of the stack.
 712     __ ret(0);
 713 
 714     return start;
 715   }
 716 
 717   //----------------------------------------------------------------------------------------------------
 718   // Support for void verify_mxcsr()
 719   //
 720   // This routine is used with -Xcheck:jni to verify that native
 721   // JNI code does not return to Java code without restoring the
 722   // MXCSR register to our expected state.
 723 
 724   address generate_verify_mxcsr() {
 725     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 726     address start = __ pc();
 727 
 728     const Address mxcsr_save(rsp, 0);
 729 
 730     if (CheckJNICalls) {
 731       Label ok_ret;
 732       __ push(rax);
 733       __ subptr(rsp, wordSize);      // allocate a temp location
 734       __ stmxcsr(mxcsr_save);
 735       __ movl(rax, mxcsr_save);
 736       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 737       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
 738       __ jcc(Assembler::equal, ok_ret);
 739 
 740       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 741 
 742       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
 743 
 744       __ bind(ok_ret);
 745       __ addptr(rsp, wordSize);
 746       __ pop(rax);
 747     }
 748 
 749     __ ret(0);
 750 
 751     return start;
 752   }
 753 
 754   address generate_f2i_fixup() {
 755     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 756     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 757 
 758     address start = __ pc();
 759 
 760     Label L;
 761 
 762     __ push(rax);
 763     __ push(c_rarg3);
 764     __ push(c_rarg2);
 765     __ push(c_rarg1);
 766 
 767     __ movl(rax, 0x7f800000);
 768     __ xorl(c_rarg3, c_rarg3);
 769     __ movl(c_rarg2, inout);
 770     __ movl(c_rarg1, c_rarg2);
 771     __ andl(c_rarg1, 0x7fffffff);
 772     __ cmpl(rax, c_rarg1); // NaN? -> 0
 773     __ jcc(Assembler::negative, L);
 774     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 775     __ movl(c_rarg3, 0x80000000);
 776     __ movl(rax, 0x7fffffff);
 777     __ cmovl(Assembler::positive, c_rarg3, rax);
 778 
 779     __ bind(L);
 780     __ movptr(inout, c_rarg3);
 781 
 782     __ pop(c_rarg1);
 783     __ pop(c_rarg2);
 784     __ pop(c_rarg3);
 785     __ pop(rax);
 786 
 787     __ ret(0);
 788 
 789     return start;
 790   }
 791 
 792   address generate_f2l_fixup() {
 793     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 794     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 795     address start = __ pc();
 796 
 797     Label L;
 798 
 799     __ push(rax);
 800     __ push(c_rarg3);
 801     __ push(c_rarg2);
 802     __ push(c_rarg1);
 803 
 804     __ movl(rax, 0x7f800000);
 805     __ xorl(c_rarg3, c_rarg3);
 806     __ movl(c_rarg2, inout);
 807     __ movl(c_rarg1, c_rarg2);
 808     __ andl(c_rarg1, 0x7fffffff);
 809     __ cmpl(rax, c_rarg1); // NaN? -> 0
 810     __ jcc(Assembler::negative, L);
 811     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 812     __ mov64(c_rarg3, 0x8000000000000000);
 813     __ mov64(rax, 0x7fffffffffffffff);
 814     __ cmov(Assembler::positive, c_rarg3, rax);
 815 
 816     __ bind(L);
 817     __ movptr(inout, c_rarg3);
 818 
 819     __ pop(c_rarg1);
 820     __ pop(c_rarg2);
 821     __ pop(c_rarg3);
 822     __ pop(rax);
 823 
 824     __ ret(0);
 825 
 826     return start;
 827   }
 828 
 829   address generate_d2i_fixup() {
 830     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 831     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 832 
 833     address start = __ pc();
 834 
 835     Label L;
 836 
 837     __ push(rax);
 838     __ push(c_rarg3);
 839     __ push(c_rarg2);
 840     __ push(c_rarg1);
 841     __ push(c_rarg0);
 842 
 843     __ movl(rax, 0x7ff00000);
 844     __ movq(c_rarg2, inout);
 845     __ movl(c_rarg3, c_rarg2);
 846     __ mov(c_rarg1, c_rarg2);
 847     __ mov(c_rarg0, c_rarg2);
 848     __ negl(c_rarg3);
 849     __ shrptr(c_rarg1, 0x20);
 850     __ orl(c_rarg3, c_rarg2);
 851     __ andl(c_rarg1, 0x7fffffff);
 852     __ xorl(c_rarg2, c_rarg2);
 853     __ shrl(c_rarg3, 0x1f);
 854     __ orl(c_rarg1, c_rarg3);
 855     __ cmpl(rax, c_rarg1);
 856     __ jcc(Assembler::negative, L); // NaN -> 0
 857     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 858     __ movl(c_rarg2, 0x80000000);
 859     __ movl(rax, 0x7fffffff);
 860     __ cmov(Assembler::positive, c_rarg2, rax);
 861 
 862     __ bind(L);
 863     __ movptr(inout, c_rarg2);
 864 
 865     __ pop(c_rarg0);
 866     __ pop(c_rarg1);
 867     __ pop(c_rarg2);
 868     __ pop(c_rarg3);
 869     __ pop(rax);
 870 
 871     __ ret(0);
 872 
 873     return start;
 874   }
 875 
 876   address generate_d2l_fixup() {
 877     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 878     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 879 
 880     address start = __ pc();
 881 
 882     Label L;
 883 
 884     __ push(rax);
 885     __ push(c_rarg3);
 886     __ push(c_rarg2);
 887     __ push(c_rarg1);
 888     __ push(c_rarg0);
 889 
 890     __ movl(rax, 0x7ff00000);
 891     __ movq(c_rarg2, inout);
 892     __ movl(c_rarg3, c_rarg2);
 893     __ mov(c_rarg1, c_rarg2);
 894     __ mov(c_rarg0, c_rarg2);
 895     __ negl(c_rarg3);
 896     __ shrptr(c_rarg1, 0x20);
 897     __ orl(c_rarg3, c_rarg2);
 898     __ andl(c_rarg1, 0x7fffffff);
 899     __ xorl(c_rarg2, c_rarg2);
 900     __ shrl(c_rarg3, 0x1f);
 901     __ orl(c_rarg1, c_rarg3);
 902     __ cmpl(rax, c_rarg1);
 903     __ jcc(Assembler::negative, L); // NaN -> 0
 904     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 905     __ mov64(c_rarg2, 0x8000000000000000);
 906     __ mov64(rax, 0x7fffffffffffffff);
 907     __ cmovq(Assembler::positive, c_rarg2, rax);
 908 
 909     __ bind(L);
 910     __ movq(inout, c_rarg2);
 911 
 912     __ pop(c_rarg0);
 913     __ pop(c_rarg1);
 914     __ pop(c_rarg2);
 915     __ pop(c_rarg3);
 916     __ pop(rax);
 917 
 918     __ ret(0);
 919 
 920     return start;
 921   }
 922 
 923   address generate_fp_mask(const char *stub_name, int64_t mask) {
 924     __ align(CodeEntryAlignment);
 925     StubCodeMark mark(this, "StubRoutines", stub_name);
 926     address start = __ pc();
 927 
 928     __ emit_data64( mask, relocInfo::none );
 929     __ emit_data64( mask, relocInfo::none );
 930 
 931     return start;
 932   }
 933 
 934   // The following routine generates a subroutine to throw an
 935   // asynchronous UnknownError when an unsafe access gets a fault that
 936   // could not be reasonably prevented by the programmer.  (Example:
 937   // SIGBUS/OBJERR.)
 938   address generate_handler_for_unsafe_access() {
 939     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 940     address start = __ pc();
 941 
 942     __ push(0);                       // hole for return address-to-be
 943     __ pusha();                       // push registers
 944     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 945 
 946     // FIXME: this probably needs alignment logic
 947 
 948     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 949     BLOCK_COMMENT("call handle_unsafe_access");
 950     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 951     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 952 
 953     __ movptr(next_pc, rax);          // stuff next address
 954     __ popa();
 955     __ ret(0);                        // jump to next address
 956 
 957     return start;
 958   }
 959 
 960   // Non-destructive plausibility checks for oops
 961   //
 962   // Arguments:
 963   //    all args on stack!
 964   //
 965   // Stack after saving c_rarg3:
 966   //    [tos + 0]: saved c_rarg3
 967   //    [tos + 1]: saved c_rarg2
 968   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 969   //    [tos + 3]: saved flags
 970   //    [tos + 4]: return address
 971   //  * [tos + 5]: error message (char*)
 972   //  * [tos + 6]: object to verify (oop)
 973   //  * [tos + 7]: saved rax - saved by caller and bashed
 974   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
 975   //  * = popped on exit
 976   address generate_verify_oop() {
 977     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 978     address start = __ pc();
 979 
 980     Label exit, error;
 981 
 982     __ pushf();
 983     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 984 
 985     __ push(r12);
 986 
 987     // save c_rarg2 and c_rarg3
 988     __ push(c_rarg2);
 989     __ push(c_rarg3);
 990 
 991     enum {
 992            // After previous pushes.
 993            oop_to_verify = 6 * wordSize,
 994            saved_rax     = 7 * wordSize,
 995            saved_r10     = 8 * wordSize,
 996 
 997            // Before the call to MacroAssembler::debug(), see below.
 998            return_addr   = 16 * wordSize,
 999            error_msg     = 17 * wordSize
1000     };
1001 
1002     // get object
1003     __ movptr(rax, Address(rsp, oop_to_verify));
1004 
1005     // make sure object is 'reasonable'
1006     __ testptr(rax, rax);
1007     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
1008     // Check if the oop is in the right area of memory
1009     __ movptr(c_rarg2, rax);
1010     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
1011     __ andptr(c_rarg2, c_rarg3);
1012     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
1013     __ cmpptr(c_rarg2, c_rarg3);
1014     __ jcc(Assembler::notZero, error);
1015 
1016     // set r12 to heapbase for load_klass()
1017     __ reinit_heapbase();
1018 
1019     // make sure klass is 'reasonable', which is not zero.
1020     __ load_klass(rax, rax);  // get klass
1021     __ testptr(rax, rax);
1022     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
1023     // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
1024 
1025     // return if everything seems ok
1026     __ bind(exit);
1027     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1028     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1029     __ pop(c_rarg3);                             // restore c_rarg3
1030     __ pop(c_rarg2);                             // restore c_rarg2
1031     __ pop(r12);                                 // restore r12
1032     __ popf();                                   // restore flags
1033     __ ret(4 * wordSize);                        // pop caller saved stuff
1034 
1035     // handle errors
1036     __ bind(error);
1037     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1038     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1039     __ pop(c_rarg3);                             // get saved c_rarg3 back
1040     __ pop(c_rarg2);                             // get saved c_rarg2 back
1041     __ pop(r12);                                 // get saved r12 back
1042     __ popf();                                   // get saved flags off stack --
1043                                                  // will be ignored
1044 
1045     __ pusha();                                  // push registers
1046                                                  // (rip is already
1047                                                  // already pushed)
1048     // debug(char* msg, int64_t pc, int64_t regs[])
1049     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1050     // pushed all the registers, so now the stack looks like:
1051     //     [tos +  0] 16 saved registers
1052     //     [tos + 16] return address
1053     //   * [tos + 17] error message (char*)
1054     //   * [tos + 18] object to verify (oop)
1055     //   * [tos + 19] saved rax - saved by caller and bashed
1056     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1057     //   * = popped on exit
1058 
1059     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1060     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1061     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1062     __ mov(r12, rsp);                               // remember rsp
1063     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1064     __ andptr(rsp, -16);                            // align stack as required by ABI
1065     BLOCK_COMMENT("call MacroAssembler::debug");
1066     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1067     __ mov(rsp, r12);                               // restore rsp
1068     __ popa();                                      // pop registers (includes r12)
1069     __ ret(4 * wordSize);                           // pop caller saved stuff
1070 
1071     return start;
1072   }
1073 
1074   //
1075   // Verify that a register contains clean 32-bits positive value
1076   // (high 32-bits are 0) so it could be used in 64-bits shifts.
1077   //
1078   //  Input:
1079   //    Rint  -  32-bits value
1080   //    Rtmp  -  scratch
1081   //
1082   void assert_clean_int(Register Rint, Register Rtmp) {
1083 #ifdef ASSERT
1084     Label L;
1085     assert_different_registers(Rtmp, Rint);
1086     __ movslq(Rtmp, Rint);
1087     __ cmpq(Rtmp, Rint);
1088     __ jcc(Assembler::equal, L);
1089     __ stop("high 32-bits of int value are not 0");
1090     __ bind(L);
1091 #endif
1092   }
1093 
1094   //  Generate overlap test for array copy stubs
1095   //
1096   //  Input:
1097   //     c_rarg0 - from
1098   //     c_rarg1 - to
1099   //     c_rarg2 - element count
1100   //
1101   //  Output:
1102   //     rax   - &from[element count - 1]
1103   //
1104   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1105     assert(no_overlap_target != NULL, "must be generated");
1106     array_overlap_test(no_overlap_target, NULL, sf);
1107   }
1108   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1109     array_overlap_test(NULL, &L_no_overlap, sf);
1110   }
1111   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1112     const Register from     = c_rarg0;
1113     const Register to       = c_rarg1;
1114     const Register count    = c_rarg2;
1115     const Register end_from = rax;
1116 
1117     __ cmpptr(to, from);
1118     __ lea(end_from, Address(from, count, sf, 0));
1119     if (NOLp == NULL) {
1120       ExternalAddress no_overlap(no_overlap_target);
1121       __ jump_cc(Assembler::belowEqual, no_overlap);
1122       __ cmpptr(to, end_from);
1123       __ jump_cc(Assembler::aboveEqual, no_overlap);
1124     } else {
1125       __ jcc(Assembler::belowEqual, (*NOLp));
1126       __ cmpptr(to, end_from);
1127       __ jcc(Assembler::aboveEqual, (*NOLp));
1128     }
1129   }
1130 
1131   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1132   //
1133   // Outputs:
1134   //    rdi - rcx
1135   //    rsi - rdx
1136   //    rdx - r8
1137   //    rcx - r9
1138   //
1139   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1140   // are non-volatile.  r9 and r10 should not be used by the caller.
1141   //
1142   void setup_arg_regs(int nargs = 3) {
1143     const Register saved_rdi = r9;
1144     const Register saved_rsi = r10;
1145     assert(nargs == 3 || nargs == 4, "else fix");
1146 #ifdef _WIN64
1147     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1148            "unexpected argument registers");
1149     if (nargs >= 4)
1150       __ mov(rax, r9);  // r9 is also saved_rdi
1151     __ movptr(saved_rdi, rdi);
1152     __ movptr(saved_rsi, rsi);
1153     __ mov(rdi, rcx); // c_rarg0
1154     __ mov(rsi, rdx); // c_rarg1
1155     __ mov(rdx, r8);  // c_rarg2
1156     if (nargs >= 4)
1157       __ mov(rcx, rax); // c_rarg3 (via rax)
1158 #else
1159     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1160            "unexpected argument registers");
1161 #endif
1162   }
1163 
1164   void restore_arg_regs() {
1165     const Register saved_rdi = r9;
1166     const Register saved_rsi = r10;
1167 #ifdef _WIN64
1168     __ movptr(rdi, saved_rdi);
1169     __ movptr(rsi, saved_rsi);
1170 #endif
1171   }
1172 
1173   // Generate code for an array write pre barrier
1174   //
1175   //     addr    -  starting address
1176   //     count   -  element count
1177   //     tmp     - scratch register
1178   //
1179   //     Destroy no registers!
1180   //
1181   void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
1182     BarrierSet* bs = Universe::heap()->barrier_set();
1183     switch (bs->kind()) {
1184       case BarrierSet::G1SATBCT:
1185       case BarrierSet::G1SATBCTLogging:
1186         // With G1, don't generate the call if we statically know that the target in uninitialized
1187         if (!dest_uninitialized) {
1188            __ pusha();                      // push registers
1189            if (count == c_rarg0) {
1190              if (addr == c_rarg1) {
1191                // exactly backwards!!
1192                __ xchgptr(c_rarg1, c_rarg0);
1193              } else {
1194                __ movptr(c_rarg1, count);
1195                __ movptr(c_rarg0, addr);
1196              }
1197            } else {
1198              __ movptr(c_rarg0, addr);
1199              __ movptr(c_rarg1, count);
1200            }
1201            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1202            __ popa();
1203         }
1204          break;
1205       case BarrierSet::CardTableModRef:
1206       case BarrierSet::CardTableExtension:
1207       case BarrierSet::ModRef:
1208         break;
1209       default:
1210         ShouldNotReachHere();
1211 
1212     }
1213   }
1214 
1215   //
1216   // Generate code for an array write post barrier
1217   //
1218   //  Input:
1219   //     start    - register containing starting address of destination array
1220   //     end      - register containing ending address of destination array
1221   //     scratch  - scratch register
1222   //
1223   //  The input registers are overwritten.
1224   //  The ending address is inclusive.
1225   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1226     assert_different_registers(start, end, scratch);
1227     BarrierSet* bs = Universe::heap()->barrier_set();
1228     switch (bs->kind()) {
1229       case BarrierSet::G1SATBCT:
1230       case BarrierSet::G1SATBCTLogging:
1231 
1232         {
1233           __ pusha();                      // push registers (overkill)
1234           // must compute element count unless barrier set interface is changed (other platforms supply count)
1235           assert_different_registers(start, end, scratch);
1236           __ lea(scratch, Address(end, BytesPerHeapOop));
1237           __ subptr(scratch, start);               // subtract start to get #bytes
1238           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
1239           __ mov(c_rarg0, start);
1240           __ mov(c_rarg1, scratch);
1241           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1242           __ popa();
1243         }
1244         break;
1245       case BarrierSet::CardTableModRef:
1246       case BarrierSet::CardTableExtension:
1247         {
1248           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1249           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1250 
1251           Label L_loop;
1252 
1253            __ shrptr(start, CardTableModRefBS::card_shift);
1254            __ addptr(end, BytesPerHeapOop);
1255            __ shrptr(end, CardTableModRefBS::card_shift);
1256            __ subptr(end, start); // number of bytes to copy
1257 
1258           intptr_t disp = (intptr_t) ct->byte_map_base;
1259           if (Assembler::is_simm32(disp)) {
1260             Address cardtable(noreg, noreg, Address::no_scale, disp);
1261             __ lea(scratch, cardtable);
1262           } else {
1263             ExternalAddress cardtable((address)disp);
1264             __ lea(scratch, cardtable);
1265           }
1266 
1267           const Register count = end; // 'end' register contains bytes count now
1268           __ addptr(start, scratch);
1269         __ BIND(L_loop);
1270           __ movb(Address(start, count, Address::times_1), 0);
1271           __ decrement(count);
1272           __ jcc(Assembler::greaterEqual, L_loop);
1273         }
1274         break;
1275       default:
1276         ShouldNotReachHere();
1277 
1278     }
1279   }
1280 
1281 
1282   // Copy big chunks forward
1283   //
1284   // Inputs:
1285   //   end_from     - source arrays end address
1286   //   end_to       - destination array end address
1287   //   qword_count  - 64-bits element count, negative
1288   //   to           - scratch
1289   //   L_copy_bytes - entry label
1290   //   L_copy_8_bytes  - exit  label
1291   //
1292   void copy_bytes_forward(Register end_from, Register end_to,
1293                              Register qword_count, Register to,
1294                              Label& L_copy_bytes, Label& L_copy_8_bytes) {
1295     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1296     Label L_loop;
1297     __ align(OptoLoopAlignment);
1298     if (UseUnalignedLoadStores) {
1299       Label L_end;
1300       // Copy 64-bytes per iteration
1301       __ BIND(L_loop);
1302       if (UseAVX >= 2) {
1303         __ vmovdqu(xmm0,Address(end_from, qword_count, Address::times_8, -56));
1304         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1305         __ vmovdqu(xmm1,Address(end_from, qword_count, Address::times_8, -24));
1306         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
1307       } else {
1308         __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
1309         __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1310         __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
1311         __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
1312         __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
1313         __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
1314         __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
1315         __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
1316       }
1317       __ BIND(L_copy_bytes);
1318       __ addptr(qword_count, 8);
1319       __ jcc(Assembler::lessEqual, L_loop);
1320       __ subptr(qword_count, 4);  // sub(8) and add(4)
1321       __ jccb(Assembler::greater, L_end);
1322       // Copy trailing 32 bytes
1323       if (UseAVX >= 2) {
1324         __ vmovdqu(xmm0,Address(end_from, qword_count, Address::times_8, -24));
1325         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1326       } else {
1327         __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1328         __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1329         __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1330         __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1331       }
1332       __ addptr(qword_count, 4);
1333       __ BIND(L_end);
1334     } else {
1335       // Copy 32-bytes per iteration
1336       __ BIND(L_loop);
1337       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1338       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1339       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1340       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1341       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1342       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1343       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1344       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1345 
1346       __ BIND(L_copy_bytes);
1347       __ addptr(qword_count, 4);
1348       __ jcc(Assembler::lessEqual, L_loop);
1349     }
1350     __ subptr(qword_count, 4);
1351     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1352   }
1353 
1354   // Copy big chunks backward
1355   //
1356   // Inputs:
1357   //   from         - source arrays address
1358   //   dest         - destination array address
1359   //   qword_count  - 64-bits element count
1360   //   to           - scratch
1361   //   L_copy_bytes - entry label
1362   //   L_copy_8_bytes  - exit  label
1363   //
1364   void copy_bytes_backward(Register from, Register dest,
1365                               Register qword_count, Register to,
1366                               Label& L_copy_bytes, Label& L_copy_8_bytes) {
1367     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1368     Label L_loop;
1369     __ align(OptoLoopAlignment);
1370     if (UseUnalignedLoadStores) {
1371       Label L_end;
1372       // Copy 64-bytes per iteration
1373       __ BIND(L_loop);
1374       if (UseAVX >= 2) {
1375         __ vmovdqu(xmm0,Address(from, qword_count, Address::times_8, 32));
1376         __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
1377         __ vmovdqu(xmm1,Address(from, qword_count, Address::times_8,  0));
1378         __ vmovdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1379       } else {
1380         __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
1381         __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
1382         __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
1383         __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
1384         __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
1385         __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
1386         __ movdqu(xmm3, Address(from, qword_count, Address::times_8,  0));
1387         __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm3);
1388       }
1389       __ BIND(L_copy_bytes);
1390       __ subptr(qword_count, 8);
1391       __ jcc(Assembler::greaterEqual, L_loop);
1392 
1393       __ addptr(qword_count, 4);  // add(8) and sub(4)
1394       __ jccb(Assembler::less, L_end);
1395       // Copy trailing 32 bytes
1396       if (UseAVX >= 2) {
1397         __ vmovdqu(xmm0,Address(from, qword_count, Address::times_8, 0));
1398         __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
1399       } else {
1400         __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1401         __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1402         __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1403         __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1404       }
1405       __ subptr(qword_count, 4);
1406       __ BIND(L_end);
1407     } else {
1408       // Copy 32-bytes per iteration
1409       __ BIND(L_loop);
1410       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1411       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1412       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1413       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1414       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1415       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1416       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1417       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1418 
1419       __ BIND(L_copy_bytes);
1420       __ subptr(qword_count, 4);
1421       __ jcc(Assembler::greaterEqual, L_loop);
1422     }
1423     __ addptr(qword_count, 4);
1424     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1425   }
1426 
1427 
1428   // Arguments:
1429   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1430   //             ignored
1431   //   name    - stub name string
1432   //
1433   // Inputs:
1434   //   c_rarg0   - source array address
1435   //   c_rarg1   - destination array address
1436   //   c_rarg2   - element count, treated as ssize_t, can be zero
1437   //
1438   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1439   // we let the hardware handle it.  The one to eight bytes within words,
1440   // dwords or qwords that span cache line boundaries will still be loaded
1441   // and stored atomically.
1442   //
1443   // Side Effects:
1444   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1445   //   used by generate_conjoint_byte_copy().
1446   //
1447   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
1448     __ align(CodeEntryAlignment);
1449     StubCodeMark mark(this, "StubRoutines", name);
1450     address start = __ pc();
1451 
1452     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1453     Label L_copy_byte, L_exit;
1454     const Register from        = rdi;  // source array address
1455     const Register to          = rsi;  // destination array address
1456     const Register count       = rdx;  // elements count
1457     const Register byte_count  = rcx;
1458     const Register qword_count = count;
1459     const Register end_from    = from; // source array end address
1460     const Register end_to      = to;   // destination array end address
1461     // End pointers are inclusive, and if count is not zero they point
1462     // to the last unit copied:  end_to[0] := end_from[0]
1463 
1464     __ enter(); // required for proper stackwalking of RuntimeStub frame
1465     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1466 
1467     if (entry != NULL) {
1468       *entry = __ pc();
1469        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1470       BLOCK_COMMENT("Entry:");
1471     }
1472 
1473     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1474                       // r9 and r10 may be used to save non-volatile registers
1475 
1476     // 'from', 'to' and 'count' are now valid
1477     __ movptr(byte_count, count);
1478     __ shrptr(count, 3); // count => qword_count
1479 
1480     // Copy from low to high addresses.  Use 'to' as scratch.
1481     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1482     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1483     __ negptr(qword_count); // make the count negative
1484     __ jmp(L_copy_bytes);
1485 
1486     // Copy trailing qwords
1487   __ BIND(L_copy_8_bytes);
1488     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1489     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1490     __ increment(qword_count);
1491     __ jcc(Assembler::notZero, L_copy_8_bytes);
1492 
1493     // Check for and copy trailing dword
1494   __ BIND(L_copy_4_bytes);
1495     __ testl(byte_count, 4);
1496     __ jccb(Assembler::zero, L_copy_2_bytes);
1497     __ movl(rax, Address(end_from, 8));
1498     __ movl(Address(end_to, 8), rax);
1499 
1500     __ addptr(end_from, 4);
1501     __ addptr(end_to, 4);
1502 
1503     // Check for and copy trailing word
1504   __ BIND(L_copy_2_bytes);
1505     __ testl(byte_count, 2);
1506     __ jccb(Assembler::zero, L_copy_byte);
1507     __ movw(rax, Address(end_from, 8));
1508     __ movw(Address(end_to, 8), rax);
1509 
1510     __ addptr(end_from, 2);
1511     __ addptr(end_to, 2);
1512 
1513     // Check for and copy trailing byte
1514   __ BIND(L_copy_byte);
1515     __ testl(byte_count, 1);
1516     __ jccb(Assembler::zero, L_exit);
1517     __ movb(rax, Address(end_from, 8));
1518     __ movb(Address(end_to, 8), rax);
1519 
1520   __ BIND(L_exit);
1521     restore_arg_regs();
1522     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1523     __ xorptr(rax, rax); // return 0
1524     __ leave(); // required for proper stackwalking of RuntimeStub frame
1525     __ ret(0);
1526 
1527     // Copy in multi-bytes chunks
1528     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1529     __ jmp(L_copy_4_bytes);
1530 
1531     return start;
1532   }
1533 
1534   // Arguments:
1535   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1536   //             ignored
1537   //   name    - stub name string
1538   //
1539   // Inputs:
1540   //   c_rarg0   - source array address
1541   //   c_rarg1   - destination array address
1542   //   c_rarg2   - element count, treated as ssize_t, can be zero
1543   //
1544   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1545   // we let the hardware handle it.  The one to eight bytes within words,
1546   // dwords or qwords that span cache line boundaries will still be loaded
1547   // and stored atomically.
1548   //
1549   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1550                                       address* entry, const char *name) {
1551     __ align(CodeEntryAlignment);
1552     StubCodeMark mark(this, "StubRoutines", name);
1553     address start = __ pc();
1554 
1555     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1556     const Register from        = rdi;  // source array address
1557     const Register to          = rsi;  // destination array address
1558     const Register count       = rdx;  // elements count
1559     const Register byte_count  = rcx;
1560     const Register qword_count = count;
1561 
1562     __ enter(); // required for proper stackwalking of RuntimeStub frame
1563     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1564 
1565     if (entry != NULL) {
1566       *entry = __ pc();
1567       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1568       BLOCK_COMMENT("Entry:");
1569     }
1570 
1571     array_overlap_test(nooverlap_target, Address::times_1);
1572     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1573                       // r9 and r10 may be used to save non-volatile registers
1574 
1575     // 'from', 'to' and 'count' are now valid
1576     __ movptr(byte_count, count);
1577     __ shrptr(count, 3);   // count => qword_count
1578 
1579     // Copy from high to low addresses.
1580 
1581     // Check for and copy trailing byte
1582     __ testl(byte_count, 1);
1583     __ jcc(Assembler::zero, L_copy_2_bytes);
1584     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1585     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1586     __ decrement(byte_count); // Adjust for possible trailing word
1587 
1588     // Check for and copy trailing word
1589   __ BIND(L_copy_2_bytes);
1590     __ testl(byte_count, 2);
1591     __ jcc(Assembler::zero, L_copy_4_bytes);
1592     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1593     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1594 
1595     // Check for and copy trailing dword
1596   __ BIND(L_copy_4_bytes);
1597     __ testl(byte_count, 4);
1598     __ jcc(Assembler::zero, L_copy_bytes);
1599     __ movl(rax, Address(from, qword_count, Address::times_8));
1600     __ movl(Address(to, qword_count, Address::times_8), rax);
1601     __ jmp(L_copy_bytes);
1602 
1603     // Copy trailing qwords
1604   __ BIND(L_copy_8_bytes);
1605     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1606     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1607     __ decrement(qword_count);
1608     __ jcc(Assembler::notZero, L_copy_8_bytes);
1609 
1610     restore_arg_regs();
1611     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1612     __ xorptr(rax, rax); // return 0
1613     __ leave(); // required for proper stackwalking of RuntimeStub frame
1614     __ ret(0);
1615 
1616     // Copy in multi-bytes chunks
1617     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1618 
1619     restore_arg_regs();
1620     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1621     __ xorptr(rax, rax); // return 0
1622     __ leave(); // required for proper stackwalking of RuntimeStub frame
1623     __ ret(0);
1624 
1625     return start;
1626   }
1627 
1628   // Arguments:
1629   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1630   //             ignored
1631   //   name    - stub name string
1632   //
1633   // Inputs:
1634   //   c_rarg0   - source array address
1635   //   c_rarg1   - destination array address
1636   //   c_rarg2   - element count, treated as ssize_t, can be zero
1637   //
1638   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1639   // let the hardware handle it.  The two or four words within dwords
1640   // or qwords that span cache line boundaries will still be loaded
1641   // and stored atomically.
1642   //
1643   // Side Effects:
1644   //   disjoint_short_copy_entry is set to the no-overlap entry point
1645   //   used by generate_conjoint_short_copy().
1646   //
1647   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
1648     __ align(CodeEntryAlignment);
1649     StubCodeMark mark(this, "StubRoutines", name);
1650     address start = __ pc();
1651 
1652     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1653     const Register from        = rdi;  // source array address
1654     const Register to          = rsi;  // destination array address
1655     const Register count       = rdx;  // elements count
1656     const Register word_count  = rcx;
1657     const Register qword_count = count;
1658     const Register end_from    = from; // source array end address
1659     const Register end_to      = to;   // destination array end address
1660     // End pointers are inclusive, and if count is not zero they point
1661     // to the last unit copied:  end_to[0] := end_from[0]
1662 
1663     __ enter(); // required for proper stackwalking of RuntimeStub frame
1664     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1665 
1666     if (entry != NULL) {
1667       *entry = __ pc();
1668       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1669       BLOCK_COMMENT("Entry:");
1670     }
1671 
1672     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1673                       // r9 and r10 may be used to save non-volatile registers
1674 
1675     // 'from', 'to' and 'count' are now valid
1676     __ movptr(word_count, count);
1677     __ shrptr(count, 2); // count => qword_count
1678 
1679     // Copy from low to high addresses.  Use 'to' as scratch.
1680     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1681     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1682     __ negptr(qword_count);
1683     __ jmp(L_copy_bytes);
1684 
1685     // Copy trailing qwords
1686   __ BIND(L_copy_8_bytes);
1687     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1688     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1689     __ increment(qword_count);
1690     __ jcc(Assembler::notZero, L_copy_8_bytes);
1691 
1692     // Original 'dest' is trashed, so we can't use it as a
1693     // base register for a possible trailing word copy
1694 
1695     // Check for and copy trailing dword
1696   __ BIND(L_copy_4_bytes);
1697     __ testl(word_count, 2);
1698     __ jccb(Assembler::zero, L_copy_2_bytes);
1699     __ movl(rax, Address(end_from, 8));
1700     __ movl(Address(end_to, 8), rax);
1701 
1702     __ addptr(end_from, 4);
1703     __ addptr(end_to, 4);
1704 
1705     // Check for and copy trailing word
1706   __ BIND(L_copy_2_bytes);
1707     __ testl(word_count, 1);
1708     __ jccb(Assembler::zero, L_exit);
1709     __ movw(rax, Address(end_from, 8));
1710     __ movw(Address(end_to, 8), rax);
1711 
1712   __ BIND(L_exit);
1713     restore_arg_regs();
1714     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1715     __ xorptr(rax, rax); // return 0
1716     __ leave(); // required for proper stackwalking of RuntimeStub frame
1717     __ ret(0);
1718 
1719     // Copy in multi-bytes chunks
1720     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1721     __ jmp(L_copy_4_bytes);
1722 
1723     return start;
1724   }
1725 
1726   address generate_fill(BasicType t, bool aligned, const char *name) {
1727     __ align(CodeEntryAlignment);
1728     StubCodeMark mark(this, "StubRoutines", name);
1729     address start = __ pc();
1730 
1731     BLOCK_COMMENT("Entry:");
1732 
1733     const Register to       = c_rarg0;  // source array address
1734     const Register value    = c_rarg1;  // value
1735     const Register count    = c_rarg2;  // elements count
1736 
1737     __ enter(); // required for proper stackwalking of RuntimeStub frame
1738 
1739     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1740 
1741     __ leave(); // required for proper stackwalking of RuntimeStub frame
1742     __ ret(0);
1743     return start;
1744   }
1745 
1746   // Arguments:
1747   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1748   //             ignored
1749   //   name    - stub name string
1750   //
1751   // Inputs:
1752   //   c_rarg0   - source array address
1753   //   c_rarg1   - destination array address
1754   //   c_rarg2   - element count, treated as ssize_t, can be zero
1755   //
1756   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1757   // let the hardware handle it.  The two or four words within dwords
1758   // or qwords that span cache line boundaries will still be loaded
1759   // and stored atomically.
1760   //
1761   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1762                                        address *entry, const char *name) {
1763     __ align(CodeEntryAlignment);
1764     StubCodeMark mark(this, "StubRoutines", name);
1765     address start = __ pc();
1766 
1767     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
1768     const Register from        = rdi;  // source array address
1769     const Register to          = rsi;  // destination array address
1770     const Register count       = rdx;  // elements count
1771     const Register word_count  = rcx;
1772     const Register qword_count = count;
1773 
1774     __ enter(); // required for proper stackwalking of RuntimeStub frame
1775     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1776 
1777     if (entry != NULL) {
1778       *entry = __ pc();
1779       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1780       BLOCK_COMMENT("Entry:");
1781     }
1782 
1783     array_overlap_test(nooverlap_target, Address::times_2);
1784     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1785                       // r9 and r10 may be used to save non-volatile registers
1786 
1787     // 'from', 'to' and 'count' are now valid
1788     __ movptr(word_count, count);
1789     __ shrptr(count, 2); // count => qword_count
1790 
1791     // Copy from high to low addresses.  Use 'to' as scratch.
1792 
1793     // Check for and copy trailing word
1794     __ testl(word_count, 1);
1795     __ jccb(Assembler::zero, L_copy_4_bytes);
1796     __ movw(rax, Address(from, word_count, Address::times_2, -2));
1797     __ movw(Address(to, word_count, Address::times_2, -2), rax);
1798 
1799     // Check for and copy trailing dword
1800   __ BIND(L_copy_4_bytes);
1801     __ testl(word_count, 2);
1802     __ jcc(Assembler::zero, L_copy_bytes);
1803     __ movl(rax, Address(from, qword_count, Address::times_8));
1804     __ movl(Address(to, qword_count, Address::times_8), rax);
1805     __ jmp(L_copy_bytes);
1806 
1807     // Copy trailing qwords
1808   __ BIND(L_copy_8_bytes);
1809     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1810     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1811     __ decrement(qword_count);
1812     __ jcc(Assembler::notZero, L_copy_8_bytes);
1813 
1814     restore_arg_regs();
1815     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1816     __ xorptr(rax, rax); // return 0
1817     __ leave(); // required for proper stackwalking of RuntimeStub frame
1818     __ ret(0);
1819 
1820     // Copy in multi-bytes chunks
1821     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1822 
1823     restore_arg_regs();
1824     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1825     __ xorptr(rax, rax); // return 0
1826     __ leave(); // required for proper stackwalking of RuntimeStub frame
1827     __ ret(0);
1828 
1829     return start;
1830   }
1831 
1832   // Arguments:
1833   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1834   //             ignored
1835   //   is_oop  - true => oop array, so generate store check code
1836   //   name    - stub name string
1837   //
1838   // Inputs:
1839   //   c_rarg0   - source array address
1840   //   c_rarg1   - destination array address
1841   //   c_rarg2   - element count, treated as ssize_t, can be zero
1842   //
1843   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1844   // the hardware handle it.  The two dwords within qwords that span
1845   // cache line boundaries will still be loaded and stored atomicly.
1846   //
1847   // Side Effects:
1848   //   disjoint_int_copy_entry is set to the no-overlap entry point
1849   //   used by generate_conjoint_int_oop_copy().
1850   //
1851   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
1852                                          const char *name, bool dest_uninitialized = false) {
1853     __ align(CodeEntryAlignment);
1854     StubCodeMark mark(this, "StubRoutines", name);
1855     address start = __ pc();
1856 
1857     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1858     const Register from        = rdi;  // source array address
1859     const Register to          = rsi;  // destination array address
1860     const Register count       = rdx;  // elements count
1861     const Register dword_count = rcx;
1862     const Register qword_count = count;
1863     const Register end_from    = from; // source array end address
1864     const Register end_to      = to;   // destination array end address
1865     const Register saved_to    = r11;  // saved destination array address
1866     // End pointers are inclusive, and if count is not zero they point
1867     // to the last unit copied:  end_to[0] := end_from[0]
1868 
1869     __ enter(); // required for proper stackwalking of RuntimeStub frame
1870     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1871 
1872     if (entry != NULL) {
1873       *entry = __ pc();
1874       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1875       BLOCK_COMMENT("Entry:");
1876     }
1877 
1878     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1879                       // r9 and r10 may be used to save non-volatile registers
1880     if (is_oop) {
1881       __ movq(saved_to, to);
1882       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1883     }
1884 
1885     // 'from', 'to' and 'count' are now valid
1886     __ movptr(dword_count, count);
1887     __ shrptr(count, 1); // count => qword_count
1888 
1889     // Copy from low to high addresses.  Use 'to' as scratch.
1890     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1891     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1892     __ negptr(qword_count);
1893     __ jmp(L_copy_bytes);
1894 
1895     // Copy trailing qwords
1896   __ BIND(L_copy_8_bytes);
1897     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1898     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1899     __ increment(qword_count);
1900     __ jcc(Assembler::notZero, L_copy_8_bytes);
1901 
1902     // Check for and copy trailing dword
1903   __ BIND(L_copy_4_bytes);
1904     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1905     __ jccb(Assembler::zero, L_exit);
1906     __ movl(rax, Address(end_from, 8));
1907     __ movl(Address(end_to, 8), rax);
1908 
1909   __ BIND(L_exit);
1910     if (is_oop) {
1911       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1912       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1913     }
1914     restore_arg_regs();
1915     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1916     __ xorptr(rax, rax); // return 0
1917     __ leave(); // required for proper stackwalking of RuntimeStub frame
1918     __ ret(0);
1919 
1920     // Copy in multi-bytes chunks
1921     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1922     __ jmp(L_copy_4_bytes);
1923 
1924     return start;
1925   }
1926 
1927   // Arguments:
1928   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1929   //             ignored
1930   //   is_oop  - true => oop array, so generate store check code
1931   //   name    - stub name string
1932   //
1933   // Inputs:
1934   //   c_rarg0   - source array address
1935   //   c_rarg1   - destination array address
1936   //   c_rarg2   - element count, treated as ssize_t, can be zero
1937   //
1938   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1939   // the hardware handle it.  The two dwords within qwords that span
1940   // cache line boundaries will still be loaded and stored atomicly.
1941   //
1942   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
1943                                          address *entry, const char *name,
1944                                          bool dest_uninitialized = false) {
1945     __ align(CodeEntryAlignment);
1946     StubCodeMark mark(this, "StubRoutines", name);
1947     address start = __ pc();
1948 
1949     Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1950     const Register from        = rdi;  // source array address
1951     const Register to          = rsi;  // destination array address
1952     const Register count       = rdx;  // elements count
1953     const Register dword_count = rcx;
1954     const Register qword_count = count;
1955 
1956     __ enter(); // required for proper stackwalking of RuntimeStub frame
1957     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1958 
1959     if (entry != NULL) {
1960       *entry = __ pc();
1961        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1962       BLOCK_COMMENT("Entry:");
1963     }
1964 
1965     array_overlap_test(nooverlap_target, Address::times_4);
1966     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1967                       // r9 and r10 may be used to save non-volatile registers
1968 
1969     if (is_oop) {
1970       // no registers are destroyed by this call
1971       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1972     }
1973 
1974     assert_clean_int(count, rax); // Make sure 'count' is clean int.
1975     // 'from', 'to' and 'count' are now valid
1976     __ movptr(dword_count, count);
1977     __ shrptr(count, 1); // count => qword_count
1978 
1979     // Copy from high to low addresses.  Use 'to' as scratch.
1980 
1981     // Check for and copy trailing dword
1982     __ testl(dword_count, 1);
1983     __ jcc(Assembler::zero, L_copy_bytes);
1984     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1985     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1986     __ jmp(L_copy_bytes);
1987 
1988     // Copy trailing qwords
1989   __ BIND(L_copy_8_bytes);
1990     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1991     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1992     __ decrement(qword_count);
1993     __ jcc(Assembler::notZero, L_copy_8_bytes);
1994 
1995     if (is_oop) {
1996       __ jmp(L_exit);
1997     }
1998     restore_arg_regs();
1999     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
2000     __ xorptr(rax, rax); // return 0
2001     __ leave(); // required for proper stackwalking of RuntimeStub frame
2002     __ ret(0);
2003 
2004     // Copy in multi-bytes chunks
2005     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2006 
2007    __ bind(L_exit);
2008      if (is_oop) {
2009        Register end_to = rdx;
2010        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
2011        gen_write_ref_array_post_barrier(to, end_to, rax);
2012      }
2013     restore_arg_regs();
2014     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
2015     __ xorptr(rax, rax); // return 0
2016     __ leave(); // required for proper stackwalking of RuntimeStub frame
2017     __ ret(0);
2018 
2019     return start;
2020   }
2021 
2022   // Arguments:
2023   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2024   //             ignored
2025   //   is_oop  - true => oop array, so generate store check code
2026   //   name    - stub name string
2027   //
2028   // Inputs:
2029   //   c_rarg0   - source array address
2030   //   c_rarg1   - destination array address
2031   //   c_rarg2   - element count, treated as ssize_t, can be zero
2032   //
2033  // Side Effects:
2034   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
2035   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
2036   //
2037   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
2038                                           const char *name, bool dest_uninitialized = false) {
2039     __ align(CodeEntryAlignment);
2040     StubCodeMark mark(this, "StubRoutines", name);
2041     address start = __ pc();
2042 
2043     Label L_copy_bytes, L_copy_8_bytes, L_exit;
2044     const Register from        = rdi;  // source array address
2045     const Register to          = rsi;  // destination array address
2046     const Register qword_count = rdx;  // elements count
2047     const Register end_from    = from; // source array end address
2048     const Register end_to      = rcx;  // destination array end address
2049     const Register saved_to    = to;
2050     // End pointers are inclusive, and if count is not zero they point
2051     // to the last unit copied:  end_to[0] := end_from[0]
2052 
2053     __ enter(); // required for proper stackwalking of RuntimeStub frame
2054     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
2055     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2056 
2057     if (entry != NULL) {
2058       *entry = __ pc();
2059       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2060       BLOCK_COMMENT("Entry:");
2061     }
2062 
2063     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2064                       // r9 and r10 may be used to save non-volatile registers
2065     // 'from', 'to' and 'qword_count' are now valid
2066     if (is_oop) {
2067       // no registers are destroyed by this call
2068       gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
2069     }
2070 
2071     // Copy from low to high addresses.  Use 'to' as scratch.
2072     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
2073     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
2074     __ negptr(qword_count);
2075     __ jmp(L_copy_bytes);
2076 
2077     // Copy trailing qwords
2078   __ BIND(L_copy_8_bytes);
2079     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
2080     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
2081     __ increment(qword_count);
2082     __ jcc(Assembler::notZero, L_copy_8_bytes);
2083 
2084     if (is_oop) {
2085       __ jmp(L_exit);
2086     } else {
2087       restore_arg_regs();
2088       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2089       __ xorptr(rax, rax); // return 0
2090       __ leave(); // required for proper stackwalking of RuntimeStub frame
2091       __ ret(0);
2092     }
2093 
2094     // Copy in multi-bytes chunks
2095     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2096 
2097     if (is_oop) {
2098     __ BIND(L_exit);
2099       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
2100     }
2101     restore_arg_regs();
2102     if (is_oop) {
2103       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2104     } else {
2105       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2106     }
2107     __ xorptr(rax, rax); // return 0
2108     __ leave(); // required for proper stackwalking of RuntimeStub frame
2109     __ ret(0);
2110 
2111     return start;
2112   }
2113 
2114   // Arguments:
2115   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2116   //             ignored
2117   //   is_oop  - true => oop array, so generate store check code
2118   //   name    - stub name string
2119   //
2120   // Inputs:
2121   //   c_rarg0   - source array address
2122   //   c_rarg1   - destination array address
2123   //   c_rarg2   - element count, treated as ssize_t, can be zero
2124   //
2125   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
2126                                           address nooverlap_target, address *entry,
2127                                           const char *name, bool dest_uninitialized = false) {
2128     __ align(CodeEntryAlignment);
2129     StubCodeMark mark(this, "StubRoutines", name);
2130     address start = __ pc();
2131 
2132     Label L_copy_bytes, L_copy_8_bytes, L_exit;
2133     const Register from        = rdi;  // source array address
2134     const Register to          = rsi;  // destination array address
2135     const Register qword_count = rdx;  // elements count
2136     const Register saved_count = rcx;
2137 
2138     __ enter(); // required for proper stackwalking of RuntimeStub frame
2139     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2140 
2141     if (entry != NULL) {
2142       *entry = __ pc();
2143       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2144       BLOCK_COMMENT("Entry:");
2145     }
2146 
2147     array_overlap_test(nooverlap_target, Address::times_8);
2148     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2149                       // r9 and r10 may be used to save non-volatile registers
2150     // 'from', 'to' and 'qword_count' are now valid
2151     if (is_oop) {
2152       // Save to and count for store barrier
2153       __ movptr(saved_count, qword_count);
2154       // No registers are destroyed by this call
2155       gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
2156     }
2157 
2158     __ jmp(L_copy_bytes);
2159 
2160     // Copy trailing qwords
2161   __ BIND(L_copy_8_bytes);
2162     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2163     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2164     __ decrement(qword_count);
2165     __ jcc(Assembler::notZero, L_copy_8_bytes);
2166 
2167     if (is_oop) {
2168       __ jmp(L_exit);
2169     } else {
2170       restore_arg_regs();
2171       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2172       __ xorptr(rax, rax); // return 0
2173       __ leave(); // required for proper stackwalking of RuntimeStub frame
2174       __ ret(0);
2175     }
2176 
2177     // Copy in multi-bytes chunks
2178     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2179 
2180     if (is_oop) {
2181     __ BIND(L_exit);
2182       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
2183       gen_write_ref_array_post_barrier(to, rcx, rax);
2184     }
2185     restore_arg_regs();
2186     if (is_oop) {
2187       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2188     } else {
2189       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2190     }
2191     __ xorptr(rax, rax); // return 0
2192     __ leave(); // required for proper stackwalking of RuntimeStub frame
2193     __ ret(0);
2194 
2195     return start;
2196   }
2197 
2198 
2199   // Helper for generating a dynamic type check.
2200   // Smashes no registers.
2201   void generate_type_check(Register sub_klass,
2202                            Register super_check_offset,
2203                            Register super_klass,
2204                            Label& L_success) {
2205     assert_different_registers(sub_klass, super_check_offset, super_klass);
2206 
2207     BLOCK_COMMENT("type_check:");
2208 
2209     Label L_miss;
2210 
2211     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2212                                      super_check_offset);
2213     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2214 
2215     // Fall through on failure!
2216     __ BIND(L_miss);
2217   }
2218 
2219   //
2220   //  Generate checkcasting array copy stub
2221   //
2222   //  Input:
2223   //    c_rarg0   - source array address
2224   //    c_rarg1   - destination array address
2225   //    c_rarg2   - element count, treated as ssize_t, can be zero
2226   //    c_rarg3   - size_t ckoff (super_check_offset)
2227   // not Win64
2228   //    c_rarg4   - oop ckval (super_klass)
2229   // Win64
2230   //    rsp+40    - oop ckval (super_klass)
2231   //
2232   //  Output:
2233   //    rax ==  0  -  success
2234   //    rax == -1^K - failure, where K is partial transfer count
2235   //
2236   address generate_checkcast_copy(const char *name, address *entry,
2237                                   bool dest_uninitialized = false) {
2238 
2239     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2240 
2241     // Input registers (after setup_arg_regs)
2242     const Register from        = rdi;   // source array address
2243     const Register to          = rsi;   // destination array address
2244     const Register length      = rdx;   // elements count
2245     const Register ckoff       = rcx;   // super_check_offset
2246     const Register ckval       = r8;    // super_klass
2247 
2248     // Registers used as temps (r13, r14 are save-on-entry)
2249     const Register end_from    = from;  // source array end address
2250     const Register end_to      = r13;   // destination array end address
2251     const Register count       = rdx;   // -(count_remaining)
2252     const Register r14_length  = r14;   // saved copy of length
2253     // End pointers are inclusive, and if length is not zero they point
2254     // to the last unit copied:  end_to[0] := end_from[0]
2255 
2256     const Register rax_oop    = rax;    // actual oop copied
2257     const Register r11_klass  = r11;    // oop._klass
2258 
2259     //---------------------------------------------------------------
2260     // Assembler stub will be used for this call to arraycopy
2261     // if the two arrays are subtypes of Object[] but the
2262     // destination array type is not equal to or a supertype
2263     // of the source type.  Each element must be separately
2264     // checked.
2265 
2266     __ align(CodeEntryAlignment);
2267     StubCodeMark mark(this, "StubRoutines", name);
2268     address start = __ pc();
2269 
2270     __ enter(); // required for proper stackwalking of RuntimeStub frame
2271 
2272 #ifdef ASSERT
2273     // caller guarantees that the arrays really are different
2274     // otherwise, we would have to make conjoint checks
2275     { Label L;
2276       array_overlap_test(L, TIMES_OOP);
2277       __ stop("checkcast_copy within a single array");
2278       __ bind(L);
2279     }
2280 #endif //ASSERT
2281 
2282     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2283                        // ckoff => rcx, ckval => r8
2284                        // r9 and r10 may be used to save non-volatile registers
2285 #ifdef _WIN64
2286     // last argument (#4) is on stack on Win64
2287     __ movptr(ckval, Address(rsp, 6 * wordSize));
2288 #endif
2289 
2290     // Caller of this entry point must set up the argument registers.
2291     if (entry != NULL) {
2292       *entry = __ pc();
2293       BLOCK_COMMENT("Entry:");
2294     }
2295 
2296     // allocate spill slots for r13, r14
2297     enum {
2298       saved_r13_offset,
2299       saved_r14_offset,
2300       saved_rbp_offset
2301     };
2302     __ subptr(rsp, saved_rbp_offset * wordSize);
2303     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2304     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2305 
2306     // check that int operands are properly extended to size_t
2307     assert_clean_int(length, rax);
2308     assert_clean_int(ckoff, rax);
2309 
2310 #ifdef ASSERT
2311     BLOCK_COMMENT("assert consistent ckoff/ckval");
2312     // The ckoff and ckval must be mutually consistent,
2313     // even though caller generates both.
2314     { Label L;
2315       int sco_offset = in_bytes(Klass::super_check_offset_offset());
2316       __ cmpl(ckoff, Address(ckval, sco_offset));
2317       __ jcc(Assembler::equal, L);
2318       __ stop("super_check_offset inconsistent");
2319       __ bind(L);
2320     }
2321 #endif //ASSERT
2322 
2323     // Loop-invariant addresses.  They are exclusive end pointers.
2324     Address end_from_addr(from, length, TIMES_OOP, 0);
2325     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2326     // Loop-variant addresses.  They assume post-incremented count < 0.
2327     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2328     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2329 
2330     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
2331 
2332     // Copy from low to high addresses, indexed from the end of each array.
2333     __ lea(end_from, end_from_addr);
2334     __ lea(end_to,   end_to_addr);
2335     __ movptr(r14_length, length);        // save a copy of the length
2336     assert(length == count, "");          // else fix next line:
2337     __ negptr(count);                     // negate and test the length
2338     __ jcc(Assembler::notZero, L_load_element);
2339 
2340     // Empty array:  Nothing to do.
2341     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2342     __ jmp(L_done);
2343 
2344     // ======== begin loop ========
2345     // (Loop is rotated; its entry is L_load_element.)
2346     // Loop control:
2347     //   for (count = -count; count != 0; count++)
2348     // Base pointers src, dst are biased by 8*(count-1),to last element.
2349     __ align(OptoLoopAlignment);
2350 
2351     __ BIND(L_store_element);
2352     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2353     __ increment(count);               // increment the count toward zero
2354     __ jcc(Assembler::zero, L_do_card_marks);
2355 
2356     // ======== loop entry is here ========
2357     __ BIND(L_load_element);
2358     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2359     __ testptr(rax_oop, rax_oop);
2360     __ jcc(Assembler::zero, L_store_element);
2361 
2362     __ load_klass(r11_klass, rax_oop);// query the object klass
2363     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2364     // ======== end loop ========
2365 
2366     // It was a real error; we must depend on the caller to finish the job.
2367     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2368     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2369     // and report their number to the caller.
2370     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2371     __ lea(end_to, to_element_addr);
2372     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
2373     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2374     __ movptr(rax, r14_length);           // original oops
2375     __ addptr(rax, count);                // K = (original - remaining) oops
2376     __ notptr(rax);                       // report (-1^K) to caller
2377     __ jmp(L_done);
2378 
2379     // Come here on success only.
2380     __ BIND(L_do_card_marks);
2381     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
2382     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2383     __ xorptr(rax, rax);                  // return 0 on success
2384 
2385     // Common exit point (success or failure).
2386     __ BIND(L_done);
2387     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2388     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2389     restore_arg_regs();
2390     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
2391     __ leave(); // required for proper stackwalking of RuntimeStub frame
2392     __ ret(0);
2393 
2394     return start;
2395   }
2396 
2397   //
2398   //  Generate 'unsafe' array copy stub
2399   //  Though just as safe as the other stubs, it takes an unscaled
2400   //  size_t argument instead of an element count.
2401   //
2402   //  Input:
2403   //    c_rarg0   - source array address
2404   //    c_rarg1   - destination array address
2405   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2406   //
2407   // Examines the alignment of the operands and dispatches
2408   // to a long, int, short, or byte copy loop.
2409   //
2410   address generate_unsafe_copy(const char *name,
2411                                address byte_copy_entry, address short_copy_entry,
2412                                address int_copy_entry, address long_copy_entry) {
2413 
2414     Label L_long_aligned, L_int_aligned, L_short_aligned;
2415 
2416     // Input registers (before setup_arg_regs)
2417     const Register from        = c_rarg0;  // source array address
2418     const Register to          = c_rarg1;  // destination array address
2419     const Register size        = c_rarg2;  // byte count (size_t)
2420 
2421     // Register used as a temp
2422     const Register bits        = rax;      // test copy of low bits
2423 
2424     __ align(CodeEntryAlignment);
2425     StubCodeMark mark(this, "StubRoutines", name);
2426     address start = __ pc();
2427 
2428     __ enter(); // required for proper stackwalking of RuntimeStub frame
2429 
2430     // bump this on entry, not on exit:
2431     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2432 
2433     __ mov(bits, from);
2434     __ orptr(bits, to);
2435     __ orptr(bits, size);
2436 
2437     __ testb(bits, BytesPerLong-1);
2438     __ jccb(Assembler::zero, L_long_aligned);
2439 
2440     __ testb(bits, BytesPerInt-1);
2441     __ jccb(Assembler::zero, L_int_aligned);
2442 
2443     __ testb(bits, BytesPerShort-1);
2444     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2445 
2446     __ BIND(L_short_aligned);
2447     __ shrptr(size, LogBytesPerShort); // size => short_count
2448     __ jump(RuntimeAddress(short_copy_entry));
2449 
2450     __ BIND(L_int_aligned);
2451     __ shrptr(size, LogBytesPerInt); // size => int_count
2452     __ jump(RuntimeAddress(int_copy_entry));
2453 
2454     __ BIND(L_long_aligned);
2455     __ shrptr(size, LogBytesPerLong); // size => qword_count
2456     __ jump(RuntimeAddress(long_copy_entry));
2457 
2458     return start;
2459   }
2460 
2461   // Perform range checks on the proposed arraycopy.
2462   // Kills temp, but nothing else.
2463   // Also, clean the sign bits of src_pos and dst_pos.
2464   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2465                               Register src_pos, // source position (c_rarg1)
2466                               Register dst,     // destination array oo (c_rarg2)
2467                               Register dst_pos, // destination position (c_rarg3)
2468                               Register length,
2469                               Register temp,
2470                               Label& L_failed) {
2471     BLOCK_COMMENT("arraycopy_range_checks:");
2472 
2473     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2474     __ movl(temp, length);
2475     __ addl(temp, src_pos);             // src_pos + length
2476     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2477     __ jcc(Assembler::above, L_failed);
2478 
2479     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2480     __ movl(temp, length);
2481     __ addl(temp, dst_pos);             // dst_pos + length
2482     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2483     __ jcc(Assembler::above, L_failed);
2484 
2485     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2486     // Move with sign extension can be used since they are positive.
2487     __ movslq(src_pos, src_pos);
2488     __ movslq(dst_pos, dst_pos);
2489 
2490     BLOCK_COMMENT("arraycopy_range_checks done");
2491   }
2492 
2493   //
2494   //  Generate generic array copy stubs
2495   //
2496   //  Input:
2497   //    c_rarg0    -  src oop
2498   //    c_rarg1    -  src_pos (32-bits)
2499   //    c_rarg2    -  dst oop
2500   //    c_rarg3    -  dst_pos (32-bits)
2501   // not Win64
2502   //    c_rarg4    -  element count (32-bits)
2503   // Win64
2504   //    rsp+40     -  element count (32-bits)
2505   //
2506   //  Output:
2507   //    rax ==  0  -  success
2508   //    rax == -1^K - failure, where K is partial transfer count
2509   //
2510   address generate_generic_copy(const char *name,
2511                                 address byte_copy_entry, address short_copy_entry,
2512                                 address int_copy_entry, address oop_copy_entry,
2513                                 address long_copy_entry, address checkcast_copy_entry) {
2514 
2515     Label L_failed, L_failed_0, L_objArray;
2516     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2517 
2518     // Input registers
2519     const Register src        = c_rarg0;  // source array oop
2520     const Register src_pos    = c_rarg1;  // source position
2521     const Register dst        = c_rarg2;  // destination array oop
2522     const Register dst_pos    = c_rarg3;  // destination position
2523 #ifndef _WIN64
2524     const Register length     = c_rarg4;
2525 #else
2526     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
2527 #endif
2528 
2529     { int modulus = CodeEntryAlignment;
2530       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2531       int advance = target - (__ offset() % modulus);
2532       if (advance < 0)  advance += modulus;
2533       if (advance > 0)  __ nop(advance);
2534     }
2535     StubCodeMark mark(this, "StubRoutines", name);
2536 
2537     // Short-hop target to L_failed.  Makes for denser prologue code.
2538     __ BIND(L_failed_0);
2539     __ jmp(L_failed);
2540     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2541 
2542     __ align(CodeEntryAlignment);
2543     address start = __ pc();
2544 
2545     __ enter(); // required for proper stackwalking of RuntimeStub frame
2546 
2547     // bump this on entry, not on exit:
2548     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2549 
2550     //-----------------------------------------------------------------------
2551     // Assembler stub will be used for this call to arraycopy
2552     // if the following conditions are met:
2553     //
2554     // (1) src and dst must not be null.
2555     // (2) src_pos must not be negative.
2556     // (3) dst_pos must not be negative.
2557     // (4) length  must not be negative.
2558     // (5) src klass and dst klass should be the same and not NULL.
2559     // (6) src and dst should be arrays.
2560     // (7) src_pos + length must not exceed length of src.
2561     // (8) dst_pos + length must not exceed length of dst.
2562     //
2563 
2564     //  if (src == NULL) return -1;
2565     __ testptr(src, src);         // src oop
2566     size_t j1off = __ offset();
2567     __ jccb(Assembler::zero, L_failed_0);
2568 
2569     //  if (src_pos < 0) return -1;
2570     __ testl(src_pos, src_pos); // src_pos (32-bits)
2571     __ jccb(Assembler::negative, L_failed_0);
2572 
2573     //  if (dst == NULL) return -1;
2574     __ testptr(dst, dst);         // dst oop
2575     __ jccb(Assembler::zero, L_failed_0);
2576 
2577     //  if (dst_pos < 0) return -1;
2578     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2579     size_t j4off = __ offset();
2580     __ jccb(Assembler::negative, L_failed_0);
2581 
2582     // The first four tests are very dense code,
2583     // but not quite dense enough to put four
2584     // jumps in a 16-byte instruction fetch buffer.
2585     // That's good, because some branch predicters
2586     // do not like jumps so close together.
2587     // Make sure of this.
2588     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2589 
2590     // registers used as temp
2591     const Register r11_length    = r11; // elements count to copy
2592     const Register r10_src_klass = r10; // array klass
2593 
2594     //  if (length < 0) return -1;
2595     __ movl(r11_length, length);        // length (elements count, 32-bits value)
2596     __ testl(r11_length, r11_length);
2597     __ jccb(Assembler::negative, L_failed_0);
2598 
2599     __ load_klass(r10_src_klass, src);
2600 #ifdef ASSERT
2601     //  assert(src->klass() != NULL);
2602     {
2603       BLOCK_COMMENT("assert klasses not null {");
2604       Label L1, L2;
2605       __ testptr(r10_src_klass, r10_src_klass);
2606       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2607       __ bind(L1);
2608       __ stop("broken null klass");
2609       __ bind(L2);
2610       __ load_klass(rax, dst);
2611       __ cmpq(rax, 0);
2612       __ jcc(Assembler::equal, L1);     // this would be broken also
2613       BLOCK_COMMENT("} assert klasses not null done");
2614     }
2615 #endif
2616 
2617     // Load layout helper (32-bits)
2618     //
2619     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2620     // 32        30    24            16              8     2                 0
2621     //
2622     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2623     //
2624 
2625     const int lh_offset = in_bytes(Klass::layout_helper_offset());
2626 
2627     // Handle objArrays completely differently...
2628     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2629     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
2630     __ jcc(Assembler::equal, L_objArray);
2631 
2632     //  if (src->klass() != dst->klass()) return -1;
2633     __ load_klass(rax, dst);
2634     __ cmpq(r10_src_klass, rax);
2635     __ jcc(Assembler::notEqual, L_failed);
2636 
2637     const Register rax_lh = rax;  // layout helper
2638     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2639 
2640     //  if (!src->is_Array()) return -1;
2641     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2642     __ jcc(Assembler::greaterEqual, L_failed);
2643 
2644     // At this point, it is known to be a typeArray (array_tag 0x3).
2645 #ifdef ASSERT
2646     {
2647       BLOCK_COMMENT("assert primitive array {");
2648       Label L;
2649       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2650       __ jcc(Assembler::greaterEqual, L);
2651       __ stop("must be a primitive array");
2652       __ bind(L);
2653       BLOCK_COMMENT("} assert primitive array done");
2654     }
2655 #endif
2656 
2657     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2658                            r10, L_failed);
2659 
2660     // TypeArrayKlass
2661     //
2662     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2663     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2664     //
2665 
2666     const Register r10_offset = r10;    // array offset
2667     const Register rax_elsize = rax_lh; // element size
2668 
2669     __ movl(r10_offset, rax_lh);
2670     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2671     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2672     __ addptr(src, r10_offset);           // src array offset
2673     __ addptr(dst, r10_offset);           // dst array offset
2674     BLOCK_COMMENT("choose copy loop based on element size");
2675     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2676 
2677     // next registers should be set before the jump to corresponding stub
2678     const Register from     = c_rarg0;  // source array address
2679     const Register to       = c_rarg1;  // destination array address
2680     const Register count    = c_rarg2;  // elements count
2681 
2682     // 'from', 'to', 'count' registers should be set in such order
2683     // since they are the same as 'src', 'src_pos', 'dst'.
2684 
2685   __ BIND(L_copy_bytes);
2686     __ cmpl(rax_elsize, 0);
2687     __ jccb(Assembler::notEqual, L_copy_shorts);
2688     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2689     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2690     __ movl2ptr(count, r11_length); // length
2691     __ jump(RuntimeAddress(byte_copy_entry));
2692 
2693   __ BIND(L_copy_shorts);
2694     __ cmpl(rax_elsize, LogBytesPerShort);
2695     __ jccb(Assembler::notEqual, L_copy_ints);
2696     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2697     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2698     __ movl2ptr(count, r11_length); // length
2699     __ jump(RuntimeAddress(short_copy_entry));
2700 
2701   __ BIND(L_copy_ints);
2702     __ cmpl(rax_elsize, LogBytesPerInt);
2703     __ jccb(Assembler::notEqual, L_copy_longs);
2704     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2705     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2706     __ movl2ptr(count, r11_length); // length
2707     __ jump(RuntimeAddress(int_copy_entry));
2708 
2709   __ BIND(L_copy_longs);
2710 #ifdef ASSERT
2711     {
2712       BLOCK_COMMENT("assert long copy {");
2713       Label L;
2714       __ cmpl(rax_elsize, LogBytesPerLong);
2715       __ jcc(Assembler::equal, L);
2716       __ stop("must be long copy, but elsize is wrong");
2717       __ bind(L);
2718       BLOCK_COMMENT("} assert long copy done");
2719     }
2720 #endif
2721     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2722     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2723     __ movl2ptr(count, r11_length); // length
2724     __ jump(RuntimeAddress(long_copy_entry));
2725 
2726     // ObjArrayKlass
2727   __ BIND(L_objArray);
2728     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
2729 
2730     Label L_plain_copy, L_checkcast_copy;
2731     //  test array classes for subtyping
2732     __ load_klass(rax, dst);
2733     __ cmpq(r10_src_klass, rax); // usual case is exact equality
2734     __ jcc(Assembler::notEqual, L_checkcast_copy);
2735 
2736     // Identically typed arrays can be copied without element-wise checks.
2737     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2738                            r10, L_failed);
2739 
2740     __ lea(from, Address(src, src_pos, TIMES_OOP,
2741                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2742     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2743                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2744     __ movl2ptr(count, r11_length); // length
2745   __ BIND(L_plain_copy);
2746     __ jump(RuntimeAddress(oop_copy_entry));
2747 
2748   __ BIND(L_checkcast_copy);
2749     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
2750     {
2751       // Before looking at dst.length, make sure dst is also an objArray.
2752       __ cmpl(Address(rax, lh_offset), objArray_lh);
2753       __ jcc(Assembler::notEqual, L_failed);
2754 
2755       // It is safe to examine both src.length and dst.length.
2756       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2757                              rax, L_failed);
2758 
2759       const Register r11_dst_klass = r11;
2760       __ load_klass(r11_dst_klass, dst); // reload
2761 
2762       // Marshal the base address arguments now, freeing registers.
2763       __ lea(from, Address(src, src_pos, TIMES_OOP,
2764                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2765       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2766                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2767       __ movl(count, length);           // length (reloaded)
2768       Register sco_temp = c_rarg3;      // this register is free now
2769       assert_different_registers(from, to, count, sco_temp,
2770                                  r11_dst_klass, r10_src_klass);
2771       assert_clean_int(count, sco_temp);
2772 
2773       // Generate the type check.
2774       const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2775       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2776       assert_clean_int(sco_temp, rax);
2777       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2778 
2779       // Fetch destination element klass from the ObjArrayKlass header.
2780       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2781       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2782       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
2783       assert_clean_int(sco_temp, rax);
2784 
2785       // the checkcast_copy loop needs two extra arguments:
2786       assert(c_rarg3 == sco_temp, "#3 already in place");
2787       // Set up arguments for checkcast_copy_entry.
2788       setup_arg_regs(4);
2789       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
2790       __ jump(RuntimeAddress(checkcast_copy_entry));
2791     }
2792 
2793   __ BIND(L_failed);
2794     __ xorptr(rax, rax);
2795     __ notptr(rax); // return -1
2796     __ leave();   // required for proper stackwalking of RuntimeStub frame
2797     __ ret(0);
2798 
2799     return start;
2800   }
2801 
2802   void generate_arraycopy_stubs() {
2803     address entry;
2804     address entry_jbyte_arraycopy;
2805     address entry_jshort_arraycopy;
2806     address entry_jint_arraycopy;
2807     address entry_oop_arraycopy;
2808     address entry_jlong_arraycopy;
2809     address entry_checkcast_arraycopy;
2810 
2811     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
2812                                                                            "jbyte_disjoint_arraycopy");
2813     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
2814                                                                            "jbyte_arraycopy");
2815 
2816     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
2817                                                                             "jshort_disjoint_arraycopy");
2818     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
2819                                                                             "jshort_arraycopy");
2820 
2821     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
2822                                                                               "jint_disjoint_arraycopy");
2823     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
2824                                                                               &entry_jint_arraycopy, "jint_arraycopy");
2825 
2826     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
2827                                                                                "jlong_disjoint_arraycopy");
2828     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
2829                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
2830 
2831 
2832     if (UseCompressedOops) {
2833       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
2834                                                                               "oop_disjoint_arraycopy");
2835       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
2836                                                                               &entry_oop_arraycopy, "oop_arraycopy");
2837       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
2838                                                                                      "oop_disjoint_arraycopy_uninit",
2839                                                                                      /*dest_uninitialized*/true);
2840       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
2841                                                                                      NULL, "oop_arraycopy_uninit",
2842                                                                                      /*dest_uninitialized*/true);
2843     } else {
2844       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
2845                                                                                "oop_disjoint_arraycopy");
2846       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
2847                                                                                &entry_oop_arraycopy, "oop_arraycopy");
2848       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
2849                                                                                       "oop_disjoint_arraycopy_uninit",
2850                                                                                       /*dest_uninitialized*/true);
2851       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
2852                                                                                       NULL, "oop_arraycopy_uninit",
2853                                                                                       /*dest_uninitialized*/true);
2854     }
2855 
2856     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2857     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
2858                                                                         /*dest_uninitialized*/true);
2859 
2860     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
2861                                                               entry_jbyte_arraycopy,
2862                                                               entry_jshort_arraycopy,
2863                                                               entry_jint_arraycopy,
2864                                                               entry_jlong_arraycopy);
2865     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
2866                                                                entry_jbyte_arraycopy,
2867                                                                entry_jshort_arraycopy,
2868                                                                entry_jint_arraycopy,
2869                                                                entry_oop_arraycopy,
2870                                                                entry_jlong_arraycopy,
2871                                                                entry_checkcast_arraycopy);
2872 
2873     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2874     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2875     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2876     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2877     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2878     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2879 
2880     // We don't generate specialized code for HeapWord-aligned source
2881     // arrays, so just use the code we've already generated
2882     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2883     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2884 
2885     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2886     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2887 
2888     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2889     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2890 
2891     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2892     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2893 
2894     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2895     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2896 
2897     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
2898     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
2899   }
2900 
2901   void generate_math_stubs() {
2902     {
2903       StubCodeMark mark(this, "StubRoutines", "log");
2904       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2905 
2906       __ subq(rsp, 8);
2907       __ movdbl(Address(rsp, 0), xmm0);
2908       __ fld_d(Address(rsp, 0));
2909       __ flog();
2910       __ fstp_d(Address(rsp, 0));
2911       __ movdbl(xmm0, Address(rsp, 0));
2912       __ addq(rsp, 8);
2913       __ ret(0);
2914     }
2915     {
2916       StubCodeMark mark(this, "StubRoutines", "log10");
2917       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2918 
2919       __ subq(rsp, 8);
2920       __ movdbl(Address(rsp, 0), xmm0);
2921       __ fld_d(Address(rsp, 0));
2922       __ flog10();
2923       __ fstp_d(Address(rsp, 0));
2924       __ movdbl(xmm0, Address(rsp, 0));
2925       __ addq(rsp, 8);
2926       __ ret(0);
2927     }
2928     {
2929       StubCodeMark mark(this, "StubRoutines", "sin");
2930       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2931 
2932       __ subq(rsp, 8);
2933       __ movdbl(Address(rsp, 0), xmm0);
2934       __ fld_d(Address(rsp, 0));
2935       __ trigfunc('s');
2936       __ fstp_d(Address(rsp, 0));
2937       __ movdbl(xmm0, Address(rsp, 0));
2938       __ addq(rsp, 8);
2939       __ ret(0);
2940     }
2941     {
2942       StubCodeMark mark(this, "StubRoutines", "cos");
2943       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2944 
2945       __ subq(rsp, 8);
2946       __ movdbl(Address(rsp, 0), xmm0);
2947       __ fld_d(Address(rsp, 0));
2948       __ trigfunc('c');
2949       __ fstp_d(Address(rsp, 0));
2950       __ movdbl(xmm0, Address(rsp, 0));
2951       __ addq(rsp, 8);
2952       __ ret(0);
2953     }
2954     {
2955       StubCodeMark mark(this, "StubRoutines", "tan");
2956       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2957 
2958       __ subq(rsp, 8);
2959       __ movdbl(Address(rsp, 0), xmm0);
2960       __ fld_d(Address(rsp, 0));
2961       __ trigfunc('t');
2962       __ fstp_d(Address(rsp, 0));
2963       __ movdbl(xmm0, Address(rsp, 0));
2964       __ addq(rsp, 8);
2965       __ ret(0);
2966     }
2967     {
2968       StubCodeMark mark(this, "StubRoutines", "exp");
2969       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2970 
2971       __ subq(rsp, 8);
2972       __ movdbl(Address(rsp, 0), xmm0);
2973       __ fld_d(Address(rsp, 0));
2974       __ exp_with_fallback(0);
2975       __ fstp_d(Address(rsp, 0));
2976       __ movdbl(xmm0, Address(rsp, 0));
2977       __ addq(rsp, 8);
2978       __ ret(0);
2979     }
2980     {
2981       StubCodeMark mark(this, "StubRoutines", "pow");
2982       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
2983 
2984       __ subq(rsp, 8);
2985       __ movdbl(Address(rsp, 0), xmm1);
2986       __ fld_d(Address(rsp, 0));
2987       __ movdbl(Address(rsp, 0), xmm0);
2988       __ fld_d(Address(rsp, 0));
2989       __ pow_with_fallback(0);
2990       __ fstp_d(Address(rsp, 0));
2991       __ movdbl(xmm0, Address(rsp, 0));
2992       __ addq(rsp, 8);
2993       __ ret(0);
2994     }
2995   }
2996 
2997   // AES intrinsic stubs
2998   enum {AESBlockSize = 16};
2999 
3000   address generate_key_shuffle_mask() {
3001     __ align(16);
3002     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
3003     address start = __ pc();
3004     __ emit_data64( 0x0405060700010203, relocInfo::none );
3005     __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
3006     return start;
3007   }
3008 
3009   // Utility routine for loading a 128-bit key word in little endian format
3010   // can optionally specify that the shuffle mask is already in an xmmregister
3011   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
3012     __ movdqu(xmmdst, Address(key, offset));
3013     if (xmm_shuf_mask != NULL) {
3014       __ pshufb(xmmdst, xmm_shuf_mask);
3015     } else {
3016       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3017     }
3018   }
3019 
3020   // Arguments:
3021   //
3022   // Inputs:
3023   //   c_rarg0   - source byte array address
3024   //   c_rarg1   - destination byte array address
3025   //   c_rarg2   - K (key) in little endian int array
3026   //
3027   address generate_aescrypt_encryptBlock() {
3028     assert(UseAES, "need AES instructions and misaligned SSE support");
3029     __ align(CodeEntryAlignment);
3030     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
3031     Label L_doLast;
3032     address start = __ pc();
3033 
3034     const Register from        = c_rarg0;  // source array address
3035     const Register to          = c_rarg1;  // destination array address
3036     const Register key         = c_rarg2;  // key array address
3037     const Register keylen      = rax;
3038 
3039     const XMMRegister xmm_result = xmm0;
3040     const XMMRegister xmm_key_shuf_mask = xmm1;
3041     // On win64 xmm6-xmm15 must be preserved so don't use them.
3042     const XMMRegister xmm_temp1  = xmm2;
3043     const XMMRegister xmm_temp2  = xmm3;
3044     const XMMRegister xmm_temp3  = xmm4;
3045     const XMMRegister xmm_temp4  = xmm5;
3046 
3047     __ enter(); // required for proper stackwalking of RuntimeStub frame
3048 
3049     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3050     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3051 
3052     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3053     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
3054 
3055     // For encryption, the java expanded key ordering is just what we need
3056     // we don't know if the key is aligned, hence not using load-execute form
3057 
3058     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
3059     __ pxor(xmm_result, xmm_temp1);
3060 
3061     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
3062     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
3063     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
3064     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
3065 
3066     __ aesenc(xmm_result, xmm_temp1);
3067     __ aesenc(xmm_result, xmm_temp2);
3068     __ aesenc(xmm_result, xmm_temp3);
3069     __ aesenc(xmm_result, xmm_temp4);
3070 
3071     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
3072     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
3073     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
3074     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
3075 
3076     __ aesenc(xmm_result, xmm_temp1);
3077     __ aesenc(xmm_result, xmm_temp2);
3078     __ aesenc(xmm_result, xmm_temp3);
3079     __ aesenc(xmm_result, xmm_temp4);
3080 
3081     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
3082     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
3083 
3084     __ cmpl(keylen, 44);
3085     __ jccb(Assembler::equal, L_doLast);
3086 
3087     __ aesenc(xmm_result, xmm_temp1);
3088     __ aesenc(xmm_result, xmm_temp2);
3089 
3090     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
3091     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
3092 
3093     __ cmpl(keylen, 52);
3094     __ jccb(Assembler::equal, L_doLast);
3095 
3096     __ aesenc(xmm_result, xmm_temp1);
3097     __ aesenc(xmm_result, xmm_temp2);
3098 
3099     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
3100     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3101 
3102     __ BIND(L_doLast);
3103     __ aesenc(xmm_result, xmm_temp1);
3104     __ aesenclast(xmm_result, xmm_temp2);
3105     __ movdqu(Address(to, 0), xmm_result);        // store the result
3106     __ xorptr(rax, rax); // return 0
3107     __ leave(); // required for proper stackwalking of RuntimeStub frame
3108     __ ret(0);
3109 
3110     return start;
3111   }
3112 
3113 
3114   // Arguments:
3115   //
3116   // Inputs:
3117   //   c_rarg0   - source byte array address
3118   //   c_rarg1   - destination byte array address
3119   //   c_rarg2   - K (key) in little endian int array
3120   //
3121   address generate_aescrypt_decryptBlock() {
3122     assert(UseAES, "need AES instructions and misaligned SSE support");
3123     __ align(CodeEntryAlignment);
3124     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
3125     Label L_doLast;
3126     address start = __ pc();
3127 
3128     const Register from        = c_rarg0;  // source array address
3129     const Register to          = c_rarg1;  // destination array address
3130     const Register key         = c_rarg2;  // key array address
3131     const Register keylen      = rax;
3132 
3133     const XMMRegister xmm_result = xmm0;
3134     const XMMRegister xmm_key_shuf_mask = xmm1;
3135     // On win64 xmm6-xmm15 must be preserved so don't use them.
3136     const XMMRegister xmm_temp1  = xmm2;
3137     const XMMRegister xmm_temp2  = xmm3;
3138     const XMMRegister xmm_temp3  = xmm4;
3139     const XMMRegister xmm_temp4  = xmm5;
3140 
3141     __ enter(); // required for proper stackwalking of RuntimeStub frame
3142 
3143     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3144     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3145 
3146     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3147     __ movdqu(xmm_result, Address(from, 0));
3148 
3149     // for decryption java expanded key ordering is rotated one position from what we want
3150     // so we start from 0x10 here and hit 0x00 last
3151     // we don't know if the key is aligned, hence not using load-execute form
3152     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
3153     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
3154     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
3155     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
3156 
3157     __ pxor  (xmm_result, xmm_temp1);
3158     __ aesdec(xmm_result, xmm_temp2);
3159     __ aesdec(xmm_result, xmm_temp3);
3160     __ aesdec(xmm_result, xmm_temp4);
3161 
3162     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
3163     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
3164     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
3165     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
3166 
3167     __ aesdec(xmm_result, xmm_temp1);
3168     __ aesdec(xmm_result, xmm_temp2);
3169     __ aesdec(xmm_result, xmm_temp3);
3170     __ aesdec(xmm_result, xmm_temp4);
3171 
3172     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
3173     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
3174     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
3175 
3176     __ cmpl(keylen, 44);
3177     __ jccb(Assembler::equal, L_doLast);
3178 
3179     __ aesdec(xmm_result, xmm_temp1);
3180     __ aesdec(xmm_result, xmm_temp2);
3181 
3182     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
3183     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
3184 
3185     __ cmpl(keylen, 52);
3186     __ jccb(Assembler::equal, L_doLast);
3187 
3188     __ aesdec(xmm_result, xmm_temp1);
3189     __ aesdec(xmm_result, xmm_temp2);
3190 
3191     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
3192     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3193 
3194     __ BIND(L_doLast);
3195     __ aesdec(xmm_result, xmm_temp1);
3196     __ aesdec(xmm_result, xmm_temp2);
3197 
3198     // for decryption the aesdeclast operation is always on key+0x00
3199     __ aesdeclast(xmm_result, xmm_temp3);
3200     __ movdqu(Address(to, 0), xmm_result);  // store the result
3201     __ xorptr(rax, rax); // return 0
3202     __ leave(); // required for proper stackwalking of RuntimeStub frame
3203     __ ret(0);
3204 
3205     return start;
3206   }
3207 
3208 
3209   // Arguments:
3210   //
3211   // Inputs:
3212   //   c_rarg0   - source byte array address
3213   //   c_rarg1   - destination byte array address
3214   //   c_rarg2   - K (key) in little endian int array
3215   //   c_rarg3   - r vector byte array address
3216   //   c_rarg4   - input length
3217   //
3218   address generate_cipherBlockChaining_encryptAESCrypt() {
3219     assert(UseAES, "need AES instructions and misaligned SSE support");
3220     __ align(CodeEntryAlignment);
3221     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
3222     address start = __ pc();
3223 
3224     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
3225     const Register from        = c_rarg0;  // source array address
3226     const Register to          = c_rarg1;  // destination array address
3227     const Register key         = c_rarg2;  // key array address
3228     const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
3229                                            // and left with the results of the last encryption block
3230 #ifndef _WIN64
3231     const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
3232 #else
3233     const Address  len_mem(rsp, 6 * wordSize);  // length is on stack on Win64
3234     const Register len_reg     = r10;      // pick the first volatile windows register
3235 #endif
3236     const Register pos         = rax;
3237 
3238     // xmm register assignments for the loops below
3239     const XMMRegister xmm_result = xmm0;
3240     const XMMRegister xmm_temp   = xmm1;
3241     // keys 0-10 preloaded into xmm2-xmm12
3242     const int XMM_REG_NUM_KEY_FIRST = 2;
3243     const int XMM_REG_NUM_KEY_LAST  = 15;
3244     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3245     const XMMRegister xmm_key10  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
3246     const XMMRegister xmm_key11  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
3247     const XMMRegister xmm_key12  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
3248     const XMMRegister xmm_key13  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
3249 
3250     __ enter(); // required for proper stackwalking of RuntimeStub frame
3251 
3252 #ifdef _WIN64
3253     // on win64, fill len_reg from stack position
3254     __ movl(len_reg, len_mem);
3255     // save the xmm registers which must be preserved 6-15
3256     __ subptr(rsp, -rsp_after_call_off * wordSize);
3257     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3258       __ movdqu(xmm_save(i), as_XMMRegister(i));
3259     }
3260 #endif
3261 
3262     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
3263     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3264     // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
3265     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
3266       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
3267       offset += 0x10;
3268     }
3269     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
3270 
3271     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
3272     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3273     __ cmpl(rax, 44);
3274     __ jcc(Assembler::notEqual, L_key_192_256);
3275 
3276     // 128 bit code follows here
3277     __ movptr(pos, 0);
3278     __ align(OptoLoopAlignment);
3279 
3280     __ BIND(L_loopTop_128);
3281     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3282     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3283     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3284     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
3285       __ aesenc(xmm_result, as_XMMRegister(rnum));
3286     }
3287     __ aesenclast(xmm_result, xmm_key10);
3288     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3289     // no need to store r to memory until we exit
3290     __ addptr(pos, AESBlockSize);
3291     __ subptr(len_reg, AESBlockSize);
3292     __ jcc(Assembler::notEqual, L_loopTop_128);
3293 
3294     __ BIND(L_exit);
3295     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
3296 
3297 #ifdef _WIN64
3298     // restore xmm regs belonging to calling function
3299     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3300       __ movdqu(as_XMMRegister(i), xmm_save(i));
3301     }
3302 #endif
3303     __ movl(rax, 0); // return 0 (why?)
3304     __ leave(); // required for proper stackwalking of RuntimeStub frame
3305     __ ret(0);
3306 
3307     __ BIND(L_key_192_256);
3308     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
3309     load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
3310     load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
3311     __ cmpl(rax, 52);
3312     __ jcc(Assembler::notEqual, L_key_256);
3313 
3314     // 192-bit code follows here (could be changed to use more xmm registers)
3315     __ movptr(pos, 0);
3316     __ align(OptoLoopAlignment);
3317 
3318     __ BIND(L_loopTop_192);
3319     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3320     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3321     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3322     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
3323       __ aesenc(xmm_result, as_XMMRegister(rnum));
3324     }
3325     __ aesenclast(xmm_result, xmm_key12);
3326     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3327     // no need to store r to memory until we exit
3328     __ addptr(pos, AESBlockSize);
3329     __ subptr(len_reg, AESBlockSize);
3330     __ jcc(Assembler::notEqual, L_loopTop_192);
3331     __ jmp(L_exit);
3332 
3333     __ BIND(L_key_256);
3334     // 256-bit code follows here (could be changed to use more xmm registers)
3335     load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
3336     __ movptr(pos, 0);
3337     __ align(OptoLoopAlignment);
3338 
3339     __ BIND(L_loopTop_256);
3340     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3341     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3342     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3343     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
3344       __ aesenc(xmm_result, as_XMMRegister(rnum));
3345     }
3346     load_key(xmm_temp, key, 0xe0);
3347     __ aesenclast(xmm_result, xmm_temp);
3348     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3349     // no need to store r to memory until we exit
3350     __ addptr(pos, AESBlockSize);
3351     __ subptr(len_reg, AESBlockSize);
3352     __ jcc(Assembler::notEqual, L_loopTop_256);
3353     __ jmp(L_exit);
3354 
3355     return start;
3356   }
3357 
3358 
3359 
3360   // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
3361   // to hide instruction latency
3362   //
3363   // Arguments:
3364   //
3365   // Inputs:
3366   //   c_rarg0   - source byte array address
3367   //   c_rarg1   - destination byte array address
3368   //   c_rarg2   - K (key) in little endian int array
3369   //   c_rarg3   - r vector byte array address
3370   //   c_rarg4   - input length
3371   //
3372 
3373   address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
3374     assert(UseAES, "need AES instructions and misaligned SSE support");
3375     __ align(CodeEntryAlignment);
3376     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
3377     address start = __ pc();
3378 
3379     Label L_exit, L_key_192_256, L_key_256;
3380     Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128;
3381     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
3382     const Register from        = c_rarg0;  // source array address
3383     const Register to          = c_rarg1;  // destination array address
3384     const Register key         = c_rarg2;  // key array address
3385     const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
3386                                            // and left with the results of the last encryption block
3387 #ifndef _WIN64
3388     const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
3389 #else
3390     const Address  len_mem(rsp, 6 * wordSize);  // length is on stack on Win64
3391     const Register len_reg     = r10;      // pick the first volatile windows register
3392 #endif
3393     const Register pos         = rax;
3394 
3395     // keys 0-10 preloaded into xmm2-xmm12
3396     const int XMM_REG_NUM_KEY_FIRST = 5;
3397     const int XMM_REG_NUM_KEY_LAST  = 15;
3398     const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3399     const XMMRegister xmm_key_last  = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
3400 
3401     __ enter(); // required for proper stackwalking of RuntimeStub frame
3402 
3403 #ifdef _WIN64
3404     // on win64, fill len_reg from stack position
3405     __ movl(len_reg, len_mem);
3406     // save the xmm registers which must be preserved 6-15
3407     __ subptr(rsp, -rsp_after_call_off * wordSize);
3408     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3409       __ movdqu(xmm_save(i), as_XMMRegister(i));
3410     }
3411 #endif
3412     // the java expanded key ordering is rotated one position from what we want
3413     // so we start from 0x10 here and hit 0x00 last
3414     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
3415     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3416     // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
3417     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
3418       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
3419       offset += 0x10;
3420     }
3421     load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
3422 
3423     const XMMRegister xmm_prev_block_cipher = xmm1;  // holds cipher of previous block
3424 
3425     // registers holding the four results in the parallelized loop
3426     const XMMRegister xmm_result0 = xmm0;
3427     const XMMRegister xmm_result1 = xmm2;
3428     const XMMRegister xmm_result2 = xmm3;
3429     const XMMRegister xmm_result3 = xmm4;
3430 
3431     __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00));   // initialize with initial rvec
3432 
3433     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
3434     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3435     __ cmpl(rax, 44);
3436     __ jcc(Assembler::notEqual, L_key_192_256);
3437 
3438 
3439     // 128-bit code follows here, parallelized
3440     __ movptr(pos, 0);
3441     __ align(OptoLoopAlignment);
3442     __ BIND(L_multiBlock_loopTop_128);
3443     __ cmpptr(len_reg, 4*AESBlockSize);           // see if at least 4 blocks left
3444     __ jcc(Assembler::less, L_singleBlock_loopTop_128);
3445 
3446     __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize));   // get next 4 blocks into xmmresult registers
3447     __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize));
3448     __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize));
3449     __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize));
3450 
3451 #define DoFour(opc, src_reg)                    \
3452     __ opc(xmm_result0, src_reg);               \
3453     __ opc(xmm_result1, src_reg);               \
3454     __ opc(xmm_result2, src_reg);               \
3455     __ opc(xmm_result3, src_reg);
3456 
3457     DoFour(pxor, xmm_key_first);
3458     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3459       DoFour(aesdec, as_XMMRegister(rnum));
3460     }
3461     DoFour(aesdeclast, xmm_key_last);
3462     // for each result, xor with the r vector of previous cipher block
3463     __ pxor(xmm_result0, xmm_prev_block_cipher);
3464     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize));
3465     __ pxor(xmm_result1, xmm_prev_block_cipher);
3466     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize));
3467     __ pxor(xmm_result2, xmm_prev_block_cipher);
3468     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize));
3469     __ pxor(xmm_result3, xmm_prev_block_cipher);
3470     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize));   // this will carry over to next set of blocks
3471 
3472     __ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0);     // store 4 results into the next 64 bytes of output
3473     __ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1);
3474     __ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2);
3475     __ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3);
3476 
3477     __ addptr(pos, 4*AESBlockSize);
3478     __ subptr(len_reg, 4*AESBlockSize);
3479     __ jmp(L_multiBlock_loopTop_128);
3480 
3481     // registers used in the non-parallelized loops
3482     // xmm register assignments for the loops below
3483     const XMMRegister xmm_result = xmm0;
3484     const XMMRegister xmm_prev_block_cipher_save = xmm2;
3485     const XMMRegister xmm_key11 = xmm3;
3486     const XMMRegister xmm_key12 = xmm4;
3487     const XMMRegister xmm_temp  = xmm4;
3488 
3489     __ align(OptoLoopAlignment);
3490     __ BIND(L_singleBlock_loopTop_128);
3491     __ cmpptr(len_reg, 0);           // any blocks left??
3492     __ jcc(Assembler::equal, L_exit);
3493     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
3494     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3495     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3496     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3497       __ aesdec(xmm_result, as_XMMRegister(rnum));
3498     }
3499     __ aesdeclast(xmm_result, xmm_key_last);
3500     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3501     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3502     // no need to store r to memory until we exit
3503     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);              // set up next r vector with cipher input from this block
3504 
3505     __ addptr(pos, AESBlockSize);
3506     __ subptr(len_reg, AESBlockSize);
3507     __ jmp(L_singleBlock_loopTop_128);
3508 
3509 
3510     __ BIND(L_exit);
3511     __ movdqu(Address(rvec, 0), xmm_prev_block_cipher);     // final value of r stored in rvec of CipherBlockChaining object
3512 #ifdef _WIN64
3513     // restore regs belonging to calling function
3514     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3515       __ movdqu(as_XMMRegister(i), xmm_save(i));
3516     }
3517 #endif
3518     __ movl(rax, 0); // return 0 (why?)
3519     __ leave(); // required for proper stackwalking of RuntimeStub frame
3520     __ ret(0);
3521 
3522 
3523     __ BIND(L_key_192_256);
3524     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
3525     load_key(xmm_key11, key, 0xb0);
3526     __ cmpl(rax, 52);
3527     __ jcc(Assembler::notEqual, L_key_256);
3528 
3529     // 192-bit code follows here (could be optimized to use parallelism)
3530     load_key(xmm_key12, key, 0xc0);     // 192-bit key goes up to c0
3531     __ movptr(pos, 0);
3532     __ align(OptoLoopAlignment);
3533 
3534     __ BIND(L_singleBlock_loopTop_192);
3535     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
3536     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3537     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3538     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3539       __ aesdec(xmm_result, as_XMMRegister(rnum));
3540     }
3541     __ aesdec(xmm_result, xmm_key11);
3542     __ aesdec(xmm_result, xmm_key12);
3543     __ aesdeclast(xmm_result, xmm_key_last);                    // xmm15 always came from key+0
3544     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3545     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);  // store into the next 16 bytes of output
3546     // no need to store r to memory until we exit
3547     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);  // set up next r vector with cipher input from this block
3548     __ addptr(pos, AESBlockSize);
3549     __ subptr(len_reg, AESBlockSize);
3550     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
3551     __ jmp(L_exit);
3552 
3553     __ BIND(L_key_256);
3554     // 256-bit code follows here (could be optimized to use parallelism)
3555     __ movptr(pos, 0);
3556     __ align(OptoLoopAlignment);
3557 
3558     __ BIND(L_singleBlock_loopTop_256);
3559     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
3560     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3561     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3562     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3563       __ aesdec(xmm_result, as_XMMRegister(rnum));
3564     }
3565     __ aesdec(xmm_result, xmm_key11);
3566     load_key(xmm_temp, key, 0xc0);
3567     __ aesdec(xmm_result, xmm_temp);
3568     load_key(xmm_temp, key, 0xd0);
3569     __ aesdec(xmm_result, xmm_temp);
3570     load_key(xmm_temp, key, 0xe0);     // 256-bit key goes up to e0
3571     __ aesdec(xmm_result, xmm_temp);
3572     __ aesdeclast(xmm_result, xmm_key_last);          // xmm15 came from key+0
3573     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3574     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);  // store into the next 16 bytes of output
3575     // no need to store r to memory until we exit
3576     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);  // set up next r vector with cipher input from this block
3577     __ addptr(pos, AESBlockSize);
3578     __ subptr(len_reg, AESBlockSize);
3579     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
3580     __ jmp(L_exit);
3581 
3582     return start;
3583   }
3584 
3585 
3586 
3587 #undef __
3588 #define __ masm->
3589 
3590   // Continuation point for throwing of implicit exceptions that are
3591   // not handled in the current activation. Fabricates an exception
3592   // oop and initiates normal exception dispatching in this
3593   // frame. Since we need to preserve callee-saved values (currently
3594   // only for C2, but done for C1 as well) we need a callee-saved oop
3595   // map and therefore have to make these stubs into RuntimeStubs
3596   // rather than BufferBlobs.  If the compiler needs all registers to
3597   // be preserved between the fault point and the exception handler
3598   // then it must assume responsibility for that in
3599   // AbstractCompiler::continuation_for_implicit_null_exception or
3600   // continuation_for_implicit_division_by_zero_exception. All other
3601   // implicit exceptions (e.g., NullPointerException or
3602   // AbstractMethodError on entry) are either at call sites or
3603   // otherwise assume that stack unwinding will be initiated, so
3604   // caller saved registers were assumed volatile in the compiler.
3605   address generate_throw_exception(const char* name,
3606                                    address runtime_entry,
3607                                    Register arg1 = noreg,
3608                                    Register arg2 = noreg) {
3609     // Information about frame layout at time of blocking runtime call.
3610     // Note that we only have to preserve callee-saved registers since
3611     // the compilers are responsible for supplying a continuation point
3612     // if they expect all registers to be preserved.
3613     enum layout {
3614       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
3615       rbp_off2,
3616       return_off,
3617       return_off2,
3618       framesize // inclusive of return address
3619     };
3620 
3621     int insts_size = 512;
3622     int locs_size  = 64;
3623 
3624     CodeBuffer code(name, insts_size, locs_size);
3625     OopMapSet* oop_maps  = new OopMapSet();
3626     MacroAssembler* masm = new MacroAssembler(&code);
3627 
3628     address start = __ pc();
3629 
3630     // This is an inlined and slightly modified version of call_VM
3631     // which has the ability to fetch the return PC out of
3632     // thread-local storage and also sets up last_Java_sp slightly
3633     // differently than the real call_VM
3634 
3635     __ enter(); // required for proper stackwalking of RuntimeStub frame
3636 
3637     assert(is_even(framesize/2), "sp not 16-byte aligned");
3638 
3639     // return address and rbp are already in place
3640     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
3641 
3642     int frame_complete = __ pc() - start;
3643 
3644     // Set up last_Java_sp and last_Java_fp
3645     address the_pc = __ pc();
3646     __ set_last_Java_frame(rsp, rbp, the_pc);
3647     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3648 
3649     // Call runtime
3650     if (arg1 != noreg) {
3651       assert(arg2 != c_rarg1, "clobbered");
3652       __ movptr(c_rarg1, arg1);
3653     }
3654     if (arg2 != noreg) {
3655       __ movptr(c_rarg2, arg2);
3656     }
3657     __ movptr(c_rarg0, r15_thread);
3658     BLOCK_COMMENT("call runtime_entry");
3659     __ call(RuntimeAddress(runtime_entry));
3660 
3661     // Generate oop map
3662     OopMap* map = new OopMap(framesize, 0);
3663 
3664     oop_maps->add_gc_map(the_pc - start, map);
3665 
3666     __ reset_last_Java_frame(true, true);
3667 
3668     __ leave(); // required for proper stackwalking of RuntimeStub frame
3669 
3670     // check for pending exceptions
3671 #ifdef ASSERT
3672     Label L;
3673     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
3674             (int32_t) NULL_WORD);
3675     __ jcc(Assembler::notEqual, L);
3676     __ should_not_reach_here();
3677     __ bind(L);
3678 #endif // ASSERT
3679     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3680 
3681 
3682     // codeBlob framesize is in words (not VMRegImpl::slot_size)
3683     RuntimeStub* stub =
3684       RuntimeStub::new_runtime_stub(name,
3685                                     &code,
3686                                     frame_complete,
3687                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3688                                     oop_maps, false);
3689     return stub->entry_point();
3690   }
3691 
3692   // Initialization
3693   void generate_initial() {
3694     // Generates all stubs and initializes the entry points
3695 
3696     // This platform-specific stub is needed by generate_call_stub()
3697     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
3698 
3699     // entry points that exist in all platforms Note: This is code
3700     // that could be shared among different platforms - however the
3701     // benefit seems to be smaller than the disadvantage of having a
3702     // much more complicated generator structure. See also comment in
3703     // stubRoutines.hpp.
3704 
3705     StubRoutines::_forward_exception_entry = generate_forward_exception();
3706 
3707     StubRoutines::_call_stub_entry =
3708       generate_call_stub(StubRoutines::_call_stub_return_address);
3709 
3710     // is referenced by megamorphic call
3711     StubRoutines::_catch_exception_entry = generate_catch_exception();
3712 
3713     // atomic calls
3714     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
3715     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
3716     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
3717     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3718     StubRoutines::_atomic_add_entry          = generate_atomic_add();
3719     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
3720     StubRoutines::_fence_entry               = generate_orderaccess_fence();
3721 
3722     StubRoutines::_handler_for_unsafe_access_entry =
3723       generate_handler_for_unsafe_access();
3724 
3725     // platform dependent
3726     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
3727     StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
3728 
3729     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
3730 
3731     // Build this early so it's available for the interpreter.
3732     StubRoutines::_throw_StackOverflowError_entry =
3733       generate_throw_exception("StackOverflowError throw_exception",
3734                                CAST_FROM_FN_PTR(address,
3735                                                 SharedRuntime::
3736                                                 throw_StackOverflowError));
3737   }
3738 
3739   void generate_all() {
3740     // Generates all stubs and initializes the entry points
3741 
3742     // These entry points require SharedInfo::stack0 to be set up in
3743     // non-core builds and need to be relocatable, so they each
3744     // fabricate a RuntimeStub internally.
3745     StubRoutines::_throw_AbstractMethodError_entry =
3746       generate_throw_exception("AbstractMethodError throw_exception",
3747                                CAST_FROM_FN_PTR(address,
3748                                                 SharedRuntime::
3749                                                 throw_AbstractMethodError));
3750 
3751     StubRoutines::_throw_IncompatibleClassChangeError_entry =
3752       generate_throw_exception("IncompatibleClassChangeError throw_exception",
3753                                CAST_FROM_FN_PTR(address,
3754                                                 SharedRuntime::
3755                                                 throw_IncompatibleClassChangeError));
3756 
3757     StubRoutines::_throw_NullPointerException_at_call_entry =
3758       generate_throw_exception("NullPointerException at call throw_exception",
3759                                CAST_FROM_FN_PTR(address,
3760                                                 SharedRuntime::
3761                                                 throw_NullPointerException_at_call));
3762 
3763     // entry points that are platform specific
3764     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
3765     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
3766     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
3767     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
3768 
3769     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
3770     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
3771     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3772     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3773 
3774     // support for verify_oop (must happen after universe_init)
3775     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3776 
3777     // arraycopy stubs used by compilers
3778     generate_arraycopy_stubs();
3779 
3780     generate_math_stubs();
3781 
3782     // don't bother generating these AES intrinsic stubs unless global flag is set
3783     if (UseAESIntrinsics) {
3784       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // needed by the others
3785 
3786       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3787       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3788       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
3789       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
3790     }
3791   }
3792 
3793  public:
3794   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3795     if (all) {
3796       generate_all();
3797     } else {
3798       generate_initial();
3799     }
3800   }
3801 }; // end class declaration
3802 
3803 void StubGenerator_generate(CodeBuffer* code, bool all) {
3804   StubGenerator g(code, all);
3805 }