1 /*
   2  * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "runtime/advancedThresholdPolicy.hpp"
  27 #include "runtime/simpleThresholdPolicy.inline.hpp"
  28 
  29 #ifdef TIERED
  30 // Print an event.
  31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  32                                              int bci, CompLevel level) {
  33   tty->print(" rate=");
  34   if (mh->prev_time() == 0) tty->print("n/a");
  35   else tty->print("%f", mh->rate());
  36 
  37   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  38                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  39 
  40 }
  41 
  42 void AdvancedThresholdPolicy::initialize() {
  43   // Turn on ergonomic compiler count selection
  44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  46   }
  47   int count = CICompilerCount;
  48   if (CICompilerCountPerCPU) {
  49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  50     int log_cpu = log2_intptr(os::active_processor_count());
  51     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  53   }
  54 
  55   set_c1_count(MAX2(count / 3, 1));
  56   set_c2_count(MAX2(count - count / 3, 1));
  57 
  58   // Some inlining tuning
  59 #ifdef X86
  60   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  61     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  62   }
  63 #endif
  64 
  65 #ifdef SPARC
  66   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  67     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  68   }
  69 #endif
  70 
  71 
  72   set_start_time(os::javaTimeMillis());
  73 }
  74 
  75 // update_rate() is called from select_task() while holding a compile queue lock.
  76 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
  77   JavaThread* THREAD = JavaThread::current();
  78   if (is_old(m)) {
  79     // We don't remove old methods from the queue,
  80     // so we can just zero the rate.
  81     m->set_rate(0, THREAD);
  82     return;
  83   }
  84 
  85   // We don't update the rate if we've just came out of a safepoint.
  86   // delta_s is the time since last safepoint in milliseconds.
  87   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  88   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  89   // How many events were there since the last time?
  90   int event_count = m->invocation_count() + m->backedge_count();
  91   int delta_e = event_count - m->prev_event_count();
  92 
  93   // We should be running for at least 1ms.
  94   if (delta_s >= TieredRateUpdateMinTime) {
  95     // And we must've taken the previous point at least 1ms before.
  96     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
  97       m->set_prev_time(t, THREAD);
  98       m->set_prev_event_count(event_count, THREAD);
  99       m->set_rate((float)delta_e / (float)delta_t, THREAD); // Rate is events per millisecond
 100     } else
 101       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 102         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 103         m->set_rate(0, THREAD);
 104       }
 105   }
 106 }
 107 
 108 // Check if this method has been stale from a given number of milliseconds.
 109 // See select_task().
 110 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 111   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 112   jlong delta_t = t - m->prev_time();
 113   if (delta_t > timeout && delta_s > timeout) {
 114     int event_count = m->invocation_count() + m->backedge_count();
 115     int delta_e = event_count - m->prev_event_count();
 116     // Return true if there were no events.
 117     return delta_e == 0;
 118   }
 119   return false;
 120 }
 121 
 122 // We don't remove old methods from the compile queue even if they have
 123 // very low activity. See select_task().
 124 bool AdvancedThresholdPolicy::is_old(Method* method) {
 125   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 126 }
 127 
 128 double AdvancedThresholdPolicy::weight(Method* method) {
 129   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
 130 }
 131 
 132 // Apply heuristics and return true if x should be compiled before y
 133 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
 134   if (x->highest_comp_level() > y->highest_comp_level()) {
 135     // recompilation after deopt
 136     return true;
 137   } else
 138     if (x->highest_comp_level() == y->highest_comp_level()) {
 139       if (weight(x) > weight(y)) {
 140         return true;
 141       }
 142     }
 143   return false;
 144 }
 145 
 146 // Is method profiled enough?
 147 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
 148   MethodData* mdo = method->method_data();
 149   if (mdo != NULL) {
 150     int i = mdo->invocation_count_delta();
 151     int b = mdo->backedge_count_delta();
 152     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
 153   }
 154   return false;
 155 }
 156 
 157 // Called with the queue locked and with at least one element
 158 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 159   CompileTask *max_task = NULL;
 160   Method* max_method = NULL;
 161   jlong t = os::javaTimeMillis();
 162   // Iterate through the queue and find a method with a maximum rate.
 163   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 164     CompileTask* next_task = task->next();
 165     Method* method = task->method();
 166     MethodData* mdo = method->method_data();
 167     update_rate(t, method);
 168     if (max_task == NULL) {
 169       max_task = task;
 170       max_method = method;
 171     } else {
 172       // If a method has been stale for some time, remove it from the queue.
 173       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 174         if (PrintTieredEvents) {
 175           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 176         }
 177         CompileTaskWrapper ctw(task); // Frees the task
 178         compile_queue->remove(task);
 179         method->clear_queued_for_compilation();
 180         task = next_task;
 181         continue;
 182       }
 183 
 184       // Select a method with a higher rate
 185       if (compare_methods(method, max_method)) {
 186         max_task = task;
 187         max_method = method;
 188       }
 189     }
 190     task = next_task;
 191   }
 192 
 193   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
 194       && is_method_profiled(max_method)) {
 195     max_task->set_comp_level(CompLevel_limited_profile);
 196     if (PrintTieredEvents) {
 197       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 198     }
 199   }
 200 
 201   return max_task;
 202 }
 203 
 204 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 205   double queue_size = CompileBroker::queue_size(level);
 206   int comp_count = compiler_count(level);
 207   double k = queue_size / (feedback_k * comp_count) + 1;
 208   return k;
 209 }
 210 
 211 // Call and loop predicates determine whether a transition to a higher
 212 // compilation level should be performed (pointers to predicate functions
 213 // are passed to common()).
 214 // Tier?LoadFeedback is basically a coefficient that determines of
 215 // how many methods per compiler thread can be in the queue before
 216 // the threshold values double.
 217 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
 218   switch(cur_level) {
 219   case CompLevel_none:
 220   case CompLevel_limited_profile: {
 221     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 222     return loop_predicate_helper<CompLevel_none>(i, b, k);
 223   }
 224   case CompLevel_full_profile: {
 225     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 226     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
 227   }
 228   default:
 229     return true;
 230   }
 231 }
 232 
 233 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
 234   switch(cur_level) {
 235   case CompLevel_none:
 236   case CompLevel_limited_profile: {
 237     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 238     return call_predicate_helper<CompLevel_none>(i, b, k);
 239   }
 240   case CompLevel_full_profile: {
 241     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 242     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
 243   }
 244   default:
 245     return true;
 246   }
 247 }
 248 
 249 // If a method is old enough and is still in the interpreter we would want to
 250 // start profiling without waiting for the compiled method to arrive.
 251 // We also take the load on compilers into the account.
 252 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 253   if (cur_level == CompLevel_none &&
 254       CompileBroker::queue_size(CompLevel_full_optimization) <=
 255       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 256     int i = method->invocation_count();
 257     int b = method->backedge_count();
 258     double k = Tier0ProfilingStartPercentage / 100.0;
 259     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
 260   }
 261   return false;
 262 }
 263 
 264 // Inlining control: if we're compiling a profiled method with C1 and the callee
 265 // is known to have OSRed in a C2 version, don't inline it.
 266 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 267   CompLevel comp_level = (CompLevel)env->comp_level();
 268   if (comp_level == CompLevel_full_profile ||
 269       comp_level == CompLevel_limited_profile) {
 270     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 271   }
 272   return false;
 273 }
 274 
 275 // Create MDO if necessary.
 276 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
 277   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
 278   if (mh->method_data() == NULL) {
 279     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 280   }
 281 }
 282 
 283 
 284 /*
 285  * Method states:
 286  *   0 - interpreter (CompLevel_none)
 287  *   1 - pure C1 (CompLevel_simple)
 288  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 289  *   3 - C1 with full profiling (CompLevel_full_profile)
 290  *   4 - C2 (CompLevel_full_optimization)
 291  *
 292  * Common state transition patterns:
 293  * a. 0 -> 3 -> 4.
 294  *    The most common path. But note that even in this straightforward case
 295  *    profiling can start at level 0 and finish at level 3.
 296  *
 297  * b. 0 -> 2 -> 3 -> 4.
 298  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
 299  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 300  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 301  *
 302  * c. 0 -> (3->2) -> 4.
 303  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 304  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 305  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
 306  *    is compiling.
 307  *
 308  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 309  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 310  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 311  *
 312  * e. 0 -> 4.
 313  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 314  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 315  *    the compiled version already exists).
 316  *
 317  * Note that since state 0 can be reached from any other state via deoptimization different loops
 318  * are possible.
 319  *
 320  */
 321 
 322 // Common transition function. Given a predicate determines if a method should transition to another level.
 323 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 324   CompLevel next_level = cur_level;
 325   int i = method->invocation_count();
 326   int b = method->backedge_count();
 327 
 328   if (is_trivial(method)) {
 329     next_level = CompLevel_simple;
 330   } else {
 331     switch(cur_level) {
 332     case CompLevel_none:
 333       // If we were at full profile level, would we switch to full opt?
 334       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 335         next_level = CompLevel_full_optimization;
 336       } else if ((this->*p)(i, b, cur_level)) {
 337         // C1-generated fully profiled code is about 30% slower than the limited profile
 338         // code that has only invocation and backedge counters. The observation is that
 339         // if C2 queue is large enough we can spend too much time in the fully profiled code
 340         // while waiting for C2 to pick the method from the queue. To alleviate this problem
 341         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 342         // we choose to compile a limited profiled version and then recompile with full profiling
 343         // when the load on C2 goes down.
 344         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 345                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 346           next_level = CompLevel_limited_profile;
 347         } else {
 348           next_level = CompLevel_full_profile;
 349         }
 350       }
 351       break;
 352     case CompLevel_limited_profile:
 353       if (is_method_profiled(method)) {
 354         // Special case: we got here because this method was fully profiled in the interpreter.
 355         next_level = CompLevel_full_optimization;
 356       } else {
 357         MethodData* mdo = method->method_data();
 358         if (mdo != NULL) {
 359           if (mdo->would_profile()) {
 360             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 361                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 362                                      (this->*p)(i, b, cur_level))) {
 363               next_level = CompLevel_full_profile;
 364             }
 365           } else {
 366             next_level = CompLevel_full_optimization;
 367           }
 368         }
 369       }
 370       break;
 371     case CompLevel_full_profile:
 372       {
 373         MethodData* mdo = method->method_data();
 374         if (mdo != NULL) {
 375           if (mdo->would_profile()) {
 376             int mdo_i = mdo->invocation_count_delta();
 377             int mdo_b = mdo->backedge_count_delta();
 378             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
 379               next_level = CompLevel_full_optimization;
 380             }
 381           } else {
 382             next_level = CompLevel_full_optimization;
 383           }
 384         }
 385       }
 386       break;
 387     }
 388   }
 389   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 390 }
 391 
 392 // Determine if a method should be compiled with a normal entry point at a different level.
 393 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
 394   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 395                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
 396   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 397 
 398   // If OSR method level is greater than the regular method level, the levels should be
 399   // equalized by raising the regular method level in order to avoid OSRs during each
 400   // invocation of the method.
 401   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 402     MethodData* mdo = method->method_data();
 403     guarantee(mdo != NULL, "MDO should not be NULL");
 404     if (mdo->invocation_count() >= 1) {
 405       next_level = CompLevel_full_optimization;
 406     }
 407   } else {
 408     next_level = MAX2(osr_level, next_level);
 409   }
 410   return next_level;
 411 }
 412 
 413 // Determine if we should do an OSR compilation of a given method.
 414 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
 415   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
 416   if (cur_level == CompLevel_none) {
 417     // If there is a live OSR method that means that we deopted to the interpreter
 418     // for the transition.
 419     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 420     if (osr_level > CompLevel_none) {
 421       return osr_level;
 422     }
 423   }
 424   return next_level;
 425 }
 426 
 427 // Update the rate and submit compile
 428 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
 429   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 430   update_rate(os::javaTimeMillis(), mh());
 431   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
 432 }
 433 
 434 // Handle the invocation event.
 435 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
 436                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
 437   if (should_create_mdo(mh(), level)) {
 438     create_mdo(mh, thread);
 439   }
 440   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
 441     CompLevel next_level = call_event(mh(), level);
 442     if (next_level != level) {
 443       compile(mh, InvocationEntryBci, next_level, thread);
 444     }
 445   }
 446 }
 447 
 448 // Handle the back branch event. Notice that we can compile the method
 449 // with a regular entry from here.
 450 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
 451                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
 452   if (should_create_mdo(mh(), level)) {
 453     create_mdo(mh, thread);
 454   }
 455   // Check if MDO should be created for the inlined method
 456   if (should_create_mdo(imh(), level)) {
 457     create_mdo(imh, thread);
 458   }
 459 
 460   if (is_compilation_enabled()) {
 461     CompLevel next_osr_level = loop_event(imh(), level);
 462     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 463     // At the very least compile the OSR version
 464     if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
 465       compile(imh, bci, next_osr_level, thread);
 466     }
 467 
 468     // Use loop event as an opportunity to also check if there's been
 469     // enough calls.
 470     CompLevel cur_level, next_level;
 471     if (mh() != imh()) { // If there is an enclosing method
 472       guarantee(nm != NULL, "Should have nmethod here");
 473       cur_level = comp_level(mh());
 474       next_level = call_event(mh(), cur_level);
 475 
 476       if (max_osr_level == CompLevel_full_optimization) {
 477         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 478         bool make_not_entrant = false;
 479         if (nm->is_osr_method()) {
 480           // This is an osr method, just make it not entrant and recompile later if needed
 481           make_not_entrant = true;
 482         } else {
 483           if (next_level != CompLevel_full_optimization) {
 484             // next_level is not full opt, so we need to recompile the
 485             // enclosing method without the inlinee
 486             cur_level = CompLevel_none;
 487             make_not_entrant = true;
 488           }
 489         }
 490         if (make_not_entrant) {
 491           if (PrintTieredEvents) {
 492             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 493             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 494           }
 495           nm->make_not_entrant();
 496         }
 497       }
 498       if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
 499         // Fix up next_level if necessary to avoid deopts
 500         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 501           next_level = CompLevel_full_profile;
 502         }
 503         if (cur_level != next_level) {
 504           compile(mh, InvocationEntryBci, next_level, thread);
 505         }
 506       }
 507     } else {
 508       cur_level = comp_level(imh());
 509       next_level = call_event(imh(), cur_level);
 510       if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
 511         compile(imh, InvocationEntryBci, next_level, thread);
 512       }
 513     }
 514   }
 515 }
 516 
 517 #endif // TIERED