1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "opto/callGenerator.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/escape.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/parse.hpp"
  35 #include "opto/regalloc.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 
  40 // Portions of code courtesy of Clifford Click
  41 
  42 // Optimization - Graph Style
  43 
  44 //=============================================================================
  45 uint StartNode::size_of() const { return sizeof(*this); }
  46 uint StartNode::cmp( const Node &n ) const
  47 { return _domain == ((StartNode&)n)._domain; }
  48 const Type *StartNode::bottom_type() const { return _domain; }
  49 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  50 #ifndef PRODUCT
  51 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  52 #endif
  53 
  54 //------------------------------Ideal------------------------------------------
  55 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  56   return remove_dead_region(phase, can_reshape) ? this : NULL;
  57 }
  58 
  59 //------------------------------calling_convention-----------------------------
  60 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  61   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  62 }
  63 
  64 //------------------------------Registers--------------------------------------
  65 const RegMask &StartNode::in_RegMask(uint) const {
  66   return RegMask::Empty;
  67 }
  68 
  69 //------------------------------match------------------------------------------
  70 // Construct projections for incoming parameters, and their RegMask info
  71 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  72   switch (proj->_con) {
  73   case TypeFunc::Control:
  74   case TypeFunc::I_O:
  75   case TypeFunc::Memory:
  76     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  77   case TypeFunc::FramePtr:
  78     return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  79   case TypeFunc::ReturnAdr:
  80     return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  81   case TypeFunc::Parms:
  82   default: {
  83       uint parm_num = proj->_con - TypeFunc::Parms;
  84       const Type *t = _domain->field_at(proj->_con);
  85       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  86         return new (match->C) ConNode(Type::TOP);
  87       uint ideal_reg = t->ideal_reg();
  88       RegMask &rm = match->_calling_convention_mask[parm_num];
  89       return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
  90     }
  91   }
  92   return NULL;
  93 }
  94 
  95 //------------------------------StartOSRNode----------------------------------
  96 // The method start node for an on stack replacement adapter
  97 
  98 //------------------------------osr_domain-----------------------------
  99 const TypeTuple *StartOSRNode::osr_domain() {
 100   const Type **fields = TypeTuple::fields(2);
 101   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 102 
 103   return TypeTuple::make(TypeFunc::Parms+1, fields);
 104 }
 105 
 106 //=============================================================================
 107 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 108   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 109 };
 110 
 111 #ifndef PRODUCT
 112 void ParmNode::dump_spec(outputStream *st) const {
 113   if( _con < TypeFunc::Parms ) {
 114     st->print(names[_con]);
 115   } else {
 116     st->print("Parm%d: ",_con-TypeFunc::Parms);
 117     // Verbose and WizardMode dump bottom_type for all nodes
 118     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 119   }
 120 }
 121 #endif
 122 
 123 uint ParmNode::ideal_reg() const {
 124   switch( _con ) {
 125   case TypeFunc::Control  : // fall through
 126   case TypeFunc::I_O      : // fall through
 127   case TypeFunc::Memory   : return 0;
 128   case TypeFunc::FramePtr : // fall through
 129   case TypeFunc::ReturnAdr: return Op_RegP;
 130   default                 : assert( _con > TypeFunc::Parms, "" );
 131     // fall through
 132   case TypeFunc::Parms    : {
 133     // Type of argument being passed
 134     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 135     return t->ideal_reg();
 136   }
 137   }
 138   ShouldNotReachHere();
 139   return 0;
 140 }
 141 
 142 //=============================================================================
 143 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 144   init_req(TypeFunc::Control,cntrl);
 145   init_req(TypeFunc::I_O,i_o);
 146   init_req(TypeFunc::Memory,memory);
 147   init_req(TypeFunc::FramePtr,frameptr);
 148   init_req(TypeFunc::ReturnAdr,retadr);
 149 }
 150 
 151 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 152   return remove_dead_region(phase, can_reshape) ? this : NULL;
 153 }
 154 
 155 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 156   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 157     ? Type::TOP
 158     : Type::BOTTOM;
 159 }
 160 
 161 // Do we Match on this edge index or not?  No edges on return nodes
 162 uint ReturnNode::match_edge(uint idx) const {
 163   return 0;
 164 }
 165 
 166 
 167 #ifndef PRODUCT
 168 void ReturnNode::dump_req(outputStream *st) const {
 169   // Dump the required inputs, enclosed in '(' and ')'
 170   uint i;                       // Exit value of loop
 171   for (i = 0; i < req(); i++) {    // For all required inputs
 172     if (i == TypeFunc::Parms) st->print("returns");
 173     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 174     else st->print("_ ");
 175   }
 176 }
 177 #endif
 178 
 179 //=============================================================================
 180 RethrowNode::RethrowNode(
 181   Node* cntrl,
 182   Node* i_o,
 183   Node* memory,
 184   Node* frameptr,
 185   Node* ret_adr,
 186   Node* exception
 187 ) : Node(TypeFunc::Parms + 1) {
 188   init_req(TypeFunc::Control  , cntrl    );
 189   init_req(TypeFunc::I_O      , i_o      );
 190   init_req(TypeFunc::Memory   , memory   );
 191   init_req(TypeFunc::FramePtr , frameptr );
 192   init_req(TypeFunc::ReturnAdr, ret_adr);
 193   init_req(TypeFunc::Parms    , exception);
 194 }
 195 
 196 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 197   return remove_dead_region(phase, can_reshape) ? this : NULL;
 198 }
 199 
 200 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 201   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 202     ? Type::TOP
 203     : Type::BOTTOM;
 204 }
 205 
 206 uint RethrowNode::match_edge(uint idx) const {
 207   return 0;
 208 }
 209 
 210 #ifndef PRODUCT
 211 void RethrowNode::dump_req(outputStream *st) const {
 212   // Dump the required inputs, enclosed in '(' and ')'
 213   uint i;                       // Exit value of loop
 214   for (i = 0; i < req(); i++) {    // For all required inputs
 215     if (i == TypeFunc::Parms) st->print("exception");
 216     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 217     else st->print("_ ");
 218   }
 219 }
 220 #endif
 221 
 222 //=============================================================================
 223 // Do we Match on this edge index or not?  Match only target address & method
 224 uint TailCallNode::match_edge(uint idx) const {
 225   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 226 }
 227 
 228 //=============================================================================
 229 // Do we Match on this edge index or not?  Match only target address & oop
 230 uint TailJumpNode::match_edge(uint idx) const {
 231   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 232 }
 233 
 234 //=============================================================================
 235 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 236   _method(method) {
 237   assert(method != NULL, "must be valid call site");
 238   _reexecute = Reexecute_Undefined;
 239   debug_only(_bci = -99);  // random garbage value
 240   debug_only(_map = (SafePointNode*)-1);
 241   _caller = caller;
 242   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 243   _locoff = TypeFunc::Parms;
 244   _stkoff = _locoff + _method->max_locals();
 245   _monoff = _stkoff + _method->max_stack();
 246   _scloff = _monoff;
 247   _endoff = _monoff;
 248   _sp = 0;
 249 }
 250 JVMState::JVMState(int stack_size) :
 251   _method(NULL) {
 252   _bci = InvocationEntryBci;
 253   _reexecute = Reexecute_Undefined;
 254   debug_only(_map = (SafePointNode*)-1);
 255   _caller = NULL;
 256   _depth  = 1;
 257   _locoff = TypeFunc::Parms;
 258   _stkoff = _locoff;
 259   _monoff = _stkoff + stack_size;
 260   _scloff = _monoff;
 261   _endoff = _monoff;
 262   _sp = 0;
 263 }
 264 
 265 //--------------------------------of_depth-------------------------------------
 266 JVMState* JVMState::of_depth(int d) const {
 267   const JVMState* jvmp = this;
 268   assert(0 < d && (uint)d <= depth(), "oob");
 269   for (int skip = depth() - d; skip > 0; skip--) {
 270     jvmp = jvmp->caller();
 271   }
 272   assert(jvmp->depth() == (uint)d, "found the right one");
 273   return (JVMState*)jvmp;
 274 }
 275 
 276 //-----------------------------same_calls_as-----------------------------------
 277 bool JVMState::same_calls_as(const JVMState* that) const {
 278   if (this == that)                    return true;
 279   if (this->depth() != that->depth())  return false;
 280   const JVMState* p = this;
 281   const JVMState* q = that;
 282   for (;;) {
 283     if (p->_method != q->_method)    return false;
 284     if (p->_method == NULL)          return true;   // bci is irrelevant
 285     if (p->_bci    != q->_bci)       return false;
 286     if (p->_reexecute != q->_reexecute)  return false;
 287     p = p->caller();
 288     q = q->caller();
 289     if (p == q)                      return true;
 290     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 291   }
 292 }
 293 
 294 //------------------------------debug_start------------------------------------
 295 uint JVMState::debug_start()  const {
 296   debug_only(JVMState* jvmroot = of_depth(1));
 297   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 298   return of_depth(1)->locoff();
 299 }
 300 
 301 //-------------------------------debug_end-------------------------------------
 302 uint JVMState::debug_end() const {
 303   debug_only(JVMState* jvmroot = of_depth(1));
 304   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 305   return endoff();
 306 }
 307 
 308 //------------------------------debug_depth------------------------------------
 309 uint JVMState::debug_depth() const {
 310   uint total = 0;
 311   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 312     total += jvmp->debug_size();
 313   }
 314   return total;
 315 }
 316 
 317 #ifndef PRODUCT
 318 
 319 //------------------------------format_helper----------------------------------
 320 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 321 // any defined value or not.  If it does, print out the register or constant.
 322 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 323   if (n == NULL) { st->print(" NULL"); return; }
 324   if (n->is_SafePointScalarObject()) {
 325     // Scalar replacement.
 326     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 327     scobjs->append_if_missing(spobj);
 328     int sco_n = scobjs->find(spobj);
 329     assert(sco_n >= 0, "");
 330     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 331     return;
 332   }
 333   if (regalloc->node_regs_max_index() > 0 &&
 334       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 335     char buf[50];
 336     regalloc->dump_register(n,buf);
 337     st->print(" %s%d]=%s",msg,i,buf);
 338   } else {                      // No register, but might be constant
 339     const Type *t = n->bottom_type();
 340     switch (t->base()) {
 341     case Type::Int:
 342       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 343       break;
 344     case Type::AnyPtr:
 345       assert( t == TypePtr::NULL_PTR, "" );
 346       st->print(" %s%d]=#NULL",msg,i);
 347       break;
 348     case Type::AryPtr:
 349     case Type::InstPtr:
 350       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
 351       break;
 352     case Type::KlassPtr:
 353       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_klassptr()->klass());
 354       break;
 355     case Type::MetadataPtr:
 356       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_metadataptr()->metadata());
 357       break;
 358     case Type::NarrowOop:
 359       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
 360       break;
 361     case Type::RawPtr:
 362       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
 363       break;
 364     case Type::DoubleCon:
 365       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 366       break;
 367     case Type::FloatCon:
 368       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 369       break;
 370     case Type::Long:
 371       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
 372       break;
 373     case Type::Half:
 374     case Type::Top:
 375       st->print(" %s%d]=_",msg,i);
 376       break;
 377     default: ShouldNotReachHere();
 378     }
 379   }
 380 }
 381 
 382 //------------------------------format-----------------------------------------
 383 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 384   st->print("        #");
 385   if (_method) {
 386     _method->print_short_name(st);
 387     st->print(" @ bci:%d ",_bci);
 388   } else {
 389     st->print_cr(" runtime stub ");
 390     return;
 391   }
 392   if (n->is_MachSafePoint()) {
 393     GrowableArray<SafePointScalarObjectNode*> scobjs;
 394     MachSafePointNode *mcall = n->as_MachSafePoint();
 395     uint i;
 396     // Print locals
 397     for (i = 0; i < (uint)loc_size(); i++)
 398       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 399     // Print stack
 400     for (i = 0; i < (uint)stk_size(); i++) {
 401       if ((uint)(_stkoff + i) >= mcall->len())
 402         st->print(" oob ");
 403       else
 404        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 405     }
 406     for (i = 0; (int)i < nof_monitors(); i++) {
 407       Node *box = mcall->monitor_box(this, i);
 408       Node *obj = mcall->monitor_obj(this, i);
 409       if (regalloc->node_regs_max_index() > 0 &&
 410           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 411         box = BoxLockNode::box_node(box);
 412         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 413       } else {
 414         OptoReg::Name box_reg = BoxLockNode::reg(box);
 415         st->print(" MON-BOX%d=%s+%d",
 416                    i,
 417                    OptoReg::regname(OptoReg::c_frame_pointer),
 418                    regalloc->reg2offset(box_reg));
 419       }
 420       const char* obj_msg = "MON-OBJ[";
 421       if (EliminateLocks) {
 422         if (BoxLockNode::box_node(box)->is_eliminated())
 423           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 424       }
 425       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 426     }
 427 
 428     for (i = 0; i < (uint)scobjs.length(); i++) {
 429       // Scalar replaced objects.
 430       st->print_cr("");
 431       st->print("        # ScObj" INT32_FORMAT " ", i);
 432       SafePointScalarObjectNode* spobj = scobjs.at(i);
 433       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 434       assert(cik->is_instance_klass() ||
 435              cik->is_array_klass(), "Not supported allocation.");
 436       ciInstanceKlass *iklass = NULL;
 437       if (cik->is_instance_klass()) {
 438         cik->print_name_on(st);
 439         iklass = cik->as_instance_klass();
 440       } else if (cik->is_type_array_klass()) {
 441         cik->as_array_klass()->base_element_type()->print_name_on(st);
 442         st->print("[%d]", spobj->n_fields());
 443       } else if (cik->is_obj_array_klass()) {
 444         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 445         if (cie->is_instance_klass()) {
 446           cie->print_name_on(st);
 447         } else if (cie->is_type_array_klass()) {
 448           cie->as_array_klass()->base_element_type()->print_name_on(st);
 449         } else {
 450           ShouldNotReachHere();
 451         }
 452         st->print("[%d]", spobj->n_fields());
 453         int ndim = cik->as_array_klass()->dimension() - 1;
 454         while (ndim-- > 0) {
 455           st->print("[]");
 456         }
 457       }
 458       st->print("={");
 459       uint nf = spobj->n_fields();
 460       if (nf > 0) {
 461         uint first_ind = spobj->first_index(mcall->jvms());
 462         Node* fld_node = mcall->in(first_ind);
 463         ciField* cifield;
 464         if (iklass != NULL) {
 465           st->print(" [");
 466           cifield = iklass->nonstatic_field_at(0);
 467           cifield->print_name_on(st);
 468           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 469         } else {
 470           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 471         }
 472         for (uint j = 1; j < nf; j++) {
 473           fld_node = mcall->in(first_ind+j);
 474           if (iklass != NULL) {
 475             st->print(", [");
 476             cifield = iklass->nonstatic_field_at(j);
 477             cifield->print_name_on(st);
 478             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 479           } else {
 480             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 481           }
 482         }
 483       }
 484       st->print(" }");
 485     }
 486   }
 487   st->print_cr("");
 488   if (caller() != NULL) caller()->format(regalloc, n, st);
 489 }
 490 
 491 
 492 void JVMState::dump_spec(outputStream *st) const {
 493   if (_method != NULL) {
 494     bool printed = false;
 495     if (!Verbose) {
 496       // The JVMS dumps make really, really long lines.
 497       // Take out the most boring parts, which are the package prefixes.
 498       char buf[500];
 499       stringStream namest(buf, sizeof(buf));
 500       _method->print_short_name(&namest);
 501       if (namest.count() < sizeof(buf)) {
 502         const char* name = namest.base();
 503         if (name[0] == ' ')  ++name;
 504         const char* endcn = strchr(name, ':');  // end of class name
 505         if (endcn == NULL)  endcn = strchr(name, '(');
 506         if (endcn == NULL)  endcn = name + strlen(name);
 507         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 508           --endcn;
 509         st->print(" %s", endcn);
 510         printed = true;
 511       }
 512     }
 513     if (!printed)
 514       _method->print_short_name(st);
 515     st->print(" @ bci:%d",_bci);
 516     if(_reexecute == Reexecute_True)
 517       st->print(" reexecute");
 518   } else {
 519     st->print(" runtime stub");
 520   }
 521   if (caller() != NULL)  caller()->dump_spec(st);
 522 }
 523 
 524 
 525 void JVMState::dump_on(outputStream* st) const {
 526   bool print_map = _map && !((uintptr_t)_map & 1) &&
 527                   ((caller() == NULL) || (caller()->map() != _map));
 528   if (print_map) {
 529     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 530       Node* ex = _map->in(_map->req());  // _map->next_exception()
 531       // skip the first one; it's already being printed
 532       while (ex != NULL && ex->len() > ex->req()) {
 533         ex = ex->in(ex->req());  // ex->next_exception()
 534         ex->dump(1);
 535       }
 536     }
 537     _map->dump(Verbose ? 2 : 1);
 538   }
 539   if (caller() != NULL) {
 540     caller()->dump_on(st);
 541   }
 542   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 543              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 544   if (_method == NULL) {
 545     st->print_cr("(none)");
 546   } else {
 547     _method->print_name(st);
 548     st->cr();
 549     if (bci() >= 0 && bci() < _method->code_size()) {
 550       st->print("    bc: ");
 551       _method->print_codes_on(bci(), bci()+1, st);
 552     }
 553   }
 554 }
 555 
 556 // Extra way to dump a jvms from the debugger,
 557 // to avoid a bug with C++ member function calls.
 558 void dump_jvms(JVMState* jvms) {
 559   jvms->dump();
 560 }
 561 #endif
 562 
 563 //--------------------------clone_shallow--------------------------------------
 564 JVMState* JVMState::clone_shallow(Compile* C) const {
 565   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 566   n->set_bci(_bci);
 567   n->_reexecute = _reexecute;
 568   n->set_locoff(_locoff);
 569   n->set_stkoff(_stkoff);
 570   n->set_monoff(_monoff);
 571   n->set_scloff(_scloff);
 572   n->set_endoff(_endoff);
 573   n->set_sp(_sp);
 574   n->set_map(_map);
 575   return n;
 576 }
 577 
 578 //---------------------------clone_deep----------------------------------------
 579 JVMState* JVMState::clone_deep(Compile* C) const {
 580   JVMState* n = clone_shallow(C);
 581   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 582     p->_caller = p->_caller->clone_shallow(C);
 583   }
 584   assert(n->depth() == depth(), "sanity");
 585   assert(n->debug_depth() == debug_depth(), "sanity");
 586   return n;
 587 }
 588 
 589 /**
 590  * Reset map for all callers
 591  */
 592 void JVMState::set_map_deep(SafePointNode* map) {
 593   for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
 594     p->set_map(map);
 595   }
 596 }
 597 
 598 //=============================================================================
 599 uint CallNode::cmp( const Node &n ) const
 600 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 601 #ifndef PRODUCT
 602 void CallNode::dump_req(outputStream *st) const {
 603   // Dump the required inputs, enclosed in '(' and ')'
 604   uint i;                       // Exit value of loop
 605   for (i = 0; i < req(); i++) {    // For all required inputs
 606     if (i == TypeFunc::Parms) st->print("(");
 607     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 608     else st->print("_ ");
 609   }
 610   st->print(")");
 611 }
 612 
 613 void CallNode::dump_spec(outputStream *st) const {
 614   st->print(" ");
 615   tf()->dump_on(st);
 616   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 617   if (jvms() != NULL)  jvms()->dump_spec(st);
 618 }
 619 #endif
 620 
 621 const Type *CallNode::bottom_type() const { return tf()->range(); }
 622 const Type *CallNode::Value(PhaseTransform *phase) const {
 623   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 624   return tf()->range();
 625 }
 626 
 627 //------------------------------calling_convention-----------------------------
 628 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 629   // Use the standard compiler calling convention
 630   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 631 }
 632 
 633 
 634 //------------------------------match------------------------------------------
 635 // Construct projections for control, I/O, memory-fields, ..., and
 636 // return result(s) along with their RegMask info
 637 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 638   switch (proj->_con) {
 639   case TypeFunc::Control:
 640   case TypeFunc::I_O:
 641   case TypeFunc::Memory:
 642     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 643 
 644   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 645     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 646     // 2nd half of doubles and longs
 647     return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 648 
 649   case TypeFunc::Parms: {       // Normal returns
 650     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 651     OptoRegPair regs = is_CallRuntime()
 652       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 653       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 654     RegMask rm = RegMask(regs.first());
 655     if( OptoReg::is_valid(regs.second()) )
 656       rm.Insert( regs.second() );
 657     return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
 658   }
 659 
 660   case TypeFunc::ReturnAdr:
 661   case TypeFunc::FramePtr:
 662   default:
 663     ShouldNotReachHere();
 664   }
 665   return NULL;
 666 }
 667 
 668 // Do we Match on this edge index or not?  Match no edges
 669 uint CallNode::match_edge(uint idx) const {
 670   return 0;
 671 }
 672 
 673 //
 674 // Determine whether the call could modify the field of the specified
 675 // instance at the specified offset.
 676 //
 677 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
 678   assert((t_oop != NULL), "sanity");
 679   if (t_oop->is_known_instance()) {
 680     // The instance_id is set only for scalar-replaceable allocations which
 681     // are not passed as arguments according to Escape Analysis.
 682     return false;
 683   }
 684   if (t_oop->is_ptr_to_boxed_value()) {
 685     ciKlass* boxing_klass = t_oop->klass();
 686     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
 687       // Skip unrelated boxing methods.
 688       Node* proj = proj_out(TypeFunc::Parms);
 689       if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
 690         return false;
 691       }
 692     }
 693     if (is_CallJava() && as_CallJava()->method() != NULL) {
 694       ciMethod* meth = as_CallJava()->method();
 695       if (meth->is_accessor()) {
 696         return false;
 697       }
 698       // May modify (by reflection) if an boxing object is passed
 699       // as argument or returned.
 700       if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) {
 701         Node* proj = proj_out(TypeFunc::Parms);
 702         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 703         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 704                                  (inst_t->klass() == boxing_klass))) {
 705           return true;
 706         }
 707       }
 708       const TypeTuple* d = tf()->domain();
 709       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 710         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 711         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 712                                  (inst_t->klass() == boxing_klass))) {
 713           return true;
 714         }
 715       }
 716       return false;
 717     }
 718   }
 719   return true;
 720 }
 721 
 722 // Does this call have a direct reference to n other than debug information?
 723 bool CallNode::has_non_debug_use(Node *n) {
 724   const TypeTuple * d = tf()->domain();
 725   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 726     Node *arg = in(i);
 727     if (arg == n) {
 728       return true;
 729     }
 730   }
 731   return false;
 732 }
 733 
 734 // Returns the unique CheckCastPP of a call
 735 // or 'this' if there are several CheckCastPP
 736 // or returns NULL if there is no one.
 737 Node *CallNode::result_cast() {
 738   Node *cast = NULL;
 739 
 740   Node *p = proj_out(TypeFunc::Parms);
 741   if (p == NULL)
 742     return NULL;
 743 
 744   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 745     Node *use = p->fast_out(i);
 746     if (use->is_CheckCastPP()) {
 747       if (cast != NULL) {
 748         return this;  // more than 1 CheckCastPP
 749       }
 750       cast = use;
 751     }
 752   }
 753   return cast;
 754 }
 755 
 756 
 757 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 758   projs->fallthrough_proj      = NULL;
 759   projs->fallthrough_catchproj = NULL;
 760   projs->fallthrough_ioproj    = NULL;
 761   projs->catchall_ioproj       = NULL;
 762   projs->catchall_catchproj    = NULL;
 763   projs->fallthrough_memproj   = NULL;
 764   projs->catchall_memproj      = NULL;
 765   projs->resproj               = NULL;
 766   projs->exobj                 = NULL;
 767 
 768   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 769     ProjNode *pn = fast_out(i)->as_Proj();
 770     if (pn->outcnt() == 0) continue;
 771     switch (pn->_con) {
 772     case TypeFunc::Control:
 773       {
 774         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 775         projs->fallthrough_proj = pn;
 776         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 777         const Node *cn = pn->fast_out(j);
 778         if (cn->is_Catch()) {
 779           ProjNode *cpn = NULL;
 780           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 781             cpn = cn->fast_out(k)->as_Proj();
 782             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 783             if (cpn->_con == CatchProjNode::fall_through_index)
 784               projs->fallthrough_catchproj = cpn;
 785             else {
 786               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 787               projs->catchall_catchproj = cpn;
 788             }
 789           }
 790         }
 791         break;
 792       }
 793     case TypeFunc::I_O:
 794       if (pn->_is_io_use)
 795         projs->catchall_ioproj = pn;
 796       else
 797         projs->fallthrough_ioproj = pn;
 798       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 799         Node* e = pn->out(j);
 800         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 801           assert(projs->exobj == NULL, "only one");
 802           projs->exobj = e;
 803         }
 804       }
 805       break;
 806     case TypeFunc::Memory:
 807       if (pn->_is_io_use)
 808         projs->catchall_memproj = pn;
 809       else
 810         projs->fallthrough_memproj = pn;
 811       break;
 812     case TypeFunc::Parms:
 813       projs->resproj = pn;
 814       break;
 815     default:
 816       assert(false, "unexpected projection from allocation node.");
 817     }
 818   }
 819 
 820   // The resproj may not exist because the result couuld be ignored
 821   // and the exception object may not exist if an exception handler
 822   // swallows the exception but all the other must exist and be found.
 823   assert(projs->fallthrough_proj      != NULL, "must be found");
 824   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
 825   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
 826   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
 827   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
 828   if (separate_io_proj) {
 829     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
 830     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
 831   }
 832 }
 833 
 834 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 835   CallGenerator* cg = generator();
 836   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
 837     // Check whether this MH handle call becomes a candidate for inlining
 838     ciMethod* callee = cg->method();
 839     vmIntrinsics::ID iid = callee->intrinsic_id();
 840     if (iid == vmIntrinsics::_invokeBasic) {
 841       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
 842         phase->C->prepend_late_inline(cg);
 843         set_generator(NULL);
 844       }
 845     } else {
 846       assert(callee->has_member_arg(), "wrong type of call?");
 847       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
 848         phase->C->prepend_late_inline(cg);
 849         set_generator(NULL);
 850       }
 851     }
 852   }
 853   return SafePointNode::Ideal(phase, can_reshape);
 854 }
 855 
 856 
 857 //=============================================================================
 858 uint CallJavaNode::size_of() const { return sizeof(*this); }
 859 uint CallJavaNode::cmp( const Node &n ) const {
 860   CallJavaNode &call = (CallJavaNode&)n;
 861   return CallNode::cmp(call) && _method == call._method;
 862 }
 863 #ifndef PRODUCT
 864 void CallJavaNode::dump_spec(outputStream *st) const {
 865   if( _method ) _method->print_short_name(st);
 866   CallNode::dump_spec(st);
 867 }
 868 #endif
 869 
 870 //=============================================================================
 871 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 872 uint CallStaticJavaNode::cmp( const Node &n ) const {
 873   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 874   return CallJavaNode::cmp(call);
 875 }
 876 
 877 //----------------------------uncommon_trap_request----------------------------
 878 // If this is an uncommon trap, return the request code, else zero.
 879 int CallStaticJavaNode::uncommon_trap_request() const {
 880   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 881     return extract_uncommon_trap_request(this);
 882   }
 883   return 0;
 884 }
 885 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 886 #ifndef PRODUCT
 887   if (!(call->req() > TypeFunc::Parms &&
 888         call->in(TypeFunc::Parms) != NULL &&
 889         call->in(TypeFunc::Parms)->is_Con())) {
 890     assert(_in_dump_cnt != 0, "OK if dumping");
 891     tty->print("[bad uncommon trap]");
 892     return 0;
 893   }
 894 #endif
 895   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 896 }
 897 
 898 #ifndef PRODUCT
 899 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 900   st->print("# Static ");
 901   if (_name != NULL) {
 902     st->print("%s", _name);
 903     int trap_req = uncommon_trap_request();
 904     if (trap_req != 0) {
 905       char buf[100];
 906       st->print("(%s)",
 907                  Deoptimization::format_trap_request(buf, sizeof(buf),
 908                                                      trap_req));
 909     }
 910     st->print(" ");
 911   }
 912   CallJavaNode::dump_spec(st);
 913 }
 914 #endif
 915 
 916 //=============================================================================
 917 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 918 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 919   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 920   return CallJavaNode::cmp(call);
 921 }
 922 #ifndef PRODUCT
 923 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 924   st->print("# Dynamic ");
 925   CallJavaNode::dump_spec(st);
 926 }
 927 #endif
 928 
 929 //=============================================================================
 930 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 931 uint CallRuntimeNode::cmp( const Node &n ) const {
 932   CallRuntimeNode &call = (CallRuntimeNode&)n;
 933   return CallNode::cmp(call) && !strcmp(_name,call._name);
 934 }
 935 #ifndef PRODUCT
 936 void CallRuntimeNode::dump_spec(outputStream *st) const {
 937   st->print("# ");
 938   st->print(_name);
 939   CallNode::dump_spec(st);
 940 }
 941 #endif
 942 
 943 //------------------------------calling_convention-----------------------------
 944 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 945   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
 946 }
 947 
 948 //=============================================================================
 949 //------------------------------calling_convention-----------------------------
 950 
 951 
 952 //=============================================================================
 953 #ifndef PRODUCT
 954 void CallLeafNode::dump_spec(outputStream *st) const {
 955   st->print("# ");
 956   st->print(_name);
 957   CallNode::dump_spec(st);
 958 }
 959 #endif
 960 
 961 //=============================================================================
 962 
 963 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
 964   assert(verify_jvms(jvms), "jvms must match");
 965   int loc = jvms->locoff() + idx;
 966   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
 967     // If current local idx is top then local idx - 1 could
 968     // be a long/double that needs to be killed since top could
 969     // represent the 2nd half ofthe long/double.
 970     uint ideal = in(loc -1)->ideal_reg();
 971     if (ideal == Op_RegD || ideal == Op_RegL) {
 972       // set other (low index) half to top
 973       set_req(loc - 1, in(loc));
 974     }
 975   }
 976   set_req(loc, c);
 977 }
 978 
 979 uint SafePointNode::size_of() const { return sizeof(*this); }
 980 uint SafePointNode::cmp( const Node &n ) const {
 981   return (&n == this);          // Always fail except on self
 982 }
 983 
 984 //-------------------------set_next_exception----------------------------------
 985 void SafePointNode::set_next_exception(SafePointNode* n) {
 986   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
 987   if (len() == req()) {
 988     if (n != NULL)  add_prec(n);
 989   } else {
 990     set_prec(req(), n);
 991   }
 992 }
 993 
 994 
 995 //----------------------------next_exception-----------------------------------
 996 SafePointNode* SafePointNode::next_exception() const {
 997   if (len() == req()) {
 998     return NULL;
 999   } else {
1000     Node* n = in(req());
1001     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1002     return (SafePointNode*) n;
1003   }
1004 }
1005 
1006 
1007 //------------------------------Ideal------------------------------------------
1008 // Skip over any collapsed Regions
1009 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1010   return remove_dead_region(phase, can_reshape) ? this : NULL;
1011 }
1012 
1013 //------------------------------Identity---------------------------------------
1014 // Remove obviously duplicate safepoints
1015 Node *SafePointNode::Identity( PhaseTransform *phase ) {
1016 
1017   // If you have back to back safepoints, remove one
1018   if( in(TypeFunc::Control)->is_SafePoint() )
1019     return in(TypeFunc::Control);
1020 
1021   if( in(0)->is_Proj() ) {
1022     Node *n0 = in(0)->in(0);
1023     // Check if he is a call projection (except Leaf Call)
1024     if( n0->is_Catch() ) {
1025       n0 = n0->in(0)->in(0);
1026       assert( n0->is_Call(), "expect a call here" );
1027     }
1028     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1029       // Useless Safepoint, so remove it
1030       return in(TypeFunc::Control);
1031     }
1032   }
1033 
1034   return this;
1035 }
1036 
1037 //------------------------------Value------------------------------------------
1038 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
1039   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1040   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
1041   return Type::CONTROL;
1042 }
1043 
1044 #ifndef PRODUCT
1045 void SafePointNode::dump_spec(outputStream *st) const {
1046   st->print(" SafePoint ");
1047 }
1048 #endif
1049 
1050 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1051   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1052   // Values outside the domain represent debug info
1053   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1054 }
1055 const RegMask &SafePointNode::out_RegMask() const {
1056   return RegMask::Empty;
1057 }
1058 
1059 
1060 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1061   assert((int)grow_by > 0, "sanity");
1062   int monoff = jvms->monoff();
1063   int scloff = jvms->scloff();
1064   int endoff = jvms->endoff();
1065   assert(endoff == (int)req(), "no other states or debug info after me");
1066   assert(jvms->scl_size() == 0, "parsed code should not have scalar objects");
1067   Node* top = Compile::current()->top();
1068   for (uint i = 0; i < grow_by; i++) {
1069     ins_req(monoff, top);
1070   }
1071   jvms->set_monoff(monoff + grow_by);
1072   jvms->set_scloff(scloff + grow_by);
1073   jvms->set_endoff(endoff + grow_by);
1074 }
1075 
1076 void SafePointNode::push_monitor(const FastLockNode *lock) {
1077   // Add a LockNode, which points to both the original BoxLockNode (the
1078   // stack space for the monitor) and the Object being locked.
1079   const int MonitorEdges = 2;
1080   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1081   assert(req() == jvms()->endoff(), "correct sizing");
1082   assert((jvms()->scl_size() == 0), "parsed code should not have scalar objects");
1083   int nextmon = jvms()->scloff();
1084   if (GenerateSynchronizationCode) {
1085     add_req(lock->box_node());
1086     add_req(lock->obj_node());
1087   } else {
1088     Node* top = Compile::current()->top();
1089     add_req(top);
1090     add_req(top);
1091   }
1092   jvms()->set_scloff(nextmon+MonitorEdges);
1093   jvms()->set_endoff(req());
1094 }
1095 
1096 void SafePointNode::pop_monitor() {
1097   // Delete last monitor from debug info
1098   assert((jvms()->scl_size() == 0), "parsed code should not have scalar objects");
1099   debug_only(int num_before_pop = jvms()->nof_monitors());
1100   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
1101   int scloff = jvms()->scloff();
1102   int endoff = jvms()->endoff();
1103   int new_scloff = scloff - MonitorEdges;
1104   int new_endoff = endoff - MonitorEdges;
1105   jvms()->set_scloff(new_scloff);
1106   jvms()->set_endoff(new_endoff);
1107   while (scloff > new_scloff)  del_req(--scloff);
1108   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1109 }
1110 
1111 Node *SafePointNode::peek_monitor_box() const {
1112   int mon = jvms()->nof_monitors() - 1;
1113   assert(mon >= 0, "most have a monitor");
1114   return monitor_box(jvms(), mon);
1115 }
1116 
1117 Node *SafePointNode::peek_monitor_obj() const {
1118   int mon = jvms()->nof_monitors() - 1;
1119   assert(mon >= 0, "most have a monitor");
1120   return monitor_obj(jvms(), mon);
1121 }
1122 
1123 // Do we Match on this edge index or not?  Match no edges
1124 uint SafePointNode::match_edge(uint idx) const {
1125   if( !needs_polling_address_input() )
1126     return 0;
1127 
1128   return (TypeFunc::Parms == idx);
1129 }
1130 
1131 //==============  SafePointScalarObjectNode  ==============
1132 
1133 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1134 #ifdef ASSERT
1135                                                      AllocateNode* alloc,
1136 #endif
1137                                                      uint first_index,
1138                                                      uint n_fields) :
1139   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1140 #ifdef ASSERT
1141   _alloc(alloc),
1142 #endif
1143   _first_index(first_index),
1144   _n_fields(n_fields)
1145 {
1146   init_class_id(Class_SafePointScalarObject);
1147 }
1148 
1149 // Do not allow value-numbering for SafePointScalarObject node.
1150 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1151 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1152   return (&n == this); // Always fail except on self
1153 }
1154 
1155 uint SafePointScalarObjectNode::ideal_reg() const {
1156   return 0; // No matching to machine instruction
1157 }
1158 
1159 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1160   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1161 }
1162 
1163 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1164   return RegMask::Empty;
1165 }
1166 
1167 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1168   return 0;
1169 }
1170 
1171 SafePointScalarObjectNode*
1172 SafePointScalarObjectNode::clone(Dict* sosn_map) const {
1173   void* cached = (*sosn_map)[(void*)this];
1174   if (cached != NULL) {
1175     return (SafePointScalarObjectNode*)cached;
1176   }
1177   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1178   sosn_map->Insert((void*)this, (void*)res);
1179   return res;
1180 }
1181 
1182 
1183 #ifndef PRODUCT
1184 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1185   st->print(" # fields@[%d..%d]", first_index(),
1186              first_index() + n_fields() - 1);
1187 }
1188 
1189 #endif
1190 
1191 //=============================================================================
1192 uint AllocateNode::size_of() const { return sizeof(*this); }
1193 
1194 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1195                            Node *ctrl, Node *mem, Node *abio,
1196                            Node *size, Node *klass_node, Node *initial_test)
1197   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1198 {
1199   init_class_id(Class_Allocate);
1200   init_flags(Flag_is_macro);
1201   _is_scalar_replaceable = false;
1202   _is_non_escaping = false;
1203   Node *topnode = C->top();
1204 
1205   init_req( TypeFunc::Control  , ctrl );
1206   init_req( TypeFunc::I_O      , abio );
1207   init_req( TypeFunc::Memory   , mem );
1208   init_req( TypeFunc::ReturnAdr, topnode );
1209   init_req( TypeFunc::FramePtr , topnode );
1210   init_req( AllocSize          , size);
1211   init_req( KlassNode          , klass_node);
1212   init_req( InitialTest        , initial_test);
1213   init_req( ALength            , topnode);
1214   C->add_macro_node(this);
1215 }
1216 
1217 //=============================================================================
1218 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1219   if (remove_dead_region(phase, can_reshape))  return this;
1220   // Don't bother trying to transform a dead node
1221   if (in(0) && in(0)->is_top())  return NULL;
1222 
1223   const Type* type = phase->type(Ideal_length());
1224   if (type->isa_int() && type->is_int()->_hi < 0) {
1225     if (can_reshape) {
1226       PhaseIterGVN *igvn = phase->is_IterGVN();
1227       // Unreachable fall through path (negative array length),
1228       // the allocation can only throw so disconnect it.
1229       Node* proj = proj_out(TypeFunc::Control);
1230       Node* catchproj = NULL;
1231       if (proj != NULL) {
1232         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1233           Node *cn = proj->fast_out(i);
1234           if (cn->is_Catch()) {
1235             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1236             break;
1237           }
1238         }
1239       }
1240       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1241           (catchproj->outcnt() > 1 ||
1242            catchproj->unique_out()->Opcode() != Op_Halt)) {
1243         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1244         Node* nproj = catchproj->clone();
1245         igvn->register_new_node_with_optimizer(nproj);
1246 
1247         Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1248         frame = phase->transform(frame);
1249         // Halt & Catch Fire
1250         Node *halt = new (phase->C) HaltNode( nproj, frame );
1251         phase->C->root()->add_req(halt);
1252         phase->transform(halt);
1253 
1254         igvn->replace_node(catchproj, phase->C->top());
1255         return this;
1256       }
1257     } else {
1258       // Can't correct it during regular GVN so register for IGVN
1259       phase->C->record_for_igvn(this);
1260     }
1261   }
1262   return NULL;
1263 }
1264 
1265 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1266 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1267 // a CastII is appropriate, return NULL.
1268 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1269   Node *length = in(AllocateNode::ALength);
1270   assert(length != NULL, "length is not null");
1271 
1272   const TypeInt* length_type = phase->find_int_type(length);
1273   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1274 
1275   if (ary_type != NULL && length_type != NULL) {
1276     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1277     if (narrow_length_type != length_type) {
1278       // Assert one of:
1279       //   - the narrow_length is 0
1280       //   - the narrow_length is not wider than length
1281       assert(narrow_length_type == TypeInt::ZERO ||
1282              length_type->is_con() && narrow_length_type->is_con() &&
1283                 (narrow_length_type->_hi <= length_type->_lo) ||
1284              (narrow_length_type->_hi <= length_type->_hi &&
1285               narrow_length_type->_lo >= length_type->_lo),
1286              "narrow type must be narrower than length type");
1287 
1288       // Return NULL if new nodes are not allowed
1289       if (!allow_new_nodes) return NULL;
1290       // Create a cast which is control dependent on the initialization to
1291       // propagate the fact that the array length must be positive.
1292       length = new (phase->C) CastIINode(length, narrow_length_type);
1293       length->set_req(0, initialization()->proj_out(0));
1294     }
1295   }
1296 
1297   return length;
1298 }
1299 
1300 //=============================================================================
1301 uint LockNode::size_of() const { return sizeof(*this); }
1302 
1303 // Redundant lock elimination
1304 //
1305 // There are various patterns of locking where we release and
1306 // immediately reacquire a lock in a piece of code where no operations
1307 // occur in between that would be observable.  In those cases we can
1308 // skip releasing and reacquiring the lock without violating any
1309 // fairness requirements.  Doing this around a loop could cause a lock
1310 // to be held for a very long time so we concentrate on non-looping
1311 // control flow.  We also require that the operations are fully
1312 // redundant meaning that we don't introduce new lock operations on
1313 // some paths so to be able to eliminate it on others ala PRE.  This
1314 // would probably require some more extensive graph manipulation to
1315 // guarantee that the memory edges were all handled correctly.
1316 //
1317 // Assuming p is a simple predicate which can't trap in any way and s
1318 // is a synchronized method consider this code:
1319 //
1320 //   s();
1321 //   if (p)
1322 //     s();
1323 //   else
1324 //     s();
1325 //   s();
1326 //
1327 // 1. The unlocks of the first call to s can be eliminated if the
1328 // locks inside the then and else branches are eliminated.
1329 //
1330 // 2. The unlocks of the then and else branches can be eliminated if
1331 // the lock of the final call to s is eliminated.
1332 //
1333 // Either of these cases subsumes the simple case of sequential control flow
1334 //
1335 // Addtionally we can eliminate versions without the else case:
1336 //
1337 //   s();
1338 //   if (p)
1339 //     s();
1340 //   s();
1341 //
1342 // 3. In this case we eliminate the unlock of the first s, the lock
1343 // and unlock in the then case and the lock in the final s.
1344 //
1345 // Note also that in all these cases the then/else pieces don't have
1346 // to be trivial as long as they begin and end with synchronization
1347 // operations.
1348 //
1349 //   s();
1350 //   if (p)
1351 //     s();
1352 //     f();
1353 //     s();
1354 //   s();
1355 //
1356 // The code will work properly for this case, leaving in the unlock
1357 // before the call to f and the relock after it.
1358 //
1359 // A potentially interesting case which isn't handled here is when the
1360 // locking is partially redundant.
1361 //
1362 //   s();
1363 //   if (p)
1364 //     s();
1365 //
1366 // This could be eliminated putting unlocking on the else case and
1367 // eliminating the first unlock and the lock in the then side.
1368 // Alternatively the unlock could be moved out of the then side so it
1369 // was after the merge and the first unlock and second lock
1370 // eliminated.  This might require less manipulation of the memory
1371 // state to get correct.
1372 //
1373 // Additionally we might allow work between a unlock and lock before
1374 // giving up eliminating the locks.  The current code disallows any
1375 // conditional control flow between these operations.  A formulation
1376 // similar to partial redundancy elimination computing the
1377 // availability of unlocking and the anticipatability of locking at a
1378 // program point would allow detection of fully redundant locking with
1379 // some amount of work in between.  I'm not sure how often I really
1380 // think that would occur though.  Most of the cases I've seen
1381 // indicate it's likely non-trivial work would occur in between.
1382 // There may be other more complicated constructs where we could
1383 // eliminate locking but I haven't seen any others appear as hot or
1384 // interesting.
1385 //
1386 // Locking and unlocking have a canonical form in ideal that looks
1387 // roughly like this:
1388 //
1389 //              <obj>
1390 //                | \\------+
1391 //                |  \       \
1392 //                | BoxLock   \
1393 //                |  |   |     \
1394 //                |  |    \     \
1395 //                |  |   FastLock
1396 //                |  |   /
1397 //                |  |  /
1398 //                |  |  |
1399 //
1400 //               Lock
1401 //                |
1402 //            Proj #0
1403 //                |
1404 //            MembarAcquire
1405 //                |
1406 //            Proj #0
1407 //
1408 //            MembarRelease
1409 //                |
1410 //            Proj #0
1411 //                |
1412 //              Unlock
1413 //                |
1414 //            Proj #0
1415 //
1416 //
1417 // This code proceeds by processing Lock nodes during PhaseIterGVN
1418 // and searching back through its control for the proper code
1419 // patterns.  Once it finds a set of lock and unlock operations to
1420 // eliminate they are marked as eliminatable which causes the
1421 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1422 //
1423 //=============================================================================
1424 
1425 //
1426 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1427 //   - copy regions.  (These may not have been optimized away yet.)
1428 //   - eliminated locking nodes
1429 //
1430 static Node *next_control(Node *ctrl) {
1431   if (ctrl == NULL)
1432     return NULL;
1433   while (1) {
1434     if (ctrl->is_Region()) {
1435       RegionNode *r = ctrl->as_Region();
1436       Node *n = r->is_copy();
1437       if (n == NULL)
1438         break;  // hit a region, return it
1439       else
1440         ctrl = n;
1441     } else if (ctrl->is_Proj()) {
1442       Node *in0 = ctrl->in(0);
1443       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1444         ctrl = in0->in(0);
1445       } else {
1446         break;
1447       }
1448     } else {
1449       break; // found an interesting control
1450     }
1451   }
1452   return ctrl;
1453 }
1454 //
1455 // Given a control, see if it's the control projection of an Unlock which
1456 // operating on the same object as lock.
1457 //
1458 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1459                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1460   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1461   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1462     Node *n = ctrl_proj->in(0);
1463     if (n != NULL && n->is_Unlock()) {
1464       UnlockNode *unlock = n->as_Unlock();
1465       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1466           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1467           !unlock->is_eliminated()) {
1468         lock_ops.append(unlock);
1469         return true;
1470       }
1471     }
1472   }
1473   return false;
1474 }
1475 
1476 //
1477 // Find the lock matching an unlock.  Returns null if a safepoint
1478 // or complicated control is encountered first.
1479 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1480   LockNode *lock_result = NULL;
1481   // find the matching lock, or an intervening safepoint
1482   Node *ctrl = next_control(unlock->in(0));
1483   while (1) {
1484     assert(ctrl != NULL, "invalid control graph");
1485     assert(!ctrl->is_Start(), "missing lock for unlock");
1486     if (ctrl->is_top()) break;  // dead control path
1487     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1488     if (ctrl->is_SafePoint()) {
1489         break;  // found a safepoint (may be the lock we are searching for)
1490     } else if (ctrl->is_Region()) {
1491       // Check for a simple diamond pattern.  Punt on anything more complicated
1492       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1493         Node *in1 = next_control(ctrl->in(1));
1494         Node *in2 = next_control(ctrl->in(2));
1495         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1496              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1497           ctrl = next_control(in1->in(0)->in(0));
1498         } else {
1499           break;
1500         }
1501       } else {
1502         break;
1503       }
1504     } else {
1505       ctrl = next_control(ctrl->in(0));  // keep searching
1506     }
1507   }
1508   if (ctrl->is_Lock()) {
1509     LockNode *lock = ctrl->as_Lock();
1510     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1511         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1512       lock_result = lock;
1513     }
1514   }
1515   return lock_result;
1516 }
1517 
1518 // This code corresponds to case 3 above.
1519 
1520 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1521                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1522   Node* if_node = node->in(0);
1523   bool  if_true = node->is_IfTrue();
1524 
1525   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1526     Node *lock_ctrl = next_control(if_node->in(0));
1527     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1528       Node* lock1_node = NULL;
1529       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1530       if (if_true) {
1531         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1532           lock1_node = proj->unique_out();
1533         }
1534       } else {
1535         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1536           lock1_node = proj->unique_out();
1537         }
1538       }
1539       if (lock1_node != NULL && lock1_node->is_Lock()) {
1540         LockNode *lock1 = lock1_node->as_Lock();
1541         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1542             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1543             !lock1->is_eliminated()) {
1544           lock_ops.append(lock1);
1545           return true;
1546         }
1547       }
1548     }
1549   }
1550 
1551   lock_ops.trunc_to(0);
1552   return false;
1553 }
1554 
1555 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1556                                GrowableArray<AbstractLockNode*> &lock_ops) {
1557   // check each control merging at this point for a matching unlock.
1558   // in(0) should be self edge so skip it.
1559   for (int i = 1; i < (int)region->req(); i++) {
1560     Node *in_node = next_control(region->in(i));
1561     if (in_node != NULL) {
1562       if (find_matching_unlock(in_node, lock, lock_ops)) {
1563         // found a match so keep on checking.
1564         continue;
1565       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1566         continue;
1567       }
1568 
1569       // If we fall through to here then it was some kind of node we
1570       // don't understand or there wasn't a matching unlock, so give
1571       // up trying to merge locks.
1572       lock_ops.trunc_to(0);
1573       return false;
1574     }
1575   }
1576   return true;
1577 
1578 }
1579 
1580 #ifndef PRODUCT
1581 //
1582 // Create a counter which counts the number of times this lock is acquired
1583 //
1584 void AbstractLockNode::create_lock_counter(JVMState* state) {
1585   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1586 }
1587 
1588 void AbstractLockNode::set_eliminated_lock_counter() {
1589   if (_counter) {
1590     // Update the counter to indicate that this lock was eliminated.
1591     // The counter update code will stay around even though the
1592     // optimizer will eliminate the lock operation itself.
1593     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1594   }
1595 }
1596 #endif
1597 
1598 //=============================================================================
1599 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1600 
1601   // perform any generic optimizations first (returns 'this' or NULL)
1602   Node *result = SafePointNode::Ideal(phase, can_reshape);
1603   if (result != NULL)  return result;
1604   // Don't bother trying to transform a dead node
1605   if (in(0) && in(0)->is_top())  return NULL;
1606 
1607   // Now see if we can optimize away this lock.  We don't actually
1608   // remove the locking here, we simply set the _eliminate flag which
1609   // prevents macro expansion from expanding the lock.  Since we don't
1610   // modify the graph, the value returned from this function is the
1611   // one computed above.
1612   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1613     //
1614     // If we are locking an unescaped object, the lock/unlock is unnecessary
1615     //
1616     ConnectionGraph *cgr = phase->C->congraph();
1617     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1618       assert(!is_eliminated() || is_coarsened(), "sanity");
1619       // The lock could be marked eliminated by lock coarsening
1620       // code during first IGVN before EA. Replace coarsened flag
1621       // to eliminate all associated locks/unlocks.
1622       this->set_non_esc_obj();
1623       return result;
1624     }
1625 
1626     //
1627     // Try lock coarsening
1628     //
1629     PhaseIterGVN* iter = phase->is_IterGVN();
1630     if (iter != NULL && !is_eliminated()) {
1631 
1632       GrowableArray<AbstractLockNode*>   lock_ops;
1633 
1634       Node *ctrl = next_control(in(0));
1635 
1636       // now search back for a matching Unlock
1637       if (find_matching_unlock(ctrl, this, lock_ops)) {
1638         // found an unlock directly preceding this lock.  This is the
1639         // case of single unlock directly control dependent on a
1640         // single lock which is the trivial version of case 1 or 2.
1641       } else if (ctrl->is_Region() ) {
1642         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1643         // found lock preceded by multiple unlocks along all paths
1644         // joining at this point which is case 3 in description above.
1645         }
1646       } else {
1647         // see if this lock comes from either half of an if and the
1648         // predecessors merges unlocks and the other half of the if
1649         // performs a lock.
1650         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1651           // found unlock splitting to an if with locks on both branches.
1652         }
1653       }
1654 
1655       if (lock_ops.length() > 0) {
1656         // add ourselves to the list of locks to be eliminated.
1657         lock_ops.append(this);
1658 
1659   #ifndef PRODUCT
1660         if (PrintEliminateLocks) {
1661           int locks = 0;
1662           int unlocks = 0;
1663           for (int i = 0; i < lock_ops.length(); i++) {
1664             AbstractLockNode* lock = lock_ops.at(i);
1665             if (lock->Opcode() == Op_Lock)
1666               locks++;
1667             else
1668               unlocks++;
1669             if (Verbose) {
1670               lock->dump(1);
1671             }
1672           }
1673           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1674         }
1675   #endif
1676 
1677         // for each of the identified locks, mark them
1678         // as eliminatable
1679         for (int i = 0; i < lock_ops.length(); i++) {
1680           AbstractLockNode* lock = lock_ops.at(i);
1681 
1682           // Mark it eliminated by coarsening and update any counters
1683           lock->set_coarsened();
1684         }
1685       } else if (ctrl->is_Region() &&
1686                  iter->_worklist.member(ctrl)) {
1687         // We weren't able to find any opportunities but the region this
1688         // lock is control dependent on hasn't been processed yet so put
1689         // this lock back on the worklist so we can check again once any
1690         // region simplification has occurred.
1691         iter->_worklist.push(this);
1692       }
1693     }
1694   }
1695 
1696   return result;
1697 }
1698 
1699 //=============================================================================
1700 bool LockNode::is_nested_lock_region() {
1701   BoxLockNode* box = box_node()->as_BoxLock();
1702   int stk_slot = box->stack_slot();
1703   if (stk_slot <= 0)
1704     return false; // External lock or it is not Box (Phi node).
1705 
1706   // Ignore complex cases: merged locks or multiple locks.
1707   Node* obj = obj_node();
1708   LockNode* unique_lock = NULL;
1709   if (!box->is_simple_lock_region(&unique_lock, obj) ||
1710       (unique_lock != this)) {
1711     return false;
1712   }
1713 
1714   // Look for external lock for the same object.
1715   SafePointNode* sfn = this->as_SafePoint();
1716   JVMState* youngest_jvms = sfn->jvms();
1717   int max_depth = youngest_jvms->depth();
1718   for (int depth = 1; depth <= max_depth; depth++) {
1719     JVMState* jvms = youngest_jvms->of_depth(depth);
1720     int num_mon  = jvms->nof_monitors();
1721     // Loop over monitors
1722     for (int idx = 0; idx < num_mon; idx++) {
1723       Node* obj_node = sfn->monitor_obj(jvms, idx);
1724       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1725       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1726         return true;
1727       }
1728     }
1729   }
1730   return false;
1731 }
1732 
1733 //=============================================================================
1734 uint UnlockNode::size_of() const { return sizeof(*this); }
1735 
1736 //=============================================================================
1737 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1738 
1739   // perform any generic optimizations first (returns 'this' or NULL)
1740   Node *result = SafePointNode::Ideal(phase, can_reshape);
1741   if (result != NULL)  return result;
1742   // Don't bother trying to transform a dead node
1743   if (in(0) && in(0)->is_top())  return NULL;
1744 
1745   // Now see if we can optimize away this unlock.  We don't actually
1746   // remove the unlocking here, we simply set the _eliminate flag which
1747   // prevents macro expansion from expanding the unlock.  Since we don't
1748   // modify the graph, the value returned from this function is the
1749   // one computed above.
1750   // Escape state is defined after Parse phase.
1751   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1752     //
1753     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1754     //
1755     ConnectionGraph *cgr = phase->C->congraph();
1756     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1757       assert(!is_eliminated() || is_coarsened(), "sanity");
1758       // The lock could be marked eliminated by lock coarsening
1759       // code during first IGVN before EA. Replace coarsened flag
1760       // to eliminate all associated locks/unlocks.
1761       this->set_non_esc_obj();
1762     }
1763   }
1764   return result;
1765 }