1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/compile.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/locknode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/macro.hpp"
  36 #include "opto/memnode.hpp"
  37 #include "opto/node.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "opto/type.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 
  45 
  46 //
  47 // Replace any references to "oldref" in inputs to "use" with "newref".
  48 // Returns the number of replacements made.
  49 //
  50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  51   int nreplacements = 0;
  52   uint req = use->req();
  53   for (uint j = 0; j < use->len(); j++) {
  54     Node *uin = use->in(j);
  55     if (uin == oldref) {
  56       if (j < req)
  57         use->set_req(j, newref);
  58       else
  59         use->set_prec(j, newref);
  60       nreplacements++;
  61     } else if (j >= req && uin == NULL) {
  62       break;
  63     }
  64   }
  65   return nreplacements;
  66 }
  67 
  68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  69   // Copy debug information and adjust JVMState information
  70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  71   uint new_dbg_start = newcall->tf()->domain()->cnt();
  72   int jvms_adj  = new_dbg_start - old_dbg_start;
  73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  74 
  75   Dict* sosn_map = new Dict(cmpkey,hashkey);
  76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  77     Node* old_in = oldcall->in(i);
  78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  81       uint old_unique = C->unique();
  82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
  83       if (old_unique != C->unique()) {
  84         new_in->set_req(0, C->root()); // reset control edge
  85         new_in = transform_later(new_in); // Register new node.
  86       }
  87       old_in = new_in;
  88     }
  89     newcall->add_req(old_in);
  90   }
  91 
  92   newcall->set_jvms(oldcall->jvms());
  93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  94     jvms->set_map(newcall);
  95     jvms->set_locoff(jvms->locoff()+jvms_adj);
  96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  97     jvms->set_monoff(jvms->monoff()+jvms_adj);
  98     jvms->set_scloff(jvms->scloff()+jvms_adj);
  99     jvms->set_endoff(jvms->endoff()+jvms_adj);
 100   }
 101 }
 102 
 103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 104   Node* cmp;
 105   if (mask != 0) {
 106     Node* and_node = transform_later(new (C) AndXNode(word, MakeConX(mask)));
 107     cmp = transform_later(new (C) CmpXNode(and_node, MakeConX(bits)));
 108   } else {
 109     cmp = word;
 110   }
 111   Node* bol = transform_later(new (C) BoolNode(cmp, BoolTest::ne));
 112   IfNode* iff = new (C) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 113   transform_later(iff);
 114 
 115   // Fast path taken.
 116   Node *fast_taken = transform_later( new (C) IfFalseNode(iff) );
 117 
 118   // Fast path not-taken, i.e. slow path
 119   Node *slow_taken = transform_later( new (C) IfTrueNode(iff) );
 120 
 121   if (return_fast_path) {
 122     region->init_req(edge, slow_taken); // Capture slow-control
 123     return fast_taken;
 124   } else {
 125     region->init_req(edge, fast_taken); // Capture fast-control
 126     return slow_taken;
 127   }
 128 }
 129 
 130 //--------------------copy_predefined_input_for_runtime_call--------------------
 131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 132   // Set fixed predefined input arguments
 133   call->init_req( TypeFunc::Control, ctrl );
 134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 138 }
 139 
 140 //------------------------------make_slow_call---------------------------------
 141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
 142 
 143   // Slow-path call
 144  CallNode *call = leaf_name
 145    ? (CallNode*)new (C) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 146    : (CallNode*)new (C) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 147 
 148   // Slow path call has no side-effects, uses few values
 149   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 150   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 151   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 152   copy_call_debug_info(oldcall, call);
 153   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 154   _igvn.replace_node(oldcall, call);
 155   transform_later(call);
 156 
 157   return call;
 158 }
 159 
 160 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 161   _fallthroughproj = NULL;
 162   _fallthroughcatchproj = NULL;
 163   _ioproj_fallthrough = NULL;
 164   _ioproj_catchall = NULL;
 165   _catchallcatchproj = NULL;
 166   _memproj_fallthrough = NULL;
 167   _memproj_catchall = NULL;
 168   _resproj = NULL;
 169   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 170     ProjNode *pn = call->fast_out(i)->as_Proj();
 171     switch (pn->_con) {
 172       case TypeFunc::Control:
 173       {
 174         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 175         _fallthroughproj = pn;
 176         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 177         const Node *cn = pn->fast_out(j);
 178         if (cn->is_Catch()) {
 179           ProjNode *cpn = NULL;
 180           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 181             cpn = cn->fast_out(k)->as_Proj();
 182             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 183             if (cpn->_con == CatchProjNode::fall_through_index)
 184               _fallthroughcatchproj = cpn;
 185             else {
 186               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 187               _catchallcatchproj = cpn;
 188             }
 189           }
 190         }
 191         break;
 192       }
 193       case TypeFunc::I_O:
 194         if (pn->_is_io_use)
 195           _ioproj_catchall = pn;
 196         else
 197           _ioproj_fallthrough = pn;
 198         break;
 199       case TypeFunc::Memory:
 200         if (pn->_is_io_use)
 201           _memproj_catchall = pn;
 202         else
 203           _memproj_fallthrough = pn;
 204         break;
 205       case TypeFunc::Parms:
 206         _resproj = pn;
 207         break;
 208       default:
 209         assert(false, "unexpected projection from allocation node.");
 210     }
 211   }
 212 
 213 }
 214 
 215 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 216 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 217   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 218   if (!UseG1GC) {
 219     // vanilla/CMS post barrier
 220     Node *shift = p2x->unique_out();
 221     Node *addp = shift->unique_out();
 222     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 223       Node *mem = addp->last_out(j);
 224       if (UseCondCardMark && mem->is_Load()) {
 225         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 226         // The load is checking if the card has been written so
 227         // replace it with zero to fold the test.
 228         _igvn.replace_node(mem, intcon(0));
 229         continue;
 230       }
 231       assert(mem->is_Store(), "store required");
 232       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 233     }
 234   } else {
 235     // G1 pre/post barriers
 236     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
 237     // It could be only one user, URShift node, in Object.clone() instrinsic
 238     // but the new allocation is passed to arraycopy stub and it could not
 239     // be scalar replaced. So we don't check the case.
 240 
 241     // An other case of only one user (Xor) is when the value check for NULL
 242     // in G1 post barrier is folded after CCP so the code which used URShift
 243     // is removed.
 244 
 245     // Take Region node before eliminating post barrier since it also
 246     // eliminates CastP2X node when it has only one user.
 247     Node* this_region = p2x->in(0);
 248     assert(this_region != NULL, "");
 249 
 250     // Remove G1 post barrier.
 251 
 252     // Search for CastP2X->Xor->URShift->Cmp path which
 253     // checks if the store done to a different from the value's region.
 254     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 255     Node* xorx = NULL;
 256     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
 257       Node* u = p2x->fast_out(i);
 258       if (u->Opcode() == Op_XorX) {
 259         xorx = u;
 260         break;
 261       }
 262     }
 263     assert(xorx != NULL, "missing G1 post barrier");
 264     Node* shift = xorx->unique_out();
 265     Node* cmpx = shift->unique_out();
 266     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 267     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 268     "missing region check in G1 post barrier");
 269     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 270 
 271     // Remove G1 pre barrier.
 272 
 273     // Search "if (marking != 0)" check and set it to "false".
 274     // There is no G1 pre barrier if previous stored value is NULL
 275     // (for example, after initialization).
 276     if (this_region->is_Region() && this_region->req() == 3) {
 277       int ind = 1;
 278       if (!this_region->in(ind)->is_IfFalse()) {
 279         ind = 2;
 280       }
 281       if (this_region->in(ind)->is_IfFalse()) {
 282         Node* bol = this_region->in(ind)->in(0)->in(1);
 283         assert(bol->is_Bool(), "");
 284         cmpx = bol->in(1);
 285         if (bol->as_Bool()->_test._test == BoolTest::ne &&
 286             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 287             cmpx->in(1)->is_Load()) {
 288           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 289           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 290                                               PtrQueue::byte_offset_of_active());
 291           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 292               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 293               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 294             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 295           }
 296         }
 297       }
 298     }
 299     // Now CastP2X can be removed since it is used only on dead path
 300     // which currently still alive until igvn optimize it.
 301     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
 302     _igvn.replace_node(p2x, top());
 303   }
 304 }
 305 
 306 // Search for a memory operation for the specified memory slice.
 307 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 308   Node *orig_mem = mem;
 309   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 310   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 311   while (true) {
 312     if (mem == alloc_mem || mem == start_mem ) {
 313       return mem;  // hit one of our sentinels
 314     } else if (mem->is_MergeMem()) {
 315       mem = mem->as_MergeMem()->memory_at(alias_idx);
 316     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 317       Node *in = mem->in(0);
 318       // we can safely skip over safepoints, calls, locks and membars because we
 319       // already know that the object is safe to eliminate.
 320       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 321         return in;
 322       } else if (in->is_Call()) {
 323         CallNode *call = in->as_Call();
 324         if (!call->may_modify(tinst, phase)) {
 325           mem = call->in(TypeFunc::Memory);
 326         }
 327         mem = in->in(TypeFunc::Memory);
 328       } else if (in->is_MemBar()) {
 329         mem = in->in(TypeFunc::Memory);
 330       } else {
 331         assert(false, "unexpected projection");
 332       }
 333     } else if (mem->is_Store()) {
 334       const TypePtr* atype = mem->as_Store()->adr_type();
 335       int adr_idx = Compile::current()->get_alias_index(atype);
 336       if (adr_idx == alias_idx) {
 337         assert(atype->isa_oopptr(), "address type must be oopptr");
 338         int adr_offset = atype->offset();
 339         uint adr_iid = atype->is_oopptr()->instance_id();
 340         // Array elements references have the same alias_idx
 341         // but different offset and different instance_id.
 342         if (adr_offset == offset && adr_iid == alloc->_idx)
 343           return mem;
 344       } else {
 345         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 346       }
 347       mem = mem->in(MemNode::Memory);
 348     } else if (mem->is_ClearArray()) {
 349       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 350         // Can not bypass initialization of the instance
 351         // we are looking.
 352         debug_only(intptr_t offset;)
 353         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 354         InitializeNode* init = alloc->as_Allocate()->initialization();
 355         // We are looking for stored value, return Initialize node
 356         // or memory edge from Allocate node.
 357         if (init != NULL)
 358           return init;
 359         else
 360           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 361       }
 362       // Otherwise skip it (the call updated 'mem' value).
 363     } else if (mem->Opcode() == Op_SCMemProj) {
 364       mem = mem->in(0);
 365       Node* adr = NULL;
 366       if (mem->is_LoadStore()) {
 367         adr = mem->in(MemNode::Address);
 368       } else {
 369         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
 370         adr = mem->in(3); // Destination array
 371       }
 372       const TypePtr* atype = adr->bottom_type()->is_ptr();
 373       int adr_idx = Compile::current()->get_alias_index(atype);
 374       if (adr_idx == alias_idx) {
 375         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 376         return NULL;
 377       }
 378       mem = mem->in(MemNode::Memory);
 379     } else {
 380       return mem;
 381     }
 382     assert(mem != orig_mem, "dead memory loop");
 383   }
 384 }
 385 
 386 //
 387 // Given a Memory Phi, compute a value Phi containing the values from stores
 388 // on the input paths.
 389 // Note: this function is recursive, its depth is limied by the "level" argument
 390 // Returns the computed Phi, or NULL if it cannot compute it.
 391 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 392   assert(mem->is_Phi(), "sanity");
 393   int alias_idx = C->get_alias_index(adr_t);
 394   int offset = adr_t->offset();
 395   int instance_id = adr_t->instance_id();
 396 
 397   // Check if an appropriate value phi already exists.
 398   Node* region = mem->in(0);
 399   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 400     Node* phi = region->fast_out(k);
 401     if (phi->is_Phi() && phi != mem &&
 402         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 403       return phi;
 404     }
 405   }
 406   // Check if an appropriate new value phi already exists.
 407   Node* new_phi = value_phis->find(mem->_idx);
 408   if (new_phi != NULL)
 409     return new_phi;
 410 
 411   if (level <= 0) {
 412     return NULL; // Give up: phi tree too deep
 413   }
 414   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 415   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 416 
 417   uint length = mem->req();
 418   GrowableArray <Node *> values(length, length, NULL, false);
 419 
 420   // create a new Phi for the value
 421   PhiNode *phi = new (C) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 422   transform_later(phi);
 423   value_phis->push(phi, mem->_idx);
 424 
 425   for (uint j = 1; j < length; j++) {
 426     Node *in = mem->in(j);
 427     if (in == NULL || in->is_top()) {
 428       values.at_put(j, in);
 429     } else  {
 430       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 431       if (val == start_mem || val == alloc_mem) {
 432         // hit a sentinel, return appropriate 0 value
 433         values.at_put(j, _igvn.zerocon(ft));
 434         continue;
 435       }
 436       if (val->is_Initialize()) {
 437         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 438       }
 439       if (val == NULL) {
 440         return NULL;  // can't find a value on this path
 441       }
 442       if (val == mem) {
 443         values.at_put(j, mem);
 444       } else if (val->is_Store()) {
 445         values.at_put(j, val->in(MemNode::ValueIn));
 446       } else if(val->is_Proj() && val->in(0) == alloc) {
 447         values.at_put(j, _igvn.zerocon(ft));
 448       } else if (val->is_Phi()) {
 449         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 450         if (val == NULL) {
 451           return NULL;
 452         }
 453         values.at_put(j, val);
 454       } else if (val->Opcode() == Op_SCMemProj) {
 455         assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
 456         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 457         return NULL;
 458       } else {
 459 #ifdef ASSERT
 460         val->dump();
 461         assert(false, "unknown node on this path");
 462 #endif
 463         return NULL;  // unknown node on this path
 464       }
 465     }
 466   }
 467   // Set Phi's inputs
 468   for (uint j = 1; j < length; j++) {
 469     if (values.at(j) == mem) {
 470       phi->init_req(j, phi);
 471     } else {
 472       phi->init_req(j, values.at(j));
 473     }
 474   }
 475   return phi;
 476 }
 477 
 478 // Search the last value stored into the object's field.
 479 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 480   assert(adr_t->is_known_instance_field(), "instance required");
 481   int instance_id = adr_t->instance_id();
 482   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 483 
 484   int alias_idx = C->get_alias_index(adr_t);
 485   int offset = adr_t->offset();
 486   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 487   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 488   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 489   Arena *a = Thread::current()->resource_area();
 490   VectorSet visited(a);
 491 
 492 
 493   bool done = sfpt_mem == alloc_mem;
 494   Node *mem = sfpt_mem;
 495   while (!done) {
 496     if (visited.test_set(mem->_idx)) {
 497       return NULL;  // found a loop, give up
 498     }
 499     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 500     if (mem == start_mem || mem == alloc_mem) {
 501       done = true;  // hit a sentinel, return appropriate 0 value
 502     } else if (mem->is_Initialize()) {
 503       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 504       if (mem == NULL) {
 505         done = true; // Something go wrong.
 506       } else if (mem->is_Store()) {
 507         const TypePtr* atype = mem->as_Store()->adr_type();
 508         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 509         done = true;
 510       }
 511     } else if (mem->is_Store()) {
 512       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 513       assert(atype != NULL, "address type must be oopptr");
 514       assert(C->get_alias_index(atype) == alias_idx &&
 515              atype->is_known_instance_field() && atype->offset() == offset &&
 516              atype->instance_id() == instance_id, "store is correct memory slice");
 517       done = true;
 518     } else if (mem->is_Phi()) {
 519       // try to find a phi's unique input
 520       Node *unique_input = NULL;
 521       Node *top = C->top();
 522       for (uint i = 1; i < mem->req(); i++) {
 523         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 524         if (n == NULL || n == top || n == mem) {
 525           continue;
 526         } else if (unique_input == NULL) {
 527           unique_input = n;
 528         } else if (unique_input != n) {
 529           unique_input = top;
 530           break;
 531         }
 532       }
 533       if (unique_input != NULL && unique_input != top) {
 534         mem = unique_input;
 535       } else {
 536         done = true;
 537       }
 538     } else {
 539       assert(false, "unexpected node");
 540     }
 541   }
 542   if (mem != NULL) {
 543     if (mem == start_mem || mem == alloc_mem) {
 544       // hit a sentinel, return appropriate 0 value
 545       return _igvn.zerocon(ft);
 546     } else if (mem->is_Store()) {
 547       return mem->in(MemNode::ValueIn);
 548     } else if (mem->is_Phi()) {
 549       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 550       Node_Stack value_phis(a, 8);
 551       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 552       if (phi != NULL) {
 553         return phi;
 554       } else {
 555         // Kill all new Phis
 556         while(value_phis.is_nonempty()) {
 557           Node* n = value_phis.node();
 558           _igvn.replace_node(n, C->top());
 559           value_phis.pop();
 560         }
 561       }
 562     }
 563   }
 564   // Something go wrong.
 565   return NULL;
 566 }
 567 
 568 // Check the possibility of scalar replacement.
 569 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 570   //  Scan the uses of the allocation to check for anything that would
 571   //  prevent us from eliminating it.
 572   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 573   DEBUG_ONLY( Node* disq_node = NULL; )
 574   bool  can_eliminate = true;
 575 
 576   Node* res = alloc->result_cast();
 577   const TypeOopPtr* res_type = NULL;
 578   if (res == NULL) {
 579     // All users were eliminated.
 580   } else if (!res->is_CheckCastPP()) {
 581     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 582     can_eliminate = false;
 583   } else {
 584     res_type = _igvn.type(res)->isa_oopptr();
 585     if (res_type == NULL) {
 586       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 587       can_eliminate = false;
 588     } else if (res_type->isa_aryptr()) {
 589       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 590       if (length < 0) {
 591         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 592         can_eliminate = false;
 593       }
 594     }
 595   }
 596 
 597   if (can_eliminate && res != NULL) {
 598     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 599                                j < jmax && can_eliminate; j++) {
 600       Node* use = res->fast_out(j);
 601 
 602       if (use->is_AddP()) {
 603         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 604         int offset = addp_type->offset();
 605 
 606         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 607           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 608           can_eliminate = false;
 609           break;
 610         }
 611         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 612                                    k < kmax && can_eliminate; k++) {
 613           Node* n = use->fast_out(k);
 614           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 615             DEBUG_ONLY(disq_node = n;)
 616             if (n->is_Load() || n->is_LoadStore()) {
 617               NOT_PRODUCT(fail_eliminate = "Field load";)
 618             } else {
 619               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 620             }
 621             can_eliminate = false;
 622           }
 623         }
 624       } else if (use->is_SafePoint()) {
 625         SafePointNode* sfpt = use->as_SafePoint();
 626         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 627           // Object is passed as argument.
 628           DEBUG_ONLY(disq_node = use;)
 629           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 630           can_eliminate = false;
 631         }
 632         Node* sfptMem = sfpt->memory();
 633         if (sfptMem == NULL || sfptMem->is_top()) {
 634           DEBUG_ONLY(disq_node = use;)
 635           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 636           can_eliminate = false;
 637         } else {
 638           safepoints.append_if_missing(sfpt);
 639         }
 640       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 641         if (use->is_Phi()) {
 642           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 643             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 644           } else {
 645             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 646           }
 647           DEBUG_ONLY(disq_node = use;)
 648         } else {
 649           if (use->Opcode() == Op_Return) {
 650             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 651           }else {
 652             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 653           }
 654           DEBUG_ONLY(disq_node = use;)
 655         }
 656         can_eliminate = false;
 657       }
 658     }
 659   }
 660 
 661 #ifndef PRODUCT
 662   if (PrintEliminateAllocations) {
 663     if (can_eliminate) {
 664       tty->print("Scalar ");
 665       if (res == NULL)
 666         alloc->dump();
 667       else
 668         res->dump();
 669     } else {
 670       tty->print("NotScalar (%s)", fail_eliminate);
 671       if (res == NULL)
 672         alloc->dump();
 673       else
 674         res->dump();
 675 #ifdef ASSERT
 676       if (disq_node != NULL) {
 677           tty->print("  >>>> ");
 678           disq_node->dump();
 679       }
 680 #endif /*ASSERT*/
 681     }
 682   }
 683 #endif
 684   return can_eliminate;
 685 }
 686 
 687 // Do scalar replacement.
 688 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 689   GrowableArray <SafePointNode *> safepoints_done;
 690 
 691   ciKlass* klass = NULL;
 692   ciInstanceKlass* iklass = NULL;
 693   int nfields = 0;
 694   int array_base;
 695   int element_size;
 696   BasicType basic_elem_type;
 697   ciType* elem_type;
 698 
 699   Node* res = alloc->result_cast();
 700   const TypeOopPtr* res_type = NULL;
 701   if (res != NULL) { // Could be NULL when there are no users
 702     res_type = _igvn.type(res)->isa_oopptr();
 703   }
 704 
 705   if (res != NULL) {
 706     klass = res_type->klass();
 707     if (res_type->isa_instptr()) {
 708       // find the fields of the class which will be needed for safepoint debug information
 709       assert(klass->is_instance_klass(), "must be an instance klass.");
 710       iklass = klass->as_instance_klass();
 711       nfields = iklass->nof_nonstatic_fields();
 712     } else {
 713       // find the array's elements which will be needed for safepoint debug information
 714       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 715       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 716       elem_type = klass->as_array_klass()->element_type();
 717       basic_elem_type = elem_type->basic_type();
 718       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 719       element_size = type2aelembytes(basic_elem_type);
 720     }
 721   }
 722   //
 723   // Process the safepoint uses
 724   //
 725   while (safepoints.length() > 0) {
 726     SafePointNode* sfpt = safepoints.pop();
 727     Node* mem = sfpt->memory();
 728     uint first_ind = sfpt->req();
 729     SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
 730 #ifdef ASSERT
 731                                                  alloc,
 732 #endif
 733                                                  first_ind, nfields);
 734     sobj->init_req(0, C->root());
 735     transform_later(sobj);
 736 
 737     // Scan object's fields adding an input to the safepoint for each field.
 738     for (int j = 0; j < nfields; j++) {
 739       intptr_t offset;
 740       ciField* field = NULL;
 741       if (iklass != NULL) {
 742         field = iklass->nonstatic_field_at(j);
 743         offset = field->offset();
 744         elem_type = field->type();
 745         basic_elem_type = field->layout_type();
 746       } else {
 747         offset = array_base + j * (intptr_t)element_size;
 748       }
 749 
 750       const Type *field_type;
 751       // The next code is taken from Parse::do_get_xxx().
 752       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 753         if (!elem_type->is_loaded()) {
 754           field_type = TypeInstPtr::BOTTOM;
 755         } else if (field != NULL && field->is_constant() && field->is_static()) {
 756           // This can happen if the constant oop is non-perm.
 757           ciObject* con = field->constant_value().as_object();
 758           // Do not "join" in the previous type; it doesn't add value,
 759           // and may yield a vacuous result if the field is of interface type.
 760           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 761           assert(field_type != NULL, "field singleton type must be consistent");
 762         } else {
 763           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 764         }
 765         if (UseCompressedOops) {
 766           field_type = field_type->make_narrowoop();
 767           basic_elem_type = T_NARROWOOP;
 768         }
 769       } else {
 770         field_type = Type::get_const_basic_type(basic_elem_type);
 771       }
 772 
 773       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 774 
 775       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 776       if (field_val == NULL) {
 777         // We weren't able to find a value for this field,
 778         // give up on eliminating this allocation.
 779 
 780         // Remove any extra entries we added to the safepoint.
 781         uint last = sfpt->req() - 1;
 782         for (int k = 0;  k < j; k++) {
 783           sfpt->del_req(last--);
 784         }
 785         // rollback processed safepoints
 786         while (safepoints_done.length() > 0) {
 787           SafePointNode* sfpt_done = safepoints_done.pop();
 788           // remove any extra entries we added to the safepoint
 789           last = sfpt_done->req() - 1;
 790           for (int k = 0;  k < nfields; k++) {
 791             sfpt_done->del_req(last--);
 792           }
 793           JVMState *jvms = sfpt_done->jvms();
 794           jvms->set_endoff(sfpt_done->req());
 795           // Now make a pass over the debug information replacing any references
 796           // to SafePointScalarObjectNode with the allocated object.
 797           int start = jvms->debug_start();
 798           int end   = jvms->debug_end();
 799           for (int i = start; i < end; i++) {
 800             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 801               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 802               if (scobj->first_index() == sfpt_done->req() &&
 803                   scobj->n_fields() == (uint)nfields) {
 804                 assert(scobj->alloc() == alloc, "sanity");
 805                 sfpt_done->set_req(i, res);
 806               }
 807             }
 808           }
 809         }
 810 #ifndef PRODUCT
 811         if (PrintEliminateAllocations) {
 812           if (field != NULL) {
 813             tty->print("=== At SafePoint node %d can't find value of Field: ",
 814                        sfpt->_idx);
 815             field->print();
 816             int field_idx = C->get_alias_index(field_addr_type);
 817             tty->print(" (alias_idx=%d)", field_idx);
 818           } else { // Array's element
 819             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 820                        sfpt->_idx, j);
 821           }
 822           tty->print(", which prevents elimination of: ");
 823           if (res == NULL)
 824             alloc->dump();
 825           else
 826             res->dump();
 827         }
 828 #endif
 829         return false;
 830       }
 831       if (UseCompressedOops && field_type->isa_narrowoop()) {
 832         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 833         // to be able scalar replace the allocation.
 834         if (field_val->is_EncodeP()) {
 835           field_val = field_val->in(1);
 836         } else {
 837           field_val = transform_later(new (C) DecodeNNode(field_val, field_val->get_ptr_type()));
 838         }
 839       }
 840       sfpt->add_req(field_val);
 841     }
 842     JVMState *jvms = sfpt->jvms();
 843     jvms->set_endoff(sfpt->req());
 844     // Now make a pass over the debug information replacing any references
 845     // to the allocated object with "sobj"
 846     int start = jvms->debug_start();
 847     int end   = jvms->debug_end();
 848     for (int i = start; i < end; i++) {
 849       if (sfpt->in(i) == res) {
 850         sfpt->set_req(i, sobj);
 851       }
 852     }
 853     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 854   }
 855   return true;
 856 }
 857 
 858 // Process users of eliminated allocation.
 859 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
 860   Node* res = alloc->result_cast();
 861   if (res != NULL) {
 862     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 863       Node *use = res->last_out(j);
 864       uint oc1 = res->outcnt();
 865 
 866       if (use->is_AddP()) {
 867         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 868           Node *n = use->last_out(k);
 869           uint oc2 = use->outcnt();
 870           if (n->is_Store()) {
 871 #ifdef ASSERT
 872             // Verify that there is no dependent MemBarVolatile nodes,
 873             // they should be removed during IGVN, see MemBarNode::Ideal().
 874             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 875                                        p < pmax; p++) {
 876               Node* mb = n->fast_out(p);
 877               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 878                      mb->req() <= MemBarNode::Precedent ||
 879                      mb->in(MemBarNode::Precedent) != n,
 880                      "MemBarVolatile should be eliminated for non-escaping object");
 881             }
 882 #endif
 883             _igvn.replace_node(n, n->in(MemNode::Memory));
 884           } else {
 885             eliminate_card_mark(n);
 886           }
 887           k -= (oc2 - use->outcnt());
 888         }
 889       } else {
 890         eliminate_card_mark(use);
 891       }
 892       j -= (oc1 - res->outcnt());
 893     }
 894     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 895     _igvn.remove_dead_node(res);
 896   }
 897 
 898   //
 899   // Process other users of allocation's projections
 900   //
 901   if (_resproj != NULL && _resproj->outcnt() != 0) {
 902     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 903       Node *use = _resproj->last_out(j);
 904       uint oc1 = _resproj->outcnt();
 905       if (use->is_Initialize()) {
 906         // Eliminate Initialize node.
 907         InitializeNode *init = use->as_Initialize();
 908         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 909         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 910         if (ctrl_proj != NULL) {
 911            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 912           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 913         }
 914         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 915         if (mem_proj != NULL) {
 916           Node *mem = init->in(TypeFunc::Memory);
 917 #ifdef ASSERT
 918           if (mem->is_MergeMem()) {
 919             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 920           } else {
 921             assert(mem == _memproj_fallthrough, "allocation memory projection");
 922           }
 923 #endif
 924           _igvn.replace_node(mem_proj, mem);
 925         }
 926       } else if (use->is_AddP()) {
 927         // raw memory addresses used only by the initialization
 928         _igvn.replace_node(use, C->top());
 929       } else  {
 930         assert(false, "only Initialize or AddP expected");
 931       }
 932       j -= (oc1 - _resproj->outcnt());
 933     }
 934   }
 935   if (_fallthroughcatchproj != NULL) {
 936     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 937   }
 938   if (_memproj_fallthrough != NULL) {
 939     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 940   }
 941   if (_memproj_catchall != NULL) {
 942     _igvn.replace_node(_memproj_catchall, C->top());
 943   }
 944   if (_ioproj_fallthrough != NULL) {
 945     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 946   }
 947   if (_ioproj_catchall != NULL) {
 948     _igvn.replace_node(_ioproj_catchall, C->top());
 949   }
 950   if (_catchallcatchproj != NULL) {
 951     _igvn.replace_node(_catchallcatchproj, C->top());
 952   }
 953 }
 954 
 955 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 956 
 957   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
 958     return false;
 959   }
 960 
 961   extract_call_projections(alloc);
 962 
 963   GrowableArray <SafePointNode *> safepoints;
 964   if (!can_eliminate_allocation(alloc, safepoints)) {
 965     return false;
 966   }
 967 
 968   if (!scalar_replacement(alloc, safepoints)) {
 969     return false;
 970   }
 971 
 972   CompileLog* log = C->log();
 973   if (log != NULL) {
 974     Node* klass = alloc->in(AllocateNode::KlassNode);
 975     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
 976     log->head("eliminate_allocation type='%d'",
 977               log->identify(tklass->klass()));
 978     JVMState* p = alloc->jvms();
 979     while (p != NULL) {
 980       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 981       p = p->caller();
 982     }
 983     log->tail("eliminate_allocation");
 984   }
 985 
 986   process_users_of_allocation(alloc);
 987 
 988 #ifndef PRODUCT
 989   if (PrintEliminateAllocations) {
 990     if (alloc->is_AllocateArray())
 991       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
 992     else
 993       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
 994   }
 995 #endif
 996 
 997   return true;
 998 }
 999 
1000 
1001 //---------------------------set_eden_pointers-------------------------
1002 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1003   if (UseTLAB) {                // Private allocation: load from TLS
1004     Node* thread = transform_later(new (C) ThreadLocalNode());
1005     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1006     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1007     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1008     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1009   } else {                      // Shared allocation: load from globals
1010     CollectedHeap* ch = Universe::heap();
1011     address top_adr = (address)ch->top_addr();
1012     address end_adr = (address)ch->end_addr();
1013     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1014     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1015   }
1016 }
1017 
1018 
1019 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1020   Node* adr = basic_plus_adr(base, offset);
1021   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1022   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
1023   transform_later(value);
1024   return value;
1025 }
1026 
1027 
1028 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1029   Node* adr = basic_plus_adr(base, offset);
1030   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
1031   transform_later(mem);
1032   return mem;
1033 }
1034 
1035 //=============================================================================
1036 //
1037 //                              A L L O C A T I O N
1038 //
1039 // Allocation attempts to be fast in the case of frequent small objects.
1040 // It breaks down like this:
1041 //
1042 // 1) Size in doublewords is computed.  This is a constant for objects and
1043 // variable for most arrays.  Doubleword units are used to avoid size
1044 // overflow of huge doubleword arrays.  We need doublewords in the end for
1045 // rounding.
1046 //
1047 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1048 // the slow path into the VM.  The slow path can throw any required
1049 // exceptions, and does all the special checks for very large arrays.  The
1050 // size test can constant-fold away for objects.  For objects with
1051 // finalizers it constant-folds the otherway: you always go slow with
1052 // finalizers.
1053 //
1054 // 3) If NOT using TLABs, this is the contended loop-back point.
1055 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1056 //
1057 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1058 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1059 // "size*8" we always enter the VM, where "largish" is a constant picked small
1060 // enough that there's always space between the eden max and 4Gig (old space is
1061 // there so it's quite large) and large enough that the cost of entering the VM
1062 // is dwarfed by the cost to initialize the space.
1063 //
1064 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1065 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1066 // adjusted heap top back down; there is no contention.
1067 //
1068 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1069 // fields.
1070 //
1071 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1072 // oop flavor.
1073 //
1074 //=============================================================================
1075 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1076 // Allocations bigger than this always go the slow route.
1077 // This value must be small enough that allocation attempts that need to
1078 // trigger exceptions go the slow route.  Also, it must be small enough so
1079 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1080 //=============================================================================j//
1081 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1082 // The allocator will coalesce int->oop copies away.  See comment in
1083 // coalesce.cpp about how this works.  It depends critically on the exact
1084 // code shape produced here, so if you are changing this code shape
1085 // make sure the GC info for the heap-top is correct in and around the
1086 // slow-path call.
1087 //
1088 
1089 void PhaseMacroExpand::expand_allocate_common(
1090             AllocateNode* alloc, // allocation node to be expanded
1091             Node* length,  // array length for an array allocation
1092             const TypeFunc* slow_call_type, // Type of slow call
1093             address slow_call_address  // Address of slow call
1094     )
1095 {
1096 
1097   Node* ctrl = alloc->in(TypeFunc::Control);
1098   Node* mem  = alloc->in(TypeFunc::Memory);
1099   Node* i_o  = alloc->in(TypeFunc::I_O);
1100   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1101   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1102   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1103 
1104   assert(ctrl != NULL, "must have control");
1105   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1106   // they will not be used if "always_slow" is set
1107   enum { slow_result_path = 1, fast_result_path = 2 };
1108   Node *result_region;
1109   Node *result_phi_rawmem;
1110   Node *result_phi_rawoop;
1111   Node *result_phi_i_o;
1112 
1113   // The initial slow comparison is a size check, the comparison
1114   // we want to do is a BoolTest::gt
1115   bool always_slow = false;
1116   int tv = _igvn.find_int_con(initial_slow_test, -1);
1117   if (tv >= 0) {
1118     always_slow = (tv == 1);
1119     initial_slow_test = NULL;
1120   } else {
1121     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1122   }
1123 
1124   if (C->env()->dtrace_alloc_probes() ||
1125       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1126                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
1127     // Force slow-path allocation
1128     always_slow = true;
1129     initial_slow_test = NULL;
1130   }
1131 
1132 
1133   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1134   Node *slow_region = NULL;
1135   Node *toobig_false = ctrl;
1136 
1137   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1138   // generate the initial test if necessary
1139   if (initial_slow_test != NULL ) {
1140     slow_region = new (C) RegionNode(3);
1141 
1142     // Now make the initial failure test.  Usually a too-big test but
1143     // might be a TRUE for finalizers or a fancy class check for
1144     // newInstance0.
1145     IfNode *toobig_iff = new (C) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1146     transform_later(toobig_iff);
1147     // Plug the failing-too-big test into the slow-path region
1148     Node *toobig_true = new (C) IfTrueNode( toobig_iff );
1149     transform_later(toobig_true);
1150     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1151     toobig_false = new (C) IfFalseNode( toobig_iff );
1152     transform_later(toobig_false);
1153   } else {         // No initial test, just fall into next case
1154     toobig_false = ctrl;
1155     debug_only(slow_region = NodeSentinel);
1156   }
1157 
1158   Node *slow_mem = mem;  // save the current memory state for slow path
1159   // generate the fast allocation code unless we know that the initial test will always go slow
1160   if (!always_slow) {
1161     // Fast path modifies only raw memory.
1162     if (mem->is_MergeMem()) {
1163       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1164     }
1165 
1166     Node* eden_top_adr;
1167     Node* eden_end_adr;
1168 
1169     set_eden_pointers(eden_top_adr, eden_end_adr);
1170 
1171     // Load Eden::end.  Loop invariant and hoisted.
1172     //
1173     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1174     //       a TLAB to work around a bug where these values were being moved across
1175     //       a safepoint.  These are not oops, so they cannot be include in the oop
1176     //       map, but they can be changed by a GC.   The proper way to fix this would
1177     //       be to set the raw memory state when generating a  SafepointNode.  However
1178     //       this will require extensive changes to the loop optimization in order to
1179     //       prevent a degradation of the optimization.
1180     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1181     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1182 
1183     // allocate the Region and Phi nodes for the result
1184     result_region = new (C) RegionNode(3);
1185     result_phi_rawmem = new (C) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1186     result_phi_rawoop = new (C) PhiNode(result_region, TypeRawPtr::BOTTOM);
1187     result_phi_i_o    = new (C) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1188 
1189     // We need a Region for the loop-back contended case.
1190     enum { fall_in_path = 1, contended_loopback_path = 2 };
1191     Node *contended_region;
1192     Node *contended_phi_rawmem;
1193     if (UseTLAB) {
1194       contended_region = toobig_false;
1195       contended_phi_rawmem = mem;
1196     } else {
1197       contended_region = new (C) RegionNode(3);
1198       contended_phi_rawmem = new (C) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1199       // Now handle the passing-too-big test.  We fall into the contended
1200       // loop-back merge point.
1201       contended_region    ->init_req(fall_in_path, toobig_false);
1202       contended_phi_rawmem->init_req(fall_in_path, mem);
1203       transform_later(contended_region);
1204       transform_later(contended_phi_rawmem);
1205     }
1206 
1207     // Load(-locked) the heap top.
1208     // See note above concerning the control input when using a TLAB
1209     Node *old_eden_top = UseTLAB
1210       ? new (C) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
1211       : new (C) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
1212 
1213     transform_later(old_eden_top);
1214     // Add to heap top to get a new heap top
1215     Node *new_eden_top = new (C) AddPNode(top(), old_eden_top, size_in_bytes);
1216     transform_later(new_eden_top);
1217     // Check for needing a GC; compare against heap end
1218     Node *needgc_cmp = new (C) CmpPNode(new_eden_top, eden_end);
1219     transform_later(needgc_cmp);
1220     Node *needgc_bol = new (C) BoolNode(needgc_cmp, BoolTest::ge);
1221     transform_later(needgc_bol);
1222     IfNode *needgc_iff = new (C) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1223     transform_later(needgc_iff);
1224 
1225     // Plug the failing-heap-space-need-gc test into the slow-path region
1226     Node *needgc_true = new (C) IfTrueNode(needgc_iff);
1227     transform_later(needgc_true);
1228     if (initial_slow_test) {
1229       slow_region->init_req(need_gc_path, needgc_true);
1230       // This completes all paths into the slow merge point
1231       transform_later(slow_region);
1232     } else {                      // No initial slow path needed!
1233       // Just fall from the need-GC path straight into the VM call.
1234       slow_region = needgc_true;
1235     }
1236     // No need for a GC.  Setup for the Store-Conditional
1237     Node *needgc_false = new (C) IfFalseNode(needgc_iff);
1238     transform_later(needgc_false);
1239 
1240     // Grab regular I/O before optional prefetch may change it.
1241     // Slow-path does no I/O so just set it to the original I/O.
1242     result_phi_i_o->init_req(slow_result_path, i_o);
1243 
1244     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1245                               old_eden_top, new_eden_top, length);
1246 
1247     // Name successful fast-path variables
1248     Node* fast_oop = old_eden_top;
1249     Node* fast_oop_ctrl;
1250     Node* fast_oop_rawmem;
1251 
1252     // Store (-conditional) the modified eden top back down.
1253     // StorePConditional produces flags for a test PLUS a modified raw
1254     // memory state.
1255     if (UseTLAB) {
1256       Node* store_eden_top =
1257         new (C) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1258                               TypeRawPtr::BOTTOM, new_eden_top);
1259       transform_later(store_eden_top);
1260       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1261       fast_oop_rawmem = store_eden_top;
1262     } else {
1263       Node* store_eden_top =
1264         new (C) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1265                                          new_eden_top, fast_oop/*old_eden_top*/);
1266       transform_later(store_eden_top);
1267       Node *contention_check = new (C) BoolNode(store_eden_top, BoolTest::ne);
1268       transform_later(contention_check);
1269       store_eden_top = new (C) SCMemProjNode(store_eden_top);
1270       transform_later(store_eden_top);
1271 
1272       // If not using TLABs, check to see if there was contention.
1273       IfNode *contention_iff = new (C) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1274       transform_later(contention_iff);
1275       Node *contention_true = new (C) IfTrueNode(contention_iff);
1276       transform_later(contention_true);
1277       // If contention, loopback and try again.
1278       contended_region->init_req(contended_loopback_path, contention_true);
1279       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1280 
1281       // Fast-path succeeded with no contention!
1282       Node *contention_false = new (C) IfFalseNode(contention_iff);
1283       transform_later(contention_false);
1284       fast_oop_ctrl = contention_false;
1285 
1286       // Bump total allocated bytes for this thread
1287       Node* thread = new (C) ThreadLocalNode();
1288       transform_later(thread);
1289       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1290                                              in_bytes(JavaThread::allocated_bytes_offset()));
1291       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1292                                     0, TypeLong::LONG, T_LONG);
1293 #ifdef _LP64
1294       Node* alloc_size = size_in_bytes;
1295 #else
1296       Node* alloc_size = new (C) ConvI2LNode(size_in_bytes);
1297       transform_later(alloc_size);
1298 #endif
1299       Node* new_alloc_bytes = new (C) AddLNode(alloc_bytes, alloc_size);
1300       transform_later(new_alloc_bytes);
1301       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1302                                    0, new_alloc_bytes, T_LONG);
1303     }
1304 
1305     InitializeNode* init = alloc->initialization();
1306     fast_oop_rawmem = initialize_object(alloc,
1307                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1308                                         klass_node, length, size_in_bytes);
1309 
1310     // If initialization is performed by an array copy, any required
1311     // MemBarStoreStore was already added. If the object does not
1312     // escape no need for a MemBarStoreStore. Otherwise we need a
1313     // MemBarStoreStore so that stores that initialize this object
1314     // can't be reordered with a subsequent store that makes this
1315     // object accessible by other threads.
1316     if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
1317       if (init == NULL || init->req() < InitializeNode::RawStores) {
1318         // No InitializeNode or no stores captured by zeroing
1319         // elimination. Simply add the MemBarStoreStore after object
1320         // initialization.
1321         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1322         transform_later(mb);
1323 
1324         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1325         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1326         fast_oop_ctrl = new (C) ProjNode(mb,TypeFunc::Control);
1327         transform_later(fast_oop_ctrl);
1328         fast_oop_rawmem = new (C) ProjNode(mb,TypeFunc::Memory);
1329         transform_later(fast_oop_rawmem);
1330       } else {
1331         // Add the MemBarStoreStore after the InitializeNode so that
1332         // all stores performing the initialization that were moved
1333         // before the InitializeNode happen before the storestore
1334         // barrier.
1335 
1336         Node* init_ctrl = init->proj_out(TypeFunc::Control);
1337         Node* init_mem = init->proj_out(TypeFunc::Memory);
1338 
1339         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1340         transform_later(mb);
1341 
1342         Node* ctrl = new (C) ProjNode(init,TypeFunc::Control);
1343         transform_later(ctrl);
1344         Node* mem = new (C) ProjNode(init,TypeFunc::Memory);
1345         transform_later(mem);
1346 
1347         // The MemBarStoreStore depends on control and memory coming
1348         // from the InitializeNode
1349         mb->init_req(TypeFunc::Memory, mem);
1350         mb->init_req(TypeFunc::Control, ctrl);
1351 
1352         ctrl = new (C) ProjNode(mb,TypeFunc::Control);
1353         transform_later(ctrl);
1354         mem = new (C) ProjNode(mb,TypeFunc::Memory);
1355         transform_later(mem);
1356 
1357         // All nodes that depended on the InitializeNode for control
1358         // and memory must now depend on the MemBarNode that itself
1359         // depends on the InitializeNode
1360         _igvn.replace_node(init_ctrl, ctrl);
1361         _igvn.replace_node(init_mem, mem);
1362       }
1363     }
1364 
1365     if (C->env()->dtrace_extended_probes()) {
1366       // Slow-path call
1367       int size = TypeFunc::Parms + 2;
1368       CallLeafNode *call = new (C) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1369                                                 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1370                                                 "dtrace_object_alloc",
1371                                                 TypeRawPtr::BOTTOM);
1372 
1373       // Get base of thread-local storage area
1374       Node* thread = new (C) ThreadLocalNode();
1375       transform_later(thread);
1376 
1377       call->init_req(TypeFunc::Parms+0, thread);
1378       call->init_req(TypeFunc::Parms+1, fast_oop);
1379       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1380       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1381       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1382       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1383       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1384       transform_later(call);
1385       fast_oop_ctrl = new (C) ProjNode(call,TypeFunc::Control);
1386       transform_later(fast_oop_ctrl);
1387       fast_oop_rawmem = new (C) ProjNode(call,TypeFunc::Memory);
1388       transform_later(fast_oop_rawmem);
1389     }
1390 
1391     // Plug in the successful fast-path into the result merge point
1392     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1393     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1394     result_phi_i_o   ->init_req(fast_result_path, i_o);
1395     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1396   } else {
1397     slow_region = ctrl;
1398     result_phi_i_o = i_o; // Rename it to use in the following code.
1399   }
1400 
1401   // Generate slow-path call
1402   CallNode *call = new (C) CallStaticJavaNode(slow_call_type, slow_call_address,
1403                                OptoRuntime::stub_name(slow_call_address),
1404                                alloc->jvms()->bci(),
1405                                TypePtr::BOTTOM);
1406   call->init_req( TypeFunc::Control, slow_region );
1407   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1408   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1409   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1410   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1411 
1412   call->init_req(TypeFunc::Parms+0, klass_node);
1413   if (length != NULL) {
1414     call->init_req(TypeFunc::Parms+1, length);
1415   }
1416 
1417   // Copy debug information and adjust JVMState information, then replace
1418   // allocate node with the call
1419   copy_call_debug_info((CallNode *) alloc,  call);
1420   if (!always_slow) {
1421     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1422   } else {
1423     // Hook i_o projection to avoid its elimination during allocation
1424     // replacement (when only a slow call is generated).
1425     call->set_req(TypeFunc::I_O, result_phi_i_o);
1426   }
1427   _igvn.replace_node(alloc, call);
1428   transform_later(call);
1429 
1430   // Identify the output projections from the allocate node and
1431   // adjust any references to them.
1432   // The control and io projections look like:
1433   //
1434   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1435   //  Allocate                   Catch
1436   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1437   //
1438   //  We are interested in the CatchProj nodes.
1439   //
1440   extract_call_projections(call);
1441 
1442   // An allocate node has separate memory projections for the uses on
1443   // the control and i_o paths. Replace the control memory projection with
1444   // result_phi_rawmem (unless we are only generating a slow call when
1445   // both memory projections are combined)
1446   if (!always_slow && _memproj_fallthrough != NULL) {
1447     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1448       Node *use = _memproj_fallthrough->fast_out(i);
1449       _igvn.rehash_node_delayed(use);
1450       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1451       // back up iterator
1452       --i;
1453     }
1454   }
1455   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1456   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1457   if (_memproj_catchall != NULL ) {
1458     if (_memproj_fallthrough == NULL) {
1459       _memproj_fallthrough = new (C) ProjNode(call, TypeFunc::Memory);
1460       transform_later(_memproj_fallthrough);
1461     }
1462     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1463       Node *use = _memproj_catchall->fast_out(i);
1464       _igvn.rehash_node_delayed(use);
1465       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1466       // back up iterator
1467       --i;
1468     }
1469     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1470     _igvn.remove_dead_node(_memproj_catchall);
1471   }
1472 
1473   // An allocate node has separate i_o projections for the uses on the control
1474   // and i_o paths. Always replace the control i_o projection with result i_o
1475   // otherwise incoming i_o become dead when only a slow call is generated
1476   // (it is different from memory projections where both projections are
1477   // combined in such case).
1478   if (_ioproj_fallthrough != NULL) {
1479     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1480       Node *use = _ioproj_fallthrough->fast_out(i);
1481       _igvn.rehash_node_delayed(use);
1482       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1483       // back up iterator
1484       --i;
1485     }
1486   }
1487   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1488   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1489   if (_ioproj_catchall != NULL ) {
1490     if (_ioproj_fallthrough == NULL) {
1491       _ioproj_fallthrough = new (C) ProjNode(call, TypeFunc::I_O);
1492       transform_later(_ioproj_fallthrough);
1493     }
1494     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1495       Node *use = _ioproj_catchall->fast_out(i);
1496       _igvn.rehash_node_delayed(use);
1497       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1498       // back up iterator
1499       --i;
1500     }
1501     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1502     _igvn.remove_dead_node(_ioproj_catchall);
1503   }
1504 
1505   // if we generated only a slow call, we are done
1506   if (always_slow) {
1507     // Now we can unhook i_o.
1508     if (result_phi_i_o->outcnt() > 1) {
1509       call->set_req(TypeFunc::I_O, top());
1510     } else {
1511       assert(result_phi_i_o->unique_ctrl_out() == call, "");
1512       // Case of new array with negative size known during compilation.
1513       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1514       // following code since call to runtime will throw exception.
1515       // As result there will be no users of i_o after the call.
1516       // Leave i_o attached to this call to avoid problems in preceding graph.
1517     }
1518     return;
1519   }
1520 
1521 
1522   if (_fallthroughcatchproj != NULL) {
1523     ctrl = _fallthroughcatchproj->clone();
1524     transform_later(ctrl);
1525     _igvn.replace_node(_fallthroughcatchproj, result_region);
1526   } else {
1527     ctrl = top();
1528   }
1529   Node *slow_result;
1530   if (_resproj == NULL) {
1531     // no uses of the allocation result
1532     slow_result = top();
1533   } else {
1534     slow_result = _resproj->clone();
1535     transform_later(slow_result);
1536     _igvn.replace_node(_resproj, result_phi_rawoop);
1537   }
1538 
1539   // Plug slow-path into result merge point
1540   result_region    ->init_req( slow_result_path, ctrl );
1541   result_phi_rawoop->init_req( slow_result_path, slow_result);
1542   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1543   transform_later(result_region);
1544   transform_later(result_phi_rawoop);
1545   transform_later(result_phi_rawmem);
1546   transform_later(result_phi_i_o);
1547   // This completes all paths into the result merge point
1548 }
1549 
1550 
1551 // Helper for PhaseMacroExpand::expand_allocate_common.
1552 // Initializes the newly-allocated storage.
1553 Node*
1554 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1555                                     Node* control, Node* rawmem, Node* object,
1556                                     Node* klass_node, Node* length,
1557                                     Node* size_in_bytes) {
1558   InitializeNode* init = alloc->initialization();
1559   // Store the klass & mark bits
1560   Node* mark_node = NULL;
1561   // For now only enable fast locking for non-array types
1562   if (UseBiasedLocking && (length == NULL)) {
1563     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1564   } else {
1565     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1566   }
1567   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1568 
1569   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1570   int header_size = alloc->minimum_header_size();  // conservatively small
1571 
1572   // Array length
1573   if (length != NULL) {         // Arrays need length field
1574     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1575     // conservatively small header size:
1576     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1577     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1578     if (k->is_array_klass())    // we know the exact header size in most cases:
1579       header_size = Klass::layout_helper_header_size(k->layout_helper());
1580   }
1581 
1582   // Clear the object body, if necessary.
1583   if (init == NULL) {
1584     // The init has somehow disappeared; be cautious and clear everything.
1585     //
1586     // This can happen if a node is allocated but an uncommon trap occurs
1587     // immediately.  In this case, the Initialize gets associated with the
1588     // trap, and may be placed in a different (outer) loop, if the Allocate
1589     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1590     // there can be two Allocates to one Initialize.  The answer in all these
1591     // edge cases is safety first.  It is always safe to clear immediately
1592     // within an Allocate, and then (maybe or maybe not) clear some more later.
1593     if (!ZeroTLAB)
1594       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1595                                             header_size, size_in_bytes,
1596                                             &_igvn);
1597   } else {
1598     if (!init->is_complete()) {
1599       // Try to win by zeroing only what the init does not store.
1600       // We can also try to do some peephole optimizations,
1601       // such as combining some adjacent subword stores.
1602       rawmem = init->complete_stores(control, rawmem, object,
1603                                      header_size, size_in_bytes, &_igvn);
1604     }
1605     // We have no more use for this link, since the AllocateNode goes away:
1606     init->set_req(InitializeNode::RawAddress, top());
1607     // (If we keep the link, it just confuses the register allocator,
1608     // who thinks he sees a real use of the address by the membar.)
1609   }
1610 
1611   return rawmem;
1612 }
1613 
1614 // Generate prefetch instructions for next allocations.
1615 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1616                                         Node*& contended_phi_rawmem,
1617                                         Node* old_eden_top, Node* new_eden_top,
1618                                         Node* length) {
1619    enum { fall_in_path = 1, pf_path = 2 };
1620    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1621       // Generate prefetch allocation with watermark check.
1622       // As an allocation hits the watermark, we will prefetch starting
1623       // at a "distance" away from watermark.
1624 
1625       Node *pf_region = new (C) RegionNode(3);
1626       Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
1627                                                 TypeRawPtr::BOTTOM );
1628       // I/O is used for Prefetch
1629       Node *pf_phi_abio = new (C) PhiNode( pf_region, Type::ABIO );
1630 
1631       Node *thread = new (C) ThreadLocalNode();
1632       transform_later(thread);
1633 
1634       Node *eden_pf_adr = new (C) AddPNode( top()/*not oop*/, thread,
1635                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1636       transform_later(eden_pf_adr);
1637 
1638       Node *old_pf_wm = new (C) LoadPNode( needgc_false,
1639                                    contended_phi_rawmem, eden_pf_adr,
1640                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1641       transform_later(old_pf_wm);
1642 
1643       // check against new_eden_top
1644       Node *need_pf_cmp = new (C) CmpPNode( new_eden_top, old_pf_wm );
1645       transform_later(need_pf_cmp);
1646       Node *need_pf_bol = new (C) BoolNode( need_pf_cmp, BoolTest::ge );
1647       transform_later(need_pf_bol);
1648       IfNode *need_pf_iff = new (C) IfNode( needgc_false, need_pf_bol,
1649                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1650       transform_later(need_pf_iff);
1651 
1652       // true node, add prefetchdistance
1653       Node *need_pf_true = new (C) IfTrueNode( need_pf_iff );
1654       transform_later(need_pf_true);
1655 
1656       Node *need_pf_false = new (C) IfFalseNode( need_pf_iff );
1657       transform_later(need_pf_false);
1658 
1659       Node *new_pf_wmt = new (C) AddPNode( top(), old_pf_wm,
1660                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1661       transform_later(new_pf_wmt );
1662       new_pf_wmt->set_req(0, need_pf_true);
1663 
1664       Node *store_new_wmt = new (C) StorePNode( need_pf_true,
1665                                        contended_phi_rawmem, eden_pf_adr,
1666                                        TypeRawPtr::BOTTOM, new_pf_wmt );
1667       transform_later(store_new_wmt);
1668 
1669       // adding prefetches
1670       pf_phi_abio->init_req( fall_in_path, i_o );
1671 
1672       Node *prefetch_adr;
1673       Node *prefetch;
1674       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1675       uint step_size = AllocatePrefetchStepSize;
1676       uint distance = 0;
1677 
1678       for ( uint i = 0; i < lines; i++ ) {
1679         prefetch_adr = new (C) AddPNode( old_pf_wm, new_pf_wmt,
1680                                             _igvn.MakeConX(distance) );
1681         transform_later(prefetch_adr);
1682         prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
1683         transform_later(prefetch);
1684         distance += step_size;
1685         i_o = prefetch;
1686       }
1687       pf_phi_abio->set_req( pf_path, i_o );
1688 
1689       pf_region->init_req( fall_in_path, need_pf_false );
1690       pf_region->init_req( pf_path, need_pf_true );
1691 
1692       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1693       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1694 
1695       transform_later(pf_region);
1696       transform_later(pf_phi_rawmem);
1697       transform_later(pf_phi_abio);
1698 
1699       needgc_false = pf_region;
1700       contended_phi_rawmem = pf_phi_rawmem;
1701       i_o = pf_phi_abio;
1702    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1703       // Insert a prefetch for each allocation.
1704       // This code is used for Sparc with BIS.
1705       Node *pf_region = new (C) RegionNode(3);
1706       Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
1707                                              TypeRawPtr::BOTTOM );
1708 
1709       // Generate several prefetch instructions.
1710       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1711       uint step_size = AllocatePrefetchStepSize;
1712       uint distance = AllocatePrefetchDistance;
1713 
1714       // Next cache address.
1715       Node *cache_adr = new (C) AddPNode(old_eden_top, old_eden_top,
1716                                             _igvn.MakeConX(distance));
1717       transform_later(cache_adr);
1718       cache_adr = new (C) CastP2XNode(needgc_false, cache_adr);
1719       transform_later(cache_adr);
1720       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1721       cache_adr = new (C) AndXNode(cache_adr, mask);
1722       transform_later(cache_adr);
1723       cache_adr = new (C) CastX2PNode(cache_adr);
1724       transform_later(cache_adr);
1725 
1726       // Prefetch
1727       Node *prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1728       prefetch->set_req(0, needgc_false);
1729       transform_later(prefetch);
1730       contended_phi_rawmem = prefetch;
1731       Node *prefetch_adr;
1732       distance = step_size;
1733       for ( uint i = 1; i < lines; i++ ) {
1734         prefetch_adr = new (C) AddPNode( cache_adr, cache_adr,
1735                                             _igvn.MakeConX(distance) );
1736         transform_later(prefetch_adr);
1737         prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1738         transform_later(prefetch);
1739         distance += step_size;
1740         contended_phi_rawmem = prefetch;
1741       }
1742    } else if( AllocatePrefetchStyle > 0 ) {
1743       // Insert a prefetch for each allocation only on the fast-path
1744       Node *prefetch_adr;
1745       Node *prefetch;
1746       // Generate several prefetch instructions.
1747       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1748       uint step_size = AllocatePrefetchStepSize;
1749       uint distance = AllocatePrefetchDistance;
1750       for ( uint i = 0; i < lines; i++ ) {
1751         prefetch_adr = new (C) AddPNode( old_eden_top, new_eden_top,
1752                                             _igvn.MakeConX(distance) );
1753         transform_later(prefetch_adr);
1754         prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
1755         // Do not let it float too high, since if eden_top == eden_end,
1756         // both might be null.
1757         if( i == 0 ) { // Set control for first prefetch, next follows it
1758           prefetch->init_req(0, needgc_false);
1759         }
1760         transform_later(prefetch);
1761         distance += step_size;
1762         i_o = prefetch;
1763       }
1764    }
1765    return i_o;
1766 }
1767 
1768 
1769 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1770   expand_allocate_common(alloc, NULL,
1771                          OptoRuntime::new_instance_Type(),
1772                          OptoRuntime::new_instance_Java());
1773 }
1774 
1775 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1776   Node* length = alloc->in(AllocateNode::ALength);
1777   InitializeNode* init = alloc->initialization();
1778   Node* klass_node = alloc->in(AllocateNode::KlassNode);
1779   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1780   address slow_call_address;  // Address of slow call
1781   if (init != NULL && init->is_complete_with_arraycopy() &&
1782       k->is_type_array_klass()) {
1783     // Don't zero type array during slow allocation in VM since
1784     // it will be initialized later by arraycopy in compiled code.
1785     slow_call_address = OptoRuntime::new_array_nozero_Java();
1786   } else {
1787     slow_call_address = OptoRuntime::new_array_Java();
1788   }
1789   expand_allocate_common(alloc, length,
1790                          OptoRuntime::new_array_Type(),
1791                          slow_call_address);
1792 }
1793 
1794 //-------------------mark_eliminated_box----------------------------------
1795 //
1796 // During EA obj may point to several objects but after few ideal graph
1797 // transformations (CCP) it may point to only one non escaping object
1798 // (but still using phi), corresponding locks and unlocks will be marked
1799 // for elimination. Later obj could be replaced with a new node (new phi)
1800 // and which does not have escape information. And later after some graph
1801 // reshape other locks and unlocks (which were not marked for elimination
1802 // before) are connected to this new obj (phi) but they still will not be
1803 // marked for elimination since new obj has no escape information.
1804 // Mark all associated (same box and obj) lock and unlock nodes for
1805 // elimination if some of them marked already.
1806 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1807   if (oldbox->as_BoxLock()->is_eliminated())
1808     return; // This BoxLock node was processed already.
1809 
1810   // New implementation (EliminateNestedLocks) has separate BoxLock
1811   // node for each locked region so mark all associated locks/unlocks as
1812   // eliminated even if different objects are referenced in one locked region
1813   // (for example, OSR compilation of nested loop inside locked scope).
1814   if (EliminateNestedLocks ||
1815       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
1816     // Box is used only in one lock region. Mark this box as eliminated.
1817     _igvn.hash_delete(oldbox);
1818     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
1819     _igvn.hash_insert(oldbox);
1820 
1821     for (uint i = 0; i < oldbox->outcnt(); i++) {
1822       Node* u = oldbox->raw_out(i);
1823       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
1824         AbstractLockNode* alock = u->as_AbstractLock();
1825         // Check lock's box since box could be referenced by Lock's debug info.
1826         if (alock->box_node() == oldbox) {
1827           // Mark eliminated all related locks and unlocks.
1828           alock->set_non_esc_obj();
1829         }
1830       }
1831     }
1832     return;
1833   }
1834 
1835   // Create new "eliminated" BoxLock node and use it in monitor debug info
1836   // instead of oldbox for the same object.
1837   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1838 
1839   // Note: BoxLock node is marked eliminated only here and it is used
1840   // to indicate that all associated lock and unlock nodes are marked
1841   // for elimination.
1842   newbox->set_eliminated();
1843   transform_later(newbox);
1844 
1845   // Replace old box node with new box for all users of the same object.
1846   for (uint i = 0; i < oldbox->outcnt();) {
1847     bool next_edge = true;
1848 
1849     Node* u = oldbox->raw_out(i);
1850     if (u->is_AbstractLock()) {
1851       AbstractLockNode* alock = u->as_AbstractLock();
1852       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
1853         // Replace Box and mark eliminated all related locks and unlocks.
1854         alock->set_non_esc_obj();
1855         _igvn.rehash_node_delayed(alock);
1856         alock->set_box_node(newbox);
1857         next_edge = false;
1858       }
1859     }
1860     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
1861       FastLockNode* flock = u->as_FastLock();
1862       assert(flock->box_node() == oldbox, "sanity");
1863       _igvn.rehash_node_delayed(flock);
1864       flock->set_box_node(newbox);
1865       next_edge = false;
1866     }
1867 
1868     // Replace old box in monitor debug info.
1869     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1870       SafePointNode* sfn = u->as_SafePoint();
1871       JVMState* youngest_jvms = sfn->jvms();
1872       int max_depth = youngest_jvms->depth();
1873       for (int depth = 1; depth <= max_depth; depth++) {
1874         JVMState* jvms = youngest_jvms->of_depth(depth);
1875         int num_mon  = jvms->nof_monitors();
1876         // Loop over monitors
1877         for (int idx = 0; idx < num_mon; idx++) {
1878           Node* obj_node = sfn->monitor_obj(jvms, idx);
1879           Node* box_node = sfn->monitor_box(jvms, idx);
1880           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
1881             int j = jvms->monitor_box_offset(idx);
1882             _igvn.replace_input_of(u, j, newbox);
1883             next_edge = false;
1884           }
1885         }
1886       }
1887     }
1888     if (next_edge) i++;
1889   }
1890 }
1891 
1892 //-----------------------mark_eliminated_locking_nodes-----------------------
1893 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
1894   if (EliminateNestedLocks) {
1895     if (alock->is_nested()) {
1896        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
1897        return;
1898     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
1899       // Only Lock node has JVMState needed here.
1900       if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
1901         // Mark eliminated related nested locks and unlocks.
1902         Node* obj = alock->obj_node();
1903         BoxLockNode* box_node = alock->box_node()->as_BoxLock();
1904         assert(!box_node->is_eliminated(), "should not be marked yet");
1905         // Note: BoxLock node is marked eliminated only here
1906         // and it is used to indicate that all associated lock
1907         // and unlock nodes are marked for elimination.
1908         box_node->set_eliminated(); // Box's hash is always NO_HASH here
1909         for (uint i = 0; i < box_node->outcnt(); i++) {
1910           Node* u = box_node->raw_out(i);
1911           if (u->is_AbstractLock()) {
1912             alock = u->as_AbstractLock();
1913             if (alock->box_node() == box_node) {
1914               // Verify that this Box is referenced only by related locks.
1915               assert(alock->obj_node()->eqv_uncast(obj), "");
1916               // Mark all related locks and unlocks.
1917               alock->set_nested();
1918             }
1919           }
1920         }
1921       }
1922       return;
1923     }
1924     // Process locks for non escaping object
1925     assert(alock->is_non_esc_obj(), "");
1926   } // EliminateNestedLocks
1927 
1928   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
1929     // Look for all locks of this object and mark them and
1930     // corresponding BoxLock nodes as eliminated.
1931     Node* obj = alock->obj_node();
1932     for (uint j = 0; j < obj->outcnt(); j++) {
1933       Node* o = obj->raw_out(j);
1934       if (o->is_AbstractLock() &&
1935           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
1936         alock = o->as_AbstractLock();
1937         Node* box = alock->box_node();
1938         // Replace old box node with new eliminated box for all users
1939         // of the same object and mark related locks as eliminated.
1940         mark_eliminated_box(box, obj);
1941       }
1942     }
1943   }
1944 }
1945 
1946 // we have determined that this lock/unlock can be eliminated, we simply
1947 // eliminate the node without expanding it.
1948 //
1949 // Note:  The membar's associated with the lock/unlock are currently not
1950 //        eliminated.  This should be investigated as a future enhancement.
1951 //
1952 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1953 
1954   if (!alock->is_eliminated()) {
1955     return false;
1956   }
1957 #ifdef ASSERT
1958   if (!alock->is_coarsened()) {
1959     // Check that new "eliminated" BoxLock node is created.
1960     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1961     assert(oldbox->is_eliminated(), "should be done already");
1962   }
1963 #endif
1964   CompileLog* log = C->log();
1965   if (log != NULL) {
1966     log->head("eliminate_lock lock='%d'",
1967               alock->is_Lock());
1968     JVMState* p = alock->jvms();
1969     while (p != NULL) {
1970       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1971       p = p->caller();
1972     }
1973     log->tail("eliminate_lock");
1974   }
1975 
1976   #ifndef PRODUCT
1977   if (PrintEliminateLocks) {
1978     if (alock->is_Lock()) {
1979       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
1980     } else {
1981       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
1982     }
1983   }
1984   #endif
1985 
1986   Node* mem  = alock->in(TypeFunc::Memory);
1987   Node* ctrl = alock->in(TypeFunc::Control);
1988 
1989   extract_call_projections(alock);
1990   // There are 2 projections from the lock.  The lock node will
1991   // be deleted when its last use is subsumed below.
1992   assert(alock->outcnt() == 2 &&
1993          _fallthroughproj != NULL &&
1994          _memproj_fallthrough != NULL,
1995          "Unexpected projections from Lock/Unlock");
1996 
1997   Node* fallthroughproj = _fallthroughproj;
1998   Node* memproj_fallthrough = _memproj_fallthrough;
1999 
2000   // The memory projection from a lock/unlock is RawMem
2001   // The input to a Lock is merged memory, so extract its RawMem input
2002   // (unless the MergeMem has been optimized away.)
2003   if (alock->is_Lock()) {
2004     // Seach for MemBarAcquireLock node and delete it also.
2005     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2006     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2007     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2008     Node* memproj = membar->proj_out(TypeFunc::Memory);
2009     _igvn.replace_node(ctrlproj, fallthroughproj);
2010     _igvn.replace_node(memproj, memproj_fallthrough);
2011 
2012     // Delete FastLock node also if this Lock node is unique user
2013     // (a loop peeling may clone a Lock node).
2014     Node* flock = alock->as_Lock()->fastlock_node();
2015     if (flock->outcnt() == 1) {
2016       assert(flock->unique_out() == alock, "sanity");
2017       _igvn.replace_node(flock, top());
2018     }
2019   }
2020 
2021   // Seach for MemBarReleaseLock node and delete it also.
2022   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2023       ctrl->in(0)->is_MemBar()) {
2024     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2025     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2026            mem->is_Proj() && membar == mem->in(0), "");
2027     _igvn.replace_node(fallthroughproj, ctrl);
2028     _igvn.replace_node(memproj_fallthrough, mem);
2029     fallthroughproj = ctrl;
2030     memproj_fallthrough = mem;
2031     ctrl = membar->in(TypeFunc::Control);
2032     mem  = membar->in(TypeFunc::Memory);
2033   }
2034 
2035   _igvn.replace_node(fallthroughproj, ctrl);
2036   _igvn.replace_node(memproj_fallthrough, mem);
2037   return true;
2038 }
2039 
2040 
2041 //------------------------------expand_lock_node----------------------
2042 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2043 
2044   Node* ctrl = lock->in(TypeFunc::Control);
2045   Node* mem = lock->in(TypeFunc::Memory);
2046   Node* obj = lock->obj_node();
2047   Node* box = lock->box_node();
2048   Node* flock = lock->fastlock_node();
2049 
2050   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2051 
2052   // Make the merge point
2053   Node *region;
2054   Node *mem_phi;
2055   Node *slow_path;
2056 
2057   if (UseOptoBiasInlining) {
2058     /*
2059      *  See the full description in MacroAssembler::biased_locking_enter().
2060      *
2061      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2062      *    // The object is biased.
2063      *    proto_node = klass->prototype_header;
2064      *    o_node = thread | proto_node;
2065      *    x_node = o_node ^ mark_word;
2066      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2067      *      // Done.
2068      *    } else {
2069      *      if( (x_node & biased_lock_mask) != 0 ) {
2070      *        // The klass's prototype header is no longer biased.
2071      *        cas(&mark_word, mark_word, proto_node)
2072      *        goto cas_lock;
2073      *      } else {
2074      *        // The klass's prototype header is still biased.
2075      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2076      *          old = mark_word;
2077      *          new = o_node;
2078      *        } else {
2079      *          // Different thread or anonymous biased.
2080      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2081      *          new = thread | old;
2082      *        }
2083      *        // Try to rebias.
2084      *        if( cas(&mark_word, old, new) == 0 ) {
2085      *          // Done.
2086      *        } else {
2087      *          goto slow_path; // Failed.
2088      *        }
2089      *      }
2090      *    }
2091      *  } else {
2092      *    // The object is not biased.
2093      *    cas_lock:
2094      *    if( FastLock(obj) == 0 ) {
2095      *      // Done.
2096      *    } else {
2097      *      slow_path:
2098      *      OptoRuntime::complete_monitor_locking_Java(obj);
2099      *    }
2100      *  }
2101      */
2102 
2103     region  = new (C) RegionNode(5);
2104     // create a Phi for the memory state
2105     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2106 
2107     Node* fast_lock_region  = new (C) RegionNode(3);
2108     Node* fast_lock_mem_phi = new (C) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2109 
2110     // First, check mark word for the biased lock pattern.
2111     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2112 
2113     // Get fast path - mark word has the biased lock pattern.
2114     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2115                          markOopDesc::biased_lock_mask_in_place,
2116                          markOopDesc::biased_lock_pattern, true);
2117     // fast_lock_region->in(1) is set to slow path.
2118     fast_lock_mem_phi->init_req(1, mem);
2119 
2120     // Now check that the lock is biased to the current thread and has
2121     // the same epoch and bias as Klass::_prototype_header.
2122 
2123     // Special-case a fresh allocation to avoid building nodes:
2124     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2125     if (klass_node == NULL) {
2126       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2127       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
2128 #ifdef _LP64
2129       if (UseCompressedKlassPointers && klass_node->is_DecodeNKlass()) {
2130         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2131         klass_node->in(1)->init_req(0, ctrl);
2132       } else
2133 #endif
2134       klass_node->init_req(0, ctrl);
2135     }
2136     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2137 
2138     Node* thread = transform_later(new (C) ThreadLocalNode());
2139     Node* cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
2140     Node* o_node = transform_later(new (C) OrXNode(cast_thread, proto_node));
2141     Node* x_node = transform_later(new (C) XorXNode(o_node, mark_node));
2142 
2143     // Get slow path - mark word does NOT match the value.
2144     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2145                                       (~markOopDesc::age_mask_in_place), 0);
2146     // region->in(3) is set to fast path - the object is biased to the current thread.
2147     mem_phi->init_req(3, mem);
2148 
2149 
2150     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2151 
2152 
2153     // First, check biased pattern.
2154     // Get fast path - _prototype_header has the same biased lock pattern.
2155     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2156                           markOopDesc::biased_lock_mask_in_place, 0, true);
2157 
2158     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2159     // fast_lock_region->in(2) - the prototype header is no longer biased
2160     // and we have to revoke the bias on this object.
2161     // We are going to try to reset the mark of this object to the prototype
2162     // value and fall through to the CAS-based locking scheme.
2163     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2164     Node* cas = new (C) StoreXConditionalNode(not_biased_ctrl, mem, adr,
2165                                               proto_node, mark_node);
2166     transform_later(cas);
2167     Node* proj = transform_later( new (C) SCMemProjNode(cas));
2168     fast_lock_mem_phi->init_req(2, proj);
2169 
2170 
2171     // Second, check epoch bits.
2172     Node* rebiased_region  = new (C) RegionNode(3);
2173     Node* old_phi = new (C) PhiNode( rebiased_region, TypeX_X);
2174     Node* new_phi = new (C) PhiNode( rebiased_region, TypeX_X);
2175 
2176     // Get slow path - mark word does NOT match epoch bits.
2177     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2178                                       markOopDesc::epoch_mask_in_place, 0);
2179     // The epoch of the current bias is not valid, attempt to rebias the object
2180     // toward the current thread.
2181     rebiased_region->init_req(2, epoch_ctrl);
2182     old_phi->init_req(2, mark_node);
2183     new_phi->init_req(2, o_node);
2184 
2185     // rebiased_region->in(1) is set to fast path.
2186     // The epoch of the current bias is still valid but we know
2187     // nothing about the owner; it might be set or it might be clear.
2188     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2189                              markOopDesc::age_mask_in_place |
2190                              markOopDesc::epoch_mask_in_place);
2191     Node* old = transform_later(new (C) AndXNode(mark_node, cmask));
2192     cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
2193     Node* new_mark = transform_later(new (C) OrXNode(cast_thread, old));
2194     old_phi->init_req(1, old);
2195     new_phi->init_req(1, new_mark);
2196 
2197     transform_later(rebiased_region);
2198     transform_later(old_phi);
2199     transform_later(new_phi);
2200 
2201     // Try to acquire the bias of the object using an atomic operation.
2202     // If this fails we will go in to the runtime to revoke the object's bias.
2203     cas = new (C) StoreXConditionalNode(rebiased_region, mem, adr,
2204                                            new_phi, old_phi);
2205     transform_later(cas);
2206     proj = transform_later( new (C) SCMemProjNode(cas));
2207 
2208     // Get slow path - Failed to CAS.
2209     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2210     mem_phi->init_req(4, proj);
2211     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2212 
2213     // Failed to CAS.
2214     slow_path  = new (C) RegionNode(3);
2215     Node *slow_mem = new (C) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2216 
2217     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2218     slow_mem->init_req(1, proj);
2219 
2220     // Call CAS-based locking scheme (FastLock node).
2221 
2222     transform_later(fast_lock_region);
2223     transform_later(fast_lock_mem_phi);
2224 
2225     // Get slow path - FastLock failed to lock the object.
2226     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2227     mem_phi->init_req(2, fast_lock_mem_phi);
2228     // region->in(2) is set to fast path - the object is locked to the current thread.
2229 
2230     slow_path->init_req(2, ctrl); // Capture slow-control
2231     slow_mem->init_req(2, fast_lock_mem_phi);
2232 
2233     transform_later(slow_path);
2234     transform_later(slow_mem);
2235     // Reset lock's memory edge.
2236     lock->set_req(TypeFunc::Memory, slow_mem);
2237 
2238   } else {
2239     region  = new (C) RegionNode(3);
2240     // create a Phi for the memory state
2241     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2242 
2243     // Optimize test; set region slot 2
2244     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2245     mem_phi->init_req(2, mem);
2246   }
2247 
2248   // Make slow path call
2249   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2250 
2251   extract_call_projections(call);
2252 
2253   // Slow path can only throw asynchronous exceptions, which are always
2254   // de-opted.  So the compiler thinks the slow-call can never throw an
2255   // exception.  If it DOES throw an exception we would need the debug
2256   // info removed first (since if it throws there is no monitor).
2257   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2258            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2259 
2260   // Capture slow path
2261   // disconnect fall-through projection from call and create a new one
2262   // hook up users of fall-through projection to region
2263   Node *slow_ctrl = _fallthroughproj->clone();
2264   transform_later(slow_ctrl);
2265   _igvn.hash_delete(_fallthroughproj);
2266   _fallthroughproj->disconnect_inputs(NULL, C);
2267   region->init_req(1, slow_ctrl);
2268   // region inputs are now complete
2269   transform_later(region);
2270   _igvn.replace_node(_fallthroughproj, region);
2271 
2272   Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
2273   mem_phi->init_req(1, memproj );
2274   transform_later(mem_phi);
2275   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2276 }
2277 
2278 //------------------------------expand_unlock_node----------------------
2279 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2280 
2281   Node* ctrl = unlock->in(TypeFunc::Control);
2282   Node* mem = unlock->in(TypeFunc::Memory);
2283   Node* obj = unlock->obj_node();
2284   Node* box = unlock->box_node();
2285 
2286   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2287 
2288   // No need for a null check on unlock
2289 
2290   // Make the merge point
2291   Node *region;
2292   Node *mem_phi;
2293 
2294   if (UseOptoBiasInlining) {
2295     // Check for biased locking unlock case, which is a no-op.
2296     // See the full description in MacroAssembler::biased_locking_exit().
2297     region  = new (C) RegionNode(4);
2298     // create a Phi for the memory state
2299     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2300     mem_phi->init_req(3, mem);
2301 
2302     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2303     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2304                          markOopDesc::biased_lock_mask_in_place,
2305                          markOopDesc::biased_lock_pattern);
2306   } else {
2307     region  = new (C) RegionNode(3);
2308     // create a Phi for the memory state
2309     mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2310   }
2311 
2312   FastUnlockNode *funlock = new (C) FastUnlockNode( ctrl, obj, box );
2313   funlock = transform_later( funlock )->as_FastUnlock();
2314   // Optimize test; set region slot 2
2315   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2316 
2317   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2318 
2319   extract_call_projections(call);
2320 
2321   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2322            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2323 
2324   // No exceptions for unlocking
2325   // Capture slow path
2326   // disconnect fall-through projection from call and create a new one
2327   // hook up users of fall-through projection to region
2328   Node *slow_ctrl = _fallthroughproj->clone();
2329   transform_later(slow_ctrl);
2330   _igvn.hash_delete(_fallthroughproj);
2331   _fallthroughproj->disconnect_inputs(NULL, C);
2332   region->init_req(1, slow_ctrl);
2333   // region inputs are now complete
2334   transform_later(region);
2335   _igvn.replace_node(_fallthroughproj, region);
2336 
2337   Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
2338   mem_phi->init_req(1, memproj );
2339   mem_phi->init_req(2, mem);
2340   transform_later(mem_phi);
2341   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2342 }
2343 
2344 //---------------------------eliminate_macro_nodes----------------------
2345 // Eliminate scalar replaced allocations and associated locks.
2346 void PhaseMacroExpand::eliminate_macro_nodes() {
2347   if (C->macro_count() == 0)
2348     return;
2349 
2350   // First, attempt to eliminate locks
2351   int cnt = C->macro_count();
2352   for (int i=0; i < cnt; i++) {
2353     Node *n = C->macro_node(i);
2354     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2355       // Before elimination mark all associated (same box and obj)
2356       // lock and unlock nodes.
2357       mark_eliminated_locking_nodes(n->as_AbstractLock());
2358     }
2359   }
2360   bool progress = true;
2361   while (progress) {
2362     progress = false;
2363     for (int i = C->macro_count(); i > 0; i--) {
2364       Node * n = C->macro_node(i-1);
2365       bool success = false;
2366       debug_only(int old_macro_count = C->macro_count(););
2367       if (n->is_AbstractLock()) {
2368         success = eliminate_locking_node(n->as_AbstractLock());
2369       }
2370       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2371       progress = progress || success;
2372     }
2373   }
2374   // Next, attempt to eliminate allocations
2375   progress = true;
2376   while (progress) {
2377     progress = false;
2378     for (int i = C->macro_count(); i > 0; i--) {
2379       Node * n = C->macro_node(i-1);
2380       bool success = false;
2381       debug_only(int old_macro_count = C->macro_count(););
2382       switch (n->class_id()) {
2383       case Node::Class_Allocate:
2384       case Node::Class_AllocateArray:
2385         success = eliminate_allocate_node(n->as_Allocate());
2386         break;
2387       case Node::Class_Lock:
2388       case Node::Class_Unlock:
2389         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2390         break;
2391       default:
2392         assert(n->Opcode() == Op_LoopLimit ||
2393                n->Opcode() == Op_Opaque1   ||
2394                n->Opcode() == Op_Opaque2, "unknown node type in macro list");
2395       }
2396       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2397       progress = progress || success;
2398     }
2399   }
2400 }
2401 
2402 //------------------------------expand_macro_nodes----------------------
2403 //  Returns true if a failure occurred.
2404 bool PhaseMacroExpand::expand_macro_nodes() {
2405   // Last attempt to eliminate macro nodes.
2406   eliminate_macro_nodes();
2407 
2408   // Make sure expansion will not cause node limit to be exceeded.
2409   // Worst case is a macro node gets expanded into about 50 nodes.
2410   // Allow 50% more for optimization.
2411   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2412     return true;
2413 
2414   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2415   bool progress = true;
2416   while (progress) {
2417     progress = false;
2418     for (int i = C->macro_count(); i > 0; i--) {
2419       Node * n = C->macro_node(i-1);
2420       bool success = false;
2421       debug_only(int old_macro_count = C->macro_count(););
2422       if (n->Opcode() == Op_LoopLimit) {
2423         // Remove it from macro list and put on IGVN worklist to optimize.
2424         C->remove_macro_node(n);
2425         _igvn._worklist.push(n);
2426         success = true;
2427       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2428         _igvn.replace_node(n, n->in(1));
2429         success = true;
2430       }
2431       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2432       progress = progress || success;
2433     }
2434   }
2435 
2436   // expand "macro" nodes
2437   // nodes are removed from the macro list as they are processed
2438   while (C->macro_count() > 0) {
2439     int macro_count = C->macro_count();
2440     Node * n = C->macro_node(macro_count-1);
2441     assert(n->is_macro(), "only macro nodes expected here");
2442     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2443       // node is unreachable, so don't try to expand it
2444       C->remove_macro_node(n);
2445       continue;
2446     }
2447     switch (n->class_id()) {
2448     case Node::Class_Allocate:
2449       expand_allocate(n->as_Allocate());
2450       break;
2451     case Node::Class_AllocateArray:
2452       expand_allocate_array(n->as_AllocateArray());
2453       break;
2454     case Node::Class_Lock:
2455       expand_lock_node(n->as_Lock());
2456       break;
2457     case Node::Class_Unlock:
2458       expand_unlock_node(n->as_Unlock());
2459       break;
2460     default:
2461       assert(false, "unknown node type in macro list");
2462     }
2463     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2464     if (C->failing())  return true;
2465   }
2466 
2467   _igvn.set_delay_transform(false);
2468   _igvn.optimize();
2469   if (C->failing())  return true;
2470   return false;
2471 }