1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/chaitin.hpp"
  34 #include "opto/coalesce.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/indexSet.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/rootnode.hpp"
  42 
  43 //=============================================================================
  44 
  45 #ifndef PRODUCT
  46 void LRG::dump( ) const {
  47   ttyLocker ttyl;
  48   tty->print("%d ",num_regs());
  49   _mask.dump();
  50   if( _msize_valid ) {
  51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
  52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  53   } else {
  54     tty->print(", #?(%d) ",_mask.Size());
  55   }
  56 
  57   tty->print("EffDeg: ");
  58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
  59   else tty->print("? ");
  60 
  61   if( is_multidef() ) {
  62     tty->print("MultiDef ");
  63     if (_defs != NULL) {
  64       tty->print("(");
  65       for (int i = 0; i < _defs->length(); i++) {
  66         tty->print("N%d ", _defs->at(i)->_idx);
  67       }
  68       tty->print(") ");
  69     }
  70   }
  71   else if( _def == 0 ) tty->print("Dead ");
  72   else tty->print("Def: N%d ",_def->_idx);
  73 
  74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  75   // Flags
  76   if( _is_oop ) tty->print("Oop ");
  77   if( _is_float ) tty->print("Float ");
  78   if( _is_vector ) tty->print("Vector ");
  79   if( _was_spilled1 ) tty->print("Spilled ");
  80   if( _was_spilled2 ) tty->print("Spilled2 ");
  81   if( _direct_conflict ) tty->print("Direct_conflict ");
  82   if( _fat_proj ) tty->print("Fat ");
  83   if( _was_lo ) tty->print("Lo ");
  84   if( _has_copy ) tty->print("Copy ");
  85   if( _at_risk ) tty->print("Risk ");
  86 
  87   if( _must_spill ) tty->print("Must_spill ");
  88   if( _is_bound ) tty->print("Bound ");
  89   if( _msize_valid ) {
  90     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  91   }
  92 
  93   tty->cr();
  94 }
  95 #endif
  96 
  97 //------------------------------score------------------------------------------
  98 // Compute score from cost and area.  Low score is best to spill.
  99 static double raw_score( double cost, double area ) {
 100   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
 101 }
 102 
 103 double LRG::score() const {
 104   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
 105   // Bigger area lowers score, encourages spilling this live range.
 106   // Bigger cost raise score, prevents spilling this live range.
 107   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
 108   // to turn a divide by a constant into a multiply by the reciprical).
 109   double score = raw_score( _cost, _area);
 110 
 111   // Account for area.  Basically, LRGs covering large areas are better
 112   // to spill because more other LRGs get freed up.
 113   if( _area == 0.0 )            // No area?  Then no progress to spill
 114     return 1e35;
 115 
 116   if( _was_spilled2 )           // If spilled once before, we are unlikely
 117     return score + 1e30;        // to make progress again.
 118 
 119   if( _cost >= _area*3.0 )      // Tiny area relative to cost
 120     return score + 1e17;        // Probably no progress to spill
 121 
 122   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
 123     return score + 1e10;        // Likely no progress to spill
 124 
 125   return score;
 126 }
 127 
 128 //------------------------------LRG_List---------------------------------------
 129 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
 130   memset( _lidxs, 0, sizeof(uint)*max );
 131 }
 132 
 133 void LRG_List::extend( uint nidx, uint lidx ) {
 134   _nesting.check();
 135   if( nidx >= _max ) {
 136     uint size = 16;
 137     while( size <= nidx ) size <<=1;
 138     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
 139     _max = size;
 140   }
 141   while( _cnt <= nidx )
 142     _lidxs[_cnt++] = 0;
 143   _lidxs[nidx] = lidx;
 144 }
 145 
 146 #define NUMBUCKS 3
 147 
 148 // Straight out of Tarjan's union-find algorithm
 149 uint LiveRangeMap::find_compress(uint lrg) {
 150   uint cur = lrg;
 151   uint next = _uf_map[cur];
 152   while (next != cur) { // Scan chain of equivalences
 153     assert( next < cur, "always union smaller");
 154     cur = next; // until find a fixed-point
 155     next = _uf_map[cur];
 156   }
 157 
 158   // Core of union-find algorithm: update chain of
 159   // equivalences to be equal to the root.
 160   while (lrg != next) {
 161     uint tmp = _uf_map[lrg];
 162     _uf_map.map(lrg, next);
 163     lrg = tmp;
 164   }
 165   return lrg;
 166 }
 167 
 168 // Reset the Union-Find map to identity
 169 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
 170   _max_lrg_id= max_lrg_id;
 171   // Force the Union-Find mapping to be at least this large
 172   _uf_map.extend(_max_lrg_id, 0);
 173   // Initialize it to be the ID mapping.
 174   for (uint i = 0; i < _max_lrg_id; ++i) {
 175     _uf_map.map(i, i);
 176   }
 177 }
 178 
 179 // Make all Nodes map directly to their final live range; no need for
 180 // the Union-Find mapping after this call.
 181 void LiveRangeMap::compress_uf_map_for_nodes() {
 182   // For all Nodes, compress mapping
 183   uint unique = _names.Size();
 184   for (uint i = 0; i < unique; ++i) {
 185     uint lrg = _names[i];
 186     uint compressed_lrg = find(lrg);
 187     if (lrg != compressed_lrg) {
 188       _names.map(i, compressed_lrg);
 189     }
 190   }
 191 }
 192 
 193 // Like Find above, but no path compress, so bad asymptotic behavior
 194 uint LiveRangeMap::find_const(uint lrg) const {
 195   if (!lrg) {
 196     return lrg; // Ignore the zero LRG
 197   }
 198 
 199   // Off the end?  This happens during debugging dumps when you got
 200   // brand new live ranges but have not told the allocator yet.
 201   if (lrg >= _max_lrg_id) {
 202     return lrg;
 203   }
 204 
 205   uint next = _uf_map[lrg];
 206   while (next != lrg) { // Scan chain of equivalences
 207     assert(next < lrg, "always union smaller");
 208     lrg = next; // until find a fixed-point
 209     next = _uf_map[lrg];
 210   }
 211   return next;
 212 }
 213 
 214 //------------------------------Chaitin----------------------------------------
 215 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
 216   : PhaseRegAlloc(unique, cfg, matcher,
 217 #ifndef PRODUCT
 218        print_chaitin_statistics
 219 #else
 220        NULL
 221 #endif
 222        )
 223   , _lrg_map(unique)
 224   , _live(0)
 225   , _spilled_once(Thread::current()->resource_area())
 226   , _spilled_twice(Thread::current()->resource_area())
 227   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
 228   , _oldphi(unique)
 229 #ifndef PRODUCT
 230   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
 231 #endif
 232 {
 233   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
 234 
 235   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
 236 
 237   // Build a list of basic blocks, sorted by frequency
 238   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
 239   // Experiment with sorting strategies to speed compilation
 240   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
 241   Block **buckets[NUMBUCKS];             // Array of buckets
 242   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
 243   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
 244   for (uint i = 0; i < NUMBUCKS; i++) {
 245     buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg._num_blocks);
 246     buckcnt[i] = 0;
 247     // Bump by three orders of magnitude each time
 248     cutoff *= 0.001;
 249     buckval[i] = cutoff;
 250     for (uint j = 0; j < _cfg._num_blocks; j++) {
 251       buckets[i][j] = NULL;
 252     }
 253   }
 254   // Sort blocks into buckets
 255   for (uint i = 0; i < _cfg._num_blocks; i++) {
 256     for (uint j = 0; j < NUMBUCKS; j++) {
 257       if ((j == NUMBUCKS - 1) || (_cfg._blocks[i]->_freq > buckval[j])) {
 258         // Assign block to end of list for appropriate bucket
 259         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
 260         break; // kick out of inner loop
 261       }
 262     }
 263   }
 264   // Dump buckets into final block array
 265   uint blkcnt = 0;
 266   for (uint i = 0; i < NUMBUCKS; i++) {
 267     for (uint j = 0; j < buckcnt[i]; j++) {
 268       _blks[blkcnt++] = buckets[i][j];
 269     }
 270   }
 271 
 272   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
 273 }
 274 
 275 //------------------------------Union------------------------------------------
 276 // union 2 sets together.
 277 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
 278   uint src = _lrg_map.find(src_n);
 279   uint dst = _lrg_map.find(dst_n);
 280   assert(src, "");
 281   assert(dst, "");
 282   assert(src < _lrg_map.max_lrg_id(), "oob");
 283   assert(dst < _lrg_map.max_lrg_id(), "oob");
 284   assert(src < dst, "always union smaller");
 285   _lrg_map.uf_map(dst, src);
 286 }
 287 
 288 //------------------------------new_lrg----------------------------------------
 289 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
 290   // Make the Node->LRG mapping
 291   _lrg_map.extend(x->_idx,lrg);
 292   // Make the Union-Find mapping an identity function
 293   _lrg_map.uf_extend(lrg, lrg);
 294 }
 295 
 296 
 297 int PhaseChaitin::clone_projs(Block *b, uint idx, Node *orig, Node *copy, uint &max_lrg_id) {
 298   assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
 299   Block* borig = _cfg._bbs[orig->_idx];
 300   uint  bindex = borig->find_node(orig) + 1;
 301   Node* proj   = borig->_nodes[bindex++];
 302   int found_projs = 0;
 303   while (proj->in(0) == orig && proj->is_MachProj()) {
 304     found_projs++;
 305     // Copy kill projections after the cloned node
 306     Node* kills = proj->clone();
 307     kills->set_req(0, copy);
 308     b->_nodes.insert(idx++, kills);
 309     _cfg._bbs.map(kills->_idx, b);
 310     new_lrg(kills, max_lrg_id++);
 311     proj = borig->_nodes[bindex++];
 312   }
 313   return found_projs;
 314 }
 315 
 316 //------------------------------compact----------------------------------------
 317 // Renumber the live ranges to compact them.  Makes the IFG smaller.
 318 void PhaseChaitin::compact() {
 319   // Current the _uf_map contains a series of short chains which are headed
 320   // by a self-cycle.  All the chains run from big numbers to little numbers.
 321   // The Find() call chases the chains & shortens them for the next Find call.
 322   // We are going to change this structure slightly.  Numbers above a moving
 323   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
 324   // compacted live range with no further chaining.  There are no chains or
 325   // cycles below 'i', so the Find call no longer works.
 326   uint j=1;
 327   uint i;
 328   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
 329     uint lr = _lrg_map.uf_live_range_id(i);
 330     // Ignore unallocated live ranges
 331     if (!lr) {
 332       continue;
 333     }
 334     assert(lr <= i, "");
 335     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
 336   }
 337   // Now change the Node->LR mapping to reflect the compacted names
 338   uint unique = _lrg_map.size();
 339   for (i = 0; i < unique; i++) {
 340     uint lrg_id = _lrg_map.live_range_id(i);
 341     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
 342   }
 343 
 344   // Reset the Union-Find mapping
 345   _lrg_map.reset_uf_map(j);
 346 }
 347 
 348 void PhaseChaitin::Register_Allocate() {
 349 
 350   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
 351   // slots in this area are called "arg_slots".  Above the NEW FP (and in
 352   // registers) is the outgoing argument area; above that is the spill/temp
 353   // area.  These are all "frame_slots".  Arg_slots start at the zero
 354   // stack_slots and count up to the known arg_size.  Frame_slots start at
 355   // the stack_slot #arg_size and go up.  After allocation I map stack
 356   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
 357   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
 358 
 359   _trip_cnt = 0;
 360   _alternate = 0;
 361   _matcher._allocation_started = true;
 362 
 363   ResourceArea split_arena;     // Arena for Split local resources
 364   ResourceArea live_arena;      // Arena for liveness & IFG info
 365   ResourceMark rm(&live_arena);
 366 
 367   // Need live-ness for the IFG; need the IFG for coalescing.  If the
 368   // liveness is JUST for coalescing, then I can get some mileage by renaming
 369   // all copy-related live ranges low and then using the max copy-related
 370   // live range as a cut-off for LIVE and the IFG.  In other words, I can
 371   // build a subset of LIVE and IFG just for copies.
 372   PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
 373 
 374   // Need IFG for coalescing and coloring
 375   PhaseIFG ifg(&live_arena);
 376   _ifg = &ifg;
 377 
 378   // Come out of SSA world to the Named world.  Assign (virtual) registers to
 379   // Nodes.  Use the same register for all inputs and the output of PhiNodes
 380   // - effectively ending SSA form.  This requires either coalescing live
 381   // ranges or inserting copies.  For the moment, we insert "virtual copies"
 382   // - we pretend there is a copy prior to each Phi in predecessor blocks.
 383   // We will attempt to coalesce such "virtual copies" before we manifest
 384   // them for real.
 385   de_ssa();
 386 
 387 #ifdef ASSERT
 388   // Veify the graph before RA.
 389   verify(&live_arena);
 390 #endif
 391 
 392   {
 393     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 394     _live = NULL;                 // Mark live as being not available
 395     rm.reset_to_mark();           // Reclaim working storage
 396     IndexSet::reset_memory(C, &live_arena);
 397     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
 398     gather_lrg_masks( false );    // Collect LRG masks
 399     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
 400     _live = &live;                // Mark LIVE as being available
 401   }
 402 
 403   // Base pointers are currently "used" by instructions which define new
 404   // derived pointers.  This makes base pointers live up to the where the
 405   // derived pointer is made, but not beyond.  Really, they need to be live
 406   // across any GC point where the derived value is live.  So this code looks
 407   // at all the GC points, and "stretches" the live range of any base pointer
 408   // to the GC point.
 409   if (stretch_base_pointer_live_ranges(&live_arena)) {
 410     NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
 411     // Since some live range stretched, I need to recompute live
 412     _live = NULL;
 413     rm.reset_to_mark();         // Reclaim working storage
 414     IndexSet::reset_memory(C, &live_arena);
 415     ifg.init(_lrg_map.max_lrg_id());
 416     gather_lrg_masks(false);
 417     live.compute(_lrg_map.max_lrg_id());
 418     _live = &live;
 419   }
 420   // Create the interference graph using virtual copies
 421   build_ifg_virtual();  // Include stack slots this time
 422 
 423   // Aggressive (but pessimistic) copy coalescing.
 424   // This pass works on virtual copies.  Any virtual copies which are not
 425   // coalesced get manifested as actual copies
 426   {
 427     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
 428     // faster.  Union requires a 'for all' operation which is slow on the
 429     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
 430     // meaning I can visit all the Nodes neighbors less than a Node in time
 431     // O(# of neighbors), but I have to visit all the Nodes greater than a
 432     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
 433     _ifg->SquareUp();
 434 
 435     PhaseAggressiveCoalesce coalesce(*this);
 436     coalesce.coalesce_driver();
 437     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
 438     // not match the Phi itself, insert a copy.
 439     coalesce.insert_copies(_matcher);
 440     if (C->failing()) {
 441       return;
 442     }
 443   }
 444 
 445   // After aggressive coalesce, attempt a first cut at coloring.
 446   // To color, we need the IFG and for that we need LIVE.
 447   {
 448     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 449     _live = NULL;
 450     rm.reset_to_mark();           // Reclaim working storage
 451     IndexSet::reset_memory(C, &live_arena);
 452     ifg.init(_lrg_map.max_lrg_id());
 453     gather_lrg_masks( true );
 454     live.compute(_lrg_map.max_lrg_id());
 455     _live = &live;
 456   }
 457 
 458   // Build physical interference graph
 459   uint must_spill = 0;
 460   must_spill = build_ifg_physical(&live_arena);
 461   // If we have a guaranteed spill, might as well spill now
 462   if (must_spill) {
 463     if(!_lrg_map.max_lrg_id()) {
 464       return;
 465     }
 466     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
 467     C->check_node_count(10*must_spill, "out of nodes before split");
 468     if (C->failing()) {
 469       return;
 470     }
 471 
 472     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 473     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 474     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 475     // or we failed to split
 476     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
 477     if (C->failing()) {
 478       return;
 479     }
 480 
 481     NOT_PRODUCT(C->verify_graph_edges();)
 482 
 483     compact();                  // Compact LRGs; return new lower max lrg
 484 
 485     {
 486       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 487       _live = NULL;
 488       rm.reset_to_mark();         // Reclaim working storage
 489       IndexSet::reset_memory(C, &live_arena);
 490       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
 491       gather_lrg_masks( true );   // Collect intersect mask
 492       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
 493       _live = &live;
 494     }
 495     build_ifg_physical(&live_arena);
 496     _ifg->SquareUp();
 497     _ifg->Compute_Effective_Degree();
 498     // Only do conservative coalescing if requested
 499     if (OptoCoalesce) {
 500       // Conservative (and pessimistic) copy coalescing of those spills
 501       PhaseConservativeCoalesce coalesce(*this);
 502       // If max live ranges greater than cutoff, don't color the stack.
 503       // This cutoff can be larger than below since it is only done once.
 504       coalesce.coalesce_driver();
 505     }
 506     _lrg_map.compress_uf_map_for_nodes();
 507 
 508 #ifdef ASSERT
 509     verify(&live_arena, true);
 510 #endif
 511   } else {
 512     ifg.SquareUp();
 513     ifg.Compute_Effective_Degree();
 514 #ifdef ASSERT
 515     set_was_low();
 516 #endif
 517   }
 518 
 519   // Prepare for Simplify & Select
 520   cache_lrg_info();           // Count degree of LRGs
 521 
 522   // Simplify the InterFerence Graph by removing LRGs of low degree.
 523   // LRGs of low degree are trivially colorable.
 524   Simplify();
 525 
 526   // Select colors by re-inserting LRGs back into the IFG in reverse order.
 527   // Return whether or not something spills.
 528   uint spills = Select( );
 529 
 530   // If we spill, split and recycle the entire thing
 531   while( spills ) {
 532     if( _trip_cnt++ > 24 ) {
 533       DEBUG_ONLY( dump_for_spill_split_recycle(); )
 534       if( _trip_cnt > 27 ) {
 535         C->record_method_not_compilable("failed spill-split-recycle sanity check");
 536         return;
 537       }
 538     }
 539 
 540     if (!_lrg_map.max_lrg_id()) {
 541       return;
 542     }
 543     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
 544     _lrg_map.set_max_lrg_id(new_max_lrg_id);
 545     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 546     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
 547     if (C->failing()) {
 548       return;
 549     }
 550 
 551     compact(); // Compact LRGs; return new lower max lrg
 552 
 553     // Nuke the live-ness and interference graph and LiveRanGe info
 554     {
 555       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 556       _live = NULL;
 557       rm.reset_to_mark();         // Reclaim working storage
 558       IndexSet::reset_memory(C, &live_arena);
 559       ifg.init(_lrg_map.max_lrg_id());
 560 
 561       // Create LiveRanGe array.
 562       // Intersect register masks for all USEs and DEFs
 563       gather_lrg_masks(true);
 564       live.compute(_lrg_map.max_lrg_id());
 565       _live = &live;
 566     }
 567     must_spill = build_ifg_physical(&live_arena);
 568     _ifg->SquareUp();
 569     _ifg->Compute_Effective_Degree();
 570 
 571     // Only do conservative coalescing if requested
 572     if (OptoCoalesce) {
 573       // Conservative (and pessimistic) copy coalescing
 574       PhaseConservativeCoalesce coalesce(*this);
 575       // Check for few live ranges determines how aggressive coalesce is.
 576       coalesce.coalesce_driver();
 577     }
 578     _lrg_map.compress_uf_map_for_nodes();
 579 #ifdef ASSERT
 580     verify(&live_arena, true);
 581 #endif
 582     cache_lrg_info();           // Count degree of LRGs
 583 
 584     // Simplify the InterFerence Graph by removing LRGs of low degree.
 585     // LRGs of low degree are trivially colorable.
 586     Simplify();
 587 
 588     // Select colors by re-inserting LRGs back into the IFG in reverse order.
 589     // Return whether or not something spills.
 590     spills = Select();
 591   }
 592 
 593   // Count number of Simplify-Select trips per coloring success.
 594   _allocator_attempts += _trip_cnt + 1;
 595   _allocator_successes += 1;
 596 
 597   // Peephole remove copies
 598   post_allocate_copy_removal();
 599 
 600 #ifdef ASSERT
 601   // Veify the graph after RA.
 602   verify(&live_arena);
 603 #endif
 604 
 605   // max_reg is past the largest *register* used.
 606   // Convert that to a frame_slot number.
 607   if (_max_reg <= _matcher._new_SP) {
 608     _framesize = C->out_preserve_stack_slots();
 609   }
 610   else {
 611     _framesize = _max_reg -_matcher._new_SP;
 612   }
 613   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
 614 
 615   // This frame must preserve the required fp alignment
 616   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
 617   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
 618 #ifndef PRODUCT
 619   _total_framesize += _framesize;
 620   if ((int)_framesize > _max_framesize) {
 621     _max_framesize = _framesize;
 622   }
 623 #endif
 624 
 625   // Convert CISC spills
 626   fixup_spills();
 627 
 628   // Log regalloc results
 629   CompileLog* log = Compile::current()->log();
 630   if (log != NULL) {
 631     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
 632   }
 633 
 634   if (C->failing()) {
 635     return;
 636   }
 637 
 638   NOT_PRODUCT(C->verify_graph_edges();)
 639 
 640   // Move important info out of the live_arena to longer lasting storage.
 641   alloc_node_regs(_lrg_map.size());
 642   for (uint i=0; i < _lrg_map.size(); i++) {
 643     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
 644       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
 645       if (!lrg.alive()) {
 646         set_bad(i);
 647       } else if (lrg.num_regs() == 1) {
 648         set1(i, lrg.reg());
 649       } else {                  // Must be a register-set
 650         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
 651           // Live ranges record the highest register in their mask.
 652           // We want the low register for the AD file writer's convenience.
 653           OptoReg::Name hi = lrg.reg(); // Get hi register
 654           OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
 655           // We have to use pair [lo,lo+1] even for wide vectors because
 656           // the rest of code generation works only with pairs. It is safe
 657           // since for registers encoding only 'lo' is used.
 658           // Second reg from pair is used in ScheduleAndBundle on SPARC where
 659           // vector max size is 8 which corresponds to registers pair.
 660           // It is also used in BuildOopMaps but oop operations are not
 661           // vectorized.
 662           set2(i, lo);
 663         } else {                // Misaligned; extract 2 bits
 664           OptoReg::Name hi = lrg.reg(); // Get hi register
 665           lrg.Remove(hi);       // Yank from mask
 666           int lo = lrg.mask().find_first_elem(); // Find lo
 667           set_pair(i, hi, lo);
 668         }
 669       }
 670       if( lrg._is_oop ) _node_oops.set(i);
 671     } else {
 672       set_bad(i);
 673     }
 674   }
 675 
 676   // Done!
 677   _live = NULL;
 678   _ifg = NULL;
 679   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
 680 }
 681 
 682 //------------------------------de_ssa-----------------------------------------
 683 void PhaseChaitin::de_ssa() {
 684   // Set initial Names for all Nodes.  Most Nodes get the virtual register
 685   // number.  A few get the ZERO live range number.  These do not
 686   // get allocated, but instead rely on correct scheduling to ensure that
 687   // only one instance is simultaneously live at a time.
 688   uint lr_counter = 1;
 689   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 690     Block *b = _cfg._blocks[i];
 691     uint cnt = b->_nodes.size();
 692 
 693     // Handle all the normal Nodes in the block
 694     for( uint j = 0; j < cnt; j++ ) {
 695       Node *n = b->_nodes[j];
 696       // Pre-color to the zero live range, or pick virtual register
 697       const RegMask &rm = n->out_RegMask();
 698       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
 699     }
 700   }
 701   // Reset the Union-Find mapping to be identity
 702   _lrg_map.reset_uf_map(lr_counter);
 703 }
 704 
 705 
 706 //------------------------------gather_lrg_masks-------------------------------
 707 // Gather LiveRanGe information, including register masks.  Modification of
 708 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
 709 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
 710 
 711   // Nail down the frame pointer live range
 712   uint fp_lrg = _lrg_map.live_range_id(_cfg._root->in(1)->in(TypeFunc::FramePtr));
 713   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
 714 
 715   // For all blocks
 716   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 717     Block *b = _cfg._blocks[i];
 718 
 719     // For all instructions
 720     for( uint j = 1; j < b->_nodes.size(); j++ ) {
 721       Node *n = b->_nodes[j];
 722       uint input_edge_start =1; // Skip control most nodes
 723       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
 724       uint idx = n->is_Copy();
 725 
 726       // Get virtual register number, same as LiveRanGe index
 727       uint vreg = _lrg_map.live_range_id(n);
 728       LRG &lrg = lrgs(vreg);
 729       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
 730 
 731         // Collect has-copy bit
 732         if( idx ) {
 733           lrg._has_copy = 1;
 734           uint clidx = _lrg_map.live_range_id(n->in(idx));
 735           LRG &copy_src = lrgs(clidx);
 736           copy_src._has_copy = 1;
 737         }
 738 
 739         // Check for float-vs-int live range (used in register-pressure
 740         // calculations)
 741         const Type *n_type = n->bottom_type();
 742         if (n_type->is_floatingpoint())
 743           lrg._is_float = 1;
 744 
 745         // Check for twice prior spilling.  Once prior spilling might have
 746         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
 747         // further spilling is unlikely to make progress.
 748         if( _spilled_once.test(n->_idx) ) {
 749           lrg._was_spilled1 = 1;
 750           if( _spilled_twice.test(n->_idx) )
 751             lrg._was_spilled2 = 1;
 752         }
 753 
 754 #ifndef PRODUCT
 755         if (trace_spilling() && lrg._def != NULL) {
 756           // collect defs for MultiDef printing
 757           if (lrg._defs == NULL) {
 758             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
 759             lrg._defs->append(lrg._def);
 760           }
 761           lrg._defs->append(n);
 762         }
 763 #endif
 764 
 765         // Check for a single def LRG; these can spill nicely
 766         // via rematerialization.  Flag as NULL for no def found
 767         // yet, or 'n' for single def or -1 for many defs.
 768         lrg._def = lrg._def ? NodeSentinel : n;
 769 
 770         // Limit result register mask to acceptable registers
 771         const RegMask &rm = n->out_RegMask();
 772         lrg.AND( rm );
 773 
 774         int ireg = n->ideal_reg();
 775         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
 776                 "oops must be in Op_RegP's" );
 777 
 778         // Check for vector live range (only if vector register is used).
 779         // On SPARC vector uses RegD which could be misaligned so it is not
 780         // processes as vector in RA.
 781         if (RegMask::is_vector(ireg))
 782           lrg._is_vector = 1;
 783         assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
 784                "vector must be in vector registers");
 785 
 786         // Check for bound register masks
 787         const RegMask &lrgmask = lrg.mask();
 788         if (lrgmask.is_bound(ireg))
 789           lrg._is_bound = 1;
 790 
 791         // Check for maximum frequency value
 792         if (lrg._maxfreq < b->_freq)
 793           lrg._maxfreq = b->_freq;
 794 
 795         // Check for oop-iness, or long/double
 796         // Check for multi-kill projection
 797         switch( ireg ) {
 798         case MachProjNode::fat_proj:
 799           // Fat projections have size equal to number of registers killed
 800           lrg.set_num_regs(rm.Size());
 801           lrg.set_reg_pressure(lrg.num_regs());
 802           lrg._fat_proj = 1;
 803           lrg._is_bound = 1;
 804           break;
 805         case Op_RegP:
 806 #ifdef _LP64
 807           lrg.set_num_regs(2);  // Size is 2 stack words
 808 #else
 809           lrg.set_num_regs(1);  // Size is 1 stack word
 810 #endif
 811           // Register pressure is tracked relative to the maximum values
 812           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
 813           // and relative to other types which compete for the same regs.
 814           //
 815           // The following table contains suggested values based on the
 816           // architectures as defined in each .ad file.
 817           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
 818           // compile-speed or performance.
 819           // Note1:
 820           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
 821           // since .ad registers are defined as high and low halves.
 822           // These reg_pressure values remain compatible with the code
 823           // in is_high_pressure() which relates get_invalid_mask_size(),
 824           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
 825           // Note2:
 826           // SPARC -d32 has 24 registers available for integral values,
 827           // but only 10 of these are safe for 64-bit longs.
 828           // Using set_reg_pressure(2) for both int and long means
 829           // the allocator will believe it can fit 26 longs into
 830           // registers.  Using 2 for longs and 1 for ints means the
 831           // allocator will attempt to put 52 integers into registers.
 832           // The settings below limit this problem to methods with
 833           // many long values which are being run on 32-bit SPARC.
 834           //
 835           // ------------------- reg_pressure --------------------
 836           // Each entry is reg_pressure_per_value,number_of_regs
 837           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
 838           // IA32     2     1     1          1    1          6           6
 839           // IA64     1     1     1          1    1         50          41
 840           // SPARC    2     2     2          2    2         48 (24)     52 (26)
 841           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
 842           // AMD64    1     1     1          1    1         14          15
 843           // -----------------------------------------------------
 844 #if defined(SPARC)
 845           lrg.set_reg_pressure(2);  // use for v9 as well
 846 #else
 847           lrg.set_reg_pressure(1);  // normally one value per register
 848 #endif
 849           if( n_type->isa_oop_ptr() ) {
 850             lrg._is_oop = 1;
 851           }
 852           break;
 853         case Op_RegL:           // Check for long or double
 854         case Op_RegD:
 855           lrg.set_num_regs(2);
 856           // Define platform specific register pressure
 857 #if defined(SPARC) || defined(ARM)
 858           lrg.set_reg_pressure(2);
 859 #elif defined(IA32)
 860           if( ireg == Op_RegL ) {
 861             lrg.set_reg_pressure(2);
 862           } else {
 863             lrg.set_reg_pressure(1);
 864           }
 865 #else
 866           lrg.set_reg_pressure(1);  // normally one value per register
 867 #endif
 868           // If this def of a double forces a mis-aligned double,
 869           // flag as '_fat_proj' - really flag as allowing misalignment
 870           // AND changes how we count interferences.  A mis-aligned
 871           // double can interfere with TWO aligned pairs, or effectively
 872           // FOUR registers!
 873           if (rm.is_misaligned_pair()) {
 874             lrg._fat_proj = 1;
 875             lrg._is_bound = 1;
 876           }
 877           break;
 878         case Op_RegF:
 879         case Op_RegI:
 880         case Op_RegN:
 881         case Op_RegFlags:
 882         case 0:                 // not an ideal register
 883           lrg.set_num_regs(1);
 884 #ifdef SPARC
 885           lrg.set_reg_pressure(2);
 886 #else
 887           lrg.set_reg_pressure(1);
 888 #endif
 889           break;
 890         case Op_VecS:
 891           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
 892           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
 893           lrg.set_num_regs(RegMask::SlotsPerVecS);
 894           lrg.set_reg_pressure(1);
 895           break;
 896         case Op_VecD:
 897           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
 898           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
 899           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
 900           lrg.set_num_regs(RegMask::SlotsPerVecD);
 901           lrg.set_reg_pressure(1);
 902           break;
 903         case Op_VecX:
 904           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
 905           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
 906           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
 907           lrg.set_num_regs(RegMask::SlotsPerVecX);
 908           lrg.set_reg_pressure(1);
 909           break;
 910         case Op_VecY:
 911           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
 912           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
 913           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
 914           lrg.set_num_regs(RegMask::SlotsPerVecY);
 915           lrg.set_reg_pressure(1);
 916           break;
 917         default:
 918           ShouldNotReachHere();
 919         }
 920       }
 921 
 922       // Now do the same for inputs
 923       uint cnt = n->req();
 924       // Setup for CISC SPILLING
 925       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
 926       if( UseCISCSpill && after_aggressive ) {
 927         inp = n->cisc_operand();
 928         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
 929           // Convert operand number to edge index number
 930           inp = n->as_Mach()->operand_index(inp);
 931       }
 932       // Prepare register mask for each input
 933       for( uint k = input_edge_start; k < cnt; k++ ) {
 934         uint vreg = _lrg_map.live_range_id(n->in(k));
 935         if (!vreg) {
 936           continue;
 937         }
 938 
 939         // If this instruction is CISC Spillable, add the flags
 940         // bit to its appropriate input
 941         if( UseCISCSpill && after_aggressive && inp == k ) {
 942 #ifndef PRODUCT
 943           if( TraceCISCSpill ) {
 944             tty->print("  use_cisc_RegMask: ");
 945             n->dump();
 946           }
 947 #endif
 948           n->as_Mach()->use_cisc_RegMask();
 949         }
 950 
 951         LRG &lrg = lrgs(vreg);
 952         // // Testing for floating point code shape
 953         // Node *test = n->in(k);
 954         // if( test->is_Mach() ) {
 955         //   MachNode *m = test->as_Mach();
 956         //   int  op = m->ideal_Opcode();
 957         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
 958         //     int zzz = 1;
 959         //   }
 960         // }
 961 
 962         // Limit result register mask to acceptable registers.
 963         // Do not limit registers from uncommon uses before
 964         // AggressiveCoalesce.  This effectively pre-virtual-splits
 965         // around uncommon uses of common defs.
 966         const RegMask &rm = n->in_RegMask(k);
 967         if( !after_aggressive &&
 968           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
 969           // Since we are BEFORE aggressive coalesce, leave the register
 970           // mask untrimmed by the call.  This encourages more coalescing.
 971           // Later, AFTER aggressive, this live range will have to spill
 972           // but the spiller handles slow-path calls very nicely.
 973         } else {
 974           lrg.AND( rm );
 975         }
 976 
 977         // Check for bound register masks
 978         const RegMask &lrgmask = lrg.mask();
 979         int kreg = n->in(k)->ideal_reg();
 980         bool is_vect = RegMask::is_vector(kreg);
 981         assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
 982                is_vect || kreg == Op_RegD,
 983                "vector must be in vector registers");
 984         if (lrgmask.is_bound(kreg))
 985           lrg._is_bound = 1;
 986 
 987         // If this use of a double forces a mis-aligned double,
 988         // flag as '_fat_proj' - really flag as allowing misalignment
 989         // AND changes how we count interferences.  A mis-aligned
 990         // double can interfere with TWO aligned pairs, or effectively
 991         // FOUR registers!
 992 #ifdef ASSERT
 993         if (is_vect) {
 994           assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
 995           assert(!lrg._fat_proj, "sanity");
 996           assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
 997         }
 998 #endif
 999         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1000           lrg._fat_proj = 1;
1001           lrg._is_bound = 1;
1002         }
1003         // if the LRG is an unaligned pair, we will have to spill
1004         // so clear the LRG's register mask if it is not already spilled
1005         if (!is_vect && !n->is_SpillCopy() &&
1006             (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1007             lrgmask.is_misaligned_pair()) {
1008           lrg.Clear();
1009         }
1010 
1011         // Check for maximum frequency value
1012         if( lrg._maxfreq < b->_freq )
1013           lrg._maxfreq = b->_freq;
1014 
1015       } // End for all allocated inputs
1016     } // end for all instructions
1017   } // end for all blocks
1018 
1019   // Final per-liverange setup
1020   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1021     LRG &lrg = lrgs(i2);
1022     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1023     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1024       lrg.clear_to_sets();
1025     }
1026     lrg.compute_set_mask_size();
1027     if (lrg.not_free()) {      // Handle case where we lose from the start
1028       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1029       lrg._direct_conflict = 1;
1030     }
1031     lrg.set_degree(0);          // no neighbors in IFG yet
1032   }
1033 }
1034 
1035 //------------------------------set_was_low------------------------------------
1036 // Set the was-lo-degree bit.  Conservative coalescing should not change the
1037 // colorability of the graph.  If any live range was of low-degree before
1038 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1039 // The bit is checked in Simplify.
1040 void PhaseChaitin::set_was_low() {
1041 #ifdef ASSERT
1042   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1043     int size = lrgs(i).num_regs();
1044     uint old_was_lo = lrgs(i)._was_lo;
1045     lrgs(i)._was_lo = 0;
1046     if( lrgs(i).lo_degree() ) {
1047       lrgs(i)._was_lo = 1;      // Trivially of low degree
1048     } else {                    // Else check the Brigg's assertion
1049       // Brigg's observation is that the lo-degree neighbors of a
1050       // hi-degree live range will not interfere with the color choices
1051       // of said hi-degree live range.  The Simplify reverse-stack-coloring
1052       // order takes care of the details.  Hence you do not have to count
1053       // low-degree neighbors when determining if this guy colors.
1054       int briggs_degree = 0;
1055       IndexSet *s = _ifg->neighbors(i);
1056       IndexSetIterator elements(s);
1057       uint lidx;
1058       while((lidx = elements.next()) != 0) {
1059         if( !lrgs(lidx).lo_degree() )
1060           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1061       }
1062       if( briggs_degree < lrgs(i).degrees_of_freedom() )
1063         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1064     }
1065     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1066   }
1067 #endif
1068 }
1069 
1070 #define REGISTER_CONSTRAINED 16
1071 
1072 //------------------------------cache_lrg_info---------------------------------
1073 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1074 void PhaseChaitin::cache_lrg_info( ) {
1075 
1076   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1077     LRG &lrg = lrgs(i);
1078 
1079     // Check for being of low degree: means we can be trivially colored.
1080     // Low degree, dead or must-spill guys just get to simplify right away
1081     if( lrg.lo_degree() ||
1082        !lrg.alive() ||
1083         lrg._must_spill ) {
1084       // Split low degree list into those guys that must get a
1085       // register and those that can go to register or stack.
1086       // The idea is LRGs that can go register or stack color first when
1087       // they have a good chance of getting a register.  The register-only
1088       // lo-degree live ranges always get a register.
1089       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1090       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1091         lrg._next = _lo_stk_degree;
1092         _lo_stk_degree = i;
1093       } else {
1094         lrg._next = _lo_degree;
1095         _lo_degree = i;
1096       }
1097     } else {                    // Else high degree
1098       lrgs(_hi_degree)._prev = i;
1099       lrg._next = _hi_degree;
1100       lrg._prev = 0;
1101       _hi_degree = i;
1102     }
1103   }
1104 }
1105 
1106 //------------------------------Pre-Simplify-----------------------------------
1107 // Simplify the IFG by removing LRGs of low degree that have NO copies
1108 void PhaseChaitin::Pre_Simplify( ) {
1109 
1110   // Warm up the lo-degree no-copy list
1111   int lo_no_copy = 0;
1112   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1113     if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
1114         !lrgs(i).alive() ||
1115         lrgs(i)._must_spill) {
1116       lrgs(i)._next = lo_no_copy;
1117       lo_no_copy = i;
1118     }
1119   }
1120 
1121   while( lo_no_copy ) {
1122     uint lo = lo_no_copy;
1123     lo_no_copy = lrgs(lo)._next;
1124     int size = lrgs(lo).num_regs();
1125 
1126     // Put the simplified guy on the simplified list.
1127     lrgs(lo)._next = _simplified;
1128     _simplified = lo;
1129 
1130     // Yank this guy from the IFG.
1131     IndexSet *adj = _ifg->remove_node( lo );
1132 
1133     // If any neighbors' degrees fall below their number of
1134     // allowed registers, then put that neighbor on the low degree
1135     // list.  Note that 'degree' can only fall and 'numregs' is
1136     // unchanged by this action.  Thus the two are equal at most once,
1137     // so LRGs hit the lo-degree worklists at most once.
1138     IndexSetIterator elements(adj);
1139     uint neighbor;
1140     while ((neighbor = elements.next()) != 0) {
1141       LRG *n = &lrgs(neighbor);
1142       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1143 
1144       // Check for just becoming of-low-degree
1145       if( n->just_lo_degree() && !n->_has_copy ) {
1146         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1147         // Put on lo-degree list
1148         n->_next = lo_no_copy;
1149         lo_no_copy = neighbor;
1150       }
1151     }
1152   } // End of while lo-degree no_copy worklist not empty
1153 
1154   // No more lo-degree no-copy live ranges to simplify
1155 }
1156 
1157 //------------------------------Simplify---------------------------------------
1158 // Simplify the IFG by removing LRGs of low degree.
1159 void PhaseChaitin::Simplify( ) {
1160 
1161   while( 1 ) {                  // Repeat till simplified it all
1162     // May want to explore simplifying lo_degree before _lo_stk_degree.
1163     // This might result in more spills coloring into registers during
1164     // Select().
1165     while( _lo_degree || _lo_stk_degree ) {
1166       // If possible, pull from lo_stk first
1167       uint lo;
1168       if( _lo_degree ) {
1169         lo = _lo_degree;
1170         _lo_degree = lrgs(lo)._next;
1171       } else {
1172         lo = _lo_stk_degree;
1173         _lo_stk_degree = lrgs(lo)._next;
1174       }
1175 
1176       // Put the simplified guy on the simplified list.
1177       lrgs(lo)._next = _simplified;
1178       _simplified = lo;
1179       // If this guy is "at risk" then mark his current neighbors
1180       if( lrgs(lo)._at_risk ) {
1181         IndexSetIterator elements(_ifg->neighbors(lo));
1182         uint datum;
1183         while ((datum = elements.next()) != 0) {
1184           lrgs(datum)._risk_bias = lo;
1185         }
1186       }
1187 
1188       // Yank this guy from the IFG.
1189       IndexSet *adj = _ifg->remove_node( lo );
1190 
1191       // If any neighbors' degrees fall below their number of
1192       // allowed registers, then put that neighbor on the low degree
1193       // list.  Note that 'degree' can only fall and 'numregs' is
1194       // unchanged by this action.  Thus the two are equal at most once,
1195       // so LRGs hit the lo-degree worklist at most once.
1196       IndexSetIterator elements(adj);
1197       uint neighbor;
1198       while ((neighbor = elements.next()) != 0) {
1199         LRG *n = &lrgs(neighbor);
1200 #ifdef ASSERT
1201         if( VerifyOpto || VerifyRegisterAllocator ) {
1202           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1203         }
1204 #endif
1205 
1206         // Check for just becoming of-low-degree just counting registers.
1207         // _must_spill live ranges are already on the low degree list.
1208         if( n->just_lo_degree() && !n->_must_spill ) {
1209           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1210           // Pull from hi-degree list
1211           uint prev = n->_prev;
1212           uint next = n->_next;
1213           if( prev ) lrgs(prev)._next = next;
1214           else _hi_degree = next;
1215           lrgs(next)._prev = prev;
1216           n->_next = _lo_degree;
1217           _lo_degree = neighbor;
1218         }
1219       }
1220     } // End of while lo-degree/lo_stk_degree worklist not empty
1221 
1222     // Check for got everything: is hi-degree list empty?
1223     if( !_hi_degree ) break;
1224 
1225     // Time to pick a potential spill guy
1226     uint lo_score = _hi_degree;
1227     double score = lrgs(lo_score).score();
1228     double area = lrgs(lo_score)._area;
1229     double cost = lrgs(lo_score)._cost;
1230     bool bound = lrgs(lo_score)._is_bound;
1231 
1232     // Find cheapest guy
1233     debug_only( int lo_no_simplify=0; );
1234     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1235       assert( !(*_ifg->_yanked)[i], "" );
1236       // It's just vaguely possible to move hi-degree to lo-degree without
1237       // going through a just-lo-degree stage: If you remove a double from
1238       // a float live range it's degree will drop by 2 and you can skip the
1239       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1240       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1241       if( lrgs(i).lo_degree() ) {
1242         lo_score = i;
1243         break;
1244       }
1245       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1246       double iscore = lrgs(i).score();
1247       double iarea = lrgs(i)._area;
1248       double icost = lrgs(i)._cost;
1249       bool ibound = lrgs(i)._is_bound;
1250 
1251       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1252       // wins.  Ties happen because all live ranges in question have spilled
1253       // a few times before and the spill-score adds a huge number which
1254       // washes out the low order bits.  We are choosing the lesser of 2
1255       // evils; in this case pick largest area to spill.
1256       // Ties also happen when live ranges are defined and used only inside
1257       // one block. In which case their area is 0 and score set to max.
1258       // In such case choose bound live range over unbound to free registers
1259       // or with smaller cost to spill.
1260       if( iscore < score ||
1261           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1262           (iscore == score && iarea == area &&
1263            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1264         lo_score = i;
1265         score = iscore;
1266         area = iarea;
1267         cost = icost;
1268         bound = ibound;
1269       }
1270     }
1271     LRG *lo_lrg = &lrgs(lo_score);
1272     // The live range we choose for spilling is either hi-degree, or very
1273     // rarely it can be low-degree.  If we choose a hi-degree live range
1274     // there better not be any lo-degree choices.
1275     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1276 
1277     // Pull from hi-degree list
1278     uint prev = lo_lrg->_prev;
1279     uint next = lo_lrg->_next;
1280     if( prev ) lrgs(prev)._next = next;
1281     else _hi_degree = next;
1282     lrgs(next)._prev = prev;
1283     // Jam him on the lo-degree list, despite his high degree.
1284     // Maybe he'll get a color, and maybe he'll spill.
1285     // Only Select() will know.
1286     lrgs(lo_score)._at_risk = true;
1287     _lo_degree = lo_score;
1288     lo_lrg->_next = 0;
1289 
1290   } // End of while not simplified everything
1291 
1292 }
1293 
1294 //------------------------------is_legal_reg-----------------------------------
1295 // Is 'reg' register legal for 'lrg'?
1296 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1297   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1298       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1299     // RA uses OptoReg which represent the highest element of a registers set.
1300     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1301     // in which XMMd is used by RA to represent such vectors. A double value
1302     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1303     // The register mask uses largest bits set of overlapping register sets.
1304     // On x86 with AVX it uses 8 bits for each XMM registers set.
1305     //
1306     // The 'lrg' already has cleared-to-set register mask (done in Select()
1307     // before calling choose_color()). Passing mask.Member(reg) check above
1308     // indicates that the size (num_regs) of 'reg' set is less or equal to
1309     // 'lrg' set size.
1310     // For set size 1 any register which is member of 'lrg' mask is legal.
1311     if (lrg.num_regs()==1)
1312       return true;
1313     // For larger sets only an aligned register with the same set size is legal.
1314     int mask = lrg.num_regs()-1;
1315     if ((reg&mask) == mask)
1316       return true;
1317   }
1318   return false;
1319 }
1320 
1321 //------------------------------bias_color-------------------------------------
1322 // Choose a color using the biasing heuristic
1323 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1324 
1325   // Check for "at_risk" LRG's
1326   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1327   if( risk_lrg != 0 ) {
1328     // Walk the colored neighbors of the "at_risk" candidate
1329     // Choose a color which is both legal and already taken by a neighbor
1330     // of the "at_risk" candidate in order to improve the chances of the
1331     // "at_risk" candidate of coloring
1332     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1333     uint datum;
1334     while ((datum = elements.next()) != 0) {
1335       OptoReg::Name reg = lrgs(datum).reg();
1336       // If this LRG's register is legal for us, choose it
1337       if (is_legal_reg(lrg, reg, chunk))
1338         return reg;
1339     }
1340   }
1341 
1342   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1343   if( copy_lrg != 0 ) {
1344     // If he has a color,
1345     if( !(*(_ifg->_yanked))[copy_lrg] ) {
1346       OptoReg::Name reg = lrgs(copy_lrg).reg();
1347       //  And it is legal for you,
1348       if (is_legal_reg(lrg, reg, chunk))
1349         return reg;
1350     } else if( chunk == 0 ) {
1351       // Choose a color which is legal for him
1352       RegMask tempmask = lrg.mask();
1353       tempmask.AND(lrgs(copy_lrg).mask());
1354       tempmask.clear_to_sets(lrg.num_regs());
1355       OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
1356       if (OptoReg::is_valid(reg))
1357         return reg;
1358     }
1359   }
1360 
1361   // If no bias info exists, just go with the register selection ordering
1362   if (lrg._is_vector || lrg.num_regs() == 2) {
1363     // Find an aligned set
1364     return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
1365   }
1366 
1367   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1368   // copy removal to remove many more copies, by preventing a just-assigned
1369   // register from being repeatedly assigned.
1370   OptoReg::Name reg = lrg.mask().find_first_elem();
1371   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1372     // This 'Remove; find; Insert' idiom is an expensive way to find the
1373     // SECOND element in the mask.
1374     lrg.Remove(reg);
1375     OptoReg::Name reg2 = lrg.mask().find_first_elem();
1376     lrg.Insert(reg);
1377     if( OptoReg::is_reg(reg2))
1378       reg = reg2;
1379   }
1380   return OptoReg::add( reg, chunk );
1381 }
1382 
1383 //------------------------------choose_color-----------------------------------
1384 // Choose a color in the current chunk
1385 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1386   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1387   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1388 
1389   if( lrg.num_regs() == 1 ||    // Common Case
1390       !lrg._fat_proj )          // Aligned+adjacent pairs ok
1391     // Use a heuristic to "bias" the color choice
1392     return bias_color(lrg, chunk);
1393 
1394   assert(!lrg._is_vector, "should be not vector here" );
1395   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1396 
1397   // Fat-proj case or misaligned double argument.
1398   assert(lrg.compute_mask_size() == lrg.num_regs() ||
1399          lrg.num_regs() == 2,"fat projs exactly color" );
1400   assert( !chunk, "always color in 1st chunk" );
1401   // Return the highest element in the set.
1402   return lrg.mask().find_last_elem();
1403 }
1404 
1405 //------------------------------Select-----------------------------------------
1406 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1407 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
1408 // everything going back is guaranteed a color.  Select that color.  If some
1409 // hi-degree LRG cannot get a color then we record that we must spill.
1410 uint PhaseChaitin::Select( ) {
1411   uint spill_reg = LRG::SPILL_REG;
1412   _max_reg = OptoReg::Name(0);  // Past max register used
1413   while( _simplified ) {
1414     // Pull next LRG from the simplified list - in reverse order of removal
1415     uint lidx = _simplified;
1416     LRG *lrg = &lrgs(lidx);
1417     _simplified = lrg->_next;
1418 
1419 
1420 #ifndef PRODUCT
1421     if (trace_spilling()) {
1422       ttyLocker ttyl;
1423       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1424                     lrg->degrees_of_freedom());
1425       lrg->dump();
1426     }
1427 #endif
1428 
1429     // Re-insert into the IFG
1430     _ifg->re_insert(lidx);
1431     if( !lrg->alive() ) continue;
1432     // capture allstackedness flag before mask is hacked
1433     const int is_allstack = lrg->mask().is_AllStack();
1434 
1435     // Yeah, yeah, yeah, I know, I know.  I can refactor this
1436     // to avoid the GOTO, although the refactored code will not
1437     // be much clearer.  We arrive here IFF we have a stack-based
1438     // live range that cannot color in the current chunk, and it
1439     // has to move into the next free stack chunk.
1440     int chunk = 0;              // Current chunk is first chunk
1441     retry_next_chunk:
1442 
1443     // Remove neighbor colors
1444     IndexSet *s = _ifg->neighbors(lidx);
1445 
1446     debug_only(RegMask orig_mask = lrg->mask();)
1447     IndexSetIterator elements(s);
1448     uint neighbor;
1449     while ((neighbor = elements.next()) != 0) {
1450       // Note that neighbor might be a spill_reg.  In this case, exclusion
1451       // of its color will be a no-op, since the spill_reg chunk is in outer
1452       // space.  Also, if neighbor is in a different chunk, this exclusion
1453       // will be a no-op.  (Later on, if lrg runs out of possible colors in
1454       // its chunk, a new chunk of color may be tried, in which case
1455       // examination of neighbors is started again, at retry_next_chunk.)
1456       LRG &nlrg = lrgs(neighbor);
1457       OptoReg::Name nreg = nlrg.reg();
1458       // Only subtract masks in the same chunk
1459       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1460 #ifndef PRODUCT
1461         uint size = lrg->mask().Size();
1462         RegMask rm = lrg->mask();
1463 #endif
1464         lrg->SUBTRACT(nlrg.mask());
1465 #ifndef PRODUCT
1466         if (trace_spilling() && lrg->mask().Size() != size) {
1467           ttyLocker ttyl;
1468           tty->print("L%d ", lidx);
1469           rm.dump();
1470           tty->print(" intersected L%d ", neighbor);
1471           nlrg.mask().dump();
1472           tty->print(" removed ");
1473           rm.SUBTRACT(lrg->mask());
1474           rm.dump();
1475           tty->print(" leaving ");
1476           lrg->mask().dump();
1477           tty->cr();
1478         }
1479 #endif
1480       }
1481     }
1482     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1483     // Aligned pairs need aligned masks
1484     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1485     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1486       lrg->clear_to_sets();
1487     }
1488 
1489     // Check if a color is available and if so pick the color
1490     OptoReg::Name reg = choose_color( *lrg, chunk );
1491 #ifdef SPARC
1492     debug_only(lrg->compute_set_mask_size());
1493     assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1494 #endif
1495 
1496     //---------------
1497     // If we fail to color and the AllStack flag is set, trigger
1498     // a chunk-rollover event
1499     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1500       // Bump register mask up to next stack chunk
1501       chunk += RegMask::CHUNK_SIZE;
1502       lrg->Set_All();
1503 
1504       goto retry_next_chunk;
1505     }
1506 
1507     //---------------
1508     // Did we get a color?
1509     else if( OptoReg::is_valid(reg)) {
1510 #ifndef PRODUCT
1511       RegMask avail_rm = lrg->mask();
1512 #endif
1513 
1514       // Record selected register
1515       lrg->set_reg(reg);
1516 
1517       if( reg >= _max_reg )     // Compute max register limit
1518         _max_reg = OptoReg::add(reg,1);
1519       // Fold reg back into normal space
1520       reg = OptoReg::add(reg,-chunk);
1521 
1522       // If the live range is not bound, then we actually had some choices
1523       // to make.  In this case, the mask has more bits in it than the colors
1524       // chosen.  Restrict the mask to just what was picked.
1525       int n_regs = lrg->num_regs();
1526       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1527       if (n_regs == 1 || !lrg->_fat_proj) {
1528         assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
1529         lrg->Clear();           // Clear the mask
1530         lrg->Insert(reg);       // Set regmask to match selected reg
1531         // For vectors and pairs, also insert the low bit of the pair
1532         for (int i = 1; i < n_regs; i++)
1533           lrg->Insert(OptoReg::add(reg,-i));
1534         lrg->set_mask_size(n_regs);
1535       } else {                  // Else fatproj
1536         // mask must be equal to fatproj bits, by definition
1537       }
1538 #ifndef PRODUCT
1539       if (trace_spilling()) {
1540         ttyLocker ttyl;
1541         tty->print("L%d selected ", lidx);
1542         lrg->mask().dump();
1543         tty->print(" from ");
1544         avail_rm.dump();
1545         tty->cr();
1546       }
1547 #endif
1548       // Note that reg is the highest-numbered register in the newly-bound mask.
1549     } // end color available case
1550 
1551     //---------------
1552     // Live range is live and no colors available
1553     else {
1554       assert( lrg->alive(), "" );
1555       assert( !lrg->_fat_proj || lrg->is_multidef() ||
1556               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1557       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1558 
1559       // Assign the special spillreg register
1560       lrg->set_reg(OptoReg::Name(spill_reg++));
1561       // Do not empty the regmask; leave mask_size lying around
1562       // for use during Spilling
1563 #ifndef PRODUCT
1564       if( trace_spilling() ) {
1565         ttyLocker ttyl;
1566         tty->print("L%d spilling with neighbors: ", lidx);
1567         s->dump();
1568         debug_only(tty->print(" original mask: "));
1569         debug_only(orig_mask.dump());
1570         dump_lrg(lidx);
1571       }
1572 #endif
1573     } // end spill case
1574 
1575   }
1576 
1577   return spill_reg-LRG::SPILL_REG;      // Return number of spills
1578 }
1579 
1580 
1581 //------------------------------copy_was_spilled-------------------------------
1582 // Copy 'was_spilled'-edness from the source Node to the dst Node.
1583 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1584   if( _spilled_once.test(src->_idx) ) {
1585     _spilled_once.set(dst->_idx);
1586     lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
1587     if( _spilled_twice.test(src->_idx) ) {
1588       _spilled_twice.set(dst->_idx);
1589       lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
1590     }
1591   }
1592 }
1593 
1594 //------------------------------set_was_spilled--------------------------------
1595 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1596 void PhaseChaitin::set_was_spilled( Node *n ) {
1597   if( _spilled_once.test_set(n->_idx) )
1598     _spilled_twice.set(n->_idx);
1599 }
1600 
1601 //------------------------------fixup_spills-----------------------------------
1602 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1603 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1604 void PhaseChaitin::fixup_spills() {
1605   // This function does only cisc spill work.
1606   if( !UseCISCSpill ) return;
1607 
1608   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1609 
1610   // Grab the Frame Pointer
1611   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
1612 
1613   // For all blocks
1614   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1615     Block *b = _cfg._blocks[i];
1616 
1617     // For all instructions in block
1618     uint last_inst = b->end_idx();
1619     for( uint j = 1; j <= last_inst; j++ ) {
1620       Node *n = b->_nodes[j];
1621 
1622       // Dead instruction???
1623       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1624               C->top() == n ||  // Or the random TOP node
1625               n->is_Proj(),     // Or a fat-proj kill node
1626               "No dead instructions after post-alloc" );
1627 
1628       int inp = n->cisc_operand();
1629       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1630         // Convert operand number to edge index number
1631         MachNode *mach = n->as_Mach();
1632         inp = mach->operand_index(inp);
1633         Node *src = n->in(inp);   // Value to load or store
1634         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1635         OptoReg::Name src_reg = lrg_cisc.reg();
1636         // Doubles record the HIGH register of an adjacent pair.
1637         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1638         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1639           // This is a CISC Spill, get stack offset and construct new node
1640 #ifndef PRODUCT
1641           if( TraceCISCSpill ) {
1642             tty->print("    reg-instr:  ");
1643             n->dump();
1644           }
1645 #endif
1646           int stk_offset = reg2offset(src_reg);
1647           // Bailout if we might exceed node limit when spilling this instruction
1648           C->check_node_count(0, "out of nodes fixing spills");
1649           if (C->failing())  return;
1650           // Transform node
1651           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1652           cisc->set_req(inp,fp);          // Base register is frame pointer
1653           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1654             assert( cisc->oper_input_base() == 2, "Only adding one edge");
1655             cisc->ins_req(1,src);         // Requires a memory edge
1656           }
1657           b->_nodes.map(j,cisc);          // Insert into basic block
1658           n->subsume_by(cisc, C); // Correct graph
1659           //
1660           ++_used_cisc_instructions;
1661 #ifndef PRODUCT
1662           if( TraceCISCSpill ) {
1663             tty->print("    cisc-instr: ");
1664             cisc->dump();
1665           }
1666 #endif
1667         } else {
1668 #ifndef PRODUCT
1669           if( TraceCISCSpill ) {
1670             tty->print("    using reg-instr: ");
1671             n->dump();
1672           }
1673 #endif
1674           ++_unused_cisc_instructions;    // input can be on stack
1675         }
1676       }
1677 
1678     } // End of for all instructions
1679 
1680   } // End of for all blocks
1681 }
1682 
1683 //------------------------------find_base_for_derived--------------------------
1684 // Helper to stretch above; recursively discover the base Node for a
1685 // given derived Node.  Easy for AddP-related machine nodes, but needs
1686 // to be recursive for derived Phis.
1687 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1688   // See if already computed; if so return it
1689   if( derived_base_map[derived->_idx] )
1690     return derived_base_map[derived->_idx];
1691 
1692   // See if this happens to be a base.
1693   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1694   // pointers derived from NULL!  These are always along paths that
1695   // can't happen at run-time but the optimizer cannot deduce it so
1696   // we have to handle it gracefully.
1697   assert(!derived->bottom_type()->isa_narrowoop() ||
1698           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1699   const TypePtr *tj = derived->bottom_type()->isa_ptr();
1700   // If its an OOP with a non-zero offset, then it is derived.
1701   if( tj == NULL || tj->_offset == 0 ) {
1702     derived_base_map[derived->_idx] = derived;
1703     return derived;
1704   }
1705   // Derived is NULL+offset?  Base is NULL!
1706   if( derived->is_Con() ) {
1707     Node *base = _matcher.mach_null();
1708     assert(base != NULL, "sanity");
1709     if (base->in(0) == NULL) {
1710       // Initialize it once and make it shared:
1711       // set control to _root and place it into Start block
1712       // (where top() node is placed).
1713       base->init_req(0, _cfg._root);
1714       Block *startb = _cfg._bbs[C->top()->_idx];
1715       startb->_nodes.insert(startb->find_node(C->top()), base );
1716       _cfg._bbs.map( base->_idx, startb );
1717       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1718     }
1719     if (_lrg_map.live_range_id(base) == 0) {
1720       new_lrg(base, maxlrg++);
1721     }
1722     assert(base->in(0) == _cfg._root &&
1723            _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
1724     derived_base_map[derived->_idx] = base;
1725     return base;
1726   }
1727 
1728   // Check for AddP-related opcodes
1729   if (!derived->is_Phi()) {
1730     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
1731     Node *base = derived->in(AddPNode::Base);
1732     derived_base_map[derived->_idx] = base;
1733     return base;
1734   }
1735 
1736   // Recursively find bases for Phis.
1737   // First check to see if we can avoid a base Phi here.
1738   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1739   uint i;
1740   for( i = 2; i < derived->req(); i++ )
1741     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1742       break;
1743   // Went to the end without finding any different bases?
1744   if( i == derived->req() ) {   // No need for a base Phi here
1745     derived_base_map[derived->_idx] = base;
1746     return base;
1747   }
1748 
1749   // Now we see we need a base-Phi here to merge the bases
1750   const Type *t = base->bottom_type();
1751   base = new (C) PhiNode( derived->in(0), t );
1752   for( i = 1; i < derived->req(); i++ ) {
1753     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1754     t = t->meet(base->in(i)->bottom_type());
1755   }
1756   base->as_Phi()->set_type(t);
1757 
1758   // Search the current block for an existing base-Phi
1759   Block *b = _cfg._bbs[derived->_idx];
1760   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1761     Node *phi = b->_nodes[i];
1762     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1763       b->_nodes.insert( i, base ); // Must insert created Phi here as base
1764       _cfg._bbs.map( base->_idx, b );
1765       new_lrg(base,maxlrg++);
1766       break;
1767     }
1768     // See if Phi matches.
1769     uint j;
1770     for( j = 1; j < base->req(); j++ )
1771       if( phi->in(j) != base->in(j) &&
1772           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1773         break;
1774     if( j == base->req() ) {    // All inputs match?
1775       base = phi;               // Then use existing 'phi' and drop 'base'
1776       break;
1777     }
1778   }
1779 
1780 
1781   // Cache info for later passes
1782   derived_base_map[derived->_idx] = base;
1783   return base;
1784 }
1785 
1786 
1787 //------------------------------stretch_base_pointer_live_ranges---------------
1788 // At each Safepoint, insert extra debug edges for each pair of derived value/
1789 // base pointer that is live across the Safepoint for oopmap building.  The
1790 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1791 // required edge set.
1792 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1793   int must_recompute_live = false;
1794   uint maxlrg = _lrg_map.max_lrg_id();
1795   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1796   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1797 
1798   // For all blocks in RPO do...
1799   for( uint i=0; i<_cfg._num_blocks; i++ ) {
1800     Block *b = _cfg._blocks[i];
1801     // Note use of deep-copy constructor.  I cannot hammer the original
1802     // liveout bits, because they are needed by the following coalesce pass.
1803     IndexSet liveout(_live->live(b));
1804 
1805     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
1806       Node *n = b->_nodes[j-1];
1807 
1808       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1809       // like to see in the same register.  Compare uses the loop-phi and so
1810       // extends its live range BUT cannot be part of the cycle.  If this
1811       // extended live range overlaps with the update of the loop-phi value
1812       // we need both alive at the same time -- which requires at least 1
1813       // copy.  But because Intel has only 2-address registers we end up with
1814       // at least 2 copies, one before the loop-phi update instruction and
1815       // one after.  Instead we split the input to the compare just after the
1816       // phi.
1817       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1818         Node *phi = n->in(1);
1819         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1820           Block *phi_block = _cfg._bbs[phi->_idx];
1821           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
1822             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1823             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1824             insert_proj( phi_block, 1, spill, maxlrg++ );
1825             n->set_req(1,spill);
1826             must_recompute_live = true;
1827           }
1828         }
1829       }
1830 
1831       // Get value being defined
1832       uint lidx = _lrg_map.live_range_id(n);
1833       // Ignore the occasional brand-new live range
1834       if (lidx && lidx < _lrg_map.max_lrg_id()) {
1835         // Remove from live-out set
1836         liveout.remove(lidx);
1837 
1838         // Copies do not define a new value and so do not interfere.
1839         // Remove the copies source from the liveout set before interfering.
1840         uint idx = n->is_Copy();
1841         if (idx) {
1842           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1843         }
1844       }
1845 
1846       // Found a safepoint?
1847       JVMState *jvms = n->jvms();
1848       if( jvms ) {
1849         // Now scan for a live derived pointer
1850         IndexSetIterator elements(&liveout);
1851         uint neighbor;
1852         while ((neighbor = elements.next()) != 0) {
1853           // Find reaching DEF for base and derived values
1854           // This works because we are still in SSA during this call.
1855           Node *derived = lrgs(neighbor)._def;
1856           const TypePtr *tj = derived->bottom_type()->isa_ptr();
1857           assert(!derived->bottom_type()->isa_narrowoop() ||
1858                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1859           // If its an OOP with a non-zero offset, then it is derived.
1860           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1861             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1862             assert(base->_idx < _lrg_map.size(), "");
1863             // Add reaching DEFs of derived pointer and base pointer as a
1864             // pair of inputs
1865             n->add_req(derived);
1866             n->add_req(base);
1867 
1868             // See if the base pointer is already live to this point.
1869             // Since I'm working on the SSA form, live-ness amounts to
1870             // reaching def's.  So if I find the base's live range then
1871             // I know the base's def reaches here.
1872             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1873                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1874                  (_lrg_map.live_range_id(base) > 0) && // not a constant
1875                  _cfg._bbs[base->_idx] != b) { // base not def'd in blk)
1876               // Base pointer is not currently live.  Since I stretched
1877               // the base pointer to here and it crosses basic-block
1878               // boundaries, the global live info is now incorrect.
1879               // Recompute live.
1880               must_recompute_live = true;
1881             } // End of if base pointer is not live to debug info
1882           }
1883         } // End of scan all live data for derived ptrs crossing GC point
1884       } // End of if found a GC point
1885 
1886       // Make all inputs live
1887       if (!n->is_Phi()) {      // Phi function uses come from prior block
1888         for (uint k = 1; k < n->req(); k++) {
1889           uint lidx = _lrg_map.live_range_id(n->in(k));
1890           if (lidx < _lrg_map.max_lrg_id()) {
1891             liveout.insert(lidx);
1892           }
1893         }
1894       }
1895 
1896     } // End of forall instructions in block
1897     liveout.clear();  // Free the memory used by liveout.
1898 
1899   } // End of forall blocks
1900   _lrg_map.set_max_lrg_id(maxlrg);
1901 
1902   // If I created a new live range I need to recompute live
1903   if (maxlrg != _ifg->_maxlrg) {
1904     must_recompute_live = true;
1905   }
1906 
1907   return must_recompute_live != 0;
1908 }
1909 
1910 
1911 //------------------------------add_reference----------------------------------
1912 // Extend the node to LRG mapping
1913 
1914 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1915   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1916 }
1917 
1918 //------------------------------dump-------------------------------------------
1919 #ifndef PRODUCT
1920 void PhaseChaitin::dump(const Node *n) const {
1921   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1922   tty->print("L%d",r);
1923   if (r && n->Opcode() != Op_Phi) {
1924     if( _node_regs ) {          // Got a post-allocation copy of allocation?
1925       tty->print("[");
1926       OptoReg::Name second = get_reg_second(n);
1927       if( OptoReg::is_valid(second) ) {
1928         if( OptoReg::is_reg(second) )
1929           tty->print("%s:",Matcher::regName[second]);
1930         else
1931           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1932       }
1933       OptoReg::Name first = get_reg_first(n);
1934       if( OptoReg::is_reg(first) )
1935         tty->print("%s]",Matcher::regName[first]);
1936       else
1937          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1938     } else
1939     n->out_RegMask().dump();
1940   }
1941   tty->print("/N%d\t",n->_idx);
1942   tty->print("%s === ", n->Name());
1943   uint k;
1944   for (k = 0; k < n->req(); k++) {
1945     Node *m = n->in(k);
1946     if (!m) {
1947       tty->print("_ ");
1948     }
1949     else {
1950       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1951       tty->print("L%d",r);
1952       // Data MultiNode's can have projections with no real registers.
1953       // Don't die while dumping them.
1954       int op = n->Opcode();
1955       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1956         if( _node_regs ) {
1957           tty->print("[");
1958           OptoReg::Name second = get_reg_second(n->in(k));
1959           if( OptoReg::is_valid(second) ) {
1960             if( OptoReg::is_reg(second) )
1961               tty->print("%s:",Matcher::regName[second]);
1962             else
1963               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1964                          reg2offset_unchecked(second));
1965           }
1966           OptoReg::Name first = get_reg_first(n->in(k));
1967           if( OptoReg::is_reg(first) )
1968             tty->print("%s]",Matcher::regName[first]);
1969           else
1970             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1971                        reg2offset_unchecked(first));
1972         } else
1973           n->in_RegMask(k).dump();
1974       }
1975       tty->print("/N%d ",m->_idx);
1976     }
1977   }
1978   if( k < n->len() && n->in(k) ) tty->print("| ");
1979   for( ; k < n->len(); k++ ) {
1980     Node *m = n->in(k);
1981     if(!m) {
1982       break;
1983     }
1984     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1985     tty->print("L%d",r);
1986     tty->print("/N%d ",m->_idx);
1987   }
1988   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1989   else n->dump_spec(tty);
1990   if( _spilled_once.test(n->_idx ) ) {
1991     tty->print(" Spill_1");
1992     if( _spilled_twice.test(n->_idx ) )
1993       tty->print(" Spill_2");
1994   }
1995   tty->print("\n");
1996 }
1997 
1998 void PhaseChaitin::dump( const Block * b ) const {
1999   b->dump_head( &_cfg._bbs );
2000 
2001   // For all instructions
2002   for( uint j = 0; j < b->_nodes.size(); j++ )
2003     dump(b->_nodes[j]);
2004   // Print live-out info at end of block
2005   if( _live ) {
2006     tty->print("Liveout: ");
2007     IndexSet *live = _live->live(b);
2008     IndexSetIterator elements(live);
2009     tty->print("{");
2010     uint i;
2011     while ((i = elements.next()) != 0) {
2012       tty->print("L%d ", _lrg_map.find_const(i));
2013     }
2014     tty->print_cr("}");
2015   }
2016   tty->print("\n");
2017 }
2018 
2019 void PhaseChaitin::dump() const {
2020   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
2021               _matcher._new_SP, _framesize );
2022 
2023   // For all blocks
2024   for( uint i = 0; i < _cfg._num_blocks; i++ )
2025     dump(_cfg._blocks[i]);
2026   // End of per-block dump
2027   tty->print("\n");
2028 
2029   if (!_ifg) {
2030     tty->print("(No IFG.)\n");
2031     return;
2032   }
2033 
2034   // Dump LRG array
2035   tty->print("--- Live RanGe Array ---\n");
2036   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2037     tty->print("L%d: ",i2);
2038     if (i2 < _ifg->_maxlrg) {
2039       lrgs(i2).dump();
2040     }
2041     else {
2042       tty->print_cr("new LRG");
2043     }
2044   }
2045   tty->print_cr("");
2046 
2047   // Dump lo-degree list
2048   tty->print("Lo degree: ");
2049   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2050     tty->print("L%d ",i3);
2051   tty->print_cr("");
2052 
2053   // Dump lo-stk-degree list
2054   tty->print("Lo stk degree: ");
2055   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2056     tty->print("L%d ",i4);
2057   tty->print_cr("");
2058 
2059   // Dump lo-degree list
2060   tty->print("Hi degree: ");
2061   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2062     tty->print("L%d ",i5);
2063   tty->print_cr("");
2064 }
2065 
2066 //------------------------------dump_degree_lists------------------------------
2067 void PhaseChaitin::dump_degree_lists() const {
2068   // Dump lo-degree list
2069   tty->print("Lo degree: ");
2070   for( uint i = _lo_degree; i; i = lrgs(i)._next )
2071     tty->print("L%d ",i);
2072   tty->print_cr("");
2073 
2074   // Dump lo-stk-degree list
2075   tty->print("Lo stk degree: ");
2076   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2077     tty->print("L%d ",i2);
2078   tty->print_cr("");
2079 
2080   // Dump lo-degree list
2081   tty->print("Hi degree: ");
2082   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2083     tty->print("L%d ",i3);
2084   tty->print_cr("");
2085 }
2086 
2087 //------------------------------dump_simplified--------------------------------
2088 void PhaseChaitin::dump_simplified() const {
2089   tty->print("Simplified: ");
2090   for( uint i = _simplified; i; i = lrgs(i)._next )
2091     tty->print("L%d ",i);
2092   tty->print_cr("");
2093 }
2094 
2095 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
2096   if ((int)reg < 0)
2097     sprintf(buf, "<OptoReg::%d>", (int)reg);
2098   else if (OptoReg::is_reg(reg))
2099     strcpy(buf, Matcher::regName[reg]);
2100   else
2101     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2102             pc->reg2offset(reg));
2103   return buf+strlen(buf);
2104 }
2105 
2106 //------------------------------dump_register----------------------------------
2107 // Dump a register name into a buffer.  Be intelligent if we get called
2108 // before allocation is complete.
2109 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
2110   if( !this ) {                 // Not got anything?
2111     sprintf(buf,"N%d",n->_idx); // Then use Node index
2112   } else if( _node_regs ) {
2113     // Post allocation, use direct mappings, no LRG info available
2114     print_reg( get_reg_first(n), this, buf );
2115   } else {
2116     uint lidx = _lrg_map.find_const(n); // Grab LRG number
2117     if( !_ifg ) {
2118       sprintf(buf,"L%d",lidx);  // No register binding yet
2119     } else if( !lidx ) {        // Special, not allocated value
2120       strcpy(buf,"Special");
2121     } else {
2122       if (lrgs(lidx)._is_vector) {
2123         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2124           print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2125         else
2126           sprintf(buf,"L%d",lidx); // No register binding yet
2127       } else if( (lrgs(lidx).num_regs() == 1)
2128                  ? lrgs(lidx).mask().is_bound1()
2129                  : lrgs(lidx).mask().is_bound_pair() ) {
2130         // Hah!  We have a bound machine register
2131         print_reg( lrgs(lidx).reg(), this, buf );
2132       } else {
2133         sprintf(buf,"L%d",lidx); // No register binding yet
2134       }
2135     }
2136   }
2137   return buf+strlen(buf);
2138 }
2139 
2140 //----------------------dump_for_spill_split_recycle--------------------------
2141 void PhaseChaitin::dump_for_spill_split_recycle() const {
2142   if( WizardMode && (PrintCompilation || PrintOpto) ) {
2143     // Display which live ranges need to be split and the allocator's state
2144     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2145     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2146       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2147         tty->print("L%d: ", bidx);
2148         lrgs(bidx).dump();
2149       }
2150     }
2151     tty->cr();
2152     dump();
2153   }
2154 }
2155 
2156 //------------------------------dump_frame------------------------------------
2157 void PhaseChaitin::dump_frame() const {
2158   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2159   const TypeTuple *domain = C->tf()->domain();
2160   const int        argcnt = domain->cnt() - TypeFunc::Parms;
2161 
2162   // Incoming arguments in registers dump
2163   for( int k = 0; k < argcnt; k++ ) {
2164     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2165     if( OptoReg::is_reg(parmreg))  {
2166       const char *reg_name = OptoReg::regname(parmreg);
2167       tty->print("#r%3.3d %s", parmreg, reg_name);
2168       parmreg = _matcher._parm_regs[k].second();
2169       if( OptoReg::is_reg(parmreg))  {
2170         tty->print(":%s", OptoReg::regname(parmreg));
2171       }
2172       tty->print("   : parm %d: ", k);
2173       domain->field_at(k + TypeFunc::Parms)->dump();
2174       tty->print_cr("");
2175     }
2176   }
2177 
2178   // Check for un-owned padding above incoming args
2179   OptoReg::Name reg = _matcher._new_SP;
2180   if( reg > _matcher._in_arg_limit ) {
2181     reg = OptoReg::add(reg, -1);
2182     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2183   }
2184 
2185   // Incoming argument area dump
2186   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2187   while( reg > begin_in_arg ) {
2188     reg = OptoReg::add(reg, -1);
2189     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2190     int j;
2191     for( j = 0; j < argcnt; j++) {
2192       if( _matcher._parm_regs[j].first() == reg ||
2193           _matcher._parm_regs[j].second() == reg ) {
2194         tty->print("parm %d: ",j);
2195         domain->field_at(j + TypeFunc::Parms)->dump();
2196         tty->print_cr("");
2197         break;
2198       }
2199     }
2200     if( j >= argcnt )
2201       tty->print_cr("HOLE, owned by SELF");
2202   }
2203 
2204   // Old outgoing preserve area
2205   while( reg > _matcher._old_SP ) {
2206     reg = OptoReg::add(reg, -1);
2207     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2208   }
2209 
2210   // Old SP
2211   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2212     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2213 
2214   // Preserve area dump
2215   int fixed_slots = C->fixed_slots();
2216   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2217   OptoReg::Name return_addr = _matcher.return_addr();
2218 
2219   reg = OptoReg::add(reg, -1);
2220   while (OptoReg::is_stack(reg)) {
2221     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2222     if (return_addr == reg) {
2223       tty->print_cr("return address");
2224     } else if (reg >= begin_in_preserve) {
2225       // Preserved slots are present on x86
2226       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2227         tty->print_cr("saved fp register");
2228       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2229                VerifyStackAtCalls)
2230         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2231       else
2232         tty->print_cr("in_preserve");
2233     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2234       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2235     } else {
2236       tty->print_cr("pad2, stack alignment");
2237     }
2238     reg = OptoReg::add(reg, -1);
2239   }
2240 
2241   // Spill area dump
2242   reg = OptoReg::add(_matcher._new_SP, _framesize );
2243   while( reg > _matcher._out_arg_limit ) {
2244     reg = OptoReg::add(reg, -1);
2245     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2246   }
2247 
2248   // Outgoing argument area dump
2249   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2250     reg = OptoReg::add(reg, -1);
2251     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2252   }
2253 
2254   // Outgoing new preserve area
2255   while( reg > _matcher._new_SP ) {
2256     reg = OptoReg::add(reg, -1);
2257     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2258   }
2259   tty->print_cr("#");
2260 }
2261 
2262 //------------------------------dump_bb----------------------------------------
2263 void PhaseChaitin::dump_bb( uint pre_order ) const {
2264   tty->print_cr("---dump of B%d---",pre_order);
2265   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
2266     Block *b = _cfg._blocks[i];
2267     if( b->_pre_order == pre_order )
2268       dump(b);
2269   }
2270 }
2271 
2272 //------------------------------dump_lrg---------------------------------------
2273 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2274   tty->print_cr("---dump of L%d---",lidx);
2275 
2276   if (_ifg) {
2277     if (lidx >= _lrg_map.max_lrg_id()) {
2278       tty->print("Attempt to print live range index beyond max live range.\n");
2279       return;
2280     }
2281     tty->print("L%d: ",lidx);
2282     if (lidx < _ifg->_maxlrg) {
2283       lrgs(lidx).dump();
2284     } else {
2285       tty->print_cr("new LRG");
2286     }
2287   }
2288   if( _ifg && lidx < _ifg->_maxlrg) {
2289     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2290     _ifg->neighbors(lidx)->dump();
2291     tty->cr();
2292   }
2293   // For all blocks
2294   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
2295     Block *b = _cfg._blocks[i];
2296     int dump_once = 0;
2297 
2298     // For all instructions
2299     for( uint j = 0; j < b->_nodes.size(); j++ ) {
2300       Node *n = b->_nodes[j];
2301       if (_lrg_map.find_const(n) == lidx) {
2302         if (!dump_once++) {
2303           tty->cr();
2304           b->dump_head( &_cfg._bbs );
2305         }
2306         dump(n);
2307         continue;
2308       }
2309       if (!defs_only) {
2310         uint cnt = n->req();
2311         for( uint k = 1; k < cnt; k++ ) {
2312           Node *m = n->in(k);
2313           if (!m)  {
2314             continue;  // be robust in the dumper
2315           }
2316           if (_lrg_map.find_const(m) == lidx) {
2317             if (!dump_once++) {
2318               tty->cr();
2319               b->dump_head(&_cfg._bbs);
2320             }
2321             dump(n);
2322           }
2323         }
2324       }
2325     }
2326   } // End of per-block dump
2327   tty->cr();
2328 }
2329 #endif // not PRODUCT
2330 
2331 //------------------------------print_chaitin_statistics-------------------------------
2332 int PhaseChaitin::_final_loads  = 0;
2333 int PhaseChaitin::_final_stores = 0;
2334 int PhaseChaitin::_final_memoves= 0;
2335 int PhaseChaitin::_final_copies = 0;
2336 double PhaseChaitin::_final_load_cost  = 0;
2337 double PhaseChaitin::_final_store_cost = 0;
2338 double PhaseChaitin::_final_memove_cost= 0;
2339 double PhaseChaitin::_final_copy_cost  = 0;
2340 int PhaseChaitin::_conserv_coalesce = 0;
2341 int PhaseChaitin::_conserv_coalesce_pair = 0;
2342 int PhaseChaitin::_conserv_coalesce_trie = 0;
2343 int PhaseChaitin::_conserv_coalesce_quad = 0;
2344 int PhaseChaitin::_post_alloc = 0;
2345 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2346 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2347 int PhaseChaitin::_used_cisc_instructions   = 0;
2348 int PhaseChaitin::_unused_cisc_instructions = 0;
2349 int PhaseChaitin::_allocator_attempts       = 0;
2350 int PhaseChaitin::_allocator_successes      = 0;
2351 
2352 #ifndef PRODUCT
2353 uint PhaseChaitin::_high_pressure           = 0;
2354 uint PhaseChaitin::_low_pressure            = 0;
2355 
2356 void PhaseChaitin::print_chaitin_statistics() {
2357   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2358   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2359   tty->print_cr("Adjusted spill cost = %7.0f.",
2360                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2361                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2362   tty->print("Conservatively coalesced %d copies, %d pairs",
2363                 _conserv_coalesce, _conserv_coalesce_pair);
2364   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2365     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2366   tty->print_cr(", %d post alloc.", _post_alloc);
2367   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2368     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2369                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2370   if( _used_cisc_instructions || _unused_cisc_instructions )
2371     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2372                    _used_cisc_instructions, _unused_cisc_instructions);
2373   if( _allocator_successes != 0 )
2374     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2375   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2376 }
2377 #endif // not PRODUCT