1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/chaitin.hpp"
  30 #include "opto/coalesce.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/indexSet.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/regmask.hpp"
  36 
  37 //=============================================================================
  38 //------------------------------Dump-------------------------------------------
  39 #ifndef PRODUCT
  40 void PhaseCoalesce::dump(Node *n) const {
  41   // Being a const function means I cannot use 'Find'
  42   uint r = _phc._lrg_map.find(n);
  43   tty->print("L%d/N%d ",r,n->_idx);
  44 }
  45 
  46 //------------------------------dump-------------------------------------------
  47 void PhaseCoalesce::dump() const {
  48   // I know I have a block layout now, so I can print blocks in a loop
  49   for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
  50     uint j;
  51     Block *b = _phc._cfg._blocks[i];
  52     // Print a nice block header
  53     tty->print("B%d: ",b->_pre_order);
  54     for( j=1; j<b->num_preds(); j++ )
  55       tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
  56     tty->print("-> ");
  57     for( j=0; j<b->_num_succs; j++ )
  58       tty->print("B%d ",b->_succs[j]->_pre_order);
  59     tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
  60     uint cnt = b->_nodes.size();
  61     for( j=0; j<cnt; j++ ) {
  62       Node *n = b->_nodes[j];
  63       dump( n );
  64       tty->print("\t%s\t",n->Name());
  65 
  66       // Dump the inputs
  67       uint k;                   // Exit value of loop
  68       for( k=0; k<n->req(); k++ ) // For all required inputs
  69         if( n->in(k) ) dump( n->in(k) );
  70         else tty->print("_ ");
  71       int any_prec = 0;
  72       for( ; k<n->len(); k++ )          // For all precedence inputs
  73         if( n->in(k) ) {
  74           if( !any_prec++ ) tty->print(" |");
  75           dump( n->in(k) );
  76         }
  77 
  78       // Dump node-specific info
  79       n->dump_spec(tty);
  80       tty->print("\n");
  81 
  82     }
  83     tty->print("\n");
  84   }
  85 }
  86 #endif
  87 
  88 //------------------------------combine_these_two------------------------------
  89 // Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
  90 void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
  91   uint lr1 = _phc._lrg_map.find(n1);
  92   uint lr2 = _phc._lrg_map.find(n2);
  93   if( lr1 != lr2 &&             // Different live ranges already AND
  94       !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
  95     LRG *lrg1 = &_phc.lrgs(lr1);
  96     LRG *lrg2 = &_phc.lrgs(lr2);
  97     // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
  98 
  99     // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
 100     // and in general that's a bad thing.  However, int->oop conversions only
 101     // happen at GC points, so the lifetime of the misclassified raw-pointer
 102     // is from the CheckCastPP (that converts it to an oop) backwards up
 103     // through a merge point and into the slow-path call, and around the
 104     // diamond up to the heap-top check and back down into the slow-path call.
 105     // The misclassified raw pointer is NOT live across the slow-path call,
 106     // and so does not appear in any GC info, so the fact that it is
 107     // misclassified is OK.
 108 
 109     if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
 110         // Compatible final mask
 111         lrg1->mask().overlap( lrg2->mask() ) ) {
 112       // Merge larger into smaller.
 113       if( lr1 > lr2 ) {
 114         uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
 115         Node   *n =   n1;   n1 =   n2;   n2 =    n;
 116         LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
 117       }
 118       // Union lr2 into lr1
 119       _phc.Union( n1, n2 );
 120       if (lrg1->_maxfreq < lrg2->_maxfreq)
 121         lrg1->_maxfreq = lrg2->_maxfreq;
 122       // Merge in the IFG
 123       _phc._ifg->Union( lr1, lr2 );
 124       // Combine register restrictions
 125       lrg1->AND(lrg2->mask());
 126     }
 127   }
 128 }
 129 
 130 //------------------------------coalesce_driver--------------------------------
 131 // Copy coalescing
 132 void PhaseCoalesce::coalesce_driver( ) {
 133 
 134   verify();
 135   // Coalesce from high frequency to low
 136   for( uint i=0; i<_phc._cfg._num_blocks; i++ )
 137     coalesce( _phc._blks[i] );
 138 
 139 }
 140 
 141 //------------------------------insert_copy_with_overlap-----------------------
 142 // I am inserting copies to come out of SSA form.  In the general case, I am
 143 // doing a parallel renaming.  I'm in the Named world now, so I can't do a
 144 // general parallel renaming.  All the copies now use  "names" (live-ranges)
 145 // to carry values instead of the explicit use-def chains.  Suppose I need to
 146 // insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
 147 // If I insert them in the wrong order then L128 will get clobbered before it
 148 // can get used by the second copy.  This cannot happen in the SSA model;
 149 // direct use-def chains get me the right value.  It DOES happen in the named
 150 // model so I have to handle the reordering of copies.
 151 //
 152 // In general, I need to topo-sort the placed copies to avoid conflicts.
 153 // Its possible to have a closed cycle of copies (e.g., recirculating the same
 154 // values around a loop).  In this case I need a temp to break the cycle.
 155 void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
 156 
 157   // Scan backwards for the locations of the last use of the dst_name.
 158   // I am about to clobber the dst_name, so the copy must be inserted
 159   // after the last use.  Last use is really first-use on a backwards scan.
 160   uint i = b->end_idx()-1;
 161   while(1) {
 162     Node *n = b->_nodes[i];
 163     // Check for end of virtual copies; this is also the end of the
 164     // parallel renaming effort.
 165     if (n->_idx < _unique) {
 166       break;
 167     }
 168     uint idx = n->is_Copy();
 169     assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
 170     if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
 171       break;
 172     }
 173     i--;
 174   }
 175   uint last_use_idx = i;
 176 
 177   // Also search for any kill of src_name that exits the block.
 178   // Since the copy uses src_name, I have to come before any kill.
 179   uint kill_src_idx = b->end_idx();
 180   // There can be only 1 kill that exits any block and that is
 181   // the last kill.  Thus it is the first kill on a backwards scan.
 182   i = b->end_idx()-1;
 183   while (1) {
 184     Node *n = b->_nodes[i];
 185     // Check for end of virtual copies; this is also the end of the
 186     // parallel renaming effort.
 187     if (n->_idx < _unique) {
 188       break;
 189     }
 190     assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
 191     if (_phc._lrg_map.find(n) == src_name) {
 192       kill_src_idx = i;
 193       break;
 194     }
 195     i--;
 196   }
 197   // Need a temp?  Last use of dst comes after the kill of src?
 198   if (last_use_idx >= kill_src_idx) {
 199     // Need to break a cycle with a temp
 200     uint idx = copy->is_Copy();
 201     Node *tmp = copy->clone();
 202     uint max_lrg_id = _phc._lrg_map.max_lrg_id();
 203     _phc.new_lrg(tmp, max_lrg_id);
 204     _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
 205 
 206     // Insert new temp between copy and source
 207     tmp ->set_req(idx,copy->in(idx));
 208     copy->set_req(idx,tmp);
 209     // Save source in temp early, before source is killed
 210     b->_nodes.insert(kill_src_idx,tmp);
 211     _phc._cfg._bbs.map( tmp->_idx, b );
 212     last_use_idx++;
 213   }
 214 
 215   // Insert just after last use
 216   b->_nodes.insert(last_use_idx+1,copy);
 217 }
 218 
 219 //------------------------------insert_copies----------------------------------
 220 void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
 221   // We do LRGs compressing and fix a liveout data only here since the other
 222   // place in Split() is guarded by the assert which we never hit.
 223   _phc._lrg_map.compress_uf_map_for_nodes();
 224   // Fix block's liveout data for compressed live ranges.
 225   for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
 226     uint compressed_lrg = _phc._lrg_map.find(lrg);
 227     if (lrg != compressed_lrg) {
 228       for (uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++) {
 229         IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
 230         if (liveout->member(lrg)) {
 231           liveout->remove(lrg);
 232           liveout->insert(compressed_lrg);
 233         }
 234       }
 235     }
 236   }
 237 
 238   // All new nodes added are actual copies to replace virtual copies.
 239   // Nodes with index less than '_unique' are original, non-virtual Nodes.
 240   _unique = C->unique();
 241 
 242   for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
 243     C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
 244     if (C->failing()) return;
 245     Block *b = _phc._cfg._blocks[i];
 246     uint cnt = b->num_preds();  // Number of inputs to the Phi
 247 
 248     for( uint l = 1; l<b->_nodes.size(); l++ ) {
 249       Node *n = b->_nodes[l];
 250 
 251       // Do not use removed-copies, use copied value instead
 252       uint ncnt = n->req();
 253       for( uint k = 1; k<ncnt; k++ ) {
 254         Node *copy = n->in(k);
 255         uint cidx = copy->is_Copy();
 256         if( cidx ) {
 257           Node *def = copy->in(cidx);
 258           if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
 259             n->set_req(k, def);
 260           }
 261         }
 262       }
 263 
 264       // Remove any explicit copies that get coalesced.
 265       uint cidx = n->is_Copy();
 266       if( cidx ) {
 267         Node *def = n->in(cidx);
 268         if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
 269           n->replace_by(def);
 270           n->set_req(cidx,NULL);
 271           b->_nodes.remove(l);
 272           l--;
 273           continue;
 274         }
 275       }
 276 
 277       if (n->is_Phi()) {
 278         // Get the chosen name for the Phi
 279         uint phi_name = _phc._lrg_map.find(n);
 280         // Ignore the pre-allocated specials
 281         if (!phi_name) {
 282           continue;
 283         }
 284         // Check for mismatch inputs to Phi
 285         for (uint j = 1; j < cnt; j++) {
 286           Node *m = n->in(j);
 287           uint src_name = _phc._lrg_map.find(m);
 288           if (src_name != phi_name) {
 289             Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
 290             Node *copy;
 291             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
 292             // Rematerialize constants instead of copying them
 293             if( m->is_Mach() && m->as_Mach()->is_Con() &&
 294                 m->as_Mach()->rematerialize() ) {
 295               copy = m->clone();
 296               // Insert the copy in the predecessor basic block
 297               pred->add_inst(copy);
 298               // Copy any flags as well
 299               _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
 300             } else {
 301               const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
 302               copy = new (C) MachSpillCopyNode(m, *rm, *rm);
 303               // Find a good place to insert.  Kinda tricky, use a subroutine
 304               insert_copy_with_overlap(pred,copy,phi_name,src_name);
 305             }
 306             // Insert the copy in the use-def chain
 307             n->set_req(j, copy);
 308             _phc._cfg._bbs.map( copy->_idx, pred );
 309             // Extend ("register allocate") the names array for the copy.
 310             _phc._lrg_map.extend(copy->_idx, phi_name);
 311           } // End of if Phi names do not match
 312         } // End of for all inputs to Phi
 313       } else { // End of if Phi
 314 
 315         // Now check for 2-address instructions
 316         uint idx;
 317         if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
 318           // Get the chosen name for the Node
 319           uint name = _phc._lrg_map.find(n);
 320           assert (name, "no 2-address specials");
 321           // Check for name mis-match on the 2-address input
 322           Node *m = n->in(idx);
 323           if (_phc._lrg_map.find(m) != name) {
 324             Node *copy;
 325             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
 326             // At this point it is unsafe to extend live ranges (6550579).
 327             // Rematerialize only constants as we do for Phi above.
 328             if(m->is_Mach() && m->as_Mach()->is_Con() &&
 329                m->as_Mach()->rematerialize()) {
 330               copy = m->clone();
 331               // Insert the copy in the basic block, just before us
 332               b->_nodes.insert(l++, copy);
 333               l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
 334             } else {
 335               const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
 336               copy = new (C) MachSpillCopyNode(m, *rm, *rm);
 337               // Insert the copy in the basic block, just before us
 338               b->_nodes.insert(l++, copy);
 339             }
 340             // Insert the copy in the use-def chain
 341             n->set_req(idx, copy);
 342             // Extend ("register allocate") the names array for the copy.
 343             _phc._lrg_map.extend(copy->_idx, name);
 344             _phc._cfg._bbs.map( copy->_idx, b );
 345           }
 346 
 347         } // End of is two-adr
 348 
 349         // Insert a copy at a debug use for a lrg which has high frequency
 350         if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(_phc._cfg._bbs)) {
 351           // Walk the debug inputs to the node and check for lrg freq
 352           JVMState* jvms = n->jvms();
 353           uint debug_start = jvms ? jvms->debug_start() : 999999;
 354           uint debug_end   = jvms ? jvms->debug_end()   : 999999;
 355           for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
 356             // Do not split monitors; they are only needed for debug table
 357             // entries and need no code.
 358             if (jvms->is_monitor_use(inpidx)) {
 359               continue;
 360             }
 361             Node *inp = n->in(inpidx);
 362             uint nidx = _phc._lrg_map.live_range_id(inp);
 363             LRG &lrg = lrgs(nidx);
 364 
 365             // If this lrg has a high frequency use/def
 366             if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
 367               // If the live range is also live out of this block (like it
 368               // would be for a fast/slow idiom), the normal spill mechanism
 369               // does an excellent job.  If it is not live out of this block
 370               // (like it would be for debug info to uncommon trap) splitting
 371               // the live range now allows a better allocation in the high
 372               // frequency blocks.
 373               //   Build_IFG_virtual has converted the live sets to
 374               // live-IN info, not live-OUT info.
 375               uint k;
 376               for( k=0; k < b->_num_succs; k++ )
 377                 if( _phc._live->live(b->_succs[k])->member( nidx ) )
 378                   break;      // Live in to some successor block?
 379               if( k < b->_num_succs )
 380                 continue;     // Live out; do not pre-split
 381               // Split the lrg at this use
 382               const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
 383               Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
 384               // Insert the copy in the use-def chain
 385               n->set_req(inpidx, copy );
 386               // Insert the copy in the basic block, just before us
 387               b->_nodes.insert( l++, copy );
 388               // Extend ("register allocate") the names array for the copy.
 389               uint max_lrg_id = _phc._lrg_map.max_lrg_id();
 390               _phc.new_lrg(copy, max_lrg_id);
 391               _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
 392               _phc._cfg._bbs.map(copy->_idx, b);
 393               //tty->print_cr("Split a debug use in Aggressive Coalesce");
 394             }  // End of if high frequency use/def
 395           }  // End of for all debug inputs
 396         }  // End of if low frequency safepoint
 397 
 398       } // End of if Phi
 399 
 400     } // End of for all instructions
 401   } // End of for all blocks
 402 }
 403 
 404 //=============================================================================
 405 //------------------------------coalesce---------------------------------------
 406 // Aggressive (but pessimistic) copy coalescing of a single block
 407 
 408 // The following coalesce pass represents a single round of aggressive
 409 // pessimistic coalesce.  "Aggressive" means no attempt to preserve
 410 // colorability when coalescing.  This occasionally means more spills, but
 411 // it also means fewer rounds of coalescing for better code - and that means
 412 // faster compiles.
 413 
 414 // "Pessimistic" means we do not hit the fixed point in one pass (and we are
 415 // reaching for the least fixed point to boot).  This is typically solved
 416 // with a few more rounds of coalescing, but the compiler must run fast.  We
 417 // could optimistically coalescing everything touching PhiNodes together
 418 // into one big live range, then check for self-interference.  Everywhere
 419 // the live range interferes with self it would have to be split.  Finding
 420 // the right split points can be done with some heuristics (based on
 421 // expected frequency of edges in the live range).  In short, it's a real
 422 // research problem and the timeline is too short to allow such research.
 423 // Further thoughts: (1) build the LR in a pass, (2) find self-interference
 424 // in another pass, (3) per each self-conflict, split, (4) split by finding
 425 // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
 426 // according to the GCM algorithm (or just exec freq on CFG edges).
 427 
 428 void PhaseAggressiveCoalesce::coalesce( Block *b ) {
 429   // Copies are still "virtual" - meaning we have not made them explicitly
 430   // copies.  Instead, Phi functions of successor blocks have mis-matched
 431   // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
 432   // up the live-ranges.  Check for Phis in successor blocks.
 433   uint i;
 434   for( i=0; i<b->_num_succs; i++ ) {
 435     Block *bs = b->_succs[i];
 436     // Find index of 'b' in 'bs' predecessors
 437     uint j=1;
 438     while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
 439     // Visit all the Phis in successor block
 440     for( uint k = 1; k<bs->_nodes.size(); k++ ) {
 441       Node *n = bs->_nodes[k];
 442       if( !n->is_Phi() ) break;
 443       combine_these_two( n, n->in(j) );
 444     }
 445   } // End of for all successor blocks
 446 
 447 
 448   // Check _this_ block for 2-address instructions and copies.
 449   uint cnt = b->end_idx();
 450   for( i = 1; i<cnt; i++ ) {
 451     Node *n = b->_nodes[i];
 452     uint idx;
 453     // 2-address instructions have a virtual Copy matching their input
 454     // to their output
 455     if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
 456       MachNode *mach = n->as_Mach();
 457       combine_these_two(mach, mach->in(idx));
 458     }
 459   } // End of for all instructions in block
 460 }
 461 
 462 //=============================================================================
 463 //------------------------------PhaseConservativeCoalesce----------------------
 464 PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
 465   _ulr.initialize(_phc._lrg_map.max_lrg_id());
 466 }
 467 
 468 //------------------------------verify-----------------------------------------
 469 void PhaseConservativeCoalesce::verify() {
 470 #ifdef ASSERT
 471   _phc.set_was_low();
 472 #endif
 473 }
 474 
 475 //------------------------------union_helper-----------------------------------
 476 void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
 477   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
 478   // union-find tree
 479   _phc.Union( lr1_node, lr2_node );
 480 
 481   // Single-def live range ONLY if both live ranges are single-def.
 482   // If both are single def, then src_def powers one live range
 483   // and def_copy powers the other.  After merging, src_def powers
 484   // the combined live range.
 485   lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
 486                         lrgs(lr2).is_multidef() )
 487     ? NodeSentinel : src_def;
 488   lrgs(lr2)._def = NULL;    // No def for lrg 2
 489   lrgs(lr2).Clear();        // Force empty mask for LRG 2
 490   //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
 491   lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
 492   lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
 493 
 494   if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
 495     lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
 496 
 497   // Copy original value instead.  Intermediate copies go dead, and
 498   // the dst_copy becomes useless.
 499   int didx = dst_copy->is_Copy();
 500   dst_copy->set_req( didx, src_def );
 501   // Add copy to free list
 502   // _phc.free_spillcopy(b->_nodes[bindex]);
 503   assert( b->_nodes[bindex] == dst_copy, "" );
 504   dst_copy->replace_by( dst_copy->in(didx) );
 505   dst_copy->set_req( didx, NULL);
 506   b->_nodes.remove(bindex);
 507   if( bindex < b->_ihrp_index ) b->_ihrp_index--;
 508   if( bindex < b->_fhrp_index ) b->_fhrp_index--;
 509 
 510   // Stretched lr1; add it to liveness of intermediate blocks
 511   Block *b2 = _phc._cfg._bbs[src_copy->_idx];
 512   while( b != b2 ) {
 513     b = _phc._cfg._bbs[b->pred(1)->_idx];
 514     _phc._live->live(b)->insert(lr1);
 515   }
 516 }
 517 
 518 //------------------------------compute_separating_interferences---------------
 519 // Factored code from copy_copy that computes extra interferences from
 520 // lengthening a live range by double-coalescing.
 521 uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
 522 
 523   assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
 524   assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
 525   Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
 526   Block *b2 = b;
 527   uint bindex2 = bindex;
 528   while( 1 ) {
 529     // Find previous instruction
 530     bindex2--;                  // Chain backwards 1 instruction
 531     while( bindex2 == 0 ) {     // At block start, find prior block
 532       assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
 533       b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
 534       bindex2 = b2->end_idx()-1;
 535     }
 536     // Get prior instruction
 537     assert(bindex2 < b2->_nodes.size(), "index out of bounds");
 538     Node *x = b2->_nodes[bindex2];
 539     if( x == prev_copy ) {      // Previous copy in copy chain?
 540       if( prev_copy == src_copy)// Found end of chain and all interferences
 541         break;                  // So break out of loop
 542       // Else work back one in copy chain
 543       prev_copy = prev_copy->in(prev_copy->is_Copy());
 544     } else {                    // Else collect interferences
 545       uint lidx = _phc._lrg_map.find(x);
 546       // Found another def of live-range being stretched?
 547       if(lidx == lr1) {
 548         return max_juint;
 549       }
 550       if(lidx == lr2) {
 551         return max_juint;
 552       }
 553 
 554       // If we attempt to coalesce across a bound def
 555       if( lrgs(lidx).is_bound() ) {
 556         // Do not let the coalesced LRG expect to get the bound color
 557         rm.SUBTRACT( lrgs(lidx).mask() );
 558         // Recompute rm_size
 559         rm_size = rm.Size();
 560         //if( rm._flags ) rm_size += 1000000;
 561         if( reg_degree >= rm_size ) return max_juint;
 562       }
 563       if( rm.overlap(lrgs(lidx).mask()) ) {
 564         // Insert lidx into union LRG; returns TRUE if actually inserted
 565         if( _ulr.insert(lidx) ) {
 566           // Infinite-stack neighbors do not alter colorability, as they
 567           // can always color to some other color.
 568           if( !lrgs(lidx).mask().is_AllStack() ) {
 569             // If this coalesce will make any new neighbor uncolorable,
 570             // do not coalesce.
 571             if( lrgs(lidx).just_lo_degree() )
 572               return max_juint;
 573             // Bump our degree
 574             if( ++reg_degree >= rm_size )
 575               return max_juint;
 576           } // End of if not infinite-stack neighbor
 577         } // End of if actually inserted
 578       } // End of if live range overlaps
 579     } // End of else collect interferences for 1 node
 580   } // End of while forever, scan back for interferences
 581   return reg_degree;
 582 }
 583 
 584 //------------------------------update_ifg-------------------------------------
 585 void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
 586   // Some original neighbors of lr1 might have gone away
 587   // because the constrained register mask prevented them.
 588   // Remove lr1 from such neighbors.
 589   IndexSetIterator one(n_lr1);
 590   uint neighbor;
 591   LRG &lrg1 = lrgs(lr1);
 592   while ((neighbor = one.next()) != 0)
 593     if( !_ulr.member(neighbor) )
 594       if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
 595         lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
 596 
 597 
 598   // lr2 is now called (coalesced into) lr1.
 599   // Remove lr2 from the IFG.
 600   IndexSetIterator two(n_lr2);
 601   LRG &lrg2 = lrgs(lr2);
 602   while ((neighbor = two.next()) != 0)
 603     if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
 604       lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
 605 
 606   // Some neighbors of intermediate copies now interfere with the
 607   // combined live range.
 608   IndexSetIterator three(&_ulr);
 609   while ((neighbor = three.next()) != 0)
 610     if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
 611       lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
 612 }
 613 
 614 //------------------------------record_bias------------------------------------
 615 static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
 616   // Tag copy bias here
 617   if( !ifg->lrgs(lr1)._copy_bias )
 618     ifg->lrgs(lr1)._copy_bias = lr2;
 619   if( !ifg->lrgs(lr2)._copy_bias )
 620     ifg->lrgs(lr2)._copy_bias = lr1;
 621 }
 622 
 623 //------------------------------copy_copy--------------------------------------
 624 // See if I can coalesce a series of multiple copies together.  I need the
 625 // final dest copy and the original src copy.  They can be the same Node.
 626 // Compute the compatible register masks.
 627 bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
 628 
 629   if (!dst_copy->is_SpillCopy()) {
 630     return false;
 631   }
 632   if (!src_copy->is_SpillCopy()) {
 633     return false;
 634   }
 635   Node *src_def = src_copy->in(src_copy->is_Copy());
 636   uint lr1 = _phc._lrg_map.find(dst_copy);
 637   uint lr2 = _phc._lrg_map.find(src_def);
 638 
 639   // Same live ranges already?
 640   if (lr1 == lr2) {
 641     return false;
 642   }
 643 
 644   // Interfere?
 645   if (_phc._ifg->test_edge_sq(lr1, lr2)) {
 646     return false;
 647   }
 648 
 649   // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
 650   if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
 651     return false;
 652   }
 653 
 654   // Coalescing between an aligned live range and a mis-aligned live range?
 655   // No, no!  Alignment changes how we count degree.
 656   if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
 657     return false;
 658   }
 659 
 660   // Sort; use smaller live-range number
 661   Node *lr1_node = dst_copy;
 662   Node *lr2_node = src_def;
 663   if (lr1 > lr2) {
 664     uint tmp = lr1; lr1 = lr2; lr2 = tmp;
 665     lr1_node = src_def;  lr2_node = dst_copy;
 666   }
 667 
 668   // Check for compatibility of the 2 live ranges by
 669   // intersecting their allowed register sets.
 670   RegMask rm = lrgs(lr1).mask();
 671   rm.AND(lrgs(lr2).mask());
 672   // Number of bits free
 673   uint rm_size = rm.Size();
 674 
 675   if (UseFPUForSpilling && rm.is_AllStack() ) {
 676     // Don't coalesce when frequency difference is large
 677     Block *dst_b = _phc._cfg._bbs[dst_copy->_idx];
 678     Block *src_def_b = _phc._cfg._bbs[src_def->_idx];
 679     if (src_def_b->_freq > 10*dst_b->_freq )
 680       return false;
 681   }
 682 
 683   // If we can use any stack slot, then effective size is infinite
 684   if( rm.is_AllStack() ) rm_size += 1000000;
 685   // Incompatible masks, no way to coalesce
 686   if( rm_size == 0 ) return false;
 687 
 688   // Another early bail-out test is when we are double-coalescing and the
 689   // 2 copies are separated by some control flow.
 690   if( dst_copy != src_copy ) {
 691     Block *src_b = _phc._cfg._bbs[src_copy->_idx];
 692     Block *b2 = b;
 693     while( b2 != src_b ) {
 694       if( b2->num_preds() > 2 ){// Found merge-point
 695         _phc._lost_opp_cflow_coalesce++;
 696         // extra record_bias commented out because Chris believes it is not
 697         // productive.  Since we can record only 1 bias, we want to choose one
 698         // that stands a chance of working and this one probably does not.
 699         //record_bias( _phc._lrgs, lr1, lr2 );
 700         return false;           // To hard to find all interferences
 701       }
 702       b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
 703     }
 704   }
 705 
 706   // Union the two interference sets together into '_ulr'
 707   uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
 708 
 709   if( reg_degree >= rm_size ) {
 710     record_bias( _phc._ifg, lr1, lr2 );
 711     return false;
 712   }
 713 
 714   // Now I need to compute all the interferences between dst_copy and
 715   // src_copy.  I'm not willing visit the entire interference graph, so
 716   // I limit my search to things in dst_copy's block or in a straight
 717   // line of previous blocks.  I give up at merge points or when I get
 718   // more interferences than my degree.  I can stop when I find src_copy.
 719   if( dst_copy != src_copy ) {
 720     reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
 721     if( reg_degree == max_juint ) {
 722       record_bias( _phc._ifg, lr1, lr2 );
 723       return false;
 724     }
 725   } // End of if dst_copy & src_copy are different
 726 
 727 
 728   // ---- THE COMBINED LRG IS COLORABLE ----
 729 
 730   // YEAH - Now coalesce this copy away
 731   assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
 732 
 733   IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
 734   IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
 735 
 736   // Update the interference graph
 737   update_ifg(lr1, lr2, n_lr1, n_lr2);
 738 
 739   _ulr.remove(lr1);
 740 
 741   // Uncomment the following code to trace Coalescing in great detail.
 742   //
 743   //if (false) {
 744   //  tty->cr();
 745   //  tty->print_cr("#######################################");
 746   //  tty->print_cr("union %d and %d", lr1, lr2);
 747   //  n_lr1->dump();
 748   //  n_lr2->dump();
 749   //  tty->print_cr("resulting set is");
 750   //  _ulr.dump();
 751   //}
 752 
 753   // Replace n_lr1 with the new combined live range.  _ulr will use
 754   // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
 755   // send its internal memory to the free list.
 756   _ulr.swap(n_lr1);
 757   _ulr.clear();
 758   n_lr2->clear();
 759 
 760   lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
 761   lrgs(lr2).set_degree( 0 );
 762 
 763   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
 764   // union-find tree
 765   union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
 766   // Combine register restrictions
 767   lrgs(lr1).set_mask(rm);
 768   lrgs(lr1).compute_set_mask_size();
 769   lrgs(lr1)._cost += lrgs(lr2)._cost;
 770   lrgs(lr1)._area += lrgs(lr2)._area;
 771 
 772   // While its uncommon to successfully coalesce live ranges that started out
 773   // being not-lo-degree, it can happen.  In any case the combined coalesced
 774   // live range better Simplify nicely.
 775   lrgs(lr1)._was_lo = 1;
 776 
 777   // kinda expensive to do all the time
 778   //tty->print_cr("warning: slow verify happening");
 779   //_phc._ifg->verify( &_phc );
 780   return true;
 781 }
 782 
 783 //------------------------------coalesce---------------------------------------
 784 // Conservative (but pessimistic) copy coalescing of a single block
 785 void PhaseConservativeCoalesce::coalesce( Block *b ) {
 786   // Bail out on infrequent blocks
 787   if( b->is_uncommon(_phc._cfg._bbs) )
 788     return;
 789   // Check this block for copies.
 790   for( uint i = 1; i<b->end_idx(); i++ ) {
 791     // Check for actual copies on inputs.  Coalesce a copy into its
 792     // input if use and copy's input are compatible.
 793     Node *copy1 = b->_nodes[i];
 794     uint idx1 = copy1->is_Copy();
 795     if( !idx1 ) continue;       // Not a copy
 796 
 797     if( copy_copy(copy1,copy1,b,i) ) {
 798       i--;                      // Retry, same location in block
 799       PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
 800       continue;
 801     }
 802   }
 803 }