1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "trace/traceMacros.hpp"
  42 
  43 class LibraryIntrinsic : public InlineCallGenerator {
  44   // Extend the set of intrinsics known to the runtime:
  45  public:
  46  private:
  47   bool             _is_virtual;
  48   bool             _is_predicted;
  49   vmIntrinsics::ID _intrinsic_id;
  50 
  51  public:
  52   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  53     : InlineCallGenerator(m),
  54       _is_virtual(is_virtual),
  55       _is_predicted(is_predicted),
  56       _intrinsic_id(id)
  57   {
  58   }
  59   virtual bool is_intrinsic() const { return true; }
  60   virtual bool is_virtual()   const { return _is_virtual; }
  61   virtual bool is_predicted()   const { return _is_predicted; }
  62   virtual JVMState* generate(JVMState* jvms);
  63   virtual Node* generate_predicate(JVMState* jvms);
  64   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  65 };
  66 
  67 
  68 // Local helper class for LibraryIntrinsic:
  69 class LibraryCallKit : public GraphKit {
  70  private:
  71   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  72   Node*             _result;        // the result node, if any
  73   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  74 
  75   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  76 
  77  public:
  78   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  79     : GraphKit(jvms),
  80       _intrinsic(intrinsic),
  81       _result(NULL)
  82   {
  83     // Check if this is a root compile.  In that case we don't have a caller.
  84     if (!jvms->has_method()) {
  85       _reexecute_sp = sp();
  86     } else {
  87       // Find out how many arguments the interpreter needs when deoptimizing
  88       // and save the stack pointer value so it can used by uncommon_trap.
  89       // We find the argument count by looking at the declared signature.
  90       bool ignored_will_link;
  91       ciSignature* declared_signature = NULL;
  92       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  93       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  94       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  95     }
  96   }
  97 
  98   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  99 
 100   ciMethod*         caller()    const    { return jvms()->method(); }
 101   int               bci()       const    { return jvms()->bci(); }
 102   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 103   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 104   ciMethod*         callee()    const    { return _intrinsic->method(); }
 105 
 106   bool try_to_inline();
 107   Node* try_to_predicate();
 108 
 109   void push_result() {
 110     // Push the result onto the stack.
 111     if (!stopped() && result() != NULL) {
 112       BasicType bt = result()->bottom_type()->basic_type();
 113       push_node(bt, result());
 114     }
 115   }
 116 
 117  private:
 118   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 119     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 120   }
 121 
 122   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 123   void  set_result(RegionNode* region, PhiNode* value);
 124   Node*     result() { return _result; }
 125 
 126   virtual int reexecute_sp() { return _reexecute_sp; }
 127 
 128   // Helper functions to inline natives
 129   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 130   Node* generate_slow_guard(Node* test, RegionNode* region);
 131   Node* generate_fair_guard(Node* test, RegionNode* region);
 132   Node* generate_negative_guard(Node* index, RegionNode* region,
 133                                 // resulting CastII of index:
 134                                 Node* *pos_index = NULL);
 135   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 136                                    // resulting CastII of index:
 137                                    Node* *pos_index = NULL);
 138   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 139                              Node* array_length,
 140                              RegionNode* region);
 141   Node* generate_current_thread(Node* &tls_output);
 142   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 143                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 144   Node* load_mirror_from_klass(Node* klass);
 145   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 146                                       RegionNode* region, int null_path,
 147                                       int offset);
 148   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 149                                RegionNode* region, int null_path) {
 150     int offset = java_lang_Class::klass_offset_in_bytes();
 151     return load_klass_from_mirror_common(mirror, never_see_null,
 152                                          region, null_path,
 153                                          offset);
 154   }
 155   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 156                                      RegionNode* region, int null_path) {
 157     int offset = java_lang_Class::array_klass_offset_in_bytes();
 158     return load_klass_from_mirror_common(mirror, never_see_null,
 159                                          region, null_path,
 160                                          offset);
 161   }
 162   Node* generate_access_flags_guard(Node* kls,
 163                                     int modifier_mask, int modifier_bits,
 164                                     RegionNode* region);
 165   Node* generate_interface_guard(Node* kls, RegionNode* region);
 166   Node* generate_array_guard(Node* kls, RegionNode* region) {
 167     return generate_array_guard_common(kls, region, false, false);
 168   }
 169   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 170     return generate_array_guard_common(kls, region, false, true);
 171   }
 172   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 173     return generate_array_guard_common(kls, region, true, false);
 174   }
 175   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, true, true);
 177   }
 178   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 179                                     bool obj_array, bool not_array);
 180   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 181   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 182                                      bool is_virtual = false, bool is_static = false);
 183   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 184     return generate_method_call(method_id, false, true);
 185   }
 186   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 187     return generate_method_call(method_id, true, false);
 188   }
 189   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 190 
 191   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 192   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 193   bool inline_string_compareTo();
 194   bool inline_string_indexOf();
 195   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 196   bool inline_string_equals();
 197   Node* round_double_node(Node* n);
 198   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 199   bool inline_math_native(vmIntrinsics::ID id);
 200   bool inline_trig(vmIntrinsics::ID id);
 201   bool inline_math(vmIntrinsics::ID id);
 202   bool inline_exp();
 203   bool inline_pow();
 204   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 205   bool inline_min_max(vmIntrinsics::ID id);
 206   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 207   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 208   int classify_unsafe_addr(Node* &base, Node* &offset);
 209   Node* make_unsafe_address(Node* base, Node* offset);
 210   // Helper for inline_unsafe_access.
 211   // Generates the guards that check whether the result of
 212   // Unsafe.getObject should be recorded in an SATB log buffer.
 213   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 214   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 215   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 216   static bool klass_needs_init_guard(Node* kls);
 217   bool inline_unsafe_allocate();
 218   bool inline_unsafe_copyMemory();
 219   bool inline_native_currentThread();
 220 #ifdef TRACE_HAVE_INTRINSICS
 221   bool inline_native_classID();
 222   bool inline_native_threadID();
 223 #endif
 224   bool inline_native_time_funcs(address method, const char* funcName);
 225   bool inline_native_isInterrupted();
 226   bool inline_native_Class_query(vmIntrinsics::ID id);
 227   bool inline_native_subtype_check();
 228 
 229   bool inline_native_newArray();
 230   bool inline_native_getLength();
 231   bool inline_array_copyOf(bool is_copyOfRange);
 232   bool inline_array_equals();
 233   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 234   bool inline_native_clone(bool is_virtual);
 235   bool inline_native_Reflection_getCallerClass();
 236   // Helper function for inlining native object hash method
 237   bool inline_native_hashcode(bool is_virtual, bool is_static);
 238   bool inline_native_getClass();
 239 
 240   // Helper functions for inlining arraycopy
 241   bool inline_arraycopy();
 242   void generate_arraycopy(const TypePtr* adr_type,
 243                           BasicType basic_elem_type,
 244                           Node* src,  Node* src_offset,
 245                           Node* dest, Node* dest_offset,
 246                           Node* copy_length,
 247                           bool disjoint_bases = false,
 248                           bool length_never_negative = false,
 249                           RegionNode* slow_region = NULL);
 250   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 251                                                 RegionNode* slow_region);
 252   void generate_clear_array(const TypePtr* adr_type,
 253                             Node* dest,
 254                             BasicType basic_elem_type,
 255                             Node* slice_off,
 256                             Node* slice_len,
 257                             Node* slice_end);
 258   bool generate_block_arraycopy(const TypePtr* adr_type,
 259                                 BasicType basic_elem_type,
 260                                 AllocateNode* alloc,
 261                                 Node* src,  Node* src_offset,
 262                                 Node* dest, Node* dest_offset,
 263                                 Node* dest_size, bool dest_uninitialized);
 264   void generate_slow_arraycopy(const TypePtr* adr_type,
 265                                Node* src,  Node* src_offset,
 266                                Node* dest, Node* dest_offset,
 267                                Node* copy_length, bool dest_uninitialized);
 268   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 269                                      Node* dest_elem_klass,
 270                                      Node* src,  Node* src_offset,
 271                                      Node* dest, Node* dest_offset,
 272                                      Node* copy_length, bool dest_uninitialized);
 273   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 274                                    Node* src,  Node* src_offset,
 275                                    Node* dest, Node* dest_offset,
 276                                    Node* copy_length, bool dest_uninitialized);
 277   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 278                                     BasicType basic_elem_type,
 279                                     bool disjoint_bases,
 280                                     Node* src,  Node* src_offset,
 281                                     Node* dest, Node* dest_offset,
 282                                     Node* copy_length, bool dest_uninitialized);
 283   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 284   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 285   bool inline_unsafe_ordered_store(BasicType type);
 286   bool inline_unsafe_fence(vmIntrinsics::ID id);
 287   bool inline_fp_conversions(vmIntrinsics::ID id);
 288   bool inline_number_methods(vmIntrinsics::ID id);
 289   bool inline_reference_get();
 290   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 291   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 292   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 293   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 294   bool inline_encodeISOArray();
 295   bool inline_updateCRC32();
 296   bool inline_updateBytesCRC32();
 297   bool inline_updateByteBufferCRC32();
 298 };
 299 
 300 
 301 //---------------------------make_vm_intrinsic----------------------------
 302 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 303   vmIntrinsics::ID id = m->intrinsic_id();
 304   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 305 
 306   if (DisableIntrinsic[0] != '\0'
 307       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 308     // disabled by a user request on the command line:
 309     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 310     return NULL;
 311   }
 312 
 313   if (!m->is_loaded()) {
 314     // do not attempt to inline unloaded methods
 315     return NULL;
 316   }
 317 
 318   // Only a few intrinsics implement a virtual dispatch.
 319   // They are expensive calls which are also frequently overridden.
 320   if (is_virtual) {
 321     switch (id) {
 322     case vmIntrinsics::_hashCode:
 323     case vmIntrinsics::_clone:
 324       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 325       break;
 326     default:
 327       return NULL;
 328     }
 329   }
 330 
 331   // -XX:-InlineNatives disables nearly all intrinsics:
 332   if (!InlineNatives) {
 333     switch (id) {
 334     case vmIntrinsics::_indexOf:
 335     case vmIntrinsics::_compareTo:
 336     case vmIntrinsics::_equals:
 337     case vmIntrinsics::_equalsC:
 338     case vmIntrinsics::_getAndAddInt:
 339     case vmIntrinsics::_getAndAddLong:
 340     case vmIntrinsics::_getAndSetInt:
 341     case vmIntrinsics::_getAndSetLong:
 342     case vmIntrinsics::_getAndSetObject:
 343     case vmIntrinsics::_loadFence:
 344     case vmIntrinsics::_storeFence:
 345     case vmIntrinsics::_fullFence:
 346       break;  // InlineNatives does not control String.compareTo
 347     case vmIntrinsics::_Reference_get:
 348       break;  // InlineNatives does not control Reference.get
 349     default:
 350       return NULL;
 351     }
 352   }
 353 
 354   bool is_predicted = false;
 355 
 356   switch (id) {
 357   case vmIntrinsics::_compareTo:
 358     if (!SpecialStringCompareTo)  return NULL;
 359     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 360     break;
 361   case vmIntrinsics::_indexOf:
 362     if (!SpecialStringIndexOf)  return NULL;
 363     break;
 364   case vmIntrinsics::_equals:
 365     if (!SpecialStringEquals)  return NULL;
 366     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 367     break;
 368   case vmIntrinsics::_equalsC:
 369     if (!SpecialArraysEquals)  return NULL;
 370     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 371     break;
 372   case vmIntrinsics::_arraycopy:
 373     if (!InlineArrayCopy)  return NULL;
 374     break;
 375   case vmIntrinsics::_copyMemory:
 376     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 377     if (!InlineArrayCopy)  return NULL;
 378     break;
 379   case vmIntrinsics::_hashCode:
 380     if (!InlineObjectHash)  return NULL;
 381     break;
 382   case vmIntrinsics::_clone:
 383   case vmIntrinsics::_copyOf:
 384   case vmIntrinsics::_copyOfRange:
 385     if (!InlineObjectCopy)  return NULL;
 386     // These also use the arraycopy intrinsic mechanism:
 387     if (!InlineArrayCopy)  return NULL;
 388     break;
 389   case vmIntrinsics::_encodeISOArray:
 390     if (!SpecialEncodeISOArray)  return NULL;
 391     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 392     break;
 393   case vmIntrinsics::_checkIndex:
 394     // We do not intrinsify this.  The optimizer does fine with it.
 395     return NULL;
 396 
 397   case vmIntrinsics::_getCallerClass:
 398     if (!UseNewReflection)  return NULL;
 399     if (!InlineReflectionGetCallerClass)  return NULL;
 400     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_bitCount_i:
 404     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_bitCount_l:
 408     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfLeadingZeros_i:
 412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_numberOfLeadingZeros_l:
 416     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_numberOfTrailingZeros_i:
 420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_numberOfTrailingZeros_l:
 424     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_reverseBytes_c:
 428     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 429     break;
 430   case vmIntrinsics::_reverseBytes_s:
 431     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 432     break;
 433   case vmIntrinsics::_reverseBytes_i:
 434     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 435     break;
 436   case vmIntrinsics::_reverseBytes_l:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_Reference_get:
 441     // Use the intrinsic version of Reference.get() so that the value in
 442     // the referent field can be registered by the G1 pre-barrier code.
 443     // Also add memory barrier to prevent commoning reads from this field
 444     // across safepoint since GC can change it value.
 445     break;
 446 
 447   case vmIntrinsics::_compareAndSwapObject:
 448 #ifdef _LP64
 449     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 450 #endif
 451     break;
 452 
 453   case vmIntrinsics::_compareAndSwapLong:
 454     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndAddInt:
 458     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndAddLong:
 462     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_getAndSetInt:
 466     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndSetLong:
 470     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 471     break;
 472 
 473   case vmIntrinsics::_getAndSetObject:
 474 #ifdef _LP64
 475     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 476     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 477     break;
 478 #else
 479     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 480     break;
 481 #endif
 482 
 483   case vmIntrinsics::_aescrypt_encryptBlock:
 484   case vmIntrinsics::_aescrypt_decryptBlock:
 485     if (!UseAESIntrinsics) return NULL;
 486     break;
 487 
 488   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 489   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 490     if (!UseAESIntrinsics) return NULL;
 491     // these two require the predicated logic
 492     is_predicted = true;
 493     break;
 494 
 495   case vmIntrinsics::_updateCRC32:
 496   case vmIntrinsics::_updateBytesCRC32:
 497   case vmIntrinsics::_updateByteBufferCRC32:
 498     if (!UseCRC32Intrinsics) return NULL;
 499     break;
 500 
 501  default:
 502     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 503     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 504     break;
 505   }
 506 
 507   // -XX:-InlineClassNatives disables natives from the Class class.
 508   // The flag applies to all reflective calls, notably Array.newArray
 509   // (visible to Java programmers as Array.newInstance).
 510   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 511       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 512     if (!InlineClassNatives)  return NULL;
 513   }
 514 
 515   // -XX:-InlineThreadNatives disables natives from the Thread class.
 516   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 517     if (!InlineThreadNatives)  return NULL;
 518   }
 519 
 520   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 521   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 522       m->holder()->name() == ciSymbol::java_lang_Float() ||
 523       m->holder()->name() == ciSymbol::java_lang_Double()) {
 524     if (!InlineMathNatives)  return NULL;
 525   }
 526 
 527   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 528   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 529     if (!InlineUnsafeOps)  return NULL;
 530   }
 531 
 532   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 533 }
 534 
 535 //----------------------register_library_intrinsics-----------------------
 536 // Initialize this file's data structures, for each Compile instance.
 537 void Compile::register_library_intrinsics() {
 538   // Nothing to do here.
 539 }
 540 
 541 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 542   LibraryCallKit kit(jvms, this);
 543   Compile* C = kit.C;
 544   int nodes = C->unique();
 545 #ifndef PRODUCT
 546   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 547     char buf[1000];
 548     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 549     tty->print_cr("Intrinsic %s", str);
 550   }
 551 #endif
 552   ciMethod* callee = kit.callee();
 553   const int bci    = kit.bci();
 554 
 555   // Try to inline the intrinsic.
 556   if (kit.try_to_inline()) {
 557     if (C->print_intrinsics() || C->print_inlining()) {
 558       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 559     }
 560     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 561     if (C->log()) {
 562       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 563                      vmIntrinsics::name_at(intrinsic_id()),
 564                      (is_virtual() ? " virtual='1'" : ""),
 565                      C->unique() - nodes);
 566     }
 567     // Push the result from the inlined method onto the stack.
 568     kit.push_result();
 569     return kit.transfer_exceptions_into_jvms();
 570   }
 571 
 572   // The intrinsic bailed out
 573   if (C->print_intrinsics() || C->print_inlining()) {
 574     if (jvms->has_method()) {
 575       // Not a root compile.
 576       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 577       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 578     } else {
 579       // Root compile
 580       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 581                vmIntrinsics::name_at(intrinsic_id()),
 582                (is_virtual() ? " (virtual)" : ""), bci);
 583     }
 584   }
 585   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 586   return NULL;
 587 }
 588 
 589 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 590   LibraryCallKit kit(jvms, this);
 591   Compile* C = kit.C;
 592   int nodes = C->unique();
 593 #ifndef PRODUCT
 594   assert(is_predicted(), "sanity");
 595   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 596     char buf[1000];
 597     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 598     tty->print_cr("Predicate for intrinsic %s", str);
 599   }
 600 #endif
 601   ciMethod* callee = kit.callee();
 602   const int bci    = kit.bci();
 603 
 604   Node* slow_ctl = kit.try_to_predicate();
 605   if (!kit.failing()) {
 606     if (C->print_intrinsics() || C->print_inlining()) {
 607       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 608     }
 609     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 610     if (C->log()) {
 611       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 612                      vmIntrinsics::name_at(intrinsic_id()),
 613                      (is_virtual() ? " virtual='1'" : ""),
 614                      C->unique() - nodes);
 615     }
 616     return slow_ctl; // Could be NULL if the check folds.
 617   }
 618 
 619   // The intrinsic bailed out
 620   if (C->print_intrinsics() || C->print_inlining()) {
 621     if (jvms->has_method()) {
 622       // Not a root compile.
 623       const char* msg = "failed to generate predicate for intrinsic";
 624       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 625     } else {
 626       // Root compile
 627       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 628                                         vmIntrinsics::name_at(intrinsic_id()),
 629                                         (is_virtual() ? " (virtual)" : ""), bci);
 630     }
 631   }
 632   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 633   return NULL;
 634 }
 635 
 636 bool LibraryCallKit::try_to_inline() {
 637   // Handle symbolic names for otherwise undistinguished boolean switches:
 638   const bool is_store       = true;
 639   const bool is_native_ptr  = true;
 640   const bool is_static      = true;
 641   const bool is_volatile    = true;
 642 
 643   if (!jvms()->has_method()) {
 644     // Root JVMState has a null method.
 645     assert(map()->memory()->Opcode() == Op_Parm, "");
 646     // Insert the memory aliasing node
 647     set_all_memory(reset_memory());
 648   }
 649   assert(merged_memory(), "");
 650 
 651 
 652   switch (intrinsic_id()) {
 653   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 654   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 655   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 656 
 657   case vmIntrinsics::_dsin:
 658   case vmIntrinsics::_dcos:
 659   case vmIntrinsics::_dtan:
 660   case vmIntrinsics::_dabs:
 661   case vmIntrinsics::_datan2:
 662   case vmIntrinsics::_dsqrt:
 663   case vmIntrinsics::_dexp:
 664   case vmIntrinsics::_dlog:
 665   case vmIntrinsics::_dlog10:
 666   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 667 
 668   case vmIntrinsics::_min:
 669   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 670 
 671   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 672 
 673   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 674   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 675   case vmIntrinsics::_equals:                   return inline_string_equals();
 676 
 677   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 678   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 679   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 680   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 681   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 682   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 683   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 684   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 685   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 686 
 687   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 688   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 689   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 690   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 691   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 692   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 693   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 694   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 695   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 696 
 697   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 698   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 699   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 700   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 701   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 702   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 703   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 704   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 705 
 706   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 707   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 708   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 709   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 710   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 711   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 712   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 713   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 714 
 715   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 716   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 717   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 718   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 719   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 720   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 721   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 722   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 723   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 724 
 725   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 726   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 727   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 728   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 729   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 730   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 731   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 732   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 733   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 734 
 735   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 736   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 737   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 738   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 739 
 740   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 741   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 742   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 743 
 744   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 745   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 746   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 747 
 748   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 749   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 750   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 751   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 752   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 753 
 754   case vmIntrinsics::_loadFence:
 755   case vmIntrinsics::_storeFence:
 756   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 757 
 758   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 759   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 760 
 761 #ifdef TRACE_HAVE_INTRINSICS
 762   case vmIntrinsics::_classID:                  return inline_native_classID();
 763   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 764   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 765 #endif
 766   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 767   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 768   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 769   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 770   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 771   case vmIntrinsics::_getLength:                return inline_native_getLength();
 772   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 773   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 774   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 775   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 776 
 777   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 778 
 779   case vmIntrinsics::_isInstance:
 780   case vmIntrinsics::_getModifiers:
 781   case vmIntrinsics::_isInterface:
 782   case vmIntrinsics::_isArray:
 783   case vmIntrinsics::_isPrimitive:
 784   case vmIntrinsics::_getSuperclass:
 785   case vmIntrinsics::_getComponentType:
 786   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 787 
 788   case vmIntrinsics::_floatToRawIntBits:
 789   case vmIntrinsics::_floatToIntBits:
 790   case vmIntrinsics::_intBitsToFloat:
 791   case vmIntrinsics::_doubleToRawLongBits:
 792   case vmIntrinsics::_doubleToLongBits:
 793   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 794 
 795   case vmIntrinsics::_numberOfLeadingZeros_i:
 796   case vmIntrinsics::_numberOfLeadingZeros_l:
 797   case vmIntrinsics::_numberOfTrailingZeros_i:
 798   case vmIntrinsics::_numberOfTrailingZeros_l:
 799   case vmIntrinsics::_bitCount_i:
 800   case vmIntrinsics::_bitCount_l:
 801   case vmIntrinsics::_reverseBytes_i:
 802   case vmIntrinsics::_reverseBytes_l:
 803   case vmIntrinsics::_reverseBytes_s:
 804   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 805 
 806   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 807 
 808   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 809 
 810   case vmIntrinsics::_aescrypt_encryptBlock:
 811   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 812 
 813   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 814   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 815     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 816 
 817   case vmIntrinsics::_encodeISOArray:
 818     return inline_encodeISOArray();
 819 
 820   case vmIntrinsics::_updateCRC32:
 821     return inline_updateCRC32();
 822   case vmIntrinsics::_updateBytesCRC32:
 823     return inline_updateBytesCRC32();
 824   case vmIntrinsics::_updateByteBufferCRC32:
 825     return inline_updateByteBufferCRC32();
 826 
 827   default:
 828     // If you get here, it may be that someone has added a new intrinsic
 829     // to the list in vmSymbols.hpp without implementing it here.
 830 #ifndef PRODUCT
 831     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 832       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 833                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 834     }
 835 #endif
 836     return false;
 837   }
 838 }
 839 
 840 Node* LibraryCallKit::try_to_predicate() {
 841   if (!jvms()->has_method()) {
 842     // Root JVMState has a null method.
 843     assert(map()->memory()->Opcode() == Op_Parm, "");
 844     // Insert the memory aliasing node
 845     set_all_memory(reset_memory());
 846   }
 847   assert(merged_memory(), "");
 848 
 849   switch (intrinsic_id()) {
 850   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 851     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 852   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 853     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 854 
 855   default:
 856     // If you get here, it may be that someone has added a new intrinsic
 857     // to the list in vmSymbols.hpp without implementing it here.
 858 #ifndef PRODUCT
 859     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 860       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 861                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 862     }
 863 #endif
 864     Node* slow_ctl = control();
 865     set_control(top()); // No fast path instrinsic
 866     return slow_ctl;
 867   }
 868 }
 869 
 870 //------------------------------set_result-------------------------------
 871 // Helper function for finishing intrinsics.
 872 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 873   record_for_igvn(region);
 874   set_control(_gvn.transform(region));
 875   set_result( _gvn.transform(value));
 876   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 877 }
 878 
 879 //------------------------------generate_guard---------------------------
 880 // Helper function for generating guarded fast-slow graph structures.
 881 // The given 'test', if true, guards a slow path.  If the test fails
 882 // then a fast path can be taken.  (We generally hope it fails.)
 883 // In all cases, GraphKit::control() is updated to the fast path.
 884 // The returned value represents the control for the slow path.
 885 // The return value is never 'top'; it is either a valid control
 886 // or NULL if it is obvious that the slow path can never be taken.
 887 // Also, if region and the slow control are not NULL, the slow edge
 888 // is appended to the region.
 889 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 890   if (stopped()) {
 891     // Already short circuited.
 892     return NULL;
 893   }
 894 
 895   // Build an if node and its projections.
 896   // If test is true we take the slow path, which we assume is uncommon.
 897   if (_gvn.type(test) == TypeInt::ZERO) {
 898     // The slow branch is never taken.  No need to build this guard.
 899     return NULL;
 900   }
 901 
 902   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 903 
 904   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 905   if (if_slow == top()) {
 906     // The slow branch is never taken.  No need to build this guard.
 907     return NULL;
 908   }
 909 
 910   if (region != NULL)
 911     region->add_req(if_slow);
 912 
 913   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 914   set_control(if_fast);
 915 
 916   return if_slow;
 917 }
 918 
 919 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 920   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 921 }
 922 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 923   return generate_guard(test, region, PROB_FAIR);
 924 }
 925 
 926 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 927                                                      Node* *pos_index) {
 928   if (stopped())
 929     return NULL;                // already stopped
 930   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 931     return NULL;                // index is already adequately typed
 932   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 933   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 934   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 935   if (is_neg != NULL && pos_index != NULL) {
 936     // Emulate effect of Parse::adjust_map_after_if.
 937     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 938     ccast->set_req(0, control());
 939     (*pos_index) = _gvn.transform(ccast);
 940   }
 941   return is_neg;
 942 }
 943 
 944 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 945                                                         Node* *pos_index) {
 946   if (stopped())
 947     return NULL;                // already stopped
 948   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 949     return NULL;                // index is already adequately typed
 950   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 951   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 952   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
 953   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 954   if (is_notp != NULL && pos_index != NULL) {
 955     // Emulate effect of Parse::adjust_map_after_if.
 956     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 957     ccast->set_req(0, control());
 958     (*pos_index) = _gvn.transform(ccast);
 959   }
 960   return is_notp;
 961 }
 962 
 963 // Make sure that 'position' is a valid limit index, in [0..length].
 964 // There are two equivalent plans for checking this:
 965 //   A. (offset + copyLength)  unsigned<=  arrayLength
 966 //   B. offset  <=  (arrayLength - copyLength)
 967 // We require that all of the values above, except for the sum and
 968 // difference, are already known to be non-negative.
 969 // Plan A is robust in the face of overflow, if offset and copyLength
 970 // are both hugely positive.
 971 //
 972 // Plan B is less direct and intuitive, but it does not overflow at
 973 // all, since the difference of two non-negatives is always
 974 // representable.  Whenever Java methods must perform the equivalent
 975 // check they generally use Plan B instead of Plan A.
 976 // For the moment we use Plan A.
 977 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 978                                                   Node* subseq_length,
 979                                                   Node* array_length,
 980                                                   RegionNode* region) {
 981   if (stopped())
 982     return NULL;                // already stopped
 983   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 984   if (zero_offset && subseq_length->eqv_uncast(array_length))
 985     return NULL;                // common case of whole-array copy
 986   Node* last = subseq_length;
 987   if (!zero_offset)             // last += offset
 988     last = _gvn.transform(new (C) AddINode(last, offset));
 989   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
 990   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 991   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 992   return is_over;
 993 }
 994 
 995 
 996 //--------------------------generate_current_thread--------------------
 997 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 998   ciKlass*    thread_klass = env()->Thread_klass();
 999   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1000   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1001   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1002   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
1003   tls_output = thread;
1004   return threadObj;
1005 }
1006 
1007 
1008 //------------------------------make_string_method_node------------------------
1009 // Helper method for String intrinsic functions. This version is called
1010 // with str1 and str2 pointing to String object nodes.
1011 //
1012 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1013   Node* no_ctrl = NULL;
1014 
1015   // Get start addr of string
1016   Node* str1_value   = load_String_value(no_ctrl, str1);
1017   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1018   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1019 
1020   // Get length of string 1
1021   Node* str1_len  = load_String_length(no_ctrl, str1);
1022 
1023   Node* str2_value   = load_String_value(no_ctrl, str2);
1024   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1025   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1026 
1027   Node* str2_len = NULL;
1028   Node* result = NULL;
1029 
1030   switch (opcode) {
1031   case Op_StrIndexOf:
1032     // Get length of string 2
1033     str2_len = load_String_length(no_ctrl, str2);
1034 
1035     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1036                                  str1_start, str1_len, str2_start, str2_len);
1037     break;
1038   case Op_StrComp:
1039     // Get length of string 2
1040     str2_len = load_String_length(no_ctrl, str2);
1041 
1042     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1043                                  str1_start, str1_len, str2_start, str2_len);
1044     break;
1045   case Op_StrEquals:
1046     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1047                                str1_start, str2_start, str1_len);
1048     break;
1049   default:
1050     ShouldNotReachHere();
1051     return NULL;
1052   }
1053 
1054   // All these intrinsics have checks.
1055   C->set_has_split_ifs(true); // Has chance for split-if optimization
1056 
1057   return _gvn.transform(result);
1058 }
1059 
1060 // Helper method for String intrinsic functions. This version is called
1061 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1062 // to Int nodes containing the lenghts of str1 and str2.
1063 //
1064 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1065   Node* result = NULL;
1066   switch (opcode) {
1067   case Op_StrIndexOf:
1068     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1069                                  str1_start, cnt1, str2_start, cnt2);
1070     break;
1071   case Op_StrComp:
1072     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1073                                  str1_start, cnt1, str2_start, cnt2);
1074     break;
1075   case Op_StrEquals:
1076     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1077                                  str1_start, str2_start, cnt1);
1078     break;
1079   default:
1080     ShouldNotReachHere();
1081     return NULL;
1082   }
1083 
1084   // All these intrinsics have checks.
1085   C->set_has_split_ifs(true); // Has chance for split-if optimization
1086 
1087   return _gvn.transform(result);
1088 }
1089 
1090 //------------------------------inline_string_compareTo------------------------
1091 // public int java.lang.String.compareTo(String anotherString);
1092 bool LibraryCallKit::inline_string_compareTo() {
1093   Node* receiver = null_check(argument(0));
1094   Node* arg      = null_check(argument(1));
1095   if (stopped()) {
1096     return true;
1097   }
1098   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1099   return true;
1100 }
1101 
1102 //------------------------------inline_string_equals------------------------
1103 bool LibraryCallKit::inline_string_equals() {
1104   Node* receiver = null_check_receiver();
1105   // NOTE: Do not null check argument for String.equals() because spec
1106   // allows to specify NULL as argument.
1107   Node* argument = this->argument(1);
1108   if (stopped()) {
1109     return true;
1110   }
1111 
1112   // paths (plus control) merge
1113   RegionNode* region = new (C) RegionNode(5);
1114   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1115 
1116   // does source == target string?
1117   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1118   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1119 
1120   Node* if_eq = generate_slow_guard(bol, NULL);
1121   if (if_eq != NULL) {
1122     // receiver == argument
1123     phi->init_req(2, intcon(1));
1124     region->init_req(2, if_eq);
1125   }
1126 
1127   // get String klass for instanceOf
1128   ciInstanceKlass* klass = env()->String_klass();
1129 
1130   if (!stopped()) {
1131     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1132     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1133     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1134 
1135     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1136     //instanceOf == true, fallthrough
1137 
1138     if (inst_false != NULL) {
1139       phi->init_req(3, intcon(0));
1140       region->init_req(3, inst_false);
1141     }
1142   }
1143 
1144   if (!stopped()) {
1145     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1146 
1147     // Properly cast the argument to String
1148     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1149     // This path is taken only when argument's type is String:NotNull.
1150     argument = cast_not_null(argument, false);
1151 
1152     Node* no_ctrl = NULL;
1153 
1154     // Get start addr of receiver
1155     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1156     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1157     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1158 
1159     // Get length of receiver
1160     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1161 
1162     // Get start addr of argument
1163     Node* argument_val    = load_String_value(no_ctrl, argument);
1164     Node* argument_offset = load_String_offset(no_ctrl, argument);
1165     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1166 
1167     // Get length of argument
1168     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1169 
1170     // Check for receiver count != argument count
1171     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1172     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1173     Node* if_ne = generate_slow_guard(bol, NULL);
1174     if (if_ne != NULL) {
1175       phi->init_req(4, intcon(0));
1176       region->init_req(4, if_ne);
1177     }
1178 
1179     // Check for count == 0 is done by assembler code for StrEquals.
1180 
1181     if (!stopped()) {
1182       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1183       phi->init_req(1, equals);
1184       region->init_req(1, control());
1185     }
1186   }
1187 
1188   // post merge
1189   set_control(_gvn.transform(region));
1190   record_for_igvn(region);
1191 
1192   set_result(_gvn.transform(phi));
1193   return true;
1194 }
1195 
1196 //------------------------------inline_array_equals----------------------------
1197 bool LibraryCallKit::inline_array_equals() {
1198   Node* arg1 = argument(0);
1199   Node* arg2 = argument(1);
1200   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1201   return true;
1202 }
1203 
1204 // Java version of String.indexOf(constant string)
1205 // class StringDecl {
1206 //   StringDecl(char[] ca) {
1207 //     offset = 0;
1208 //     count = ca.length;
1209 //     value = ca;
1210 //   }
1211 //   int offset;
1212 //   int count;
1213 //   char[] value;
1214 // }
1215 //
1216 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1217 //                             int targetOffset, int cache_i, int md2) {
1218 //   int cache = cache_i;
1219 //   int sourceOffset = string_object.offset;
1220 //   int sourceCount = string_object.count;
1221 //   int targetCount = target_object.length;
1222 //
1223 //   int targetCountLess1 = targetCount - 1;
1224 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1225 //
1226 //   char[] source = string_object.value;
1227 //   char[] target = target_object;
1228 //   int lastChar = target[targetCountLess1];
1229 //
1230 //  outer_loop:
1231 //   for (int i = sourceOffset; i < sourceEnd; ) {
1232 //     int src = source[i + targetCountLess1];
1233 //     if (src == lastChar) {
1234 //       // With random strings and a 4-character alphabet,
1235 //       // reverse matching at this point sets up 0.8% fewer
1236 //       // frames, but (paradoxically) makes 0.3% more probes.
1237 //       // Since those probes are nearer the lastChar probe,
1238 //       // there is may be a net D$ win with reverse matching.
1239 //       // But, reversing loop inhibits unroll of inner loop
1240 //       // for unknown reason.  So, does running outer loop from
1241 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1242 //       for (int j = 0; j < targetCountLess1; j++) {
1243 //         if (target[targetOffset + j] != source[i+j]) {
1244 //           if ((cache & (1 << source[i+j])) == 0) {
1245 //             if (md2 < j+1) {
1246 //               i += j+1;
1247 //               continue outer_loop;
1248 //             }
1249 //           }
1250 //           i += md2;
1251 //           continue outer_loop;
1252 //         }
1253 //       }
1254 //       return i - sourceOffset;
1255 //     }
1256 //     if ((cache & (1 << src)) == 0) {
1257 //       i += targetCountLess1;
1258 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1259 //     i++;
1260 //   }
1261 //   return -1;
1262 // }
1263 
1264 //------------------------------string_indexOf------------------------
1265 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1266                                      jint cache_i, jint md2_i) {
1267 
1268   Node* no_ctrl  = NULL;
1269   float likely   = PROB_LIKELY(0.9);
1270   float unlikely = PROB_UNLIKELY(0.9);
1271 
1272   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1273 
1274   Node* source        = load_String_value(no_ctrl, string_object);
1275   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1276   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1277 
1278   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1279   jint target_length = target_array->length();
1280   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1281   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1282 
1283   // String.value field is known to be @Stable.
1284   if (UseImplicitStableValues) {
1285     target = cast_array_to_stable(target, target_type);
1286   }
1287 
1288   IdealKit kit(this, false, true);
1289 #define __ kit.
1290   Node* zero             = __ ConI(0);
1291   Node* one              = __ ConI(1);
1292   Node* cache            = __ ConI(cache_i);
1293   Node* md2              = __ ConI(md2_i);
1294   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1295   Node* targetCount      = __ ConI(target_length);
1296   Node* targetCountLess1 = __ ConI(target_length - 1);
1297   Node* targetOffset     = __ ConI(targetOffset_i);
1298   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1299 
1300   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1301   Node* outer_loop = __ make_label(2 /* goto */);
1302   Node* return_    = __ make_label(1);
1303 
1304   __ set(rtn,__ ConI(-1));
1305   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1306        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1307        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1308        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1309        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1310          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1311               Node* tpj = __ AddI(targetOffset, __ value(j));
1312               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1313               Node* ipj  = __ AddI(__ value(i), __ value(j));
1314               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1315               __ if_then(targ, BoolTest::ne, src2); {
1316                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1317                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1318                     __ increment(i, __ AddI(__ value(j), one));
1319                     __ goto_(outer_loop);
1320                   } __ end_if(); __ dead(j);
1321                 }__ end_if(); __ dead(j);
1322                 __ increment(i, md2);
1323                 __ goto_(outer_loop);
1324               }__ end_if();
1325               __ increment(j, one);
1326          }__ end_loop(); __ dead(j);
1327          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1328          __ goto_(return_);
1329        }__ end_if();
1330        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1331          __ increment(i, targetCountLess1);
1332        }__ end_if();
1333        __ increment(i, one);
1334        __ bind(outer_loop);
1335   }__ end_loop(); __ dead(i);
1336   __ bind(return_);
1337 
1338   // Final sync IdealKit and GraphKit.
1339   final_sync(kit);
1340   Node* result = __ value(rtn);
1341 #undef __
1342   C->set_has_loops(true);
1343   return result;
1344 }
1345 
1346 //------------------------------inline_string_indexOf------------------------
1347 bool LibraryCallKit::inline_string_indexOf() {
1348   Node* receiver = argument(0);
1349   Node* arg      = argument(1);
1350 
1351   Node* result;
1352   // Disable the use of pcmpestri until it can be guaranteed that
1353   // the load doesn't cross into the uncommited space.
1354   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1355       UseSSE42Intrinsics) {
1356     // Generate SSE4.2 version of indexOf
1357     // We currently only have match rules that use SSE4.2
1358 
1359     receiver = null_check(receiver);
1360     arg      = null_check(arg);
1361     if (stopped()) {
1362       return true;
1363     }
1364 
1365     ciInstanceKlass* str_klass = env()->String_klass();
1366     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1367 
1368     // Make the merge point
1369     RegionNode* result_rgn = new (C) RegionNode(4);
1370     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1371     Node* no_ctrl  = NULL;
1372 
1373     // Get start addr of source string
1374     Node* source = load_String_value(no_ctrl, receiver);
1375     Node* source_offset = load_String_offset(no_ctrl, receiver);
1376     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1377 
1378     // Get length of source string
1379     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1380 
1381     // Get start addr of substring
1382     Node* substr = load_String_value(no_ctrl, arg);
1383     Node* substr_offset = load_String_offset(no_ctrl, arg);
1384     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1385 
1386     // Get length of source string
1387     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1388 
1389     // Check for substr count > string count
1390     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1391     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1392     Node* if_gt = generate_slow_guard(bol, NULL);
1393     if (if_gt != NULL) {
1394       result_phi->init_req(2, intcon(-1));
1395       result_rgn->init_req(2, if_gt);
1396     }
1397 
1398     if (!stopped()) {
1399       // Check for substr count == 0
1400       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1401       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1402       Node* if_zero = generate_slow_guard(bol, NULL);
1403       if (if_zero != NULL) {
1404         result_phi->init_req(3, intcon(0));
1405         result_rgn->init_req(3, if_zero);
1406       }
1407     }
1408 
1409     if (!stopped()) {
1410       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1411       result_phi->init_req(1, result);
1412       result_rgn->init_req(1, control());
1413     }
1414     set_control(_gvn.transform(result_rgn));
1415     record_for_igvn(result_rgn);
1416     result = _gvn.transform(result_phi);
1417 
1418   } else { // Use LibraryCallKit::string_indexOf
1419     // don't intrinsify if argument isn't a constant string.
1420     if (!arg->is_Con()) {
1421      return false;
1422     }
1423     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1424     if (str_type == NULL) {
1425       return false;
1426     }
1427     ciInstanceKlass* klass = env()->String_klass();
1428     ciObject* str_const = str_type->const_oop();
1429     if (str_const == NULL || str_const->klass() != klass) {
1430       return false;
1431     }
1432     ciInstance* str = str_const->as_instance();
1433     assert(str != NULL, "must be instance");
1434 
1435     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1436     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1437 
1438     int o;
1439     int c;
1440     if (java_lang_String::has_offset_field()) {
1441       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1442       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1443     } else {
1444       o = 0;
1445       c = pat->length();
1446     }
1447 
1448     // constant strings have no offset and count == length which
1449     // simplifies the resulting code somewhat so lets optimize for that.
1450     if (o != 0 || c != pat->length()) {
1451      return false;
1452     }
1453 
1454     receiver = null_check(receiver, T_OBJECT);
1455     // NOTE: No null check on the argument is needed since it's a constant String oop.
1456     if (stopped()) {
1457       return true;
1458     }
1459 
1460     // The null string as a pattern always returns 0 (match at beginning of string)
1461     if (c == 0) {
1462       set_result(intcon(0));
1463       return true;
1464     }
1465 
1466     // Generate default indexOf
1467     jchar lastChar = pat->char_at(o + (c - 1));
1468     int cache = 0;
1469     int i;
1470     for (i = 0; i < c - 1; i++) {
1471       assert(i < pat->length(), "out of range");
1472       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1473     }
1474 
1475     int md2 = c;
1476     for (i = 0; i < c - 1; i++) {
1477       assert(i < pat->length(), "out of range");
1478       if (pat->char_at(o + i) == lastChar) {
1479         md2 = (c - 1) - i;
1480       }
1481     }
1482 
1483     result = string_indexOf(receiver, pat, o, cache, md2);
1484   }
1485   set_result(result);
1486   return true;
1487 }
1488 
1489 //--------------------------round_double_node--------------------------------
1490 // Round a double node if necessary.
1491 Node* LibraryCallKit::round_double_node(Node* n) {
1492   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1493     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1494   return n;
1495 }
1496 
1497 //------------------------------inline_math-----------------------------------
1498 // public static double Math.abs(double)
1499 // public static double Math.sqrt(double)
1500 // public static double Math.log(double)
1501 // public static double Math.log10(double)
1502 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1503   Node* arg = round_double_node(argument(0));
1504   Node* n;
1505   switch (id) {
1506   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1507   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1508   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1509   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1510   default:  fatal_unexpected_iid(id);  break;
1511   }
1512   set_result(_gvn.transform(n));
1513   return true;
1514 }
1515 
1516 //------------------------------inline_trig----------------------------------
1517 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1518 // argument reduction which will turn into a fast/slow diamond.
1519 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1520   Node* arg = round_double_node(argument(0));
1521   Node* n = NULL;
1522 
1523   switch (id) {
1524   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1525   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1526   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1527   default:  fatal_unexpected_iid(id);  break;
1528   }
1529   n = _gvn.transform(n);
1530 
1531   // Rounding required?  Check for argument reduction!
1532   if (Matcher::strict_fp_requires_explicit_rounding) {
1533     static const double     pi_4 =  0.7853981633974483;
1534     static const double neg_pi_4 = -0.7853981633974483;
1535     // pi/2 in 80-bit extended precision
1536     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1537     // -pi/2 in 80-bit extended precision
1538     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1539     // Cutoff value for using this argument reduction technique
1540     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1541     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1542 
1543     // Pseudocode for sin:
1544     // if (x <= Math.PI / 4.0) {
1545     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1546     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1547     // } else {
1548     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1549     // }
1550     // return StrictMath.sin(x);
1551 
1552     // Pseudocode for cos:
1553     // if (x <= Math.PI / 4.0) {
1554     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1555     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1556     // } else {
1557     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1558     // }
1559     // return StrictMath.cos(x);
1560 
1561     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1562     // requires a special machine instruction to load it.  Instead we'll try
1563     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1564     // probably do the math inside the SIN encoding.
1565 
1566     // Make the merge point
1567     RegionNode* r = new (C) RegionNode(3);
1568     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1569 
1570     // Flatten arg so we need only 1 test
1571     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1572     // Node for PI/4 constant
1573     Node *pi4 = makecon(TypeD::make(pi_4));
1574     // Check PI/4 : abs(arg)
1575     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1576     // Check: If PI/4 < abs(arg) then go slow
1577     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1578     // Branch either way
1579     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1580     set_control(opt_iff(r,iff));
1581 
1582     // Set fast path result
1583     phi->init_req(2, n);
1584 
1585     // Slow path - non-blocking leaf call
1586     Node* call = NULL;
1587     switch (id) {
1588     case vmIntrinsics::_dsin:
1589       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1590                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1591                                "Sin", NULL, arg, top());
1592       break;
1593     case vmIntrinsics::_dcos:
1594       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1595                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1596                                "Cos", NULL, arg, top());
1597       break;
1598     case vmIntrinsics::_dtan:
1599       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1600                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1601                                "Tan", NULL, arg, top());
1602       break;
1603     }
1604     assert(control()->in(0) == call, "");
1605     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1606     r->init_req(1, control());
1607     phi->init_req(1, slow_result);
1608 
1609     // Post-merge
1610     set_control(_gvn.transform(r));
1611     record_for_igvn(r);
1612     n = _gvn.transform(phi);
1613 
1614     C->set_has_split_ifs(true); // Has chance for split-if optimization
1615   }
1616   set_result(n);
1617   return true;
1618 }
1619 
1620 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1621   //-------------------
1622   //result=(result.isNaN())? funcAddr():result;
1623   // Check: If isNaN() by checking result!=result? then either trap
1624   // or go to runtime
1625   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1626   // Build the boolean node
1627   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1628 
1629   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1630     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1631       // The pow or exp intrinsic returned a NaN, which requires a call
1632       // to the runtime.  Recompile with the runtime call.
1633       uncommon_trap(Deoptimization::Reason_intrinsic,
1634                     Deoptimization::Action_make_not_entrant);
1635     }
1636     set_result(result);
1637   } else {
1638     // If this inlining ever returned NaN in the past, we compile a call
1639     // to the runtime to properly handle corner cases
1640 
1641     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1642     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1643     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1644 
1645     if (!if_slow->is_top()) {
1646       RegionNode* result_region = new (C) RegionNode(3);
1647       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1648 
1649       result_region->init_req(1, if_fast);
1650       result_val->init_req(1, result);
1651 
1652       set_control(if_slow);
1653 
1654       const TypePtr* no_memory_effects = NULL;
1655       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1656                                    no_memory_effects,
1657                                    x, top(), y, y ? top() : NULL);
1658       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1659 #ifdef ASSERT
1660       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1661       assert(value_top == top(), "second value must be top");
1662 #endif
1663 
1664       result_region->init_req(2, control());
1665       result_val->init_req(2, value);
1666       set_result(result_region, result_val);
1667     } else {
1668       set_result(result);
1669     }
1670   }
1671 }
1672 
1673 //------------------------------inline_exp-------------------------------------
1674 // Inline exp instructions, if possible.  The Intel hardware only misses
1675 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1676 bool LibraryCallKit::inline_exp() {
1677   Node* arg = round_double_node(argument(0));
1678   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1679 
1680   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1681 
1682   C->set_has_split_ifs(true); // Has chance for split-if optimization
1683   return true;
1684 }
1685 
1686 //------------------------------inline_pow-------------------------------------
1687 // Inline power instructions, if possible.
1688 bool LibraryCallKit::inline_pow() {
1689   // Pseudocode for pow
1690   // if (x <= 0.0) {
1691   //   long longy = (long)y;
1692   //   if ((double)longy == y) { // if y is long
1693   //     if (y + 1 == y) longy = 0; // huge number: even
1694   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1695   //   } else {
1696   //     result = NaN;
1697   //   }
1698   // } else {
1699   //   result = DPow(x,y);
1700   // }
1701   // if (result != result)?  {
1702   //   result = uncommon_trap() or runtime_call();
1703   // }
1704   // return result;
1705 
1706   Node* x = round_double_node(argument(0));
1707   Node* y = round_double_node(argument(2));
1708 
1709   Node* result = NULL;
1710 
1711   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1712     // Short form: skip the fancy tests and just check for NaN result.
1713     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1714   } else {
1715     // If this inlining ever returned NaN in the past, include all
1716     // checks + call to the runtime.
1717 
1718     // Set the merge point for If node with condition of (x <= 0.0)
1719     // There are four possible paths to region node and phi node
1720     RegionNode *r = new (C) RegionNode(4);
1721     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1722 
1723     // Build the first if node: if (x <= 0.0)
1724     // Node for 0 constant
1725     Node *zeronode = makecon(TypeD::ZERO);
1726     // Check x:0
1727     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1728     // Check: If (x<=0) then go complex path
1729     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1730     // Branch either way
1731     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1732     // Fast path taken; set region slot 3
1733     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1734     r->init_req(3,fast_taken); // Capture fast-control
1735 
1736     // Fast path not-taken, i.e. slow path
1737     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1738 
1739     // Set fast path result
1740     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1741     phi->init_req(3, fast_result);
1742 
1743     // Complex path
1744     // Build the second if node (if y is long)
1745     // Node for (long)y
1746     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1747     // Node for (double)((long) y)
1748     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1749     // Check (double)((long) y) : y
1750     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1751     // Check if (y isn't long) then go to slow path
1752 
1753     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1754     // Branch either way
1755     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1756     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1757 
1758     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1759 
1760     // Calculate DPow(abs(x), y)*(1 & (long)y)
1761     // Node for constant 1
1762     Node *conone = longcon(1);
1763     // 1& (long)y
1764     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1765 
1766     // A huge number is always even. Detect a huge number by checking
1767     // if y + 1 == y and set integer to be tested for parity to 0.
1768     // Required for corner case:
1769     // (long)9.223372036854776E18 = max_jlong
1770     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1771     // max_jlong is odd but 9.223372036854776E18 is even
1772     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1773     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1774     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1775     Node* correctedsign = NULL;
1776     if (ConditionalMoveLimit != 0) {
1777       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1778     } else {
1779       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1780       RegionNode *r = new (C) RegionNode(3);
1781       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1782       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1783       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1784       phi->init_req(1, signnode);
1785       phi->init_req(2, longcon(0));
1786       correctedsign = _gvn.transform(phi);
1787       ylong_path = _gvn.transform(r);
1788       record_for_igvn(r);
1789     }
1790 
1791     // zero node
1792     Node *conzero = longcon(0);
1793     // Check (1&(long)y)==0?
1794     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1795     // Check if (1&(long)y)!=0?, if so the result is negative
1796     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1797     // abs(x)
1798     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1799     // abs(x)^y
1800     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1801     // -abs(x)^y
1802     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1803     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1804     Node *signresult = NULL;
1805     if (ConditionalMoveLimit != 0) {
1806       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1807     } else {
1808       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1809       RegionNode *r = new (C) RegionNode(3);
1810       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1811       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1812       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1813       phi->init_req(1, absxpowy);
1814       phi->init_req(2, negabsxpowy);
1815       signresult = _gvn.transform(phi);
1816       ylong_path = _gvn.transform(r);
1817       record_for_igvn(r);
1818     }
1819     // Set complex path fast result
1820     r->init_req(2, ylong_path);
1821     phi->init_req(2, signresult);
1822 
1823     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1824     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1825     r->init_req(1,slow_path);
1826     phi->init_req(1,slow_result);
1827 
1828     // Post merge
1829     set_control(_gvn.transform(r));
1830     record_for_igvn(r);
1831     result = _gvn.transform(phi);
1832   }
1833 
1834   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1835 
1836   C->set_has_split_ifs(true); // Has chance for split-if optimization
1837   return true;
1838 }
1839 
1840 //------------------------------runtime_math-----------------------------
1841 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1842   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1843          "must be (DD)D or (D)D type");
1844 
1845   // Inputs
1846   Node* a = round_double_node(argument(0));
1847   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1848 
1849   const TypePtr* no_memory_effects = NULL;
1850   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1851                                  no_memory_effects,
1852                                  a, top(), b, b ? top() : NULL);
1853   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1854 #ifdef ASSERT
1855   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1856   assert(value_top == top(), "second value must be top");
1857 #endif
1858 
1859   set_result(value);
1860   return true;
1861 }
1862 
1863 //------------------------------inline_math_native-----------------------------
1864 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1865 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1866   switch (id) {
1867     // These intrinsics are not properly supported on all hardware
1868   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1869     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1870   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1871     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1872   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1873     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1874 
1875   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1876     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1877   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1878     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1879 
1880     // These intrinsics are supported on all hardware
1881   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1882   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1883 
1884   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1885     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1886   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1887     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1888 #undef FN_PTR
1889 
1890    // These intrinsics are not yet correctly implemented
1891   case vmIntrinsics::_datan2:
1892     return false;
1893 
1894   default:
1895     fatal_unexpected_iid(id);
1896     return false;
1897   }
1898 }
1899 
1900 static bool is_simple_name(Node* n) {
1901   return (n->req() == 1         // constant
1902           || (n->is_Type() && n->as_Type()->type()->singleton())
1903           || n->is_Proj()       // parameter or return value
1904           || n->is_Phi()        // local of some sort
1905           );
1906 }
1907 
1908 //----------------------------inline_min_max-----------------------------------
1909 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1910   set_result(generate_min_max(id, argument(0), argument(1)));
1911   return true;
1912 }
1913 
1914 Node*
1915 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1916   // These are the candidate return value:
1917   Node* xvalue = x0;
1918   Node* yvalue = y0;
1919 
1920   if (xvalue == yvalue) {
1921     return xvalue;
1922   }
1923 
1924   bool want_max = (id == vmIntrinsics::_max);
1925 
1926   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1927   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1928   if (txvalue == NULL || tyvalue == NULL)  return top();
1929   // This is not really necessary, but it is consistent with a
1930   // hypothetical MaxINode::Value method:
1931   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1932 
1933   // %%% This folding logic should (ideally) be in a different place.
1934   // Some should be inside IfNode, and there to be a more reliable
1935   // transformation of ?: style patterns into cmoves.  We also want
1936   // more powerful optimizations around cmove and min/max.
1937 
1938   // Try to find a dominating comparison of these guys.
1939   // It can simplify the index computation for Arrays.copyOf
1940   // and similar uses of System.arraycopy.
1941   // First, compute the normalized version of CmpI(x, y).
1942   int   cmp_op = Op_CmpI;
1943   Node* xkey = xvalue;
1944   Node* ykey = yvalue;
1945   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
1946   if (ideal_cmpxy->is_Cmp()) {
1947     // E.g., if we have CmpI(length - offset, count),
1948     // it might idealize to CmpI(length, count + offset)
1949     cmp_op = ideal_cmpxy->Opcode();
1950     xkey = ideal_cmpxy->in(1);
1951     ykey = ideal_cmpxy->in(2);
1952   }
1953 
1954   // Start by locating any relevant comparisons.
1955   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1956   Node* cmpxy = NULL;
1957   Node* cmpyx = NULL;
1958   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1959     Node* cmp = start_from->fast_out(k);
1960     if (cmp->outcnt() > 0 &&            // must have prior uses
1961         cmp->in(0) == NULL &&           // must be context-independent
1962         cmp->Opcode() == cmp_op) {      // right kind of compare
1963       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1964       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1965     }
1966   }
1967 
1968   const int NCMPS = 2;
1969   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1970   int cmpn;
1971   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1972     if (cmps[cmpn] != NULL)  break;     // find a result
1973   }
1974   if (cmpn < NCMPS) {
1975     // Look for a dominating test that tells us the min and max.
1976     int depth = 0;                // Limit search depth for speed
1977     Node* dom = control();
1978     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1979       if (++depth >= 100)  break;
1980       Node* ifproj = dom;
1981       if (!ifproj->is_Proj())  continue;
1982       Node* iff = ifproj->in(0);
1983       if (!iff->is_If())  continue;
1984       Node* bol = iff->in(1);
1985       if (!bol->is_Bool())  continue;
1986       Node* cmp = bol->in(1);
1987       if (cmp == NULL)  continue;
1988       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1989         if (cmps[cmpn] == cmp)  break;
1990       if (cmpn == NCMPS)  continue;
1991       BoolTest::mask btest = bol->as_Bool()->_test._test;
1992       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1993       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1994       // At this point, we know that 'x btest y' is true.
1995       switch (btest) {
1996       case BoolTest::eq:
1997         // They are proven equal, so we can collapse the min/max.
1998         // Either value is the answer.  Choose the simpler.
1999         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2000           return yvalue;
2001         return xvalue;
2002       case BoolTest::lt:          // x < y
2003       case BoolTest::le:          // x <= y
2004         return (want_max ? yvalue : xvalue);
2005       case BoolTest::gt:          // x > y
2006       case BoolTest::ge:          // x >= y
2007         return (want_max ? xvalue : yvalue);
2008       }
2009     }
2010   }
2011 
2012   // We failed to find a dominating test.
2013   // Let's pick a test that might GVN with prior tests.
2014   Node*          best_bol   = NULL;
2015   BoolTest::mask best_btest = BoolTest::illegal;
2016   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2017     Node* cmp = cmps[cmpn];
2018     if (cmp == NULL)  continue;
2019     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2020       Node* bol = cmp->fast_out(j);
2021       if (!bol->is_Bool())  continue;
2022       BoolTest::mask btest = bol->as_Bool()->_test._test;
2023       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2024       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2025       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2026         best_bol   = bol->as_Bool();
2027         best_btest = btest;
2028       }
2029     }
2030   }
2031 
2032   Node* answer_if_true  = NULL;
2033   Node* answer_if_false = NULL;
2034   switch (best_btest) {
2035   default:
2036     if (cmpxy == NULL)
2037       cmpxy = ideal_cmpxy;
2038     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2039     // and fall through:
2040   case BoolTest::lt:          // x < y
2041   case BoolTest::le:          // x <= y
2042     answer_if_true  = (want_max ? yvalue : xvalue);
2043     answer_if_false = (want_max ? xvalue : yvalue);
2044     break;
2045   case BoolTest::gt:          // x > y
2046   case BoolTest::ge:          // x >= y
2047     answer_if_true  = (want_max ? xvalue : yvalue);
2048     answer_if_false = (want_max ? yvalue : xvalue);
2049     break;
2050   }
2051 
2052   jint hi, lo;
2053   if (want_max) {
2054     // We can sharpen the minimum.
2055     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2056     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2057   } else {
2058     // We can sharpen the maximum.
2059     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2060     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2061   }
2062 
2063   // Use a flow-free graph structure, to avoid creating excess control edges
2064   // which could hinder other optimizations.
2065   // Since Math.min/max is often used with arraycopy, we want
2066   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2067   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2068                                answer_if_false, answer_if_true,
2069                                TypeInt::make(lo, hi, widen));
2070 
2071   return _gvn.transform(cmov);
2072 
2073   /*
2074   // This is not as desirable as it may seem, since Min and Max
2075   // nodes do not have a full set of optimizations.
2076   // And they would interfere, anyway, with 'if' optimizations
2077   // and with CMoveI canonical forms.
2078   switch (id) {
2079   case vmIntrinsics::_min:
2080     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2081   case vmIntrinsics::_max:
2082     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2083   default:
2084     ShouldNotReachHere();
2085   }
2086   */
2087 }
2088 
2089 inline int
2090 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2091   const TypePtr* base_type = TypePtr::NULL_PTR;
2092   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2093   if (base_type == NULL) {
2094     // Unknown type.
2095     return Type::AnyPtr;
2096   } else if (base_type == TypePtr::NULL_PTR) {
2097     // Since this is a NULL+long form, we have to switch to a rawptr.
2098     base   = _gvn.transform(new (C) CastX2PNode(offset));
2099     offset = MakeConX(0);
2100     return Type::RawPtr;
2101   } else if (base_type->base() == Type::RawPtr) {
2102     return Type::RawPtr;
2103   } else if (base_type->isa_oopptr()) {
2104     // Base is never null => always a heap address.
2105     if (base_type->ptr() == TypePtr::NotNull) {
2106       return Type::OopPtr;
2107     }
2108     // Offset is small => always a heap address.
2109     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2110     if (offset_type != NULL &&
2111         base_type->offset() == 0 &&     // (should always be?)
2112         offset_type->_lo >= 0 &&
2113         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2114       return Type::OopPtr;
2115     }
2116     // Otherwise, it might either be oop+off or NULL+addr.
2117     return Type::AnyPtr;
2118   } else {
2119     // No information:
2120     return Type::AnyPtr;
2121   }
2122 }
2123 
2124 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2125   int kind = classify_unsafe_addr(base, offset);
2126   if (kind == Type::RawPtr) {
2127     return basic_plus_adr(top(), base, offset);
2128   } else {
2129     return basic_plus_adr(base, offset);
2130   }
2131 }
2132 
2133 //--------------------------inline_number_methods-----------------------------
2134 // inline int     Integer.numberOfLeadingZeros(int)
2135 // inline int        Long.numberOfLeadingZeros(long)
2136 //
2137 // inline int     Integer.numberOfTrailingZeros(int)
2138 // inline int        Long.numberOfTrailingZeros(long)
2139 //
2140 // inline int     Integer.bitCount(int)
2141 // inline int        Long.bitCount(long)
2142 //
2143 // inline char  Character.reverseBytes(char)
2144 // inline short     Short.reverseBytes(short)
2145 // inline int     Integer.reverseBytes(int)
2146 // inline long       Long.reverseBytes(long)
2147 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2148   Node* arg = argument(0);
2149   Node* n;
2150   switch (id) {
2151   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2152   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2153   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2154   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2155   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2156   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2157   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2158   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2159   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2160   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2161   default:  fatal_unexpected_iid(id);  break;
2162   }
2163   set_result(_gvn.transform(n));
2164   return true;
2165 }
2166 
2167 //----------------------------inline_unsafe_access----------------------------
2168 
2169 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2170 
2171 // Helper that guards and inserts a pre-barrier.
2172 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2173                                         Node* pre_val, bool need_mem_bar) {
2174   // We could be accessing the referent field of a reference object. If so, when G1
2175   // is enabled, we need to log the value in the referent field in an SATB buffer.
2176   // This routine performs some compile time filters and generates suitable
2177   // runtime filters that guard the pre-barrier code.
2178   // Also add memory barrier for non volatile load from the referent field
2179   // to prevent commoning of loads across safepoint.
2180   if (!UseG1GC && !need_mem_bar)
2181     return;
2182 
2183   // Some compile time checks.
2184 
2185   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2186   const TypeX* otype = offset->find_intptr_t_type();
2187   if (otype != NULL && otype->is_con() &&
2188       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2189     // Constant offset but not the reference_offset so just return
2190     return;
2191   }
2192 
2193   // We only need to generate the runtime guards for instances.
2194   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2195   if (btype != NULL) {
2196     if (btype->isa_aryptr()) {
2197       // Array type so nothing to do
2198       return;
2199     }
2200 
2201     const TypeInstPtr* itype = btype->isa_instptr();
2202     if (itype != NULL) {
2203       // Can the klass of base_oop be statically determined to be
2204       // _not_ a sub-class of Reference and _not_ Object?
2205       ciKlass* klass = itype->klass();
2206       if ( klass->is_loaded() &&
2207           !klass->is_subtype_of(env()->Reference_klass()) &&
2208           !env()->Object_klass()->is_subtype_of(klass)) {
2209         return;
2210       }
2211     }
2212   }
2213 
2214   // The compile time filters did not reject base_oop/offset so
2215   // we need to generate the following runtime filters
2216   //
2217   // if (offset == java_lang_ref_Reference::_reference_offset) {
2218   //   if (instance_of(base, java.lang.ref.Reference)) {
2219   //     pre_barrier(_, pre_val, ...);
2220   //   }
2221   // }
2222 
2223   float likely   = PROB_LIKELY(  0.999);
2224   float unlikely = PROB_UNLIKELY(0.999);
2225 
2226   IdealKit ideal(this);
2227 #define __ ideal.
2228 
2229   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2230 
2231   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2232       // Update graphKit memory and control from IdealKit.
2233       sync_kit(ideal);
2234 
2235       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2236       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2237 
2238       // Update IdealKit memory and control from graphKit.
2239       __ sync_kit(this);
2240 
2241       Node* one = __ ConI(1);
2242       // is_instof == 0 if base_oop == NULL
2243       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2244 
2245         // Update graphKit from IdeakKit.
2246         sync_kit(ideal);
2247 
2248         // Use the pre-barrier to record the value in the referent field
2249         pre_barrier(false /* do_load */,
2250                     __ ctrl(),
2251                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2252                     pre_val /* pre_val */,
2253                     T_OBJECT);
2254         if (need_mem_bar) {
2255           // Add memory barrier to prevent commoning reads from this field
2256           // across safepoint since GC can change its value.
2257           insert_mem_bar(Op_MemBarCPUOrder);
2258         }
2259         // Update IdealKit from graphKit.
2260         __ sync_kit(this);
2261 
2262       } __ end_if(); // _ref_type != ref_none
2263   } __ end_if(); // offset == referent_offset
2264 
2265   // Final sync IdealKit and GraphKit.
2266   final_sync(ideal);
2267 #undef __
2268 }
2269 
2270 
2271 // Interpret Unsafe.fieldOffset cookies correctly:
2272 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2273 
2274 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2275   // Attempt to infer a sharper value type from the offset and base type.
2276   ciKlass* sharpened_klass = NULL;
2277 
2278   // See if it is an instance field, with an object type.
2279   if (alias_type->field() != NULL) {
2280     assert(!is_native_ptr, "native pointer op cannot use a java address");
2281     if (alias_type->field()->type()->is_klass()) {
2282       sharpened_klass = alias_type->field()->type()->as_klass();
2283     }
2284   }
2285 
2286   // See if it is a narrow oop array.
2287   if (adr_type->isa_aryptr()) {
2288     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2289       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2290       if (elem_type != NULL) {
2291         sharpened_klass = elem_type->klass();
2292       }
2293     }
2294   }
2295 
2296   // The sharpened class might be unloaded if there is no class loader
2297   // contraint in place.
2298   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2299     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2300 
2301 #ifndef PRODUCT
2302     if (C->print_intrinsics() || C->print_inlining()) {
2303       tty->print("  from base type: ");  adr_type->dump();
2304       tty->print("  sharpened value: ");  tjp->dump();
2305     }
2306 #endif
2307     // Sharpen the value type.
2308     return tjp;
2309   }
2310   return NULL;
2311 }
2312 
2313 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2314   if (callee()->is_static())  return false;  // caller must have the capability!
2315 
2316 #ifndef PRODUCT
2317   {
2318     ResourceMark rm;
2319     // Check the signatures.
2320     ciSignature* sig = callee()->signature();
2321 #ifdef ASSERT
2322     if (!is_store) {
2323       // Object getObject(Object base, int/long offset), etc.
2324       BasicType rtype = sig->return_type()->basic_type();
2325       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2326           rtype = T_ADDRESS;  // it is really a C void*
2327       assert(rtype == type, "getter must return the expected value");
2328       if (!is_native_ptr) {
2329         assert(sig->count() == 2, "oop getter has 2 arguments");
2330         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2331         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2332       } else {
2333         assert(sig->count() == 1, "native getter has 1 argument");
2334         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2335       }
2336     } else {
2337       // void putObject(Object base, int/long offset, Object x), etc.
2338       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2339       if (!is_native_ptr) {
2340         assert(sig->count() == 3, "oop putter has 3 arguments");
2341         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2342         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2343       } else {
2344         assert(sig->count() == 2, "native putter has 2 arguments");
2345         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2346       }
2347       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2348       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2349         vtype = T_ADDRESS;  // it is really a C void*
2350       assert(vtype == type, "putter must accept the expected value");
2351     }
2352 #endif // ASSERT
2353  }
2354 #endif //PRODUCT
2355 
2356   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2357 
2358   Node* receiver = argument(0);  // type: oop
2359 
2360   // Build address expression.  See the code in inline_unsafe_prefetch.
2361   Node* adr;
2362   Node* heap_base_oop = top();
2363   Node* offset = top();
2364   Node* val;
2365 
2366   if (!is_native_ptr) {
2367     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2368     Node* base = argument(1);  // type: oop
2369     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2370     offset = argument(2);  // type: long
2371     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2372     // to be plain byte offsets, which are also the same as those accepted
2373     // by oopDesc::field_base.
2374     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2375            "fieldOffset must be byte-scaled");
2376     // 32-bit machines ignore the high half!
2377     offset = ConvL2X(offset);
2378     adr = make_unsafe_address(base, offset);
2379     heap_base_oop = base;
2380     val = is_store ? argument(4) : NULL;
2381   } else {
2382     Node* ptr = argument(1);  // type: long
2383     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2384     adr = make_unsafe_address(NULL, ptr);
2385     val = is_store ? argument(3) : NULL;
2386   }
2387 
2388   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2389 
2390   // First guess at the value type.
2391   const Type *value_type = Type::get_const_basic_type(type);
2392 
2393   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2394   // there was not enough information to nail it down.
2395   Compile::AliasType* alias_type = C->alias_type(adr_type);
2396   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2397 
2398   // We will need memory barriers unless we can determine a unique
2399   // alias category for this reference.  (Note:  If for some reason
2400   // the barriers get omitted and the unsafe reference begins to "pollute"
2401   // the alias analysis of the rest of the graph, either Compile::can_alias
2402   // or Compile::must_alias will throw a diagnostic assert.)
2403   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2404 
2405   // If we are reading the value of the referent field of a Reference
2406   // object (either by using Unsafe directly or through reflection)
2407   // then, if G1 is enabled, we need to record the referent in an
2408   // SATB log buffer using the pre-barrier mechanism.
2409   // Also we need to add memory barrier to prevent commoning reads
2410   // from this field across safepoint since GC can change its value.
2411   bool need_read_barrier = !is_native_ptr && !is_store &&
2412                            offset != top() && heap_base_oop != top();
2413 
2414   if (!is_store && type == T_OBJECT) {
2415     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2416     if (tjp != NULL) {
2417       value_type = tjp;
2418     }
2419   }
2420 
2421   receiver = null_check(receiver);
2422   if (stopped()) {
2423     return true;
2424   }
2425   // Heap pointers get a null-check from the interpreter,
2426   // as a courtesy.  However, this is not guaranteed by Unsafe,
2427   // and it is not possible to fully distinguish unintended nulls
2428   // from intended ones in this API.
2429 
2430   if (is_volatile) {
2431     // We need to emit leading and trailing CPU membars (see below) in
2432     // addition to memory membars when is_volatile. This is a little
2433     // too strong, but avoids the need to insert per-alias-type
2434     // volatile membars (for stores; compare Parse::do_put_xxx), which
2435     // we cannot do effectively here because we probably only have a
2436     // rough approximation of type.
2437     need_mem_bar = true;
2438     // For Stores, place a memory ordering barrier now.
2439     if (is_store)
2440       insert_mem_bar(Op_MemBarRelease);
2441   }
2442 
2443   // Memory barrier to prevent normal and 'unsafe' accesses from
2444   // bypassing each other.  Happens after null checks, so the
2445   // exception paths do not take memory state from the memory barrier,
2446   // so there's no problems making a strong assert about mixing users
2447   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2448   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2449   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2450 
2451   if (!is_store) {
2452     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2453     // load value
2454     switch (type) {
2455     case T_BOOLEAN:
2456     case T_CHAR:
2457     case T_BYTE:
2458     case T_SHORT:
2459     case T_INT:
2460     case T_LONG:
2461     case T_FLOAT:
2462     case T_DOUBLE:
2463       break;
2464     case T_OBJECT:
2465       if (need_read_barrier) {
2466         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2467       }
2468       break;
2469     case T_ADDRESS:
2470       // Cast to an int type.
2471       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2472       p = ConvX2L(p);
2473       break;
2474     default:
2475       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2476       break;
2477     }
2478     // The load node has the control of the preceding MemBarCPUOrder.  All
2479     // following nodes will have the control of the MemBarCPUOrder inserted at
2480     // the end of this method.  So, pushing the load onto the stack at a later
2481     // point is fine.
2482     set_result(p);
2483   } else {
2484     // place effect of store into memory
2485     switch (type) {
2486     case T_DOUBLE:
2487       val = dstore_rounding(val);
2488       break;
2489     case T_ADDRESS:
2490       // Repackage the long as a pointer.
2491       val = ConvL2X(val);
2492       val = _gvn.transform(new (C) CastX2PNode(val));
2493       break;
2494     }
2495 
2496     if (type != T_OBJECT ) {
2497       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2498     } else {
2499       // Possibly an oop being stored to Java heap or native memory
2500       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2501         // oop to Java heap.
2502         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2503       } else {
2504         // We can't tell at compile time if we are storing in the Java heap or outside
2505         // of it. So we need to emit code to conditionally do the proper type of
2506         // store.
2507 
2508         IdealKit ideal(this);
2509 #define __ ideal.
2510         // QQQ who knows what probability is here??
2511         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2512           // Sync IdealKit and graphKit.
2513           sync_kit(ideal);
2514           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2515           // Update IdealKit memory.
2516           __ sync_kit(this);
2517         } __ else_(); {
2518           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2519         } __ end_if();
2520         // Final sync IdealKit and GraphKit.
2521         final_sync(ideal);
2522 #undef __
2523       }
2524     }
2525   }
2526 
2527   if (is_volatile) {
2528     if (!is_store)
2529       insert_mem_bar(Op_MemBarAcquire);
2530     else
2531       insert_mem_bar(Op_MemBarVolatile);
2532   }
2533 
2534   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2535 
2536   return true;
2537 }
2538 
2539 //----------------------------inline_unsafe_prefetch----------------------------
2540 
2541 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2542 #ifndef PRODUCT
2543   {
2544     ResourceMark rm;
2545     // Check the signatures.
2546     ciSignature* sig = callee()->signature();
2547 #ifdef ASSERT
2548     // Object getObject(Object base, int/long offset), etc.
2549     BasicType rtype = sig->return_type()->basic_type();
2550     if (!is_native_ptr) {
2551       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2552       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2553       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2554     } else {
2555       assert(sig->count() == 1, "native prefetch has 1 argument");
2556       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2557     }
2558 #endif // ASSERT
2559   }
2560 #endif // !PRODUCT
2561 
2562   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2563 
2564   const int idx = is_static ? 0 : 1;
2565   if (!is_static) {
2566     null_check_receiver();
2567     if (stopped()) {
2568       return true;
2569     }
2570   }
2571 
2572   // Build address expression.  See the code in inline_unsafe_access.
2573   Node *adr;
2574   if (!is_native_ptr) {
2575     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2576     Node* base   = argument(idx + 0);  // type: oop
2577     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2578     Node* offset = argument(idx + 1);  // type: long
2579     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2580     // to be plain byte offsets, which are also the same as those accepted
2581     // by oopDesc::field_base.
2582     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2583            "fieldOffset must be byte-scaled");
2584     // 32-bit machines ignore the high half!
2585     offset = ConvL2X(offset);
2586     adr = make_unsafe_address(base, offset);
2587   } else {
2588     Node* ptr = argument(idx + 0);  // type: long
2589     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2590     adr = make_unsafe_address(NULL, ptr);
2591   }
2592 
2593   // Generate the read or write prefetch
2594   Node *prefetch;
2595   if (is_store) {
2596     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2597   } else {
2598     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2599   }
2600   prefetch->init_req(0, control());
2601   set_i_o(_gvn.transform(prefetch));
2602 
2603   return true;
2604 }
2605 
2606 //----------------------------inline_unsafe_load_store----------------------------
2607 // This method serves a couple of different customers (depending on LoadStoreKind):
2608 //
2609 // LS_cmpxchg:
2610 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2611 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2612 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2613 //
2614 // LS_xadd:
2615 //   public int  getAndAddInt( Object o, long offset, int  delta)
2616 //   public long getAndAddLong(Object o, long offset, long delta)
2617 //
2618 // LS_xchg:
2619 //   int    getAndSet(Object o, long offset, int    newValue)
2620 //   long   getAndSet(Object o, long offset, long   newValue)
2621 //   Object getAndSet(Object o, long offset, Object newValue)
2622 //
2623 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2624   // This basic scheme here is the same as inline_unsafe_access, but
2625   // differs in enough details that combining them would make the code
2626   // overly confusing.  (This is a true fact! I originally combined
2627   // them, but even I was confused by it!) As much code/comments as
2628   // possible are retained from inline_unsafe_access though to make
2629   // the correspondences clearer. - dl
2630 
2631   if (callee()->is_static())  return false;  // caller must have the capability!
2632 
2633 #ifndef PRODUCT
2634   BasicType rtype;
2635   {
2636     ResourceMark rm;
2637     // Check the signatures.
2638     ciSignature* sig = callee()->signature();
2639     rtype = sig->return_type()->basic_type();
2640     if (kind == LS_xadd || kind == LS_xchg) {
2641       // Check the signatures.
2642 #ifdef ASSERT
2643       assert(rtype == type, "get and set must return the expected type");
2644       assert(sig->count() == 3, "get and set has 3 arguments");
2645       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2646       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2647       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2648 #endif // ASSERT
2649     } else if (kind == LS_cmpxchg) {
2650       // Check the signatures.
2651 #ifdef ASSERT
2652       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2653       assert(sig->count() == 4, "CAS has 4 arguments");
2654       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2655       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2656 #endif // ASSERT
2657     } else {
2658       ShouldNotReachHere();
2659     }
2660   }
2661 #endif //PRODUCT
2662 
2663   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2664 
2665   // Get arguments:
2666   Node* receiver = NULL;
2667   Node* base     = NULL;
2668   Node* offset   = NULL;
2669   Node* oldval   = NULL;
2670   Node* newval   = NULL;
2671   if (kind == LS_cmpxchg) {
2672     const bool two_slot_type = type2size[type] == 2;
2673     receiver = argument(0);  // type: oop
2674     base     = argument(1);  // type: oop
2675     offset   = argument(2);  // type: long
2676     oldval   = argument(4);  // type: oop, int, or long
2677     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2678   } else if (kind == LS_xadd || kind == LS_xchg){
2679     receiver = argument(0);  // type: oop
2680     base     = argument(1);  // type: oop
2681     offset   = argument(2);  // type: long
2682     oldval   = NULL;
2683     newval   = argument(4);  // type: oop, int, or long
2684   }
2685 
2686   // Null check receiver.
2687   receiver = null_check(receiver);
2688   if (stopped()) {
2689     return true;
2690   }
2691 
2692   // Build field offset expression.
2693   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2694   // to be plain byte offsets, which are also the same as those accepted
2695   // by oopDesc::field_base.
2696   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2697   // 32-bit machines ignore the high half of long offsets
2698   offset = ConvL2X(offset);
2699   Node* adr = make_unsafe_address(base, offset);
2700   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2701 
2702   // For CAS, unlike inline_unsafe_access, there seems no point in
2703   // trying to refine types. Just use the coarse types here.
2704   const Type *value_type = Type::get_const_basic_type(type);
2705   Compile::AliasType* alias_type = C->alias_type(adr_type);
2706   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2707 
2708   if (kind == LS_xchg && type == T_OBJECT) {
2709     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2710     if (tjp != NULL) {
2711       value_type = tjp;
2712     }
2713   }
2714 
2715   int alias_idx = C->get_alias_index(adr_type);
2716 
2717   // Memory-model-wise, a LoadStore acts like a little synchronized
2718   // block, so needs barriers on each side.  These don't translate
2719   // into actual barriers on most machines, but we still need rest of
2720   // compiler to respect ordering.
2721 
2722   insert_mem_bar(Op_MemBarRelease);
2723   insert_mem_bar(Op_MemBarCPUOrder);
2724 
2725   // 4984716: MemBars must be inserted before this
2726   //          memory node in order to avoid a false
2727   //          dependency which will confuse the scheduler.
2728   Node *mem = memory(alias_idx);
2729 
2730   // For now, we handle only those cases that actually exist: ints,
2731   // longs, and Object. Adding others should be straightforward.
2732   Node* load_store;
2733   switch(type) {
2734   case T_INT:
2735     if (kind == LS_xadd) {
2736       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2737     } else if (kind == LS_xchg) {
2738       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2739     } else if (kind == LS_cmpxchg) {
2740       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2741     } else {
2742       ShouldNotReachHere();
2743     }
2744     break;
2745   case T_LONG:
2746     if (kind == LS_xadd) {
2747       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2748     } else if (kind == LS_xchg) {
2749       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2750     } else if (kind == LS_cmpxchg) {
2751       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2752     } else {
2753       ShouldNotReachHere();
2754     }
2755     break;
2756   case T_OBJECT:
2757     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2758     // could be delayed during Parse (for example, in adjust_map_after_if()).
2759     // Execute transformation here to avoid barrier generation in such case.
2760     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2761       newval = _gvn.makecon(TypePtr::NULL_PTR);
2762 
2763     // Reference stores need a store barrier.
2764     if (kind == LS_xchg) {
2765       // If pre-barrier must execute before the oop store, old value will require do_load here.
2766       if (!can_move_pre_barrier()) {
2767         pre_barrier(true /* do_load*/,
2768                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2769                     NULL /* pre_val*/,
2770                     T_OBJECT);
2771       } // Else move pre_barrier to use load_store value, see below.
2772     } else if (kind == LS_cmpxchg) {
2773       // Same as for newval above:
2774       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2775         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2776       }
2777       // The only known value which might get overwritten is oldval.
2778       pre_barrier(false /* do_load */,
2779                   control(), NULL, NULL, max_juint, NULL, NULL,
2780                   oldval /* pre_val */,
2781                   T_OBJECT);
2782     } else {
2783       ShouldNotReachHere();
2784     }
2785 
2786 #ifdef _LP64
2787     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2788       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2789       if (kind == LS_xchg) {
2790         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2791                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2792       } else {
2793         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2794         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2795         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2796                                                                    newval_enc, oldval_enc));
2797       }
2798     } else
2799 #endif
2800     {
2801       if (kind == LS_xchg) {
2802         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2803       } else {
2804         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2805         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2806       }
2807     }
2808     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2809     break;
2810   default:
2811     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2812     break;
2813   }
2814 
2815   // SCMemProjNodes represent the memory state of a LoadStore. Their
2816   // main role is to prevent LoadStore nodes from being optimized away
2817   // when their results aren't used.
2818   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2819   set_memory(proj, alias_idx);
2820 
2821   if (type == T_OBJECT && kind == LS_xchg) {
2822 #ifdef _LP64
2823     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2824       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2825     }
2826 #endif
2827     if (can_move_pre_barrier()) {
2828       // Don't need to load pre_val. The old value is returned by load_store.
2829       // The pre_barrier can execute after the xchg as long as no safepoint
2830       // gets inserted between them.
2831       pre_barrier(false /* do_load */,
2832                   control(), NULL, NULL, max_juint, NULL, NULL,
2833                   load_store /* pre_val */,
2834                   T_OBJECT);
2835     }
2836   }
2837 
2838   // Add the trailing membar surrounding the access
2839   insert_mem_bar(Op_MemBarCPUOrder);
2840   insert_mem_bar(Op_MemBarAcquire);
2841 
2842   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2843   set_result(load_store);
2844   return true;
2845 }
2846 
2847 //----------------------------inline_unsafe_ordered_store----------------------
2848 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2849 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2850 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2851 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2852   // This is another variant of inline_unsafe_access, differing in
2853   // that it always issues store-store ("release") barrier and ensures
2854   // store-atomicity (which only matters for "long").
2855 
2856   if (callee()->is_static())  return false;  // caller must have the capability!
2857 
2858 #ifndef PRODUCT
2859   {
2860     ResourceMark rm;
2861     // Check the signatures.
2862     ciSignature* sig = callee()->signature();
2863 #ifdef ASSERT
2864     BasicType rtype = sig->return_type()->basic_type();
2865     assert(rtype == T_VOID, "must return void");
2866     assert(sig->count() == 3, "has 3 arguments");
2867     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2868     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2869 #endif // ASSERT
2870   }
2871 #endif //PRODUCT
2872 
2873   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2874 
2875   // Get arguments:
2876   Node* receiver = argument(0);  // type: oop
2877   Node* base     = argument(1);  // type: oop
2878   Node* offset   = argument(2);  // type: long
2879   Node* val      = argument(4);  // type: oop, int, or long
2880 
2881   // Null check receiver.
2882   receiver = null_check(receiver);
2883   if (stopped()) {
2884     return true;
2885   }
2886 
2887   // Build field offset expression.
2888   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2889   // 32-bit machines ignore the high half of long offsets
2890   offset = ConvL2X(offset);
2891   Node* adr = make_unsafe_address(base, offset);
2892   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2893   const Type *value_type = Type::get_const_basic_type(type);
2894   Compile::AliasType* alias_type = C->alias_type(adr_type);
2895 
2896   insert_mem_bar(Op_MemBarRelease);
2897   insert_mem_bar(Op_MemBarCPUOrder);
2898   // Ensure that the store is atomic for longs:
2899   const bool require_atomic_access = true;
2900   Node* store;
2901   if (type == T_OBJECT) // reference stores need a store barrier.
2902     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2903   else {
2904     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2905   }
2906   insert_mem_bar(Op_MemBarCPUOrder);
2907   return true;
2908 }
2909 
2910 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2911   // Regardless of form, don't allow previous ld/st to move down,
2912   // then issue acquire, release, or volatile mem_bar.
2913   insert_mem_bar(Op_MemBarCPUOrder);
2914   switch(id) {
2915     case vmIntrinsics::_loadFence:
2916       insert_mem_bar(Op_MemBarAcquire);
2917       return true;
2918     case vmIntrinsics::_storeFence:
2919       insert_mem_bar(Op_MemBarRelease);
2920       return true;
2921     case vmIntrinsics::_fullFence:
2922       insert_mem_bar(Op_MemBarVolatile);
2923       return true;
2924     default:
2925       fatal_unexpected_iid(id);
2926       return false;
2927   }
2928 }
2929 
2930 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2931   if (!kls->is_Con()) {
2932     return true;
2933   }
2934   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2935   if (klsptr == NULL) {
2936     return true;
2937   }
2938   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2939   // don't need a guard for a klass that is already initialized
2940   return !ik->is_initialized();
2941 }
2942 
2943 //----------------------------inline_unsafe_allocate---------------------------
2944 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
2945 bool LibraryCallKit::inline_unsafe_allocate() {
2946   if (callee()->is_static())  return false;  // caller must have the capability!
2947 
2948   null_check_receiver();  // null-check, then ignore
2949   Node* cls = null_check(argument(1));
2950   if (stopped())  return true;
2951 
2952   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2953   kls = null_check(kls);
2954   if (stopped())  return true;  // argument was like int.class
2955 
2956   Node* test = NULL;
2957   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2958     // Note:  The argument might still be an illegal value like
2959     // Serializable.class or Object[].class.   The runtime will handle it.
2960     // But we must make an explicit check for initialization.
2961     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2962     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2963     // can generate code to load it as unsigned byte.
2964     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2965     Node* bits = intcon(InstanceKlass::fully_initialized);
2966     test = _gvn.transform(new (C) SubINode(inst, bits));
2967     // The 'test' is non-zero if we need to take a slow path.
2968   }
2969 
2970   Node* obj = new_instance(kls, test);
2971   set_result(obj);
2972   return true;
2973 }
2974 
2975 #ifdef TRACE_HAVE_INTRINSICS
2976 /*
2977  * oop -> myklass
2978  * myklass->trace_id |= USED
2979  * return myklass->trace_id & ~0x3
2980  */
2981 bool LibraryCallKit::inline_native_classID() {
2982   null_check_receiver();  // null-check, then ignore
2983   Node* cls = null_check(argument(1), T_OBJECT);
2984   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2985   kls = null_check(kls, T_OBJECT);
2986   ByteSize offset = TRACE_ID_OFFSET;
2987   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2988   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2989   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2990   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2991   Node* clsused = longcon(0x01l); // set the class bit
2992   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2993 
2994   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2995   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2996   set_result(andl);
2997   return true;
2998 }
2999 
3000 bool LibraryCallKit::inline_native_threadID() {
3001   Node* tls_ptr = NULL;
3002   Node* cur_thr = generate_current_thread(tls_ptr);
3003   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3004   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3005   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3006 
3007   Node* threadid = NULL;
3008   size_t thread_id_size = OSThread::thread_id_size();
3009   if (thread_id_size == (size_t) BytesPerLong) {
3010     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
3011   } else if (thread_id_size == (size_t) BytesPerInt) {
3012     threadid = make_load(control(), p, TypeInt::INT, T_INT);
3013   } else {
3014     ShouldNotReachHere();
3015   }
3016   set_result(threadid);
3017   return true;
3018 }
3019 #endif
3020 
3021 //------------------------inline_native_time_funcs--------------
3022 // inline code for System.currentTimeMillis() and System.nanoTime()
3023 // these have the same type and signature
3024 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3025   const TypeFunc* tf = OptoRuntime::void_long_Type();
3026   const TypePtr* no_memory_effects = NULL;
3027   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3028   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3029 #ifdef ASSERT
3030   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3031   assert(value_top == top(), "second value must be top");
3032 #endif
3033   set_result(value);
3034   return true;
3035 }
3036 
3037 //------------------------inline_native_currentThread------------------
3038 bool LibraryCallKit::inline_native_currentThread() {
3039   Node* junk = NULL;
3040   set_result(generate_current_thread(junk));
3041   return true;
3042 }
3043 
3044 //------------------------inline_native_isInterrupted------------------
3045 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3046 bool LibraryCallKit::inline_native_isInterrupted() {
3047   // Add a fast path to t.isInterrupted(clear_int):
3048   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3049   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3050   // So, in the common case that the interrupt bit is false,
3051   // we avoid making a call into the VM.  Even if the interrupt bit
3052   // is true, if the clear_int argument is false, we avoid the VM call.
3053   // However, if the receiver is not currentThread, we must call the VM,
3054   // because there must be some locking done around the operation.
3055 
3056   // We only go to the fast case code if we pass two guards.
3057   // Paths which do not pass are accumulated in the slow_region.
3058 
3059   enum {
3060     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3061     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3062     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3063     PATH_LIMIT
3064   };
3065 
3066   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3067   // out of the function.
3068   insert_mem_bar(Op_MemBarCPUOrder);
3069 
3070   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3071   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3072 
3073   RegionNode* slow_region = new (C) RegionNode(1);
3074   record_for_igvn(slow_region);
3075 
3076   // (a) Receiving thread must be the current thread.
3077   Node* rec_thr = argument(0);
3078   Node* tls_ptr = NULL;
3079   Node* cur_thr = generate_current_thread(tls_ptr);
3080   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3081   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3082 
3083   generate_slow_guard(bol_thr, slow_region);
3084 
3085   // (b) Interrupt bit on TLS must be false.
3086   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3087   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3088   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3089 
3090   // Set the control input on the field _interrupted read to prevent it floating up.
3091   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3092   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3093   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3094 
3095   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3096 
3097   // First fast path:  if (!TLS._interrupted) return false;
3098   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3099   result_rgn->init_req(no_int_result_path, false_bit);
3100   result_val->init_req(no_int_result_path, intcon(0));
3101 
3102   // drop through to next case
3103   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3104 
3105   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3106   Node* clr_arg = argument(1);
3107   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3108   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3109   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3110 
3111   // Second fast path:  ... else if (!clear_int) return true;
3112   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3113   result_rgn->init_req(no_clear_result_path, false_arg);
3114   result_val->init_req(no_clear_result_path, intcon(1));
3115 
3116   // drop through to next case
3117   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3118 
3119   // (d) Otherwise, go to the slow path.
3120   slow_region->add_req(control());
3121   set_control( _gvn.transform(slow_region));
3122 
3123   if (stopped()) {
3124     // There is no slow path.
3125     result_rgn->init_req(slow_result_path, top());
3126     result_val->init_req(slow_result_path, top());
3127   } else {
3128     // non-virtual because it is a private non-static
3129     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3130 
3131     Node* slow_val = set_results_for_java_call(slow_call);
3132     // this->control() comes from set_results_for_java_call
3133 
3134     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3135     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3136 
3137     // These two phis are pre-filled with copies of of the fast IO and Memory
3138     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3139     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3140 
3141     result_rgn->init_req(slow_result_path, control());
3142     result_io ->init_req(slow_result_path, i_o());
3143     result_mem->init_req(slow_result_path, reset_memory());
3144     result_val->init_req(slow_result_path, slow_val);
3145 
3146     set_all_memory(_gvn.transform(result_mem));
3147     set_i_o(       _gvn.transform(result_io));
3148   }
3149 
3150   C->set_has_split_ifs(true); // Has chance for split-if optimization
3151   set_result(result_rgn, result_val);
3152   return true;
3153 }
3154 
3155 //---------------------------load_mirror_from_klass----------------------------
3156 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3157 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3158   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3159   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3160 }
3161 
3162 //-----------------------load_klass_from_mirror_common-------------------------
3163 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3164 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3165 // and branch to the given path on the region.
3166 // If never_see_null, take an uncommon trap on null, so we can optimistically
3167 // compile for the non-null case.
3168 // If the region is NULL, force never_see_null = true.
3169 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3170                                                     bool never_see_null,
3171                                                     RegionNode* region,
3172                                                     int null_path,
3173                                                     int offset) {
3174   if (region == NULL)  never_see_null = true;
3175   Node* p = basic_plus_adr(mirror, offset);
3176   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3177   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3178   Node* null_ctl = top();
3179   kls = null_check_oop(kls, &null_ctl, never_see_null);
3180   if (region != NULL) {
3181     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3182     region->init_req(null_path, null_ctl);
3183   } else {
3184     assert(null_ctl == top(), "no loose ends");
3185   }
3186   return kls;
3187 }
3188 
3189 //--------------------(inline_native_Class_query helpers)---------------------
3190 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3191 // Fall through if (mods & mask) == bits, take the guard otherwise.
3192 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3193   // Branch around if the given klass has the given modifier bit set.
3194   // Like generate_guard, adds a new path onto the region.
3195   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3196   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3197   Node* mask = intcon(modifier_mask);
3198   Node* bits = intcon(modifier_bits);
3199   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3200   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3201   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3202   return generate_fair_guard(bol, region);
3203 }
3204 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3205   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3206 }
3207 
3208 //-------------------------inline_native_Class_query-------------------
3209 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3210   const Type* return_type = TypeInt::BOOL;
3211   Node* prim_return_value = top();  // what happens if it's a primitive class?
3212   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3213   bool expect_prim = false;     // most of these guys expect to work on refs
3214 
3215   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3216 
3217   Node* mirror = argument(0);
3218   Node* obj    = top();
3219 
3220   switch (id) {
3221   case vmIntrinsics::_isInstance:
3222     // nothing is an instance of a primitive type
3223     prim_return_value = intcon(0);
3224     obj = argument(1);
3225     break;
3226   case vmIntrinsics::_getModifiers:
3227     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3228     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3229     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3230     break;
3231   case vmIntrinsics::_isInterface:
3232     prim_return_value = intcon(0);
3233     break;
3234   case vmIntrinsics::_isArray:
3235     prim_return_value = intcon(0);
3236     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3237     break;
3238   case vmIntrinsics::_isPrimitive:
3239     prim_return_value = intcon(1);
3240     expect_prim = true;  // obviously
3241     break;
3242   case vmIntrinsics::_getSuperclass:
3243     prim_return_value = null();
3244     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3245     break;
3246   case vmIntrinsics::_getComponentType:
3247     prim_return_value = null();
3248     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3249     break;
3250   case vmIntrinsics::_getClassAccessFlags:
3251     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3252     return_type = TypeInt::INT;  // not bool!  6297094
3253     break;
3254   default:
3255     fatal_unexpected_iid(id);
3256     break;
3257   }
3258 
3259   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3260   if (mirror_con == NULL)  return false;  // cannot happen?
3261 
3262 #ifndef PRODUCT
3263   if (C->print_intrinsics() || C->print_inlining()) {
3264     ciType* k = mirror_con->java_mirror_type();
3265     if (k) {
3266       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3267       k->print_name();
3268       tty->cr();
3269     }
3270   }
3271 #endif
3272 
3273   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3274   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3275   record_for_igvn(region);
3276   PhiNode* phi = new (C) PhiNode(region, return_type);
3277 
3278   // The mirror will never be null of Reflection.getClassAccessFlags, however
3279   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3280   // if it is. See bug 4774291.
3281 
3282   // For Reflection.getClassAccessFlags(), the null check occurs in
3283   // the wrong place; see inline_unsafe_access(), above, for a similar
3284   // situation.
3285   mirror = null_check(mirror);
3286   // If mirror or obj is dead, only null-path is taken.
3287   if (stopped())  return true;
3288 
3289   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3290 
3291   // Now load the mirror's klass metaobject, and null-check it.
3292   // Side-effects region with the control path if the klass is null.
3293   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3294   // If kls is null, we have a primitive mirror.
3295   phi->init_req(_prim_path, prim_return_value);
3296   if (stopped()) { set_result(region, phi); return true; }
3297 
3298   Node* p;  // handy temp
3299   Node* null_ctl;
3300 
3301   // Now that we have the non-null klass, we can perform the real query.
3302   // For constant classes, the query will constant-fold in LoadNode::Value.
3303   Node* query_value = top();
3304   switch (id) {
3305   case vmIntrinsics::_isInstance:
3306     // nothing is an instance of a primitive type
3307     query_value = gen_instanceof(obj, kls);
3308     break;
3309 
3310   case vmIntrinsics::_getModifiers:
3311     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3312     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3313     break;
3314 
3315   case vmIntrinsics::_isInterface:
3316     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3317     if (generate_interface_guard(kls, region) != NULL)
3318       // A guard was added.  If the guard is taken, it was an interface.
3319       phi->add_req(intcon(1));
3320     // If we fall through, it's a plain class.
3321     query_value = intcon(0);
3322     break;
3323 
3324   case vmIntrinsics::_isArray:
3325     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3326     if (generate_array_guard(kls, region) != NULL)
3327       // A guard was added.  If the guard is taken, it was an array.
3328       phi->add_req(intcon(1));
3329     // If we fall through, it's a plain class.
3330     query_value = intcon(0);
3331     break;
3332 
3333   case vmIntrinsics::_isPrimitive:
3334     query_value = intcon(0); // "normal" path produces false
3335     break;
3336 
3337   case vmIntrinsics::_getSuperclass:
3338     // The rules here are somewhat unfortunate, but we can still do better
3339     // with random logic than with a JNI call.
3340     // Interfaces store null or Object as _super, but must report null.
3341     // Arrays store an intermediate super as _super, but must report Object.
3342     // Other types can report the actual _super.
3343     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3344     if (generate_interface_guard(kls, region) != NULL)
3345       // A guard was added.  If the guard is taken, it was an interface.
3346       phi->add_req(null());
3347     if (generate_array_guard(kls, region) != NULL)
3348       // A guard was added.  If the guard is taken, it was an array.
3349       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3350     // If we fall through, it's a plain class.  Get its _super.
3351     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3352     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3353     null_ctl = top();
3354     kls = null_check_oop(kls, &null_ctl);
3355     if (null_ctl != top()) {
3356       // If the guard is taken, Object.superClass is null (both klass and mirror).
3357       region->add_req(null_ctl);
3358       phi   ->add_req(null());
3359     }
3360     if (!stopped()) {
3361       query_value = load_mirror_from_klass(kls);
3362     }
3363     break;
3364 
3365   case vmIntrinsics::_getComponentType:
3366     if (generate_array_guard(kls, region) != NULL) {
3367       // Be sure to pin the oop load to the guard edge just created:
3368       Node* is_array_ctrl = region->in(region->req()-1);
3369       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3370       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3371       phi->add_req(cmo);
3372     }
3373     query_value = null();  // non-array case is null
3374     break;
3375 
3376   case vmIntrinsics::_getClassAccessFlags:
3377     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3378     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3379     break;
3380 
3381   default:
3382     fatal_unexpected_iid(id);
3383     break;
3384   }
3385 
3386   // Fall-through is the normal case of a query to a real class.
3387   phi->init_req(1, query_value);
3388   region->init_req(1, control());
3389 
3390   C->set_has_split_ifs(true); // Has chance for split-if optimization
3391   set_result(region, phi);
3392   return true;
3393 }
3394 
3395 //--------------------------inline_native_subtype_check------------------------
3396 // This intrinsic takes the JNI calls out of the heart of
3397 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3398 bool LibraryCallKit::inline_native_subtype_check() {
3399   // Pull both arguments off the stack.
3400   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3401   args[0] = argument(0);
3402   args[1] = argument(1);
3403   Node* klasses[2];             // corresponding Klasses: superk, subk
3404   klasses[0] = klasses[1] = top();
3405 
3406   enum {
3407     // A full decision tree on {superc is prim, subc is prim}:
3408     _prim_0_path = 1,           // {P,N} => false
3409                                 // {P,P} & superc!=subc => false
3410     _prim_same_path,            // {P,P} & superc==subc => true
3411     _prim_1_path,               // {N,P} => false
3412     _ref_subtype_path,          // {N,N} & subtype check wins => true
3413     _both_ref_path,             // {N,N} & subtype check loses => false
3414     PATH_LIMIT
3415   };
3416 
3417   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3418   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3419   record_for_igvn(region);
3420 
3421   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3422   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3423   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3424 
3425   // First null-check both mirrors and load each mirror's klass metaobject.
3426   int which_arg;
3427   for (which_arg = 0; which_arg <= 1; which_arg++) {
3428     Node* arg = args[which_arg];
3429     arg = null_check(arg);
3430     if (stopped())  break;
3431     args[which_arg] = arg;
3432 
3433     Node* p = basic_plus_adr(arg, class_klass_offset);
3434     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3435     klasses[which_arg] = _gvn.transform(kls);
3436   }
3437 
3438   // Having loaded both klasses, test each for null.
3439   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3440   for (which_arg = 0; which_arg <= 1; which_arg++) {
3441     Node* kls = klasses[which_arg];
3442     Node* null_ctl = top();
3443     kls = null_check_oop(kls, &null_ctl, never_see_null);
3444     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3445     region->init_req(prim_path, null_ctl);
3446     if (stopped())  break;
3447     klasses[which_arg] = kls;
3448   }
3449 
3450   if (!stopped()) {
3451     // now we have two reference types, in klasses[0..1]
3452     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3453     Node* superk = klasses[0];  // the receiver
3454     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3455     // now we have a successful reference subtype check
3456     region->set_req(_ref_subtype_path, control());
3457   }
3458 
3459   // If both operands are primitive (both klasses null), then
3460   // we must return true when they are identical primitives.
3461   // It is convenient to test this after the first null klass check.
3462   set_control(region->in(_prim_0_path)); // go back to first null check
3463   if (!stopped()) {
3464     // Since superc is primitive, make a guard for the superc==subc case.
3465     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3466     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3467     generate_guard(bol_eq, region, PROB_FAIR);
3468     if (region->req() == PATH_LIMIT+1) {
3469       // A guard was added.  If the added guard is taken, superc==subc.
3470       region->swap_edges(PATH_LIMIT, _prim_same_path);
3471       region->del_req(PATH_LIMIT);
3472     }
3473     region->set_req(_prim_0_path, control()); // Not equal after all.
3474   }
3475 
3476   // these are the only paths that produce 'true':
3477   phi->set_req(_prim_same_path,   intcon(1));
3478   phi->set_req(_ref_subtype_path, intcon(1));
3479 
3480   // pull together the cases:
3481   assert(region->req() == PATH_LIMIT, "sane region");
3482   for (uint i = 1; i < region->req(); i++) {
3483     Node* ctl = region->in(i);
3484     if (ctl == NULL || ctl == top()) {
3485       region->set_req(i, top());
3486       phi   ->set_req(i, top());
3487     } else if (phi->in(i) == NULL) {
3488       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3489     }
3490   }
3491 
3492   set_control(_gvn.transform(region));
3493   set_result(_gvn.transform(phi));
3494   return true;
3495 }
3496 
3497 //---------------------generate_array_guard_common------------------------
3498 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3499                                                   bool obj_array, bool not_array) {
3500   // If obj_array/non_array==false/false:
3501   // Branch around if the given klass is in fact an array (either obj or prim).
3502   // If obj_array/non_array==false/true:
3503   // Branch around if the given klass is not an array klass of any kind.
3504   // If obj_array/non_array==true/true:
3505   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3506   // If obj_array/non_array==true/false:
3507   // Branch around if the kls is an oop array (Object[] or subtype)
3508   //
3509   // Like generate_guard, adds a new path onto the region.
3510   jint  layout_con = 0;
3511   Node* layout_val = get_layout_helper(kls, layout_con);
3512   if (layout_val == NULL) {
3513     bool query = (obj_array
3514                   ? Klass::layout_helper_is_objArray(layout_con)
3515                   : Klass::layout_helper_is_array(layout_con));
3516     if (query == not_array) {
3517       return NULL;                       // never a branch
3518     } else {                             // always a branch
3519       Node* always_branch = control();
3520       if (region != NULL)
3521         region->add_req(always_branch);
3522       set_control(top());
3523       return always_branch;
3524     }
3525   }
3526   // Now test the correct condition.
3527   jint  nval = (obj_array
3528                 ? ((jint)Klass::_lh_array_tag_type_value
3529                    <<    Klass::_lh_array_tag_shift)
3530                 : Klass::_lh_neutral_value);
3531   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3532   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3533   // invert the test if we are looking for a non-array
3534   if (not_array)  btest = BoolTest(btest).negate();
3535   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3536   return generate_fair_guard(bol, region);
3537 }
3538 
3539 
3540 //-----------------------inline_native_newArray--------------------------
3541 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3542 bool LibraryCallKit::inline_native_newArray() {
3543   Node* mirror    = argument(0);
3544   Node* count_val = argument(1);
3545 
3546   mirror = null_check(mirror);
3547   // If mirror or obj is dead, only null-path is taken.
3548   if (stopped())  return true;
3549 
3550   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3551   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3552   PhiNode*    result_val = new(C) PhiNode(result_reg,
3553                                           TypeInstPtr::NOTNULL);
3554   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3555   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3556                                           TypePtr::BOTTOM);
3557 
3558   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3559   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3560                                                   result_reg, _slow_path);
3561   Node* normal_ctl   = control();
3562   Node* no_array_ctl = result_reg->in(_slow_path);
3563 
3564   // Generate code for the slow case.  We make a call to newArray().
3565   set_control(no_array_ctl);
3566   if (!stopped()) {
3567     // Either the input type is void.class, or else the
3568     // array klass has not yet been cached.  Either the
3569     // ensuing call will throw an exception, or else it
3570     // will cache the array klass for next time.
3571     PreserveJVMState pjvms(this);
3572     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3573     Node* slow_result = set_results_for_java_call(slow_call);
3574     // this->control() comes from set_results_for_java_call
3575     result_reg->set_req(_slow_path, control());
3576     result_val->set_req(_slow_path, slow_result);
3577     result_io ->set_req(_slow_path, i_o());
3578     result_mem->set_req(_slow_path, reset_memory());
3579   }
3580 
3581   set_control(normal_ctl);
3582   if (!stopped()) {
3583     // Normal case:  The array type has been cached in the java.lang.Class.
3584     // The following call works fine even if the array type is polymorphic.
3585     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3586     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3587     result_reg->init_req(_normal_path, control());
3588     result_val->init_req(_normal_path, obj);
3589     result_io ->init_req(_normal_path, i_o());
3590     result_mem->init_req(_normal_path, reset_memory());
3591   }
3592 
3593   // Return the combined state.
3594   set_i_o(        _gvn.transform(result_io)  );
3595   set_all_memory( _gvn.transform(result_mem));
3596 
3597   C->set_has_split_ifs(true); // Has chance for split-if optimization
3598   set_result(result_reg, result_val);
3599   return true;
3600 }
3601 
3602 //----------------------inline_native_getLength--------------------------
3603 // public static native int java.lang.reflect.Array.getLength(Object array);
3604 bool LibraryCallKit::inline_native_getLength() {
3605   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3606 
3607   Node* array = null_check(argument(0));
3608   // If array is dead, only null-path is taken.
3609   if (stopped())  return true;
3610 
3611   // Deoptimize if it is a non-array.
3612   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3613 
3614   if (non_array != NULL) {
3615     PreserveJVMState pjvms(this);
3616     set_control(non_array);
3617     uncommon_trap(Deoptimization::Reason_intrinsic,
3618                   Deoptimization::Action_maybe_recompile);
3619   }
3620 
3621   // If control is dead, only non-array-path is taken.
3622   if (stopped())  return true;
3623 
3624   // The works fine even if the array type is polymorphic.
3625   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3626   Node* result = load_array_length(array);
3627 
3628   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3629   set_result(result);
3630   return true;
3631 }
3632 
3633 //------------------------inline_array_copyOf----------------------------
3634 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3635 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3636 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3637   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3638 
3639   // Get the arguments.
3640   Node* original          = argument(0);
3641   Node* start             = is_copyOfRange? argument(1): intcon(0);
3642   Node* end               = is_copyOfRange? argument(2): argument(1);
3643   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3644 
3645   Node* newcopy;
3646 
3647   // Set the original stack and the reexecute bit for the interpreter to reexecute
3648   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3649   { PreserveReexecuteState preexecs(this);
3650     jvms()->set_should_reexecute(true);
3651 
3652     array_type_mirror = null_check(array_type_mirror);
3653     original          = null_check(original);
3654 
3655     // Check if a null path was taken unconditionally.
3656     if (stopped())  return true;
3657 
3658     Node* orig_length = load_array_length(original);
3659 
3660     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3661     klass_node = null_check(klass_node);
3662 
3663     RegionNode* bailout = new (C) RegionNode(1);
3664     record_for_igvn(bailout);
3665 
3666     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3667     // Bail out if that is so.
3668     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3669     if (not_objArray != NULL) {
3670       // Improve the klass node's type from the new optimistic assumption:
3671       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3672       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3673       Node* cast = new (C) CastPPNode(klass_node, akls);
3674       cast->init_req(0, control());
3675       klass_node = _gvn.transform(cast);
3676     }
3677 
3678     // Bail out if either start or end is negative.
3679     generate_negative_guard(start, bailout, &start);
3680     generate_negative_guard(end,   bailout, &end);
3681 
3682     Node* length = end;
3683     if (_gvn.type(start) != TypeInt::ZERO) {
3684       length = _gvn.transform(new (C) SubINode(end, start));
3685     }
3686 
3687     // Bail out if length is negative.
3688     // Without this the new_array would throw
3689     // NegativeArraySizeException but IllegalArgumentException is what
3690     // should be thrown
3691     generate_negative_guard(length, bailout, &length);
3692 
3693     if (bailout->req() > 1) {
3694       PreserveJVMState pjvms(this);
3695       set_control(_gvn.transform(bailout));
3696       uncommon_trap(Deoptimization::Reason_intrinsic,
3697                     Deoptimization::Action_maybe_recompile);
3698     }
3699 
3700     if (!stopped()) {
3701       // How many elements will we copy from the original?
3702       // The answer is MinI(orig_length - start, length).
3703       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3704       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3705 
3706       newcopy = new_array(klass_node, length, 0);  // no argments to push
3707 
3708       // Generate a direct call to the right arraycopy function(s).
3709       // We know the copy is disjoint but we might not know if the
3710       // oop stores need checking.
3711       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3712       // This will fail a store-check if x contains any non-nulls.
3713       bool disjoint_bases = true;
3714       // if start > orig_length then the length of the copy may be
3715       // negative.
3716       bool length_never_negative = !is_copyOfRange;
3717       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3718                          original, start, newcopy, intcon(0), moved,
3719                          disjoint_bases, length_never_negative);
3720     }
3721   } // original reexecute is set back here
3722 
3723   C->set_has_split_ifs(true); // Has chance for split-if optimization
3724   if (!stopped()) {
3725     set_result(newcopy);
3726   }
3727   return true;
3728 }
3729 
3730 
3731 //----------------------generate_virtual_guard---------------------------
3732 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3733 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3734                                              RegionNode* slow_region) {
3735   ciMethod* method = callee();
3736   int vtable_index = method->vtable_index();
3737   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3738          err_msg_res("bad index %d", vtable_index));
3739   // Get the Method* out of the appropriate vtable entry.
3740   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3741                      vtable_index*vtableEntry::size()) * wordSize +
3742                      vtableEntry::method_offset_in_bytes();
3743   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3744   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3745 
3746   // Compare the target method with the expected method (e.g., Object.hashCode).
3747   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3748 
3749   Node* native_call = makecon(native_call_addr);
3750   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3751   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3752 
3753   return generate_slow_guard(test_native, slow_region);
3754 }
3755 
3756 //-----------------------generate_method_call----------------------------
3757 // Use generate_method_call to make a slow-call to the real
3758 // method if the fast path fails.  An alternative would be to
3759 // use a stub like OptoRuntime::slow_arraycopy_Java.
3760 // This only works for expanding the current library call,
3761 // not another intrinsic.  (E.g., don't use this for making an
3762 // arraycopy call inside of the copyOf intrinsic.)
3763 CallJavaNode*
3764 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3765   // When compiling the intrinsic method itself, do not use this technique.
3766   guarantee(callee() != C->method(), "cannot make slow-call to self");
3767 
3768   ciMethod* method = callee();
3769   // ensure the JVMS we have will be correct for this call
3770   guarantee(method_id == method->intrinsic_id(), "must match");
3771 
3772   const TypeFunc* tf = TypeFunc::make(method);
3773   CallJavaNode* slow_call;
3774   if (is_static) {
3775     assert(!is_virtual, "");
3776     slow_call = new(C) CallStaticJavaNode(C, tf,
3777                            SharedRuntime::get_resolve_static_call_stub(),
3778                            method, bci());
3779   } else if (is_virtual) {
3780     null_check_receiver();
3781     int vtable_index = Method::invalid_vtable_index;
3782     if (UseInlineCaches) {
3783       // Suppress the vtable call
3784     } else {
3785       // hashCode and clone are not a miranda methods,
3786       // so the vtable index is fixed.
3787       // No need to use the linkResolver to get it.
3788        vtable_index = method->vtable_index();
3789        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3790               err_msg_res("bad index %d", vtable_index));
3791     }
3792     slow_call = new(C) CallDynamicJavaNode(tf,
3793                           SharedRuntime::get_resolve_virtual_call_stub(),
3794                           method, vtable_index, bci());
3795   } else {  // neither virtual nor static:  opt_virtual
3796     null_check_receiver();
3797     slow_call = new(C) CallStaticJavaNode(C, tf,
3798                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3799                                 method, bci());
3800     slow_call->set_optimized_virtual(true);
3801   }
3802   set_arguments_for_java_call(slow_call);
3803   set_edges_for_java_call(slow_call);
3804   return slow_call;
3805 }
3806 
3807 
3808 //------------------------------inline_native_hashcode--------------------
3809 // Build special case code for calls to hashCode on an object.
3810 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3811   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3812   assert(!(is_virtual && is_static), "either virtual, special, or static");
3813 
3814   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3815 
3816   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3817   PhiNode*    result_val = new(C) PhiNode(result_reg,
3818                                           TypeInt::INT);
3819   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3820   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3821                                           TypePtr::BOTTOM);
3822   Node* obj = NULL;
3823   if (!is_static) {
3824     // Check for hashing null object
3825     obj = null_check_receiver();
3826     if (stopped())  return true;        // unconditionally null
3827     result_reg->init_req(_null_path, top());
3828     result_val->init_req(_null_path, top());
3829   } else {
3830     // Do a null check, and return zero if null.
3831     // System.identityHashCode(null) == 0
3832     obj = argument(0);
3833     Node* null_ctl = top();
3834     obj = null_check_oop(obj, &null_ctl);
3835     result_reg->init_req(_null_path, null_ctl);
3836     result_val->init_req(_null_path, _gvn.intcon(0));
3837   }
3838 
3839   // Unconditionally null?  Then return right away.
3840   if (stopped()) {
3841     set_control( result_reg->in(_null_path));
3842     if (!stopped())
3843       set_result(result_val->in(_null_path));
3844     return true;
3845   }
3846 
3847   // After null check, get the object's klass.
3848   Node* obj_klass = load_object_klass(obj);
3849 
3850   // This call may be virtual (invokevirtual) or bound (invokespecial).
3851   // For each case we generate slightly different code.
3852 
3853   // We only go to the fast case code if we pass a number of guards.  The
3854   // paths which do not pass are accumulated in the slow_region.
3855   RegionNode* slow_region = new (C) RegionNode(1);
3856   record_for_igvn(slow_region);
3857 
3858   // If this is a virtual call, we generate a funny guard.  We pull out
3859   // the vtable entry corresponding to hashCode() from the target object.
3860   // If the target method which we are calling happens to be the native
3861   // Object hashCode() method, we pass the guard.  We do not need this
3862   // guard for non-virtual calls -- the caller is known to be the native
3863   // Object hashCode().
3864   if (is_virtual) {
3865     generate_virtual_guard(obj_klass, slow_region);
3866   }
3867 
3868   // Get the header out of the object, use LoadMarkNode when available
3869   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3870   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3871 
3872   // Test the header to see if it is unlocked.
3873   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3874   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
3875   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3876   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
3877   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
3878 
3879   generate_slow_guard(test_unlocked, slow_region);
3880 
3881   // Get the hash value and check to see that it has been properly assigned.
3882   // We depend on hash_mask being at most 32 bits and avoid the use of
3883   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3884   // vm: see markOop.hpp.
3885   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3886   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3887   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
3888   // This hack lets the hash bits live anywhere in the mark object now, as long
3889   // as the shift drops the relevant bits into the low 32 bits.  Note that
3890   // Java spec says that HashCode is an int so there's no point in capturing
3891   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3892   hshifted_header      = ConvX2I(hshifted_header);
3893   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
3894 
3895   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3896   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
3897   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
3898 
3899   generate_slow_guard(test_assigned, slow_region);
3900 
3901   Node* init_mem = reset_memory();
3902   // fill in the rest of the null path:
3903   result_io ->init_req(_null_path, i_o());
3904   result_mem->init_req(_null_path, init_mem);
3905 
3906   result_val->init_req(_fast_path, hash_val);
3907   result_reg->init_req(_fast_path, control());
3908   result_io ->init_req(_fast_path, i_o());
3909   result_mem->init_req(_fast_path, init_mem);
3910 
3911   // Generate code for the slow case.  We make a call to hashCode().
3912   set_control(_gvn.transform(slow_region));
3913   if (!stopped()) {
3914     // No need for PreserveJVMState, because we're using up the present state.
3915     set_all_memory(init_mem);
3916     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3917     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3918     Node* slow_result = set_results_for_java_call(slow_call);
3919     // this->control() comes from set_results_for_java_call
3920     result_reg->init_req(_slow_path, control());
3921     result_val->init_req(_slow_path, slow_result);
3922     result_io  ->set_req(_slow_path, i_o());
3923     result_mem ->set_req(_slow_path, reset_memory());
3924   }
3925 
3926   // Return the combined state.
3927   set_i_o(        _gvn.transform(result_io)  );
3928   set_all_memory( _gvn.transform(result_mem));
3929 
3930   set_result(result_reg, result_val);
3931   return true;
3932 }
3933 
3934 //---------------------------inline_native_getClass----------------------------
3935 // public final native Class<?> java.lang.Object.getClass();
3936 //
3937 // Build special case code for calls to getClass on an object.
3938 bool LibraryCallKit::inline_native_getClass() {
3939   Node* obj = null_check_receiver();
3940   if (stopped())  return true;
3941   set_result(load_mirror_from_klass(load_object_klass(obj)));
3942   return true;
3943 }
3944 
3945 //-----------------inline_native_Reflection_getCallerClass---------------------
3946 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3947 //
3948 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3949 //
3950 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3951 // in that it must skip particular security frames and checks for
3952 // caller sensitive methods.
3953 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3954 #ifndef PRODUCT
3955   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3956     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3957   }
3958 #endif
3959 
3960   if (!jvms()->has_method()) {
3961 #ifndef PRODUCT
3962     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3963       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3964     }
3965 #endif
3966     return false;
3967   }
3968 
3969   // Walk back up the JVM state to find the caller at the required
3970   // depth.
3971   JVMState* caller_jvms = jvms();
3972 
3973   // Cf. JVM_GetCallerClass
3974   // NOTE: Start the loop at depth 1 because the current JVM state does
3975   // not include the Reflection.getCallerClass() frame.
3976   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
3977     ciMethod* m = caller_jvms->method();
3978     switch (n) {
3979     case 0:
3980       fatal("current JVM state does not include the Reflection.getCallerClass frame");
3981       break;
3982     case 1:
3983       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
3984       if (!m->caller_sensitive()) {
3985 #ifndef PRODUCT
3986         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3987           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
3988         }
3989 #endif
3990         return false;  // bail-out; let JVM_GetCallerClass do the work
3991       }
3992       break;
3993     default:
3994       if (!m->is_ignored_by_security_stack_walk()) {
3995         // We have reached the desired frame; return the holder class.
3996         // Acquire method holder as java.lang.Class and push as constant.
3997         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
3998         ciInstance* caller_mirror = caller_klass->java_mirror();
3999         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4000 
4001 #ifndef PRODUCT
4002         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4003           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4004           tty->print_cr("  JVM state at this point:");
4005           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4006             ciMethod* m = jvms()->of_depth(i)->method();
4007             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4008           }
4009         }
4010 #endif
4011         return true;
4012       }
4013       break;
4014     }
4015   }
4016 
4017 #ifndef PRODUCT
4018   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4019     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4020     tty->print_cr("  JVM state at this point:");
4021     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4022       ciMethod* m = jvms()->of_depth(i)->method();
4023       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4024     }
4025   }
4026 #endif
4027 
4028   return false;  // bail-out; let JVM_GetCallerClass do the work
4029 }
4030 
4031 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4032   Node* arg = argument(0);
4033   Node* result;
4034 
4035   switch (id) {
4036   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4037   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4038   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4039   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4040 
4041   case vmIntrinsics::_doubleToLongBits: {
4042     // two paths (plus control) merge in a wood
4043     RegionNode *r = new (C) RegionNode(3);
4044     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4045 
4046     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4047     // Build the boolean node
4048     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4049 
4050     // Branch either way.
4051     // NaN case is less traveled, which makes all the difference.
4052     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4053     Node *opt_isnan = _gvn.transform(ifisnan);
4054     assert( opt_isnan->is_If(), "Expect an IfNode");
4055     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4056     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4057 
4058     set_control(iftrue);
4059 
4060     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4061     Node *slow_result = longcon(nan_bits); // return NaN
4062     phi->init_req(1, _gvn.transform( slow_result ));
4063     r->init_req(1, iftrue);
4064 
4065     // Else fall through
4066     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4067     set_control(iffalse);
4068 
4069     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4070     r->init_req(2, iffalse);
4071 
4072     // Post merge
4073     set_control(_gvn.transform(r));
4074     record_for_igvn(r);
4075 
4076     C->set_has_split_ifs(true); // Has chance for split-if optimization
4077     result = phi;
4078     assert(result->bottom_type()->isa_long(), "must be");
4079     break;
4080   }
4081 
4082   case vmIntrinsics::_floatToIntBits: {
4083     // two paths (plus control) merge in a wood
4084     RegionNode *r = new (C) RegionNode(3);
4085     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4086 
4087     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4088     // Build the boolean node
4089     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4090 
4091     // Branch either way.
4092     // NaN case is less traveled, which makes all the difference.
4093     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4094     Node *opt_isnan = _gvn.transform(ifisnan);
4095     assert( opt_isnan->is_If(), "Expect an IfNode");
4096     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4097     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4098 
4099     set_control(iftrue);
4100 
4101     static const jint nan_bits = 0x7fc00000;
4102     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4103     phi->init_req(1, _gvn.transform( slow_result ));
4104     r->init_req(1, iftrue);
4105 
4106     // Else fall through
4107     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4108     set_control(iffalse);
4109 
4110     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4111     r->init_req(2, iffalse);
4112 
4113     // Post merge
4114     set_control(_gvn.transform(r));
4115     record_for_igvn(r);
4116 
4117     C->set_has_split_ifs(true); // Has chance for split-if optimization
4118     result = phi;
4119     assert(result->bottom_type()->isa_int(), "must be");
4120     break;
4121   }
4122 
4123   default:
4124     fatal_unexpected_iid(id);
4125     break;
4126   }
4127   set_result(_gvn.transform(result));
4128   return true;
4129 }
4130 
4131 #ifdef _LP64
4132 #define XTOP ,top() /*additional argument*/
4133 #else  //_LP64
4134 #define XTOP        /*no additional argument*/
4135 #endif //_LP64
4136 
4137 //----------------------inline_unsafe_copyMemory-------------------------
4138 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4139 bool LibraryCallKit::inline_unsafe_copyMemory() {
4140   if (callee()->is_static())  return false;  // caller must have the capability!
4141   null_check_receiver();  // null-check receiver
4142   if (stopped())  return true;
4143 
4144   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4145 
4146   Node* src_ptr =         argument(1);   // type: oop
4147   Node* src_off = ConvL2X(argument(2));  // type: long
4148   Node* dst_ptr =         argument(4);   // type: oop
4149   Node* dst_off = ConvL2X(argument(5));  // type: long
4150   Node* size    = ConvL2X(argument(7));  // type: long
4151 
4152   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4153          "fieldOffset must be byte-scaled");
4154 
4155   Node* src = make_unsafe_address(src_ptr, src_off);
4156   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4157 
4158   // Conservatively insert a memory barrier on all memory slices.
4159   // Do not let writes of the copy source or destination float below the copy.
4160   insert_mem_bar(Op_MemBarCPUOrder);
4161 
4162   // Call it.  Note that the length argument is not scaled.
4163   make_runtime_call(RC_LEAF|RC_NO_FP,
4164                     OptoRuntime::fast_arraycopy_Type(),
4165                     StubRoutines::unsafe_arraycopy(),
4166                     "unsafe_arraycopy",
4167                     TypeRawPtr::BOTTOM,
4168                     src, dst, size XTOP);
4169 
4170   // Do not let reads of the copy destination float above the copy.
4171   insert_mem_bar(Op_MemBarCPUOrder);
4172 
4173   return true;
4174 }
4175 
4176 //------------------------clone_coping-----------------------------------
4177 // Helper function for inline_native_clone.
4178 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4179   assert(obj_size != NULL, "");
4180   Node* raw_obj = alloc_obj->in(1);
4181   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4182 
4183   AllocateNode* alloc = NULL;
4184   if (ReduceBulkZeroing) {
4185     // We will be completely responsible for initializing this object -
4186     // mark Initialize node as complete.
4187     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4188     // The object was just allocated - there should be no any stores!
4189     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4190     // Mark as complete_with_arraycopy so that on AllocateNode
4191     // expansion, we know this AllocateNode is initialized by an array
4192     // copy and a StoreStore barrier exists after the array copy.
4193     alloc->initialization()->set_complete_with_arraycopy();
4194   }
4195 
4196   // Copy the fastest available way.
4197   // TODO: generate fields copies for small objects instead.
4198   Node* src  = obj;
4199   Node* dest = alloc_obj;
4200   Node* size = _gvn.transform(obj_size);
4201 
4202   // Exclude the header but include array length to copy by 8 bytes words.
4203   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4204   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4205                             instanceOopDesc::base_offset_in_bytes();
4206   // base_off:
4207   // 8  - 32-bit VM
4208   // 12 - 64-bit VM, compressed klass
4209   // 16 - 64-bit VM, normal klass
4210   if (base_off % BytesPerLong != 0) {
4211     assert(UseCompressedKlassPointers, "");
4212     if (is_array) {
4213       // Exclude length to copy by 8 bytes words.
4214       base_off += sizeof(int);
4215     } else {
4216       // Include klass to copy by 8 bytes words.
4217       base_off = instanceOopDesc::klass_offset_in_bytes();
4218     }
4219     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4220   }
4221   src  = basic_plus_adr(src,  base_off);
4222   dest = basic_plus_adr(dest, base_off);
4223 
4224   // Compute the length also, if needed:
4225   Node* countx = size;
4226   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4227   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4228 
4229   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4230   bool disjoint_bases = true;
4231   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4232                                src, NULL, dest, NULL, countx,
4233                                /*dest_uninitialized*/true);
4234 
4235   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4236   if (card_mark) {
4237     assert(!is_array, "");
4238     // Put in store barrier for any and all oops we are sticking
4239     // into this object.  (We could avoid this if we could prove
4240     // that the object type contains no oop fields at all.)
4241     Node* no_particular_value = NULL;
4242     Node* no_particular_field = NULL;
4243     int raw_adr_idx = Compile::AliasIdxRaw;
4244     post_barrier(control(),
4245                  memory(raw_adr_type),
4246                  alloc_obj,
4247                  no_particular_field,
4248                  raw_adr_idx,
4249                  no_particular_value,
4250                  T_OBJECT,
4251                  false);
4252   }
4253 
4254   // Do not let reads from the cloned object float above the arraycopy.
4255   if (alloc != NULL) {
4256     // Do not let stores that initialize this object be reordered with
4257     // a subsequent store that would make this object accessible by
4258     // other threads.
4259     // Record what AllocateNode this StoreStore protects so that
4260     // escape analysis can go from the MemBarStoreStoreNode to the
4261     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4262     // based on the escape status of the AllocateNode.
4263     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4264   } else {
4265     insert_mem_bar(Op_MemBarCPUOrder);
4266   }
4267 }
4268 
4269 //------------------------inline_native_clone----------------------------
4270 // protected native Object java.lang.Object.clone();
4271 //
4272 // Here are the simple edge cases:
4273 //  null receiver => normal trap
4274 //  virtual and clone was overridden => slow path to out-of-line clone
4275 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4276 //
4277 // The general case has two steps, allocation and copying.
4278 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4279 //
4280 // Copying also has two cases, oop arrays and everything else.
4281 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4282 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4283 //
4284 // These steps fold up nicely if and when the cloned object's klass
4285 // can be sharply typed as an object array, a type array, or an instance.
4286 //
4287 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4288   PhiNode* result_val;
4289 
4290   // Set the reexecute bit for the interpreter to reexecute
4291   // the bytecode that invokes Object.clone if deoptimization happens.
4292   { PreserveReexecuteState preexecs(this);
4293     jvms()->set_should_reexecute(true);
4294 
4295     Node* obj = null_check_receiver();
4296     if (stopped())  return true;
4297 
4298     Node* obj_klass = load_object_klass(obj);
4299     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4300     const TypeOopPtr*   toop   = ((tklass != NULL)
4301                                 ? tklass->as_instance_type()
4302                                 : TypeInstPtr::NOTNULL);
4303 
4304     // Conservatively insert a memory barrier on all memory slices.
4305     // Do not let writes into the original float below the clone.
4306     insert_mem_bar(Op_MemBarCPUOrder);
4307 
4308     // paths into result_reg:
4309     enum {
4310       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4311       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4312       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4313       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4314       PATH_LIMIT
4315     };
4316     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4317     result_val             = new(C) PhiNode(result_reg,
4318                                             TypeInstPtr::NOTNULL);
4319     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4320     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4321                                             TypePtr::BOTTOM);
4322     record_for_igvn(result_reg);
4323 
4324     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4325     int raw_adr_idx = Compile::AliasIdxRaw;
4326 
4327     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4328     if (array_ctl != NULL) {
4329       // It's an array.
4330       PreserveJVMState pjvms(this);
4331       set_control(array_ctl);
4332       Node* obj_length = load_array_length(obj);
4333       Node* obj_size  = NULL;
4334       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4335 
4336       if (!use_ReduceInitialCardMarks()) {
4337         // If it is an oop array, it requires very special treatment,
4338         // because card marking is required on each card of the array.
4339         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4340         if (is_obja != NULL) {
4341           PreserveJVMState pjvms2(this);
4342           set_control(is_obja);
4343           // Generate a direct call to the right arraycopy function(s).
4344           bool disjoint_bases = true;
4345           bool length_never_negative = true;
4346           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4347                              obj, intcon(0), alloc_obj, intcon(0),
4348                              obj_length,
4349                              disjoint_bases, length_never_negative);
4350           result_reg->init_req(_objArray_path, control());
4351           result_val->init_req(_objArray_path, alloc_obj);
4352           result_i_o ->set_req(_objArray_path, i_o());
4353           result_mem ->set_req(_objArray_path, reset_memory());
4354         }
4355       }
4356       // Otherwise, there are no card marks to worry about.
4357       // (We can dispense with card marks if we know the allocation
4358       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4359       //  causes the non-eden paths to take compensating steps to
4360       //  simulate a fresh allocation, so that no further
4361       //  card marks are required in compiled code to initialize
4362       //  the object.)
4363 
4364       if (!stopped()) {
4365         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4366 
4367         // Present the results of the copy.
4368         result_reg->init_req(_array_path, control());
4369         result_val->init_req(_array_path, alloc_obj);
4370         result_i_o ->set_req(_array_path, i_o());
4371         result_mem ->set_req(_array_path, reset_memory());
4372       }
4373     }
4374 
4375     // We only go to the instance fast case code if we pass a number of guards.
4376     // The paths which do not pass are accumulated in the slow_region.
4377     RegionNode* slow_region = new (C) RegionNode(1);
4378     record_for_igvn(slow_region);
4379     if (!stopped()) {
4380       // It's an instance (we did array above).  Make the slow-path tests.
4381       // If this is a virtual call, we generate a funny guard.  We grab
4382       // the vtable entry corresponding to clone() from the target object.
4383       // If the target method which we are calling happens to be the
4384       // Object clone() method, we pass the guard.  We do not need this
4385       // guard for non-virtual calls; the caller is known to be the native
4386       // Object clone().
4387       if (is_virtual) {
4388         generate_virtual_guard(obj_klass, slow_region);
4389       }
4390 
4391       // The object must be cloneable and must not have a finalizer.
4392       // Both of these conditions may be checked in a single test.
4393       // We could optimize the cloneable test further, but we don't care.
4394       generate_access_flags_guard(obj_klass,
4395                                   // Test both conditions:
4396                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4397                                   // Must be cloneable but not finalizer:
4398                                   JVM_ACC_IS_CLONEABLE,
4399                                   slow_region);
4400     }
4401 
4402     if (!stopped()) {
4403       // It's an instance, and it passed the slow-path tests.
4404       PreserveJVMState pjvms(this);
4405       Node* obj_size  = NULL;
4406       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4407 
4408       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4409 
4410       // Present the results of the slow call.
4411       result_reg->init_req(_instance_path, control());
4412       result_val->init_req(_instance_path, alloc_obj);
4413       result_i_o ->set_req(_instance_path, i_o());
4414       result_mem ->set_req(_instance_path, reset_memory());
4415     }
4416 
4417     // Generate code for the slow case.  We make a call to clone().
4418     set_control(_gvn.transform(slow_region));
4419     if (!stopped()) {
4420       PreserveJVMState pjvms(this);
4421       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4422       Node* slow_result = set_results_for_java_call(slow_call);
4423       // this->control() comes from set_results_for_java_call
4424       result_reg->init_req(_slow_path, control());
4425       result_val->init_req(_slow_path, slow_result);
4426       result_i_o ->set_req(_slow_path, i_o());
4427       result_mem ->set_req(_slow_path, reset_memory());
4428     }
4429 
4430     // Return the combined state.
4431     set_control(    _gvn.transform(result_reg));
4432     set_i_o(        _gvn.transform(result_i_o));
4433     set_all_memory( _gvn.transform(result_mem));
4434   } // original reexecute is set back here
4435 
4436   set_result(_gvn.transform(result_val));
4437   return true;
4438 }
4439 
4440 //------------------------------basictype2arraycopy----------------------------
4441 address LibraryCallKit::basictype2arraycopy(BasicType t,
4442                                             Node* src_offset,
4443                                             Node* dest_offset,
4444                                             bool disjoint_bases,
4445                                             const char* &name,
4446                                             bool dest_uninitialized) {
4447   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4448   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4449 
4450   bool aligned = false;
4451   bool disjoint = disjoint_bases;
4452 
4453   // if the offsets are the same, we can treat the memory regions as
4454   // disjoint, because either the memory regions are in different arrays,
4455   // or they are identical (which we can treat as disjoint.)  We can also
4456   // treat a copy with a destination index  less that the source index
4457   // as disjoint since a low->high copy will work correctly in this case.
4458   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4459       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4460     // both indices are constants
4461     int s_offs = src_offset_inttype->get_con();
4462     int d_offs = dest_offset_inttype->get_con();
4463     int element_size = type2aelembytes(t);
4464     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4465               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4466     if (s_offs >= d_offs)  disjoint = true;
4467   } else if (src_offset == dest_offset && src_offset != NULL) {
4468     // This can occur if the offsets are identical non-constants.
4469     disjoint = true;
4470   }
4471 
4472   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4473 }
4474 
4475 
4476 //------------------------------inline_arraycopy-----------------------
4477 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4478 //                                                      Object dest, int destPos,
4479 //                                                      int length);
4480 bool LibraryCallKit::inline_arraycopy() {
4481   // Get the arguments.
4482   Node* src         = argument(0);  // type: oop
4483   Node* src_offset  = argument(1);  // type: int
4484   Node* dest        = argument(2);  // type: oop
4485   Node* dest_offset = argument(3);  // type: int
4486   Node* length      = argument(4);  // type: int
4487 
4488   // Compile time checks.  If any of these checks cannot be verified at compile time,
4489   // we do not make a fast path for this call.  Instead, we let the call remain as it
4490   // is.  The checks we choose to mandate at compile time are:
4491   //
4492   // (1) src and dest are arrays.
4493   const Type* src_type  = src->Value(&_gvn);
4494   const Type* dest_type = dest->Value(&_gvn);
4495   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4496   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4497   if (top_src  == NULL || top_src->klass()  == NULL ||
4498       top_dest == NULL || top_dest->klass() == NULL) {
4499     // Conservatively insert a memory barrier on all memory slices.
4500     // Do not let writes into the source float below the arraycopy.
4501     insert_mem_bar(Op_MemBarCPUOrder);
4502 
4503     // Call StubRoutines::generic_arraycopy stub.
4504     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4505                        src, src_offset, dest, dest_offset, length);
4506 
4507     // Do not let reads from the destination float above the arraycopy.
4508     // Since we cannot type the arrays, we don't know which slices
4509     // might be affected.  We could restrict this barrier only to those
4510     // memory slices which pertain to array elements--but don't bother.
4511     if (!InsertMemBarAfterArraycopy)
4512       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4513       insert_mem_bar(Op_MemBarCPUOrder);
4514     return true;
4515   }
4516 
4517   // (2) src and dest arrays must have elements of the same BasicType
4518   // Figure out the size and type of the elements we will be copying.
4519   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4520   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4521   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4522   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4523 
4524   if (src_elem != dest_elem || dest_elem == T_VOID) {
4525     // The component types are not the same or are not recognized.  Punt.
4526     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4527     generate_slow_arraycopy(TypePtr::BOTTOM,
4528                             src, src_offset, dest, dest_offset, length,
4529                             /*dest_uninitialized*/false);
4530     return true;
4531   }
4532 
4533   //---------------------------------------------------------------------------
4534   // We will make a fast path for this call to arraycopy.
4535 
4536   // We have the following tests left to perform:
4537   //
4538   // (3) src and dest must not be null.
4539   // (4) src_offset must not be negative.
4540   // (5) dest_offset must not be negative.
4541   // (6) length must not be negative.
4542   // (7) src_offset + length must not exceed length of src.
4543   // (8) dest_offset + length must not exceed length of dest.
4544   // (9) each element of an oop array must be assignable
4545 
4546   RegionNode* slow_region = new (C) RegionNode(1);
4547   record_for_igvn(slow_region);
4548 
4549   // (3) operands must not be null
4550   // We currently perform our null checks with the null_check routine.
4551   // This means that the null exceptions will be reported in the caller
4552   // rather than (correctly) reported inside of the native arraycopy call.
4553   // This should be corrected, given time.  We do our null check with the
4554   // stack pointer restored.
4555   src  = null_check(src,  T_ARRAY);
4556   dest = null_check(dest, T_ARRAY);
4557 
4558   // (4) src_offset must not be negative.
4559   generate_negative_guard(src_offset, slow_region);
4560 
4561   // (5) dest_offset must not be negative.
4562   generate_negative_guard(dest_offset, slow_region);
4563 
4564   // (6) length must not be negative (moved to generate_arraycopy()).
4565   // generate_negative_guard(length, slow_region);
4566 
4567   // (7) src_offset + length must not exceed length of src.
4568   generate_limit_guard(src_offset, length,
4569                        load_array_length(src),
4570                        slow_region);
4571 
4572   // (8) dest_offset + length must not exceed length of dest.
4573   generate_limit_guard(dest_offset, length,
4574                        load_array_length(dest),
4575                        slow_region);
4576 
4577   // (9) each element of an oop array must be assignable
4578   // The generate_arraycopy subroutine checks this.
4579 
4580   // This is where the memory effects are placed:
4581   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4582   generate_arraycopy(adr_type, dest_elem,
4583                      src, src_offset, dest, dest_offset, length,
4584                      false, false, slow_region);
4585 
4586   return true;
4587 }
4588 
4589 //-----------------------------generate_arraycopy----------------------
4590 // Generate an optimized call to arraycopy.
4591 // Caller must guard against non-arrays.
4592 // Caller must determine a common array basic-type for both arrays.
4593 // Caller must validate offsets against array bounds.
4594 // The slow_region has already collected guard failure paths
4595 // (such as out of bounds length or non-conformable array types).
4596 // The generated code has this shape, in general:
4597 //
4598 //     if (length == 0)  return   // via zero_path
4599 //     slowval = -1
4600 //     if (types unknown) {
4601 //       slowval = call generic copy loop
4602 //       if (slowval == 0)  return  // via checked_path
4603 //     } else if (indexes in bounds) {
4604 //       if ((is object array) && !(array type check)) {
4605 //         slowval = call checked copy loop
4606 //         if (slowval == 0)  return  // via checked_path
4607 //       } else {
4608 //         call bulk copy loop
4609 //         return  // via fast_path
4610 //       }
4611 //     }
4612 //     // adjust params for remaining work:
4613 //     if (slowval != -1) {
4614 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4615 //     }
4616 //   slow_region:
4617 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4618 //     return  // via slow_call_path
4619 //
4620 // This routine is used from several intrinsics:  System.arraycopy,
4621 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4622 //
4623 void
4624 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4625                                    BasicType basic_elem_type,
4626                                    Node* src,  Node* src_offset,
4627                                    Node* dest, Node* dest_offset,
4628                                    Node* copy_length,
4629                                    bool disjoint_bases,
4630                                    bool length_never_negative,
4631                                    RegionNode* slow_region) {
4632 
4633   if (slow_region == NULL) {
4634     slow_region = new(C) RegionNode(1);
4635     record_for_igvn(slow_region);
4636   }
4637 
4638   Node* original_dest      = dest;
4639   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4640   bool  dest_uninitialized = false;
4641 
4642   // See if this is the initialization of a newly-allocated array.
4643   // If so, we will take responsibility here for initializing it to zero.
4644   // (Note:  Because tightly_coupled_allocation performs checks on the
4645   // out-edges of the dest, we need to avoid making derived pointers
4646   // from it until we have checked its uses.)
4647   if (ReduceBulkZeroing
4648       && !ZeroTLAB              // pointless if already zeroed
4649       && basic_elem_type != T_CONFLICT // avoid corner case
4650       && !src->eqv_uncast(dest)
4651       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4652           != NULL)
4653       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4654       && alloc->maybe_set_complete(&_gvn)) {
4655     // "You break it, you buy it."
4656     InitializeNode* init = alloc->initialization();
4657     assert(init->is_complete(), "we just did this");
4658     init->set_complete_with_arraycopy();
4659     assert(dest->is_CheckCastPP(), "sanity");
4660     assert(dest->in(0)->in(0) == init, "dest pinned");
4661     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4662     // From this point on, every exit path is responsible for
4663     // initializing any non-copied parts of the object to zero.
4664     // Also, if this flag is set we make sure that arraycopy interacts properly
4665     // with G1, eliding pre-barriers. See CR 6627983.
4666     dest_uninitialized = true;
4667   } else {
4668     // No zeroing elimination here.
4669     alloc             = NULL;
4670     //original_dest   = dest;
4671     //dest_uninitialized = false;
4672   }
4673 
4674   // Results are placed here:
4675   enum { fast_path        = 1,  // normal void-returning assembly stub
4676          checked_path     = 2,  // special assembly stub with cleanup
4677          slow_call_path   = 3,  // something went wrong; call the VM
4678          zero_path        = 4,  // bypass when length of copy is zero
4679          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4680          PATH_LIMIT       = 6
4681   };
4682   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4683   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4684   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4685   record_for_igvn(result_region);
4686   _gvn.set_type_bottom(result_i_o);
4687   _gvn.set_type_bottom(result_memory);
4688   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4689 
4690   // The slow_control path:
4691   Node* slow_control;
4692   Node* slow_i_o = i_o();
4693   Node* slow_mem = memory(adr_type);
4694   debug_only(slow_control = (Node*) badAddress);
4695 
4696   // Checked control path:
4697   Node* checked_control = top();
4698   Node* checked_mem     = NULL;
4699   Node* checked_i_o     = NULL;
4700   Node* checked_value   = NULL;
4701 
4702   if (basic_elem_type == T_CONFLICT) {
4703     assert(!dest_uninitialized, "");
4704     Node* cv = generate_generic_arraycopy(adr_type,
4705                                           src, src_offset, dest, dest_offset,
4706                                           copy_length, dest_uninitialized);
4707     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4708     checked_control = control();
4709     checked_i_o     = i_o();
4710     checked_mem     = memory(adr_type);
4711     checked_value   = cv;
4712     set_control(top());         // no fast path
4713   }
4714 
4715   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4716   if (not_pos != NULL) {
4717     PreserveJVMState pjvms(this);
4718     set_control(not_pos);
4719 
4720     // (6) length must not be negative.
4721     if (!length_never_negative) {
4722       generate_negative_guard(copy_length, slow_region);
4723     }
4724 
4725     // copy_length is 0.
4726     if (!stopped() && dest_uninitialized) {
4727       Node* dest_length = alloc->in(AllocateNode::ALength);
4728       if (copy_length->eqv_uncast(dest_length)
4729           || _gvn.find_int_con(dest_length, 1) <= 0) {
4730         // There is no zeroing to do. No need for a secondary raw memory barrier.
4731       } else {
4732         // Clear the whole thing since there are no source elements to copy.
4733         generate_clear_array(adr_type, dest, basic_elem_type,
4734                              intcon(0), NULL,
4735                              alloc->in(AllocateNode::AllocSize));
4736         // Use a secondary InitializeNode as raw memory barrier.
4737         // Currently it is needed only on this path since other
4738         // paths have stub or runtime calls as raw memory barriers.
4739         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4740                                                        Compile::AliasIdxRaw,
4741                                                        top())->as_Initialize();
4742         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4743       }
4744     }
4745 
4746     // Present the results of the fast call.
4747     result_region->init_req(zero_path, control());
4748     result_i_o   ->init_req(zero_path, i_o());
4749     result_memory->init_req(zero_path, memory(adr_type));
4750   }
4751 
4752   if (!stopped() && dest_uninitialized) {
4753     // We have to initialize the *uncopied* part of the array to zero.
4754     // The copy destination is the slice dest[off..off+len].  The other slices
4755     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4756     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4757     Node* dest_length = alloc->in(AllocateNode::ALength);
4758     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4759                                                           copy_length));
4760 
4761     // If there is a head section that needs zeroing, do it now.
4762     if (find_int_con(dest_offset, -1) != 0) {
4763       generate_clear_array(adr_type, dest, basic_elem_type,
4764                            intcon(0), dest_offset,
4765                            NULL);
4766     }
4767 
4768     // Next, perform a dynamic check on the tail length.
4769     // It is often zero, and we can win big if we prove this.
4770     // There are two wins:  Avoid generating the ClearArray
4771     // with its attendant messy index arithmetic, and upgrade
4772     // the copy to a more hardware-friendly word size of 64 bits.
4773     Node* tail_ctl = NULL;
4774     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4775       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
4776       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
4777       tail_ctl = generate_slow_guard(bol_lt, NULL);
4778       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4779     }
4780 
4781     // At this point, let's assume there is no tail.
4782     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4783       // There is no tail.  Try an upgrade to a 64-bit copy.
4784       bool didit = false;
4785       { PreserveJVMState pjvms(this);
4786         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4787                                          src, src_offset, dest, dest_offset,
4788                                          dest_size, dest_uninitialized);
4789         if (didit) {
4790           // Present the results of the block-copying fast call.
4791           result_region->init_req(bcopy_path, control());
4792           result_i_o   ->init_req(bcopy_path, i_o());
4793           result_memory->init_req(bcopy_path, memory(adr_type));
4794         }
4795       }
4796       if (didit)
4797         set_control(top());     // no regular fast path
4798     }
4799 
4800     // Clear the tail, if any.
4801     if (tail_ctl != NULL) {
4802       Node* notail_ctl = stopped() ? NULL : control();
4803       set_control(tail_ctl);
4804       if (notail_ctl == NULL) {
4805         generate_clear_array(adr_type, dest, basic_elem_type,
4806                              dest_tail, NULL,
4807                              dest_size);
4808       } else {
4809         // Make a local merge.
4810         Node* done_ctl = new(C) RegionNode(3);
4811         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4812         done_ctl->init_req(1, notail_ctl);
4813         done_mem->init_req(1, memory(adr_type));
4814         generate_clear_array(adr_type, dest, basic_elem_type,
4815                              dest_tail, NULL,
4816                              dest_size);
4817         done_ctl->init_req(2, control());
4818         done_mem->init_req(2, memory(adr_type));
4819         set_control( _gvn.transform(done_ctl));
4820         set_memory(  _gvn.transform(done_mem), adr_type );
4821       }
4822     }
4823   }
4824 
4825   BasicType copy_type = basic_elem_type;
4826   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4827   if (!stopped() && copy_type == T_OBJECT) {
4828     // If src and dest have compatible element types, we can copy bits.
4829     // Types S[] and D[] are compatible if D is a supertype of S.
4830     //
4831     // If they are not, we will use checked_oop_disjoint_arraycopy,
4832     // which performs a fast optimistic per-oop check, and backs off
4833     // further to JVM_ArrayCopy on the first per-oop check that fails.
4834     // (Actually, we don't move raw bits only; the GC requires card marks.)
4835 
4836     // Get the Klass* for both src and dest
4837     Node* src_klass  = load_object_klass(src);
4838     Node* dest_klass = load_object_klass(dest);
4839 
4840     // Generate the subtype check.
4841     // This might fold up statically, or then again it might not.
4842     //
4843     // Non-static example:  Copying List<String>.elements to a new String[].
4844     // The backing store for a List<String> is always an Object[],
4845     // but its elements are always type String, if the generic types
4846     // are correct at the source level.
4847     //
4848     // Test S[] against D[], not S against D, because (probably)
4849     // the secondary supertype cache is less busy for S[] than S.
4850     // This usually only matters when D is an interface.
4851     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4852     // Plug failing path into checked_oop_disjoint_arraycopy
4853     if (not_subtype_ctrl != top()) {
4854       PreserveJVMState pjvms(this);
4855       set_control(not_subtype_ctrl);
4856       // (At this point we can assume disjoint_bases, since types differ.)
4857       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
4858       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4859       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4860       Node* dest_elem_klass = _gvn.transform(n1);
4861       Node* cv = generate_checkcast_arraycopy(adr_type,
4862                                               dest_elem_klass,
4863                                               src, src_offset, dest, dest_offset,
4864                                               ConvI2X(copy_length), dest_uninitialized);
4865       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4866       checked_control = control();
4867       checked_i_o     = i_o();
4868       checked_mem     = memory(adr_type);
4869       checked_value   = cv;
4870     }
4871     // At this point we know we do not need type checks on oop stores.
4872 
4873     // Let's see if we need card marks:
4874     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4875       // If we do not need card marks, copy using the jint or jlong stub.
4876       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4877       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4878              "sizes agree");
4879     }
4880   }
4881 
4882   if (!stopped()) {
4883     // Generate the fast path, if possible.
4884     PreserveJVMState pjvms(this);
4885     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4886                                  src, src_offset, dest, dest_offset,
4887                                  ConvI2X(copy_length), dest_uninitialized);
4888 
4889     // Present the results of the fast call.
4890     result_region->init_req(fast_path, control());
4891     result_i_o   ->init_req(fast_path, i_o());
4892     result_memory->init_req(fast_path, memory(adr_type));
4893   }
4894 
4895   // Here are all the slow paths up to this point, in one bundle:
4896   slow_control = top();
4897   if (slow_region != NULL)
4898     slow_control = _gvn.transform(slow_region);
4899   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4900 
4901   set_control(checked_control);
4902   if (!stopped()) {
4903     // Clean up after the checked call.
4904     // The returned value is either 0 or -1^K,
4905     // where K = number of partially transferred array elements.
4906     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
4907     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
4908     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4909 
4910     // If it is 0, we are done, so transfer to the end.
4911     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
4912     result_region->init_req(checked_path, checks_done);
4913     result_i_o   ->init_req(checked_path, checked_i_o);
4914     result_memory->init_req(checked_path, checked_mem);
4915 
4916     // If it is not zero, merge into the slow call.
4917     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
4918     RegionNode* slow_reg2 = new(C) RegionNode(3);
4919     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4920     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4921     record_for_igvn(slow_reg2);
4922     slow_reg2  ->init_req(1, slow_control);
4923     slow_i_o2  ->init_req(1, slow_i_o);
4924     slow_mem2  ->init_req(1, slow_mem);
4925     slow_reg2  ->init_req(2, control());
4926     slow_i_o2  ->init_req(2, checked_i_o);
4927     slow_mem2  ->init_req(2, checked_mem);
4928 
4929     slow_control = _gvn.transform(slow_reg2);
4930     slow_i_o     = _gvn.transform(slow_i_o2);
4931     slow_mem     = _gvn.transform(slow_mem2);
4932 
4933     if (alloc != NULL) {
4934       // We'll restart from the very beginning, after zeroing the whole thing.
4935       // This can cause double writes, but that's OK since dest is brand new.
4936       // So we ignore the low 31 bits of the value returned from the stub.
4937     } else {
4938       // We must continue the copy exactly where it failed, or else
4939       // another thread might see the wrong number of writes to dest.
4940       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
4941       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4942       slow_offset->init_req(1, intcon(0));
4943       slow_offset->init_req(2, checked_offset);
4944       slow_offset  = _gvn.transform(slow_offset);
4945 
4946       // Adjust the arguments by the conditionally incoming offset.
4947       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
4948       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
4949       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
4950 
4951       // Tweak the node variables to adjust the code produced below:
4952       src_offset  = src_off_plus;
4953       dest_offset = dest_off_plus;
4954       copy_length = length_minus;
4955     }
4956   }
4957 
4958   set_control(slow_control);
4959   if (!stopped()) {
4960     // Generate the slow path, if needed.
4961     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4962 
4963     set_memory(slow_mem, adr_type);
4964     set_i_o(slow_i_o);
4965 
4966     if (dest_uninitialized) {
4967       generate_clear_array(adr_type, dest, basic_elem_type,
4968                            intcon(0), NULL,
4969                            alloc->in(AllocateNode::AllocSize));
4970     }
4971 
4972     generate_slow_arraycopy(adr_type,
4973                             src, src_offset, dest, dest_offset,
4974                             copy_length, /*dest_uninitialized*/false);
4975 
4976     result_region->init_req(slow_call_path, control());
4977     result_i_o   ->init_req(slow_call_path, i_o());
4978     result_memory->init_req(slow_call_path, memory(adr_type));
4979   }
4980 
4981   // Remove unused edges.
4982   for (uint i = 1; i < result_region->req(); i++) {
4983     if (result_region->in(i) == NULL)
4984       result_region->init_req(i, top());
4985   }
4986 
4987   // Finished; return the combined state.
4988   set_control( _gvn.transform(result_region));
4989   set_i_o(     _gvn.transform(result_i_o)    );
4990   set_memory(  _gvn.transform(result_memory), adr_type );
4991 
4992   // The memory edges above are precise in order to model effects around
4993   // array copies accurately to allow value numbering of field loads around
4994   // arraycopy.  Such field loads, both before and after, are common in Java
4995   // collections and similar classes involving header/array data structures.
4996   //
4997   // But with low number of register or when some registers are used or killed
4998   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4999   // The next memory barrier is added to avoid it. If the arraycopy can be
5000   // optimized away (which it can, sometimes) then we can manually remove
5001   // the membar also.
5002   //
5003   // Do not let reads from the cloned object float above the arraycopy.
5004   if (alloc != NULL) {
5005     // Do not let stores that initialize this object be reordered with
5006     // a subsequent store that would make this object accessible by
5007     // other threads.
5008     // Record what AllocateNode this StoreStore protects so that
5009     // escape analysis can go from the MemBarStoreStoreNode to the
5010     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5011     // based on the escape status of the AllocateNode.
5012     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5013   } else if (InsertMemBarAfterArraycopy)
5014     insert_mem_bar(Op_MemBarCPUOrder);
5015 }
5016 
5017 
5018 // Helper function which determines if an arraycopy immediately follows
5019 // an allocation, with no intervening tests or other escapes for the object.
5020 AllocateArrayNode*
5021 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5022                                            RegionNode* slow_region) {
5023   if (stopped())             return NULL;  // no fast path
5024   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5025 
5026   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5027   if (alloc == NULL)  return NULL;
5028 
5029   Node* rawmem = memory(Compile::AliasIdxRaw);
5030   // Is the allocation's memory state untouched?
5031   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5032     // Bail out if there have been raw-memory effects since the allocation.
5033     // (Example:  There might have been a call or safepoint.)
5034     return NULL;
5035   }
5036   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5037   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5038     return NULL;
5039   }
5040 
5041   // There must be no unexpected observers of this allocation.
5042   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5043     Node* obs = ptr->fast_out(i);
5044     if (obs != this->map()) {
5045       return NULL;
5046     }
5047   }
5048 
5049   // This arraycopy must unconditionally follow the allocation of the ptr.
5050   Node* alloc_ctl = ptr->in(0);
5051   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5052 
5053   Node* ctl = control();
5054   while (ctl != alloc_ctl) {
5055     // There may be guards which feed into the slow_region.
5056     // Any other control flow means that we might not get a chance
5057     // to finish initializing the allocated object.
5058     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5059       IfNode* iff = ctl->in(0)->as_If();
5060       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5061       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5062       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5063         ctl = iff->in(0);       // This test feeds the known slow_region.
5064         continue;
5065       }
5066       // One more try:  Various low-level checks bottom out in
5067       // uncommon traps.  If the debug-info of the trap omits
5068       // any reference to the allocation, as we've already
5069       // observed, then there can be no objection to the trap.
5070       bool found_trap = false;
5071       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5072         Node* obs = not_ctl->fast_out(j);
5073         if (obs->in(0) == not_ctl && obs->is_Call() &&
5074             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5075           found_trap = true; break;
5076         }
5077       }
5078       if (found_trap) {
5079         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5080         continue;
5081       }
5082     }
5083     return NULL;
5084   }
5085 
5086   // If we get this far, we have an allocation which immediately
5087   // precedes the arraycopy, and we can take over zeroing the new object.
5088   // The arraycopy will finish the initialization, and provide
5089   // a new control state to which we will anchor the destination pointer.
5090 
5091   return alloc;
5092 }
5093 
5094 // Helper for initialization of arrays, creating a ClearArray.
5095 // It writes zero bits in [start..end), within the body of an array object.
5096 // The memory effects are all chained onto the 'adr_type' alias category.
5097 //
5098 // Since the object is otherwise uninitialized, we are free
5099 // to put a little "slop" around the edges of the cleared area,
5100 // as long as it does not go back into the array's header,
5101 // or beyond the array end within the heap.
5102 //
5103 // The lower edge can be rounded down to the nearest jint and the
5104 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5105 //
5106 // Arguments:
5107 //   adr_type           memory slice where writes are generated
5108 //   dest               oop of the destination array
5109 //   basic_elem_type    element type of the destination
5110 //   slice_idx          array index of first element to store
5111 //   slice_len          number of elements to store (or NULL)
5112 //   dest_size          total size in bytes of the array object
5113 //
5114 // Exactly one of slice_len or dest_size must be non-NULL.
5115 // If dest_size is non-NULL, zeroing extends to the end of the object.
5116 // If slice_len is non-NULL, the slice_idx value must be a constant.
5117 void
5118 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5119                                      Node* dest,
5120                                      BasicType basic_elem_type,
5121                                      Node* slice_idx,
5122                                      Node* slice_len,
5123                                      Node* dest_size) {
5124   // one or the other but not both of slice_len and dest_size:
5125   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5126   if (slice_len == NULL)  slice_len = top();
5127   if (dest_size == NULL)  dest_size = top();
5128 
5129   // operate on this memory slice:
5130   Node* mem = memory(adr_type); // memory slice to operate on
5131 
5132   // scaling and rounding of indexes:
5133   int scale = exact_log2(type2aelembytes(basic_elem_type));
5134   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5135   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5136   int bump_bit  = (-1 << scale) & BytesPerInt;
5137 
5138   // determine constant starts and ends
5139   const intptr_t BIG_NEG = -128;
5140   assert(BIG_NEG + 2*abase < 0, "neg enough");
5141   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5142   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5143   if (slice_len_con == 0) {
5144     return;                     // nothing to do here
5145   }
5146   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5147   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5148   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5149     assert(end_con < 0, "not two cons");
5150     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5151                        BytesPerLong);
5152   }
5153 
5154   if (start_con >= 0 && end_con >= 0) {
5155     // Constant start and end.  Simple.
5156     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5157                                        start_con, end_con, &_gvn);
5158   } else if (start_con >= 0 && dest_size != top()) {
5159     // Constant start, pre-rounded end after the tail of the array.
5160     Node* end = dest_size;
5161     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5162                                        start_con, end, &_gvn);
5163   } else if (start_con >= 0 && slice_len != top()) {
5164     // Constant start, non-constant end.  End needs rounding up.
5165     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5166     intptr_t end_base  = abase + (slice_idx_con << scale);
5167     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5168     Node*    end       = ConvI2X(slice_len);
5169     if (scale != 0)
5170       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5171     end_base += end_round;
5172     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5173     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5174     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5175                                        start_con, end, &_gvn);
5176   } else if (start_con < 0 && dest_size != top()) {
5177     // Non-constant start, pre-rounded end after the tail of the array.
5178     // This is almost certainly a "round-to-end" operation.
5179     Node* start = slice_idx;
5180     start = ConvI2X(start);
5181     if (scale != 0)
5182       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5183     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5184     if ((bump_bit | clear_low) != 0) {
5185       int to_clear = (bump_bit | clear_low);
5186       // Align up mod 8, then store a jint zero unconditionally
5187       // just before the mod-8 boundary.
5188       if (((abase + bump_bit) & ~to_clear) - bump_bit
5189           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5190         bump_bit = 0;
5191         assert((abase & to_clear) == 0, "array base must be long-aligned");
5192       } else {
5193         // Bump 'start' up to (or past) the next jint boundary:
5194         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5195         assert((abase & clear_low) == 0, "array base must be int-aligned");
5196       }
5197       // Round bumped 'start' down to jlong boundary in body of array.
5198       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5199       if (bump_bit != 0) {
5200         // Store a zero to the immediately preceding jint:
5201         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5202         Node* p1 = basic_plus_adr(dest, x1);
5203         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5204         mem = _gvn.transform(mem);
5205       }
5206     }
5207     Node* end = dest_size; // pre-rounded
5208     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5209                                        start, end, &_gvn);
5210   } else {
5211     // Non-constant start, unrounded non-constant end.
5212     // (Nobody zeroes a random midsection of an array using this routine.)
5213     ShouldNotReachHere();       // fix caller
5214   }
5215 
5216   // Done.
5217   set_memory(mem, adr_type);
5218 }
5219 
5220 
5221 bool
5222 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5223                                          BasicType basic_elem_type,
5224                                          AllocateNode* alloc,
5225                                          Node* src,  Node* src_offset,
5226                                          Node* dest, Node* dest_offset,
5227                                          Node* dest_size, bool dest_uninitialized) {
5228   // See if there is an advantage from block transfer.
5229   int scale = exact_log2(type2aelembytes(basic_elem_type));
5230   if (scale >= LogBytesPerLong)
5231     return false;               // it is already a block transfer
5232 
5233   // Look at the alignment of the starting offsets.
5234   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5235 
5236   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5237   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5238   if (src_off_con < 0 || dest_off_con < 0)
5239     // At present, we can only understand constants.
5240     return false;
5241 
5242   intptr_t src_off  = abase + (src_off_con  << scale);
5243   intptr_t dest_off = abase + (dest_off_con << scale);
5244 
5245   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5246     // Non-aligned; too bad.
5247     // One more chance:  Pick off an initial 32-bit word.
5248     // This is a common case, since abase can be odd mod 8.
5249     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5250         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5251       Node* sptr = basic_plus_adr(src,  src_off);
5252       Node* dptr = basic_plus_adr(dest, dest_off);
5253       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5254       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5255       src_off += BytesPerInt;
5256       dest_off += BytesPerInt;
5257     } else {
5258       return false;
5259     }
5260   }
5261   assert(src_off % BytesPerLong == 0, "");
5262   assert(dest_off % BytesPerLong == 0, "");
5263 
5264   // Do this copy by giant steps.
5265   Node* sptr  = basic_plus_adr(src,  src_off);
5266   Node* dptr  = basic_plus_adr(dest, dest_off);
5267   Node* countx = dest_size;
5268   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5269   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5270 
5271   bool disjoint_bases = true;   // since alloc != NULL
5272   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5273                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5274 
5275   return true;
5276 }
5277 
5278 
5279 // Helper function; generates code for the slow case.
5280 // We make a call to a runtime method which emulates the native method,
5281 // but without the native wrapper overhead.
5282 void
5283 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5284                                         Node* src,  Node* src_offset,
5285                                         Node* dest, Node* dest_offset,
5286                                         Node* copy_length, bool dest_uninitialized) {
5287   assert(!dest_uninitialized, "Invariant");
5288   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5289                                  OptoRuntime::slow_arraycopy_Type(),
5290                                  OptoRuntime::slow_arraycopy_Java(),
5291                                  "slow_arraycopy", adr_type,
5292                                  src, src_offset, dest, dest_offset,
5293                                  copy_length);
5294 
5295   // Handle exceptions thrown by this fellow:
5296   make_slow_call_ex(call, env()->Throwable_klass(), false);
5297 }
5298 
5299 // Helper function; generates code for cases requiring runtime checks.
5300 Node*
5301 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5302                                              Node* dest_elem_klass,
5303                                              Node* src,  Node* src_offset,
5304                                              Node* dest, Node* dest_offset,
5305                                              Node* copy_length, bool dest_uninitialized) {
5306   if (stopped())  return NULL;
5307 
5308   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5309   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5310     return NULL;
5311   }
5312 
5313   // Pick out the parameters required to perform a store-check
5314   // for the target array.  This is an optimistic check.  It will
5315   // look in each non-null element's class, at the desired klass's
5316   // super_check_offset, for the desired klass.
5317   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5318   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5319   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5320   Node* check_offset = ConvI2X(_gvn.transform(n3));
5321   Node* check_value  = dest_elem_klass;
5322 
5323   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5324   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5325 
5326   // (We know the arrays are never conjoint, because their types differ.)
5327   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5328                                  OptoRuntime::checkcast_arraycopy_Type(),
5329                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5330                                  // five arguments, of which two are
5331                                  // intptr_t (jlong in LP64)
5332                                  src_start, dest_start,
5333                                  copy_length XTOP,
5334                                  check_offset XTOP,
5335                                  check_value);
5336 
5337   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5338 }
5339 
5340 
5341 // Helper function; generates code for cases requiring runtime checks.
5342 Node*
5343 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5344                                            Node* src,  Node* src_offset,
5345                                            Node* dest, Node* dest_offset,
5346                                            Node* copy_length, bool dest_uninitialized) {
5347   assert(!dest_uninitialized, "Invariant");
5348   if (stopped())  return NULL;
5349   address copyfunc_addr = StubRoutines::generic_arraycopy();
5350   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5351     return NULL;
5352   }
5353 
5354   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5355                     OptoRuntime::generic_arraycopy_Type(),
5356                     copyfunc_addr, "generic_arraycopy", adr_type,
5357                     src, src_offset, dest, dest_offset, copy_length);
5358 
5359   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5360 }
5361 
5362 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5363 void
5364 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5365                                              BasicType basic_elem_type,
5366                                              bool disjoint_bases,
5367                                              Node* src,  Node* src_offset,
5368                                              Node* dest, Node* dest_offset,
5369                                              Node* copy_length, bool dest_uninitialized) {
5370   if (stopped())  return;               // nothing to do
5371 
5372   Node* src_start  = src;
5373   Node* dest_start = dest;
5374   if (src_offset != NULL || dest_offset != NULL) {
5375     assert(src_offset != NULL && dest_offset != NULL, "");
5376     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5377     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5378   }
5379 
5380   // Figure out which arraycopy runtime method to call.
5381   const char* copyfunc_name = "arraycopy";
5382   address     copyfunc_addr =
5383       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5384                           disjoint_bases, copyfunc_name, dest_uninitialized);
5385 
5386   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5387   make_runtime_call(RC_LEAF|RC_NO_FP,
5388                     OptoRuntime::fast_arraycopy_Type(),
5389                     copyfunc_addr, copyfunc_name, adr_type,
5390                     src_start, dest_start, copy_length XTOP);
5391 }
5392 
5393 //-------------inline_encodeISOArray-----------------------------------
5394 // encode char[] to byte[] in ISO_8859_1
5395 bool LibraryCallKit::inline_encodeISOArray() {
5396   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5397   // no receiver since it is static method
5398   Node *src         = argument(0);
5399   Node *src_offset  = argument(1);
5400   Node *dst         = argument(2);
5401   Node *dst_offset  = argument(3);
5402   Node *length      = argument(4);
5403 
5404   const Type* src_type = src->Value(&_gvn);
5405   const Type* dst_type = dst->Value(&_gvn);
5406   const TypeAryPtr* top_src = src_type->isa_aryptr();
5407   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5408   if (top_src  == NULL || top_src->klass()  == NULL ||
5409       top_dest == NULL || top_dest->klass() == NULL) {
5410     // failed array check
5411     return false;
5412   }
5413 
5414   // Figure out the size and type of the elements we will be copying.
5415   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5416   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5417   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5418     return false;
5419   }
5420   Node* src_start = array_element_address(src, src_offset, src_elem);
5421   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5422   // 'src_start' points to src array + scaled offset
5423   // 'dst_start' points to dst array + scaled offset
5424 
5425   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5426   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5427   enc = _gvn.transform(enc);
5428   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5429   set_memory(res_mem, mtype);
5430   set_result(enc);
5431   return true;
5432 }
5433 
5434 /**
5435  * Calculate CRC32 for byte.
5436  * int java.util.zip.CRC32.update(int crc, int b)
5437  */
5438 bool LibraryCallKit::inline_updateCRC32() {
5439   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5440   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5441   // no receiver since it is static method
5442   Node* crc  = argument(0); // type: int
5443   Node* b    = argument(1); // type: int
5444 
5445   /*
5446    *    int c = ~ crc;
5447    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5448    *    b = b ^ (c >>> 8);
5449    *    crc = ~b;
5450    */
5451 
5452   Node* M1 = intcon(-1);
5453   crc = _gvn.transform(new (C) XorINode(crc, M1));
5454   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5455   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5456 
5457   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5458   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5459   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5460   result = make_load(control(), adr, TypeInt::INT, T_INT);
5461 
5462   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5463   result = _gvn.transform(new (C) XorINode(crc, result));
5464   result = _gvn.transform(new (C) XorINode(result, M1));
5465   set_result(result);
5466   return true;
5467 }
5468 
5469 /**
5470  * Calculate CRC32 for byte[] array.
5471  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5472  */
5473 bool LibraryCallKit::inline_updateBytesCRC32() {
5474   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5475   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5476   // no receiver since it is static method
5477   Node* crc     = argument(0); // type: int
5478   Node* src     = argument(1); // type: oop
5479   Node* offset  = argument(2); // type: int
5480   Node* length  = argument(3); // type: int
5481 
5482   const Type* src_type = src->Value(&_gvn);
5483   const TypeAryPtr* top_src = src_type->isa_aryptr();
5484   if (top_src  == NULL || top_src->klass()  == NULL) {
5485     // failed array check
5486     return false;
5487   }
5488 
5489   // Figure out the size and type of the elements we will be copying.
5490   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5491   if (src_elem != T_BYTE) {
5492     return false;
5493   }
5494 
5495   // 'src_start' points to src array + scaled offset
5496   Node* src_start = array_element_address(src, offset, src_elem);
5497 
5498   // We assume that range check is done by caller.
5499   // TODO: generate range check (offset+length < src.length) in debug VM.
5500 
5501   // Call the stub.
5502   address stubAddr = StubRoutines::updateBytesCRC32();
5503   const char *stubName = "updateBytesCRC32";
5504 
5505   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5506                                  stubAddr, stubName, TypePtr::BOTTOM,
5507                                  crc, src_start, length);
5508   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5509   set_result(result);
5510   return true;
5511 }
5512 
5513 /**
5514  * Calculate CRC32 for ByteBuffer.
5515  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5516  */
5517 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5518   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5519   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5520   // no receiver since it is static method
5521   Node* crc     = argument(0); // type: int
5522   Node* src     = argument(1); // type: long
5523   Node* offset  = argument(3); // type: int
5524   Node* length  = argument(4); // type: int
5525 
5526   src = ConvL2X(src);  // adjust Java long to machine word
5527   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5528   offset = ConvI2X(offset);
5529 
5530   // 'src_start' points to src array + scaled offset
5531   Node* src_start = basic_plus_adr(top(), base, offset);
5532 
5533   // Call the stub.
5534   address stubAddr = StubRoutines::updateBytesCRC32();
5535   const char *stubName = "updateBytesCRC32";
5536 
5537   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5538                                  stubAddr, stubName, TypePtr::BOTTOM,
5539                                  crc, src_start, length);
5540   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5541   set_result(result);
5542   return true;
5543 }
5544 
5545 //----------------------------inline_reference_get----------------------------
5546 // public T java.lang.ref.Reference.get();
5547 bool LibraryCallKit::inline_reference_get() {
5548   const int referent_offset = java_lang_ref_Reference::referent_offset;
5549   guarantee(referent_offset > 0, "should have already been set");
5550 
5551   // Get the argument:
5552   Node* reference_obj = null_check_receiver();
5553   if (stopped()) return true;
5554 
5555   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5556 
5557   ciInstanceKlass* klass = env()->Object_klass();
5558   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5559 
5560   Node* no_ctrl = NULL;
5561   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5562 
5563   // Use the pre-barrier to record the value in the referent field
5564   pre_barrier(false /* do_load */,
5565               control(),
5566               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5567               result /* pre_val */,
5568               T_OBJECT);
5569 
5570   // Add memory barrier to prevent commoning reads from this field
5571   // across safepoint since GC can change its value.
5572   insert_mem_bar(Op_MemBarCPUOrder);
5573 
5574   set_result(result);
5575   return true;
5576 }
5577 
5578 
5579 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5580                                               bool is_exact=true, bool is_static=false) {
5581 
5582   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5583   assert(tinst != NULL, "obj is null");
5584   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5585   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5586 
5587   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5588                                                                           ciSymbol::make(fieldTypeString),
5589                                                                           is_static);
5590   if (field == NULL) return (Node *) NULL;
5591   assert (field != NULL, "undefined field");
5592 
5593   // Next code  copied from Parse::do_get_xxx():
5594 
5595   // Compute address and memory type.
5596   int offset  = field->offset_in_bytes();
5597   bool is_vol = field->is_volatile();
5598   ciType* field_klass = field->type();
5599   assert(field_klass->is_loaded(), "should be loaded");
5600   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5601   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5602   BasicType bt = field->layout_type();
5603 
5604   // Build the resultant type of the load
5605   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5606 
5607   // Build the load.
5608   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5609   return loadedField;
5610 }
5611 
5612 
5613 //------------------------------inline_aescrypt_Block-----------------------
5614 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5615   address stubAddr;
5616   const char *stubName;
5617   assert(UseAES, "need AES instruction support");
5618 
5619   switch(id) {
5620   case vmIntrinsics::_aescrypt_encryptBlock:
5621     stubAddr = StubRoutines::aescrypt_encryptBlock();
5622     stubName = "aescrypt_encryptBlock";
5623     break;
5624   case vmIntrinsics::_aescrypt_decryptBlock:
5625     stubAddr = StubRoutines::aescrypt_decryptBlock();
5626     stubName = "aescrypt_decryptBlock";
5627     break;
5628   }
5629   if (stubAddr == NULL) return false;
5630 
5631   Node* aescrypt_object = argument(0);
5632   Node* src             = argument(1);
5633   Node* src_offset      = argument(2);
5634   Node* dest            = argument(3);
5635   Node* dest_offset     = argument(4);
5636 
5637   // (1) src and dest are arrays.
5638   const Type* src_type = src->Value(&_gvn);
5639   const Type* dest_type = dest->Value(&_gvn);
5640   const TypeAryPtr* top_src = src_type->isa_aryptr();
5641   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5642   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5643 
5644   // for the quick and dirty code we will skip all the checks.
5645   // we are just trying to get the call to be generated.
5646   Node* src_start  = src;
5647   Node* dest_start = dest;
5648   if (src_offset != NULL || dest_offset != NULL) {
5649     assert(src_offset != NULL && dest_offset != NULL, "");
5650     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5651     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5652   }
5653 
5654   // now need to get the start of its expanded key array
5655   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5656   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5657   if (k_start == NULL) return false;
5658 
5659   // Call the stub.
5660   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5661                     stubAddr, stubName, TypePtr::BOTTOM,
5662                     src_start, dest_start, k_start);
5663 
5664   return true;
5665 }
5666 
5667 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5668 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5669   address stubAddr;
5670   const char *stubName;
5671 
5672   assert(UseAES, "need AES instruction support");
5673 
5674   switch(id) {
5675   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5676     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5677     stubName = "cipherBlockChaining_encryptAESCrypt";
5678     break;
5679   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5680     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5681     stubName = "cipherBlockChaining_decryptAESCrypt";
5682     break;
5683   }
5684   if (stubAddr == NULL) return false;
5685 
5686   Node* cipherBlockChaining_object = argument(0);
5687   Node* src                        = argument(1);
5688   Node* src_offset                 = argument(2);
5689   Node* len                        = argument(3);
5690   Node* dest                       = argument(4);
5691   Node* dest_offset                = argument(5);
5692 
5693   // (1) src and dest are arrays.
5694   const Type* src_type = src->Value(&_gvn);
5695   const Type* dest_type = dest->Value(&_gvn);
5696   const TypeAryPtr* top_src = src_type->isa_aryptr();
5697   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5698   assert (top_src  != NULL && top_src->klass()  != NULL
5699           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5700 
5701   // checks are the responsibility of the caller
5702   Node* src_start  = src;
5703   Node* dest_start = dest;
5704   if (src_offset != NULL || dest_offset != NULL) {
5705     assert(src_offset != NULL && dest_offset != NULL, "");
5706     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5707     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5708   }
5709 
5710   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5711   // (because of the predicated logic executed earlier).
5712   // so we cast it here safely.
5713   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5714 
5715   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5716   if (embeddedCipherObj == NULL) return false;
5717 
5718   // cast it to what we know it will be at runtime
5719   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5720   assert(tinst != NULL, "CBC obj is null");
5721   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5722   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5723   if (!klass_AESCrypt->is_loaded()) return false;
5724 
5725   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5726   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5727   const TypeOopPtr* xtype = aklass->as_instance_type();
5728   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5729   aescrypt_object = _gvn.transform(aescrypt_object);
5730 
5731   // we need to get the start of the aescrypt_object's expanded key array
5732   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5733   if (k_start == NULL) return false;
5734 
5735   // similarly, get the start address of the r vector
5736   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5737   if (objRvec == NULL) return false;
5738   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5739 
5740   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5741   make_runtime_call(RC_LEAF|RC_NO_FP,
5742                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5743                     stubAddr, stubName, TypePtr::BOTTOM,
5744                     src_start, dest_start, k_start, r_start, len);
5745 
5746   // return is void so no result needs to be pushed
5747 
5748   return true;
5749 }
5750 
5751 //------------------------------get_key_start_from_aescrypt_object-----------------------
5752 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5753   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5754   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5755   if (objAESCryptKey == NULL) return (Node *) NULL;
5756 
5757   // now have the array, need to get the start address of the K array
5758   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5759   return k_start;
5760 }
5761 
5762 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5763 // Return node representing slow path of predicate check.
5764 // the pseudo code we want to emulate with this predicate is:
5765 // for encryption:
5766 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5767 // for decryption:
5768 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5769 //    note cipher==plain is more conservative than the original java code but that's OK
5770 //
5771 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5772   // First, check receiver for NULL since it is virtual method.
5773   Node* objCBC = argument(0);
5774   objCBC = null_check(objCBC);
5775 
5776   if (stopped()) return NULL; // Always NULL
5777 
5778   // Load embeddedCipher field of CipherBlockChaining object.
5779   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5780 
5781   // get AESCrypt klass for instanceOf check
5782   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5783   // will have same classloader as CipherBlockChaining object
5784   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5785   assert(tinst != NULL, "CBCobj is null");
5786   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5787 
5788   // we want to do an instanceof comparison against the AESCrypt class
5789   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5790   if (!klass_AESCrypt->is_loaded()) {
5791     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5792     Node* ctrl = control();
5793     set_control(top()); // no regular fast path
5794     return ctrl;
5795   }
5796   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5797 
5798   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5799   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5800   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5801 
5802   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5803 
5804   // for encryption, we are done
5805   if (!decrypting)
5806     return instof_false;  // even if it is NULL
5807 
5808   // for decryption, we need to add a further check to avoid
5809   // taking the intrinsic path when cipher and plain are the same
5810   // see the original java code for why.
5811   RegionNode* region = new(C) RegionNode(3);
5812   region->init_req(1, instof_false);
5813   Node* src = argument(1);
5814   Node* dest = argument(4);
5815   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5816   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5817   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5818   region->init_req(2, src_dest_conjoint);
5819 
5820   record_for_igvn(region);
5821   return _gvn.transform(region);
5822 }