1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "prims/jvmtiRedefineClassesTrace.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/vframeArray.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 #ifdef COMPILER1
  38 #include "c1/c1_Runtime1.hpp"
  39 #endif
  40 #ifdef COMPILER2
  41 #include "opto/runtime.hpp"
  42 #endif
  43 
  44 #define __ masm->
  45 
  46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  47 
  48 class SimpleRuntimeFrame {
  49 
  50   public:
  51 
  52   // Most of the runtime stubs have this simple frame layout.
  53   // This class exists to make the layout shared in one place.
  54   // Offsets are for compiler stack slots, which are jints.
  55   enum layout {
  56     // The frame sender code expects that rbp will be in the "natural" place and
  57     // will override any oopMap setting for it. We must therefore force the layout
  58     // so that it agrees with the frame sender code.
  59     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  60     rbp_off2,
  61     return_off, return_off2,
  62     framesize
  63   };
  64 };
  65 
  66 class RegisterSaver {
  67   // Capture info about frame layout.  Layout offsets are in jint
  68   // units because compiler frame slots are jints.
  69 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  70   enum layout {
  71     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  72     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  73     DEF_XMM_OFFS(0),
  74     DEF_XMM_OFFS(1),
  75     DEF_XMM_OFFS(2),
  76     DEF_XMM_OFFS(3),
  77     DEF_XMM_OFFS(4),
  78     DEF_XMM_OFFS(5),
  79     DEF_XMM_OFFS(6),
  80     DEF_XMM_OFFS(7),
  81     DEF_XMM_OFFS(8),
  82     DEF_XMM_OFFS(9),
  83     DEF_XMM_OFFS(10),
  84     DEF_XMM_OFFS(11),
  85     DEF_XMM_OFFS(12),
  86     DEF_XMM_OFFS(13),
  87     DEF_XMM_OFFS(14),
  88     DEF_XMM_OFFS(15),
  89     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
  90     fpu_stateH_end,
  91     r15_off, r15H_off,
  92     r14_off, r14H_off,
  93     r13_off, r13H_off,
  94     r12_off, r12H_off,
  95     r11_off, r11H_off,
  96     r10_off, r10H_off,
  97     r9_off,  r9H_off,
  98     r8_off,  r8H_off,
  99     rdi_off, rdiH_off,
 100     rsi_off, rsiH_off,
 101     ignore_off, ignoreH_off,  // extra copy of rbp
 102     rsp_off, rspH_off,
 103     rbx_off, rbxH_off,
 104     rdx_off, rdxH_off,
 105     rcx_off, rcxH_off,
 106     rax_off, raxH_off,
 107     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 108     align_off, alignH_off,
 109     flags_off, flagsH_off,
 110     // The frame sender code expects that rbp will be in the "natural" place and
 111     // will override any oopMap setting for it. We must therefore force the layout
 112     // so that it agrees with the frame sender code.
 113     rbp_off, rbpH_off,        // copy of rbp we will restore
 114     return_off, returnH_off,  // slot for return address
 115     reg_save_size             // size in compiler stack slots
 116   };
 117 
 118  public:
 119   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 120   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 121 
 122   // Offsets into the register save area
 123   // Used by deoptimization when it is managing result register
 124   // values on its own
 125 
 126   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 127   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 128   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 129   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 130   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 131 
 132   // During deoptimization only the result registers need to be restored,
 133   // all the other values have already been extracted.
 134   static void restore_result_registers(MacroAssembler* masm);
 135 };
 136 
 137 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 138   int vect_words = 0;
 139 #ifdef COMPILER2
 140   if (save_vectors) {
 141     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 142     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 143     // Save upper half of YMM registes
 144     vect_words = 16 * 16 / wordSize;
 145     additional_frame_words += vect_words;
 146   }
 147 #else
 148   assert(!save_vectors, "vectors are generated only by C2");
 149 #endif
 150 
 151   // Always make the frame size 16-byte aligned
 152   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 153                                      reg_save_size*BytesPerInt, 16);
 154   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 155   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 156   // The caller will allocate additional_frame_words
 157   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 158   // CodeBlob frame size is in words.
 159   int frame_size_in_words = frame_size_in_bytes / wordSize;
 160   *total_frame_words = frame_size_in_words;
 161 
 162   // Save registers, fpu state, and flags.
 163   // We assume caller has already pushed the return address onto the
 164   // stack, so rsp is 8-byte aligned here.
 165   // We push rpb twice in this sequence because we want the real rbp
 166   // to be under the return like a normal enter.
 167 
 168   __ enter();          // rsp becomes 16-byte aligned here
 169   __ push_CPU_state(); // Push a multiple of 16 bytes
 170 
 171   if (vect_words > 0) {
 172     assert(vect_words*wordSize == 256, "");
 173     __ subptr(rsp, 256); // Save upper half of YMM registes
 174     __ vextractf128h(Address(rsp,  0),xmm0);
 175     __ vextractf128h(Address(rsp, 16),xmm1);
 176     __ vextractf128h(Address(rsp, 32),xmm2);
 177     __ vextractf128h(Address(rsp, 48),xmm3);
 178     __ vextractf128h(Address(rsp, 64),xmm4);
 179     __ vextractf128h(Address(rsp, 80),xmm5);
 180     __ vextractf128h(Address(rsp, 96),xmm6);
 181     __ vextractf128h(Address(rsp,112),xmm7);
 182     __ vextractf128h(Address(rsp,128),xmm8);
 183     __ vextractf128h(Address(rsp,144),xmm9);
 184     __ vextractf128h(Address(rsp,160),xmm10);
 185     __ vextractf128h(Address(rsp,176),xmm11);
 186     __ vextractf128h(Address(rsp,192),xmm12);
 187     __ vextractf128h(Address(rsp,208),xmm13);
 188     __ vextractf128h(Address(rsp,224),xmm14);
 189     __ vextractf128h(Address(rsp,240),xmm15);
 190   }
 191   if (frame::arg_reg_save_area_bytes != 0) {
 192     // Allocate argument register save area
 193     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 194   }
 195 
 196   // Set an oopmap for the call site.  This oopmap will map all
 197   // oop-registers and debug-info registers as callee-saved.  This
 198   // will allow deoptimization at this safepoint to find all possible
 199   // debug-info recordings, as well as let GC find all oops.
 200 
 201   OopMapSet *oop_maps = new OopMapSet();
 202   OopMap* map = new OopMap(frame_size_in_slots, 0);
 203 
 204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
 205 
 206   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 207   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 208   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 209   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 210   // rbp location is known implicitly by the frame sender code, needs no oopmap
 211   // and the location where rbp was saved by is ignored
 212   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 213   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 214   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 215   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 216   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 217   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 218   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 219   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 220   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 221   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 222   map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
 223   map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
 224   map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
 225   map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
 226   map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
 228   map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
 229   map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
 230   map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
 238 
 239   // %%% These should all be a waste but we'll keep things as they were for now
 240   if (true) {
 241     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 242     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 243     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 244     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 245     // rbp location is known implicitly by the frame sender code, needs no oopmap
 246     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 247     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 248     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 249     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 250     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 251     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 252     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 253     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 254     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 255     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 256     map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
 257     map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
 258     map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
 259     map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
 260     map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
 261     map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
 262     map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
 263     map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
 264     map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
 265     map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
 266     map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
 267     map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
 268     map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
 269     map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
 270     map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
 271     map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
 272   }
 273 
 274   return map;
 275 }
 276 
 277 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 278   if (frame::arg_reg_save_area_bytes != 0) {
 279     // Pop arg register save area
 280     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 281   }
 282 #ifdef COMPILER2
 283   if (restore_vectors) {
 284     // Restore upper half of YMM registes.
 285     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 286     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 287     __ vinsertf128h(xmm0, Address(rsp,  0));
 288     __ vinsertf128h(xmm1, Address(rsp, 16));
 289     __ vinsertf128h(xmm2, Address(rsp, 32));
 290     __ vinsertf128h(xmm3, Address(rsp, 48));
 291     __ vinsertf128h(xmm4, Address(rsp, 64));
 292     __ vinsertf128h(xmm5, Address(rsp, 80));
 293     __ vinsertf128h(xmm6, Address(rsp, 96));
 294     __ vinsertf128h(xmm7, Address(rsp,112));
 295     __ vinsertf128h(xmm8, Address(rsp,128));
 296     __ vinsertf128h(xmm9, Address(rsp,144));
 297     __ vinsertf128h(xmm10, Address(rsp,160));
 298     __ vinsertf128h(xmm11, Address(rsp,176));
 299     __ vinsertf128h(xmm12, Address(rsp,192));
 300     __ vinsertf128h(xmm13, Address(rsp,208));
 301     __ vinsertf128h(xmm14, Address(rsp,224));
 302     __ vinsertf128h(xmm15, Address(rsp,240));
 303     __ addptr(rsp, 256);
 304   }
 305 #else
 306   assert(!restore_vectors, "vectors are generated only by C2");
 307 #endif
 308   // Recover CPU state
 309   __ pop_CPU_state();
 310   // Get the rbp described implicitly by the calling convention (no oopMap)
 311   __ pop(rbp);
 312 }
 313 
 314 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 315 
 316   // Just restore result register. Only used by deoptimization. By
 317   // now any callee save register that needs to be restored to a c2
 318   // caller of the deoptee has been extracted into the vframeArray
 319   // and will be stuffed into the c2i adapter we create for later
 320   // restoration so only result registers need to be restored here.
 321 
 322   // Restore fp result register
 323   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 324   // Restore integer result register
 325   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 326   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 327 
 328   // Pop all of the register save are off the stack except the return address
 329   __ addptr(rsp, return_offset_in_bytes());
 330 }
 331 
 332 // Is vector's size (in bytes) bigger than a size saved by default?
 333 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 334 bool SharedRuntime::is_wide_vector(int size) {
 335   return size > 16;
 336 }
 337 
 338 // The java_calling_convention describes stack locations as ideal slots on
 339 // a frame with no abi restrictions. Since we must observe abi restrictions
 340 // (like the placement of the register window) the slots must be biased by
 341 // the following value.
 342 static int reg2offset_in(VMReg r) {
 343   // Account for saved rbp and return address
 344   // This should really be in_preserve_stack_slots
 345   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 346 }
 347 
 348 static int reg2offset_out(VMReg r) {
 349   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 350 }
 351 
 352 // ---------------------------------------------------------------------------
 353 // Read the array of BasicTypes from a signature, and compute where the
 354 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 355 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 356 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 357 // as framesizes are fixed.
 358 // VMRegImpl::stack0 refers to the first slot 0(sp).
 359 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 360 // up to RegisterImpl::number_of_registers) are the 64-bit
 361 // integer registers.
 362 
 363 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 364 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 365 // units regardless of build. Of course for i486 there is no 64 bit build
 366 
 367 // The Java calling convention is a "shifted" version of the C ABI.
 368 // By skipping the first C ABI register we can call non-static jni methods
 369 // with small numbers of arguments without having to shuffle the arguments
 370 // at all. Since we control the java ABI we ought to at least get some
 371 // advantage out of it.
 372 
 373 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 374                                            VMRegPair *regs,
 375                                            int total_args_passed,
 376                                            int is_outgoing) {
 377 
 378   // Create the mapping between argument positions and
 379   // registers.
 380   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 381     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 382   };
 383   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 384     j_farg0, j_farg1, j_farg2, j_farg3,
 385     j_farg4, j_farg5, j_farg6, j_farg7
 386   };
 387 
 388 
 389   uint int_args = 0;
 390   uint fp_args = 0;
 391   uint stk_args = 0; // inc by 2 each time
 392 
 393   for (int i = 0; i < total_args_passed; i++) {
 394     switch (sig_bt[i]) {
 395     case T_BOOLEAN:
 396     case T_CHAR:
 397     case T_BYTE:
 398     case T_SHORT:
 399     case T_INT:
 400       if (int_args < Argument::n_int_register_parameters_j) {
 401         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 402       } else {
 403         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 404         stk_args += 2;
 405       }
 406       break;
 407     case T_VOID:
 408       // halves of T_LONG or T_DOUBLE
 409       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 410       regs[i].set_bad();
 411       break;
 412     case T_LONG:
 413       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 414       // fall through
 415     case T_OBJECT:
 416     case T_ARRAY:
 417     case T_ADDRESS:
 418       if (int_args < Argument::n_int_register_parameters_j) {
 419         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 420       } else {
 421         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 422         stk_args += 2;
 423       }
 424       break;
 425     case T_FLOAT:
 426       if (fp_args < Argument::n_float_register_parameters_j) {
 427         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 428       } else {
 429         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 430         stk_args += 2;
 431       }
 432       break;
 433     case T_DOUBLE:
 434       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 435       if (fp_args < Argument::n_float_register_parameters_j) {
 436         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 437       } else {
 438         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 439         stk_args += 2;
 440       }
 441       break;
 442     default:
 443       ShouldNotReachHere();
 444       break;
 445     }
 446   }
 447 
 448   return round_to(stk_args, 2);
 449 }
 450 
 451 // Patch the callers callsite with entry to compiled code if it exists.
 452 static void patch_callers_callsite(MacroAssembler *masm) {
 453   Label L;
 454   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 455   __ jcc(Assembler::equal, L);
 456 
 457   // Save the current stack pointer
 458   __ mov(r13, rsp);
 459   // Schedule the branch target address early.
 460   // Call into the VM to patch the caller, then jump to compiled callee
 461   // rax isn't live so capture return address while we easily can
 462   __ movptr(rax, Address(rsp, 0));
 463 
 464   // align stack so push_CPU_state doesn't fault
 465   __ andptr(rsp, -(StackAlignmentInBytes));
 466   __ push_CPU_state();
 467 
 468   // VM needs caller's callsite
 469   // VM needs target method
 470   // This needs to be a long call since we will relocate this adapter to
 471   // the codeBuffer and it may not reach
 472 
 473   // Allocate argument register save area
 474   if (frame::arg_reg_save_area_bytes != 0) {
 475     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 476   }
 477   __ mov(c_rarg0, rbx);
 478   __ mov(c_rarg1, rax);
 479   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 480 
 481   // De-allocate argument register save area
 482   if (frame::arg_reg_save_area_bytes != 0) {
 483     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 484   }
 485 
 486   __ pop_CPU_state();
 487   // restore sp
 488   __ mov(rsp, r13);
 489   __ bind(L);
 490 }
 491 
 492 
 493 static void gen_c2i_adapter(MacroAssembler *masm,
 494                             int total_args_passed,
 495                             int comp_args_on_stack,
 496                             const BasicType *sig_bt,
 497                             const VMRegPair *regs,
 498                             Label& skip_fixup) {
 499   // Before we get into the guts of the C2I adapter, see if we should be here
 500   // at all.  We've come from compiled code and are attempting to jump to the
 501   // interpreter, which means the caller made a static call to get here
 502   // (vcalls always get a compiled target if there is one).  Check for a
 503   // compiled target.  If there is one, we need to patch the caller's call.
 504   patch_callers_callsite(masm);
 505 
 506   __ bind(skip_fixup);
 507 
 508   // Since all args are passed on the stack, total_args_passed *
 509   // Interpreter::stackElementSize is the space we need. Plus 1 because
 510   // we also account for the return address location since
 511   // we store it first rather than hold it in rax across all the shuffling
 512 
 513   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 514 
 515   // stack is aligned, keep it that way
 516   extraspace = round_to(extraspace, 2*wordSize);
 517 
 518   // Get return address
 519   __ pop(rax);
 520 
 521   // set senderSP value
 522   __ mov(r13, rsp);
 523 
 524   __ subptr(rsp, extraspace);
 525 
 526   // Store the return address in the expected location
 527   __ movptr(Address(rsp, 0), rax);
 528 
 529   // Now write the args into the outgoing interpreter space
 530   for (int i = 0; i < total_args_passed; i++) {
 531     if (sig_bt[i] == T_VOID) {
 532       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 533       continue;
 534     }
 535 
 536     // offset to start parameters
 537     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 538     int next_off = st_off - Interpreter::stackElementSize;
 539 
 540     // Say 4 args:
 541     // i   st_off
 542     // 0   32 T_LONG
 543     // 1   24 T_VOID
 544     // 2   16 T_OBJECT
 545     // 3    8 T_BOOL
 546     // -    0 return address
 547     //
 548     // However to make thing extra confusing. Because we can fit a long/double in
 549     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 550     // leaves one slot empty and only stores to a single slot. In this case the
 551     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 552 
 553     VMReg r_1 = regs[i].first();
 554     VMReg r_2 = regs[i].second();
 555     if (!r_1->is_valid()) {
 556       assert(!r_2->is_valid(), "");
 557       continue;
 558     }
 559     if (r_1->is_stack()) {
 560       // memory to memory use rax
 561       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 562       if (!r_2->is_valid()) {
 563         // sign extend??
 564         __ movl(rax, Address(rsp, ld_off));
 565         __ movptr(Address(rsp, st_off), rax);
 566 
 567       } else {
 568 
 569         __ movq(rax, Address(rsp, ld_off));
 570 
 571         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 572         // T_DOUBLE and T_LONG use two slots in the interpreter
 573         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 574           // ld_off == LSW, ld_off+wordSize == MSW
 575           // st_off == MSW, next_off == LSW
 576           __ movq(Address(rsp, next_off), rax);
 577 #ifdef ASSERT
 578           // Overwrite the unused slot with known junk
 579           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 580           __ movptr(Address(rsp, st_off), rax);
 581 #endif /* ASSERT */
 582         } else {
 583           __ movq(Address(rsp, st_off), rax);
 584         }
 585       }
 586     } else if (r_1->is_Register()) {
 587       Register r = r_1->as_Register();
 588       if (!r_2->is_valid()) {
 589         // must be only an int (or less ) so move only 32bits to slot
 590         // why not sign extend??
 591         __ movl(Address(rsp, st_off), r);
 592       } else {
 593         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 594         // T_DOUBLE and T_LONG use two slots in the interpreter
 595         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 596           // long/double in gpr
 597 #ifdef ASSERT
 598           // Overwrite the unused slot with known junk
 599           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 600           __ movptr(Address(rsp, st_off), rax);
 601 #endif /* ASSERT */
 602           __ movq(Address(rsp, next_off), r);
 603         } else {
 604           __ movptr(Address(rsp, st_off), r);
 605         }
 606       }
 607     } else {
 608       assert(r_1->is_XMMRegister(), "");
 609       if (!r_2->is_valid()) {
 610         // only a float use just part of the slot
 611         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 612       } else {
 613 #ifdef ASSERT
 614         // Overwrite the unused slot with known junk
 615         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 616         __ movptr(Address(rsp, st_off), rax);
 617 #endif /* ASSERT */
 618         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 619       }
 620     }
 621   }
 622 
 623   // Schedule the branch target address early.
 624   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 625   __ jmp(rcx);
 626 }
 627 
 628 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 629                         address code_start, address code_end,
 630                         Label& L_ok) {
 631   Label L_fail;
 632   __ lea(temp_reg, ExternalAddress(code_start));
 633   __ cmpptr(pc_reg, temp_reg);
 634   __ jcc(Assembler::belowEqual, L_fail);
 635   __ lea(temp_reg, ExternalAddress(code_end));
 636   __ cmpptr(pc_reg, temp_reg);
 637   __ jcc(Assembler::below, L_ok);
 638   __ bind(L_fail);
 639 }
 640 
 641 static void gen_i2c_adapter(MacroAssembler *masm,
 642                             int total_args_passed,
 643                             int comp_args_on_stack,
 644                             const BasicType *sig_bt,
 645                             const VMRegPair *regs) {
 646 
 647   // Note: r13 contains the senderSP on entry. We must preserve it since
 648   // we may do a i2c -> c2i transition if we lose a race where compiled
 649   // code goes non-entrant while we get args ready.
 650   // In addition we use r13 to locate all the interpreter args as
 651   // we must align the stack to 16 bytes on an i2c entry else we
 652   // lose alignment we expect in all compiled code and register
 653   // save code can segv when fxsave instructions find improperly
 654   // aligned stack pointer.
 655 
 656   // Adapters can be frameless because they do not require the caller
 657   // to perform additional cleanup work, such as correcting the stack pointer.
 658   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 659   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 660   // even if a callee has modified the stack pointer.
 661   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 662   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 663   // up via the senderSP register).
 664   // In other words, if *either* the caller or callee is interpreted, we can
 665   // get the stack pointer repaired after a call.
 666   // This is why c2i and i2c adapters cannot be indefinitely composed.
 667   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 668   // both caller and callee would be compiled methods, and neither would
 669   // clean up the stack pointer changes performed by the two adapters.
 670   // If this happens, control eventually transfers back to the compiled
 671   // caller, but with an uncorrected stack, causing delayed havoc.
 672 
 673   // Pick up the return address
 674   __ movptr(rax, Address(rsp, 0));
 675 
 676   if (VerifyAdapterCalls &&
 677       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 678     // So, let's test for cascading c2i/i2c adapters right now.
 679     //  assert(Interpreter::contains($return_addr) ||
 680     //         StubRoutines::contains($return_addr),
 681     //         "i2c adapter must return to an interpreter frame");
 682     __ block_comment("verify_i2c { ");
 683     Label L_ok;
 684     if (Interpreter::code() != NULL)
 685       range_check(masm, rax, r11,
 686                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 687                   L_ok);
 688     if (StubRoutines::code1() != NULL)
 689       range_check(masm, rax, r11,
 690                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 691                   L_ok);
 692     if (StubRoutines::code2() != NULL)
 693       range_check(masm, rax, r11,
 694                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 695                   L_ok);
 696     const char* msg = "i2c adapter must return to an interpreter frame";
 697     __ block_comment(msg);
 698     __ stop(msg);
 699     __ bind(L_ok);
 700     __ block_comment("} verify_i2ce ");
 701   }
 702 
 703   // Must preserve original SP for loading incoming arguments because
 704   // we need to align the outgoing SP for compiled code.
 705   __ movptr(r11, rsp);
 706 
 707   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 708   // in registers, we will occasionally have no stack args.
 709   int comp_words_on_stack = 0;
 710   if (comp_args_on_stack) {
 711     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 712     // registers are below.  By subtracting stack0, we either get a negative
 713     // number (all values in registers) or the maximum stack slot accessed.
 714 
 715     // Convert 4-byte c2 stack slots to words.
 716     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 717     // Round up to miminum stack alignment, in wordSize
 718     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 719     __ subptr(rsp, comp_words_on_stack * wordSize);
 720   }
 721 
 722 
 723   // Ensure compiled code always sees stack at proper alignment
 724   __ andptr(rsp, -16);
 725 
 726   // push the return address and misalign the stack that youngest frame always sees
 727   // as far as the placement of the call instruction
 728   __ push(rax);
 729 
 730   // Put saved SP in another register
 731   const Register saved_sp = rax;
 732   __ movptr(saved_sp, r11);
 733 
 734   // Will jump to the compiled code just as if compiled code was doing it.
 735   // Pre-load the register-jump target early, to schedule it better.
 736   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 737 
 738   // Now generate the shuffle code.  Pick up all register args and move the
 739   // rest through the floating point stack top.
 740   for (int i = 0; i < total_args_passed; i++) {
 741     if (sig_bt[i] == T_VOID) {
 742       // Longs and doubles are passed in native word order, but misaligned
 743       // in the 32-bit build.
 744       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 745       continue;
 746     }
 747 
 748     // Pick up 0, 1 or 2 words from SP+offset.
 749 
 750     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 751             "scrambled load targets?");
 752     // Load in argument order going down.
 753     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 754     // Point to interpreter value (vs. tag)
 755     int next_off = ld_off - Interpreter::stackElementSize;
 756     //
 757     //
 758     //
 759     VMReg r_1 = regs[i].first();
 760     VMReg r_2 = regs[i].second();
 761     if (!r_1->is_valid()) {
 762       assert(!r_2->is_valid(), "");
 763       continue;
 764     }
 765     if (r_1->is_stack()) {
 766       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 767       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 768 
 769       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 770       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 771       // will be generated.
 772       if (!r_2->is_valid()) {
 773         // sign extend???
 774         __ movl(r13, Address(saved_sp, ld_off));
 775         __ movptr(Address(rsp, st_off), r13);
 776       } else {
 777         //
 778         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 779         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 780         // So we must adjust where to pick up the data to match the interpreter.
 781         //
 782         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 783         // are accessed as negative so LSW is at LOW address
 784 
 785         // ld_off is MSW so get LSW
 786         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 787                            next_off : ld_off;
 788         __ movq(r13, Address(saved_sp, offset));
 789         // st_off is LSW (i.e. reg.first())
 790         __ movq(Address(rsp, st_off), r13);
 791       }
 792     } else if (r_1->is_Register()) {  // Register argument
 793       Register r = r_1->as_Register();
 794       assert(r != rax, "must be different");
 795       if (r_2->is_valid()) {
 796         //
 797         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 798         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 799         // So we must adjust where to pick up the data to match the interpreter.
 800 
 801         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 802                            next_off : ld_off;
 803 
 804         // this can be a misaligned move
 805         __ movq(r, Address(saved_sp, offset));
 806       } else {
 807         // sign extend and use a full word?
 808         __ movl(r, Address(saved_sp, ld_off));
 809       }
 810     } else {
 811       if (!r_2->is_valid()) {
 812         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 813       } else {
 814         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 815       }
 816     }
 817   }
 818 
 819   // 6243940 We might end up in handle_wrong_method if
 820   // the callee is deoptimized as we race thru here. If that
 821   // happens we don't want to take a safepoint because the
 822   // caller frame will look interpreted and arguments are now
 823   // "compiled" so it is much better to make this transition
 824   // invisible to the stack walking code. Unfortunately if
 825   // we try and find the callee by normal means a safepoint
 826   // is possible. So we stash the desired callee in the thread
 827   // and the vm will find there should this case occur.
 828 
 829   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 830 
 831   // put Method* where a c2i would expect should we end up there
 832   // only needed becaus eof c2 resolve stubs return Method* as a result in
 833   // rax
 834   __ mov(rax, rbx);
 835   __ jmp(r11);
 836 }
 837 
 838 // ---------------------------------------------------------------
 839 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 840                                                             int total_args_passed,
 841                                                             int comp_args_on_stack,
 842                                                             const BasicType *sig_bt,
 843                                                             const VMRegPair *regs,
 844                                                             AdapterFingerPrint* fingerprint) {
 845   address i2c_entry = __ pc();
 846 
 847   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 848 
 849   // -------------------------------------------------------------------------
 850   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 851   // to the interpreter.  The args start out packed in the compiled layout.  They
 852   // need to be unpacked into the interpreter layout.  This will almost always
 853   // require some stack space.  We grow the current (compiled) stack, then repack
 854   // the args.  We  finally end in a jump to the generic interpreter entry point.
 855   // On exit from the interpreter, the interpreter will restore our SP (lest the
 856   // compiled code, which relys solely on SP and not RBP, get sick).
 857 
 858   address c2i_unverified_entry = __ pc();
 859   Label skip_fixup;
 860   Label ok;
 861 
 862   Register holder = rax;
 863   Register receiver = j_rarg0;
 864   Register temp = rbx;
 865 
 866   {
 867     __ load_klass(temp, receiver);
 868     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 869     __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
 870     __ jcc(Assembler::equal, ok);
 871     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 872 
 873     __ bind(ok);
 874     // Method might have been compiled since the call site was patched to
 875     // interpreted if that is the case treat it as a miss so we can get
 876     // the call site corrected.
 877     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 878     __ jcc(Assembler::equal, skip_fixup);
 879     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 880   }
 881 
 882   address c2i_entry = __ pc();
 883 
 884   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 885 
 886   __ flush();
 887   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 888 }
 889 
 890 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 891                                          VMRegPair *regs,
 892                                          int total_args_passed) {
 893 // We return the amount of VMRegImpl stack slots we need to reserve for all
 894 // the arguments NOT counting out_preserve_stack_slots.
 895 
 896 // NOTE: These arrays will have to change when c1 is ported
 897 #ifdef _WIN64
 898     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 899       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 900     };
 901     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 902       c_farg0, c_farg1, c_farg2, c_farg3
 903     };
 904 #else
 905     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 906       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 907     };
 908     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 909       c_farg0, c_farg1, c_farg2, c_farg3,
 910       c_farg4, c_farg5, c_farg6, c_farg7
 911     };
 912 #endif // _WIN64
 913 
 914 
 915     uint int_args = 0;
 916     uint fp_args = 0;
 917     uint stk_args = 0; // inc by 2 each time
 918 
 919     for (int i = 0; i < total_args_passed; i++) {
 920       switch (sig_bt[i]) {
 921       case T_BOOLEAN:
 922       case T_CHAR:
 923       case T_BYTE:
 924       case T_SHORT:
 925       case T_INT:
 926         if (int_args < Argument::n_int_register_parameters_c) {
 927           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 928 #ifdef _WIN64
 929           fp_args++;
 930           // Allocate slots for callee to stuff register args the stack.
 931           stk_args += 2;
 932 #endif
 933         } else {
 934           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 935           stk_args += 2;
 936         }
 937         break;
 938       case T_LONG:
 939         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 940         // fall through
 941       case T_OBJECT:
 942       case T_ARRAY:
 943       case T_ADDRESS:
 944       case T_METADATA:
 945         if (int_args < Argument::n_int_register_parameters_c) {
 946           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 947 #ifdef _WIN64
 948           fp_args++;
 949           stk_args += 2;
 950 #endif
 951         } else {
 952           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 953           stk_args += 2;
 954         }
 955         break;
 956       case T_FLOAT:
 957         if (fp_args < Argument::n_float_register_parameters_c) {
 958           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 959 #ifdef _WIN64
 960           int_args++;
 961           // Allocate slots for callee to stuff register args the stack.
 962           stk_args += 2;
 963 #endif
 964         } else {
 965           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 966           stk_args += 2;
 967         }
 968         break;
 969       case T_DOUBLE:
 970         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 971         if (fp_args < Argument::n_float_register_parameters_c) {
 972           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 973 #ifdef _WIN64
 974           int_args++;
 975           // Allocate slots for callee to stuff register args the stack.
 976           stk_args += 2;
 977 #endif
 978         } else {
 979           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 980           stk_args += 2;
 981         }
 982         break;
 983       case T_VOID: // Halves of longs and doubles
 984         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 985         regs[i].set_bad();
 986         break;
 987       default:
 988         ShouldNotReachHere();
 989         break;
 990       }
 991     }
 992 #ifdef _WIN64
 993   // windows abi requires that we always allocate enough stack space
 994   // for 4 64bit registers to be stored down.
 995   if (stk_args < 8) {
 996     stk_args = 8;
 997   }
 998 #endif // _WIN64
 999 
1000   return stk_args;
1001 }
1002 
1003 // On 64 bit we will store integer like items to the stack as
1004 // 64 bits items (sparc abi) even though java would only store
1005 // 32bits for a parameter. On 32bit it will simply be 32 bits
1006 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1007 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1008   if (src.first()->is_stack()) {
1009     if (dst.first()->is_stack()) {
1010       // stack to stack
1011       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1012       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1013     } else {
1014       // stack to reg
1015       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1016     }
1017   } else if (dst.first()->is_stack()) {
1018     // reg to stack
1019     // Do we really have to sign extend???
1020     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1021     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1022   } else {
1023     // Do we really have to sign extend???
1024     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1025     if (dst.first() != src.first()) {
1026       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1027     }
1028   }
1029 }
1030 
1031 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1032   if (src.first()->is_stack()) {
1033     if (dst.first()->is_stack()) {
1034       // stack to stack
1035       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1036       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1037     } else {
1038       // stack to reg
1039       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1040     }
1041   } else if (dst.first()->is_stack()) {
1042     // reg to stack
1043     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1044   } else {
1045     if (dst.first() != src.first()) {
1046       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1047     }
1048   }
1049 }
1050 
1051 // An oop arg. Must pass a handle not the oop itself
1052 static void object_move(MacroAssembler* masm,
1053                         OopMap* map,
1054                         int oop_handle_offset,
1055                         int framesize_in_slots,
1056                         VMRegPair src,
1057                         VMRegPair dst,
1058                         bool is_receiver,
1059                         int* receiver_offset) {
1060 
1061   // must pass a handle. First figure out the location we use as a handle
1062 
1063   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1064 
1065   // See if oop is NULL if it is we need no handle
1066 
1067   if (src.first()->is_stack()) {
1068 
1069     // Oop is already on the stack as an argument
1070     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1071     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1072     if (is_receiver) {
1073       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1074     }
1075 
1076     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1077     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1078     // conditionally move a NULL
1079     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1080   } else {
1081 
1082     // Oop is in an a register we must store it to the space we reserve
1083     // on the stack for oop_handles and pass a handle if oop is non-NULL
1084 
1085     const Register rOop = src.first()->as_Register();
1086     int oop_slot;
1087     if (rOop == j_rarg0)
1088       oop_slot = 0;
1089     else if (rOop == j_rarg1)
1090       oop_slot = 1;
1091     else if (rOop == j_rarg2)
1092       oop_slot = 2;
1093     else if (rOop == j_rarg3)
1094       oop_slot = 3;
1095     else if (rOop == j_rarg4)
1096       oop_slot = 4;
1097     else {
1098       assert(rOop == j_rarg5, "wrong register");
1099       oop_slot = 5;
1100     }
1101 
1102     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1103     int offset = oop_slot*VMRegImpl::stack_slot_size;
1104 
1105     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1106     // Store oop in handle area, may be NULL
1107     __ movptr(Address(rsp, offset), rOop);
1108     if (is_receiver) {
1109       *receiver_offset = offset;
1110     }
1111 
1112     __ cmpptr(rOop, (int32_t)NULL_WORD);
1113     __ lea(rHandle, Address(rsp, offset));
1114     // conditionally move a NULL from the handle area where it was just stored
1115     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1116   }
1117 
1118   // If arg is on the stack then place it otherwise it is already in correct reg.
1119   if (dst.first()->is_stack()) {
1120     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1121   }
1122 }
1123 
1124 // A float arg may have to do float reg int reg conversion
1125 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1126   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1127 
1128   // The calling conventions assures us that each VMregpair is either
1129   // all really one physical register or adjacent stack slots.
1130   // This greatly simplifies the cases here compared to sparc.
1131 
1132   if (src.first()->is_stack()) {
1133     if (dst.first()->is_stack()) {
1134       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1135       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1136     } else {
1137       // stack to reg
1138       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1139       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1140     }
1141   } else if (dst.first()->is_stack()) {
1142     // reg to stack
1143     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1144     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1145   } else {
1146     // reg to reg
1147     // In theory these overlap but the ordering is such that this is likely a nop
1148     if ( src.first() != dst.first()) {
1149       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1150     }
1151   }
1152 }
1153 
1154 // A long move
1155 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1156 
1157   // The calling conventions assures us that each VMregpair is either
1158   // all really one physical register or adjacent stack slots.
1159   // This greatly simplifies the cases here compared to sparc.
1160 
1161   if (src.is_single_phys_reg() ) {
1162     if (dst.is_single_phys_reg()) {
1163       if (dst.first() != src.first()) {
1164         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1165       }
1166     } else {
1167       assert(dst.is_single_reg(), "not a stack pair");
1168       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1169     }
1170   } else if (dst.is_single_phys_reg()) {
1171     assert(src.is_single_reg(),  "not a stack pair");
1172     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1173   } else {
1174     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1175     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1176     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1177   }
1178 }
1179 
1180 // A double move
1181 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1182 
1183   // The calling conventions assures us that each VMregpair is either
1184   // all really one physical register or adjacent stack slots.
1185   // This greatly simplifies the cases here compared to sparc.
1186 
1187   if (src.is_single_phys_reg() ) {
1188     if (dst.is_single_phys_reg()) {
1189       // In theory these overlap but the ordering is such that this is likely a nop
1190       if ( src.first() != dst.first()) {
1191         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1192       }
1193     } else {
1194       assert(dst.is_single_reg(), "not a stack pair");
1195       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1196     }
1197   } else if (dst.is_single_phys_reg()) {
1198     assert(src.is_single_reg(),  "not a stack pair");
1199     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1200   } else {
1201     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1202     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1203     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1204   }
1205 }
1206 
1207 
1208 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1209   // We always ignore the frame_slots arg and just use the space just below frame pointer
1210   // which by this time is free to use
1211   switch (ret_type) {
1212   case T_FLOAT:
1213     __ movflt(Address(rbp, -wordSize), xmm0);
1214     break;
1215   case T_DOUBLE:
1216     __ movdbl(Address(rbp, -wordSize), xmm0);
1217     break;
1218   case T_VOID:  break;
1219   default: {
1220     __ movptr(Address(rbp, -wordSize), rax);
1221     }
1222   }
1223 }
1224 
1225 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1226   // We always ignore the frame_slots arg and just use the space just below frame pointer
1227   // which by this time is free to use
1228   switch (ret_type) {
1229   case T_FLOAT:
1230     __ movflt(xmm0, Address(rbp, -wordSize));
1231     break;
1232   case T_DOUBLE:
1233     __ movdbl(xmm0, Address(rbp, -wordSize));
1234     break;
1235   case T_VOID:  break;
1236   default: {
1237     __ movptr(rax, Address(rbp, -wordSize));
1238     }
1239   }
1240 }
1241 
1242 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1243     for ( int i = first_arg ; i < arg_count ; i++ ) {
1244       if (args[i].first()->is_Register()) {
1245         __ push(args[i].first()->as_Register());
1246       } else if (args[i].first()->is_XMMRegister()) {
1247         __ subptr(rsp, 2*wordSize);
1248         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1249       }
1250     }
1251 }
1252 
1253 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1254     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1255       if (args[i].first()->is_Register()) {
1256         __ pop(args[i].first()->as_Register());
1257       } else if (args[i].first()->is_XMMRegister()) {
1258         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1259         __ addptr(rsp, 2*wordSize);
1260       }
1261     }
1262 }
1263 
1264 
1265 static void save_or_restore_arguments(MacroAssembler* masm,
1266                                       const int stack_slots,
1267                                       const int total_in_args,
1268                                       const int arg_save_area,
1269                                       OopMap* map,
1270                                       VMRegPair* in_regs,
1271                                       BasicType* in_sig_bt) {
1272   // if map is non-NULL then the code should store the values,
1273   // otherwise it should load them.
1274   int slot = arg_save_area;
1275   // Save down double word first
1276   for ( int i = 0; i < total_in_args; i++) {
1277     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1278       int offset = slot * VMRegImpl::stack_slot_size;
1279       slot += VMRegImpl::slots_per_word;
1280       assert(slot <= stack_slots, "overflow");
1281       if (map != NULL) {
1282         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1283       } else {
1284         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1285       }
1286     }
1287     if (in_regs[i].first()->is_Register() &&
1288         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1289       int offset = slot * VMRegImpl::stack_slot_size;
1290       if (map != NULL) {
1291         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1292         if (in_sig_bt[i] == T_ARRAY) {
1293           map->set_oop(VMRegImpl::stack2reg(slot));;
1294         }
1295       } else {
1296         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1297       }
1298       slot += VMRegImpl::slots_per_word;
1299     }
1300   }
1301   // Save or restore single word registers
1302   for ( int i = 0; i < total_in_args; i++) {
1303     if (in_regs[i].first()->is_Register()) {
1304       int offset = slot * VMRegImpl::stack_slot_size;
1305       slot++;
1306       assert(slot <= stack_slots, "overflow");
1307 
1308       // Value is in an input register pass we must flush it to the stack
1309       const Register reg = in_regs[i].first()->as_Register();
1310       switch (in_sig_bt[i]) {
1311         case T_BOOLEAN:
1312         case T_CHAR:
1313         case T_BYTE:
1314         case T_SHORT:
1315         case T_INT:
1316           if (map != NULL) {
1317             __ movl(Address(rsp, offset), reg);
1318           } else {
1319             __ movl(reg, Address(rsp, offset));
1320           }
1321           break;
1322         case T_ARRAY:
1323         case T_LONG:
1324           // handled above
1325           break;
1326         case T_OBJECT:
1327         default: ShouldNotReachHere();
1328       }
1329     } else if (in_regs[i].first()->is_XMMRegister()) {
1330       if (in_sig_bt[i] == T_FLOAT) {
1331         int offset = slot * VMRegImpl::stack_slot_size;
1332         slot++;
1333         assert(slot <= stack_slots, "overflow");
1334         if (map != NULL) {
1335           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1336         } else {
1337           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1338         }
1339       }
1340     } else if (in_regs[i].first()->is_stack()) {
1341       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1342         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1343         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1344       }
1345     }
1346   }
1347 }
1348 
1349 
1350 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1351 // keeps a new JNI critical region from starting until a GC has been
1352 // forced.  Save down any oops in registers and describe them in an
1353 // OopMap.
1354 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1355                                                int stack_slots,
1356                                                int total_c_args,
1357                                                int total_in_args,
1358                                                int arg_save_area,
1359                                                OopMapSet* oop_maps,
1360                                                VMRegPair* in_regs,
1361                                                BasicType* in_sig_bt) {
1362   __ block_comment("check GC_locker::needs_gc");
1363   Label cont;
1364   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1365   __ jcc(Assembler::equal, cont);
1366 
1367   // Save down any incoming oops and call into the runtime to halt for a GC
1368 
1369   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1370   save_or_restore_arguments(masm, stack_slots, total_in_args,
1371                             arg_save_area, map, in_regs, in_sig_bt);
1372 
1373   address the_pc = __ pc();
1374   oop_maps->add_gc_map( __ offset(), map);
1375   __ set_last_Java_frame(rsp, noreg, the_pc);
1376 
1377   __ block_comment("block_for_jni_critical");
1378   __ movptr(c_rarg0, r15_thread);
1379   __ mov(r12, rsp); // remember sp
1380   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1381   __ andptr(rsp, -16); // align stack as required by ABI
1382   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1383   __ mov(rsp, r12); // restore sp
1384   __ reinit_heapbase();
1385 
1386   __ reset_last_Java_frame(false, true);
1387 
1388   save_or_restore_arguments(masm, stack_slots, total_in_args,
1389                             arg_save_area, NULL, in_regs, in_sig_bt);
1390 
1391   __ bind(cont);
1392 #ifdef ASSERT
1393   if (StressCriticalJNINatives) {
1394     // Stress register saving
1395     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1396     save_or_restore_arguments(masm, stack_slots, total_in_args,
1397                               arg_save_area, map, in_regs, in_sig_bt);
1398     // Destroy argument registers
1399     for (int i = 0; i < total_in_args - 1; i++) {
1400       if (in_regs[i].first()->is_Register()) {
1401         const Register reg = in_regs[i].first()->as_Register();
1402         __ xorptr(reg, reg);
1403       } else if (in_regs[i].first()->is_XMMRegister()) {
1404         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1405       } else if (in_regs[i].first()->is_FloatRegister()) {
1406         ShouldNotReachHere();
1407       } else if (in_regs[i].first()->is_stack()) {
1408         // Nothing to do
1409       } else {
1410         ShouldNotReachHere();
1411       }
1412       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1413         i++;
1414       }
1415     }
1416 
1417     save_or_restore_arguments(masm, stack_slots, total_in_args,
1418                               arg_save_area, NULL, in_regs, in_sig_bt);
1419   }
1420 #endif
1421 }
1422 
1423 // Unpack an array argument into a pointer to the body and the length
1424 // if the array is non-null, otherwise pass 0 for both.
1425 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1426   Register tmp_reg = rax;
1427   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1428          "possible collision");
1429   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1430          "possible collision");
1431 
1432   __ block_comment("unpack_array_argument {");
1433 
1434   // Pass the length, ptr pair
1435   Label is_null, done;
1436   VMRegPair tmp;
1437   tmp.set_ptr(tmp_reg->as_VMReg());
1438   if (reg.first()->is_stack()) {
1439     // Load the arg up from the stack
1440     move_ptr(masm, reg, tmp);
1441     reg = tmp;
1442   }
1443   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1444   __ jccb(Assembler::equal, is_null);
1445   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1446   move_ptr(masm, tmp, body_arg);
1447   // load the length relative to the body.
1448   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1449                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1450   move32_64(masm, tmp, length_arg);
1451   __ jmpb(done);
1452   __ bind(is_null);
1453   // Pass zeros
1454   __ xorptr(tmp_reg, tmp_reg);
1455   move_ptr(masm, tmp, body_arg);
1456   move32_64(masm, tmp, length_arg);
1457   __ bind(done);
1458 
1459   __ block_comment("} unpack_array_argument");
1460 }
1461 
1462 
1463 // Different signatures may require very different orders for the move
1464 // to avoid clobbering other arguments.  There's no simple way to
1465 // order them safely.  Compute a safe order for issuing stores and
1466 // break any cycles in those stores.  This code is fairly general but
1467 // it's not necessary on the other platforms so we keep it in the
1468 // platform dependent code instead of moving it into a shared file.
1469 // (See bugs 7013347 & 7145024.)
1470 // Note that this code is specific to LP64.
1471 class ComputeMoveOrder: public StackObj {
1472   class MoveOperation: public ResourceObj {
1473     friend class ComputeMoveOrder;
1474    private:
1475     VMRegPair        _src;
1476     VMRegPair        _dst;
1477     int              _src_index;
1478     int              _dst_index;
1479     bool             _processed;
1480     MoveOperation*  _next;
1481     MoveOperation*  _prev;
1482 
1483     static int get_id(VMRegPair r) {
1484       return r.first()->value();
1485     }
1486 
1487    public:
1488     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1489       _src(src)
1490     , _src_index(src_index)
1491     , _dst(dst)
1492     , _dst_index(dst_index)
1493     , _next(NULL)
1494     , _prev(NULL)
1495     , _processed(false) {
1496     }
1497 
1498     VMRegPair src() const              { return _src; }
1499     int src_id() const                 { return get_id(src()); }
1500     int src_index() const              { return _src_index; }
1501     VMRegPair dst() const              { return _dst; }
1502     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1503     int dst_index() const              { return _dst_index; }
1504     int dst_id() const                 { return get_id(dst()); }
1505     MoveOperation* next() const       { return _next; }
1506     MoveOperation* prev() const       { return _prev; }
1507     void set_processed()               { _processed = true; }
1508     bool is_processed() const          { return _processed; }
1509 
1510     // insert
1511     void break_cycle(VMRegPair temp_register) {
1512       // create a new store following the last store
1513       // to move from the temp_register to the original
1514       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1515 
1516       // break the cycle of links and insert new_store at the end
1517       // break the reverse link.
1518       MoveOperation* p = prev();
1519       assert(p->next() == this, "must be");
1520       _prev = NULL;
1521       p->_next = new_store;
1522       new_store->_prev = p;
1523 
1524       // change the original store to save it's value in the temp.
1525       set_dst(-1, temp_register);
1526     }
1527 
1528     void link(GrowableArray<MoveOperation*>& killer) {
1529       // link this store in front the store that it depends on
1530       MoveOperation* n = killer.at_grow(src_id(), NULL);
1531       if (n != NULL) {
1532         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1533         _next = n;
1534         n->_prev = this;
1535       }
1536     }
1537   };
1538 
1539  private:
1540   GrowableArray<MoveOperation*> edges;
1541 
1542  public:
1543   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1544                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1545     // Move operations where the dest is the stack can all be
1546     // scheduled first since they can't interfere with the other moves.
1547     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1548       if (in_sig_bt[i] == T_ARRAY) {
1549         c_arg--;
1550         if (out_regs[c_arg].first()->is_stack() &&
1551             out_regs[c_arg + 1].first()->is_stack()) {
1552           arg_order.push(i);
1553           arg_order.push(c_arg);
1554         } else {
1555           if (out_regs[c_arg].first()->is_stack() ||
1556               in_regs[i].first() == out_regs[c_arg].first()) {
1557             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1558           } else {
1559             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1560           }
1561         }
1562       } else if (in_sig_bt[i] == T_VOID) {
1563         arg_order.push(i);
1564         arg_order.push(c_arg);
1565       } else {
1566         if (out_regs[c_arg].first()->is_stack() ||
1567             in_regs[i].first() == out_regs[c_arg].first()) {
1568           arg_order.push(i);
1569           arg_order.push(c_arg);
1570         } else {
1571           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1572         }
1573       }
1574     }
1575     // Break any cycles in the register moves and emit the in the
1576     // proper order.
1577     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1578     for (int i = 0; i < stores->length(); i++) {
1579       arg_order.push(stores->at(i)->src_index());
1580       arg_order.push(stores->at(i)->dst_index());
1581     }
1582  }
1583 
1584   // Collected all the move operations
1585   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1586     if (src.first() == dst.first()) return;
1587     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1588   }
1589 
1590   // Walk the edges breaking cycles between moves.  The result list
1591   // can be walked in order to produce the proper set of loads
1592   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1593     // Record which moves kill which values
1594     GrowableArray<MoveOperation*> killer;
1595     for (int i = 0; i < edges.length(); i++) {
1596       MoveOperation* s = edges.at(i);
1597       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1598       killer.at_put_grow(s->dst_id(), s, NULL);
1599     }
1600     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1601            "make sure temp isn't in the registers that are killed");
1602 
1603     // create links between loads and stores
1604     for (int i = 0; i < edges.length(); i++) {
1605       edges.at(i)->link(killer);
1606     }
1607 
1608     // at this point, all the move operations are chained together
1609     // in a doubly linked list.  Processing it backwards finds
1610     // the beginning of the chain, forwards finds the end.  If there's
1611     // a cycle it can be broken at any point,  so pick an edge and walk
1612     // backward until the list ends or we end where we started.
1613     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1614     for (int e = 0; e < edges.length(); e++) {
1615       MoveOperation* s = edges.at(e);
1616       if (!s->is_processed()) {
1617         MoveOperation* start = s;
1618         // search for the beginning of the chain or cycle
1619         while (start->prev() != NULL && start->prev() != s) {
1620           start = start->prev();
1621         }
1622         if (start->prev() == s) {
1623           start->break_cycle(temp_register);
1624         }
1625         // walk the chain forward inserting to store list
1626         while (start != NULL) {
1627           stores->append(start);
1628           start->set_processed();
1629           start = start->next();
1630         }
1631       }
1632     }
1633     return stores;
1634   }
1635 };
1636 
1637 static void verify_oop_args(MacroAssembler* masm,
1638                             methodHandle method,
1639                             const BasicType* sig_bt,
1640                             const VMRegPair* regs) {
1641   Register temp_reg = rbx;  // not part of any compiled calling seq
1642   if (VerifyOops) {
1643     for (int i = 0; i < method->size_of_parameters(); i++) {
1644       if (sig_bt[i] == T_OBJECT ||
1645           sig_bt[i] == T_ARRAY) {
1646         VMReg r = regs[i].first();
1647         assert(r->is_valid(), "bad oop arg");
1648         if (r->is_stack()) {
1649           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1650           __ verify_oop(temp_reg);
1651         } else {
1652           __ verify_oop(r->as_Register());
1653         }
1654       }
1655     }
1656   }
1657 }
1658 
1659 static void gen_special_dispatch(MacroAssembler* masm,
1660                                  methodHandle method,
1661                                  const BasicType* sig_bt,
1662                                  const VMRegPair* regs) {
1663   verify_oop_args(masm, method, sig_bt, regs);
1664   vmIntrinsics::ID iid = method->intrinsic_id();
1665 
1666   // Now write the args into the outgoing interpreter space
1667   bool     has_receiver   = false;
1668   Register receiver_reg   = noreg;
1669   int      member_arg_pos = -1;
1670   Register member_reg     = noreg;
1671   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1672   if (ref_kind != 0) {
1673     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1674     member_reg = rbx;  // known to be free at this point
1675     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1676   } else if (iid == vmIntrinsics::_invokeBasic) {
1677     has_receiver = true;
1678   } else {
1679     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1680   }
1681 
1682   if (member_reg != noreg) {
1683     // Load the member_arg into register, if necessary.
1684     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1685     VMReg r = regs[member_arg_pos].first();
1686     if (r->is_stack()) {
1687       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1688     } else {
1689       // no data motion is needed
1690       member_reg = r->as_Register();
1691     }
1692   }
1693 
1694   if (has_receiver) {
1695     // Make sure the receiver is loaded into a register.
1696     assert(method->size_of_parameters() > 0, "oob");
1697     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1698     VMReg r = regs[0].first();
1699     assert(r->is_valid(), "bad receiver arg");
1700     if (r->is_stack()) {
1701       // Porting note:  This assumes that compiled calling conventions always
1702       // pass the receiver oop in a register.  If this is not true on some
1703       // platform, pick a temp and load the receiver from stack.
1704       fatal("receiver always in a register");
1705       receiver_reg = j_rarg0;  // known to be free at this point
1706       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1707     } else {
1708       // no data motion is needed
1709       receiver_reg = r->as_Register();
1710     }
1711   }
1712 
1713   // Figure out which address we are really jumping to:
1714   MethodHandles::generate_method_handle_dispatch(masm, iid,
1715                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1716 }
1717 
1718 // ---------------------------------------------------------------------------
1719 // Generate a native wrapper for a given method.  The method takes arguments
1720 // in the Java compiled code convention, marshals them to the native
1721 // convention (handlizes oops, etc), transitions to native, makes the call,
1722 // returns to java state (possibly blocking), unhandlizes any result and
1723 // returns.
1724 //
1725 // Critical native functions are a shorthand for the use of
1726 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1727 // functions.  The wrapper is expected to unpack the arguments before
1728 // passing them to the callee and perform checks before and after the
1729 // native call to ensure that they GC_locker
1730 // lock_critical/unlock_critical semantics are followed.  Some other
1731 // parts of JNI setup are skipped like the tear down of the JNI handle
1732 // block and the check for pending exceptions it's impossible for them
1733 // to be thrown.
1734 //
1735 // They are roughly structured like this:
1736 //    if (GC_locker::needs_gc())
1737 //      SharedRuntime::block_for_jni_critical();
1738 //    tranistion to thread_in_native
1739 //    unpack arrray arguments and call native entry point
1740 //    check for safepoint in progress
1741 //    check if any thread suspend flags are set
1742 //      call into JVM and possible unlock the JNI critical
1743 //      if a GC was suppressed while in the critical native.
1744 //    transition back to thread_in_Java
1745 //    return to caller
1746 //
1747 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1748                                                 methodHandle method,
1749                                                 int compile_id,
1750                                                 BasicType* in_sig_bt,
1751                                                 VMRegPair* in_regs,
1752                                                 BasicType ret_type) {
1753   if (method->is_method_handle_intrinsic()) {
1754     vmIntrinsics::ID iid = method->intrinsic_id();
1755     intptr_t start = (intptr_t)__ pc();
1756     int vep_offset = ((intptr_t)__ pc()) - start;
1757     gen_special_dispatch(masm,
1758                          method,
1759                          in_sig_bt,
1760                          in_regs);
1761     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1762     __ flush();
1763     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1764     return nmethod::new_native_nmethod(method,
1765                                        compile_id,
1766                                        masm->code(),
1767                                        vep_offset,
1768                                        frame_complete,
1769                                        stack_slots / VMRegImpl::slots_per_word,
1770                                        in_ByteSize(-1),
1771                                        in_ByteSize(-1),
1772                                        (OopMapSet*)NULL);
1773   }
1774   bool is_critical_native = true;
1775   address native_func = method->critical_native_function();
1776   if (native_func == NULL) {
1777     native_func = method->native_function();
1778     is_critical_native = false;
1779   }
1780   assert(native_func != NULL, "must have function");
1781 
1782   // An OopMap for lock (and class if static)
1783   OopMapSet *oop_maps = new OopMapSet();
1784   intptr_t start = (intptr_t)__ pc();
1785 
1786   // We have received a description of where all the java arg are located
1787   // on entry to the wrapper. We need to convert these args to where
1788   // the jni function will expect them. To figure out where they go
1789   // we convert the java signature to a C signature by inserting
1790   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1791 
1792   const int total_in_args = method->size_of_parameters();
1793   int total_c_args = total_in_args;
1794   if (!is_critical_native) {
1795     total_c_args += 1;
1796     if (method->is_static()) {
1797       total_c_args++;
1798     }
1799   } else {
1800     for (int i = 0; i < total_in_args; i++) {
1801       if (in_sig_bt[i] == T_ARRAY) {
1802         total_c_args++;
1803       }
1804     }
1805   }
1806 
1807   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1808   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1809   BasicType* in_elem_bt = NULL;
1810 
1811   int argc = 0;
1812   if (!is_critical_native) {
1813     out_sig_bt[argc++] = T_ADDRESS;
1814     if (method->is_static()) {
1815       out_sig_bt[argc++] = T_OBJECT;
1816     }
1817 
1818     for (int i = 0; i < total_in_args ; i++ ) {
1819       out_sig_bt[argc++] = in_sig_bt[i];
1820     }
1821   } else {
1822     Thread* THREAD = Thread::current();
1823     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1824     SignatureStream ss(method->signature());
1825     for (int i = 0; i < total_in_args ; i++ ) {
1826       if (in_sig_bt[i] == T_ARRAY) {
1827         // Arrays are passed as int, elem* pair
1828         out_sig_bt[argc++] = T_INT;
1829         out_sig_bt[argc++] = T_ADDRESS;
1830         Symbol* atype = ss.as_symbol(CHECK_NULL);
1831         const char* at = atype->as_C_string();
1832         if (strlen(at) == 2) {
1833           assert(at[0] == '[', "must be");
1834           switch (at[1]) {
1835             case 'B': in_elem_bt[i]  = T_BYTE; break;
1836             case 'C': in_elem_bt[i]  = T_CHAR; break;
1837             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1838             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1839             case 'I': in_elem_bt[i]  = T_INT; break;
1840             case 'J': in_elem_bt[i]  = T_LONG; break;
1841             case 'S': in_elem_bt[i]  = T_SHORT; break;
1842             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1843             default: ShouldNotReachHere();
1844           }
1845         }
1846       } else {
1847         out_sig_bt[argc++] = in_sig_bt[i];
1848         in_elem_bt[i] = T_VOID;
1849       }
1850       if (in_sig_bt[i] != T_VOID) {
1851         assert(in_sig_bt[i] == ss.type(), "must match");
1852         ss.next();
1853       }
1854     }
1855   }
1856 
1857   // Now figure out where the args must be stored and how much stack space
1858   // they require.
1859   int out_arg_slots;
1860   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1861 
1862   // Compute framesize for the wrapper.  We need to handlize all oops in
1863   // incoming registers
1864 
1865   // Calculate the total number of stack slots we will need.
1866 
1867   // First count the abi requirement plus all of the outgoing args
1868   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1869 
1870   // Now the space for the inbound oop handle area
1871   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1872   if (is_critical_native) {
1873     // Critical natives may have to call out so they need a save area
1874     // for register arguments.
1875     int double_slots = 0;
1876     int single_slots = 0;
1877     for ( int i = 0; i < total_in_args; i++) {
1878       if (in_regs[i].first()->is_Register()) {
1879         const Register reg = in_regs[i].first()->as_Register();
1880         switch (in_sig_bt[i]) {
1881           case T_BOOLEAN:
1882           case T_BYTE:
1883           case T_SHORT:
1884           case T_CHAR:
1885           case T_INT:  single_slots++; break;
1886           case T_ARRAY:  // specific to LP64 (7145024)
1887           case T_LONG: double_slots++; break;
1888           default:  ShouldNotReachHere();
1889         }
1890       } else if (in_regs[i].first()->is_XMMRegister()) {
1891         switch (in_sig_bt[i]) {
1892           case T_FLOAT:  single_slots++; break;
1893           case T_DOUBLE: double_slots++; break;
1894           default:  ShouldNotReachHere();
1895         }
1896       } else if (in_regs[i].first()->is_FloatRegister()) {
1897         ShouldNotReachHere();
1898       }
1899     }
1900     total_save_slots = double_slots * 2 + single_slots;
1901     // align the save area
1902     if (double_slots != 0) {
1903       stack_slots = round_to(stack_slots, 2);
1904     }
1905   }
1906 
1907   int oop_handle_offset = stack_slots;
1908   stack_slots += total_save_slots;
1909 
1910   // Now any space we need for handlizing a klass if static method
1911 
1912   int klass_slot_offset = 0;
1913   int klass_offset = -1;
1914   int lock_slot_offset = 0;
1915   bool is_static = false;
1916 
1917   if (method->is_static()) {
1918     klass_slot_offset = stack_slots;
1919     stack_slots += VMRegImpl::slots_per_word;
1920     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1921     is_static = true;
1922   }
1923 
1924   // Plus a lock if needed
1925 
1926   if (method->is_synchronized()) {
1927     lock_slot_offset = stack_slots;
1928     stack_slots += VMRegImpl::slots_per_word;
1929   }
1930 
1931   // Now a place (+2) to save return values or temp during shuffling
1932   // + 4 for return address (which we own) and saved rbp
1933   stack_slots += 6;
1934 
1935   // Ok The space we have allocated will look like:
1936   //
1937   //
1938   // FP-> |                     |
1939   //      |---------------------|
1940   //      | 2 slots for moves   |
1941   //      |---------------------|
1942   //      | lock box (if sync)  |
1943   //      |---------------------| <- lock_slot_offset
1944   //      | klass (if static)   |
1945   //      |---------------------| <- klass_slot_offset
1946   //      | oopHandle area      |
1947   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1948   //      | outbound memory     |
1949   //      | based arguments     |
1950   //      |                     |
1951   //      |---------------------|
1952   //      |                     |
1953   // SP-> | out_preserved_slots |
1954   //
1955   //
1956 
1957 
1958   // Now compute actual number of stack words we need rounding to make
1959   // stack properly aligned.
1960   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1961 
1962   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1963 
1964   // First thing make an ic check to see if we should even be here
1965 
1966   // We are free to use all registers as temps without saving them and
1967   // restoring them except rbp. rbp is the only callee save register
1968   // as far as the interpreter and the compiler(s) are concerned.
1969 
1970 
1971   const Register ic_reg = rax;
1972   const Register receiver = j_rarg0;
1973 
1974   Label hit;
1975   Label exception_pending;
1976 
1977   assert_different_registers(ic_reg, receiver, rscratch1);
1978   __ verify_oop(receiver);
1979   __ load_klass(rscratch1, receiver);
1980   __ cmpq(ic_reg, rscratch1);
1981   __ jcc(Assembler::equal, hit);
1982 
1983   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1984 
1985   // Verified entry point must be aligned
1986   __ align(8);
1987 
1988   __ bind(hit);
1989 
1990   int vep_offset = ((intptr_t)__ pc()) - start;
1991 
1992   // The instruction at the verified entry point must be 5 bytes or longer
1993   // because it can be patched on the fly by make_non_entrant. The stack bang
1994   // instruction fits that requirement.
1995 
1996   // Generate stack overflow check
1997 
1998   if (UseStackBanging) {
1999     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2000   } else {
2001     // need a 5 byte instruction to allow MT safe patching to non-entrant
2002     __ fat_nop();
2003   }
2004 
2005   // Generate a new frame for the wrapper.
2006   __ enter();
2007   // -2 because return address is already present and so is saved rbp
2008   __ subptr(rsp, stack_size - 2*wordSize);
2009 
2010   // Frame is now completed as far as size and linkage.
2011   int frame_complete = ((intptr_t)__ pc()) - start;
2012 
2013     if (UseRTMLocking) {
2014       // Abort RTM transaction before calling JNI
2015       // because critical section will be large and will be
2016       // aborted anyway. Also nmethod could be deoptimized.
2017       __ xabort(0);
2018     }
2019 
2020 #ifdef ASSERT
2021     {
2022       Label L;
2023       __ mov(rax, rsp);
2024       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2025       __ cmpptr(rax, rsp);
2026       __ jcc(Assembler::equal, L);
2027       __ stop("improperly aligned stack");
2028       __ bind(L);
2029     }
2030 #endif /* ASSERT */
2031 
2032 
2033   // We use r14 as the oop handle for the receiver/klass
2034   // It is callee save so it survives the call to native
2035 
2036   const Register oop_handle_reg = r14;
2037 
2038   if (is_critical_native) {
2039     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2040                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2041   }
2042 
2043   //
2044   // We immediately shuffle the arguments so that any vm call we have to
2045   // make from here on out (sync slow path, jvmti, etc.) we will have
2046   // captured the oops from our caller and have a valid oopMap for
2047   // them.
2048 
2049   // -----------------
2050   // The Grand Shuffle
2051 
2052   // The Java calling convention is either equal (linux) or denser (win64) than the
2053   // c calling convention. However the because of the jni_env argument the c calling
2054   // convention always has at least one more (and two for static) arguments than Java.
2055   // Therefore if we move the args from java -> c backwards then we will never have
2056   // a register->register conflict and we don't have to build a dependency graph
2057   // and figure out how to break any cycles.
2058   //
2059 
2060   // Record esp-based slot for receiver on stack for non-static methods
2061   int receiver_offset = -1;
2062 
2063   // This is a trick. We double the stack slots so we can claim
2064   // the oops in the caller's frame. Since we are sure to have
2065   // more args than the caller doubling is enough to make
2066   // sure we can capture all the incoming oop args from the
2067   // caller.
2068   //
2069   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2070 
2071   // Mark location of rbp (someday)
2072   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2073 
2074   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2075   // All inbound args are referenced based on rbp and all outbound args via rsp.
2076 
2077 
2078 #ifdef ASSERT
2079   bool reg_destroyed[RegisterImpl::number_of_registers];
2080   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2081   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2082     reg_destroyed[r] = false;
2083   }
2084   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2085     freg_destroyed[f] = false;
2086   }
2087 
2088 #endif /* ASSERT */
2089 
2090   // This may iterate in two different directions depending on the
2091   // kind of native it is.  The reason is that for regular JNI natives
2092   // the incoming and outgoing registers are offset upwards and for
2093   // critical natives they are offset down.
2094   GrowableArray<int> arg_order(2 * total_in_args);
2095   VMRegPair tmp_vmreg;
2096   tmp_vmreg.set1(rbx->as_VMReg());
2097 
2098   if (!is_critical_native) {
2099     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2100       arg_order.push(i);
2101       arg_order.push(c_arg);
2102     }
2103   } else {
2104     // Compute a valid move order, using tmp_vmreg to break any cycles
2105     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2106   }
2107 
2108   int temploc = -1;
2109   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2110     int i = arg_order.at(ai);
2111     int c_arg = arg_order.at(ai + 1);
2112     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2113     if (c_arg == -1) {
2114       assert(is_critical_native, "should only be required for critical natives");
2115       // This arg needs to be moved to a temporary
2116       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2117       in_regs[i] = tmp_vmreg;
2118       temploc = i;
2119       continue;
2120     } else if (i == -1) {
2121       assert(is_critical_native, "should only be required for critical natives");
2122       // Read from the temporary location
2123       assert(temploc != -1, "must be valid");
2124       i = temploc;
2125       temploc = -1;
2126     }
2127 #ifdef ASSERT
2128     if (in_regs[i].first()->is_Register()) {
2129       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2130     } else if (in_regs[i].first()->is_XMMRegister()) {
2131       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2132     }
2133     if (out_regs[c_arg].first()->is_Register()) {
2134       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2135     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2136       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2137     }
2138 #endif /* ASSERT */
2139     switch (in_sig_bt[i]) {
2140       case T_ARRAY:
2141         if (is_critical_native) {
2142           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2143           c_arg++;
2144 #ifdef ASSERT
2145           if (out_regs[c_arg].first()->is_Register()) {
2146             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2147           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2148             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2149           }
2150 #endif
2151           break;
2152         }
2153       case T_OBJECT:
2154         assert(!is_critical_native, "no oop arguments");
2155         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2156                     ((i == 0) && (!is_static)),
2157                     &receiver_offset);
2158         break;
2159       case T_VOID:
2160         break;
2161 
2162       case T_FLOAT:
2163         float_move(masm, in_regs[i], out_regs[c_arg]);
2164           break;
2165 
2166       case T_DOUBLE:
2167         assert( i + 1 < total_in_args &&
2168                 in_sig_bt[i + 1] == T_VOID &&
2169                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2170         double_move(masm, in_regs[i], out_regs[c_arg]);
2171         break;
2172 
2173       case T_LONG :
2174         long_move(masm, in_regs[i], out_regs[c_arg]);
2175         break;
2176 
2177       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2178 
2179       default:
2180         move32_64(masm, in_regs[i], out_regs[c_arg]);
2181     }
2182   }
2183 
2184   int c_arg;
2185 
2186   // Pre-load a static method's oop into r14.  Used both by locking code and
2187   // the normal JNI call code.
2188   if (!is_critical_native) {
2189     // point c_arg at the first arg that is already loaded in case we
2190     // need to spill before we call out
2191     c_arg = total_c_args - total_in_args;
2192 
2193     if (method->is_static()) {
2194 
2195       //  load oop into a register
2196       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2197 
2198       // Now handlize the static class mirror it's known not-null.
2199       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2200       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2201 
2202       // Now get the handle
2203       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2204       // store the klass handle as second argument
2205       __ movptr(c_rarg1, oop_handle_reg);
2206       // and protect the arg if we must spill
2207       c_arg--;
2208     }
2209   } else {
2210     // For JNI critical methods we need to save all registers in save_args.
2211     c_arg = 0;
2212   }
2213 
2214   // Change state to native (we save the return address in the thread, since it might not
2215   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2216   // points into the right code segment. It does not have to be the correct return pc.
2217   // We use the same pc/oopMap repeatedly when we call out
2218 
2219   intptr_t the_pc = (intptr_t) __ pc();
2220   oop_maps->add_gc_map(the_pc - start, map);
2221 
2222   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2223 
2224 
2225   // We have all of the arguments setup at this point. We must not touch any register
2226   // argument registers at this point (what if we save/restore them there are no oop?
2227 
2228   {
2229     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2230     // protect the args we've loaded
2231     save_args(masm, total_c_args, c_arg, out_regs);
2232     __ mov_metadata(c_rarg1, method());
2233     __ call_VM_leaf(
2234       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2235       r15_thread, c_rarg1);
2236     restore_args(masm, total_c_args, c_arg, out_regs);
2237   }
2238 
2239   // RedefineClasses() tracing support for obsolete method entry
2240   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2241     // protect the args we've loaded
2242     save_args(masm, total_c_args, c_arg, out_regs);
2243     __ mov_metadata(c_rarg1, method());
2244     __ call_VM_leaf(
2245       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2246       r15_thread, c_rarg1);
2247     restore_args(masm, total_c_args, c_arg, out_regs);
2248   }
2249 
2250   // Lock a synchronized method
2251 
2252   // Register definitions used by locking and unlocking
2253 
2254   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2255   const Register obj_reg  = rbx;  // Will contain the oop
2256   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2257   const Register old_hdr  = r13;  // value of old header at unlock time
2258 
2259   Label slow_path_lock;
2260   Label lock_done;
2261 
2262   if (method->is_synchronized()) {
2263     assert(!is_critical_native, "unhandled");
2264 
2265 
2266     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2267 
2268     // Get the handle (the 2nd argument)
2269     __ mov(oop_handle_reg, c_rarg1);
2270 
2271     // Get address of the box
2272 
2273     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2274 
2275     // Load the oop from the handle
2276     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2277 
2278     if (UseBiasedLocking) {
2279       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2280     }
2281 
2282     // Load immediate 1 into swap_reg %rax
2283     __ movl(swap_reg, 1);
2284 
2285     // Load (object->mark() | 1) into swap_reg %rax
2286     __ orptr(swap_reg, Address(obj_reg, 0));
2287 
2288     // Save (object->mark() | 1) into BasicLock's displaced header
2289     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2290 
2291     if (os::is_MP()) {
2292       __ lock();
2293     }
2294 
2295     // src -> dest iff dest == rax else rax <- dest
2296     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2297     __ jcc(Assembler::equal, lock_done);
2298 
2299     // Hmm should this move to the slow path code area???
2300 
2301     // Test if the oopMark is an obvious stack pointer, i.e.,
2302     //  1) (mark & 3) == 0, and
2303     //  2) rsp <= mark < mark + os::pagesize()
2304     // These 3 tests can be done by evaluating the following
2305     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2306     // assuming both stack pointer and pagesize have their
2307     // least significant 2 bits clear.
2308     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2309 
2310     __ subptr(swap_reg, rsp);
2311     __ andptr(swap_reg, 3 - os::vm_page_size());
2312 
2313     // Save the test result, for recursive case, the result is zero
2314     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2315     __ jcc(Assembler::notEqual, slow_path_lock);
2316 
2317     // Slow path will re-enter here
2318 
2319     __ bind(lock_done);
2320   }
2321 
2322 
2323   // Finally just about ready to make the JNI call
2324 
2325 
2326   // get JNIEnv* which is first argument to native
2327   if (!is_critical_native) {
2328     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2329   }
2330 
2331   // Now set thread in native
2332   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2333 
2334   __ call(RuntimeAddress(native_func));
2335 
2336   // Verify or restore cpu control state after JNI call
2337   __ restore_cpu_control_state_after_jni();
2338 
2339   // Unpack native results.
2340   switch (ret_type) {
2341   case T_BOOLEAN: __ c2bool(rax);            break;
2342   case T_CHAR   : __ movzwl(rax, rax);      break;
2343   case T_BYTE   : __ sign_extend_byte (rax); break;
2344   case T_SHORT  : __ sign_extend_short(rax); break;
2345   case T_INT    : /* nothing to do */        break;
2346   case T_DOUBLE :
2347   case T_FLOAT  :
2348     // Result is in xmm0 we'll save as needed
2349     break;
2350   case T_ARRAY:                 // Really a handle
2351   case T_OBJECT:                // Really a handle
2352       break; // can't de-handlize until after safepoint check
2353   case T_VOID: break;
2354   case T_LONG: break;
2355   default       : ShouldNotReachHere();
2356   }
2357 
2358   // Switch thread to "native transition" state before reading the synchronization state.
2359   // This additional state is necessary because reading and testing the synchronization
2360   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2361   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2362   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2363   //     Thread A is resumed to finish this native method, but doesn't block here since it
2364   //     didn't see any synchronization is progress, and escapes.
2365   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2366 
2367   if(os::is_MP()) {
2368     if (UseMembar) {
2369       // Force this write out before the read below
2370       __ membar(Assembler::Membar_mask_bits(
2371            Assembler::LoadLoad | Assembler::LoadStore |
2372            Assembler::StoreLoad | Assembler::StoreStore));
2373     } else {
2374       // Write serialization page so VM thread can do a pseudo remote membar.
2375       // We use the current thread pointer to calculate a thread specific
2376       // offset to write to within the page. This minimizes bus traffic
2377       // due to cache line collision.
2378       __ serialize_memory(r15_thread, rcx);
2379     }
2380   }
2381 
2382   Label after_transition;
2383 
2384   // check for safepoint operation in progress and/or pending suspend requests
2385   {
2386     Label Continue;
2387 
2388     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2389              SafepointSynchronize::_not_synchronized);
2390 
2391     Label L;
2392     __ jcc(Assembler::notEqual, L);
2393     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2394     __ jcc(Assembler::equal, Continue);
2395     __ bind(L);
2396 
2397     // Don't use call_VM as it will see a possible pending exception and forward it
2398     // and never return here preventing us from clearing _last_native_pc down below.
2399     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2400     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2401     // by hand.
2402     //
2403     save_native_result(masm, ret_type, stack_slots);
2404     __ mov(c_rarg0, r15_thread);
2405     __ mov(r12, rsp); // remember sp
2406     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2407     __ andptr(rsp, -16); // align stack as required by ABI
2408     if (!is_critical_native) {
2409       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2410     } else {
2411       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2412     }
2413     __ mov(rsp, r12); // restore sp
2414     __ reinit_heapbase();
2415     // Restore any method result value
2416     restore_native_result(masm, ret_type, stack_slots);
2417 
2418     if (is_critical_native) {
2419       // The call above performed the transition to thread_in_Java so
2420       // skip the transition logic below.
2421       __ jmpb(after_transition);
2422     }
2423 
2424     __ bind(Continue);
2425   }
2426 
2427   // change thread state
2428   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2429   __ bind(after_transition);
2430 
2431   Label reguard;
2432   Label reguard_done;
2433   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2434   __ jcc(Assembler::equal, reguard);
2435   __ bind(reguard_done);
2436 
2437   // native result if any is live
2438 
2439   // Unlock
2440   Label unlock_done;
2441   Label slow_path_unlock;
2442   if (method->is_synchronized()) {
2443 
2444     // Get locked oop from the handle we passed to jni
2445     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2446 
2447     Label done;
2448 
2449     if (UseBiasedLocking) {
2450       __ biased_locking_exit(obj_reg, old_hdr, done);
2451     }
2452 
2453     // Simple recursive lock?
2454 
2455     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2456     __ jcc(Assembler::equal, done);
2457 
2458     // Must save rax if if it is live now because cmpxchg must use it
2459     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2460       save_native_result(masm, ret_type, stack_slots);
2461     }
2462 
2463 
2464     // get address of the stack lock
2465     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2466     //  get old displaced header
2467     __ movptr(old_hdr, Address(rax, 0));
2468 
2469     // Atomic swap old header if oop still contains the stack lock
2470     if (os::is_MP()) {
2471       __ lock();
2472     }
2473     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2474     __ jcc(Assembler::notEqual, slow_path_unlock);
2475 
2476     // slow path re-enters here
2477     __ bind(unlock_done);
2478     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2479       restore_native_result(masm, ret_type, stack_slots);
2480     }
2481 
2482     __ bind(done);
2483 
2484   }
2485   {
2486     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2487     save_native_result(masm, ret_type, stack_slots);
2488     __ mov_metadata(c_rarg1, method());
2489     __ call_VM_leaf(
2490          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2491          r15_thread, c_rarg1);
2492     restore_native_result(masm, ret_type, stack_slots);
2493   }
2494 
2495   __ reset_last_Java_frame(false, true);
2496 
2497   // Unpack oop result
2498   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2499       Label L;
2500       __ testptr(rax, rax);
2501       __ jcc(Assembler::zero, L);
2502       __ movptr(rax, Address(rax, 0));
2503       __ bind(L);
2504       __ verify_oop(rax);
2505   }
2506 
2507   if (!is_critical_native) {
2508     // reset handle block
2509     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2510     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2511   }
2512 
2513   // pop our frame
2514 
2515   __ leave();
2516 
2517   if (!is_critical_native) {
2518     // Any exception pending?
2519     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2520     __ jcc(Assembler::notEqual, exception_pending);
2521   }
2522 
2523   // Return
2524 
2525   __ ret(0);
2526 
2527   // Unexpected paths are out of line and go here
2528 
2529   if (!is_critical_native) {
2530     // forward the exception
2531     __ bind(exception_pending);
2532 
2533     // and forward the exception
2534     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2535   }
2536 
2537   // Slow path locking & unlocking
2538   if (method->is_synchronized()) {
2539 
2540     // BEGIN Slow path lock
2541     __ bind(slow_path_lock);
2542 
2543     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2544     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2545 
2546     // protect the args we've loaded
2547     save_args(masm, total_c_args, c_arg, out_regs);
2548 
2549     __ mov(c_rarg0, obj_reg);
2550     __ mov(c_rarg1, lock_reg);
2551     __ mov(c_rarg2, r15_thread);
2552 
2553     // Not a leaf but we have last_Java_frame setup as we want
2554     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2555     restore_args(masm, total_c_args, c_arg, out_regs);
2556 
2557 #ifdef ASSERT
2558     { Label L;
2559     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2560     __ jcc(Assembler::equal, L);
2561     __ stop("no pending exception allowed on exit from monitorenter");
2562     __ bind(L);
2563     }
2564 #endif
2565     __ jmp(lock_done);
2566 
2567     // END Slow path lock
2568 
2569     // BEGIN Slow path unlock
2570     __ bind(slow_path_unlock);
2571 
2572     // If we haven't already saved the native result we must save it now as xmm registers
2573     // are still exposed.
2574 
2575     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2576       save_native_result(masm, ret_type, stack_slots);
2577     }
2578 
2579     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2580 
2581     __ mov(c_rarg0, obj_reg);
2582     __ mov(r12, rsp); // remember sp
2583     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2584     __ andptr(rsp, -16); // align stack as required by ABI
2585 
2586     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2587     // NOTE that obj_reg == rbx currently
2588     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2589     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2590 
2591     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2592     __ mov(rsp, r12); // restore sp
2593     __ reinit_heapbase();
2594 #ifdef ASSERT
2595     {
2596       Label L;
2597       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2598       __ jcc(Assembler::equal, L);
2599       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2600       __ bind(L);
2601     }
2602 #endif /* ASSERT */
2603 
2604     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2605 
2606     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2607       restore_native_result(masm, ret_type, stack_slots);
2608     }
2609     __ jmp(unlock_done);
2610 
2611     // END Slow path unlock
2612 
2613   } // synchronized
2614 
2615   // SLOW PATH Reguard the stack if needed
2616 
2617   __ bind(reguard);
2618   save_native_result(masm, ret_type, stack_slots);
2619   __ mov(r12, rsp); // remember sp
2620   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2621   __ andptr(rsp, -16); // align stack as required by ABI
2622   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2623   __ mov(rsp, r12); // restore sp
2624   __ reinit_heapbase();
2625   restore_native_result(masm, ret_type, stack_slots);
2626   // and continue
2627   __ jmp(reguard_done);
2628 
2629 
2630 
2631   __ flush();
2632 
2633   nmethod *nm = nmethod::new_native_nmethod(method,
2634                                             compile_id,
2635                                             masm->code(),
2636                                             vep_offset,
2637                                             frame_complete,
2638                                             stack_slots / VMRegImpl::slots_per_word,
2639                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2640                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2641                                             oop_maps);
2642 
2643   if (is_critical_native) {
2644     nm->set_lazy_critical_native(true);
2645   }
2646 
2647   return nm;
2648 
2649 }
2650 
2651 #ifdef HAVE_DTRACE_H
2652 // ---------------------------------------------------------------------------
2653 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2654 // in the Java compiled code convention, marshals them to the native
2655 // abi and then leaves nops at the position you would expect to call a native
2656 // function. When the probe is enabled the nops are replaced with a trap
2657 // instruction that dtrace inserts and the trace will cause a notification
2658 // to dtrace.
2659 //
2660 // The probes are only able to take primitive types and java/lang/String as
2661 // arguments.  No other java types are allowed. Strings are converted to utf8
2662 // strings so that from dtrace point of view java strings are converted to C
2663 // strings. There is an arbitrary fixed limit on the total space that a method
2664 // can use for converting the strings. (256 chars per string in the signature).
2665 // So any java string larger then this is truncated.
2666 
2667 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2668 static bool offsets_initialized = false;
2669 
2670 
2671 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
2672                                                 methodHandle method) {
2673 
2674 
2675   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2676   // be single threaded in this method.
2677   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2678 
2679   if (!offsets_initialized) {
2680     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
2681     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
2682     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
2683     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
2684     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
2685     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
2686 
2687     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
2688     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
2689     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
2690     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
2691     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
2692     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
2693     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
2694     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
2695 
2696     offsets_initialized = true;
2697   }
2698   // Fill in the signature array, for the calling-convention call.
2699   int total_args_passed = method->size_of_parameters();
2700 
2701   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2702   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2703 
2704   // The signature we are going to use for the trap that dtrace will see
2705   // java/lang/String is converted. We drop "this" and any other object
2706   // is converted to NULL.  (A one-slot java/lang/Long object reference
2707   // is converted to a two-slot long, which is why we double the allocation).
2708   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2709   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2710 
2711   int i=0;
2712   int total_strings = 0;
2713   int first_arg_to_pass = 0;
2714   int total_c_args = 0;
2715 
2716   // Skip the receiver as dtrace doesn't want to see it
2717   if( !method->is_static() ) {
2718     in_sig_bt[i++] = T_OBJECT;
2719     first_arg_to_pass = 1;
2720   }
2721 
2722   // We need to convert the java args to where a native (non-jni) function
2723   // would expect them. To figure out where they go we convert the java
2724   // signature to a C signature.
2725 
2726   SignatureStream ss(method->signature());
2727   for ( ; !ss.at_return_type(); ss.next()) {
2728     BasicType bt = ss.type();
2729     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2730     out_sig_bt[total_c_args++] = bt;
2731     if( bt == T_OBJECT) {
2732       Symbol* s = ss.as_symbol_or_null();   // symbol is created
2733       if (s == vmSymbols::java_lang_String()) {
2734         total_strings++;
2735         out_sig_bt[total_c_args-1] = T_ADDRESS;
2736       } else if (s == vmSymbols::java_lang_Boolean() ||
2737                  s == vmSymbols::java_lang_Character() ||
2738                  s == vmSymbols::java_lang_Byte() ||
2739                  s == vmSymbols::java_lang_Short() ||
2740                  s == vmSymbols::java_lang_Integer() ||
2741                  s == vmSymbols::java_lang_Float()) {
2742         out_sig_bt[total_c_args-1] = T_INT;
2743       } else if (s == vmSymbols::java_lang_Long() ||
2744                  s == vmSymbols::java_lang_Double()) {
2745         out_sig_bt[total_c_args-1] = T_LONG;
2746         out_sig_bt[total_c_args++] = T_VOID;
2747       }
2748     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2749       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2750       // We convert double to long
2751       out_sig_bt[total_c_args-1] = T_LONG;
2752       out_sig_bt[total_c_args++] = T_VOID;
2753     } else if ( bt == T_FLOAT) {
2754       // We convert float to int
2755       out_sig_bt[total_c_args-1] = T_INT;
2756     }
2757   }
2758 
2759   assert(i==total_args_passed, "validly parsed signature");
2760 
2761   // Now get the compiled-Java layout as input arguments
2762   int comp_args_on_stack;
2763   comp_args_on_stack = SharedRuntime::java_calling_convention(
2764       in_sig_bt, in_regs, total_args_passed, false);
2765 
2766   // Now figure out where the args must be stored and how much stack space
2767   // they require (neglecting out_preserve_stack_slots but space for storing
2768   // the 1st six register arguments). It's weird see int_stk_helper.
2769 
2770   int out_arg_slots;
2771   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2772 
2773   // Calculate the total number of stack slots we will need.
2774 
2775   // First count the abi requirement plus all of the outgoing args
2776   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2777 
2778   // Now space for the string(s) we must convert
2779   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2780   for (i = 0; i < total_strings ; i++) {
2781     string_locs[i] = stack_slots;
2782     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2783   }
2784 
2785   // Plus the temps we might need to juggle register args
2786   // regs take two slots each
2787   stack_slots += (Argument::n_int_register_parameters_c +
2788                   Argument::n_float_register_parameters_c) * 2;
2789 
2790 
2791   // + 4 for return address (which we own) and saved rbp,
2792 
2793   stack_slots += 4;
2794 
2795   // Ok The space we have allocated will look like:
2796   //
2797   //
2798   // FP-> |                     |
2799   //      |---------------------|
2800   //      | string[n]           |
2801   //      |---------------------| <- string_locs[n]
2802   //      | string[n-1]         |
2803   //      |---------------------| <- string_locs[n-1]
2804   //      | ...                 |
2805   //      | ...                 |
2806   //      |---------------------| <- string_locs[1]
2807   //      | string[0]           |
2808   //      |---------------------| <- string_locs[0]
2809   //      | outbound memory     |
2810   //      | based arguments     |
2811   //      |                     |
2812   //      |---------------------|
2813   //      |                     |
2814   // SP-> | out_preserved_slots |
2815   //
2816   //
2817 
2818   // Now compute actual number of stack words we need rounding to make
2819   // stack properly aligned.
2820   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2821 
2822   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2823 
2824   intptr_t start = (intptr_t)__ pc();
2825 
2826   // First thing make an ic check to see if we should even be here
2827 
2828   // We are free to use all registers as temps without saving them and
2829   // restoring them except rbp. rbp, is the only callee save register
2830   // as far as the interpreter and the compiler(s) are concerned.
2831 
2832   const Register ic_reg = rax;
2833   const Register receiver = rcx;
2834   Label hit;
2835   Label exception_pending;
2836 
2837 
2838   __ verify_oop(receiver);
2839   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2840   __ jcc(Assembler::equal, hit);
2841 
2842   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2843 
2844   // verified entry must be aligned for code patching.
2845   // and the first 5 bytes must be in the same cache line
2846   // if we align at 8 then we will be sure 5 bytes are in the same line
2847   __ align(8);
2848 
2849   __ bind(hit);
2850 
2851   int vep_offset = ((intptr_t)__ pc()) - start;
2852 
2853 
2854   // The instruction at the verified entry point must be 5 bytes or longer
2855   // because it can be patched on the fly by make_non_entrant. The stack bang
2856   // instruction fits that requirement.
2857 
2858   // Generate stack overflow check
2859 
2860   if (UseStackBanging) {
2861     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2862       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2863     } else {
2864       __ movl(rax, stack_size);
2865       __ bang_stack_size(rax, rbx);
2866     }
2867   } else {
2868     // need a 5 byte instruction to allow MT safe patching to non-entrant
2869     __ fat_nop();
2870   }
2871 
2872   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2873          "valid size for make_non_entrant");
2874 
2875   // Generate a new frame for the wrapper.
2876   __ enter();
2877 
2878   // -4 because return address is already present and so is saved rbp,
2879   if (stack_size - 2*wordSize != 0) {
2880     __ subq(rsp, stack_size - 2*wordSize);
2881   }
2882 
2883   // Frame is now completed as far a size and linkage.
2884 
2885   int frame_complete = ((intptr_t)__ pc()) - start;
2886 
2887   int c_arg, j_arg;
2888 
2889   // State of input register args
2890 
2891   bool  live[ConcreteRegisterImpl::number_of_registers];
2892 
2893   live[j_rarg0->as_VMReg()->value()] = false;
2894   live[j_rarg1->as_VMReg()->value()] = false;
2895   live[j_rarg2->as_VMReg()->value()] = false;
2896   live[j_rarg3->as_VMReg()->value()] = false;
2897   live[j_rarg4->as_VMReg()->value()] = false;
2898   live[j_rarg5->as_VMReg()->value()] = false;
2899 
2900   live[j_farg0->as_VMReg()->value()] = false;
2901   live[j_farg1->as_VMReg()->value()] = false;
2902   live[j_farg2->as_VMReg()->value()] = false;
2903   live[j_farg3->as_VMReg()->value()] = false;
2904   live[j_farg4->as_VMReg()->value()] = false;
2905   live[j_farg5->as_VMReg()->value()] = false;
2906   live[j_farg6->as_VMReg()->value()] = false;
2907   live[j_farg7->as_VMReg()->value()] = false;
2908 
2909 
2910   bool rax_is_zero = false;
2911 
2912   // All args (except strings) destined for the stack are moved first
2913   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2914        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2915     VMRegPair src = in_regs[j_arg];
2916     VMRegPair dst = out_regs[c_arg];
2917 
2918     // Get the real reg value or a dummy (rsp)
2919 
2920     int src_reg = src.first()->is_reg() ?
2921                   src.first()->value() :
2922                   rsp->as_VMReg()->value();
2923 
2924     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2925                     (in_sig_bt[j_arg] == T_OBJECT &&
2926                      out_sig_bt[c_arg] != T_INT &&
2927                      out_sig_bt[c_arg] != T_ADDRESS &&
2928                      out_sig_bt[c_arg] != T_LONG);
2929 
2930     live[src_reg] = !useless;
2931 
2932     if (dst.first()->is_stack()) {
2933 
2934       // Even though a string arg in a register is still live after this loop
2935       // after the string conversion loop (next) it will be dead so we take
2936       // advantage of that now for simpler code to manage live.
2937 
2938       live[src_reg] = false;
2939       switch (in_sig_bt[j_arg]) {
2940 
2941         case T_ARRAY:
2942         case T_OBJECT:
2943           {
2944             Address stack_dst(rsp, reg2offset_out(dst.first()));
2945 
2946             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2947               // need to unbox a one-word value
2948               Register in_reg = rax;
2949               if ( src.first()->is_reg() ) {
2950                 in_reg = src.first()->as_Register();
2951               } else {
2952                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2953                 rax_is_zero = false;
2954               }
2955               Label skipUnbox;
2956               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2957                         (int32_t)NULL_WORD);
2958               __ testq(in_reg, in_reg);
2959               __ jcc(Assembler::zero, skipUnbox);
2960 
2961               BasicType bt = out_sig_bt[c_arg];
2962               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2963               Address src1(in_reg, box_offset);
2964               if ( bt == T_LONG ) {
2965                 __ movq(in_reg,  src1);
2966                 __ movq(stack_dst, in_reg);
2967                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2968                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2969               } else {
2970                 __ movl(in_reg,  src1);
2971                 __ movl(stack_dst, in_reg);
2972               }
2973 
2974               __ bind(skipUnbox);
2975             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2976               // Convert the arg to NULL
2977               if (!rax_is_zero) {
2978                 __ xorq(rax, rax);
2979                 rax_is_zero = true;
2980               }
2981               __ movq(stack_dst, rax);
2982             }
2983           }
2984           break;
2985 
2986         case T_VOID:
2987           break;
2988 
2989         case T_FLOAT:
2990           // This does the right thing since we know it is destined for the
2991           // stack
2992           float_move(masm, src, dst);
2993           break;
2994 
2995         case T_DOUBLE:
2996           // This does the right thing since we know it is destined for the
2997           // stack
2998           double_move(masm, src, dst);
2999           break;
3000 
3001         case T_LONG :
3002           long_move(masm, src, dst);
3003           break;
3004 
3005         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
3006 
3007         default:
3008           move32_64(masm, src, dst);
3009       }
3010     }
3011 
3012   }
3013 
3014   // If we have any strings we must store any register based arg to the stack
3015   // This includes any still live xmm registers too.
3016 
3017   int sid = 0;
3018 
3019   if (total_strings > 0 ) {
3020     for (j_arg = first_arg_to_pass, c_arg = 0 ;
3021          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3022       VMRegPair src = in_regs[j_arg];
3023       VMRegPair dst = out_regs[c_arg];
3024 
3025       if (src.first()->is_reg()) {
3026         Address src_tmp(rbp, fp_offset[src.first()->value()]);
3027 
3028         // string oops were left untouched by the previous loop even if the
3029         // eventual (converted) arg is destined for the stack so park them
3030         // away now (except for first)
3031 
3032         if (out_sig_bt[c_arg] == T_ADDRESS) {
3033           Address utf8_addr = Address(
3034               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3035           if (sid != 1) {
3036             // The first string arg won't be killed until after the utf8
3037             // conversion
3038             __ movq(utf8_addr, src.first()->as_Register());
3039           }
3040         } else if (dst.first()->is_reg()) {
3041           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
3042 
3043             // Convert the xmm register to an int and store it in the reserved
3044             // location for the eventual c register arg
3045             XMMRegister f = src.first()->as_XMMRegister();
3046             if (in_sig_bt[j_arg] == T_FLOAT) {
3047               __ movflt(src_tmp, f);
3048             } else {
3049               __ movdbl(src_tmp, f);
3050             }
3051           } else {
3052             // If the arg is an oop type we don't support don't bother to store
3053             // it remember string was handled above.
3054             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3055                             (in_sig_bt[j_arg] == T_OBJECT &&
3056                              out_sig_bt[c_arg] != T_INT &&
3057                              out_sig_bt[c_arg] != T_LONG);
3058 
3059             if (!useless) {
3060               __ movq(src_tmp, src.first()->as_Register());
3061             }
3062           }
3063         }
3064       }
3065       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3066         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3067         ++c_arg; // skip over T_VOID to keep the loop indices in sync
3068       }
3069     }
3070 
3071     // Now that the volatile registers are safe, convert all the strings
3072     sid = 0;
3073 
3074     for (j_arg = first_arg_to_pass, c_arg = 0 ;
3075          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3076       if (out_sig_bt[c_arg] == T_ADDRESS) {
3077         // It's a string
3078         Address utf8_addr = Address(
3079             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3080         // The first string we find might still be in the original java arg
3081         // register
3082 
3083         VMReg src = in_regs[j_arg].first();
3084 
3085         // We will need to eventually save the final argument to the trap
3086         // in the von-volatile location dedicated to src. This is the offset
3087         // from fp we will use.
3088         int src_off = src->is_reg() ?
3089             fp_offset[src->value()] : reg2offset_in(src);
3090 
3091         // This is where the argument will eventually reside
3092         VMRegPair dst = out_regs[c_arg];
3093 
3094         if (src->is_reg()) {
3095           if (sid == 1) {
3096             __ movq(c_rarg0, src->as_Register());
3097           } else {
3098             __ movq(c_rarg0, utf8_addr);
3099           }
3100         } else {
3101           // arg is still in the original location
3102           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
3103         }
3104         Label done, convert;
3105 
3106         // see if the oop is NULL
3107         __ testq(c_rarg0, c_rarg0);
3108         __ jcc(Assembler::notEqual, convert);
3109 
3110         if (dst.first()->is_reg()) {
3111           // Save the ptr to utf string in the origina src loc or the tmp
3112           // dedicated to it
3113           __ movq(Address(rbp, src_off), c_rarg0);
3114         } else {
3115           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
3116         }
3117         __ jmp(done);
3118 
3119         __ bind(convert);
3120 
3121         __ lea(c_rarg1, utf8_addr);
3122         if (dst.first()->is_reg()) {
3123           __ movq(Address(rbp, src_off), c_rarg1);
3124         } else {
3125           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
3126         }
3127         // And do the conversion
3128         __ call(RuntimeAddress(
3129                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
3130 
3131         __ bind(done);
3132       }
3133       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3134         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3135         ++c_arg; // skip over T_VOID to keep the loop indices in sync
3136       }
3137     }
3138     // The get_utf call killed all the c_arg registers
3139     live[c_rarg0->as_VMReg()->value()] = false;
3140     live[c_rarg1->as_VMReg()->value()] = false;
3141     live[c_rarg2->as_VMReg()->value()] = false;
3142     live[c_rarg3->as_VMReg()->value()] = false;
3143     live[c_rarg4->as_VMReg()->value()] = false;
3144     live[c_rarg5->as_VMReg()->value()] = false;
3145 
3146     live[c_farg0->as_VMReg()->value()] = false;
3147     live[c_farg1->as_VMReg()->value()] = false;
3148     live[c_farg2->as_VMReg()->value()] = false;
3149     live[c_farg3->as_VMReg()->value()] = false;
3150     live[c_farg4->as_VMReg()->value()] = false;
3151     live[c_farg5->as_VMReg()->value()] = false;
3152     live[c_farg6->as_VMReg()->value()] = false;
3153     live[c_farg7->as_VMReg()->value()] = false;
3154   }
3155 
3156   // Now we can finally move the register args to their desired locations
3157 
3158   rax_is_zero = false;
3159 
3160   for (j_arg = first_arg_to_pass, c_arg = 0 ;
3161        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3162 
3163     VMRegPair src = in_regs[j_arg];
3164     VMRegPair dst = out_regs[c_arg];
3165 
3166     // Only need to look for args destined for the interger registers (since we
3167     // convert float/double args to look like int/long outbound)
3168     if (dst.first()->is_reg()) {
3169       Register r =  dst.first()->as_Register();
3170 
3171       // Check if the java arg is unsupported and thereofre useless
3172       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3173                       (in_sig_bt[j_arg] == T_OBJECT &&
3174                        out_sig_bt[c_arg] != T_INT &&
3175                        out_sig_bt[c_arg] != T_ADDRESS &&
3176                        out_sig_bt[c_arg] != T_LONG);
3177 
3178 
3179       // If we're going to kill an existing arg save it first
3180       if (live[dst.first()->value()]) {
3181         // you can't kill yourself
3182         if (src.first() != dst.first()) {
3183           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
3184         }
3185       }
3186       if (src.first()->is_reg()) {
3187         if (live[src.first()->value()] ) {
3188           if (in_sig_bt[j_arg] == T_FLOAT) {
3189             __ movdl(r, src.first()->as_XMMRegister());
3190           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
3191             __ movdq(r, src.first()->as_XMMRegister());
3192           } else if (r != src.first()->as_Register()) {
3193             if (!useless) {
3194               __ movq(r, src.first()->as_Register());
3195             }
3196           }
3197         } else {
3198           // If the arg is an oop type we don't support don't bother to store
3199           // it
3200           if (!useless) {
3201             if (in_sig_bt[j_arg] == T_DOUBLE ||
3202                 in_sig_bt[j_arg] == T_LONG  ||
3203                 in_sig_bt[j_arg] == T_OBJECT ) {
3204               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
3205             } else {
3206               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
3207             }
3208           }
3209         }
3210         live[src.first()->value()] = false;
3211       } else if (!useless) {
3212         // full sized move even for int should be ok
3213         __ movq(r, Address(rbp, reg2offset_in(src.first())));
3214       }
3215 
3216       // At this point r has the original java arg in the final location
3217       // (assuming it wasn't useless). If the java arg was an oop
3218       // we have a bit more to do
3219 
3220       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
3221         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
3222           // need to unbox a one-word value
3223           Label skip;
3224           __ testq(r, r);
3225           __ jcc(Assembler::equal, skip);
3226           BasicType bt = out_sig_bt[c_arg];
3227           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
3228           Address src1(r, box_offset);
3229           if ( bt == T_LONG ) {
3230             __ movq(r, src1);
3231           } else {
3232             __ movl(r, src1);
3233           }
3234           __ bind(skip);
3235 
3236         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
3237           // Convert the arg to NULL
3238           __ xorq(r, r);
3239         }
3240       }
3241 
3242       // dst can longer be holding an input value
3243       live[dst.first()->value()] = false;
3244     }
3245     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3246       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3247       ++c_arg; // skip over T_VOID to keep the loop indices in sync
3248     }
3249   }
3250 
3251 
3252   // Ok now we are done. Need to place the nop that dtrace wants in order to
3253   // patch in the trap
3254   int patch_offset = ((intptr_t)__ pc()) - start;
3255 
3256   __ nop();
3257 
3258 
3259   // Return
3260 
3261   __ leave();
3262   __ ret(0);
3263 
3264   __ flush();
3265 
3266   nmethod *nm = nmethod::new_dtrace_nmethod(
3267       method, masm->code(), vep_offset, patch_offset, frame_complete,
3268       stack_slots / VMRegImpl::slots_per_word);
3269   return nm;
3270 
3271 }
3272 
3273 #endif // HAVE_DTRACE_H
3274 
3275 // this function returns the adjust size (in number of words) to a c2i adapter
3276 // activation for use during deoptimization
3277 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
3278   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3279 }
3280 
3281 
3282 uint SharedRuntime::out_preserve_stack_slots() {
3283   return 0;
3284 }
3285 
3286 //------------------------------generate_deopt_blob----------------------------
3287 void SharedRuntime::generate_deopt_blob() {
3288   // Allocate space for the code
3289   ResourceMark rm;
3290   // Setup code generation tools
3291   CodeBuffer buffer("deopt_blob", 2048, 1024);
3292   MacroAssembler* masm = new MacroAssembler(&buffer);
3293   int frame_size_in_words;
3294   OopMap* map = NULL;
3295   OopMapSet *oop_maps = new OopMapSet();
3296 
3297   // -------------
3298   // This code enters when returning to a de-optimized nmethod.  A return
3299   // address has been pushed on the the stack, and return values are in
3300   // registers.
3301   // If we are doing a normal deopt then we were called from the patched
3302   // nmethod from the point we returned to the nmethod. So the return
3303   // address on the stack is wrong by NativeCall::instruction_size
3304   // We will adjust the value so it looks like we have the original return
3305   // address on the stack (like when we eagerly deoptimized).
3306   // In the case of an exception pending when deoptimizing, we enter
3307   // with a return address on the stack that points after the call we patched
3308   // into the exception handler. We have the following register state from,
3309   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
3310   //    rax: exception oop
3311   //    rbx: exception handler
3312   //    rdx: throwing pc
3313   // So in this case we simply jam rdx into the useless return address and
3314   // the stack looks just like we want.
3315   //
3316   // At this point we need to de-opt.  We save the argument return
3317   // registers.  We call the first C routine, fetch_unroll_info().  This
3318   // routine captures the return values and returns a structure which
3319   // describes the current frame size and the sizes of all replacement frames.
3320   // The current frame is compiled code and may contain many inlined
3321   // functions, each with their own JVM state.  We pop the current frame, then
3322   // push all the new frames.  Then we call the C routine unpack_frames() to
3323   // populate these frames.  Finally unpack_frames() returns us the new target
3324   // address.  Notice that callee-save registers are BLOWN here; they have
3325   // already been captured in the vframeArray at the time the return PC was
3326   // patched.
3327   address start = __ pc();
3328   Label cont;
3329 
3330   // Prolog for non exception case!
3331 
3332   // Save everything in sight.
3333   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3334 
3335   // Normal deoptimization.  Save exec mode for unpack_frames.
3336   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
3337   __ jmp(cont);
3338 
3339   int reexecute_offset = __ pc() - start;
3340 
3341   // Reexecute case
3342   // return address is the pc describes what bci to do re-execute at
3343 
3344   // No need to update map as each call to save_live_registers will produce identical oopmap
3345   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3346 
3347   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
3348   __ jmp(cont);
3349 
3350   int exception_offset = __ pc() - start;
3351 
3352   // Prolog for exception case
3353 
3354   // all registers are dead at this entry point, except for rax, and
3355   // rdx which contain the exception oop and exception pc
3356   // respectively.  Set them in TLS and fall thru to the
3357   // unpack_with_exception_in_tls entry point.
3358 
3359   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3360   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3361 
3362   int exception_in_tls_offset = __ pc() - start;
3363 
3364   // new implementation because exception oop is now passed in JavaThread
3365 
3366   // Prolog for exception case
3367   // All registers must be preserved because they might be used by LinearScan
3368   // Exceptiop oop and throwing PC are passed in JavaThread
3369   // tos: stack at point of call to method that threw the exception (i.e. only
3370   // args are on the stack, no return address)
3371 
3372   // make room on stack for the return address
3373   // It will be patched later with the throwing pc. The correct value is not
3374   // available now because loading it from memory would destroy registers.
3375   __ push(0);
3376 
3377   // Save everything in sight.
3378   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3379 
3380   // Now it is safe to overwrite any register
3381 
3382   // Deopt during an exception.  Save exec mode for unpack_frames.
3383   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3384 
3385   // load throwing pc from JavaThread and patch it as the return address
3386   // of the current frame. Then clear the field in JavaThread
3387 
3388   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3389   __ movptr(Address(rbp, wordSize), rdx);
3390   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3391 
3392 #ifdef ASSERT
3393   // verify that there is really an exception oop in JavaThread
3394   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3395   __ verify_oop(rax);
3396 
3397   // verify that there is no pending exception
3398   Label no_pending_exception;
3399   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3400   __ testptr(rax, rax);
3401   __ jcc(Assembler::zero, no_pending_exception);
3402   __ stop("must not have pending exception here");
3403   __ bind(no_pending_exception);
3404 #endif
3405 
3406   __ bind(cont);
3407 
3408   // Call C code.  Need thread and this frame, but NOT official VM entry
3409   // crud.  We cannot block on this call, no GC can happen.
3410   //
3411   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3412 
3413   // fetch_unroll_info needs to call last_java_frame().
3414 
3415   __ set_last_Java_frame(noreg, noreg, NULL);
3416 #ifdef ASSERT
3417   { Label L;
3418     __ cmpptr(Address(r15_thread,
3419                     JavaThread::last_Java_fp_offset()),
3420             (int32_t)0);
3421     __ jcc(Assembler::equal, L);
3422     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3423     __ bind(L);
3424   }
3425 #endif // ASSERT
3426   __ mov(c_rarg0, r15_thread);
3427   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3428 
3429   // Need to have an oopmap that tells fetch_unroll_info where to
3430   // find any register it might need.
3431   oop_maps->add_gc_map(__ pc() - start, map);
3432 
3433   __ reset_last_Java_frame(false, false);
3434 
3435   // Load UnrollBlock* into rdi
3436   __ mov(rdi, rax);
3437 
3438    Label noException;
3439   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3440   __ jcc(Assembler::notEqual, noException);
3441   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3442   // QQQ this is useless it was NULL above
3443   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3444   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3445   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3446 
3447   __ verify_oop(rax);
3448 
3449   // Overwrite the result registers with the exception results.
3450   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3451   // I think this is useless
3452   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3453 
3454   __ bind(noException);
3455 
3456   // Only register save data is on the stack.
3457   // Now restore the result registers.  Everything else is either dead
3458   // or captured in the vframeArray.
3459   RegisterSaver::restore_result_registers(masm);
3460 
3461   // All of the register save area has been popped of the stack. Only the
3462   // return address remains.
3463 
3464   // Pop all the frames we must move/replace.
3465   //
3466   // Frame picture (youngest to oldest)
3467   // 1: self-frame (no frame link)
3468   // 2: deopting frame  (no frame link)
3469   // 3: caller of deopting frame (could be compiled/interpreted).
3470   //
3471   // Note: by leaving the return address of self-frame on the stack
3472   // and using the size of frame 2 to adjust the stack
3473   // when we are done the return to frame 3 will still be on the stack.
3474 
3475   // Pop deoptimized frame
3476   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3477   __ addptr(rsp, rcx);
3478 
3479   // rsp should be pointing at the return address to the caller (3)
3480 
3481   // Pick up the initial fp we should save
3482   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3483   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3484 
3485   // Stack bang to make sure there's enough room for these interpreter frames.
3486   if (UseStackBanging) {
3487     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3488     __ bang_stack_size(rbx, rcx);
3489   }
3490 
3491   // Load address of array of frame pcs into rcx
3492   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3493 
3494   // Trash the old pc
3495   __ addptr(rsp, wordSize);
3496 
3497   // Load address of array of frame sizes into rsi
3498   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3499 
3500   // Load counter into rdx
3501   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3502 
3503   // Now adjust the caller's stack to make up for the extra locals
3504   // but record the original sp so that we can save it in the skeletal interpreter
3505   // frame and the stack walking of interpreter_sender will get the unextended sp
3506   // value and not the "real" sp value.
3507 
3508   const Register sender_sp = r8;
3509 
3510   __ mov(sender_sp, rsp);
3511   __ movl(rbx, Address(rdi,
3512                        Deoptimization::UnrollBlock::
3513                        caller_adjustment_offset_in_bytes()));
3514   __ subptr(rsp, rbx);
3515 
3516   // Push interpreter frames in a loop
3517   Label loop;
3518   __ bind(loop);
3519   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3520 #ifdef CC_INTERP
3521   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3522 #ifdef ASSERT
3523   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3524   __ push(0xDEADDEAD);
3525 #else /* ASSERT */
3526   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3527 #endif /* ASSERT */
3528 #else
3529   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3530 #endif // CC_INTERP
3531   __ pushptr(Address(rcx, 0));          // Save return address
3532   __ enter();                           // Save old & set new ebp
3533   __ subptr(rsp, rbx);                  // Prolog
3534 #ifdef CC_INTERP
3535   __ movptr(Address(rbp,
3536                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3537             sender_sp); // Make it walkable
3538 #else /* CC_INTERP */
3539   // This value is corrected by layout_activation_impl
3540   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3541   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3542 #endif /* CC_INTERP */
3543   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3544   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3545   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3546   __ decrementl(rdx);                   // Decrement counter
3547   __ jcc(Assembler::notZero, loop);
3548   __ pushptr(Address(rcx, 0));          // Save final return address
3549 
3550   // Re-push self-frame
3551   __ enter();                           // Save old & set new ebp
3552 
3553   // Allocate a full sized register save area.
3554   // Return address and rbp are in place, so we allocate two less words.
3555   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3556 
3557   // Restore frame locals after moving the frame
3558   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3559   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3560 
3561   // Call C code.  Need thread but NOT official VM entry
3562   // crud.  We cannot block on this call, no GC can happen.  Call should
3563   // restore return values to their stack-slots with the new SP.
3564   //
3565   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3566 
3567   // Use rbp because the frames look interpreted now
3568   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3569   // Don't need the precise return PC here, just precise enough to point into this code blob.
3570   address the_pc = __ pc();
3571   __ set_last_Java_frame(noreg, rbp, the_pc);
3572 
3573   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3574   __ mov(c_rarg0, r15_thread);
3575   __ movl(c_rarg1, r14); // second arg: exec_mode
3576   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3577   // Revert SP alignment after call since we're going to do some SP relative addressing below
3578   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3579 
3580   // Set an oopmap for the call site
3581   // Use the same PC we used for the last java frame
3582   oop_maps->add_gc_map(the_pc - start,
3583                        new OopMap( frame_size_in_words, 0 ));
3584 
3585   // Clear fp AND pc
3586   __ reset_last_Java_frame(true, true);
3587 
3588   // Collect return values
3589   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3590   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3591   // I think this is useless (throwing pc?)
3592   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3593 
3594   // Pop self-frame.
3595   __ leave();                           // Epilog
3596 
3597   // Jump to interpreter
3598   __ ret(0);
3599 
3600   // Make sure all code is generated
3601   masm->flush();
3602 
3603   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3604   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3605 }
3606 
3607 #ifdef COMPILER2
3608 //------------------------------generate_uncommon_trap_blob--------------------
3609 void SharedRuntime::generate_uncommon_trap_blob() {
3610   // Allocate space for the code
3611   ResourceMark rm;
3612   // Setup code generation tools
3613   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3614   MacroAssembler* masm = new MacroAssembler(&buffer);
3615 
3616   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3617 
3618   address start = __ pc();
3619 
3620   if (UseRTMLocking) {
3621     // Abort RTM transaction before possible nmethod deoptimization.
3622     __ xabort(0);
3623   }
3624 
3625   // Push self-frame.  We get here with a return address on the
3626   // stack, so rsp is 8-byte aligned until we allocate our frame.
3627   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3628 
3629   // No callee saved registers. rbp is assumed implicitly saved
3630   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3631 
3632   // compiler left unloaded_class_index in j_rarg0 move to where the
3633   // runtime expects it.
3634   __ movl(c_rarg1, j_rarg0);
3635 
3636   __ set_last_Java_frame(noreg, noreg, NULL);
3637 
3638   // Call C code.  Need thread but NOT official VM entry
3639   // crud.  We cannot block on this call, no GC can happen.  Call should
3640   // capture callee-saved registers as well as return values.
3641   // Thread is in rdi already.
3642   //
3643   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3644 
3645   __ mov(c_rarg0, r15_thread);
3646   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3647 
3648   // Set an oopmap for the call site
3649   OopMapSet* oop_maps = new OopMapSet();
3650   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3651 
3652   // location of rbp is known implicitly by the frame sender code
3653 
3654   oop_maps->add_gc_map(__ pc() - start, map);
3655 
3656   __ reset_last_Java_frame(false, false);
3657 
3658   // Load UnrollBlock* into rdi
3659   __ mov(rdi, rax);
3660 
3661   // Pop all the frames we must move/replace.
3662   //
3663   // Frame picture (youngest to oldest)
3664   // 1: self-frame (no frame link)
3665   // 2: deopting frame  (no frame link)
3666   // 3: caller of deopting frame (could be compiled/interpreted).
3667 
3668   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3669   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3670 
3671   // Pop deoptimized frame (int)
3672   __ movl(rcx, Address(rdi,
3673                        Deoptimization::UnrollBlock::
3674                        size_of_deoptimized_frame_offset_in_bytes()));
3675   __ addptr(rsp, rcx);
3676 
3677   // rsp should be pointing at the return address to the caller (3)
3678 
3679   // Pick up the initial fp we should save
3680   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3681   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3682 
3683   // Stack bang to make sure there's enough room for these interpreter frames.
3684   if (UseStackBanging) {
3685     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3686     __ bang_stack_size(rbx, rcx);
3687   }
3688 
3689   // Load address of array of frame pcs into rcx (address*)
3690   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3691 
3692   // Trash the return pc
3693   __ addptr(rsp, wordSize);
3694 
3695   // Load address of array of frame sizes into rsi (intptr_t*)
3696   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3697 
3698   // Counter
3699   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3700 
3701   // Now adjust the caller's stack to make up for the extra locals but
3702   // record the original sp so that we can save it in the skeletal
3703   // interpreter frame and the stack walking of interpreter_sender
3704   // will get the unextended sp value and not the "real" sp value.
3705 
3706   const Register sender_sp = r8;
3707 
3708   __ mov(sender_sp, rsp);
3709   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3710   __ subptr(rsp, rbx);
3711 
3712   // Push interpreter frames in a loop
3713   Label loop;
3714   __ bind(loop);
3715   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3716   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3717   __ pushptr(Address(rcx, 0));     // Save return address
3718   __ enter();                      // Save old & set new rbp
3719   __ subptr(rsp, rbx);             // Prolog
3720 #ifdef CC_INTERP
3721   __ movptr(Address(rbp,
3722                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3723             sender_sp); // Make it walkable
3724 #else // CC_INTERP
3725   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3726             sender_sp);            // Make it walkable
3727   // This value is corrected by layout_activation_impl
3728   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3729 #endif // CC_INTERP
3730   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3731   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3732   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3733   __ decrementl(rdx);              // Decrement counter
3734   __ jcc(Assembler::notZero, loop);
3735   __ pushptr(Address(rcx, 0));     // Save final return address
3736 
3737   // Re-push self-frame
3738   __ enter();                 // Save old & set new rbp
3739   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3740                               // Prolog
3741 
3742   // Use rbp because the frames look interpreted now
3743   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3744   // Don't need the precise return PC here, just precise enough to point into this code blob.
3745   address the_pc = __ pc();
3746   __ set_last_Java_frame(noreg, rbp, the_pc);
3747 
3748   // Call C code.  Need thread but NOT official VM entry
3749   // crud.  We cannot block on this call, no GC can happen.  Call should
3750   // restore return values to their stack-slots with the new SP.
3751   // Thread is in rdi already.
3752   //
3753   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3754 
3755   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3756   __ mov(c_rarg0, r15_thread);
3757   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3758   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3759 
3760   // Set an oopmap for the call site
3761   // Use the same PC we used for the last java frame
3762   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3763 
3764   // Clear fp AND pc
3765   __ reset_last_Java_frame(true, true);
3766 
3767   // Pop self-frame.
3768   __ leave();                 // Epilog
3769 
3770   // Jump to interpreter
3771   __ ret(0);
3772 
3773   // Make sure all code is generated
3774   masm->flush();
3775 
3776   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3777                                                  SimpleRuntimeFrame::framesize >> 1);
3778 }
3779 #endif // COMPILER2
3780 
3781 
3782 //------------------------------generate_handler_blob------
3783 //
3784 // Generate a special Compile2Runtime blob that saves all registers,
3785 // and setup oopmap.
3786 //
3787 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3788   assert(StubRoutines::forward_exception_entry() != NULL,
3789          "must be generated before");
3790 
3791   ResourceMark rm;
3792   OopMapSet *oop_maps = new OopMapSet();
3793   OopMap* map;
3794 
3795   // Allocate space for the code.  Setup code generation tools.
3796   CodeBuffer buffer("handler_blob", 2048, 1024);
3797   MacroAssembler* masm = new MacroAssembler(&buffer);
3798 
3799   address start   = __ pc();
3800   address call_pc = NULL;
3801   int frame_size_in_words;
3802   bool cause_return = (poll_type == POLL_AT_RETURN);
3803   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3804 
3805   if (UseRTMLocking) {
3806     // Abort RTM transaction before calling runtime
3807     // because critical section will be large and will be
3808     // aborted anyway. Also nmethod could be deoptimized.
3809     __ xabort(0);
3810   }
3811 
3812   // Make room for return address (or push it again)
3813   if (!cause_return) {
3814     __ push(rbx);
3815   }
3816 
3817   // Save registers, fpu state, and flags
3818   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3819 
3820   // The following is basically a call_VM.  However, we need the precise
3821   // address of the call in order to generate an oopmap. Hence, we do all the
3822   // work outselves.
3823 
3824   __ set_last_Java_frame(noreg, noreg, NULL);
3825 
3826   // The return address must always be correct so that frame constructor never
3827   // sees an invalid pc.
3828 
3829   if (!cause_return) {
3830     // overwrite the dummy value we pushed on entry
3831     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3832     __ movptr(Address(rbp, wordSize), c_rarg0);
3833   }
3834 
3835   // Do the call
3836   __ mov(c_rarg0, r15_thread);
3837   __ call(RuntimeAddress(call_ptr));
3838 
3839   // Set an oopmap for the call site.  This oopmap will map all
3840   // oop-registers and debug-info registers as callee-saved.  This
3841   // will allow deoptimization at this safepoint to find all possible
3842   // debug-info recordings, as well as let GC find all oops.
3843 
3844   oop_maps->add_gc_map( __ pc() - start, map);
3845 
3846   Label noException;
3847 
3848   __ reset_last_Java_frame(false, false);
3849 
3850   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3851   __ jcc(Assembler::equal, noException);
3852 
3853   // Exception pending
3854 
3855   RegisterSaver::restore_live_registers(masm, save_vectors);
3856 
3857   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3858 
3859   // No exception case
3860   __ bind(noException);
3861 
3862   // Normal exit, restore registers and exit.
3863   RegisterSaver::restore_live_registers(masm, save_vectors);
3864 
3865   __ ret(0);
3866 
3867   // Make sure all code is generated
3868   masm->flush();
3869 
3870   // Fill-out other meta info
3871   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3872 }
3873 
3874 //
3875 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3876 //
3877 // Generate a stub that calls into vm to find out the proper destination
3878 // of a java call. All the argument registers are live at this point
3879 // but since this is generic code we don't know what they are and the caller
3880 // must do any gc of the args.
3881 //
3882 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3883   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3884 
3885   // allocate space for the code
3886   ResourceMark rm;
3887 
3888   CodeBuffer buffer(name, 1000, 512);
3889   MacroAssembler* masm                = new MacroAssembler(&buffer);
3890 
3891   int frame_size_in_words;
3892 
3893   OopMapSet *oop_maps = new OopMapSet();
3894   OopMap* map = NULL;
3895 
3896   int start = __ offset();
3897 
3898   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3899 
3900   int frame_complete = __ offset();
3901 
3902   __ set_last_Java_frame(noreg, noreg, NULL);
3903 
3904   __ mov(c_rarg0, r15_thread);
3905 
3906   __ call(RuntimeAddress(destination));
3907 
3908 
3909   // Set an oopmap for the call site.
3910   // We need this not only for callee-saved registers, but also for volatile
3911   // registers that the compiler might be keeping live across a safepoint.
3912 
3913   oop_maps->add_gc_map( __ offset() - start, map);
3914 
3915   // rax contains the address we are going to jump to assuming no exception got installed
3916 
3917   // clear last_Java_sp
3918   __ reset_last_Java_frame(false, false);
3919   // check for pending exceptions
3920   Label pending;
3921   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3922   __ jcc(Assembler::notEqual, pending);
3923 
3924   // get the returned Method*
3925   __ get_vm_result_2(rbx, r15_thread);
3926   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3927 
3928   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3929 
3930   RegisterSaver::restore_live_registers(masm);
3931 
3932   // We are back the the original state on entry and ready to go.
3933 
3934   __ jmp(rax);
3935 
3936   // Pending exception after the safepoint
3937 
3938   __ bind(pending);
3939 
3940   RegisterSaver::restore_live_registers(masm);
3941 
3942   // exception pending => remove activation and forward to exception handler
3943 
3944   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3945 
3946   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3947   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3948 
3949   // -------------
3950   // make sure all code is generated
3951   masm->flush();
3952 
3953   // return the  blob
3954   // frame_size_words or bytes??
3955   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3956 }
3957 
3958 
3959 #ifdef COMPILER2
3960 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3961 //
3962 //------------------------------generate_exception_blob---------------------------
3963 // creates exception blob at the end
3964 // Using exception blob, this code is jumped from a compiled method.
3965 // (see emit_exception_handler in x86_64.ad file)
3966 //
3967 // Given an exception pc at a call we call into the runtime for the
3968 // handler in this method. This handler might merely restore state
3969 // (i.e. callee save registers) unwind the frame and jump to the
3970 // exception handler for the nmethod if there is no Java level handler
3971 // for the nmethod.
3972 //
3973 // This code is entered with a jmp.
3974 //
3975 // Arguments:
3976 //   rax: exception oop
3977 //   rdx: exception pc
3978 //
3979 // Results:
3980 //   rax: exception oop
3981 //   rdx: exception pc in caller or ???
3982 //   destination: exception handler of caller
3983 //
3984 // Note: the exception pc MUST be at a call (precise debug information)
3985 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3986 //
3987 
3988 void OptoRuntime::generate_exception_blob() {
3989   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3990   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3991   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3992 
3993   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3994 
3995   // Allocate space for the code
3996   ResourceMark rm;
3997   // Setup code generation tools
3998   CodeBuffer buffer("exception_blob", 2048, 1024);
3999   MacroAssembler* masm = new MacroAssembler(&buffer);
4000 
4001 
4002   address start = __ pc();
4003 
4004   // Exception pc is 'return address' for stack walker
4005   __ push(rdx);
4006   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
4007 
4008   // Save callee-saved registers.  See x86_64.ad.
4009 
4010   // rbp is an implicitly saved callee saved register (i.e. the calling
4011   // convention will save restore it in prolog/epilog) Other than that
4012   // there are no callee save registers now that adapter frames are gone.
4013 
4014   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
4015 
4016   // Store exception in Thread object. We cannot pass any arguments to the
4017   // handle_exception call, since we do not want to make any assumption
4018   // about the size of the frame where the exception happened in.
4019   // c_rarg0 is either rdi (Linux) or rcx (Windows).
4020   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
4021   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
4022 
4023   // This call does all the hard work.  It checks if an exception handler
4024   // exists in the method.
4025   // If so, it returns the handler address.
4026   // If not, it prepares for stack-unwinding, restoring the callee-save
4027   // registers of the frame being removed.
4028   //
4029   // address OptoRuntime::handle_exception_C(JavaThread* thread)
4030 
4031   // At a method handle call, the stack may not be properly aligned
4032   // when returning with an exception.
4033   address the_pc = __ pc();
4034   __ set_last_Java_frame(noreg, noreg, the_pc);
4035   __ mov(c_rarg0, r15_thread);
4036   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
4037   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
4038 
4039   // Set an oopmap for the call site.  This oopmap will only be used if we
4040   // are unwinding the stack.  Hence, all locations will be dead.
4041   // Callee-saved registers will be the same as the frame above (i.e.,
4042   // handle_exception_stub), since they were restored when we got the
4043   // exception.
4044 
4045   OopMapSet* oop_maps = new OopMapSet();
4046 
4047   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
4048 
4049   __ reset_last_Java_frame(false, true);
4050 
4051   // Restore callee-saved registers
4052 
4053   // rbp is an implicitly saved callee saved register (i.e. the calling
4054   // convention will save restore it in prolog/epilog) Other than that
4055   // there are no callee save registers no that adapter frames are gone.
4056 
4057   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
4058 
4059   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
4060   __ pop(rdx);                  // No need for exception pc anymore
4061 
4062   // rax: exception handler
4063 
4064   // Restore SP from BP if the exception PC is a MethodHandle call site.
4065   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
4066   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
4067 
4068   // We have a handler in rax (could be deopt blob).
4069   __ mov(r8, rax);
4070 
4071   // Get the exception oop
4072   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4073   // Get the exception pc in case we are deoptimized
4074   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4075 #ifdef ASSERT
4076   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4077   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4078 #endif
4079   // Clear the exception oop so GC no longer processes it as a root.
4080   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4081 
4082   // rax: exception oop
4083   // r8:  exception handler
4084   // rdx: exception pc
4085   // Jump to handler
4086 
4087   __ jmp(r8);
4088 
4089   // Make sure all code is generated
4090   masm->flush();
4091 
4092   // Set exception blob
4093   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4094 }
4095 #endif // COMPILER2