1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 static bool is_use(int usedef) {
  39   switch(usedef) {
  40   case Component::USE:
  41   case Component::USE_DEF:
  42   case Component::USE_KILL: return true; break;
  43   }
  44   return false;
  45 }
  46 
  47 static bool is_kill(int usedef) {
  48   switch(usedef) {
  49   case Component::KILL:
  50   case Component::USE_KILL: return true; break;
  51   }
  52   return false;
  53 }
  54 
  55 // Define  an array containing the machine register names, strings.
  56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  57   if (registers) {
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  61 
  62     // Output the register name for each register in the allocation classes
  63     RegDef *reg_def = NULL;
  64     RegDef *next = NULL;
  65     registers->reset_RegDefs();
  66     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  67       next = registers->iter_RegDefs();
  68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  69       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
  70     }
  71 
  72     // Finish defining enumeration
  73     fprintf(fp,"};\n");
  74 
  75     fprintf(fp,"\n");
  76     fprintf(fp,"// An array of character pointers to machine register names.\n");
  77     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  78     reg_def = NULL;
  79     next = NULL;
  80     registers->reset_RegDefs();
  81     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  82       next = registers->iter_RegDefs();
  83       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  84       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
  85     }
  86     // Finish defining array
  87     fprintf(fp,"\t};\n");
  88     fprintf(fp,"\n");
  89 
  90     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  91 
  92   }
  93 }
  94 
  95 // Define an array containing the machine register encoding values
  96 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  97   if (registers) {
  98     fprintf(fp,"\n");
  99     fprintf(fp,"// An array of the machine register encode values\n");
 100     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
 101 
 102     // Output the register encoding for each register in the allocation classes
 103     RegDef *reg_def = NULL;
 104     RegDef *next    = NULL;
 105     registers->reset_RegDefs();
 106     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
 107       next = registers->iter_RegDefs();
 108       const char* register_encode = reg_def->register_encode();
 109       const char *comma = (next != NULL) ? "," : " // no trailing comma";
 110       int encval;
 111       if (!ADLParser::is_int_token(register_encode, encval)) {
 112         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
 113       } else {
 114         // Output known constants in hex char format (backward compatibility).
 115         assert(encval < 256, "Exceeded supported width for register encoding");
 116         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
 117       }
 118     }
 119     // Finish defining enumeration
 120     fprintf(fp,"};\n");
 121 
 122   } // Done defining array
 123 }
 124 
 125 // Output an enumeration of register class names
 126 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 127   if (registers) {
 128     // Output an enumeration of register class names
 129     fprintf(fp,"\n");
 130     fprintf(fp,"// Enumeration of register class names\n");
 131     fprintf(fp, "enum machRegisterClass {\n");
 132     registers->_rclasses.reset();
 133     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
 134       const char * class_name_to_upper = toUpper(class_name);
 135       fprintf(fp,"  %s,\n", class_name_to_upper);
 136       delete[] class_name_to_upper;
 137     }
 138     // Finish defining enumeration
 139     fprintf(fp, "  _last_Mach_Reg_Class\n");
 140     fprintf(fp, "};\n");
 141   }
 142 }
 143 
 144 // Declare an enumeration of user-defined register classes
 145 // and a list of register masks, one for each class.
 146 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 147   const char  *rc_name;
 148 
 149   if (_register) {
 150     // Build enumeration of user-defined register classes.
 151     defineRegClassEnum(fp_hpp, _register);
 152 
 153     // Generate a list of register masks, one for each class.
 154     fprintf(fp_hpp,"\n");
 155     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 156     _register->_rclasses.reset();
 157     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 158       const char *prefix = "";
 159       RegClass *reg_class = _register->getRegClass(rc_name);
 160       assert(reg_class, "Using an undefined register class");
 161 
 162       const char* rc_name_to_upper = toUpper(rc_name);
 163 
 164       if (reg_class->_user_defined == NULL) {
 165         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix,  rc_name_to_upper);
 166         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
 167       } else {
 168         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, reg_class->_user_defined);
 169       }
 170 
 171       if (reg_class->_stack_or_reg) {
 172         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
 173         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
 174         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
 175       }
 176       delete[] rc_name_to_upper;
 177 
 178     }
 179   }
 180 }
 181 
 182 // Generate an enumeration of user-defined register classes
 183 // and a list of register masks, one for each class.
 184 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 185   const char  *rc_name;
 186 
 187   if (_register) {
 188     // Generate a list of register masks, one for each class.
 189     fprintf(fp_cpp,"\n");
 190     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 191     _register->_rclasses.reset();
 192     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 193       const char *prefix = "";
 194       RegClass *reg_class = _register->getRegClass(rc_name);
 195       assert(reg_class, "Using an undefined register class");
 196 
 197       if (reg_class->_user_defined != NULL) {
 198         continue;
 199       }
 200 
 201       int len = RegisterForm::RegMask_Size();
 202       const char* rc_name_to_upper = toUpper(rc_name);
 203       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);
 204 
 205       {
 206         int i;
 207         for(i = 0; i < len - 1; i++) {
 208           fprintf(fp_cpp," 0x%x,", reg_class->regs_in_word(i, false));
 209         }
 210         fprintf(fp_cpp," 0x%x );\n", reg_class->regs_in_word(i, false));
 211       }
 212 
 213       if (reg_class->_stack_or_reg) {
 214         int i;
 215         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
 216         for(i = 0; i < len - 1; i++) {
 217           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i, true));
 218         }
 219         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i, true));
 220       }
 221       delete[] rc_name_to_upper;
 222     }
 223   }
 224 }
 225 
 226 // Compute an index for an array in the pipeline_reads_NNN arrays
 227 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 228 {
 229   int templen = 1;
 230   int paramcount = 0;
 231   const char *paramname;
 232 
 233   if (pipeclass->_parameters.count() == 0)
 234     return -1;
 235 
 236   pipeclass->_parameters.reset();
 237   paramname = pipeclass->_parameters.iter();
 238   const PipeClassOperandForm *pipeopnd =
 239     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 240   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 241     pipeclass->_parameters.reset();
 242 
 243   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 244     const PipeClassOperandForm *tmppipeopnd =
 245         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 246 
 247     if (tmppipeopnd)
 248       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 249     else
 250       templen += 19;
 251 
 252     paramcount++;
 253   }
 254 
 255   // See if the count is zero
 256   if (paramcount == 0) {
 257     return -1;
 258   }
 259 
 260   char *operand_stages = new char [templen];
 261   operand_stages[0] = 0;
 262   int i = 0;
 263   templen = 0;
 264 
 265   pipeclass->_parameters.reset();
 266   paramname = pipeclass->_parameters.iter();
 267   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 268   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 269     pipeclass->_parameters.reset();
 270 
 271   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 272     const PipeClassOperandForm *tmppipeopnd =
 273         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 274     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 275       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 276       (++i < paramcount ? ',' : ' ') );
 277   }
 278 
 279   // See if the same string is in the table
 280   int ndx = pipeline_reads.index(operand_stages);
 281 
 282   // No, add it to the table
 283   if (ndx < 0) {
 284     pipeline_reads.addName(operand_stages);
 285     ndx = pipeline_reads.index(operand_stages);
 286 
 287     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 288       ndx+1, paramcount, operand_stages);
 289   }
 290   else
 291     delete [] operand_stages;
 292 
 293   return (ndx);
 294 }
 295 
 296 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 297 static int pipeline_res_stages_initializer(
 298   FILE *fp_cpp,
 299   PipelineForm *pipeline,
 300   NameList &pipeline_res_stages,
 301   PipeClassForm *pipeclass)
 302 {
 303   const PipeClassResourceForm *piperesource;
 304   int * res_stages = new int [pipeline->_rescount];
 305   int i;
 306 
 307   for (i = 0; i < pipeline->_rescount; i++)
 308      res_stages[i] = 0;
 309 
 310   for (pipeclass->_resUsage.reset();
 311        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 312     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 313     for (i = 0; i < pipeline->_rescount; i++)
 314       if ((1 << i) & used_mask) {
 315         int stage = pipeline->_stages.index(piperesource->_stage);
 316         if (res_stages[i] < stage+1)
 317           res_stages[i] = stage+1;
 318       }
 319   }
 320 
 321   // Compute the length needed for the resource list
 322   int commentlen = 0;
 323   int max_stage = 0;
 324   for (i = 0; i < pipeline->_rescount; i++) {
 325     if (res_stages[i] == 0) {
 326       if (max_stage < 9)
 327         max_stage = 9;
 328     }
 329     else {
 330       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 331       if (max_stage < stagelen)
 332         max_stage = stagelen;
 333     }
 334 
 335     commentlen += (int)strlen(pipeline->_reslist.name(i));
 336   }
 337 
 338   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 339 
 340   // Allocate space for the resource list
 341   char * resource_stages = new char [templen];
 342 
 343   templen = 0;
 344   for (i = 0; i < pipeline->_rescount; i++) {
 345     const char * const resname =
 346       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 347 
 348     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 349       resname, max_stage - (int)strlen(resname) + 1,
 350       (i < pipeline->_rescount-1) ? "," : "",
 351       pipeline->_reslist.name(i));
 352   }
 353 
 354   // See if the same string is in the table
 355   int ndx = pipeline_res_stages.index(resource_stages);
 356 
 357   // No, add it to the table
 358   if (ndx < 0) {
 359     pipeline_res_stages.addName(resource_stages);
 360     ndx = pipeline_res_stages.index(resource_stages);
 361 
 362     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 363       ndx+1, pipeline->_rescount, resource_stages);
 364   }
 365   else
 366     delete [] resource_stages;
 367 
 368   delete [] res_stages;
 369 
 370   return (ndx);
 371 }
 372 
 373 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 374 static int pipeline_res_cycles_initializer(
 375   FILE *fp_cpp,
 376   PipelineForm *pipeline,
 377   NameList &pipeline_res_cycles,
 378   PipeClassForm *pipeclass)
 379 {
 380   const PipeClassResourceForm *piperesource;
 381   int * res_cycles = new int [pipeline->_rescount];
 382   int i;
 383 
 384   for (i = 0; i < pipeline->_rescount; i++)
 385      res_cycles[i] = 0;
 386 
 387   for (pipeclass->_resUsage.reset();
 388        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 389     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 390     for (i = 0; i < pipeline->_rescount; i++)
 391       if ((1 << i) & used_mask) {
 392         int cycles = piperesource->_cycles;
 393         if (res_cycles[i] < cycles)
 394           res_cycles[i] = cycles;
 395       }
 396   }
 397 
 398   // Pre-compute the string length
 399   int templen;
 400   int cyclelen = 0, commentlen = 0;
 401   int max_cycles = 0;
 402   char temp[32];
 403 
 404   for (i = 0; i < pipeline->_rescount; i++) {
 405     if (max_cycles < res_cycles[i])
 406       max_cycles = res_cycles[i];
 407     templen = sprintf(temp, "%d", res_cycles[i]);
 408     if (cyclelen < templen)
 409       cyclelen = templen;
 410     commentlen += (int)strlen(pipeline->_reslist.name(i));
 411   }
 412 
 413   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 414 
 415   // Allocate space for the resource list
 416   char * resource_cycles = new char [templen];
 417 
 418   templen = 0;
 419 
 420   for (i = 0; i < pipeline->_rescount; i++) {
 421     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 422       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 423   }
 424 
 425   // See if the same string is in the table
 426   int ndx = pipeline_res_cycles.index(resource_cycles);
 427 
 428   // No, add it to the table
 429   if (ndx < 0) {
 430     pipeline_res_cycles.addName(resource_cycles);
 431     ndx = pipeline_res_cycles.index(resource_cycles);
 432 
 433     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 434       ndx+1, pipeline->_rescount, resource_cycles);
 435   }
 436   else
 437     delete [] resource_cycles;
 438 
 439   delete [] res_cycles;
 440 
 441   return (ndx);
 442 }
 443 
 444 //typedef unsigned long long uint64_t;
 445 
 446 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 447 static int pipeline_res_mask_initializer(
 448   FILE *fp_cpp,
 449   PipelineForm *pipeline,
 450   NameList &pipeline_res_mask,
 451   NameList &pipeline_res_args,
 452   PipeClassForm *pipeclass)
 453 {
 454   const PipeClassResourceForm *piperesource;
 455   const uint rescount      = pipeline->_rescount;
 456   const uint maxcycleused  = pipeline->_maxcycleused;
 457   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 458 
 459   int i, j;
 460   int element_count = 0;
 461   uint *res_mask = new uint [cyclemasksize];
 462   uint resources_used             = 0;
 463   uint resources_used_exclusively = 0;
 464 
 465   for (pipeclass->_resUsage.reset();
 466        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 467     element_count++;
 468   }
 469 
 470   // Pre-compute the string length
 471   int templen;
 472   int commentlen = 0;
 473   int max_cycles = 0;
 474 
 475   int cyclelen = ((maxcycleused + 3) >> 2);
 476   int masklen = (rescount + 3) >> 2;
 477 
 478   int cycledigit = 0;
 479   for (i = maxcycleused; i > 0; i /= 10)
 480     cycledigit++;
 481 
 482   int maskdigit = 0;
 483   for (i = rescount; i > 0; i /= 10)
 484     maskdigit++;
 485 
 486   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 487   static const char* pipeline_use_element    = "Pipeline_Use_Element";
 488 
 489   templen = 1 +
 490     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 491      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 492 
 493   // Allocate space for the resource list
 494   char * resource_mask = new char [templen];
 495   char * last_comma = NULL;
 496 
 497   templen = 0;
 498 
 499   for (pipeclass->_resUsage.reset();
 500        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 501     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 502 
 503     if (!used_mask) {
 504       fprintf(stderr, "*** used_mask is 0 ***\n");
 505     }
 506 
 507     resources_used |= used_mask;
 508 
 509     uint lb, ub;
 510 
 511     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 512     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 513 
 514     if (lb == ub) {
 515       resources_used_exclusively |= used_mask;
 516     }
 517 
 518     int formatlen =
 519       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 520         pipeline_use_element,
 521         masklen, used_mask,
 522         cycledigit, lb, cycledigit, ub,
 523         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 524         pipeline_use_cycle_mask);
 525 
 526     templen += formatlen;
 527 
 528     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 529 
 530     int cycles = piperesource->_cycles;
 531     uint stage          = pipeline->_stages.index(piperesource->_stage);
 532     if ((uint)NameList::Not_in_list == stage) {
 533       fprintf(stderr,
 534               "pipeline_res_mask_initializer: "
 535               "semantic error: "
 536               "pipeline stage undeclared: %s\n",
 537               piperesource->_stage);
 538       exit(1);
 539     }
 540     uint upper_limit    = stage + cycles - 1;
 541     uint lower_limit    = stage - 1;
 542     uint upper_idx      = upper_limit >> 5;
 543     uint lower_idx      = lower_limit >> 5;
 544     uint upper_position = upper_limit & 0x1f;
 545     uint lower_position = lower_limit & 0x1f;
 546 
 547     uint mask = (((uint)1) << upper_position) - 1;
 548 
 549     while (upper_idx > lower_idx) {
 550       res_mask[upper_idx--] |= mask;
 551       mask = (uint)-1;
 552     }
 553 
 554     mask -= (((uint)1) << lower_position) - 1;
 555     res_mask[upper_idx] |= mask;
 556 
 557     for (j = cyclemasksize-1; j >= 0; j--) {
 558       formatlen =
 559         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 560       templen += formatlen;
 561     }
 562 
 563     resource_mask[templen++] = ')';
 564     resource_mask[templen++] = ')';
 565     last_comma = &resource_mask[templen];
 566     resource_mask[templen++] = ',';
 567     resource_mask[templen++] = '\n';
 568   }
 569 
 570   resource_mask[templen] = 0;
 571   if (last_comma) {
 572     last_comma[0] = ' ';
 573   }
 574 
 575   // See if the same string is in the table
 576   int ndx = pipeline_res_mask.index(resource_mask);
 577 
 578   // No, add it to the table
 579   if (ndx < 0) {
 580     pipeline_res_mask.addName(resource_mask);
 581     ndx = pipeline_res_mask.index(resource_mask);
 582 
 583     if (strlen(resource_mask) > 0)
 584       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 585         ndx+1, element_count, resource_mask);
 586 
 587     char* args = new char [9 + 2*masklen + maskdigit];
 588 
 589     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 590       masklen, resources_used,
 591       masklen, resources_used_exclusively,
 592       maskdigit, element_count);
 593 
 594     pipeline_res_args.addName(args);
 595   }
 596   else {
 597     delete [] resource_mask;
 598   }
 599 
 600   delete [] res_mask;
 601 //delete [] res_masks;
 602 
 603   return (ndx);
 604 }
 605 
 606 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 607   const char *classname;
 608   const char *resourcename;
 609   int resourcenamelen = 0;
 610   NameList pipeline_reads;
 611   NameList pipeline_res_stages;
 612   NameList pipeline_res_cycles;
 613   NameList pipeline_res_masks;
 614   NameList pipeline_res_args;
 615   const int default_latency = 1;
 616   const int non_operand_latency = 0;
 617   const int node_latency = 0;
 618 
 619   if (!_pipeline) {
 620     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 621     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 622     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 623     fprintf(fp_cpp, "}\n");
 624     return;
 625   }
 626 
 627   fprintf(fp_cpp, "\n");
 628   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 629   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 630   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 631   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 632   fprintf(fp_cpp, "    \"undefined\"");
 633 
 634   for (int s = 0; s < _pipeline->_stagecnt; s++)
 635     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 636 
 637   fprintf(fp_cpp, "\n  };\n\n");
 638   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 639     _pipeline->_stagecnt);
 640   fprintf(fp_cpp, "}\n");
 641   fprintf(fp_cpp, "#endif\n\n");
 642 
 643   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 644   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 645 #if 0
 646   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 647   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 648   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 649   fprintf(fp_cpp, "  }\n");
 650   fprintf(fp_cpp, "#endif\n\n");
 651 #endif
 652   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 653   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 654 #if 0
 655   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 656   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 657   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 658   fprintf(fp_cpp, "  }\n");
 659   fprintf(fp_cpp, "#endif\n\n");
 660 #endif
 661   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 662   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 663   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 664   fprintf(fp_cpp, "      continue;\n\n");
 665   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 666   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 667   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 668   fprintf(fp_cpp, "        continue;\n\n");
 669   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 670   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 671   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 672   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 673   fprintf(fp_cpp, "          y <<= 1;\n");
 674   fprintf(fp_cpp, "      }\n");
 675   fprintf(fp_cpp, "    }\n");
 676   fprintf(fp_cpp, "  }\n\n");
 677   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 678   fprintf(fp_cpp, "  return (start);\n");
 679   fprintf(fp_cpp, "}\n\n");
 680   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 681   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 682   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 683   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 684   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 685   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 686   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 687   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 688     _pipeline->_maxcycleused+1);
 689   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 690   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 691   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 692   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 693   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 694   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 695   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 696   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 697   fprintf(fp_cpp, "            y <<= 1;\n");
 698   fprintf(fp_cpp, "        }\n");
 699   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 700   fprintf(fp_cpp, "      }\n");
 701   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 702   fprintf(fp_cpp, "    }\n");
 703   fprintf(fp_cpp, "    else {\n");
 704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 705   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 706   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 707   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 708   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 709   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 710   fprintf(fp_cpp, "            y <<= 1;\n");
 711   fprintf(fp_cpp, "        }\n");
 712   fprintf(fp_cpp, "      }\n");
 713   fprintf(fp_cpp, "    }\n");
 714   fprintf(fp_cpp, "  }\n\n");
 715   fprintf(fp_cpp, "  return (delay);\n");
 716   fprintf(fp_cpp, "}\n\n");
 717   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 718   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 719   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 720   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 721   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 722   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 723   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 724   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 725   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 726   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 727   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 728   fprintf(fp_cpp, "          break;\n");
 729   fprintf(fp_cpp, "        }\n");
 730   fprintf(fp_cpp, "      }\n");
 731   fprintf(fp_cpp, "    }\n");
 732   fprintf(fp_cpp, "    else {\n");
 733   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 734   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 735   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 736   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 737   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 738   fprintf(fp_cpp, "      }\n");
 739   fprintf(fp_cpp, "    }\n");
 740   fprintf(fp_cpp, "  }\n");
 741   fprintf(fp_cpp, "}\n\n");
 742 
 743   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 744   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 745   fprintf(fp_cpp, "\n");
 746 #if 0
 747   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 748   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 749   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 750   fprintf(fp_cpp, "  }\n");
 751   fprintf(fp_cpp, "#endif\n\n");
 752 #endif
 753   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 754   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 755   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 756   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 757   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 758   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 759   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 760 #if 0
 761   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 762   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 763   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 764   fprintf(fp_cpp, "  }\n");
 765   fprintf(fp_cpp, "#endif\n\n");
 766 #endif
 767   fprintf(fp_cpp, "\n");
 768   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 769   fprintf(fp_cpp, "    return (default_latency);\n");
 770   fprintf(fp_cpp, "\n");
 771   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 772   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 773 #if 0
 774   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 775   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 776   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 777   fprintf(fp_cpp, "  }\n");
 778   fprintf(fp_cpp, "#endif\n\n");
 779 #endif
 780   fprintf(fp_cpp, "  return (delta);\n");
 781   fprintf(fp_cpp, "}\n\n");
 782 
 783   if (!_pipeline)
 784     /* Do Nothing */;
 785 
 786   else if (_pipeline->_maxcycleused <=
 787 #ifdef SPARC
 788     64
 789 #else
 790     32
 791 #endif
 792       ) {
 793     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 794     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 795     fprintf(fp_cpp, "}\n\n");
 796     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 797     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 798     fprintf(fp_cpp, "}\n\n");
 799   }
 800   else {
 801     uint l;
 802     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 803     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 804     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 805     for (l = 1; l <= masklen; l++)
 806       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 807     fprintf(fp_cpp, ");\n");
 808     fprintf(fp_cpp, "}\n\n");
 809     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 810     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 811     for (l = 1; l <= masklen; l++)
 812       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 813     fprintf(fp_cpp, ");\n");
 814     fprintf(fp_cpp, "}\n\n");
 815     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 816     for (l = 1; l <= masklen; l++)
 817       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 818     fprintf(fp_cpp, "\n}\n\n");
 819   }
 820 
 821   /* Get the length of all the resource names */
 822   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 823        (resourcename = _pipeline->_reslist.iter()) != NULL;
 824        resourcenamelen += (int)strlen(resourcename));
 825 
 826   // Create the pipeline class description
 827 
 828   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 829   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 830 
 831   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 832   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 833     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 834     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 835     for (int i2 = masklen-1; i2 >= 0; i2--)
 836       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 837     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 838   }
 839   fprintf(fp_cpp, "};\n\n");
 840 
 841   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 842     _pipeline->_rescount);
 843 
 844   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 845     fprintf(fp_cpp, "\n");
 846     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 847     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 848     int maxWriteStage = -1;
 849     int maxMoreInstrs = 0;
 850     int paramcount = 0;
 851     int i = 0;
 852     const char *paramname;
 853     int resource_count = (_pipeline->_rescount + 3) >> 2;
 854 
 855     // Scan the operands, looking for last output stage and number of inputs
 856     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 857       const PipeClassOperandForm *pipeopnd =
 858           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 859       if (pipeopnd) {
 860         if (pipeopnd->_iswrite) {
 861            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 862            int moreinsts = pipeopnd->_more_instrs;
 863           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 864             maxWriteStage = stagenum;
 865             maxMoreInstrs = moreinsts;
 866           }
 867         }
 868       }
 869 
 870       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 871         paramcount++;
 872     }
 873 
 874     // Create the list of stages for the operands that are read
 875     // Note that we will build a NameList to reduce the number of copies
 876 
 877     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 878 
 879     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 880       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 881 
 882     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 883       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 884 
 885     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 886       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 887 
 888 #if 0
 889     // Process the Resources
 890     const PipeClassResourceForm *piperesource;
 891 
 892     unsigned resources_used = 0;
 893     unsigned exclusive_resources_used = 0;
 894     unsigned resource_groups = 0;
 895     for (pipeclass->_resUsage.reset();
 896          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 897       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 898       if (used_mask)
 899         resource_groups++;
 900       resources_used |= used_mask;
 901       if ((used_mask & (used_mask-1)) == 0)
 902         exclusive_resources_used |= used_mask;
 903     }
 904 
 905     if (resource_groups > 0) {
 906       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 907         pipeclass->_num, resource_groups);
 908       for (pipeclass->_resUsage.reset(), i = 1;
 909            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 910            i++ ) {
 911         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 912         if (used_mask) {
 913           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 914         }
 915       }
 916       fprintf(fp_cpp, "};\n\n");
 917     }
 918 #endif
 919 
 920     // Create the pipeline class description
 921     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 922       pipeclass->_num);
 923     if (maxWriteStage < 0)
 924       fprintf(fp_cpp, "(uint)stage_undefined");
 925     else if (maxMoreInstrs == 0)
 926       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 927     else
 928       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 929     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 930       paramcount,
 931       pipeclass->hasFixedLatency() ? "true" : "false",
 932       pipeclass->fixedLatency(),
 933       pipeclass->InstructionCount(),
 934       pipeclass->hasBranchDelay() ? "true" : "false",
 935       pipeclass->hasMultipleBundles() ? "true" : "false",
 936       pipeclass->forceSerialization() ? "true" : "false",
 937       pipeclass->mayHaveNoCode() ? "true" : "false" );
 938     if (paramcount > 0) {
 939       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 940         pipeline_reads_index+1);
 941     }
 942     else
 943       fprintf(fp_cpp, " NULL,");
 944     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 945       pipeline_res_stages_index+1);
 946     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 947       pipeline_res_cycles_index+1);
 948     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 949       pipeline_res_args.name(pipeline_res_mask_index));
 950     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 951       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 952         pipeline_res_mask_index+1);
 953     else
 954       fprintf(fp_cpp, "NULL");
 955     fprintf(fp_cpp, "));\n");
 956   }
 957 
 958   // Generate the Node::latency method if _pipeline defined
 959   fprintf(fp_cpp, "\n");
 960   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 961   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 962   if (_pipeline) {
 963 #if 0
 964     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 965     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 966     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 967     fprintf(fp_cpp, " }\n");
 968     fprintf(fp_cpp, "#endif\n");
 969 #endif
 970     fprintf(fp_cpp, "  uint j;\n");
 971     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 972     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 973     fprintf(fp_cpp, "  // verify input is not null\n");
 974     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 975     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 976       non_operand_latency);
 977     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 978     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 979     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 980     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 981     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 982     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 983     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 984     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 985       node_latency);
 986     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 987     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 988     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 989       non_operand_latency);
 990     fprintf(fp_cpp, "  // determine which operand this is in\n");
 991     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 992     fprintf(fp_cpp, "  int delta = %d;\n\n",
 993       non_operand_latency);
 994     fprintf(fp_cpp, "  uint k;\n");
 995     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 996     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 997     fprintf(fp_cpp, "    if (i < j)\n");
 998     fprintf(fp_cpp, "      break;\n");
 999     fprintf(fp_cpp, "  }\n");
1000     fprintf(fp_cpp, "  if (k < n)\n");
1001     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
1002     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
1003   }
1004   else {
1005     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
1006     fprintf(fp_cpp, "  return %d;\n",
1007       non_operand_latency);
1008   }
1009   fprintf(fp_cpp, "}\n\n");
1010 
1011   // Output the list of nop nodes
1012   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
1013   const char *nop;
1014   int nopcnt = 0;
1015   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
1016 
1017   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
1018   int i = 0;
1019   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
1020     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
1021   }
1022   fprintf(fp_cpp, "};\n\n");
1023   fprintf(fp_cpp, "#ifndef PRODUCT\n");
1024   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
1025   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
1026   fprintf(fp_cpp, "    \"\",\n");
1027   fprintf(fp_cpp, "    \"use nop delay\",\n");
1028   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
1029   fprintf(fp_cpp, "    \"use conditional delay\",\n");
1030   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
1031   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
1032   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
1033   fprintf(fp_cpp, "  };\n\n");
1034 
1035   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
1036   for (i = 0; i < _pipeline->_rescount; i++)
1037     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
1038   fprintf(fp_cpp, "};\n\n");
1039 
1040   // See if the same string is in the table
1041   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
1042   fprintf(fp_cpp, "  if (_flags) {\n");
1043   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
1044   fprintf(fp_cpp, "    needs_comma = true;\n");
1045   fprintf(fp_cpp, "  };\n");
1046   fprintf(fp_cpp, "  if (instr_count()) {\n");
1047   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
1048   fprintf(fp_cpp, "    needs_comma = true;\n");
1049   fprintf(fp_cpp, "  };\n");
1050   fprintf(fp_cpp, "  uint r = resources_used();\n");
1051   fprintf(fp_cpp, "  if (r) {\n");
1052   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
1053   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
1054   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
1055   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
1056   fprintf(fp_cpp, "    needs_comma = true;\n");
1057   fprintf(fp_cpp, "  };\n");
1058   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
1059   fprintf(fp_cpp, "}\n");
1060   fprintf(fp_cpp, "#endif\n");
1061 }
1062 
1063 // ---------------------------------------------------------------------------
1064 //------------------------------Utilities to build Instruction Classes--------
1065 // ---------------------------------------------------------------------------
1066 
1067 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1068   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1069           node, regMask);
1070 }
1071 
1072 static void print_block_index(FILE *fp, int inst_position) {
1073   assert( inst_position >= 0, "Instruction number less than zero");
1074   fprintf(fp, "block_index");
1075   if( inst_position != 0 ) {
1076     fprintf(fp, " - %d", inst_position);
1077   }
1078 }
1079 
1080 // Scan the peepmatch and output a test for each instruction
1081 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1082   int         parent        = -1;
1083   int         inst_position = 0;
1084   const char* inst_name     = NULL;
1085   int         input         = 0;
1086   fprintf(fp, "  // Check instruction sub-tree\n");
1087   pmatch->reset();
1088   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1089        inst_name != NULL;
1090        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1091     // If this is not a placeholder
1092     if( ! pmatch->is_placeholder() ) {
1093       // Define temporaries 'inst#', based on parent and parent's input index
1094       if( parent != -1 ) {                // root was initialized
1095         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1096         fprintf(fp, "  if( ");
1097         print_block_index(fp, inst_position);
1098         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1099         print_block_index(fp, inst_position);
1100         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1101         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1102       }
1103 
1104       // When not the root
1105       // Test we have the correct instruction by comparing the rule.
1106       if( parent != -1 ) {
1107         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1108                 inst_position, inst_position, inst_name);
1109       }
1110     } else {
1111       // Check that user did not try to constrain a placeholder
1112       assert( ! pconstraint->constrains_instruction(inst_position),
1113               "fatal(): Can not constrain a placeholder instruction");
1114     }
1115   }
1116 }
1117 
1118 // Build mapping for register indices, num_edges to input
1119 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1120   int         parent        = -1;
1121   int         inst_position = 0;
1122   const char* inst_name     = NULL;
1123   int         input         = 0;
1124   fprintf(fp, "      // Build map to register info\n");
1125   pmatch->reset();
1126   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1127        inst_name != NULL;
1128        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1129     // If this is not a placeholder
1130     if( ! pmatch->is_placeholder() ) {
1131       // Define temporaries 'inst#', based on self's inst_position
1132       InstructForm *inst = globals[inst_name]->is_instruction();
1133       if( inst != NULL ) {
1134         char inst_prefix[]  = "instXXXX_";
1135         sprintf(inst_prefix, "inst%d_",   inst_position);
1136         char receiver[]     = "instXXXX->";
1137         sprintf(receiver,    "inst%d->", inst_position);
1138         inst->index_temps( fp, globals, inst_prefix, receiver );
1139       }
1140     }
1141   }
1142 }
1143 
1144 // Generate tests for the constraints
1145 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1146   fprintf(fp, "\n");
1147   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1148 
1149   // Build mapping from num_edges to local variables
1150   build_instruction_index_mapping( fp, globals, pmatch );
1151 
1152   // Build constraint tests
1153   if( pconstraint != NULL ) {
1154     fprintf(fp, "      matches = matches &&");
1155     bool   first_constraint = true;
1156     while( pconstraint != NULL ) {
1157       // indentation and connecting '&&'
1158       const char *indentation = "      ";
1159       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1160 
1161       // Only have '==' relation implemented
1162       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1163         assert( false, "Unimplemented()" );
1164       }
1165 
1166       // LEFT
1167       int left_index       = pconstraint->_left_inst;
1168       const char *left_op  = pconstraint->_left_op;
1169       // Access info on the instructions whose operands are compared
1170       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1171       assert( inst_left, "Parser should guaranty this is an instruction");
1172       int left_op_base  = inst_left->oper_input_base(globals);
1173       // Access info on the operands being compared
1174       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1175       if( left_op_index == -1 ) {
1176         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1177         if( left_op_index == -1 ) {
1178           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1179         }
1180       }
1181       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1182       ComponentList components_left = inst_left->_components;
1183       const char *left_comp_type = components_left.at(left_op_index)->_type;
1184       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1185       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1186 
1187 
1188       // RIGHT
1189       int right_op_index = -1;
1190       int right_index      = pconstraint->_right_inst;
1191       const char *right_op = pconstraint->_right_op;
1192       if( right_index != -1 ) { // Match operand
1193         // Access info on the instructions whose operands are compared
1194         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1195         assert( inst_right, "Parser should guaranty this is an instruction");
1196         int right_op_base = inst_right->oper_input_base(globals);
1197         // Access info on the operands being compared
1198         right_op_index = inst_right->operand_position(right_op, Component::USE);
1199         if( right_op_index == -1 ) {
1200           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1201           if( right_op_index == -1 ) {
1202             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1203           }
1204         }
1205         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1206         ComponentList components_right = inst_right->_components;
1207         const char *right_comp_type = components_right.at(right_op_index)->_type;
1208         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1209         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1210         assert( right_interface_type == left_interface_type, "Both must be same interface");
1211 
1212       } else {                  // Else match register
1213         // assert( false, "should be a register" );
1214       }
1215 
1216       //
1217       // Check for equivalence
1218       //
1219       // fprintf(fp, "phase->eqv( ");
1220       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1221       //         left_index,  left_op_base,  left_op_index,  left_op,
1222       //         right_index, right_op_base, right_op_index, right_op );
1223       // fprintf(fp, ")");
1224       //
1225       switch( left_interface_type ) {
1226       case Form::register_interface: {
1227         // Check that they are allocated to the same register
1228         // Need parameter for index position if not result operand
1229         char left_reg_index[] = ",instXXXX_idxXXXX";
1230         if( left_op_index != 0 ) {
1231           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1232           // Must have index into operands
1233           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1234         } else {
1235           strcpy(left_reg_index, "");
1236         }
1237         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1238                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1239         fprintf(fp, " == ");
1240 
1241         if( right_index != -1 ) {
1242           char right_reg_index[18] = ",instXXXX_idxXXXX";
1243           if( right_op_index != 0 ) {
1244             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1245             // Must have index into operands
1246             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1247           } else {
1248             strcpy(right_reg_index, "");
1249           }
1250           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1251                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1252         } else {
1253           fprintf(fp, "%s_enc", right_op );
1254         }
1255         fprintf(fp,")");
1256         break;
1257       }
1258       case Form::constant_interface: {
1259         // Compare the '->constant()' values
1260         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1261                 left_index,  left_op_index,  left_index, left_op );
1262         fprintf(fp, " == ");
1263         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1264                 right_index, right_op, right_index, right_op_index );
1265         break;
1266       }
1267       case Form::memory_interface: {
1268         // Compare 'base', 'index', 'scale', and 'disp'
1269         // base
1270         fprintf(fp, "( \n");
1271         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1272           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1273         fprintf(fp, " == ");
1274         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1275                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1276         // index
1277         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1278                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1279         fprintf(fp, " == ");
1280         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1281                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1282         // scale
1283         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1284                 left_index,  left_op_index,  left_index, left_op );
1285         fprintf(fp, " == ");
1286         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1287                 right_index, right_op, right_index, right_op_index );
1288         // disp
1289         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1290                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1291         fprintf(fp, " == ");
1292         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1293                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1294         fprintf(fp, ") \n");
1295         break;
1296       }
1297       case Form::conditional_interface: {
1298         // Compare the condition code being tested
1299         assert( false, "Unimplemented()" );
1300         break;
1301       }
1302       default: {
1303         assert( false, "ShouldNotReachHere()" );
1304         break;
1305       }
1306       }
1307 
1308       // Advance to next constraint
1309       pconstraint = pconstraint->next();
1310       first_constraint = false;
1311     }
1312 
1313     fprintf(fp, ";\n");
1314   }
1315 }
1316 
1317 // // EXPERIMENTAL -- TEMPORARY code
1318 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1319 //   int op_index = instr->operand_position(op_name, Component::USE);
1320 //   if( op_index == -1 ) {
1321 //     op_index = instr->operand_position(op_name, Component::DEF);
1322 //     if( op_index == -1 ) {
1323 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1324 //     }
1325 //   }
1326 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1327 //
1328 //   ComponentList components_right = instr->_components;
1329 //   char *right_comp_type = components_right.at(op_index)->_type;
1330 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1331 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1332 //
1333 //   return;
1334 // }
1335 
1336 // Construct the new sub-tree
1337 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1338   fprintf(fp, "      // IF instructions and constraints matched\n");
1339   fprintf(fp, "      if( matches ) {\n");
1340   fprintf(fp, "        // generate the new sub-tree\n");
1341   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1342   if( preplace != NULL ) {
1343     // Get the root of the new sub-tree
1344     const char *root_inst = NULL;
1345     preplace->next_instruction(root_inst);
1346     InstructForm *root_form = globals[root_inst]->is_instruction();
1347     assert( root_form != NULL, "Replacement instruction was not previously defined");
1348     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1349 
1350     int         inst_num;
1351     const char *op_name;
1352     int         opnds_index = 0;            // define result operand
1353     // Then install the use-operands for the new sub-tree
1354     // preplace->reset();             // reset breaks iteration
1355     for( preplace->next_operand( inst_num, op_name );
1356          op_name != NULL;
1357          preplace->next_operand( inst_num, op_name ) ) {
1358       InstructForm *inst_form;
1359       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1360       assert( inst_form, "Parser should guaranty this is an instruction");
1361       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1362       if( inst_op_num == NameList::Not_in_list )
1363         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1364       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1365       // find the name of the OperandForm from the local name
1366       const Form *form   = inst_form->_localNames[op_name];
1367       OperandForm  *op_form = form->is_operand();
1368       if( opnds_index == 0 ) {
1369         // Initial setup of new instruction
1370         fprintf(fp, "        // ----- Initial setup -----\n");
1371         //
1372         // Add control edge for this node
1373         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1374         // Add unmatched edges from root of match tree
1375         int op_base = root_form->oper_input_base(globals);
1376         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1377           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1378                                           inst_num, unmatched_edge);
1379         }
1380         // If new instruction captures bottom type
1381         if( root_form->captures_bottom_type(globals) ) {
1382           // Get bottom type from instruction whose result we are replacing
1383           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1384         }
1385         // Define result register and result operand
1386         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1387         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1388         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1389         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
1390         fprintf(fp, "        // ----- Done with initial setup -----\n");
1391       } else {
1392         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1393           // Do not have ideal edges for constants after matching
1394           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1395                   inst_op_num, inst_num, inst_op_num,
1396                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1397           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1398                   inst_num, inst_op_num );
1399         } else {
1400           fprintf(fp, "        // no ideal edge for constants after matching\n");
1401         }
1402         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
1403                 opnds_index, inst_num, inst_op_num );
1404       }
1405       ++opnds_index;
1406     }
1407   }else {
1408     // Replacing subtree with empty-tree
1409     assert( false, "ShouldNotReachHere();");
1410   }
1411 
1412   // Return the new sub-tree
1413   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1414   fprintf(fp, "        return root;  // return new root;\n");
1415   fprintf(fp, "      }\n");
1416 }
1417 
1418 
1419 // Define the Peephole method for an instruction node
1420 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1421   // Generate Peephole function header
1422   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1423   fprintf(fp, "  bool  matches = true;\n");
1424 
1425   // Identify the maximum instruction position,
1426   // generate temporaries that hold current instruction
1427   //
1428   //   MachNode  *inst0 = NULL;
1429   //   ...
1430   //   MachNode  *instMAX = NULL;
1431   //
1432   int max_position = 0;
1433   Peephole *peep;
1434   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1435     PeepMatch *pmatch = peep->match();
1436     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1437     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1438   }
1439   for( int i = 0; i <= max_position; ++i ) {
1440     if( i == 0 ) {
1441       fprintf(fp, "  MachNode *inst0 = this;\n");
1442     } else {
1443       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1444     }
1445   }
1446 
1447   // For each peephole rule in architecture description
1448   //   Construct a test for the desired instruction sub-tree
1449   //   then check the constraints
1450   //   If these match, Generate the new subtree
1451   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1452     int         peephole_number = peep->peephole_number();
1453     PeepMatch      *pmatch      = peep->match();
1454     PeepConstraint *pconstraint = peep->constraints();
1455     PeepReplace    *preplace    = peep->replacement();
1456 
1457     // Root of this peephole is the current MachNode
1458     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1459             "root of PeepMatch does not match instruction");
1460 
1461     // Make each peephole rule individually selectable
1462     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1463     fprintf(fp, "    matches = true;\n");
1464     // Scan the peepmatch and output a test for each instruction
1465     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1466 
1467     // Check constraints and build replacement inside scope
1468     fprintf(fp, "    // If instruction subtree matches\n");
1469     fprintf(fp, "    if( matches ) {\n");
1470 
1471     // Generate tests for the constraints
1472     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1473 
1474     // Construct the new sub-tree
1475     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1476 
1477     // End of scope for this peephole's constraints
1478     fprintf(fp, "    }\n");
1479     // Closing brace '}' to make each peephole rule individually selectable
1480     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1481     fprintf(fp, "\n");
1482   }
1483 
1484   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1485   fprintf(fp, "}\n");
1486   fprintf(fp, "\n");
1487 }
1488 
1489 // Define the Expand method for an instruction node
1490 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1491   unsigned      cnt  = 0;          // Count nodes we have expand into
1492   unsigned      i;
1493 
1494   // Generate Expand function header
1495   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1496   fprintf(fp, "  Compile* C = Compile::current();\n");
1497   // Generate expand code
1498   if( node->expands() ) {
1499     const char   *opid;
1500     int           new_pos, exp_pos;
1501     const char   *new_id   = NULL;
1502     const Form   *frm      = NULL;
1503     InstructForm *new_inst = NULL;
1504     OperandForm  *new_oper = NULL;
1505     unsigned      numo     = node->num_opnds() +
1506                                 node->_exprule->_newopers.count();
1507 
1508     // If necessary, generate any operands created in expand rule
1509     if (node->_exprule->_newopers.count()) {
1510       for(node->_exprule->_newopers.reset();
1511           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1512         frm = node->_localNames[new_id];
1513         assert(frm, "Invalid entry in new operands list of expand rule");
1514         new_oper = frm->is_operand();
1515         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1516         if (tmp == NULL) {
1517           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
1518                   cnt, new_oper->_ident);
1519         }
1520         else {
1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
1522                   cnt, new_oper->_ident, tmp);
1523         }
1524       }
1525     }
1526     cnt = 0;
1527     // Generate the temps to use for DAG building
1528     for(i = 0; i < numo; i++) {
1529       if (i < node->num_opnds()) {
1530         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1531       }
1532       else {
1533         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1534       }
1535     }
1536     // Build mapping from num_edges to local variables
1537     fprintf(fp,"  unsigned num0 = 0;\n");
1538     for( i = 1; i < node->num_opnds(); i++ ) {
1539       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1540     }
1541 
1542     // Build a mapping from operand index to input edges
1543     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1544 
1545     // The order in which the memory input is added to a node is very
1546     // strange.  Store nodes get a memory input before Expand is
1547     // called and other nodes get it afterwards or before depending on
1548     // match order so oper_input_base is wrong during expansion.  This
1549     // code adjusts it so that expansion will work correctly.
1550     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1551     if (has_memory_edge) {
1552       fprintf(fp,"  if (mem == (Node*)1) {\n");
1553       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1554       fprintf(fp,"  }\n");
1555     }
1556 
1557     for( i = 0; i < node->num_opnds(); i++ ) {
1558       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1559               i+1,i,i);
1560     }
1561 
1562     // Declare variable to hold root of expansion
1563     fprintf(fp,"  MachNode *result = NULL;\n");
1564 
1565     // Iterate over the instructions 'node' expands into
1566     ExpandRule  *expand       = node->_exprule;
1567     NameAndList *expand_instr = NULL;
1568     for(expand->reset_instructions();
1569         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1570       new_id = expand_instr->name();
1571 
1572       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1573       if (expand_instruction->has_temps()) {
1574         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1575                              node->_ident, new_id);
1576       }
1577 
1578       // Build the node for the instruction
1579       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1580       // Add control edge for this node
1581       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1582       // Build the operand for the value this node defines.
1583       Form *form = (Form*)_globalNames[new_id];
1584       assert( form, "'new_id' must be a defined form name");
1585       // Grab the InstructForm for the new instruction
1586       new_inst = form->is_instruction();
1587       assert( new_inst, "'new_id' must be an instruction name");
1588       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1589         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1590         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1591       }
1592 
1593       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1594         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1595       }
1596 
1597       // Fill in the bottom_type where requested
1598       if (node->captures_bottom_type(_globalNames) &&
1599           new_inst->captures_bottom_type(_globalNames)) {
1600         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1601       }
1602 
1603       const char *resultOper = new_inst->reduce_result();
1604       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1605               cnt, machOperEnum(resultOper));
1606 
1607       // get the formal operand NameList
1608       NameList *formal_lst = &new_inst->_parameters;
1609       formal_lst->reset();
1610 
1611       // Handle any memory operand
1612       int memory_operand = new_inst->memory_operand(_globalNames);
1613       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1614         int node_mem_op = node->memory_operand(_globalNames);
1615         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1616                 "expand rule member needs memory but top-level inst doesn't have any" );
1617         if (has_memory_edge) {
1618           // Copy memory edge
1619           fprintf(fp,"  if (mem != (Node*)1) {\n");
1620           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1621           fprintf(fp,"  }\n");
1622         }
1623       }
1624 
1625       // Iterate over the new instruction's operands
1626       int prev_pos = -1;
1627       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1628         // Use 'parameter' at current position in list of new instruction's formals
1629         // instead of 'opid' when looking up info internal to new_inst
1630         const char *parameter = formal_lst->iter();
1631         // Check for an operand which is created in the expand rule
1632         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1633           new_pos = new_inst->operand_position(parameter,Component::USE);
1634           exp_pos += node->num_opnds();
1635           // If there is no use of the created operand, just skip it
1636           if (new_pos != NameList::Not_in_list) {
1637             //Copy the operand from the original made above
1638             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1639                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1640             // Check for who defines this operand & add edge if needed
1641             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1642             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1643           }
1644         }
1645         else {
1646           // Use operand name to get an index into instruction component list
1647           // ins = (InstructForm *) _globalNames[new_id];
1648           exp_pos = node->operand_position_format(opid);
1649           assert(exp_pos != -1, "Bad expand rule");
1650           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1651             // For the add_req calls below to work correctly they need
1652             // to added in the same order that a match would add them.
1653             // This means that they would need to be in the order of
1654             // the components list instead of the formal parameters.
1655             // This is a sort of hidden invariant that previously
1656             // wasn't checked and could lead to incorrectly
1657             // constructed nodes.
1658             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1659                        node->_ident, new_inst->_ident);
1660           }
1661           prev_pos = exp_pos;
1662 
1663           new_pos = new_inst->operand_position(parameter,Component::USE);
1664           if (new_pos != -1) {
1665             // Copy the operand from the ExpandNode to the new node
1666             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1667                     cnt, new_pos, exp_pos, opid);
1668             // For each operand add appropriate input edges by looking at tmp's
1669             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1670             // Grab corresponding edges from ExpandNode and insert them here
1671             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1672             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1673             fprintf(fp,"    }\n");
1674             fprintf(fp,"  }\n");
1675             // This value is generated by one of the new instructions
1676             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1677           }
1678         }
1679 
1680         // Update the DAG tmp's for values defined by this instruction
1681         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1682         Effect *eform = (Effect *)new_inst->_effects[parameter];
1683         // If this operand is a definition in either an effects rule
1684         // or a match rule
1685         if((eform) && (is_def(eform->_use_def))) {
1686           // Update the temp associated with this operand
1687           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1688         }
1689         else if( new_def_pos != -1 ) {
1690           // Instruction defines a value but user did not declare it
1691           // in the 'effect' clause
1692           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1693         }
1694       } // done iterating over a new instruction's operands
1695 
1696       // Invoke Expand() for the newly created instruction.
1697       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1698       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1699     } // done iterating over new instructions
1700     fprintf(fp,"\n");
1701   } // done generating expand rule
1702 
1703   // Generate projections for instruction's additional DEFs and KILLs
1704   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1705     // Get string representing the MachNode that projections point at
1706     const char *machNode = "this";
1707     // Generate the projections
1708     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1709 
1710     // Examine each component to see if it is a DEF or KILL
1711     node->_components.reset();
1712     // Skip the first component, if already handled as (SET dst (...))
1713     Component *comp = NULL;
1714     // For kills, the choice of projection numbers is arbitrary
1715     int proj_no = 1;
1716     bool declared_def  = false;
1717     bool declared_kill = false;
1718 
1719     while( (comp = node->_components.iter()) != NULL ) {
1720       // Lookup register class associated with operand type
1721       Form        *form = (Form*)_globalNames[comp->_type];
1722       assert( form, "component type must be a defined form");
1723       OperandForm *op   = form->is_operand();
1724 
1725       if (comp->is(Component::TEMP)) {
1726         fprintf(fp, "  // TEMP %s\n", comp->_name);
1727         if (!declared_def) {
1728           // Define the variable "def" to hold new MachProjNodes
1729           fprintf(fp, "  MachTempNode *def;\n");
1730           declared_def = true;
1731         }
1732         if (op && op->_interface && op->_interface->is_RegInterface()) {
1733           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1734                   machOperEnum(op->_ident));
1735           fprintf(fp,"  add_req(def);\n");
1736           // The operand for TEMP is already constructed during
1737           // this mach node construction, see buildMachNode().
1738           //
1739           // int idx  = node->operand_position_format(comp->_name);
1740           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1741           //         idx, machOperEnum(op->_ident));
1742         } else {
1743           assert(false, "can't have temps which aren't registers");
1744         }
1745       } else if (comp->isa(Component::KILL)) {
1746         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1747 
1748         if (!declared_kill) {
1749           // Define the variable "kill" to hold new MachProjNodes
1750           fprintf(fp, "  MachProjNode *kill;\n");
1751           declared_kill = true;
1752         }
1753 
1754         assert( op, "Support additional KILLS for base operands");
1755         const char *regmask    = reg_mask(*op);
1756         const char *ideal_type = op->ideal_type(_globalNames, _register);
1757 
1758         if (!op->is_bound_register()) {
1759           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1760                      node->_ident, comp->_type, comp->_name);
1761         }
1762 
1763         fprintf(fp,"  kill = ");
1764         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
1765                 machNode, proj_no++, regmask, ideal_type);
1766         fprintf(fp,"  proj_list.push(kill);\n");
1767       }
1768     }
1769   }
1770 
1771   if( !node->expands() && node->_matrule != NULL ) {
1772     // Remove duplicated operands and inputs which use the same name.
1773     // Seach through match operands for the same name usage.
1774     uint cur_num_opnds = node->num_opnds();
1775     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1776       Component *comp = NULL;
1777       // Build mapping from num_edges to local variables
1778       fprintf(fp,"  unsigned num0 = 0;\n");
1779       for( i = 1; i < cur_num_opnds; i++ ) {
1780         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
1781         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1782       }
1783       // Build a mapping from operand index to input edges
1784       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1785       for( i = 0; i < cur_num_opnds; i++ ) {
1786         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1787                 i+1,i,i);
1788       }
1789 
1790       uint new_num_opnds = 1;
1791       node->_components.reset();
1792       // Skip first unique operands.
1793       for( i = 1; i < cur_num_opnds; i++ ) {
1794         comp = node->_components.iter();
1795         if (i != node->unique_opnds_idx(i)) {
1796           break;
1797         }
1798         new_num_opnds++;
1799       }
1800       // Replace not unique operands with next unique operands.
1801       for( ; i < cur_num_opnds; i++ ) {
1802         comp = node->_components.iter();
1803         uint j = node->unique_opnds_idx(i);
1804         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1805         if( j != node->unique_opnds_idx(j) ) {
1806           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1807                   new_num_opnds, i, comp->_name);
1808           // delete not unique edges here
1809           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
1810           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1811           fprintf(fp,"  }\n");
1812           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
1813           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1814           new_num_opnds++;
1815         }
1816       }
1817       // delete the rest of edges
1818       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1819       fprintf(fp,"    del_req(i);\n");
1820       fprintf(fp,"  }\n");
1821       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
1822       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1823     }
1824   }
1825 
1826   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1827   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1828   if (node->is_mach_constant()) {
1829     fprintf(fp,"  add_req(C->mach_constant_base_node());\n");
1830   }
1831 
1832   fprintf(fp,"\n");
1833   if( node->expands() ) {
1834     fprintf(fp,"  return result;\n");
1835   } else {
1836     fprintf(fp,"  return this;\n");
1837   }
1838   fprintf(fp,"}\n");
1839   fprintf(fp,"\n");
1840 }
1841 
1842 
1843 //------------------------------Emit Routines----------------------------------
1844 // Special classes and routines for defining node emit routines which output
1845 // target specific instruction object encodings.
1846 // Define the ___Node::emit() routine
1847 //
1848 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1849 // (2)   // ...  encoding defined by user
1850 // (3)
1851 // (4) }
1852 //
1853 
1854 class DefineEmitState {
1855 private:
1856   enum reloc_format { RELOC_NONE        = -1,
1857                       RELOC_IMMEDIATE   =  0,
1858                       RELOC_DISP        =  1,
1859                       RELOC_CALL_DISP   =  2 };
1860   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1861                        LITERAL_SEEN      = 1,
1862                        LITERAL_ACCESSED  = 2,
1863                        LITERAL_OUTPUT    = 3 };
1864   // Temporaries that describe current operand
1865   bool          _cleared;
1866   OpClassForm  *_opclass;
1867   OperandForm  *_operand;
1868   int           _operand_idx;
1869   const char   *_local_name;
1870   const char   *_operand_name;
1871   bool          _doing_disp;
1872   bool          _doing_constant;
1873   Form::DataType _constant_type;
1874   DefineEmitState::literal_status _constant_status;
1875   DefineEmitState::literal_status _reg_status;
1876   bool          _doing_emit8;
1877   bool          _doing_emit_d32;
1878   bool          _doing_emit_d16;
1879   bool          _doing_emit_hi;
1880   bool          _doing_emit_lo;
1881   bool          _may_reloc;
1882   reloc_format  _reloc_form;
1883   const char *  _reloc_type;
1884   bool          _processing_noninput;
1885 
1886   NameList      _strings_to_emit;
1887 
1888   // Stable state, set by constructor
1889   ArchDesc     &_AD;
1890   FILE         *_fp;
1891   EncClass     &_encoding;
1892   InsEncode    &_ins_encode;
1893   InstructForm &_inst;
1894 
1895 public:
1896   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1897                   InsEncode &ins_encode, InstructForm &inst)
1898     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1899       clear();
1900   }
1901 
1902   void clear() {
1903     _cleared       = true;
1904     _opclass       = NULL;
1905     _operand       = NULL;
1906     _operand_idx   = 0;
1907     _local_name    = "";
1908     _operand_name  = "";
1909     _doing_disp    = false;
1910     _doing_constant= false;
1911     _constant_type = Form::none;
1912     _constant_status = LITERAL_NOT_SEEN;
1913     _reg_status      = LITERAL_NOT_SEEN;
1914     _doing_emit8   = false;
1915     _doing_emit_d32= false;
1916     _doing_emit_d16= false;
1917     _doing_emit_hi = false;
1918     _doing_emit_lo = false;
1919     _may_reloc     = false;
1920     _reloc_form    = RELOC_NONE;
1921     _reloc_type    = AdlcVMDeps::none_reloc_type();
1922     _strings_to_emit.clear();
1923   }
1924 
1925   // Track necessary state when identifying a replacement variable
1926   // @arg rep_var: The formal parameter of the encoding.
1927   void update_state(const char *rep_var) {
1928     // A replacement variable or one of its subfields
1929     // Obtain replacement variable from list
1930     if ( (*rep_var) != '$' ) {
1931       // A replacement variable, '$' prefix
1932       // check_rep_var( rep_var );
1933       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1934         // No state needed.
1935         assert( _opclass == NULL,
1936                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1937       }
1938       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1939                (strcmp(rep_var, "constantoffset")    == 0) ||
1940                (strcmp(rep_var, "constantaddress")   == 0)) {
1941         if (!_inst.is_mach_constant()) {
1942           _AD.syntax_err(_encoding._linenum,
1943                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode).\n",
1944                          rep_var, _encoding._name);
1945         }
1946       }
1947       else {
1948         // Lookup its position in (formal) parameter list of encoding
1949         int   param_no  = _encoding.rep_var_index(rep_var);
1950         if ( param_no == -1 ) {
1951           _AD.syntax_err( _encoding._linenum,
1952                           "Replacement variable %s not found in enc_class %s.\n",
1953                           rep_var, _encoding._name);
1954         }
1955 
1956         // Lookup the corresponding ins_encode parameter
1957         // This is the argument (actual parameter) to the encoding.
1958         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1959         if (inst_rep_var == NULL) {
1960           _AD.syntax_err( _ins_encode._linenum,
1961                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1962                           rep_var, _encoding._name, _inst._ident);
1963         }
1964 
1965         // Check if instruction's actual parameter is a local name in the instruction
1966         const Form  *local     = _inst._localNames[inst_rep_var];
1967         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1968         // Note: assert removed to allow constant and symbolic parameters
1969         // assert( opc, "replacement variable was not found in local names");
1970         // Lookup the index position iff the replacement variable is a localName
1971         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1972 
1973         if ( idx != -1 ) {
1974           // This is a local in the instruction
1975           // Update local state info.
1976           _opclass        = opc;
1977           _operand_idx    = idx;
1978           _local_name     = rep_var;
1979           _operand_name   = inst_rep_var;
1980 
1981           // !!!!!
1982           // Do not support consecutive operands.
1983           assert( _operand == NULL, "Unimplemented()");
1984           _operand = opc->is_operand();
1985         }
1986         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1987           // Instruction provided a constant expression
1988           // Check later that encoding specifies $$$constant to resolve as constant
1989           _constant_status   = LITERAL_SEEN;
1990         }
1991         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1992           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1993           // Check later that encoding specifies $$$constant to resolve as constant
1994           _constant_status   = LITERAL_SEEN;
1995         }
1996         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1997           // Instruction provided a literal register name for this parameter
1998           // Check that encoding specifies $$$reg to resolve.as register.
1999           _reg_status        = LITERAL_SEEN;
2000         }
2001         else {
2002           // Check for unimplemented functionality before hard failure
2003           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2004           assert( false, "ShouldNotReachHere()");
2005         }
2006       } // done checking which operand this is.
2007     } else {
2008       //
2009       // A subfield variable, '$$' prefix
2010       // Check for fields that may require relocation information.
2011       // Then check that literal register parameters are accessed with 'reg' or 'constant'
2012       //
2013       if ( strcmp(rep_var,"$disp") == 0 ) {
2014         _doing_disp = true;
2015         assert( _opclass, "Must use operand or operand class before '$disp'");
2016         if( _operand == NULL ) {
2017           // Only have an operand class, generate run-time check for relocation
2018           _may_reloc    = true;
2019           _reloc_form   = RELOC_DISP;
2020           _reloc_type   = AdlcVMDeps::oop_reloc_type();
2021         } else {
2022           // Do precise check on operand: is it a ConP or not
2023           //
2024           // Check interface for value of displacement
2025           assert( ( _operand->_interface != NULL ),
2026                   "$disp can only follow memory interface operand");
2027           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2028           assert( mem_interface != NULL,
2029                   "$disp can only follow memory interface operand");
2030           const char *disp = mem_interface->_disp;
2031 
2032           if( disp != NULL && (*disp == '$') ) {
2033             // MemInterface::disp contains a replacement variable,
2034             // Check if this matches a ConP
2035             //
2036             // Lookup replacement variable, in operand's component list
2037             const char *rep_var_name = disp + 1; // Skip '$'
2038             const Component *comp = _operand->_components.search(rep_var_name);
2039             assert( comp != NULL,"Replacement variable not found in components");
2040             const char      *type = comp->_type;
2041             // Lookup operand form for replacement variable's type
2042             const Form *form = _AD.globalNames()[type];
2043             assert( form != NULL, "Replacement variable's type not found");
2044             OperandForm *op = form->is_operand();
2045             assert( op, "Attempting to emit a non-register or non-constant");
2046             // Check if this is a constant
2047             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2048               // Check which constant this name maps to: _c0, _c1, ..., _cn
2049               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2050               // assert( idx != -1, "Constant component not found in operand");
2051               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2052               if ( dtype == Form::idealP ) {
2053                 _may_reloc    = true;
2054                 // No longer true that idealP is always an oop
2055                 _reloc_form   = RELOC_DISP;
2056                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2057               }
2058             }
2059 
2060             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2061               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2062               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2063               _may_reloc   = false;
2064             } else {
2065               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2066             }
2067           }
2068         } // finished with precise check of operand for relocation.
2069       } // finished with subfield variable
2070       else if ( strcmp(rep_var,"$constant") == 0 ) {
2071         _doing_constant = true;
2072         if ( _constant_status == LITERAL_NOT_SEEN ) {
2073           // Check operand for type of constant
2074           assert( _operand, "Must use operand before '$$constant'");
2075           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2076           _constant_type = dtype;
2077           if ( dtype == Form::idealP ) {
2078             _may_reloc    = true;
2079             // No longer true that idealP is always an oop
2080             // // _must_reloc   = true;
2081             _reloc_form   = RELOC_IMMEDIATE;
2082             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2083           } else {
2084             // No relocation information needed
2085           }
2086         } else {
2087           // User-provided literals may not require relocation information !!!!!
2088           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2089         }
2090       }
2091       else if ( strcmp(rep_var,"$label") == 0 ) {
2092         // Calls containing labels require relocation
2093         if ( _inst.is_ideal_call() )  {
2094           _may_reloc    = true;
2095           // !!!!! !!!!!
2096           _reloc_type   = AdlcVMDeps::none_reloc_type();
2097         }
2098       }
2099 
2100       // literal register parameter must be accessed as a 'reg' field.
2101       if ( _reg_status != LITERAL_NOT_SEEN ) {
2102         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2103         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2104           _reg_status  = LITERAL_ACCESSED;
2105         } else {
2106           assert( false, "invalid access to literal register parameter");
2107         }
2108       }
2109       // literal constant parameters must be accessed as a 'constant' field
2110       if ( _constant_status != LITERAL_NOT_SEEN ) {
2111         assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2112         if( strcmp(rep_var,"$constant") == 0 ) {
2113           _constant_status  = LITERAL_ACCESSED;
2114         } else {
2115           assert( false, "invalid access to literal constant parameter");
2116         }
2117       }
2118     } // end replacement and/or subfield
2119 
2120   }
2121 
2122   void add_rep_var(const char *rep_var) {
2123     // Handle subfield and replacement variables.
2124     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2125       // Check for emit prefix, '$$emit32'
2126       assert( _cleared, "Can not nest $$$emit32");
2127       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2128         _doing_emit_d32 = true;
2129       }
2130       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2131         _doing_emit_d16 = true;
2132       }
2133       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2134         _doing_emit_hi  = true;
2135       }
2136       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2137         _doing_emit_lo  = true;
2138       }
2139       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2140         _doing_emit8    = true;
2141       }
2142       else {
2143         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2144         assert( false, "fatal();");
2145       }
2146     }
2147     else {
2148       // Update state for replacement variables
2149       update_state( rep_var );
2150       _strings_to_emit.addName(rep_var);
2151     }
2152     _cleared  = false;
2153   }
2154 
2155   void emit_replacement() {
2156     // A replacement variable or one of its subfields
2157     // Obtain replacement variable from list
2158     // const char *ec_rep_var = encoding->_rep_vars.iter();
2159     const char *rep_var;
2160     _strings_to_emit.reset();
2161     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2162 
2163       if ( (*rep_var) == '$' ) {
2164         // A subfield variable, '$$' prefix
2165         emit_field( rep_var );
2166       } else {
2167         if (_strings_to_emit.peek() != NULL &&
2168             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2169           fprintf(_fp, "Address::make_raw(");
2170 
2171           emit_rep_var( rep_var );
2172           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2173 
2174           _reg_status = LITERAL_ACCESSED;
2175           emit_rep_var( rep_var );
2176           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2177 
2178           _reg_status = LITERAL_ACCESSED;
2179           emit_rep_var( rep_var );
2180           fprintf(_fp,"->scale(), ");
2181 
2182           _reg_status = LITERAL_ACCESSED;
2183           emit_rep_var( rep_var );
2184           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2185           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2186             fprintf(_fp,"->disp(ra_,this,0), ");
2187           } else {
2188             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2189           }
2190 
2191           _reg_status = LITERAL_ACCESSED;
2192           emit_rep_var( rep_var );
2193           fprintf(_fp,"->disp_reloc())");
2194 
2195           // skip trailing $Address
2196           _strings_to_emit.iter();
2197         } else {
2198           // A replacement variable, '$' prefix
2199           const char* next = _strings_to_emit.peek();
2200           const char* next2 = _strings_to_emit.peek(2);
2201           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2202               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2203             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2204             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2205             fprintf(_fp, "as_Register(");
2206             // emit the operand reference
2207             emit_rep_var( rep_var );
2208             rep_var = _strings_to_emit.iter();
2209             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2210             // handle base or index
2211             emit_field(rep_var);
2212             rep_var = _strings_to_emit.iter();
2213             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2214             // close up the parens
2215             fprintf(_fp, ")");
2216           } else {
2217             emit_rep_var( rep_var );
2218           }
2219         }
2220       } // end replacement and/or subfield
2221     }
2222   }
2223 
2224   void emit_reloc_type(const char* type) {
2225     fprintf(_fp, "%s", type)
2226       ;
2227   }
2228 
2229 
2230   void emit() {
2231     //
2232     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2233     //
2234     // Emit the function name when generating an emit function
2235     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2236       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2237       // In general, relocatable isn't known at compiler compile time.
2238       // Check results of prior scan
2239       if ( ! _may_reloc ) {
2240         // Definitely don't need relocation information
2241         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2242         emit_replacement(); fprintf(_fp, ")");
2243       }
2244       else {
2245         // Emit RUNTIME CHECK to see if value needs relocation info
2246         // If emitting a relocatable address, use 'emit_d32_reloc'
2247         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2248         assert( (_doing_disp || _doing_constant)
2249                 && !(_doing_disp && _doing_constant),
2250                 "Must be emitting either a displacement or a constant");
2251         fprintf(_fp,"\n");
2252         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2253                 _operand_idx, disp_constant);
2254         fprintf(_fp,"  ");
2255         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2256         emit_replacement();             fprintf(_fp,", ");
2257         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2258                 _operand_idx, disp_constant);
2259         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2260         fprintf(_fp,"\n");
2261         fprintf(_fp,"} else {\n");
2262         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2263         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2264       }
2265     }
2266     else if ( _doing_emit_d16 ) {
2267       // Relocation of 16-bit values is not supported
2268       fprintf(_fp,"emit_d16(cbuf, ");
2269       emit_replacement(); fprintf(_fp, ")");
2270       // No relocation done for 16-bit values
2271     }
2272     else if ( _doing_emit8 ) {
2273       // Relocation of 8-bit values is not supported
2274       fprintf(_fp,"emit_d8(cbuf, ");
2275       emit_replacement(); fprintf(_fp, ")");
2276       // No relocation done for 8-bit values
2277     }
2278     else {
2279       // Not an emit# command, just output the replacement string.
2280       emit_replacement();
2281     }
2282 
2283     // Get ready for next state collection.
2284     clear();
2285   }
2286 
2287 private:
2288 
2289   // recognizes names which represent MacroAssembler register types
2290   // and return the conversion function to build them from OptoReg
2291   const char* reg_conversion(const char* rep_var) {
2292     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2293     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2294 #if defined(IA32) || defined(AMD64)
2295     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2296 #endif
2297     return NULL;
2298   }
2299 
2300   void emit_field(const char *rep_var) {
2301     const char* reg_convert = reg_conversion(rep_var);
2302 
2303     // A subfield variable, '$$subfield'
2304     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2305       // $reg form or the $Register MacroAssembler type conversions
2306       assert( _operand_idx != -1,
2307               "Must use this subfield after operand");
2308       if( _reg_status == LITERAL_NOT_SEEN ) {
2309         if (_processing_noninput) {
2310           const Form  *local     = _inst._localNames[_operand_name];
2311           OperandForm *oper      = local->is_operand();
2312           const RegDef* first = oper->get_RegClass()->find_first_elem();
2313           if (reg_convert != NULL) {
2314             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2315           } else {
2316             fprintf(_fp, "%s_enc", first->_regname);
2317           }
2318         } else {
2319           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2320           // Add parameter for index position, if not result operand
2321           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2322           fprintf(_fp,")");
2323           fprintf(_fp, "/* %s */", _operand_name);
2324         }
2325       } else {
2326         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2327         // Register literal has already been sent to output file, nothing more needed
2328       }
2329     }
2330     else if ( strcmp(rep_var,"$base") == 0 ) {
2331       assert( _operand_idx != -1,
2332               "Must use this subfield after operand");
2333       assert( ! _may_reloc, "UnImplemented()");
2334       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2335     }
2336     else if ( strcmp(rep_var,"$index") == 0 ) {
2337       assert( _operand_idx != -1,
2338               "Must use this subfield after operand");
2339       assert( ! _may_reloc, "UnImplemented()");
2340       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2341     }
2342     else if ( strcmp(rep_var,"$scale") == 0 ) {
2343       assert( ! _may_reloc, "UnImplemented()");
2344       fprintf(_fp,"->scale()");
2345     }
2346     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2347       assert( ! _may_reloc, "UnImplemented()");
2348       fprintf(_fp,"->ccode()");
2349     }
2350     else if ( strcmp(rep_var,"$constant") == 0 ) {
2351       if( _constant_status == LITERAL_NOT_SEEN ) {
2352         if ( _constant_type == Form::idealD ) {
2353           fprintf(_fp,"->constantD()");
2354         } else if ( _constant_type == Form::idealF ) {
2355           fprintf(_fp,"->constantF()");
2356         } else if ( _constant_type == Form::idealL ) {
2357           fprintf(_fp,"->constantL()");
2358         } else {
2359           fprintf(_fp,"->constant()");
2360         }
2361       } else {
2362         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2363         // Constant literal has already been sent to output file, nothing more needed
2364       }
2365     }
2366     else if ( strcmp(rep_var,"$disp") == 0 ) {
2367       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2368       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2369         fprintf(_fp,"->disp(ra_,this,0)");
2370       } else {
2371         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2372       }
2373     }
2374     else if ( strcmp(rep_var,"$label") == 0 ) {
2375       fprintf(_fp,"->label()");
2376     }
2377     else if ( strcmp(rep_var,"$method") == 0 ) {
2378       fprintf(_fp,"->method()");
2379     }
2380     else {
2381       printf("emit_field: %s\n",rep_var);
2382       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2383                            rep_var, _inst._ident);
2384       assert( false, "UnImplemented()");
2385     }
2386   }
2387 
2388 
2389   void emit_rep_var(const char *rep_var) {
2390     _processing_noninput = false;
2391     // A replacement variable, originally '$'
2392     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2393       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2394         // Missing opcode
2395         _AD.syntax_err( _inst._linenum,
2396                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2397                         rep_var, _inst._ident, _encoding._name);
2398       }
2399     }
2400     else if (strcmp(rep_var, "constanttablebase") == 0) {
2401       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2402     }
2403     else if (strcmp(rep_var, "constantoffset") == 0) {
2404       fprintf(_fp, "constant_offset()");
2405     }
2406     else if (strcmp(rep_var, "constantaddress") == 0) {
2407       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2408     }
2409     else {
2410       // Lookup its position in parameter list
2411       int   param_no  = _encoding.rep_var_index(rep_var);
2412       if ( param_no == -1 ) {
2413         _AD.syntax_err( _encoding._linenum,
2414                         "Replacement variable %s not found in enc_class %s.\n",
2415                         rep_var, _encoding._name);
2416       }
2417       // Lookup the corresponding ins_encode parameter
2418       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2419 
2420       // Check if instruction's actual parameter is a local name in the instruction
2421       const Form  *local     = _inst._localNames[inst_rep_var];
2422       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2423       // Note: assert removed to allow constant and symbolic parameters
2424       // assert( opc, "replacement variable was not found in local names");
2425       // Lookup the index position iff the replacement variable is a localName
2426       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2427       if( idx != -1 ) {
2428         if (_inst.is_noninput_operand(idx)) {
2429           // This operand isn't a normal input so printing it is done
2430           // specially.
2431           _processing_noninput = true;
2432         } else {
2433           // Output the emit code for this operand
2434           fprintf(_fp,"opnd_array(%d)",idx);
2435         }
2436         assert( _operand == opc->is_operand(),
2437                 "Previous emit $operand does not match current");
2438       }
2439       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2440         // else check if it is a constant expression
2441         // Removed following assert to allow primitive C types as arguments to encodings
2442         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2443         fprintf(_fp,"(%s)", inst_rep_var);
2444         _constant_status = LITERAL_OUTPUT;
2445       }
2446       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2447         // else check if "primary", "secondary", "tertiary"
2448         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2449         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2450           // Missing opcode
2451           _AD.syntax_err( _inst._linenum,
2452                           "Missing $%s opcode definition in %s\n",
2453                           rep_var, _inst._ident);
2454 
2455         }
2456         _constant_status = LITERAL_OUTPUT;
2457       }
2458       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2459         // Instruction provided a literal register name for this parameter
2460         // Check that encoding specifies $$$reg to resolve.as register.
2461         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2462         fprintf(_fp,"(%s_enc)", inst_rep_var);
2463         _reg_status = LITERAL_OUTPUT;
2464       }
2465       else {
2466         // Check for unimplemented functionality before hard failure
2467         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2468         assert( false, "ShouldNotReachHere()");
2469       }
2470       // all done
2471     }
2472   }
2473 
2474 };  // end class DefineEmitState
2475 
2476 
2477 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2478 
2479   //(1)
2480   // Output instruction's emit prototype
2481   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2482           inst._ident);
2483 
2484   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2485 
2486   //(2)
2487   // Print the size
2488   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2489 
2490   // (3) and (4)
2491   fprintf(fp,"}\n");
2492 }
2493 
2494 // defineEmit -----------------------------------------------------------------
2495 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2496   InsEncode* encode = inst._insencode;
2497 
2498   // (1)
2499   // Output instruction's emit prototype
2500   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2501 
2502   // If user did not define an encode section,
2503   // provide stub that does not generate any machine code.
2504   if( (_encode == NULL) || (encode == NULL) ) {
2505     fprintf(fp, "  // User did not define an encode section.\n");
2506     fprintf(fp, "}\n");
2507     return;
2508   }
2509 
2510   // Save current instruction's starting address (helps with relocation).
2511   fprintf(fp, "  cbuf.set_insts_mark();\n");
2512 
2513   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2514   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2515     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2516   }
2517 
2518   // Output each operand's offset into the array of registers.
2519   inst.index_temps(fp, _globalNames);
2520 
2521   // Output this instruction's encodings
2522   const char *ec_name;
2523   bool        user_defined = false;
2524   encode->reset();
2525   while ((ec_name = encode->encode_class_iter()) != NULL) {
2526     fprintf(fp, "  {\n");
2527     // Output user-defined encoding
2528     user_defined           = true;
2529 
2530     const char *ec_code    = NULL;
2531     const char *ec_rep_var = NULL;
2532     EncClass   *encoding   = _encode->encClass(ec_name);
2533     if (encoding == NULL) {
2534       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2535       abort();
2536     }
2537 
2538     if (encode->current_encoding_num_args() != encoding->num_args()) {
2539       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2540                            inst._ident, encode->current_encoding_num_args(),
2541                            ec_name, encoding->num_args());
2542     }
2543 
2544     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2545     encoding->_code.reset();
2546     encoding->_rep_vars.reset();
2547     // Process list of user-defined strings,
2548     // and occurrences of replacement variables.
2549     // Replacement Vars are pushed into a list and then output
2550     while ((ec_code = encoding->_code.iter()) != NULL) {
2551       if (!encoding->_code.is_signal(ec_code)) {
2552         // Emit pending code
2553         pending.emit();
2554         pending.clear();
2555         // Emit this code section
2556         fprintf(fp, "%s", ec_code);
2557       } else {
2558         // A replacement variable or one of its subfields
2559         // Obtain replacement variable from list
2560         ec_rep_var  = encoding->_rep_vars.iter();
2561         pending.add_rep_var(ec_rep_var);
2562       }
2563     }
2564     // Emit pending code
2565     pending.emit();
2566     pending.clear();
2567     fprintf(fp, "  }\n");
2568   } // end while instruction's encodings
2569 
2570   // Check if user stated which encoding to user
2571   if ( user_defined == false ) {
2572     fprintf(fp, "  // User did not define which encode class to use.\n");
2573   }
2574 
2575   // (3) and (4)
2576   fprintf(fp, "}\n\n");
2577 }
2578 
2579 // defineEvalConstant ---------------------------------------------------------
2580 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2581   InsEncode* encode = inst._constant;
2582 
2583   // (1)
2584   // Output instruction's emit prototype
2585   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2586 
2587   // For ideal jump nodes, add a jump-table entry.
2588   if (inst.is_ideal_jump()) {
2589     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2590   }
2591 
2592   // If user did not define an encode section,
2593   // provide stub that does not generate any machine code.
2594   if ((_encode == NULL) || (encode == NULL)) {
2595     fprintf(fp, "  // User did not define an encode section.\n");
2596     fprintf(fp, "}\n");
2597     return;
2598   }
2599 
2600   // Output this instruction's encodings
2601   const char *ec_name;
2602   bool        user_defined = false;
2603   encode->reset();
2604   while ((ec_name = encode->encode_class_iter()) != NULL) {
2605     fprintf(fp, "  {\n");
2606     // Output user-defined encoding
2607     user_defined           = true;
2608 
2609     const char *ec_code    = NULL;
2610     const char *ec_rep_var = NULL;
2611     EncClass   *encoding   = _encode->encClass(ec_name);
2612     if (encoding == NULL) {
2613       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2614       abort();
2615     }
2616 
2617     if (encode->current_encoding_num_args() != encoding->num_args()) {
2618       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2619                            inst._ident, encode->current_encoding_num_args(),
2620                            ec_name, encoding->num_args());
2621     }
2622 
2623     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2624     encoding->_code.reset();
2625     encoding->_rep_vars.reset();
2626     // Process list of user-defined strings,
2627     // and occurrences of replacement variables.
2628     // Replacement Vars are pushed into a list and then output
2629     while ((ec_code = encoding->_code.iter()) != NULL) {
2630       if (!encoding->_code.is_signal(ec_code)) {
2631         // Emit pending code
2632         pending.emit();
2633         pending.clear();
2634         // Emit this code section
2635         fprintf(fp, "%s", ec_code);
2636       } else {
2637         // A replacement variable or one of its subfields
2638         // Obtain replacement variable from list
2639         ec_rep_var  = encoding->_rep_vars.iter();
2640         pending.add_rep_var(ec_rep_var);
2641       }
2642     }
2643     // Emit pending code
2644     pending.emit();
2645     pending.clear();
2646     fprintf(fp, "  }\n");
2647   } // end while instruction's encodings
2648 
2649   // Check if user stated which encoding to user
2650   if (user_defined == false) {
2651     fprintf(fp, "  // User did not define which encode class to use.\n");
2652   }
2653 
2654   // (3) and (4)
2655   fprintf(fp, "}\n");
2656 }
2657 
2658 // ---------------------------------------------------------------------------
2659 //--------Utilities to build MachOper and MachNode derived Classes------------
2660 // ---------------------------------------------------------------------------
2661 
2662 //------------------------------Utilities to build Operand Classes------------
2663 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2664   uint num_edges = oper.num_edges(globals);
2665   if( num_edges != 0 ) {
2666     // Method header
2667     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2668             oper._ident);
2669 
2670     // Assert that the index is in range.
2671     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2672             num_edges);
2673 
2674     // Figure out if all RegMasks are the same.
2675     const char* first_reg_class = oper.in_reg_class(0, globals);
2676     bool all_same = true;
2677     assert(first_reg_class != NULL, "did not find register mask");
2678 
2679     for (uint index = 1; all_same && index < num_edges; index++) {
2680       const char* some_reg_class = oper.in_reg_class(index, globals);
2681       assert(some_reg_class != NULL, "did not find register mask");
2682       if (strcmp(first_reg_class, some_reg_class) != 0) {
2683         all_same = false;
2684       }
2685     }
2686 
2687     if (all_same) {
2688       // Return the sole RegMask.
2689       if (strcmp(first_reg_class, "stack_slots") == 0) {
2690         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2691       } else {
2692         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2693         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2694         delete[] first_reg_class_to_upper;
2695       }
2696     } else {
2697       // Build a switch statement to return the desired mask.
2698       fprintf(fp,"  switch (index) {\n");
2699 
2700       for (uint index = 0; index < num_edges; index++) {
2701         const char *reg_class = oper.in_reg_class(index, globals);
2702         assert(reg_class != NULL, "did not find register mask");
2703         if( !strcmp(reg_class, "stack_slots") ) {
2704           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2705         } else {
2706           const char* reg_class_to_upper = toUpper(reg_class);
2707           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2708           delete[] reg_class_to_upper;
2709         }
2710       }
2711       fprintf(fp,"  }\n");
2712       fprintf(fp,"  ShouldNotReachHere();\n");
2713       fprintf(fp,"  return NULL;\n");
2714     }
2715 
2716     // Method close
2717     fprintf(fp, "}\n\n");
2718   }
2719 }
2720 
2721 // generate code to create a clone for a class derived from MachOper
2722 //
2723 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
2724 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2725 // (2)  }
2726 //
2727 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2728   fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
2729   // Check for constants that need to be copied over
2730   const int  num_consts    = oper.num_consts(globalNames);
2731   const bool is_ideal_bool = oper.is_ideal_bool();
2732   if( (num_consts > 0) ) {
2733     fprintf(fp,"  return new (C) %sOper(", oper._ident);
2734     // generate parameters for constants
2735     int i = 0;
2736     fprintf(fp,"_c%d", i);
2737     for( i = 1; i < num_consts; ++i) {
2738       fprintf(fp,", _c%d", i);
2739     }
2740     // finish line (1)
2741     fprintf(fp,");\n");
2742   }
2743   else {
2744     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2745     fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
2746   }
2747   // finish method
2748   fprintf(fp,"}\n");
2749 }
2750 
2751 // Helper functions for bug 4796752, abstracted with minimal modification
2752 // from define_oper_interface()
2753 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2754   OperandForm *op = NULL;
2755   // Check for replacement variable
2756   if( *encoding == '$' ) {
2757     // Replacement variable
2758     const char *rep_var = encoding + 1;
2759     // Lookup replacement variable, rep_var, in operand's component list
2760     const Component *comp = oper._components.search(rep_var);
2761     assert( comp != NULL, "Replacement variable not found in components");
2762     // Lookup operand form for replacement variable's type
2763     const char      *type = comp->_type;
2764     Form            *form = (Form*)globals[type];
2765     assert( form != NULL, "Replacement variable's type not found");
2766     op = form->is_operand();
2767     assert( op, "Attempting to emit a non-register or non-constant");
2768   }
2769 
2770   return op;
2771 }
2772 
2773 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2774   int idx = -1;
2775   // Check for replacement variable
2776   if( *encoding == '$' ) {
2777     // Replacement variable
2778     const char *rep_var = encoding + 1;
2779     // Lookup replacement variable, rep_var, in operand's component list
2780     const Component *comp = oper._components.search(rep_var);
2781     assert( comp != NULL, "Replacement variable not found in components");
2782     // Lookup operand form for replacement variable's type
2783     const char      *type = comp->_type;
2784     Form            *form = (Form*)globals[type];
2785     assert( form != NULL, "Replacement variable's type not found");
2786     OperandForm *op = form->is_operand();
2787     assert( op, "Attempting to emit a non-register or non-constant");
2788     // Check that this is a constant and find constant's index:
2789     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2790       idx  = oper.constant_position(globals, comp);
2791     }
2792   }
2793 
2794   return idx;
2795 }
2796 
2797 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2798   bool is_regI = false;
2799 
2800   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2801   if( op != NULL ) {
2802     // Check that this is a register
2803     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2804       // Register
2805       const char* ideal  = op->ideal_type(globals);
2806       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2807     }
2808   }
2809 
2810   return is_regI;
2811 }
2812 
2813 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2814   bool is_conP = false;
2815 
2816   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2817   if( op != NULL ) {
2818     // Check that this is a constant pointer
2819     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2820       // Constant
2821       Form::DataType dtype = op->is_base_constant(globals);
2822       is_conP = (dtype == Form::idealP);
2823     }
2824   }
2825 
2826   return is_conP;
2827 }
2828 
2829 
2830 // Define a MachOper interface methods
2831 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2832                                      const char *name, const char *encoding) {
2833   bool emit_position = false;
2834   int position = -1;
2835 
2836   fprintf(fp,"  virtual int            %s", name);
2837   // Generate access method for base, index, scale, disp, ...
2838   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2839     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2840     emit_position = true;
2841   } else if ( (strcmp(name,"disp") == 0) ) {
2842     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2843   } else {
2844     fprintf(fp,"() const { \n");
2845   }
2846 
2847   // Check for hexadecimal value OR replacement variable
2848   if( *encoding == '$' ) {
2849     // Replacement variable
2850     const char *rep_var = encoding + 1;
2851     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2852     // Lookup replacement variable, rep_var, in operand's component list
2853     const Component *comp = oper._components.search(rep_var);
2854     assert( comp != NULL, "Replacement variable not found in components");
2855     // Lookup operand form for replacement variable's type
2856     const char      *type = comp->_type;
2857     Form            *form = (Form*)globals[type];
2858     assert( form != NULL, "Replacement variable's type not found");
2859     OperandForm *op = form->is_operand();
2860     assert( op, "Attempting to emit a non-register or non-constant");
2861     // Check that this is a register or a constant and generate code:
2862     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2863       // Register
2864       int idx_offset = oper.register_position( globals, rep_var);
2865       position = idx_offset;
2866       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2867       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2868       fprintf(fp,"));\n");
2869     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2870       // StackSlot for an sReg comes either from input node or from self, when idx==0
2871       fprintf(fp,"    if( idx != 0 ) {\n");
2872       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2873       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2874       fprintf(fp,"    }\n");
2875       fprintf(fp,"    // Access stack offset (register number) from myself\n");
2876       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2877     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2878       // Constant
2879       // Check which constant this name maps to: _c0, _c1, ..., _cn
2880       const int idx = oper.constant_position(globals, comp);
2881       assert( idx != -1, "Constant component not found in operand");
2882       // Output code for this constant, type dependent.
2883       fprintf(fp,"    return (int)" );
2884       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2885       fprintf(fp,";\n");
2886     } else {
2887       assert( false, "Attempting to emit a non-register or non-constant");
2888     }
2889   }
2890   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2891     // Hex value
2892     fprintf(fp,"    return %s;\n", encoding);
2893   } else {
2894     assert( false, "Do not support octal or decimal encode constants");
2895   }
2896   fprintf(fp,"  }\n");
2897 
2898   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2899     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2900     MemInterface *mem_interface = oper._interface->is_MemInterface();
2901     const char *base = mem_interface->_base;
2902     const char *disp = mem_interface->_disp;
2903     if( emit_position && (strcmp(name,"base") == 0)
2904         && base != NULL && is_regI(base, oper, globals)
2905         && disp != NULL && is_conP(disp, oper, globals) ) {
2906       // Found a memory access using a constant pointer for a displacement
2907       // and a base register containing an integer offset.
2908       // In this case the base and disp are reversed with respect to what
2909       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
2910       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
2911       // to correctly compute the access type for alias analysis.
2912       //
2913       // See BugId 4796752, operand indOffset32X in i486.ad
2914       int idx = rep_var_to_constant_index(disp, oper, globals);
2915       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
2916     }
2917   }
2918 }
2919 
2920 //
2921 // Construct the method to copy _idx, inputs and operands to new node.
2922 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
2923   fprintf(fp_cpp, "\n");
2924   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
2925   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
2926   if( !used ) {
2927     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
2928     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
2929     fprintf(fp_cpp, "}\n");
2930   } else {
2931     // New node must use same node index for access through allocator's tables
2932     fprintf(fp_cpp, "  // New node must use same node index\n");
2933     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
2934     // Copy machine-independent inputs
2935     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
2936     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
2937     fprintf(fp_cpp, "    node->add_req(in(j));\n");
2938     fprintf(fp_cpp, "  }\n");
2939     // Copy machine operands to new MachNode
2940     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
2941     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
2942     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
2943     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
2944     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
2945     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
2946     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
2947     fprintf(fp_cpp, "  }\n");
2948     fprintf(fp_cpp, "}\n");
2949   }
2950   fprintf(fp_cpp, "\n");
2951 }
2952 
2953 //------------------------------defineClasses----------------------------------
2954 // Define members of MachNode and MachOper classes based on
2955 // operand and instruction lists
2956 void ArchDesc::defineClasses(FILE *fp) {
2957 
2958   // Define the contents of an array containing the machine register names
2959   defineRegNames(fp, _register);
2960   // Define an array containing the machine register encoding values
2961   defineRegEncodes(fp, _register);
2962   // Generate an enumeration of user-defined register classes
2963   // and a list of register masks, one for each class.
2964   // Only define the RegMask value objects in the expand file.
2965   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
2966   declare_register_masks(_HPP_file._fp);
2967   // build_register_masks(fp);
2968   build_register_masks(_CPP_EXPAND_file._fp);
2969   // Define the pipe_classes
2970   build_pipe_classes(_CPP_PIPELINE_file._fp);
2971 
2972   // Generate Machine Classes for each operand defined in AD file
2973   fprintf(fp,"\n");
2974   fprintf(fp,"\n");
2975   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
2976   // Iterate through all operands
2977   _operands.reset();
2978   OperandForm *oper;
2979   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
2980     // Ensure this is a machine-world instruction
2981     if ( oper->ideal_only() ) continue;
2982     // !!!!!
2983     // The declaration of labelOper is in machine-independent file: machnode
2984     if ( strcmp(oper->_ident,"label") == 0 ) {
2985       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
2986 
2987       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
2988       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
2989       fprintf(fp,"}\n");
2990 
2991       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
2992               oper->_ident, machOperEnum(oper->_ident));
2993       // // Currently all XXXOper::Hash() methods are identical (990820)
2994       // define_hash(fp, oper->_ident);
2995       // // Currently all XXXOper::Cmp() methods are identical (990820)
2996       // define_cmp(fp, oper->_ident);
2997       fprintf(fp,"\n");
2998 
2999       continue;
3000     }
3001 
3002     // The declaration of methodOper is in machine-independent file: machnode
3003     if ( strcmp(oper->_ident,"method") == 0 ) {
3004       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3005 
3006       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
3007       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
3008       fprintf(fp,"}\n");
3009 
3010       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3011               oper->_ident, machOperEnum(oper->_ident));
3012       // // Currently all XXXOper::Hash() methods are identical (990820)
3013       // define_hash(fp, oper->_ident);
3014       // // Currently all XXXOper::Cmp() methods are identical (990820)
3015       // define_cmp(fp, oper->_ident);
3016       fprintf(fp,"\n");
3017 
3018       continue;
3019     }
3020 
3021     defineIn_RegMask(fp, _globalNames, *oper);
3022     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3023     // // Currently all XXXOper::Hash() methods are identical (990820)
3024     // define_hash(fp, oper->_ident);
3025     // // Currently all XXXOper::Cmp() methods are identical (990820)
3026     // define_cmp(fp, oper->_ident);
3027 
3028     // side-call to generate output that used to be in the header file:
3029     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3030     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3031 
3032   }
3033 
3034 
3035   // Generate Machine Classes for each instruction defined in AD file
3036   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3037   // Output the definitions for out_RegMask() // & kill_RegMask()
3038   _instructions.reset();
3039   InstructForm *instr;
3040   MachNodeForm *machnode;
3041   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3042     // Ensure this is a machine-world instruction
3043     if ( instr->ideal_only() ) continue;
3044 
3045     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3046   }
3047 
3048   bool used = false;
3049   // Output the definitions for expand rules & peephole rules
3050   _instructions.reset();
3051   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3052     // Ensure this is a machine-world instruction
3053     if ( instr->ideal_only() ) continue;
3054     // If there are multiple defs/kills, or an explicit expand rule, build rule
3055     if( instr->expands() || instr->needs_projections() ||
3056         instr->has_temps() ||
3057         instr->is_mach_constant() ||
3058         instr->_matrule != NULL &&
3059         instr->num_opnds() != instr->num_unique_opnds() )
3060       defineExpand(_CPP_EXPAND_file._fp, instr);
3061     // If there is an explicit peephole rule, build it
3062     if ( instr->peepholes() )
3063       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3064 
3065     // Output code to convert to the cisc version, if applicable
3066     used |= instr->define_cisc_version(*this, fp);
3067 
3068     // Output code to convert to the short branch version, if applicable
3069     used |= instr->define_short_branch_methods(*this, fp);
3070   }
3071 
3072   // Construct the method called by cisc_version() to copy inputs and operands.
3073   define_fill_new_machnode(used, fp);
3074 
3075   // Output the definitions for labels
3076   _instructions.reset();
3077   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3078     // Ensure this is a machine-world instruction
3079     if ( instr->ideal_only() ) continue;
3080 
3081     // Access the fields for operand Label
3082     int label_position = instr->label_position();
3083     if( label_position != -1 ) {
3084       // Set the label
3085       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3086       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3087               label_position );
3088       fprintf(fp,"  oper->_label     = label;\n");
3089       fprintf(fp,"  oper->_block_num = block_num;\n");
3090       fprintf(fp,"}\n");
3091       // Save the label
3092       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3093       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3094               label_position );
3095       fprintf(fp,"  *label = oper->_label;\n");
3096       fprintf(fp,"  *block_num = oper->_block_num;\n");
3097       fprintf(fp,"}\n");
3098     }
3099   }
3100 
3101   // Output the definitions for methods
3102   _instructions.reset();
3103   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3104     // Ensure this is a machine-world instruction
3105     if ( instr->ideal_only() ) continue;
3106 
3107     // Access the fields for operand Label
3108     int method_position = instr->method_position();
3109     if( method_position != -1 ) {
3110       // Access the method's address
3111       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3112       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3113               method_position );
3114       fprintf(fp,"}\n");
3115       fprintf(fp,"\n");
3116     }
3117   }
3118 
3119   // Define this instruction's number of relocation entries, base is '0'
3120   _instructions.reset();
3121   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3122     // Output the definition for number of relocation entries
3123     uint reloc_size = instr->reloc(_globalNames);
3124     if ( reloc_size != 0 ) {
3125       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3126       fprintf(fp,"  return %d;\n", reloc_size);
3127       fprintf(fp,"}\n");
3128       fprintf(fp,"\n");
3129     }
3130   }
3131   fprintf(fp,"\n");
3132 
3133   // Output the definitions for code generation
3134   //
3135   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3136   //   // ...  encoding defined by user
3137   //   return ptr;
3138   // }
3139   //
3140   _instructions.reset();
3141   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3142     // Ensure this is a machine-world instruction
3143     if ( instr->ideal_only() ) continue;
3144 
3145     if (instr->_insencode)         defineEmit        (fp, *instr);
3146     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3147     if (instr->_size)              defineSize        (fp, *instr);
3148 
3149     // side-call to generate output that used to be in the header file:
3150     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3151     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3152   }
3153 
3154   // Output the definitions for alias analysis
3155   _instructions.reset();
3156   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3157     // Ensure this is a machine-world instruction
3158     if ( instr->ideal_only() ) continue;
3159 
3160     // Analyze machine instructions that either USE or DEF memory.
3161     int memory_operand = instr->memory_operand(_globalNames);
3162     // Some guys kill all of memory
3163     if ( instr->is_wide_memory_kill(_globalNames) ) {
3164       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3165     }
3166 
3167     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3168       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3169         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3170         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3171       } else {
3172         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3173   }
3174     }
3175   }
3176 
3177   // Get the length of the longest identifier
3178   int max_ident_len = 0;
3179   _instructions.reset();
3180 
3181   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3182     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3183       int ident_len = (int)strlen(instr->_ident);
3184       if( max_ident_len < ident_len )
3185         max_ident_len = ident_len;
3186     }
3187   }
3188 
3189   // Emit specifically for Node(s)
3190   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3191     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3192   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3193     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3194   fprintf(_CPP_PIPELINE_file._fp, "\n");
3195 
3196   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3197     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3198   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3199     max_ident_len, "MachNode");
3200   fprintf(_CPP_PIPELINE_file._fp, "\n");
3201 
3202   // Output the definitions for machine node specific pipeline data
3203   _machnodes.reset();
3204 
3205   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3206     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3207       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3208   }
3209 
3210   fprintf(_CPP_PIPELINE_file._fp, "\n");
3211 
3212   // Output the definitions for instruction pipeline static data references
3213   _instructions.reset();
3214 
3215   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3216     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3217       fprintf(_CPP_PIPELINE_file._fp, "\n");
3218       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3219         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3220       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3221         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3222     }
3223   }
3224 }
3225 
3226 
3227 // -------------------------------- maps ------------------------------------
3228 
3229 // Information needed to generate the ReduceOp mapping for the DFA
3230 class OutputReduceOp : public OutputMap {
3231 public:
3232   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3233     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3234 
3235   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3236   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3237   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3238                        OutputMap::closing();
3239   }
3240   void map(OpClassForm &opc)  {
3241     const char *reduce = opc._ident;
3242     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3243     else          fprintf(_cpp, "  0");
3244   }
3245   void map(OperandForm &oper) {
3246     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3247     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3248     // operand stackSlot does not have a match rule, but produces a stackSlot
3249     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3250     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3251     else          fprintf(_cpp, "  0");
3252   }
3253   void map(InstructForm &inst) {
3254     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3255     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3256     else          fprintf(_cpp, "  0");
3257   }
3258   void map(char         *reduce) {
3259     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3260     else          fprintf(_cpp, "  0");
3261   }
3262 };
3263 
3264 // Information needed to generate the LeftOp mapping for the DFA
3265 class OutputLeftOp : public OutputMap {
3266 public:
3267   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3268     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3269 
3270   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3271   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3272   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3273                        OutputMap::closing();
3274   }
3275   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3276   void map(OperandForm &oper) {
3277     const char *reduce = oper.reduce_left(_globals);
3278     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3279     else          fprintf(_cpp, "  0");
3280   }
3281   void map(char        *name) {
3282     const char *reduce = _AD.reduceLeft(name);
3283     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3284     else          fprintf(_cpp, "  0");
3285   }
3286   void map(InstructForm &inst) {
3287     const char *reduce = inst.reduce_left(_globals);
3288     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3289     else          fprintf(_cpp, "  0");
3290   }
3291 };
3292 
3293 
3294 // Information needed to generate the RightOp mapping for the DFA
3295 class OutputRightOp : public OutputMap {
3296 public:
3297   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3298     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3299 
3300   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3301   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3302   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3303                        OutputMap::closing();
3304   }
3305   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3306   void map(OperandForm &oper) {
3307     const char *reduce = oper.reduce_right(_globals);
3308     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3309     else          fprintf(_cpp, "  0");
3310   }
3311   void map(char        *name) {
3312     const char *reduce = _AD.reduceRight(name);
3313     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3314     else          fprintf(_cpp, "  0");
3315   }
3316   void map(InstructForm &inst) {
3317     const char *reduce = inst.reduce_right(_globals);
3318     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3319     else          fprintf(_cpp, "  0");
3320   }
3321 };
3322 
3323 
3324 // Information needed to generate the Rule names for the DFA
3325 class OutputRuleName : public OutputMap {
3326 public:
3327   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3328     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3329 
3330   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3331   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3332   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3333                        OutputMap::closing();
3334   }
3335   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3336   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3337   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3338   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3339 };
3340 
3341 
3342 // Information needed to generate the swallowed mapping for the DFA
3343 class OutputSwallowed : public OutputMap {
3344 public:
3345   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3346     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3347 
3348   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3349   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3350   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3351                        OutputMap::closing();
3352   }
3353   void map(OperandForm &oper) { // Generate the entry for this opcode
3354     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3355     fprintf(_cpp, "  %s", swallowed);
3356   }
3357   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3358   void map(char        *name) { fprintf(_cpp, "  false"); }
3359   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3360 };
3361 
3362 
3363 // Information needed to generate the decision array for instruction chain rule
3364 class OutputInstChainRule : public OutputMap {
3365 public:
3366   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3367     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3368 
3369   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3370   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3371   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3372                        OutputMap::closing();
3373   }
3374   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3375   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3376   void map(char        *name)  { fprintf(_cpp, "  false"); }
3377   void map(InstructForm &inst) { // Check for simple chain rule
3378     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3379     fprintf(_cpp, "  %s", chain);
3380   }
3381 };
3382 
3383 
3384 //---------------------------build_map------------------------------------
3385 // Build  mapping from enumeration for densely packed operands
3386 // TO result and child types.
3387 void ArchDesc::build_map(OutputMap &map) {
3388   FILE         *fp_hpp = map.decl_file();
3389   FILE         *fp_cpp = map.def_file();
3390   int           idx    = 0;
3391   OperandForm  *op;
3392   OpClassForm  *opc;
3393   InstructForm *inst;
3394 
3395   // Construct this mapping
3396   map.declaration();
3397   fprintf(fp_cpp,"\n");
3398   map.definition();
3399 
3400   // Output the mapping for operands
3401   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3402   _operands.reset();
3403   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3404     // Ensure this is a machine-world instruction
3405     if ( op->ideal_only() )  continue;
3406 
3407     // Generate the entry for this opcode
3408     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3409     ++idx;
3410   };
3411   fprintf(fp_cpp, "  // last operand\n");
3412 
3413   // Place all user-defined operand classes into the mapping
3414   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3415   _opclass.reset();
3416   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3417     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3418     ++idx;
3419   };
3420   fprintf(fp_cpp, "  // last operand class\n");
3421 
3422   // Place all internally defined operands into the mapping
3423   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3424   _internalOpNames.reset();
3425   char *name = NULL;
3426   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3427     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3428     ++idx;
3429   };
3430   fprintf(fp_cpp, "  // last internally defined operand\n");
3431 
3432   // Place all user-defined instructions into the mapping
3433   if( map.do_instructions() ) {
3434     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3435     // Output all simple instruction chain rules first
3436     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3437     {
3438       _instructions.reset();
3439       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3440         // Ensure this is a machine-world instruction
3441         if ( inst->ideal_only() )  continue;
3442         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3443         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3444 
3445         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3446         ++idx;
3447       };
3448       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3449       _instructions.reset();
3450       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3451         // Ensure this is a machine-world instruction
3452         if ( inst->ideal_only() )  continue;
3453         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3454         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3455 
3456         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3457         ++idx;
3458       };
3459       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3460     }
3461     // Output all instructions that are NOT simple chain rules
3462     {
3463       _instructions.reset();
3464       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3465         // Ensure this is a machine-world instruction
3466         if ( inst->ideal_only() )  continue;
3467         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3468         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3469 
3470         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3471         ++idx;
3472       };
3473       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3474       _instructions.reset();
3475       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3476         // Ensure this is a machine-world instruction
3477         if ( inst->ideal_only() )  continue;
3478         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3479         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3480 
3481         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3482         ++idx;
3483       };
3484     }
3485     fprintf(fp_cpp, "  // last instruction\n");
3486     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3487   }
3488   // Finish defining table
3489   map.closing();
3490 };
3491 
3492 
3493 // Helper function for buildReduceMaps
3494 char reg_save_policy(const char *calling_convention) {
3495   char callconv;
3496 
3497   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3498   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3499   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3500   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3501   else                                         callconv = 'Z';
3502 
3503   return callconv;
3504 }
3505 
3506 //---------------------------generate_assertion_checks-------------------
3507 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3508   fprintf(fp_cpp, "\n");
3509 
3510   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3511   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3512   globalDefs().print_asserts(fp_cpp);
3513   fprintf(fp_cpp, "}\n");
3514   fprintf(fp_cpp, "#endif\n");
3515   fprintf(fp_cpp, "\n");
3516 }
3517 
3518 //---------------------------addSourceBlocks-----------------------------
3519 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3520   if (_source.count() > 0)
3521     _source.output(fp_cpp);
3522 
3523   generate_adlc_verification(fp_cpp);
3524 }
3525 //---------------------------addHeaderBlocks-----------------------------
3526 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3527   if (_header.count() > 0)
3528     _header.output(fp_hpp);
3529 }
3530 //-------------------------addPreHeaderBlocks----------------------------
3531 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3532   // Output #defines from definition block
3533   globalDefs().print_defines(fp_hpp);
3534 
3535   if (_pre_header.count() > 0)
3536     _pre_header.output(fp_hpp);
3537 }
3538 
3539 //---------------------------buildReduceMaps-----------------------------
3540 // Build  mapping from enumeration for densely packed operands
3541 // TO result and child types.
3542 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3543   RegDef       *rdef;
3544   RegDef       *next;
3545 
3546   // The emit bodies currently require functions defined in the source block.
3547 
3548   // Build external declarations for mappings
3549   fprintf(fp_hpp, "\n");
3550   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3551   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3552   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3553   fprintf(fp_hpp, "\n");
3554 
3555   // Construct Save-Policy array
3556   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3557   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3558   _register->reset_RegDefs();
3559   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3560     next              = _register->iter_RegDefs();
3561     char policy       = reg_save_policy(rdef->_callconv);
3562     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3563     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3564   }
3565   fprintf(fp_cpp, "};\n\n");
3566 
3567   // Construct Native Save-Policy array
3568   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3569   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3570   _register->reset_RegDefs();
3571   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3572     next        = _register->iter_RegDefs();
3573     char policy = reg_save_policy(rdef->_c_conv);
3574     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3575     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3576   }
3577   fprintf(fp_cpp, "};\n\n");
3578 
3579   // Construct Register Save Type array
3580   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3581   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3582   _register->reset_RegDefs();
3583   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3584     next = _register->iter_RegDefs();
3585     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3586     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3587   }
3588   fprintf(fp_cpp, "};\n\n");
3589 
3590   // Construct the table for reduceOp
3591   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3592   build_map(output_reduce_op);
3593   // Construct the table for leftOp
3594   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3595   build_map(output_left_op);
3596   // Construct the table for rightOp
3597   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3598   build_map(output_right_op);
3599   // Construct the table of rule names
3600   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3601   build_map(output_rule_name);
3602   // Construct the boolean table for subsumed operands
3603   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3604   build_map(output_swallowed);
3605   // // // Preserve in case we decide to use this table instead of another
3606   //// Construct the boolean table for instruction chain rules
3607   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3608   //build_map(output_inst_chain);
3609 
3610 }
3611 
3612 
3613 //---------------------------buildMachOperGenerator---------------------------
3614 
3615 // Recurse through match tree, building path through corresponding state tree,
3616 // Until we reach the constant we are looking for.
3617 static void path_to_constant(FILE *fp, FormDict &globals,
3618                              MatchNode *mnode, uint idx) {
3619   if ( ! mnode) return;
3620 
3621   unsigned    position = 0;
3622   const char *result   = NULL;
3623   const char *name     = NULL;
3624   const char *optype   = NULL;
3625 
3626   // Base Case: access constant in ideal node linked to current state node
3627   // Each type of constant has its own access function
3628   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3629        && mnode->base_operand(position, globals, result, name, optype) ) {
3630     if (         strcmp(optype,"ConI") == 0 ) {
3631       fprintf(fp, "_leaf->get_int()");
3632     } else if ( (strcmp(optype,"ConP") == 0) ) {
3633       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3634     } else if ( (strcmp(optype,"ConN") == 0) ) {
3635       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3636     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3637       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3638     } else if ( (strcmp(optype,"ConF") == 0) ) {
3639       fprintf(fp, "_leaf->getf()");
3640     } else if ( (strcmp(optype,"ConD") == 0) ) {
3641       fprintf(fp, "_leaf->getd()");
3642     } else if ( (strcmp(optype,"ConL") == 0) ) {
3643       fprintf(fp, "_leaf->get_long()");
3644     } else if ( (strcmp(optype,"Con")==0) ) {
3645       // !!!!! - Update if adding a machine-independent constant type
3646       fprintf(fp, "_leaf->get_int()");
3647       assert( false, "Unsupported constant type, pointer or indefinite");
3648     } else if ( (strcmp(optype,"Bool") == 0) ) {
3649       fprintf(fp, "_leaf->as_Bool()->_test._test");
3650     } else {
3651       assert( false, "Unsupported constant type");
3652     }
3653     return;
3654   }
3655 
3656   // If constant is in left child, build path and recurse
3657   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3658   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3659   if ( (mnode->_lChild) && (lConsts > idx) ) {
3660     fprintf(fp, "_kids[0]->");
3661     path_to_constant(fp, globals, mnode->_lChild, idx);
3662     return;
3663   }
3664   // If constant is in right child, build path and recurse
3665   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3666     idx = idx - lConsts;
3667     fprintf(fp, "_kids[1]->");
3668     path_to_constant(fp, globals, mnode->_rChild, idx);
3669     return;
3670   }
3671   assert( false, "ShouldNotReachHere()");
3672 }
3673 
3674 // Generate code that is executed when generating a specific Machine Operand
3675 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3676                             OperandForm &op) {
3677   const char *opName         = op._ident;
3678   const char *opEnumName     = AD.machOperEnum(opName);
3679   uint        num_consts     = op.num_consts(globalNames);
3680 
3681   // Generate the case statement for this opcode
3682   fprintf(fp, "  case %s:", opEnumName);
3683   fprintf(fp, "\n    return new (C) %sOper(", opName);
3684   // Access parameters for constructor from the stat object
3685   //
3686   // Build access to condition code value
3687   if ( (num_consts > 0) ) {
3688     uint i = 0;
3689     path_to_constant(fp, globalNames, op._matrule, i);
3690     for ( i = 1; i < num_consts; ++i ) {
3691       fprintf(fp, ", ");
3692       path_to_constant(fp, globalNames, op._matrule, i);
3693     }
3694   }
3695   fprintf(fp, " );\n");
3696 }
3697 
3698 
3699 // Build switch to invoke "new" MachNode or MachOper
3700 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3701   int idx = 0;
3702 
3703   // Build switch to invoke 'new' for a specific MachOper
3704   fprintf(fp_cpp, "\n");
3705   fprintf(fp_cpp, "\n");
3706   fprintf(fp_cpp,
3707           "//------------------------- MachOper Generator ---------------\n");
3708   fprintf(fp_cpp,
3709           "// A switch statement on the dense-packed user-defined type system\n"
3710           "// that invokes 'new' on the corresponding class constructor.\n");
3711   fprintf(fp_cpp, "\n");
3712   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3713   fprintf(fp_cpp, "(int opcode, Compile* C)");
3714   fprintf(fp_cpp, "{\n");
3715   fprintf(fp_cpp, "\n");
3716   fprintf(fp_cpp, "  switch(opcode) {\n");
3717 
3718   // Place all user-defined operands into the mapping
3719   _operands.reset();
3720   int  opIndex = 0;
3721   OperandForm *op;
3722   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3723     // Ensure this is a machine-world instruction
3724     if ( op->ideal_only() )  continue;
3725 
3726     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3727   };
3728 
3729   // Do not iterate over operand classes for the  operand generator!!!
3730 
3731   // Place all internal operands into the mapping
3732   _internalOpNames.reset();
3733   const char *iopn;
3734   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3735     const char *opEnumName = machOperEnum(iopn);
3736     // Generate the case statement for this opcode
3737     fprintf(fp_cpp, "  case %s:", opEnumName);
3738     fprintf(fp_cpp, "    return NULL;\n");
3739   };
3740 
3741   // Generate the default case for switch(opcode)
3742   fprintf(fp_cpp, "  \n");
3743   fprintf(fp_cpp, "  default:\n");
3744   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3745   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3746   fprintf(fp_cpp, "    break;\n");
3747   fprintf(fp_cpp, "  }\n");
3748 
3749   // Generate the closing for method Matcher::MachOperGenerator
3750   fprintf(fp_cpp, "  return NULL;\n");
3751   fprintf(fp_cpp, "};\n");
3752 }
3753 
3754 
3755 //---------------------------buildMachNode-------------------------------------
3756 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3757 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3758   const char *opType  = NULL;
3759   const char *opClass = inst->_ident;
3760 
3761   // Create the MachNode object
3762   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3763 
3764   if ( (inst->num_post_match_opnds() != 0) ) {
3765     // Instruction that contains operands which are not in match rule.
3766     //
3767     // Check if the first post-match component may be an interesting def
3768     bool           dont_care = false;
3769     ComponentList &comp_list = inst->_components;
3770     Component     *comp      = NULL;
3771     comp_list.reset();
3772     if ( comp_list.match_iter() != NULL )    dont_care = true;
3773 
3774     // Insert operands that are not in match-rule.
3775     // Only insert a DEF if the do_care flag is set
3776     comp_list.reset();
3777     while ( comp = comp_list.post_match_iter() ) {
3778       // Check if we don't care about DEFs or KILLs that are not USEs
3779       if ( dont_care && (! comp->isa(Component::USE)) ) {
3780         continue;
3781       }
3782       dont_care = true;
3783       // For each operand not in the match rule, call MachOperGenerator
3784       // with the enum for the opcode that needs to be built.
3785       ComponentList clist = inst->_components;
3786       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3787       const char *opcode = machOperEnum(comp->_type);
3788       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3789       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3790       }
3791   }
3792   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3793     // An instruction that chains from a constant!
3794     // In this case, we need to subsume the constant into the node
3795     // at operand position, oper_input_base().
3796     //
3797     // Fill in the constant
3798     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3799             inst->oper_input_base(_globalNames));
3800     // #####
3801     // Check for multiple constants and then fill them in.
3802     // Just like MachOperGenerator
3803     const char *opName = inst->_matrule->_rChild->_opType;
3804     fprintf(fp_cpp, "new (C) %sOper(", opName);
3805     // Grab operand form
3806     OperandForm *op = (_globalNames[opName])->is_operand();
3807     // Look up the number of constants
3808     uint num_consts = op->num_consts(_globalNames);
3809     if ( (num_consts > 0) ) {
3810       uint i = 0;
3811       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3812       for ( i = 1; i < num_consts; ++i ) {
3813         fprintf(fp_cpp, ", ");
3814         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3815       }
3816     }
3817     fprintf(fp_cpp, " );\n");
3818     // #####
3819   }
3820 
3821   // Fill in the bottom_type where requested
3822   if ( inst->captures_bottom_type(_globalNames) ) {
3823     fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3824   }
3825   if( inst->is_ideal_if() ) {
3826     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3827     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3828   }
3829   if( inst->is_ideal_fastlock() ) {
3830     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3831   }
3832 
3833 }
3834 
3835 //---------------------------declare_cisc_version------------------------------
3836 // Build CISC version of this instruction
3837 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3838   if( AD.can_cisc_spill() ) {
3839     InstructForm *inst_cisc = cisc_spill_alternate();
3840     if (inst_cisc != NULL) {
3841       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3842       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
3843       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3844       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3845     }
3846   }
3847 }
3848 
3849 //---------------------------define_cisc_version-------------------------------
3850 // Build CISC version of this instruction
3851 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3852   InstructForm *inst_cisc = this->cisc_spill_alternate();
3853   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3854     const char   *name      = inst_cisc->_ident;
3855     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3856     OperandForm *cisc_oper = AD.cisc_spill_operand();
3857     assert( cisc_oper != NULL, "insanity check");
3858     const char *cisc_oper_name  = cisc_oper->_ident;
3859     assert( cisc_oper_name != NULL, "insanity check");
3860     //
3861     // Set the correct reg_mask_or_stack for the cisc operand
3862     fprintf(fp_cpp, "\n");
3863     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3864     // Lookup the correct reg_mask_or_stack
3865     const char *reg_mask_name = cisc_reg_mask_name();
3866     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3867     fprintf(fp_cpp, "}\n");
3868     //
3869     // Construct CISC version of this instruction
3870     fprintf(fp_cpp, "\n");
3871     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3872     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
3873     // Create the MachNode object
3874     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3875     // Fill in the bottom_type where requested
3876     if ( this->captures_bottom_type(AD.globalNames()) ) {
3877       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3878     }
3879 
3880     uint cur_num_opnds = num_opnds();
3881     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3882       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
3883     }
3884 
3885     fprintf(fp_cpp, "\n");
3886     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3887     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3888     // Construct operand to access [stack_pointer + offset]
3889     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
3890     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
3891     fprintf(fp_cpp, "\n");
3892 
3893     // Return result and exit scope
3894     fprintf(fp_cpp, "  return node;\n");
3895     fprintf(fp_cpp, "}\n");
3896     fprintf(fp_cpp, "\n");
3897     return true;
3898   }
3899   return false;
3900 }
3901 
3902 //---------------------------declare_short_branch_methods----------------------
3903 // Build prototypes for short branch methods
3904 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
3905   if (has_short_branch_form()) {
3906     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
3907   }
3908 }
3909 
3910 //---------------------------define_short_branch_methods-----------------------
3911 // Build definitions for short branch methods
3912 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
3913   if (has_short_branch_form()) {
3914     InstructForm *short_branch = short_branch_form();
3915     const char   *name         = short_branch->_ident;
3916 
3917     // Construct short_branch_version() method.
3918     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
3919     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
3920     // Create the MachNode object
3921     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3922     if( is_ideal_if() ) {
3923       fprintf(fp_cpp, "  node->_prob = _prob;\n");
3924       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
3925     }
3926     // Fill in the bottom_type where requested
3927     if ( this->captures_bottom_type(AD.globalNames()) ) {
3928       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3929     }
3930 
3931     fprintf(fp_cpp, "\n");
3932     // Short branch version must use same node index for access
3933     // through allocator's tables
3934     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3935     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3936 
3937     // Return result and exit scope
3938     fprintf(fp_cpp, "  return node;\n");
3939     fprintf(fp_cpp, "}\n");
3940     fprintf(fp_cpp,"\n");
3941     return true;
3942   }
3943   return false;
3944 }
3945 
3946 
3947 //---------------------------buildMachNodeGenerator----------------------------
3948 // Build switch to invoke appropriate "new" MachNode for an opcode
3949 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
3950 
3951   // Build switch to invoke 'new' for a specific MachNode
3952   fprintf(fp_cpp, "\n");
3953   fprintf(fp_cpp, "\n");
3954   fprintf(fp_cpp,
3955           "//------------------------- MachNode Generator ---------------\n");
3956   fprintf(fp_cpp,
3957           "// A switch statement on the dense-packed user-defined type system\n"
3958           "// that invokes 'new' on the corresponding class constructor.\n");
3959   fprintf(fp_cpp, "\n");
3960   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
3961   fprintf(fp_cpp, "(int opcode, Compile* C)");
3962   fprintf(fp_cpp, "{\n");
3963   fprintf(fp_cpp, "  switch(opcode) {\n");
3964 
3965   // Provide constructor for all user-defined instructions
3966   _instructions.reset();
3967   int  opIndex = operandFormCount();
3968   InstructForm *inst;
3969   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3970     // Ensure that matrule is defined.
3971     if ( inst->_matrule == NULL ) continue;
3972 
3973     int         opcode  = opIndex++;
3974     const char *opClass = inst->_ident;
3975     char       *opType  = NULL;
3976 
3977     // Generate the case statement for this instruction
3978     fprintf(fp_cpp, "  case %s_rule:", opClass);
3979 
3980     // Start local scope
3981     fprintf(fp_cpp, " {\n");
3982     // Generate code to construct the new MachNode
3983     buildMachNode(fp_cpp, inst, "     ");
3984     // Return result and exit scope
3985     fprintf(fp_cpp, "      return node;\n");
3986     fprintf(fp_cpp, "    }\n");
3987   }
3988 
3989   // Generate the default case for switch(opcode)
3990   fprintf(fp_cpp, "  \n");
3991   fprintf(fp_cpp, "  default:\n");
3992   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
3993   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3994   fprintf(fp_cpp, "    break;\n");
3995   fprintf(fp_cpp, "  };\n");
3996 
3997   // Generate the closing for method Matcher::MachNodeGenerator
3998   fprintf(fp_cpp, "  return NULL;\n");
3999   fprintf(fp_cpp, "}\n");
4000 }
4001 
4002 
4003 //---------------------------buildInstructMatchCheck--------------------------
4004 // Output the method to Matcher which checks whether or not a specific
4005 // instruction has a matching rule for the host architecture.
4006 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4007   fprintf(fp_cpp, "\n\n");
4008   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4009   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4010   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4011   fprintf(fp_cpp, "}\n\n");
4012 
4013   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4014   int i;
4015   for (i = 0; i < _last_opcode - 1; i++) {
4016     fprintf(fp_cpp, "    %-5s,  // %s\n",
4017             _has_match_rule[i] ? "true" : "false",
4018             NodeClassNames[i]);
4019   }
4020   fprintf(fp_cpp, "    %-5s   // %s\n",
4021           _has_match_rule[i] ? "true" : "false",
4022           NodeClassNames[i]);
4023   fprintf(fp_cpp, "};\n");
4024 }
4025 
4026 //---------------------------buildFrameMethods---------------------------------
4027 // Output the methods to Matcher which specify frame behavior
4028 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4029   fprintf(fp_cpp,"\n\n");
4030   // Stack Direction
4031   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4032           _frame->_direction ? "true" : "false");
4033   // Sync Stack Slots
4034   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4035           _frame->_sync_stack_slots);
4036   // Java Stack Alignment
4037   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4038           _frame->_alignment);
4039   // Java Return Address Location
4040   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4041   if (_frame->_return_addr_loc) {
4042     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4043             _frame->_return_addr);
4044   }
4045   else {
4046     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4047             _frame->_return_addr);
4048   }
4049   // Java Stack Slot Preservation
4050   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4051   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4052   // Top Of Stack Slot Preservation, for both Java and C
4053   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4054   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4055   // varargs C out slots killed
4056   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4057   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4058   // Java Argument Position
4059   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4060   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4061   fprintf(fp_cpp,"}\n\n");
4062   // Native Argument Position
4063   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4064   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4065   fprintf(fp_cpp,"}\n\n");
4066   // Java Return Value Location
4067   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
4068   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4069   fprintf(fp_cpp,"}\n\n");
4070   // Native Return Value Location
4071   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
4072   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4073   fprintf(fp_cpp,"}\n\n");
4074 
4075   // Inline Cache Register, mask definition, and encoding
4076   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4077   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4078           _frame->_inline_cache_reg);
4079   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4080   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4081 
4082   // Interpreter's Method Oop Register, mask definition, and encoding
4083   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4084   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4085           _frame->_interpreter_method_oop_reg);
4086   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4087   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4088 
4089   // Interpreter's Frame Pointer Register, mask definition, and encoding
4090   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4091   if (_frame->_interpreter_frame_pointer_reg == NULL)
4092     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4093   else
4094     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4095             _frame->_interpreter_frame_pointer_reg);
4096 
4097   // Frame Pointer definition
4098   /* CNC - I can not contemplate having a different frame pointer between
4099      Java and native code; makes my head hurt to think about it.
4100   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4101   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4102           _frame->_frame_pointer);
4103   */
4104   // (Native) Frame Pointer definition
4105   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4106   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4107           _frame->_frame_pointer);
4108 
4109   // Number of callee-save + always-save registers for calling convention
4110   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4111   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4112   RegDef *rdef;
4113   int nof_saved_registers = 0;
4114   _register->reset_RegDefs();
4115   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4116     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4117       ++nof_saved_registers;
4118   }
4119   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4120   fprintf(fp_cpp, "};\n\n");
4121 }
4122 
4123 
4124 
4125 
4126 static int PrintAdlcCisc = 0;
4127 //---------------------------identify_cisc_spilling----------------------------
4128 // Get info for the CISC_oracle and MachNode::cisc_version()
4129 void ArchDesc::identify_cisc_spill_instructions() {
4130 
4131   if (_frame == NULL)
4132     return;
4133 
4134   // Find the user-defined operand for cisc-spilling
4135   if( _frame->_cisc_spilling_operand_name != NULL ) {
4136     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4137     OperandForm *oper = form ? form->is_operand() : NULL;
4138     // Verify the user's suggestion
4139     if( oper != NULL ) {
4140       // Ensure that match field is defined.
4141       if ( oper->_matrule != NULL )  {
4142         MatchRule &mrule = *oper->_matrule;
4143         if( strcmp(mrule._opType,"AddP") == 0 ) {
4144           MatchNode *left = mrule._lChild;
4145           MatchNode *right= mrule._rChild;
4146           if( left != NULL && right != NULL ) {
4147             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4148             const Form *right_op = _globalNames[right->_opType]->is_operand();
4149             if(  (left_op != NULL && right_op != NULL)
4150               && (left_op->interface_type(_globalNames) == Form::register_interface)
4151               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4152               // Successfully verified operand
4153               set_cisc_spill_operand( oper );
4154               if( _cisc_spill_debug ) {
4155                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4156              }
4157             }
4158           }
4159         }
4160       }
4161     }
4162   }
4163 
4164   if( cisc_spill_operand() != NULL ) {
4165     // N^2 comparison of instructions looking for a cisc-spilling version
4166     _instructions.reset();
4167     InstructForm *instr;
4168     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4169       // Ensure that match field is defined.
4170       if ( instr->_matrule == NULL )  continue;
4171 
4172       MatchRule &mrule = *instr->_matrule;
4173       Predicate *pred  =  instr->build_predicate();
4174 
4175       // Grab the machine type of the operand
4176       const char *rootOp = instr->_ident;
4177       mrule._machType    = rootOp;
4178 
4179       // Find result type for match
4180       const char *result = instr->reduce_result();
4181 
4182       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4183       bool  found_cisc_alternate = false;
4184       _instructions.reset2();
4185       InstructForm *instr2;
4186       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4187         // Ensure that match field is defined.
4188         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4189         if ( instr2->_matrule != NULL
4190             && (instr != instr2 )                // Skip self
4191             && (instr2->reduce_result() != NULL) // want same result
4192             && (strcmp(result, instr2->reduce_result()) == 0)) {
4193           MatchRule &mrule2 = *instr2->_matrule;
4194           Predicate *pred2  =  instr2->build_predicate();
4195           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4196         }
4197       }
4198     }
4199   }
4200 }
4201 
4202 //---------------------------build_cisc_spilling-------------------------------
4203 // Get info for the CISC_oracle and MachNode::cisc_version()
4204 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4205   // Output the table for cisc spilling
4206   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4207   _instructions.reset();
4208   InstructForm *inst = NULL;
4209   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4210     // Ensure this is a machine-world instruction
4211     if ( inst->ideal_only() )  continue;
4212     const char *inst_name = inst->_ident;
4213     int   operand   = inst->cisc_spill_operand();
4214     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4215       InstructForm *inst2 = inst->cisc_spill_alternate();
4216       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4217     }
4218   }
4219   fprintf(fp_cpp, "\n\n");
4220 }
4221 
4222 //---------------------------identify_short_branches----------------------------
4223 // Get info for our short branch replacement oracle.
4224 void ArchDesc::identify_short_branches() {
4225   // Walk over all instructions, checking to see if they match a short
4226   // branching alternate.
4227   _instructions.reset();
4228   InstructForm *instr;
4229   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4230     // The instruction must have a match rule.
4231     if (instr->_matrule != NULL &&
4232         instr->is_short_branch()) {
4233 
4234       _instructions.reset2();
4235       InstructForm *instr2;
4236       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4237         instr2->check_branch_variant(*this, instr);
4238       }
4239     }
4240   }
4241 }
4242 
4243 
4244 //---------------------------identify_unique_operands---------------------------
4245 // Identify unique operands.
4246 void ArchDesc::identify_unique_operands() {
4247   // Walk over all instructions.
4248   _instructions.reset();
4249   InstructForm *instr;
4250   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4251     // Ensure this is a machine-world instruction
4252     if (!instr->ideal_only()) {
4253       instr->set_unique_opnds();
4254     }
4255   }
4256 }