1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 static bool is_use(int usedef) {
  39   switch(usedef) {
  40   case Component::USE:
  41   case Component::USE_DEF:
  42   case Component::USE_KILL: return true; break;
  43   }
  44   return false;
  45 }
  46 
  47 static bool is_kill(int usedef) {
  48   switch(usedef) {
  49   case Component::KILL:
  50   case Component::USE_KILL: return true; break;
  51   }
  52   return false;
  53 }
  54 
  55 // Define  an array containing the machine register names, strings.
  56 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  57   if (registers) {
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  61 
  62     // Output the register name for each register in the allocation classes
  63     RegDef *reg_def = NULL;
  64     RegDef *next = NULL;
  65     registers->reset_RegDefs();
  66     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  67       next = registers->iter_RegDefs();
  68       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  69       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
  70     }
  71 
  72     // Finish defining enumeration
  73     fprintf(fp,"};\n");
  74 
  75     fprintf(fp,"\n");
  76     fprintf(fp,"// An array of character pointers to machine register names.\n");
  77     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  78     reg_def = NULL;
  79     next = NULL;
  80     registers->reset_RegDefs();
  81     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  82       next = registers->iter_RegDefs();
  83       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  84       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
  85     }
  86     // Finish defining array
  87     fprintf(fp,"\t};\n");
  88     fprintf(fp,"\n");
  89 
  90     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  91 
  92   }
  93 }
  94 
  95 // Define an array containing the machine register encoding values
  96 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  97   if (registers) {
  98     fprintf(fp,"\n");
  99     fprintf(fp,"// An array of the machine register encode values\n");
 100     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
 101 
 102     // Output the register encoding for each register in the allocation classes
 103     RegDef *reg_def = NULL;
 104     RegDef *next    = NULL;
 105     registers->reset_RegDefs();
 106     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
 107       next = registers->iter_RegDefs();
 108       const char* register_encode = reg_def->register_encode();
 109       const char *comma = (next != NULL) ? "," : " // no trailing comma";
 110       int encval;
 111       if (!ADLParser::is_int_token(register_encode, encval)) {
 112         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
 113       } else {
 114         // Output known constants in hex char format (backward compatibility).
 115         assert(encval < 256, "Exceeded supported width for register encoding");
 116         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
 117       }
 118     }
 119     // Finish defining enumeration
 120     fprintf(fp,"};\n");
 121 
 122   } // Done defining array
 123 }
 124 
 125 // Output an enumeration of register class names
 126 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 127   if (registers) {
 128     // Output an enumeration of register class names
 129     fprintf(fp,"\n");
 130     fprintf(fp,"// Enumeration of register class names\n");
 131     fprintf(fp, "enum machRegisterClass {\n");
 132     registers->_rclasses.reset();
 133     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
 134       const char * class_name_to_upper = toUpper(class_name);
 135       fprintf(fp,"  %s,\n", class_name_to_upper);
 136       delete[] class_name_to_upper;
 137     }
 138     // Finish defining enumeration
 139     fprintf(fp, "  _last_Mach_Reg_Class\n");
 140     fprintf(fp, "};\n");
 141   }
 142 }
 143 
 144 // Declare an enumeration of user-defined register classes
 145 // and a list of register masks, one for each class.
 146 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 147   const char  *rc_name;
 148 
 149   if (_register) {
 150     // Build enumeration of user-defined register classes.
 151     defineRegClassEnum(fp_hpp, _register);
 152 
 153     // Generate a list of register masks, one for each class.
 154     fprintf(fp_hpp,"\n");
 155     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 156     _register->_rclasses.reset();
 157     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 158       const char *prefix = "";
 159       RegClass *reg_class = _register->getRegClass(rc_name);
 160       assert(reg_class, "Using an undefined register class");
 161 
 162       const char* rc_name_to_upper = toUpper(rc_name);
 163 
 164       if (reg_class->_user_defined == NULL) {
 165         fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix,  rc_name_to_upper);
 166         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
 167       } else {
 168         fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, reg_class->_user_defined);
 169       }
 170 
 171       if (reg_class->_stack_or_reg) {
 172         assert(reg_class->_user_defined == NULL, "no user defined reg class here");
 173         fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
 174         fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
 175       }
 176       delete[] rc_name_to_upper;
 177 
 178     }
 179   }
 180 }
 181 
 182 // Generate an enumeration of user-defined register classes
 183 // and a list of register masks, one for each class.
 184 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 185   const char  *rc_name;
 186 
 187   if (_register) {
 188     // Generate a list of register masks, one for each class.
 189     fprintf(fp_cpp,"\n");
 190     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 191     _register->_rclasses.reset();
 192     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 193       const char *prefix = "";
 194       RegClass *reg_class = _register->getRegClass(rc_name);
 195       assert(reg_class, "Using an undefined register class");
 196 
 197       if (reg_class->_user_defined != NULL) {
 198         continue;
 199       }
 200 
 201       int len = RegisterForm::RegMask_Size();
 202       const char* rc_name_to_upper = toUpper(rc_name);
 203       fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);
 204 
 205       {
 206         int i;
 207         for(i = 0; i < len - 1; i++) {
 208           fprintf(fp_cpp," 0x%x,", reg_class->regs_in_word(i, false));
 209         }
 210         fprintf(fp_cpp," 0x%x );\n", reg_class->regs_in_word(i, false));
 211       }
 212 
 213       if (reg_class->_stack_or_reg) {
 214         int i;
 215         fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
 216         for(i = 0; i < len - 1; i++) {
 217           fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i, true));
 218         }
 219         fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i, true));
 220       }
 221       delete[] rc_name_to_upper;
 222     }
 223   }
 224 }
 225 
 226 // Compute an index for an array in the pipeline_reads_NNN arrays
 227 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 228 {
 229   int templen = 1;
 230   int paramcount = 0;
 231   const char *paramname;
 232 
 233   if (pipeclass->_parameters.count() == 0)
 234     return -1;
 235 
 236   pipeclass->_parameters.reset();
 237   paramname = pipeclass->_parameters.iter();
 238   const PipeClassOperandForm *pipeopnd =
 239     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 240   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 241     pipeclass->_parameters.reset();
 242 
 243   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 244     const PipeClassOperandForm *tmppipeopnd =
 245         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 246 
 247     if (tmppipeopnd)
 248       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 249     else
 250       templen += 19;
 251 
 252     paramcount++;
 253   }
 254 
 255   // See if the count is zero
 256   if (paramcount == 0) {
 257     return -1;
 258   }
 259 
 260   char *operand_stages = new char [templen];
 261   operand_stages[0] = 0;
 262   int i = 0;
 263   templen = 0;
 264 
 265   pipeclass->_parameters.reset();
 266   paramname = pipeclass->_parameters.iter();
 267   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 268   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 269     pipeclass->_parameters.reset();
 270 
 271   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 272     const PipeClassOperandForm *tmppipeopnd =
 273         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 274     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 275       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 276       (++i < paramcount ? ',' : ' ') );
 277   }
 278 
 279   // See if the same string is in the table
 280   int ndx = pipeline_reads.index(operand_stages);
 281 
 282   // No, add it to the table
 283   if (ndx < 0) {
 284     pipeline_reads.addName(operand_stages);
 285     ndx = pipeline_reads.index(operand_stages);
 286 
 287     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 288       ndx+1, paramcount, operand_stages);
 289   }
 290   else
 291     delete [] operand_stages;
 292 
 293   return (ndx);
 294 }
 295 
 296 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 297 static int pipeline_res_stages_initializer(
 298   FILE *fp_cpp,
 299   PipelineForm *pipeline,
 300   NameList &pipeline_res_stages,
 301   PipeClassForm *pipeclass)
 302 {
 303   const PipeClassResourceForm *piperesource;
 304   int * res_stages = new int [pipeline->_rescount];
 305   int i;
 306 
 307   for (i = 0; i < pipeline->_rescount; i++)
 308      res_stages[i] = 0;
 309 
 310   for (pipeclass->_resUsage.reset();
 311        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 312     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 313     for (i = 0; i < pipeline->_rescount; i++)
 314       if ((1 << i) & used_mask) {
 315         int stage = pipeline->_stages.index(piperesource->_stage);
 316         if (res_stages[i] < stage+1)
 317           res_stages[i] = stage+1;
 318       }
 319   }
 320 
 321   // Compute the length needed for the resource list
 322   int commentlen = 0;
 323   int max_stage = 0;
 324   for (i = 0; i < pipeline->_rescount; i++) {
 325     if (res_stages[i] == 0) {
 326       if (max_stage < 9)
 327         max_stage = 9;
 328     }
 329     else {
 330       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 331       if (max_stage < stagelen)
 332         max_stage = stagelen;
 333     }
 334 
 335     commentlen += (int)strlen(pipeline->_reslist.name(i));
 336   }
 337 
 338   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 339 
 340   // Allocate space for the resource list
 341   char * resource_stages = new char [templen];
 342 
 343   templen = 0;
 344   for (i = 0; i < pipeline->_rescount; i++) {
 345     const char * const resname =
 346       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 347 
 348     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 349       resname, max_stage - (int)strlen(resname) + 1,
 350       (i < pipeline->_rescount-1) ? "," : "",
 351       pipeline->_reslist.name(i));
 352   }
 353 
 354   // See if the same string is in the table
 355   int ndx = pipeline_res_stages.index(resource_stages);
 356 
 357   // No, add it to the table
 358   if (ndx < 0) {
 359     pipeline_res_stages.addName(resource_stages);
 360     ndx = pipeline_res_stages.index(resource_stages);
 361 
 362     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 363       ndx+1, pipeline->_rescount, resource_stages);
 364   }
 365   else
 366     delete [] resource_stages;
 367 
 368   delete [] res_stages;
 369 
 370   return (ndx);
 371 }
 372 
 373 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 374 static int pipeline_res_cycles_initializer(
 375   FILE *fp_cpp,
 376   PipelineForm *pipeline,
 377   NameList &pipeline_res_cycles,
 378   PipeClassForm *pipeclass)
 379 {
 380   const PipeClassResourceForm *piperesource;
 381   int * res_cycles = new int [pipeline->_rescount];
 382   int i;
 383 
 384   for (i = 0; i < pipeline->_rescount; i++)
 385      res_cycles[i] = 0;
 386 
 387   for (pipeclass->_resUsage.reset();
 388        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 389     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 390     for (i = 0; i < pipeline->_rescount; i++)
 391       if ((1 << i) & used_mask) {
 392         int cycles = piperesource->_cycles;
 393         if (res_cycles[i] < cycles)
 394           res_cycles[i] = cycles;
 395       }
 396   }
 397 
 398   // Pre-compute the string length
 399   int templen;
 400   int cyclelen = 0, commentlen = 0;
 401   int max_cycles = 0;
 402   char temp[32];
 403 
 404   for (i = 0; i < pipeline->_rescount; i++) {
 405     if (max_cycles < res_cycles[i])
 406       max_cycles = res_cycles[i];
 407     templen = sprintf(temp, "%d", res_cycles[i]);
 408     if (cyclelen < templen)
 409       cyclelen = templen;
 410     commentlen += (int)strlen(pipeline->_reslist.name(i));
 411   }
 412 
 413   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 414 
 415   // Allocate space for the resource list
 416   char * resource_cycles = new char [templen];
 417 
 418   templen = 0;
 419 
 420   for (i = 0; i < pipeline->_rescount; i++) {
 421     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 422       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 423   }
 424 
 425   // See if the same string is in the table
 426   int ndx = pipeline_res_cycles.index(resource_cycles);
 427 
 428   // No, add it to the table
 429   if (ndx < 0) {
 430     pipeline_res_cycles.addName(resource_cycles);
 431     ndx = pipeline_res_cycles.index(resource_cycles);
 432 
 433     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 434       ndx+1, pipeline->_rescount, resource_cycles);
 435   }
 436   else
 437     delete [] resource_cycles;
 438 
 439   delete [] res_cycles;
 440 
 441   return (ndx);
 442 }
 443 
 444 //typedef unsigned long long uint64_t;
 445 
 446 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 447 static int pipeline_res_mask_initializer(
 448   FILE *fp_cpp,
 449   PipelineForm *pipeline,
 450   NameList &pipeline_res_mask,
 451   NameList &pipeline_res_args,
 452   PipeClassForm *pipeclass)
 453 {
 454   const PipeClassResourceForm *piperesource;
 455   const uint rescount      = pipeline->_rescount;
 456   const uint maxcycleused  = pipeline->_maxcycleused;
 457   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 458 
 459   int i, j;
 460   int element_count = 0;
 461   uint *res_mask = new uint [cyclemasksize];
 462   uint resources_used             = 0;
 463   uint resources_used_exclusively = 0;
 464 
 465   for (pipeclass->_resUsage.reset();
 466        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 467     element_count++;
 468   }
 469 
 470   // Pre-compute the string length
 471   int templen;
 472   int commentlen = 0;
 473   int max_cycles = 0;
 474 
 475   int cyclelen = ((maxcycleused + 3) >> 2);
 476   int masklen = (rescount + 3) >> 2;
 477 
 478   int cycledigit = 0;
 479   for (i = maxcycleused; i > 0; i /= 10)
 480     cycledigit++;
 481 
 482   int maskdigit = 0;
 483   for (i = rescount; i > 0; i /= 10)
 484     maskdigit++;
 485 
 486   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 487   static const char* pipeline_use_element    = "Pipeline_Use_Element";
 488 
 489   templen = 1 +
 490     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 491      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 492 
 493   // Allocate space for the resource list
 494   char * resource_mask = new char [templen];
 495   char * last_comma = NULL;
 496 
 497   templen = 0;
 498 
 499   for (pipeclass->_resUsage.reset();
 500        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 501     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 502 
 503     if (!used_mask) {
 504       fprintf(stderr, "*** used_mask is 0 ***\n");
 505     }
 506 
 507     resources_used |= used_mask;
 508 
 509     uint lb, ub;
 510 
 511     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 512     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 513 
 514     if (lb == ub) {
 515       resources_used_exclusively |= used_mask;
 516     }
 517 
 518     int formatlen =
 519       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 520         pipeline_use_element,
 521         masklen, used_mask,
 522         cycledigit, lb, cycledigit, ub,
 523         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 524         pipeline_use_cycle_mask);
 525 
 526     templen += formatlen;
 527 
 528     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 529 
 530     int cycles = piperesource->_cycles;
 531     uint stage          = pipeline->_stages.index(piperesource->_stage);
 532     if ((uint)NameList::Not_in_list == stage) {
 533       fprintf(stderr,
 534               "pipeline_res_mask_initializer: "
 535               "semantic error: "
 536               "pipeline stage undeclared: %s\n",
 537               piperesource->_stage);
 538       exit(1);
 539     }
 540     uint upper_limit    = stage + cycles - 1;
 541     uint lower_limit    = stage - 1;
 542     uint upper_idx      = upper_limit >> 5;
 543     uint lower_idx      = lower_limit >> 5;
 544     uint upper_position = upper_limit & 0x1f;
 545     uint lower_position = lower_limit & 0x1f;
 546 
 547     uint mask = (((uint)1) << upper_position) - 1;
 548 
 549     while (upper_idx > lower_idx) {
 550       res_mask[upper_idx--] |= mask;
 551       mask = (uint)-1;
 552     }
 553 
 554     mask -= (((uint)1) << lower_position) - 1;
 555     res_mask[upper_idx] |= mask;
 556 
 557     for (j = cyclemasksize-1; j >= 0; j--) {
 558       formatlen =
 559         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 560       templen += formatlen;
 561     }
 562 
 563     resource_mask[templen++] = ')';
 564     resource_mask[templen++] = ')';
 565     last_comma = &resource_mask[templen];
 566     resource_mask[templen++] = ',';
 567     resource_mask[templen++] = '\n';
 568   }
 569 
 570   resource_mask[templen] = 0;
 571   if (last_comma) {
 572     last_comma[0] = ' ';
 573   }
 574 
 575   // See if the same string is in the table
 576   int ndx = pipeline_res_mask.index(resource_mask);
 577 
 578   // No, add it to the table
 579   if (ndx < 0) {
 580     pipeline_res_mask.addName(resource_mask);
 581     ndx = pipeline_res_mask.index(resource_mask);
 582 
 583     if (strlen(resource_mask) > 0)
 584       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 585         ndx+1, element_count, resource_mask);
 586 
 587     char* args = new char [9 + 2*masklen + maskdigit];
 588 
 589     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 590       masklen, resources_used,
 591       masklen, resources_used_exclusively,
 592       maskdigit, element_count);
 593 
 594     pipeline_res_args.addName(args);
 595   }
 596   else {
 597     delete [] resource_mask;
 598   }
 599 
 600   delete [] res_mask;
 601 //delete [] res_masks;
 602 
 603   return (ndx);
 604 }
 605 
 606 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 607   const char *classname;
 608   const char *resourcename;
 609   int resourcenamelen = 0;
 610   NameList pipeline_reads;
 611   NameList pipeline_res_stages;
 612   NameList pipeline_res_cycles;
 613   NameList pipeline_res_masks;
 614   NameList pipeline_res_args;
 615   const int default_latency = 1;
 616   const int non_operand_latency = 0;
 617   const int node_latency = 0;
 618 
 619   if (!_pipeline) {
 620     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 621     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 622     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 623     fprintf(fp_cpp, "}\n");
 624     return;
 625   }
 626 
 627   fprintf(fp_cpp, "\n");
 628   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 629   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 630   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 631   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 632   fprintf(fp_cpp, "    \"undefined\"");
 633 
 634   for (int s = 0; s < _pipeline->_stagecnt; s++)
 635     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 636 
 637   fprintf(fp_cpp, "\n  };\n\n");
 638   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 639     _pipeline->_stagecnt);
 640   fprintf(fp_cpp, "}\n");
 641   fprintf(fp_cpp, "#endif\n\n");
 642 
 643   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 644   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 645 #if 0
 646   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 647   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 648   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 649   fprintf(fp_cpp, "  }\n");
 650   fprintf(fp_cpp, "#endif\n\n");
 651 #endif
 652   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 653   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 654 #if 0
 655   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 656   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 657   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 658   fprintf(fp_cpp, "  }\n");
 659   fprintf(fp_cpp, "#endif\n\n");
 660 #endif
 661   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 662   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 663   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 664   fprintf(fp_cpp, "      continue;\n\n");
 665   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 666   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 667   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 668   fprintf(fp_cpp, "        continue;\n\n");
 669   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 670   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 671   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 672   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 673   fprintf(fp_cpp, "          y <<= 1;\n");
 674   fprintf(fp_cpp, "      }\n");
 675   fprintf(fp_cpp, "    }\n");
 676   fprintf(fp_cpp, "  }\n\n");
 677   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 678   fprintf(fp_cpp, "  return (start);\n");
 679   fprintf(fp_cpp, "}\n\n");
 680   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 681   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 682   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 683   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 684   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 685   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 686   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 687   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 688     _pipeline->_maxcycleused+1);
 689   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 690   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 691   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 692   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 693   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 694   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 695   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 696   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 697   fprintf(fp_cpp, "            y <<= 1;\n");
 698   fprintf(fp_cpp, "        }\n");
 699   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 700   fprintf(fp_cpp, "      }\n");
 701   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 702   fprintf(fp_cpp, "    }\n");
 703   fprintf(fp_cpp, "    else {\n");
 704   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 705   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 706   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 707   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 708   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 709   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 710   fprintf(fp_cpp, "            y <<= 1;\n");
 711   fprintf(fp_cpp, "        }\n");
 712   fprintf(fp_cpp, "      }\n");
 713   fprintf(fp_cpp, "    }\n");
 714   fprintf(fp_cpp, "  }\n\n");
 715   fprintf(fp_cpp, "  return (delay);\n");
 716   fprintf(fp_cpp, "}\n\n");
 717   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 718   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 719   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 720   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 721   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 722   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 723   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 724   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 725   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 726   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 727   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 728   fprintf(fp_cpp, "          break;\n");
 729   fprintf(fp_cpp, "        }\n");
 730   fprintf(fp_cpp, "      }\n");
 731   fprintf(fp_cpp, "    }\n");
 732   fprintf(fp_cpp, "    else {\n");
 733   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 734   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 735   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 736   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 737   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 738   fprintf(fp_cpp, "      }\n");
 739   fprintf(fp_cpp, "    }\n");
 740   fprintf(fp_cpp, "  }\n");
 741   fprintf(fp_cpp, "}\n\n");
 742 
 743   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 744   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 745   fprintf(fp_cpp, "\n");
 746 #if 0
 747   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 748   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 749   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 750   fprintf(fp_cpp, "  }\n");
 751   fprintf(fp_cpp, "#endif\n\n");
 752 #endif
 753   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 754   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 755   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 756   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 757   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 758   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 759   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 760 #if 0
 761   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 762   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 763   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 764   fprintf(fp_cpp, "  }\n");
 765   fprintf(fp_cpp, "#endif\n\n");
 766 #endif
 767   fprintf(fp_cpp, "\n");
 768   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 769   fprintf(fp_cpp, "    return (default_latency);\n");
 770   fprintf(fp_cpp, "\n");
 771   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 772   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 773 #if 0
 774   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 775   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 776   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 777   fprintf(fp_cpp, "  }\n");
 778   fprintf(fp_cpp, "#endif\n\n");
 779 #endif
 780   fprintf(fp_cpp, "  return (delta);\n");
 781   fprintf(fp_cpp, "}\n\n");
 782 
 783   if (!_pipeline)
 784     /* Do Nothing */;
 785 
 786   else if (_pipeline->_maxcycleused <=
 787 #ifdef SPARC
 788     64
 789 #else
 790     32
 791 #endif
 792       ) {
 793     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 794     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 795     fprintf(fp_cpp, "}\n\n");
 796     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 797     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 798     fprintf(fp_cpp, "}\n\n");
 799   }
 800   else {
 801     uint l;
 802     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 803     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 804     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 805     for (l = 1; l <= masklen; l++)
 806       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 807     fprintf(fp_cpp, ");\n");
 808     fprintf(fp_cpp, "}\n\n");
 809     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 810     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 811     for (l = 1; l <= masklen; l++)
 812       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 813     fprintf(fp_cpp, ");\n");
 814     fprintf(fp_cpp, "}\n\n");
 815     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 816     for (l = 1; l <= masklen; l++)
 817       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 818     fprintf(fp_cpp, "\n}\n\n");
 819   }
 820 
 821   /* Get the length of all the resource names */
 822   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 823        (resourcename = _pipeline->_reslist.iter()) != NULL;
 824        resourcenamelen += (int)strlen(resourcename));
 825 
 826   // Create the pipeline class description
 827 
 828   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 829   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 830 
 831   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 832   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 833     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 834     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 835     for (int i2 = masklen-1; i2 >= 0; i2--)
 836       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 837     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 838   }
 839   fprintf(fp_cpp, "};\n\n");
 840 
 841   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 842     _pipeline->_rescount);
 843 
 844   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 845     fprintf(fp_cpp, "\n");
 846     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 847     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 848     int maxWriteStage = -1;
 849     int maxMoreInstrs = 0;
 850     int paramcount = 0;
 851     int i = 0;
 852     const char *paramname;
 853     int resource_count = (_pipeline->_rescount + 3) >> 2;
 854 
 855     // Scan the operands, looking for last output stage and number of inputs
 856     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 857       const PipeClassOperandForm *pipeopnd =
 858           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 859       if (pipeopnd) {
 860         if (pipeopnd->_iswrite) {
 861            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 862            int moreinsts = pipeopnd->_more_instrs;
 863           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 864             maxWriteStage = stagenum;
 865             maxMoreInstrs = moreinsts;
 866           }
 867         }
 868       }
 869 
 870       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 871         paramcount++;
 872     }
 873 
 874     // Create the list of stages for the operands that are read
 875     // Note that we will build a NameList to reduce the number of copies
 876 
 877     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 878 
 879     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 880       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 881 
 882     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 883       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 884 
 885     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 886       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 887 
 888 #if 0
 889     // Process the Resources
 890     const PipeClassResourceForm *piperesource;
 891 
 892     unsigned resources_used = 0;
 893     unsigned exclusive_resources_used = 0;
 894     unsigned resource_groups = 0;
 895     for (pipeclass->_resUsage.reset();
 896          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 897       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 898       if (used_mask)
 899         resource_groups++;
 900       resources_used |= used_mask;
 901       if ((used_mask & (used_mask-1)) == 0)
 902         exclusive_resources_used |= used_mask;
 903     }
 904 
 905     if (resource_groups > 0) {
 906       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 907         pipeclass->_num, resource_groups);
 908       for (pipeclass->_resUsage.reset(), i = 1;
 909            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 910            i++ ) {
 911         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 912         if (used_mask) {
 913           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 914         }
 915       }
 916       fprintf(fp_cpp, "};\n\n");
 917     }
 918 #endif
 919 
 920     // Create the pipeline class description
 921     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 922       pipeclass->_num);
 923     if (maxWriteStage < 0)
 924       fprintf(fp_cpp, "(uint)stage_undefined");
 925     else if (maxMoreInstrs == 0)
 926       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 927     else
 928       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 929     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 930       paramcount,
 931       pipeclass->hasFixedLatency() ? "true" : "false",
 932       pipeclass->fixedLatency(),
 933       pipeclass->InstructionCount(),
 934       pipeclass->hasBranchDelay() ? "true" : "false",
 935       pipeclass->hasMultipleBundles() ? "true" : "false",
 936       pipeclass->forceSerialization() ? "true" : "false",
 937       pipeclass->mayHaveNoCode() ? "true" : "false" );
 938     if (paramcount > 0) {
 939       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 940         pipeline_reads_index+1);
 941     }
 942     else
 943       fprintf(fp_cpp, " NULL,");
 944     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 945       pipeline_res_stages_index+1);
 946     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 947       pipeline_res_cycles_index+1);
 948     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 949       pipeline_res_args.name(pipeline_res_mask_index));
 950     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 951       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 952         pipeline_res_mask_index+1);
 953     else
 954       fprintf(fp_cpp, "NULL");
 955     fprintf(fp_cpp, "));\n");
 956   }
 957 
 958   // Generate the Node::latency method if _pipeline defined
 959   fprintf(fp_cpp, "\n");
 960   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 961   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 962   if (_pipeline) {
 963 #if 0
 964     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 965     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 966     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 967     fprintf(fp_cpp, " }\n");
 968     fprintf(fp_cpp, "#endif\n");
 969 #endif
 970     fprintf(fp_cpp, "  uint j;\n");
 971     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 972     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 973     fprintf(fp_cpp, "  // verify input is not null\n");
 974     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 975     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 976       non_operand_latency);
 977     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 978     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 979     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 980     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 981     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 982     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 983     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 984     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 985       node_latency);
 986     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 987     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 988     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 989       non_operand_latency);
 990     fprintf(fp_cpp, "  // determine which operand this is in\n");
 991     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 992     fprintf(fp_cpp, "  int delta = %d;\n\n",
 993       non_operand_latency);
 994     fprintf(fp_cpp, "  uint k;\n");
 995     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 996     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 997     fprintf(fp_cpp, "    if (i < j)\n");
 998     fprintf(fp_cpp, "      break;\n");
 999     fprintf(fp_cpp, "  }\n");
1000     fprintf(fp_cpp, "  if (k < n)\n");
1001     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
1002     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
1003   }
1004   else {
1005     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
1006     fprintf(fp_cpp, "  return %d;\n",
1007       non_operand_latency);
1008   }
1009   fprintf(fp_cpp, "}\n\n");
1010 
1011   // Output the list of nop nodes
1012   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
1013   const char *nop;
1014   int nopcnt = 0;
1015   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
1016 
1017   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
1018   int i = 0;
1019   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
1020     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
1021   }
1022   fprintf(fp_cpp, "};\n\n");
1023   fprintf(fp_cpp, "#ifndef PRODUCT\n");
1024   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
1025   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
1026   fprintf(fp_cpp, "    \"\",\n");
1027   fprintf(fp_cpp, "    \"use nop delay\",\n");
1028   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
1029   fprintf(fp_cpp, "    \"use conditional delay\",\n");
1030   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
1031   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
1032   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
1033   fprintf(fp_cpp, "  };\n\n");
1034 
1035   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
1036   for (i = 0; i < _pipeline->_rescount; i++)
1037     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
1038   fprintf(fp_cpp, "};\n\n");
1039 
1040   // See if the same string is in the table
1041   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
1042   fprintf(fp_cpp, "  if (_flags) {\n");
1043   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
1044   fprintf(fp_cpp, "    needs_comma = true;\n");
1045   fprintf(fp_cpp, "  };\n");
1046   fprintf(fp_cpp, "  if (instr_count()) {\n");
1047   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
1048   fprintf(fp_cpp, "    needs_comma = true;\n");
1049   fprintf(fp_cpp, "  };\n");
1050   fprintf(fp_cpp, "  uint r = resources_used();\n");
1051   fprintf(fp_cpp, "  if (r) {\n");
1052   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
1053   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
1054   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
1055   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
1056   fprintf(fp_cpp, "    needs_comma = true;\n");
1057   fprintf(fp_cpp, "  };\n");
1058   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
1059   fprintf(fp_cpp, "}\n");
1060   fprintf(fp_cpp, "#endif\n");
1061 }
1062 
1063 // ---------------------------------------------------------------------------
1064 //------------------------------Utilities to build Instruction Classes--------
1065 // ---------------------------------------------------------------------------
1066 
1067 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1068   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1069           node, regMask);
1070 }
1071 
1072 static void print_block_index(FILE *fp, int inst_position) {
1073   assert( inst_position >= 0, "Instruction number less than zero");
1074   fprintf(fp, "block_index");
1075   if( inst_position != 0 ) {
1076     fprintf(fp, " - %d", inst_position);
1077   }
1078 }
1079 
1080 // Scan the peepmatch and output a test for each instruction
1081 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1082   int         parent        = -1;
1083   int         inst_position = 0;
1084   const char* inst_name     = NULL;
1085   int         input         = 0;
1086   fprintf(fp, "  // Check instruction sub-tree\n");
1087   pmatch->reset();
1088   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1089        inst_name != NULL;
1090        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1091     // If this is not a placeholder
1092     if( ! pmatch->is_placeholder() ) {
1093       // Define temporaries 'inst#', based on parent and parent's input index
1094       if( parent != -1 ) {                // root was initialized
1095         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1096         fprintf(fp, "  if( ");
1097         print_block_index(fp, inst_position);
1098         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1099         print_block_index(fp, inst_position);
1100         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1101         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1102       }
1103 
1104       // When not the root
1105       // Test we have the correct instruction by comparing the rule.
1106       if( parent != -1 ) {
1107         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1108                 inst_position, inst_position, inst_name);
1109       }
1110     } else {
1111       // Check that user did not try to constrain a placeholder
1112       assert( ! pconstraint->constrains_instruction(inst_position),
1113               "fatal(): Can not constrain a placeholder instruction");
1114     }
1115   }
1116 }
1117 
1118 // Build mapping for register indices, num_edges to input
1119 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1120   int         parent        = -1;
1121   int         inst_position = 0;
1122   const char* inst_name     = NULL;
1123   int         input         = 0;
1124   fprintf(fp, "      // Build map to register info\n");
1125   pmatch->reset();
1126   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1127        inst_name != NULL;
1128        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1129     // If this is not a placeholder
1130     if( ! pmatch->is_placeholder() ) {
1131       // Define temporaries 'inst#', based on self's inst_position
1132       InstructForm *inst = globals[inst_name]->is_instruction();
1133       if( inst != NULL ) {
1134         char inst_prefix[]  = "instXXXX_";
1135         sprintf(inst_prefix, "inst%d_",   inst_position);
1136         char receiver[]     = "instXXXX->";
1137         sprintf(receiver,    "inst%d->", inst_position);
1138         inst->index_temps( fp, globals, inst_prefix, receiver );
1139       }
1140     }
1141   }
1142 }
1143 
1144 // Generate tests for the constraints
1145 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1146   fprintf(fp, "\n");
1147   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1148 
1149   // Build mapping from num_edges to local variables
1150   build_instruction_index_mapping( fp, globals, pmatch );
1151 
1152   // Build constraint tests
1153   if( pconstraint != NULL ) {
1154     fprintf(fp, "      matches = matches &&");
1155     bool   first_constraint = true;
1156     while( pconstraint != NULL ) {
1157       // indentation and connecting '&&'
1158       const char *indentation = "      ";
1159       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1160 
1161       // Only have '==' relation implemented
1162       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1163         assert( false, "Unimplemented()" );
1164       }
1165 
1166       // LEFT
1167       int left_index       = pconstraint->_left_inst;
1168       const char *left_op  = pconstraint->_left_op;
1169       // Access info on the instructions whose operands are compared
1170       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1171       assert( inst_left, "Parser should guaranty this is an instruction");
1172       int left_op_base  = inst_left->oper_input_base(globals);
1173       // Access info on the operands being compared
1174       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1175       if( left_op_index == -1 ) {
1176         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1177         if( left_op_index == -1 ) {
1178           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1179         }
1180       }
1181       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1182       ComponentList components_left = inst_left->_components;
1183       const char *left_comp_type = components_left.at(left_op_index)->_type;
1184       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1185       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1186 
1187 
1188       // RIGHT
1189       int right_op_index = -1;
1190       int right_index      = pconstraint->_right_inst;
1191       const char *right_op = pconstraint->_right_op;
1192       if( right_index != -1 ) { // Match operand
1193         // Access info on the instructions whose operands are compared
1194         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1195         assert( inst_right, "Parser should guaranty this is an instruction");
1196         int right_op_base = inst_right->oper_input_base(globals);
1197         // Access info on the operands being compared
1198         right_op_index = inst_right->operand_position(right_op, Component::USE);
1199         if( right_op_index == -1 ) {
1200           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1201           if( right_op_index == -1 ) {
1202             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1203           }
1204         }
1205         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1206         ComponentList components_right = inst_right->_components;
1207         const char *right_comp_type = components_right.at(right_op_index)->_type;
1208         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1209         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1210         assert( right_interface_type == left_interface_type, "Both must be same interface");
1211 
1212       } else {                  // Else match register
1213         // assert( false, "should be a register" );
1214       }
1215 
1216       //
1217       // Check for equivalence
1218       //
1219       // fprintf(fp, "phase->eqv( ");
1220       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1221       //         left_index,  left_op_base,  left_op_index,  left_op,
1222       //         right_index, right_op_base, right_op_index, right_op );
1223       // fprintf(fp, ")");
1224       //
1225       switch( left_interface_type ) {
1226       case Form::register_interface: {
1227         // Check that they are allocated to the same register
1228         // Need parameter for index position if not result operand
1229         char left_reg_index[] = ",instXXXX_idxXXXX";
1230         if( left_op_index != 0 ) {
1231           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1232           // Must have index into operands
1233           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1234         } else {
1235           strcpy(left_reg_index, "");
1236         }
1237         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1238                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1239         fprintf(fp, " == ");
1240 
1241         if( right_index != -1 ) {
1242           char right_reg_index[18] = ",instXXXX_idxXXXX";
1243           if( right_op_index != 0 ) {
1244             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1245             // Must have index into operands
1246             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1247           } else {
1248             strcpy(right_reg_index, "");
1249           }
1250           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1251                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1252         } else {
1253           fprintf(fp, "%s_enc", right_op );
1254         }
1255         fprintf(fp,")");
1256         break;
1257       }
1258       case Form::constant_interface: {
1259         // Compare the '->constant()' values
1260         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1261                 left_index,  left_op_index,  left_index, left_op );
1262         fprintf(fp, " == ");
1263         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1264                 right_index, right_op, right_index, right_op_index );
1265         break;
1266       }
1267       case Form::memory_interface: {
1268         // Compare 'base', 'index', 'scale', and 'disp'
1269         // base
1270         fprintf(fp, "( \n");
1271         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1272           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1273         fprintf(fp, " == ");
1274         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1275                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1276         // index
1277         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1278                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1279         fprintf(fp, " == ");
1280         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1281                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1282         // scale
1283         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1284                 left_index,  left_op_index,  left_index, left_op );
1285         fprintf(fp, " == ");
1286         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1287                 right_index, right_op, right_index, right_op_index );
1288         // disp
1289         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1290                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1291         fprintf(fp, " == ");
1292         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1293                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1294         fprintf(fp, ") \n");
1295         break;
1296       }
1297       case Form::conditional_interface: {
1298         // Compare the condition code being tested
1299         assert( false, "Unimplemented()" );
1300         break;
1301       }
1302       default: {
1303         assert( false, "ShouldNotReachHere()" );
1304         break;
1305       }
1306       }
1307 
1308       // Advance to next constraint
1309       pconstraint = pconstraint->next();
1310       first_constraint = false;
1311     }
1312 
1313     fprintf(fp, ";\n");
1314   }
1315 }
1316 
1317 // // EXPERIMENTAL -- TEMPORARY code
1318 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1319 //   int op_index = instr->operand_position(op_name, Component::USE);
1320 //   if( op_index == -1 ) {
1321 //     op_index = instr->operand_position(op_name, Component::DEF);
1322 //     if( op_index == -1 ) {
1323 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1324 //     }
1325 //   }
1326 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1327 //
1328 //   ComponentList components_right = instr->_components;
1329 //   char *right_comp_type = components_right.at(op_index)->_type;
1330 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1331 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1332 //
1333 //   return;
1334 // }
1335 
1336 // Construct the new sub-tree
1337 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1338   fprintf(fp, "      // IF instructions and constraints matched\n");
1339   fprintf(fp, "      if( matches ) {\n");
1340   fprintf(fp, "        // generate the new sub-tree\n");
1341   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1342   if( preplace != NULL ) {
1343     // Get the root of the new sub-tree
1344     const char *root_inst = NULL;
1345     preplace->next_instruction(root_inst);
1346     InstructForm *root_form = globals[root_inst]->is_instruction();
1347     assert( root_form != NULL, "Replacement instruction was not previously defined");
1348     fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1349 
1350     int         inst_num;
1351     const char *op_name;
1352     int         opnds_index = 0;            // define result operand
1353     // Then install the use-operands for the new sub-tree
1354     // preplace->reset();             // reset breaks iteration
1355     for( preplace->next_operand( inst_num, op_name );
1356          op_name != NULL;
1357          preplace->next_operand( inst_num, op_name ) ) {
1358       InstructForm *inst_form;
1359       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1360       assert( inst_form, "Parser should guaranty this is an instruction");
1361       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1362       if( inst_op_num == NameList::Not_in_list )
1363         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1364       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1365       // find the name of the OperandForm from the local name
1366       const Form *form   = inst_form->_localNames[op_name];
1367       OperandForm  *op_form = form->is_operand();
1368       if( opnds_index == 0 ) {
1369         // Initial setup of new instruction
1370         fprintf(fp, "        // ----- Initial setup -----\n");
1371         //
1372         // Add control edge for this node
1373         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1374         // Add unmatched edges from root of match tree
1375         int op_base = root_form->oper_input_base(globals);
1376         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1377           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1378                                           inst_num, unmatched_edge);
1379         }
1380         // If new instruction captures bottom type
1381         if( root_form->captures_bottom_type(globals) ) {
1382           // Get bottom type from instruction whose result we are replacing
1383           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1384         }
1385         // Define result register and result operand
1386         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1387         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1388         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1389         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
1390         fprintf(fp, "        // ----- Done with initial setup -----\n");
1391       } else {
1392         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1393           // Do not have ideal edges for constants after matching
1394           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1395                   inst_op_num, inst_num, inst_op_num,
1396                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1397           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1398                   inst_num, inst_op_num );
1399         } else {
1400           fprintf(fp, "        // no ideal edge for constants after matching\n");
1401         }
1402         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
1403                 opnds_index, inst_num, inst_op_num );
1404       }
1405       ++opnds_index;
1406     }
1407   }else {
1408     // Replacing subtree with empty-tree
1409     assert( false, "ShouldNotReachHere();");
1410   }
1411 
1412   // Return the new sub-tree
1413   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1414   fprintf(fp, "        return root;  // return new root;\n");
1415   fprintf(fp, "      }\n");
1416 }
1417 
1418 
1419 // Define the Peephole method for an instruction node
1420 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1421   // Generate Peephole function header
1422   fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1423   fprintf(fp, "  bool  matches = true;\n");
1424 
1425   // Identify the maximum instruction position,
1426   // generate temporaries that hold current instruction
1427   //
1428   //   MachNode  *inst0 = NULL;
1429   //   ...
1430   //   MachNode  *instMAX = NULL;
1431   //
1432   int max_position = 0;
1433   Peephole *peep;
1434   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1435     PeepMatch *pmatch = peep->match();
1436     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1437     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1438   }
1439   for( int i = 0; i <= max_position; ++i ) {
1440     if( i == 0 ) {
1441       fprintf(fp, "  MachNode *inst0 = this;\n");
1442     } else {
1443       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1444     }
1445   }
1446 
1447   // For each peephole rule in architecture description
1448   //   Construct a test for the desired instruction sub-tree
1449   //   then check the constraints
1450   //   If these match, Generate the new subtree
1451   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1452     int         peephole_number = peep->peephole_number();
1453     PeepMatch      *pmatch      = peep->match();
1454     PeepConstraint *pconstraint = peep->constraints();
1455     PeepReplace    *preplace    = peep->replacement();
1456 
1457     // Root of this peephole is the current MachNode
1458     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1459             "root of PeepMatch does not match instruction");
1460 
1461     // Make each peephole rule individually selectable
1462     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1463     fprintf(fp, "    matches = true;\n");
1464     // Scan the peepmatch and output a test for each instruction
1465     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1466 
1467     // Check constraints and build replacement inside scope
1468     fprintf(fp, "    // If instruction subtree matches\n");
1469     fprintf(fp, "    if( matches ) {\n");
1470 
1471     // Generate tests for the constraints
1472     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1473 
1474     // Construct the new sub-tree
1475     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1476 
1477     // End of scope for this peephole's constraints
1478     fprintf(fp, "    }\n");
1479     // Closing brace '}' to make each peephole rule individually selectable
1480     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1481     fprintf(fp, "\n");
1482   }
1483 
1484   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1485   fprintf(fp, "}\n");
1486   fprintf(fp, "\n");
1487 }
1488 
1489 // Define the Expand method for an instruction node
1490 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1491   unsigned      cnt  = 0;          // Count nodes we have expand into
1492   unsigned      i;
1493 
1494   // Generate Expand function header
1495   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1496   fprintf(fp, "  Compile* C = Compile::current();\n");
1497   // Generate expand code
1498   if( node->expands() ) {
1499     const char   *opid;
1500     int           new_pos, exp_pos;
1501     const char   *new_id   = NULL;
1502     const Form   *frm      = NULL;
1503     InstructForm *new_inst = NULL;
1504     OperandForm  *new_oper = NULL;
1505     unsigned      numo     = node->num_opnds() +
1506                                 node->_exprule->_newopers.count();
1507 
1508     // If necessary, generate any operands created in expand rule
1509     if (node->_exprule->_newopers.count()) {
1510       for(node->_exprule->_newopers.reset();
1511           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1512         frm = node->_localNames[new_id];
1513         assert(frm, "Invalid entry in new operands list of expand rule");
1514         new_oper = frm->is_operand();
1515         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1516         if (tmp == NULL) {
1517           fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
1518                   cnt, new_oper->_ident);
1519         }
1520         else {
1521           fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
1522                   cnt, new_oper->_ident, tmp);
1523         }
1524       }
1525     }
1526     cnt = 0;
1527     // Generate the temps to use for DAG building
1528     for(i = 0; i < numo; i++) {
1529       if (i < node->num_opnds()) {
1530         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1531       }
1532       else {
1533         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1534       }
1535     }
1536     // Build mapping from num_edges to local variables
1537     fprintf(fp,"  unsigned num0 = 0;\n");
1538     for( i = 1; i < node->num_opnds(); i++ ) {
1539       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1540     }
1541 
1542     // Build a mapping from operand index to input edges
1543     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1544 
1545     // The order in which the memory input is added to a node is very
1546     // strange.  Store nodes get a memory input before Expand is
1547     // called and other nodes get it afterwards or before depending on
1548     // match order so oper_input_base is wrong during expansion.  This
1549     // code adjusts it so that expansion will work correctly.
1550     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1551     if (has_memory_edge) {
1552       fprintf(fp,"  if (mem == (Node*)1) {\n");
1553       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1554       fprintf(fp,"  }\n");
1555     }
1556 
1557     for( i = 0; i < node->num_opnds(); i++ ) {
1558       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1559               i+1,i,i);
1560     }
1561 
1562     // Declare variable to hold root of expansion
1563     fprintf(fp,"  MachNode *result = NULL;\n");
1564 
1565     // Iterate over the instructions 'node' expands into
1566     ExpandRule  *expand       = node->_exprule;
1567     NameAndList *expand_instr = NULL;
1568     for(expand->reset_instructions();
1569         (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1570       new_id = expand_instr->name();
1571 
1572       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1573       if (expand_instruction->has_temps()) {
1574         globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1575                              node->_ident, new_id);
1576       }
1577 
1578       // Build the node for the instruction
1579       fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1580       // Add control edge for this node
1581       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1582       // Build the operand for the value this node defines.
1583       Form *form = (Form*)_globalNames[new_id];
1584       assert( form, "'new_id' must be a defined form name");
1585       // Grab the InstructForm for the new instruction
1586       new_inst = form->is_instruction();
1587       assert( new_inst, "'new_id' must be an instruction name");
1588       if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1589         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1590         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1591       }
1592 
1593       if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1594         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1595         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
1596         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
1597       }
1598 
1599       // Fill in the bottom_type where requested
1600       if (node->captures_bottom_type(_globalNames) &&
1601           new_inst->captures_bottom_type(_globalNames)) {
1602         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1603       }
1604 
1605       const char *resultOper = new_inst->reduce_result();
1606       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1607               cnt, machOperEnum(resultOper));
1608 
1609       // get the formal operand NameList
1610       NameList *formal_lst = &new_inst->_parameters;
1611       formal_lst->reset();
1612 
1613       // Handle any memory operand
1614       int memory_operand = new_inst->memory_operand(_globalNames);
1615       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1616         int node_mem_op = node->memory_operand(_globalNames);
1617         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1618                 "expand rule member needs memory but top-level inst doesn't have any" );
1619         if (has_memory_edge) {
1620           // Copy memory edge
1621           fprintf(fp,"  if (mem != (Node*)1) {\n");
1622           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1623           fprintf(fp,"  }\n");
1624         }
1625       }
1626 
1627       // Iterate over the new instruction's operands
1628       int prev_pos = -1;
1629       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1630         // Use 'parameter' at current position in list of new instruction's formals
1631         // instead of 'opid' when looking up info internal to new_inst
1632         const char *parameter = formal_lst->iter();
1633         // Check for an operand which is created in the expand rule
1634         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1635           new_pos = new_inst->operand_position(parameter,Component::USE);
1636           exp_pos += node->num_opnds();
1637           // If there is no use of the created operand, just skip it
1638           if (new_pos != NameList::Not_in_list) {
1639             //Copy the operand from the original made above
1640             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1641                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1642             // Check for who defines this operand & add edge if needed
1643             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1644             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1645           }
1646         }
1647         else {
1648           // Use operand name to get an index into instruction component list
1649           // ins = (InstructForm *) _globalNames[new_id];
1650           exp_pos = node->operand_position_format(opid);
1651           assert(exp_pos != -1, "Bad expand rule");
1652           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1653             // For the add_req calls below to work correctly they need
1654             // to added in the same order that a match would add them.
1655             // This means that they would need to be in the order of
1656             // the components list instead of the formal parameters.
1657             // This is a sort of hidden invariant that previously
1658             // wasn't checked and could lead to incorrectly
1659             // constructed nodes.
1660             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1661                        node->_ident, new_inst->_ident);
1662           }
1663           prev_pos = exp_pos;
1664 
1665           new_pos = new_inst->operand_position(parameter,Component::USE);
1666           if (new_pos != -1) {
1667             // Copy the operand from the ExpandNode to the new node
1668             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1669                     cnt, new_pos, exp_pos, opid);
1670             // For each operand add appropriate input edges by looking at tmp's
1671             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1672             // Grab corresponding edges from ExpandNode and insert them here
1673             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1674             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1675             fprintf(fp,"    }\n");
1676             fprintf(fp,"  }\n");
1677             // This value is generated by one of the new instructions
1678             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1679           }
1680         }
1681 
1682         // Update the DAG tmp's for values defined by this instruction
1683         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1684         Effect *eform = (Effect *)new_inst->_effects[parameter];
1685         // If this operand is a definition in either an effects rule
1686         // or a match rule
1687         if((eform) && (is_def(eform->_use_def))) {
1688           // Update the temp associated with this operand
1689           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1690         }
1691         else if( new_def_pos != -1 ) {
1692           // Instruction defines a value but user did not declare it
1693           // in the 'effect' clause
1694           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1695         }
1696       } // done iterating over a new instruction's operands
1697 
1698       // Invoke Expand() for the newly created instruction.
1699       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1700       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1701     } // done iterating over new instructions
1702     fprintf(fp,"\n");
1703   } // done generating expand rule
1704 
1705   // Generate projections for instruction's additional DEFs and KILLs
1706   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1707     // Get string representing the MachNode that projections point at
1708     const char *machNode = "this";
1709     // Generate the projections
1710     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1711 
1712     // Examine each component to see if it is a DEF or KILL
1713     node->_components.reset();
1714     // Skip the first component, if already handled as (SET dst (...))
1715     Component *comp = NULL;
1716     // For kills, the choice of projection numbers is arbitrary
1717     int proj_no = 1;
1718     bool declared_def  = false;
1719     bool declared_kill = false;
1720 
1721     while( (comp = node->_components.iter()) != NULL ) {
1722       // Lookup register class associated with operand type
1723       Form        *form = (Form*)_globalNames[comp->_type];
1724       assert( form, "component type must be a defined form");
1725       OperandForm *op   = form->is_operand();
1726 
1727       if (comp->is(Component::TEMP)) {
1728         fprintf(fp, "  // TEMP %s\n", comp->_name);
1729         if (!declared_def) {
1730           // Define the variable "def" to hold new MachProjNodes
1731           fprintf(fp, "  MachTempNode *def;\n");
1732           declared_def = true;
1733         }
1734         if (op && op->_interface && op->_interface->is_RegInterface()) {
1735           fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1736                   machOperEnum(op->_ident));
1737           fprintf(fp,"  add_req(def);\n");
1738           // The operand for TEMP is already constructed during
1739           // this mach node construction, see buildMachNode().
1740           //
1741           // int idx  = node->operand_position_format(comp->_name);
1742           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1743           //         idx, machOperEnum(op->_ident));
1744         } else {
1745           assert(false, "can't have temps which aren't registers");
1746         }
1747       } else if (comp->isa(Component::KILL)) {
1748         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1749 
1750         if (!declared_kill) {
1751           // Define the variable "kill" to hold new MachProjNodes
1752           fprintf(fp, "  MachProjNode *kill;\n");
1753           declared_kill = true;
1754         }
1755 
1756         assert( op, "Support additional KILLS for base operands");
1757         const char *regmask    = reg_mask(*op);
1758         const char *ideal_type = op->ideal_type(_globalNames, _register);
1759 
1760         if (!op->is_bound_register()) {
1761           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1762                      node->_ident, comp->_type, comp->_name);
1763         }
1764 
1765         fprintf(fp,"  kill = ");
1766         fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
1767                 machNode, proj_no++, regmask, ideal_type);
1768         fprintf(fp,"  proj_list.push(kill);\n");
1769       }
1770     }
1771   }
1772 
1773   if( !node->expands() && node->_matrule != NULL ) {
1774     // Remove duplicated operands and inputs which use the same name.
1775     // Seach through match operands for the same name usage.
1776     uint cur_num_opnds = node->num_opnds();
1777     if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1778       Component *comp = NULL;
1779       // Build mapping from num_edges to local variables
1780       fprintf(fp,"  unsigned num0 = 0;\n");
1781       for( i = 1; i < cur_num_opnds; i++ ) {
1782         fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
1783         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1784       }
1785       // Build a mapping from operand index to input edges
1786       fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1787       for( i = 0; i < cur_num_opnds; i++ ) {
1788         fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1789                 i+1,i,i);
1790       }
1791 
1792       uint new_num_opnds = 1;
1793       node->_components.reset();
1794       // Skip first unique operands.
1795       for( i = 1; i < cur_num_opnds; i++ ) {
1796         comp = node->_components.iter();
1797         if (i != node->unique_opnds_idx(i)) {
1798           break;
1799         }
1800         new_num_opnds++;
1801       }
1802       // Replace not unique operands with next unique operands.
1803       for( ; i < cur_num_opnds; i++ ) {
1804         comp = node->_components.iter();
1805         uint j = node->unique_opnds_idx(i);
1806         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1807         if( j != node->unique_opnds_idx(j) ) {
1808           fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1809                   new_num_opnds, i, comp->_name);
1810           // delete not unique edges here
1811           fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
1812           fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1813           fprintf(fp,"  }\n");
1814           fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
1815           fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1816           new_num_opnds++;
1817         }
1818       }
1819       // delete the rest of edges
1820       fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1821       fprintf(fp,"    del_req(i);\n");
1822       fprintf(fp,"  }\n");
1823       fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
1824       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1825     }
1826   }
1827 
1828   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1829   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1830   if (node->is_mach_constant()) {
1831     fprintf(fp,"  add_req(C->mach_constant_base_node());\n");
1832   }
1833 
1834   fprintf(fp,"\n");
1835   if( node->expands() ) {
1836     fprintf(fp,"  return result;\n");
1837   } else {
1838     fprintf(fp,"  return this;\n");
1839   }
1840   fprintf(fp,"}\n");
1841   fprintf(fp,"\n");
1842 }
1843 
1844 
1845 //------------------------------Emit Routines----------------------------------
1846 // Special classes and routines for defining node emit routines which output
1847 // target specific instruction object encodings.
1848 // Define the ___Node::emit() routine
1849 //
1850 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1851 // (2)   // ...  encoding defined by user
1852 // (3)
1853 // (4) }
1854 //
1855 
1856 class DefineEmitState {
1857 private:
1858   enum reloc_format { RELOC_NONE        = -1,
1859                       RELOC_IMMEDIATE   =  0,
1860                       RELOC_DISP        =  1,
1861                       RELOC_CALL_DISP   =  2 };
1862   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1863                        LITERAL_SEEN      = 1,
1864                        LITERAL_ACCESSED  = 2,
1865                        LITERAL_OUTPUT    = 3 };
1866   // Temporaries that describe current operand
1867   bool          _cleared;
1868   OpClassForm  *_opclass;
1869   OperandForm  *_operand;
1870   int           _operand_idx;
1871   const char   *_local_name;
1872   const char   *_operand_name;
1873   bool          _doing_disp;
1874   bool          _doing_constant;
1875   Form::DataType _constant_type;
1876   DefineEmitState::literal_status _constant_status;
1877   DefineEmitState::literal_status _reg_status;
1878   bool          _doing_emit8;
1879   bool          _doing_emit_d32;
1880   bool          _doing_emit_d16;
1881   bool          _doing_emit_hi;
1882   bool          _doing_emit_lo;
1883   bool          _may_reloc;
1884   reloc_format  _reloc_form;
1885   const char *  _reloc_type;
1886   bool          _processing_noninput;
1887 
1888   NameList      _strings_to_emit;
1889 
1890   // Stable state, set by constructor
1891   ArchDesc     &_AD;
1892   FILE         *_fp;
1893   EncClass     &_encoding;
1894   InsEncode    &_ins_encode;
1895   InstructForm &_inst;
1896 
1897 public:
1898   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1899                   InsEncode &ins_encode, InstructForm &inst)
1900     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1901       clear();
1902   }
1903 
1904   void clear() {
1905     _cleared       = true;
1906     _opclass       = NULL;
1907     _operand       = NULL;
1908     _operand_idx   = 0;
1909     _local_name    = "";
1910     _operand_name  = "";
1911     _doing_disp    = false;
1912     _doing_constant= false;
1913     _constant_type = Form::none;
1914     _constant_status = LITERAL_NOT_SEEN;
1915     _reg_status      = LITERAL_NOT_SEEN;
1916     _doing_emit8   = false;
1917     _doing_emit_d32= false;
1918     _doing_emit_d16= false;
1919     _doing_emit_hi = false;
1920     _doing_emit_lo = false;
1921     _may_reloc     = false;
1922     _reloc_form    = RELOC_NONE;
1923     _reloc_type    = AdlcVMDeps::none_reloc_type();
1924     _strings_to_emit.clear();
1925   }
1926 
1927   // Track necessary state when identifying a replacement variable
1928   // @arg rep_var: The formal parameter of the encoding.
1929   void update_state(const char *rep_var) {
1930     // A replacement variable or one of its subfields
1931     // Obtain replacement variable from list
1932     if ( (*rep_var) != '$' ) {
1933       // A replacement variable, '$' prefix
1934       // check_rep_var( rep_var );
1935       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1936         // No state needed.
1937         assert( _opclass == NULL,
1938                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1939       }
1940       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1941                (strcmp(rep_var, "constantoffset")    == 0) ||
1942                (strcmp(rep_var, "constantaddress")   == 0)) {
1943         if (!_inst.is_mach_constant()) {
1944           _AD.syntax_err(_encoding._linenum,
1945                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode).\n",
1946                          rep_var, _encoding._name);
1947         }
1948       }
1949       else {
1950         // Lookup its position in (formal) parameter list of encoding
1951         int   param_no  = _encoding.rep_var_index(rep_var);
1952         if ( param_no == -1 ) {
1953           _AD.syntax_err( _encoding._linenum,
1954                           "Replacement variable %s not found in enc_class %s.\n",
1955                           rep_var, _encoding._name);
1956         }
1957 
1958         // Lookup the corresponding ins_encode parameter
1959         // This is the argument (actual parameter) to the encoding.
1960         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1961         if (inst_rep_var == NULL) {
1962           _AD.syntax_err( _ins_encode._linenum,
1963                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1964                           rep_var, _encoding._name, _inst._ident);
1965         }
1966 
1967         // Check if instruction's actual parameter is a local name in the instruction
1968         const Form  *local     = _inst._localNames[inst_rep_var];
1969         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1970         // Note: assert removed to allow constant and symbolic parameters
1971         // assert( opc, "replacement variable was not found in local names");
1972         // Lookup the index position iff the replacement variable is a localName
1973         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1974 
1975         if ( idx != -1 ) {
1976           // This is a local in the instruction
1977           // Update local state info.
1978           _opclass        = opc;
1979           _operand_idx    = idx;
1980           _local_name     = rep_var;
1981           _operand_name   = inst_rep_var;
1982 
1983           // !!!!!
1984           // Do not support consecutive operands.
1985           assert( _operand == NULL, "Unimplemented()");
1986           _operand = opc->is_operand();
1987         }
1988         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1989           // Instruction provided a constant expression
1990           // Check later that encoding specifies $$$constant to resolve as constant
1991           _constant_status   = LITERAL_SEEN;
1992         }
1993         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1994           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1995           // Check later that encoding specifies $$$constant to resolve as constant
1996           _constant_status   = LITERAL_SEEN;
1997         }
1998         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1999           // Instruction provided a literal register name for this parameter
2000           // Check that encoding specifies $$$reg to resolve.as register.
2001           _reg_status        = LITERAL_SEEN;
2002         }
2003         else {
2004           // Check for unimplemented functionality before hard failure
2005           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2006           assert( false, "ShouldNotReachHere()");
2007         }
2008       } // done checking which operand this is.
2009     } else {
2010       //
2011       // A subfield variable, '$$' prefix
2012       // Check for fields that may require relocation information.
2013       // Then check that literal register parameters are accessed with 'reg' or 'constant'
2014       //
2015       if ( strcmp(rep_var,"$disp") == 0 ) {
2016         _doing_disp = true;
2017         assert( _opclass, "Must use operand or operand class before '$disp'");
2018         if( _operand == NULL ) {
2019           // Only have an operand class, generate run-time check for relocation
2020           _may_reloc    = true;
2021           _reloc_form   = RELOC_DISP;
2022           _reloc_type   = AdlcVMDeps::oop_reloc_type();
2023         } else {
2024           // Do precise check on operand: is it a ConP or not
2025           //
2026           // Check interface for value of displacement
2027           assert( ( _operand->_interface != NULL ),
2028                   "$disp can only follow memory interface operand");
2029           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2030           assert( mem_interface != NULL,
2031                   "$disp can only follow memory interface operand");
2032           const char *disp = mem_interface->_disp;
2033 
2034           if( disp != NULL && (*disp == '$') ) {
2035             // MemInterface::disp contains a replacement variable,
2036             // Check if this matches a ConP
2037             //
2038             // Lookup replacement variable, in operand's component list
2039             const char *rep_var_name = disp + 1; // Skip '$'
2040             const Component *comp = _operand->_components.search(rep_var_name);
2041             assert( comp != NULL,"Replacement variable not found in components");
2042             const char      *type = comp->_type;
2043             // Lookup operand form for replacement variable's type
2044             const Form *form = _AD.globalNames()[type];
2045             assert( form != NULL, "Replacement variable's type not found");
2046             OperandForm *op = form->is_operand();
2047             assert( op, "Attempting to emit a non-register or non-constant");
2048             // Check if this is a constant
2049             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2050               // Check which constant this name maps to: _c0, _c1, ..., _cn
2051               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2052               // assert( idx != -1, "Constant component not found in operand");
2053               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2054               if ( dtype == Form::idealP ) {
2055                 _may_reloc    = true;
2056                 // No longer true that idealP is always an oop
2057                 _reloc_form   = RELOC_DISP;
2058                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2059               }
2060             }
2061 
2062             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2063               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2064               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2065               _may_reloc   = false;
2066             } else {
2067               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2068             }
2069           }
2070         } // finished with precise check of operand for relocation.
2071       } // finished with subfield variable
2072       else if ( strcmp(rep_var,"$constant") == 0 ) {
2073         _doing_constant = true;
2074         if ( _constant_status == LITERAL_NOT_SEEN ) {
2075           // Check operand for type of constant
2076           assert( _operand, "Must use operand before '$$constant'");
2077           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2078           _constant_type = dtype;
2079           if ( dtype == Form::idealP ) {
2080             _may_reloc    = true;
2081             // No longer true that idealP is always an oop
2082             // // _must_reloc   = true;
2083             _reloc_form   = RELOC_IMMEDIATE;
2084             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2085           } else {
2086             // No relocation information needed
2087           }
2088         } else {
2089           // User-provided literals may not require relocation information !!!!!
2090           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2091         }
2092       }
2093       else if ( strcmp(rep_var,"$label") == 0 ) {
2094         // Calls containing labels require relocation
2095         if ( _inst.is_ideal_call() )  {
2096           _may_reloc    = true;
2097           // !!!!! !!!!!
2098           _reloc_type   = AdlcVMDeps::none_reloc_type();
2099         }
2100       }
2101 
2102       // literal register parameter must be accessed as a 'reg' field.
2103       if ( _reg_status != LITERAL_NOT_SEEN ) {
2104         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2105         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2106           _reg_status  = LITERAL_ACCESSED;
2107         } else {
2108           assert( false, "invalid access to literal register parameter");
2109         }
2110       }
2111       // literal constant parameters must be accessed as a 'constant' field
2112       if ( _constant_status != LITERAL_NOT_SEEN ) {
2113         assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2114         if( strcmp(rep_var,"$constant") == 0 ) {
2115           _constant_status  = LITERAL_ACCESSED;
2116         } else {
2117           assert( false, "invalid access to literal constant parameter");
2118         }
2119       }
2120     } // end replacement and/or subfield
2121 
2122   }
2123 
2124   void add_rep_var(const char *rep_var) {
2125     // Handle subfield and replacement variables.
2126     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2127       // Check for emit prefix, '$$emit32'
2128       assert( _cleared, "Can not nest $$$emit32");
2129       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2130         _doing_emit_d32 = true;
2131       }
2132       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2133         _doing_emit_d16 = true;
2134       }
2135       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2136         _doing_emit_hi  = true;
2137       }
2138       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2139         _doing_emit_lo  = true;
2140       }
2141       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2142         _doing_emit8    = true;
2143       }
2144       else {
2145         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2146         assert( false, "fatal();");
2147       }
2148     }
2149     else {
2150       // Update state for replacement variables
2151       update_state( rep_var );
2152       _strings_to_emit.addName(rep_var);
2153     }
2154     _cleared  = false;
2155   }
2156 
2157   void emit_replacement() {
2158     // A replacement variable or one of its subfields
2159     // Obtain replacement variable from list
2160     // const char *ec_rep_var = encoding->_rep_vars.iter();
2161     const char *rep_var;
2162     _strings_to_emit.reset();
2163     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2164 
2165       if ( (*rep_var) == '$' ) {
2166         // A subfield variable, '$$' prefix
2167         emit_field( rep_var );
2168       } else {
2169         if (_strings_to_emit.peek() != NULL &&
2170             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2171           fprintf(_fp, "Address::make_raw(");
2172 
2173           emit_rep_var( rep_var );
2174           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2175 
2176           _reg_status = LITERAL_ACCESSED;
2177           emit_rep_var( rep_var );
2178           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2179 
2180           _reg_status = LITERAL_ACCESSED;
2181           emit_rep_var( rep_var );
2182           fprintf(_fp,"->scale(), ");
2183 
2184           _reg_status = LITERAL_ACCESSED;
2185           emit_rep_var( rep_var );
2186           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2187           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2188             fprintf(_fp,"->disp(ra_,this,0), ");
2189           } else {
2190             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2191           }
2192 
2193           _reg_status = LITERAL_ACCESSED;
2194           emit_rep_var( rep_var );
2195           fprintf(_fp,"->disp_reloc())");
2196 
2197           // skip trailing $Address
2198           _strings_to_emit.iter();
2199         } else {
2200           // A replacement variable, '$' prefix
2201           const char* next = _strings_to_emit.peek();
2202           const char* next2 = _strings_to_emit.peek(2);
2203           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2204               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2205             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2206             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2207             fprintf(_fp, "as_Register(");
2208             // emit the operand reference
2209             emit_rep_var( rep_var );
2210             rep_var = _strings_to_emit.iter();
2211             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2212             // handle base or index
2213             emit_field(rep_var);
2214             rep_var = _strings_to_emit.iter();
2215             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2216             // close up the parens
2217             fprintf(_fp, ")");
2218           } else {
2219             emit_rep_var( rep_var );
2220           }
2221         }
2222       } // end replacement and/or subfield
2223     }
2224   }
2225 
2226   void emit_reloc_type(const char* type) {
2227     fprintf(_fp, "%s", type)
2228       ;
2229   }
2230 
2231 
2232   void emit() {
2233     //
2234     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2235     //
2236     // Emit the function name when generating an emit function
2237     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2238       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2239       // In general, relocatable isn't known at compiler compile time.
2240       // Check results of prior scan
2241       if ( ! _may_reloc ) {
2242         // Definitely don't need relocation information
2243         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2244         emit_replacement(); fprintf(_fp, ")");
2245       }
2246       else {
2247         // Emit RUNTIME CHECK to see if value needs relocation info
2248         // If emitting a relocatable address, use 'emit_d32_reloc'
2249         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2250         assert( (_doing_disp || _doing_constant)
2251                 && !(_doing_disp && _doing_constant),
2252                 "Must be emitting either a displacement or a constant");
2253         fprintf(_fp,"\n");
2254         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2255                 _operand_idx, disp_constant);
2256         fprintf(_fp,"  ");
2257         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2258         emit_replacement();             fprintf(_fp,", ");
2259         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2260                 _operand_idx, disp_constant);
2261         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2262         fprintf(_fp,"\n");
2263         fprintf(_fp,"} else {\n");
2264         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2265         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2266       }
2267     }
2268     else if ( _doing_emit_d16 ) {
2269       // Relocation of 16-bit values is not supported
2270       fprintf(_fp,"emit_d16(cbuf, ");
2271       emit_replacement(); fprintf(_fp, ")");
2272       // No relocation done for 16-bit values
2273     }
2274     else if ( _doing_emit8 ) {
2275       // Relocation of 8-bit values is not supported
2276       fprintf(_fp,"emit_d8(cbuf, ");
2277       emit_replacement(); fprintf(_fp, ")");
2278       // No relocation done for 8-bit values
2279     }
2280     else {
2281       // Not an emit# command, just output the replacement string.
2282       emit_replacement();
2283     }
2284 
2285     // Get ready for next state collection.
2286     clear();
2287   }
2288 
2289 private:
2290 
2291   // recognizes names which represent MacroAssembler register types
2292   // and return the conversion function to build them from OptoReg
2293   const char* reg_conversion(const char* rep_var) {
2294     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2295     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2296 #if defined(IA32) || defined(AMD64)
2297     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2298 #endif
2299     return NULL;
2300   }
2301 
2302   void emit_field(const char *rep_var) {
2303     const char* reg_convert = reg_conversion(rep_var);
2304 
2305     // A subfield variable, '$$subfield'
2306     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2307       // $reg form or the $Register MacroAssembler type conversions
2308       assert( _operand_idx != -1,
2309               "Must use this subfield after operand");
2310       if( _reg_status == LITERAL_NOT_SEEN ) {
2311         if (_processing_noninput) {
2312           const Form  *local     = _inst._localNames[_operand_name];
2313           OperandForm *oper      = local->is_operand();
2314           const RegDef* first = oper->get_RegClass()->find_first_elem();
2315           if (reg_convert != NULL) {
2316             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2317           } else {
2318             fprintf(_fp, "%s_enc", first->_regname);
2319           }
2320         } else {
2321           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2322           // Add parameter for index position, if not result operand
2323           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2324           fprintf(_fp,")");
2325           fprintf(_fp, "/* %s */", _operand_name);
2326         }
2327       } else {
2328         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2329         // Register literal has already been sent to output file, nothing more needed
2330       }
2331     }
2332     else if ( strcmp(rep_var,"$base") == 0 ) {
2333       assert( _operand_idx != -1,
2334               "Must use this subfield after operand");
2335       assert( ! _may_reloc, "UnImplemented()");
2336       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2337     }
2338     else if ( strcmp(rep_var,"$index") == 0 ) {
2339       assert( _operand_idx != -1,
2340               "Must use this subfield after operand");
2341       assert( ! _may_reloc, "UnImplemented()");
2342       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2343     }
2344     else if ( strcmp(rep_var,"$scale") == 0 ) {
2345       assert( ! _may_reloc, "UnImplemented()");
2346       fprintf(_fp,"->scale()");
2347     }
2348     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2349       assert( ! _may_reloc, "UnImplemented()");
2350       fprintf(_fp,"->ccode()");
2351     }
2352     else if ( strcmp(rep_var,"$constant") == 0 ) {
2353       if( _constant_status == LITERAL_NOT_SEEN ) {
2354         if ( _constant_type == Form::idealD ) {
2355           fprintf(_fp,"->constantD()");
2356         } else if ( _constant_type == Form::idealF ) {
2357           fprintf(_fp,"->constantF()");
2358         } else if ( _constant_type == Form::idealL ) {
2359           fprintf(_fp,"->constantL()");
2360         } else {
2361           fprintf(_fp,"->constant()");
2362         }
2363       } else {
2364         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2365         // Constant literal has already been sent to output file, nothing more needed
2366       }
2367     }
2368     else if ( strcmp(rep_var,"$disp") == 0 ) {
2369       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2370       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2371         fprintf(_fp,"->disp(ra_,this,0)");
2372       } else {
2373         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2374       }
2375     }
2376     else if ( strcmp(rep_var,"$label") == 0 ) {
2377       fprintf(_fp,"->label()");
2378     }
2379     else if ( strcmp(rep_var,"$method") == 0 ) {
2380       fprintf(_fp,"->method()");
2381     }
2382     else {
2383       printf("emit_field: %s\n",rep_var);
2384       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2385                            rep_var, _inst._ident);
2386       assert( false, "UnImplemented()");
2387     }
2388   }
2389 
2390 
2391   void emit_rep_var(const char *rep_var) {
2392     _processing_noninput = false;
2393     // A replacement variable, originally '$'
2394     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2395       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2396         // Missing opcode
2397         _AD.syntax_err( _inst._linenum,
2398                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2399                         rep_var, _inst._ident, _encoding._name);
2400       }
2401     }
2402     else if (strcmp(rep_var, "constanttablebase") == 0) {
2403       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2404     }
2405     else if (strcmp(rep_var, "constantoffset") == 0) {
2406       fprintf(_fp, "constant_offset()");
2407     }
2408     else if (strcmp(rep_var, "constantaddress") == 0) {
2409       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2410     }
2411     else {
2412       // Lookup its position in parameter list
2413       int   param_no  = _encoding.rep_var_index(rep_var);
2414       if ( param_no == -1 ) {
2415         _AD.syntax_err( _encoding._linenum,
2416                         "Replacement variable %s not found in enc_class %s.\n",
2417                         rep_var, _encoding._name);
2418       }
2419       // Lookup the corresponding ins_encode parameter
2420       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2421 
2422       // Check if instruction's actual parameter is a local name in the instruction
2423       const Form  *local     = _inst._localNames[inst_rep_var];
2424       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2425       // Note: assert removed to allow constant and symbolic parameters
2426       // assert( opc, "replacement variable was not found in local names");
2427       // Lookup the index position iff the replacement variable is a localName
2428       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2429       if( idx != -1 ) {
2430         if (_inst.is_noninput_operand(idx)) {
2431           // This operand isn't a normal input so printing it is done
2432           // specially.
2433           _processing_noninput = true;
2434         } else {
2435           // Output the emit code for this operand
2436           fprintf(_fp,"opnd_array(%d)",idx);
2437         }
2438         assert( _operand == opc->is_operand(),
2439                 "Previous emit $operand does not match current");
2440       }
2441       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2442         // else check if it is a constant expression
2443         // Removed following assert to allow primitive C types as arguments to encodings
2444         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2445         fprintf(_fp,"(%s)", inst_rep_var);
2446         _constant_status = LITERAL_OUTPUT;
2447       }
2448       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2449         // else check if "primary", "secondary", "tertiary"
2450         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2451         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2452           // Missing opcode
2453           _AD.syntax_err( _inst._linenum,
2454                           "Missing $%s opcode definition in %s\n",
2455                           rep_var, _inst._ident);
2456 
2457         }
2458         _constant_status = LITERAL_OUTPUT;
2459       }
2460       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2461         // Instruction provided a literal register name for this parameter
2462         // Check that encoding specifies $$$reg to resolve.as register.
2463         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2464         fprintf(_fp,"(%s_enc)", inst_rep_var);
2465         _reg_status = LITERAL_OUTPUT;
2466       }
2467       else {
2468         // Check for unimplemented functionality before hard failure
2469         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2470         assert( false, "ShouldNotReachHere()");
2471       }
2472       // all done
2473     }
2474   }
2475 
2476 };  // end class DefineEmitState
2477 
2478 
2479 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2480 
2481   //(1)
2482   // Output instruction's emit prototype
2483   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2484           inst._ident);
2485 
2486   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2487 
2488   //(2)
2489   // Print the size
2490   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2491 
2492   // (3) and (4)
2493   fprintf(fp,"}\n");
2494 }
2495 
2496 // defineEmit -----------------------------------------------------------------
2497 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2498   InsEncode* encode = inst._insencode;
2499 
2500   // (1)
2501   // Output instruction's emit prototype
2502   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2503 
2504   // If user did not define an encode section,
2505   // provide stub that does not generate any machine code.
2506   if( (_encode == NULL) || (encode == NULL) ) {
2507     fprintf(fp, "  // User did not define an encode section.\n");
2508     fprintf(fp, "}\n");
2509     return;
2510   }
2511 
2512   // Save current instruction's starting address (helps with relocation).
2513   fprintf(fp, "  cbuf.set_insts_mark();\n");
2514 
2515   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2516   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2517     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2518   }
2519 
2520   // Output each operand's offset into the array of registers.
2521   inst.index_temps(fp, _globalNames);
2522 
2523   // Output this instruction's encodings
2524   const char *ec_name;
2525   bool        user_defined = false;
2526   encode->reset();
2527   while ((ec_name = encode->encode_class_iter()) != NULL) {
2528     fprintf(fp, "  {\n");
2529     // Output user-defined encoding
2530     user_defined           = true;
2531 
2532     const char *ec_code    = NULL;
2533     const char *ec_rep_var = NULL;
2534     EncClass   *encoding   = _encode->encClass(ec_name);
2535     if (encoding == NULL) {
2536       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2537       abort();
2538     }
2539 
2540     if (encode->current_encoding_num_args() != encoding->num_args()) {
2541       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2542                            inst._ident, encode->current_encoding_num_args(),
2543                            ec_name, encoding->num_args());
2544     }
2545 
2546     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2547     encoding->_code.reset();
2548     encoding->_rep_vars.reset();
2549     // Process list of user-defined strings,
2550     // and occurrences of replacement variables.
2551     // Replacement Vars are pushed into a list and then output
2552     while ((ec_code = encoding->_code.iter()) != NULL) {
2553       if (!encoding->_code.is_signal(ec_code)) {
2554         // Emit pending code
2555         pending.emit();
2556         pending.clear();
2557         // Emit this code section
2558         fprintf(fp, "%s", ec_code);
2559       } else {
2560         // A replacement variable or one of its subfields
2561         // Obtain replacement variable from list
2562         ec_rep_var  = encoding->_rep_vars.iter();
2563         pending.add_rep_var(ec_rep_var);
2564       }
2565     }
2566     // Emit pending code
2567     pending.emit();
2568     pending.clear();
2569     fprintf(fp, "  }\n");
2570   } // end while instruction's encodings
2571 
2572   // Check if user stated which encoding to user
2573   if ( user_defined == false ) {
2574     fprintf(fp, "  // User did not define which encode class to use.\n");
2575   }
2576 
2577   // (3) and (4)
2578   fprintf(fp, "}\n\n");
2579 }
2580 
2581 // defineEvalConstant ---------------------------------------------------------
2582 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2583   InsEncode* encode = inst._constant;
2584 
2585   // (1)
2586   // Output instruction's emit prototype
2587   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2588 
2589   // For ideal jump nodes, add a jump-table entry.
2590   if (inst.is_ideal_jump()) {
2591     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2592   }
2593 
2594   // If user did not define an encode section,
2595   // provide stub that does not generate any machine code.
2596   if ((_encode == NULL) || (encode == NULL)) {
2597     fprintf(fp, "  // User did not define an encode section.\n");
2598     fprintf(fp, "}\n");
2599     return;
2600   }
2601 
2602   // Output this instruction's encodings
2603   const char *ec_name;
2604   bool        user_defined = false;
2605   encode->reset();
2606   while ((ec_name = encode->encode_class_iter()) != NULL) {
2607     fprintf(fp, "  {\n");
2608     // Output user-defined encoding
2609     user_defined           = true;
2610 
2611     const char *ec_code    = NULL;
2612     const char *ec_rep_var = NULL;
2613     EncClass   *encoding   = _encode->encClass(ec_name);
2614     if (encoding == NULL) {
2615       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2616       abort();
2617     }
2618 
2619     if (encode->current_encoding_num_args() != encoding->num_args()) {
2620       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2621                            inst._ident, encode->current_encoding_num_args(),
2622                            ec_name, encoding->num_args());
2623     }
2624 
2625     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2626     encoding->_code.reset();
2627     encoding->_rep_vars.reset();
2628     // Process list of user-defined strings,
2629     // and occurrences of replacement variables.
2630     // Replacement Vars are pushed into a list and then output
2631     while ((ec_code = encoding->_code.iter()) != NULL) {
2632       if (!encoding->_code.is_signal(ec_code)) {
2633         // Emit pending code
2634         pending.emit();
2635         pending.clear();
2636         // Emit this code section
2637         fprintf(fp, "%s", ec_code);
2638       } else {
2639         // A replacement variable or one of its subfields
2640         // Obtain replacement variable from list
2641         ec_rep_var  = encoding->_rep_vars.iter();
2642         pending.add_rep_var(ec_rep_var);
2643       }
2644     }
2645     // Emit pending code
2646     pending.emit();
2647     pending.clear();
2648     fprintf(fp, "  }\n");
2649   } // end while instruction's encodings
2650 
2651   // Check if user stated which encoding to user
2652   if (user_defined == false) {
2653     fprintf(fp, "  // User did not define which encode class to use.\n");
2654   }
2655 
2656   // (3) and (4)
2657   fprintf(fp, "}\n");
2658 }
2659 
2660 // ---------------------------------------------------------------------------
2661 //--------Utilities to build MachOper and MachNode derived Classes------------
2662 // ---------------------------------------------------------------------------
2663 
2664 //------------------------------Utilities to build Operand Classes------------
2665 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2666   uint num_edges = oper.num_edges(globals);
2667   if( num_edges != 0 ) {
2668     // Method header
2669     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2670             oper._ident);
2671 
2672     // Assert that the index is in range.
2673     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2674             num_edges);
2675 
2676     // Figure out if all RegMasks are the same.
2677     const char* first_reg_class = oper.in_reg_class(0, globals);
2678     bool all_same = true;
2679     assert(first_reg_class != NULL, "did not find register mask");
2680 
2681     for (uint index = 1; all_same && index < num_edges; index++) {
2682       const char* some_reg_class = oper.in_reg_class(index, globals);
2683       assert(some_reg_class != NULL, "did not find register mask");
2684       if (strcmp(first_reg_class, some_reg_class) != 0) {
2685         all_same = false;
2686       }
2687     }
2688 
2689     if (all_same) {
2690       // Return the sole RegMask.
2691       if (strcmp(first_reg_class, "stack_slots") == 0) {
2692         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2693       } else {
2694         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2695         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2696         delete[] first_reg_class_to_upper;
2697       }
2698     } else {
2699       // Build a switch statement to return the desired mask.
2700       fprintf(fp,"  switch (index) {\n");
2701 
2702       for (uint index = 0; index < num_edges; index++) {
2703         const char *reg_class = oper.in_reg_class(index, globals);
2704         assert(reg_class != NULL, "did not find register mask");
2705         if( !strcmp(reg_class, "stack_slots") ) {
2706           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2707         } else {
2708           const char* reg_class_to_upper = toUpper(reg_class);
2709           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2710           delete[] reg_class_to_upper;
2711         }
2712       }
2713       fprintf(fp,"  }\n");
2714       fprintf(fp,"  ShouldNotReachHere();\n");
2715       fprintf(fp,"  return NULL;\n");
2716     }
2717 
2718     // Method close
2719     fprintf(fp, "}\n\n");
2720   }
2721 }
2722 
2723 // generate code to create a clone for a class derived from MachOper
2724 //
2725 // (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
2726 // (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2727 // (2)  }
2728 //
2729 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2730   fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
2731   // Check for constants that need to be copied over
2732   const int  num_consts    = oper.num_consts(globalNames);
2733   const bool is_ideal_bool = oper.is_ideal_bool();
2734   if( (num_consts > 0) ) {
2735     fprintf(fp,"  return new (C) %sOper(", oper._ident);
2736     // generate parameters for constants
2737     int i = 0;
2738     fprintf(fp,"_c%d", i);
2739     for( i = 1; i < num_consts; ++i) {
2740       fprintf(fp,", _c%d", i);
2741     }
2742     // finish line (1)
2743     fprintf(fp,");\n");
2744   }
2745   else {
2746     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2747     fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
2748   }
2749   // finish method
2750   fprintf(fp,"}\n");
2751 }
2752 
2753 // Helper functions for bug 4796752, abstracted with minimal modification
2754 // from define_oper_interface()
2755 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2756   OperandForm *op = NULL;
2757   // Check for replacement variable
2758   if( *encoding == '$' ) {
2759     // Replacement variable
2760     const char *rep_var = encoding + 1;
2761     // Lookup replacement variable, rep_var, in operand's component list
2762     const Component *comp = oper._components.search(rep_var);
2763     assert( comp != NULL, "Replacement variable not found in components");
2764     // Lookup operand form for replacement variable's type
2765     const char      *type = comp->_type;
2766     Form            *form = (Form*)globals[type];
2767     assert( form != NULL, "Replacement variable's type not found");
2768     op = form->is_operand();
2769     assert( op, "Attempting to emit a non-register or non-constant");
2770   }
2771 
2772   return op;
2773 }
2774 
2775 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2776   int idx = -1;
2777   // Check for replacement variable
2778   if( *encoding == '$' ) {
2779     // Replacement variable
2780     const char *rep_var = encoding + 1;
2781     // Lookup replacement variable, rep_var, in operand's component list
2782     const Component *comp = oper._components.search(rep_var);
2783     assert( comp != NULL, "Replacement variable not found in components");
2784     // Lookup operand form for replacement variable's type
2785     const char      *type = comp->_type;
2786     Form            *form = (Form*)globals[type];
2787     assert( form != NULL, "Replacement variable's type not found");
2788     OperandForm *op = form->is_operand();
2789     assert( op, "Attempting to emit a non-register or non-constant");
2790     // Check that this is a constant and find constant's index:
2791     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2792       idx  = oper.constant_position(globals, comp);
2793     }
2794   }
2795 
2796   return idx;
2797 }
2798 
2799 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2800   bool is_regI = false;
2801 
2802   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2803   if( op != NULL ) {
2804     // Check that this is a register
2805     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2806       // Register
2807       const char* ideal  = op->ideal_type(globals);
2808       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2809     }
2810   }
2811 
2812   return is_regI;
2813 }
2814 
2815 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2816   bool is_conP = false;
2817 
2818   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2819   if( op != NULL ) {
2820     // Check that this is a constant pointer
2821     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2822       // Constant
2823       Form::DataType dtype = op->is_base_constant(globals);
2824       is_conP = (dtype == Form::idealP);
2825     }
2826   }
2827 
2828   return is_conP;
2829 }
2830 
2831 
2832 // Define a MachOper interface methods
2833 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2834                                      const char *name, const char *encoding) {
2835   bool emit_position = false;
2836   int position = -1;
2837 
2838   fprintf(fp,"  virtual int            %s", name);
2839   // Generate access method for base, index, scale, disp, ...
2840   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2841     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2842     emit_position = true;
2843   } else if ( (strcmp(name,"disp") == 0) ) {
2844     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2845   } else {
2846     fprintf(fp,"() const { \n");
2847   }
2848 
2849   // Check for hexadecimal value OR replacement variable
2850   if( *encoding == '$' ) {
2851     // Replacement variable
2852     const char *rep_var = encoding + 1;
2853     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2854     // Lookup replacement variable, rep_var, in operand's component list
2855     const Component *comp = oper._components.search(rep_var);
2856     assert( comp != NULL, "Replacement variable not found in components");
2857     // Lookup operand form for replacement variable's type
2858     const char      *type = comp->_type;
2859     Form            *form = (Form*)globals[type];
2860     assert( form != NULL, "Replacement variable's type not found");
2861     OperandForm *op = form->is_operand();
2862     assert( op, "Attempting to emit a non-register or non-constant");
2863     // Check that this is a register or a constant and generate code:
2864     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2865       // Register
2866       int idx_offset = oper.register_position( globals, rep_var);
2867       position = idx_offset;
2868       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2869       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2870       fprintf(fp,"));\n");
2871     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2872       // StackSlot for an sReg comes either from input node or from self, when idx==0
2873       fprintf(fp,"    if( idx != 0 ) {\n");
2874       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2875       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2876       fprintf(fp,"    }\n");
2877       fprintf(fp,"    // Access stack offset (register number) from myself\n");
2878       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2879     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2880       // Constant
2881       // Check which constant this name maps to: _c0, _c1, ..., _cn
2882       const int idx = oper.constant_position(globals, comp);
2883       assert( idx != -1, "Constant component not found in operand");
2884       // Output code for this constant, type dependent.
2885       fprintf(fp,"    return (int)" );
2886       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2887       fprintf(fp,";\n");
2888     } else {
2889       assert( false, "Attempting to emit a non-register or non-constant");
2890     }
2891   }
2892   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2893     // Hex value
2894     fprintf(fp,"    return %s;\n", encoding);
2895   } else {
2896     assert( false, "Do not support octal or decimal encode constants");
2897   }
2898   fprintf(fp,"  }\n");
2899 
2900   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2901     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2902     MemInterface *mem_interface = oper._interface->is_MemInterface();
2903     const char *base = mem_interface->_base;
2904     const char *disp = mem_interface->_disp;
2905     if( emit_position && (strcmp(name,"base") == 0)
2906         && base != NULL && is_regI(base, oper, globals)
2907         && disp != NULL && is_conP(disp, oper, globals) ) {
2908       // Found a memory access using a constant pointer for a displacement
2909       // and a base register containing an integer offset.
2910       // In this case the base and disp are reversed with respect to what
2911       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
2912       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
2913       // to correctly compute the access type for alias analysis.
2914       //
2915       // See BugId 4796752, operand indOffset32X in i486.ad
2916       int idx = rep_var_to_constant_index(disp, oper, globals);
2917       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
2918     }
2919   }
2920 }
2921 
2922 //
2923 // Construct the method to copy _idx, inputs and operands to new node.
2924 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
2925   fprintf(fp_cpp, "\n");
2926   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
2927   fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
2928   if( !used ) {
2929     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
2930     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
2931     fprintf(fp_cpp, "}\n");
2932   } else {
2933     // New node must use same node index for access through allocator's tables
2934     fprintf(fp_cpp, "  // New node must use same node index\n");
2935     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
2936     // Copy machine-independent inputs
2937     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
2938     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
2939     fprintf(fp_cpp, "    node->add_req(in(j));\n");
2940     fprintf(fp_cpp, "  }\n");
2941     // Copy machine operands to new MachNode
2942     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
2943     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
2944     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
2945     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
2946     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
2947     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
2948     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
2949     fprintf(fp_cpp, "  }\n");
2950     fprintf(fp_cpp, "}\n");
2951   }
2952   fprintf(fp_cpp, "\n");
2953 }
2954 
2955 //------------------------------defineClasses----------------------------------
2956 // Define members of MachNode and MachOper classes based on
2957 // operand and instruction lists
2958 void ArchDesc::defineClasses(FILE *fp) {
2959 
2960   // Define the contents of an array containing the machine register names
2961   defineRegNames(fp, _register);
2962   // Define an array containing the machine register encoding values
2963   defineRegEncodes(fp, _register);
2964   // Generate an enumeration of user-defined register classes
2965   // and a list of register masks, one for each class.
2966   // Only define the RegMask value objects in the expand file.
2967   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
2968   declare_register_masks(_HPP_file._fp);
2969   // build_register_masks(fp);
2970   build_register_masks(_CPP_EXPAND_file._fp);
2971   // Define the pipe_classes
2972   build_pipe_classes(_CPP_PIPELINE_file._fp);
2973 
2974   // Generate Machine Classes for each operand defined in AD file
2975   fprintf(fp,"\n");
2976   fprintf(fp,"\n");
2977   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
2978   // Iterate through all operands
2979   _operands.reset();
2980   OperandForm *oper;
2981   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
2982     // Ensure this is a machine-world instruction
2983     if ( oper->ideal_only() ) continue;
2984     // !!!!!
2985     // The declaration of labelOper is in machine-independent file: machnode
2986     if ( strcmp(oper->_ident,"label") == 0 ) {
2987       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
2988 
2989       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
2990       fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
2991       fprintf(fp,"}\n");
2992 
2993       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
2994               oper->_ident, machOperEnum(oper->_ident));
2995       // // Currently all XXXOper::Hash() methods are identical (990820)
2996       // define_hash(fp, oper->_ident);
2997       // // Currently all XXXOper::Cmp() methods are identical (990820)
2998       // define_cmp(fp, oper->_ident);
2999       fprintf(fp,"\n");
3000 
3001       continue;
3002     }
3003 
3004     // The declaration of methodOper is in machine-independent file: machnode
3005     if ( strcmp(oper->_ident,"method") == 0 ) {
3006       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3007 
3008       fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
3009       fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
3010       fprintf(fp,"}\n");
3011 
3012       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3013               oper->_ident, machOperEnum(oper->_ident));
3014       // // Currently all XXXOper::Hash() methods are identical (990820)
3015       // define_hash(fp, oper->_ident);
3016       // // Currently all XXXOper::Cmp() methods are identical (990820)
3017       // define_cmp(fp, oper->_ident);
3018       fprintf(fp,"\n");
3019 
3020       continue;
3021     }
3022 
3023     defineIn_RegMask(fp, _globalNames, *oper);
3024     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3025     // // Currently all XXXOper::Hash() methods are identical (990820)
3026     // define_hash(fp, oper->_ident);
3027     // // Currently all XXXOper::Cmp() methods are identical (990820)
3028     // define_cmp(fp, oper->_ident);
3029 
3030     // side-call to generate output that used to be in the header file:
3031     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3032     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3033 
3034   }
3035 
3036 
3037   // Generate Machine Classes for each instruction defined in AD file
3038   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3039   // Output the definitions for out_RegMask() // & kill_RegMask()
3040   _instructions.reset();
3041   InstructForm *instr;
3042   MachNodeForm *machnode;
3043   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3044     // Ensure this is a machine-world instruction
3045     if ( instr->ideal_only() ) continue;
3046 
3047     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3048   }
3049 
3050   bool used = false;
3051   // Output the definitions for expand rules & peephole rules
3052   _instructions.reset();
3053   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3054     // Ensure this is a machine-world instruction
3055     if ( instr->ideal_only() ) continue;
3056     // If there are multiple defs/kills, or an explicit expand rule, build rule
3057     if( instr->expands() || instr->needs_projections() ||
3058         instr->has_temps() ||
3059         instr->is_mach_constant() ||
3060         instr->_matrule != NULL &&
3061         instr->num_opnds() != instr->num_unique_opnds() )
3062       defineExpand(_CPP_EXPAND_file._fp, instr);
3063     // If there is an explicit peephole rule, build it
3064     if ( instr->peepholes() )
3065       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3066 
3067     // Output code to convert to the cisc version, if applicable
3068     used |= instr->define_cisc_version(*this, fp);
3069 
3070     // Output code to convert to the short branch version, if applicable
3071     used |= instr->define_short_branch_methods(*this, fp);
3072   }
3073 
3074   // Construct the method called by cisc_version() to copy inputs and operands.
3075   define_fill_new_machnode(used, fp);
3076 
3077   // Output the definitions for labels
3078   _instructions.reset();
3079   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3080     // Ensure this is a machine-world instruction
3081     if ( instr->ideal_only() ) continue;
3082 
3083     // Access the fields for operand Label
3084     int label_position = instr->label_position();
3085     if( label_position != -1 ) {
3086       // Set the label
3087       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3088       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3089               label_position );
3090       fprintf(fp,"  oper->_label     = label;\n");
3091       fprintf(fp,"  oper->_block_num = block_num;\n");
3092       fprintf(fp,"}\n");
3093       // Save the label
3094       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3095       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3096               label_position );
3097       fprintf(fp,"  *label = oper->_label;\n");
3098       fprintf(fp,"  *block_num = oper->_block_num;\n");
3099       fprintf(fp,"}\n");
3100     }
3101   }
3102 
3103   // Output the definitions for methods
3104   _instructions.reset();
3105   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3106     // Ensure this is a machine-world instruction
3107     if ( instr->ideal_only() ) continue;
3108 
3109     // Access the fields for operand Label
3110     int method_position = instr->method_position();
3111     if( method_position != -1 ) {
3112       // Access the method's address
3113       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3114       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3115               method_position );
3116       fprintf(fp,"}\n");
3117       fprintf(fp,"\n");
3118     }
3119   }
3120 
3121   // Define this instruction's number of relocation entries, base is '0'
3122   _instructions.reset();
3123   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3124     // Output the definition for number of relocation entries
3125     uint reloc_size = instr->reloc(_globalNames);
3126     if ( reloc_size != 0 ) {
3127       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3128       fprintf(fp,"  return %d;\n", reloc_size);
3129       fprintf(fp,"}\n");
3130       fprintf(fp,"\n");
3131     }
3132   }
3133   fprintf(fp,"\n");
3134 
3135   // Output the definitions for code generation
3136   //
3137   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3138   //   // ...  encoding defined by user
3139   //   return ptr;
3140   // }
3141   //
3142   _instructions.reset();
3143   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3144     // Ensure this is a machine-world instruction
3145     if ( instr->ideal_only() ) continue;
3146 
3147     if (instr->_insencode)         defineEmit        (fp, *instr);
3148     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3149     if (instr->_size)              defineSize        (fp, *instr);
3150 
3151     // side-call to generate output that used to be in the header file:
3152     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3153     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3154   }
3155 
3156   // Output the definitions for alias analysis
3157   _instructions.reset();
3158   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3159     // Ensure this is a machine-world instruction
3160     if ( instr->ideal_only() ) continue;
3161 
3162     // Analyze machine instructions that either USE or DEF memory.
3163     int memory_operand = instr->memory_operand(_globalNames);
3164     // Some guys kill all of memory
3165     if ( instr->is_wide_memory_kill(_globalNames) ) {
3166       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3167     }
3168 
3169     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3170       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3171         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3172         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3173       } else {
3174         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3175   }
3176     }
3177   }
3178 
3179   // Get the length of the longest identifier
3180   int max_ident_len = 0;
3181   _instructions.reset();
3182 
3183   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3184     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3185       int ident_len = (int)strlen(instr->_ident);
3186       if( max_ident_len < ident_len )
3187         max_ident_len = ident_len;
3188     }
3189   }
3190 
3191   // Emit specifically for Node(s)
3192   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3193     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3194   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3195     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3196   fprintf(_CPP_PIPELINE_file._fp, "\n");
3197 
3198   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3199     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3200   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3201     max_ident_len, "MachNode");
3202   fprintf(_CPP_PIPELINE_file._fp, "\n");
3203 
3204   // Output the definitions for machine node specific pipeline data
3205   _machnodes.reset();
3206 
3207   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3208     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3209       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3210   }
3211 
3212   fprintf(_CPP_PIPELINE_file._fp, "\n");
3213 
3214   // Output the definitions for instruction pipeline static data references
3215   _instructions.reset();
3216 
3217   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3218     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3219       fprintf(_CPP_PIPELINE_file._fp, "\n");
3220       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3221         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3222       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3223         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3224     }
3225   }
3226 }
3227 
3228 
3229 // -------------------------------- maps ------------------------------------
3230 
3231 // Information needed to generate the ReduceOp mapping for the DFA
3232 class OutputReduceOp : public OutputMap {
3233 public:
3234   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3235     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3236 
3237   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3238   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3239   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3240                        OutputMap::closing();
3241   }
3242   void map(OpClassForm &opc)  {
3243     const char *reduce = opc._ident;
3244     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3245     else          fprintf(_cpp, "  0");
3246   }
3247   void map(OperandForm &oper) {
3248     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3249     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3250     // operand stackSlot does not have a match rule, but produces a stackSlot
3251     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3252     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3253     else          fprintf(_cpp, "  0");
3254   }
3255   void map(InstructForm &inst) {
3256     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3257     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3258     else          fprintf(_cpp, "  0");
3259   }
3260   void map(char         *reduce) {
3261     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3262     else          fprintf(_cpp, "  0");
3263   }
3264 };
3265 
3266 // Information needed to generate the LeftOp mapping for the DFA
3267 class OutputLeftOp : public OutputMap {
3268 public:
3269   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3270     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3271 
3272   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3273   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3274   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3275                        OutputMap::closing();
3276   }
3277   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3278   void map(OperandForm &oper) {
3279     const char *reduce = oper.reduce_left(_globals);
3280     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3281     else          fprintf(_cpp, "  0");
3282   }
3283   void map(char        *name) {
3284     const char *reduce = _AD.reduceLeft(name);
3285     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3286     else          fprintf(_cpp, "  0");
3287   }
3288   void map(InstructForm &inst) {
3289     const char *reduce = inst.reduce_left(_globals);
3290     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3291     else          fprintf(_cpp, "  0");
3292   }
3293 };
3294 
3295 
3296 // Information needed to generate the RightOp mapping for the DFA
3297 class OutputRightOp : public OutputMap {
3298 public:
3299   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3300     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3301 
3302   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3303   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3304   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3305                        OutputMap::closing();
3306   }
3307   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3308   void map(OperandForm &oper) {
3309     const char *reduce = oper.reduce_right(_globals);
3310     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3311     else          fprintf(_cpp, "  0");
3312   }
3313   void map(char        *name) {
3314     const char *reduce = _AD.reduceRight(name);
3315     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3316     else          fprintf(_cpp, "  0");
3317   }
3318   void map(InstructForm &inst) {
3319     const char *reduce = inst.reduce_right(_globals);
3320     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3321     else          fprintf(_cpp, "  0");
3322   }
3323 };
3324 
3325 
3326 // Information needed to generate the Rule names for the DFA
3327 class OutputRuleName : public OutputMap {
3328 public:
3329   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3330     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3331 
3332   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3333   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3334   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3335                        OutputMap::closing();
3336   }
3337   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3338   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3339   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3340   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3341 };
3342 
3343 
3344 // Information needed to generate the swallowed mapping for the DFA
3345 class OutputSwallowed : public OutputMap {
3346 public:
3347   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3348     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3349 
3350   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3351   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3352   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3353                        OutputMap::closing();
3354   }
3355   void map(OperandForm &oper) { // Generate the entry for this opcode
3356     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3357     fprintf(_cpp, "  %s", swallowed);
3358   }
3359   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3360   void map(char        *name) { fprintf(_cpp, "  false"); }
3361   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3362 };
3363 
3364 
3365 // Information needed to generate the decision array for instruction chain rule
3366 class OutputInstChainRule : public OutputMap {
3367 public:
3368   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3369     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3370 
3371   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3372   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3373   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3374                        OutputMap::closing();
3375   }
3376   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3377   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3378   void map(char        *name)  { fprintf(_cpp, "  false"); }
3379   void map(InstructForm &inst) { // Check for simple chain rule
3380     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3381     fprintf(_cpp, "  %s", chain);
3382   }
3383 };
3384 
3385 
3386 //---------------------------build_map------------------------------------
3387 // Build  mapping from enumeration for densely packed operands
3388 // TO result and child types.
3389 void ArchDesc::build_map(OutputMap &map) {
3390   FILE         *fp_hpp = map.decl_file();
3391   FILE         *fp_cpp = map.def_file();
3392   int           idx    = 0;
3393   OperandForm  *op;
3394   OpClassForm  *opc;
3395   InstructForm *inst;
3396 
3397   // Construct this mapping
3398   map.declaration();
3399   fprintf(fp_cpp,"\n");
3400   map.definition();
3401 
3402   // Output the mapping for operands
3403   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3404   _operands.reset();
3405   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3406     // Ensure this is a machine-world instruction
3407     if ( op->ideal_only() )  continue;
3408 
3409     // Generate the entry for this opcode
3410     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3411     ++idx;
3412   };
3413   fprintf(fp_cpp, "  // last operand\n");
3414 
3415   // Place all user-defined operand classes into the mapping
3416   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3417   _opclass.reset();
3418   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3419     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3420     ++idx;
3421   };
3422   fprintf(fp_cpp, "  // last operand class\n");
3423 
3424   // Place all internally defined operands into the mapping
3425   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3426   _internalOpNames.reset();
3427   char *name = NULL;
3428   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3429     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3430     ++idx;
3431   };
3432   fprintf(fp_cpp, "  // last internally defined operand\n");
3433 
3434   // Place all user-defined instructions into the mapping
3435   if( map.do_instructions() ) {
3436     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3437     // Output all simple instruction chain rules first
3438     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3439     {
3440       _instructions.reset();
3441       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3442         // Ensure this is a machine-world instruction
3443         if ( inst->ideal_only() )  continue;
3444         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3445         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3446 
3447         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3448         ++idx;
3449       };
3450       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3451       _instructions.reset();
3452       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3453         // Ensure this is a machine-world instruction
3454         if ( inst->ideal_only() )  continue;
3455         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3456         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3457 
3458         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3459         ++idx;
3460       };
3461       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3462     }
3463     // Output all instructions that are NOT simple chain rules
3464     {
3465       _instructions.reset();
3466       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3467         // Ensure this is a machine-world instruction
3468         if ( inst->ideal_only() )  continue;
3469         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3470         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3471 
3472         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3473         ++idx;
3474       };
3475       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3476       _instructions.reset();
3477       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3478         // Ensure this is a machine-world instruction
3479         if ( inst->ideal_only() )  continue;
3480         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3481         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3482 
3483         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3484         ++idx;
3485       };
3486     }
3487     fprintf(fp_cpp, "  // last instruction\n");
3488     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3489   }
3490   // Finish defining table
3491   map.closing();
3492 };
3493 
3494 
3495 // Helper function for buildReduceMaps
3496 char reg_save_policy(const char *calling_convention) {
3497   char callconv;
3498 
3499   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3500   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3501   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3502   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3503   else                                         callconv = 'Z';
3504 
3505   return callconv;
3506 }
3507 
3508 //---------------------------generate_assertion_checks-------------------
3509 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3510   fprintf(fp_cpp, "\n");
3511 
3512   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3513   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3514   globalDefs().print_asserts(fp_cpp);
3515   fprintf(fp_cpp, "}\n");
3516   fprintf(fp_cpp, "#endif\n");
3517   fprintf(fp_cpp, "\n");
3518 }
3519 
3520 //---------------------------addSourceBlocks-----------------------------
3521 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3522   if (_source.count() > 0)
3523     _source.output(fp_cpp);
3524 
3525   generate_adlc_verification(fp_cpp);
3526 }
3527 //---------------------------addHeaderBlocks-----------------------------
3528 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3529   if (_header.count() > 0)
3530     _header.output(fp_hpp);
3531 }
3532 //-------------------------addPreHeaderBlocks----------------------------
3533 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3534   // Output #defines from definition block
3535   globalDefs().print_defines(fp_hpp);
3536 
3537   if (_pre_header.count() > 0)
3538     _pre_header.output(fp_hpp);
3539 }
3540 
3541 //---------------------------buildReduceMaps-----------------------------
3542 // Build  mapping from enumeration for densely packed operands
3543 // TO result and child types.
3544 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3545   RegDef       *rdef;
3546   RegDef       *next;
3547 
3548   // The emit bodies currently require functions defined in the source block.
3549 
3550   // Build external declarations for mappings
3551   fprintf(fp_hpp, "\n");
3552   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3553   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3554   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3555   fprintf(fp_hpp, "\n");
3556 
3557   // Construct Save-Policy array
3558   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3559   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3560   _register->reset_RegDefs();
3561   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3562     next              = _register->iter_RegDefs();
3563     char policy       = reg_save_policy(rdef->_callconv);
3564     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3565     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3566   }
3567   fprintf(fp_cpp, "};\n\n");
3568 
3569   // Construct Native Save-Policy array
3570   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3571   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3572   _register->reset_RegDefs();
3573   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3574     next        = _register->iter_RegDefs();
3575     char policy = reg_save_policy(rdef->_c_conv);
3576     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3577     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3578   }
3579   fprintf(fp_cpp, "};\n\n");
3580 
3581   // Construct Register Save Type array
3582   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3583   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3584   _register->reset_RegDefs();
3585   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3586     next = _register->iter_RegDefs();
3587     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3588     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3589   }
3590   fprintf(fp_cpp, "};\n\n");
3591 
3592   // Construct the table for reduceOp
3593   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3594   build_map(output_reduce_op);
3595   // Construct the table for leftOp
3596   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3597   build_map(output_left_op);
3598   // Construct the table for rightOp
3599   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3600   build_map(output_right_op);
3601   // Construct the table of rule names
3602   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3603   build_map(output_rule_name);
3604   // Construct the boolean table for subsumed operands
3605   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3606   build_map(output_swallowed);
3607   // // // Preserve in case we decide to use this table instead of another
3608   //// Construct the boolean table for instruction chain rules
3609   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3610   //build_map(output_inst_chain);
3611 
3612 }
3613 
3614 
3615 //---------------------------buildMachOperGenerator---------------------------
3616 
3617 // Recurse through match tree, building path through corresponding state tree,
3618 // Until we reach the constant we are looking for.
3619 static void path_to_constant(FILE *fp, FormDict &globals,
3620                              MatchNode *mnode, uint idx) {
3621   if ( ! mnode) return;
3622 
3623   unsigned    position = 0;
3624   const char *result   = NULL;
3625   const char *name     = NULL;
3626   const char *optype   = NULL;
3627 
3628   // Base Case: access constant in ideal node linked to current state node
3629   // Each type of constant has its own access function
3630   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3631        && mnode->base_operand(position, globals, result, name, optype) ) {
3632     if (         strcmp(optype,"ConI") == 0 ) {
3633       fprintf(fp, "_leaf->get_int()");
3634     } else if ( (strcmp(optype,"ConP") == 0) ) {
3635       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3636     } else if ( (strcmp(optype,"ConN") == 0) ) {
3637       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3638     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3639       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3640     } else if ( (strcmp(optype,"ConF") == 0) ) {
3641       fprintf(fp, "_leaf->getf()");
3642     } else if ( (strcmp(optype,"ConD") == 0) ) {
3643       fprintf(fp, "_leaf->getd()");
3644     } else if ( (strcmp(optype,"ConL") == 0) ) {
3645       fprintf(fp, "_leaf->get_long()");
3646     } else if ( (strcmp(optype,"Con")==0) ) {
3647       // !!!!! - Update if adding a machine-independent constant type
3648       fprintf(fp, "_leaf->get_int()");
3649       assert( false, "Unsupported constant type, pointer or indefinite");
3650     } else if ( (strcmp(optype,"Bool") == 0) ) {
3651       fprintf(fp, "_leaf->as_Bool()->_test._test");
3652     } else {
3653       assert( false, "Unsupported constant type");
3654     }
3655     return;
3656   }
3657 
3658   // If constant is in left child, build path and recurse
3659   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3660   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3661   if ( (mnode->_lChild) && (lConsts > idx) ) {
3662     fprintf(fp, "_kids[0]->");
3663     path_to_constant(fp, globals, mnode->_lChild, idx);
3664     return;
3665   }
3666   // If constant is in right child, build path and recurse
3667   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3668     idx = idx - lConsts;
3669     fprintf(fp, "_kids[1]->");
3670     path_to_constant(fp, globals, mnode->_rChild, idx);
3671     return;
3672   }
3673   assert( false, "ShouldNotReachHere()");
3674 }
3675 
3676 // Generate code that is executed when generating a specific Machine Operand
3677 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3678                             OperandForm &op) {
3679   const char *opName         = op._ident;
3680   const char *opEnumName     = AD.machOperEnum(opName);
3681   uint        num_consts     = op.num_consts(globalNames);
3682 
3683   // Generate the case statement for this opcode
3684   fprintf(fp, "  case %s:", opEnumName);
3685   fprintf(fp, "\n    return new (C) %sOper(", opName);
3686   // Access parameters for constructor from the stat object
3687   //
3688   // Build access to condition code value
3689   if ( (num_consts > 0) ) {
3690     uint i = 0;
3691     path_to_constant(fp, globalNames, op._matrule, i);
3692     for ( i = 1; i < num_consts; ++i ) {
3693       fprintf(fp, ", ");
3694       path_to_constant(fp, globalNames, op._matrule, i);
3695     }
3696   }
3697   fprintf(fp, " );\n");
3698 }
3699 
3700 
3701 // Build switch to invoke "new" MachNode or MachOper
3702 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3703   int idx = 0;
3704 
3705   // Build switch to invoke 'new' for a specific MachOper
3706   fprintf(fp_cpp, "\n");
3707   fprintf(fp_cpp, "\n");
3708   fprintf(fp_cpp,
3709           "//------------------------- MachOper Generator ---------------\n");
3710   fprintf(fp_cpp,
3711           "// A switch statement on the dense-packed user-defined type system\n"
3712           "// that invokes 'new' on the corresponding class constructor.\n");
3713   fprintf(fp_cpp, "\n");
3714   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3715   fprintf(fp_cpp, "(int opcode, Compile* C)");
3716   fprintf(fp_cpp, "{\n");
3717   fprintf(fp_cpp, "\n");
3718   fprintf(fp_cpp, "  switch(opcode) {\n");
3719 
3720   // Place all user-defined operands into the mapping
3721   _operands.reset();
3722   int  opIndex = 0;
3723   OperandForm *op;
3724   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3725     // Ensure this is a machine-world instruction
3726     if ( op->ideal_only() )  continue;
3727 
3728     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3729   };
3730 
3731   // Do not iterate over operand classes for the  operand generator!!!
3732 
3733   // Place all internal operands into the mapping
3734   _internalOpNames.reset();
3735   const char *iopn;
3736   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3737     const char *opEnumName = machOperEnum(iopn);
3738     // Generate the case statement for this opcode
3739     fprintf(fp_cpp, "  case %s:", opEnumName);
3740     fprintf(fp_cpp, "    return NULL;\n");
3741   };
3742 
3743   // Generate the default case for switch(opcode)
3744   fprintf(fp_cpp, "  \n");
3745   fprintf(fp_cpp, "  default:\n");
3746   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3747   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3748   fprintf(fp_cpp, "    break;\n");
3749   fprintf(fp_cpp, "  }\n");
3750 
3751   // Generate the closing for method Matcher::MachOperGenerator
3752   fprintf(fp_cpp, "  return NULL;\n");
3753   fprintf(fp_cpp, "};\n");
3754 }
3755 
3756 
3757 //---------------------------buildMachNode-------------------------------------
3758 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3759 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3760   const char *opType  = NULL;
3761   const char *opClass = inst->_ident;
3762 
3763   // Create the MachNode object
3764   fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3765 
3766   if ( (inst->num_post_match_opnds() != 0) ) {
3767     // Instruction that contains operands which are not in match rule.
3768     //
3769     // Check if the first post-match component may be an interesting def
3770     bool           dont_care = false;
3771     ComponentList &comp_list = inst->_components;
3772     Component     *comp      = NULL;
3773     comp_list.reset();
3774     if ( comp_list.match_iter() != NULL )    dont_care = true;
3775 
3776     // Insert operands that are not in match-rule.
3777     // Only insert a DEF if the do_care flag is set
3778     comp_list.reset();
3779     while ( comp = comp_list.post_match_iter() ) {
3780       // Check if we don't care about DEFs or KILLs that are not USEs
3781       if ( dont_care && (! comp->isa(Component::USE)) ) {
3782         continue;
3783       }
3784       dont_care = true;
3785       // For each operand not in the match rule, call MachOperGenerator
3786       // with the enum for the opcode that needs to be built.
3787       ComponentList clist = inst->_components;
3788       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3789       const char *opcode = machOperEnum(comp->_type);
3790       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3791       fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3792       }
3793   }
3794   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3795     // An instruction that chains from a constant!
3796     // In this case, we need to subsume the constant into the node
3797     // at operand position, oper_input_base().
3798     //
3799     // Fill in the constant
3800     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3801             inst->oper_input_base(_globalNames));
3802     // #####
3803     // Check for multiple constants and then fill them in.
3804     // Just like MachOperGenerator
3805     const char *opName = inst->_matrule->_rChild->_opType;
3806     fprintf(fp_cpp, "new (C) %sOper(", opName);
3807     // Grab operand form
3808     OperandForm *op = (_globalNames[opName])->is_operand();
3809     // Look up the number of constants
3810     uint num_consts = op->num_consts(_globalNames);
3811     if ( (num_consts > 0) ) {
3812       uint i = 0;
3813       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3814       for ( i = 1; i < num_consts; ++i ) {
3815         fprintf(fp_cpp, ", ");
3816         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3817       }
3818     }
3819     fprintf(fp_cpp, " );\n");
3820     // #####
3821   }
3822 
3823   // Fill in the bottom_type where requested
3824   if ( inst->captures_bottom_type(_globalNames) ) {
3825     fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3826   }
3827   if( inst->is_ideal_if() ) {
3828     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3829     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3830   }
3831   if( inst->is_ideal_fastlock() ) {
3832     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3833     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3834     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3835   }
3836 
3837 }
3838 
3839 //---------------------------declare_cisc_version------------------------------
3840 // Build CISC version of this instruction
3841 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3842   if( AD.can_cisc_spill() ) {
3843     InstructForm *inst_cisc = cisc_spill_alternate();
3844     if (inst_cisc != NULL) {
3845       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3846       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
3847       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3848       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3849     }
3850   }
3851 }
3852 
3853 //---------------------------define_cisc_version-------------------------------
3854 // Build CISC version of this instruction
3855 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3856   InstructForm *inst_cisc = this->cisc_spill_alternate();
3857   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3858     const char   *name      = inst_cisc->_ident;
3859     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3860     OperandForm *cisc_oper = AD.cisc_spill_operand();
3861     assert( cisc_oper != NULL, "insanity check");
3862     const char *cisc_oper_name  = cisc_oper->_ident;
3863     assert( cisc_oper_name != NULL, "insanity check");
3864     //
3865     // Set the correct reg_mask_or_stack for the cisc operand
3866     fprintf(fp_cpp, "\n");
3867     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3868     // Lookup the correct reg_mask_or_stack
3869     const char *reg_mask_name = cisc_reg_mask_name();
3870     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3871     fprintf(fp_cpp, "}\n");
3872     //
3873     // Construct CISC version of this instruction
3874     fprintf(fp_cpp, "\n");
3875     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3876     fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
3877     // Create the MachNode object
3878     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3879     // Fill in the bottom_type where requested
3880     if ( this->captures_bottom_type(AD.globalNames()) ) {
3881       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3882     }
3883 
3884     uint cur_num_opnds = num_opnds();
3885     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3886       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
3887     }
3888 
3889     fprintf(fp_cpp, "\n");
3890     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3891     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3892     // Construct operand to access [stack_pointer + offset]
3893     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
3894     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
3895     fprintf(fp_cpp, "\n");
3896 
3897     // Return result and exit scope
3898     fprintf(fp_cpp, "  return node;\n");
3899     fprintf(fp_cpp, "}\n");
3900     fprintf(fp_cpp, "\n");
3901     return true;
3902   }
3903   return false;
3904 }
3905 
3906 //---------------------------declare_short_branch_methods----------------------
3907 // Build prototypes for short branch methods
3908 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
3909   if (has_short_branch_form()) {
3910     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
3911   }
3912 }
3913 
3914 //---------------------------define_short_branch_methods-----------------------
3915 // Build definitions for short branch methods
3916 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
3917   if (has_short_branch_form()) {
3918     InstructForm *short_branch = short_branch_form();
3919     const char   *name         = short_branch->_ident;
3920 
3921     // Construct short_branch_version() method.
3922     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
3923     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
3924     // Create the MachNode object
3925     fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
3926     if( is_ideal_if() ) {
3927       fprintf(fp_cpp, "  node->_prob = _prob;\n");
3928       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
3929     }
3930     // Fill in the bottom_type where requested
3931     if ( this->captures_bottom_type(AD.globalNames()) ) {
3932       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3933     }
3934 
3935     fprintf(fp_cpp, "\n");
3936     // Short branch version must use same node index for access
3937     // through allocator's tables
3938     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3939     fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
3940 
3941     // Return result and exit scope
3942     fprintf(fp_cpp, "  return node;\n");
3943     fprintf(fp_cpp, "}\n");
3944     fprintf(fp_cpp,"\n");
3945     return true;
3946   }
3947   return false;
3948 }
3949 
3950 
3951 //---------------------------buildMachNodeGenerator----------------------------
3952 // Build switch to invoke appropriate "new" MachNode for an opcode
3953 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
3954 
3955   // Build switch to invoke 'new' for a specific MachNode
3956   fprintf(fp_cpp, "\n");
3957   fprintf(fp_cpp, "\n");
3958   fprintf(fp_cpp,
3959           "//------------------------- MachNode Generator ---------------\n");
3960   fprintf(fp_cpp,
3961           "// A switch statement on the dense-packed user-defined type system\n"
3962           "// that invokes 'new' on the corresponding class constructor.\n");
3963   fprintf(fp_cpp, "\n");
3964   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
3965   fprintf(fp_cpp, "(int opcode, Compile* C)");
3966   fprintf(fp_cpp, "{\n");
3967   fprintf(fp_cpp, "  switch(opcode) {\n");
3968 
3969   // Provide constructor for all user-defined instructions
3970   _instructions.reset();
3971   int  opIndex = operandFormCount();
3972   InstructForm *inst;
3973   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3974     // Ensure that matrule is defined.
3975     if ( inst->_matrule == NULL ) continue;
3976 
3977     int         opcode  = opIndex++;
3978     const char *opClass = inst->_ident;
3979     char       *opType  = NULL;
3980 
3981     // Generate the case statement for this instruction
3982     fprintf(fp_cpp, "  case %s_rule:", opClass);
3983 
3984     // Start local scope
3985     fprintf(fp_cpp, " {\n");
3986     // Generate code to construct the new MachNode
3987     buildMachNode(fp_cpp, inst, "     ");
3988     // Return result and exit scope
3989     fprintf(fp_cpp, "      return node;\n");
3990     fprintf(fp_cpp, "    }\n");
3991   }
3992 
3993   // Generate the default case for switch(opcode)
3994   fprintf(fp_cpp, "  \n");
3995   fprintf(fp_cpp, "  default:\n");
3996   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
3997   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3998   fprintf(fp_cpp, "    break;\n");
3999   fprintf(fp_cpp, "  };\n");
4000 
4001   // Generate the closing for method Matcher::MachNodeGenerator
4002   fprintf(fp_cpp, "  return NULL;\n");
4003   fprintf(fp_cpp, "}\n");
4004 }
4005 
4006 
4007 //---------------------------buildInstructMatchCheck--------------------------
4008 // Output the method to Matcher which checks whether or not a specific
4009 // instruction has a matching rule for the host architecture.
4010 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4011   fprintf(fp_cpp, "\n\n");
4012   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4013   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4014   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4015   fprintf(fp_cpp, "}\n\n");
4016 
4017   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4018   int i;
4019   for (i = 0; i < _last_opcode - 1; i++) {
4020     fprintf(fp_cpp, "    %-5s,  // %s\n",
4021             _has_match_rule[i] ? "true" : "false",
4022             NodeClassNames[i]);
4023   }
4024   fprintf(fp_cpp, "    %-5s   // %s\n",
4025           _has_match_rule[i] ? "true" : "false",
4026           NodeClassNames[i]);
4027   fprintf(fp_cpp, "};\n");
4028 }
4029 
4030 //---------------------------buildFrameMethods---------------------------------
4031 // Output the methods to Matcher which specify frame behavior
4032 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4033   fprintf(fp_cpp,"\n\n");
4034   // Stack Direction
4035   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4036           _frame->_direction ? "true" : "false");
4037   // Sync Stack Slots
4038   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4039           _frame->_sync_stack_slots);
4040   // Java Stack Alignment
4041   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4042           _frame->_alignment);
4043   // Java Return Address Location
4044   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4045   if (_frame->_return_addr_loc) {
4046     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4047             _frame->_return_addr);
4048   }
4049   else {
4050     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4051             _frame->_return_addr);
4052   }
4053   // Java Stack Slot Preservation
4054   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4055   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4056   // Top Of Stack Slot Preservation, for both Java and C
4057   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4058   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4059   // varargs C out slots killed
4060   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4061   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4062   // Java Argument Position
4063   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4064   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4065   fprintf(fp_cpp,"}\n\n");
4066   // Native Argument Position
4067   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4068   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4069   fprintf(fp_cpp,"}\n\n");
4070   // Java Return Value Location
4071   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
4072   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4073   fprintf(fp_cpp,"}\n\n");
4074   // Native Return Value Location
4075   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
4076   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4077   fprintf(fp_cpp,"}\n\n");
4078 
4079   // Inline Cache Register, mask definition, and encoding
4080   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4081   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4082           _frame->_inline_cache_reg);
4083   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4084   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4085 
4086   // Interpreter's Method Oop Register, mask definition, and encoding
4087   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4088   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4089           _frame->_interpreter_method_oop_reg);
4090   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4091   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4092 
4093   // Interpreter's Frame Pointer Register, mask definition, and encoding
4094   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4095   if (_frame->_interpreter_frame_pointer_reg == NULL)
4096     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4097   else
4098     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4099             _frame->_interpreter_frame_pointer_reg);
4100 
4101   // Frame Pointer definition
4102   /* CNC - I can not contemplate having a different frame pointer between
4103      Java and native code; makes my head hurt to think about it.
4104   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4105   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4106           _frame->_frame_pointer);
4107   */
4108   // (Native) Frame Pointer definition
4109   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4110   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4111           _frame->_frame_pointer);
4112 
4113   // Number of callee-save + always-save registers for calling convention
4114   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4115   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4116   RegDef *rdef;
4117   int nof_saved_registers = 0;
4118   _register->reset_RegDefs();
4119   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4120     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4121       ++nof_saved_registers;
4122   }
4123   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4124   fprintf(fp_cpp, "};\n\n");
4125 }
4126 
4127 
4128 
4129 
4130 static int PrintAdlcCisc = 0;
4131 //---------------------------identify_cisc_spilling----------------------------
4132 // Get info for the CISC_oracle and MachNode::cisc_version()
4133 void ArchDesc::identify_cisc_spill_instructions() {
4134 
4135   if (_frame == NULL)
4136     return;
4137 
4138   // Find the user-defined operand for cisc-spilling
4139   if( _frame->_cisc_spilling_operand_name != NULL ) {
4140     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4141     OperandForm *oper = form ? form->is_operand() : NULL;
4142     // Verify the user's suggestion
4143     if( oper != NULL ) {
4144       // Ensure that match field is defined.
4145       if ( oper->_matrule != NULL )  {
4146         MatchRule &mrule = *oper->_matrule;
4147         if( strcmp(mrule._opType,"AddP") == 0 ) {
4148           MatchNode *left = mrule._lChild;
4149           MatchNode *right= mrule._rChild;
4150           if( left != NULL && right != NULL ) {
4151             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4152             const Form *right_op = _globalNames[right->_opType]->is_operand();
4153             if(  (left_op != NULL && right_op != NULL)
4154               && (left_op->interface_type(_globalNames) == Form::register_interface)
4155               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4156               // Successfully verified operand
4157               set_cisc_spill_operand( oper );
4158               if( _cisc_spill_debug ) {
4159                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4160              }
4161             }
4162           }
4163         }
4164       }
4165     }
4166   }
4167 
4168   if( cisc_spill_operand() != NULL ) {
4169     // N^2 comparison of instructions looking for a cisc-spilling version
4170     _instructions.reset();
4171     InstructForm *instr;
4172     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4173       // Ensure that match field is defined.
4174       if ( instr->_matrule == NULL )  continue;
4175 
4176       MatchRule &mrule = *instr->_matrule;
4177       Predicate *pred  =  instr->build_predicate();
4178 
4179       // Grab the machine type of the operand
4180       const char *rootOp = instr->_ident;
4181       mrule._machType    = rootOp;
4182 
4183       // Find result type for match
4184       const char *result = instr->reduce_result();
4185 
4186       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4187       bool  found_cisc_alternate = false;
4188       _instructions.reset2();
4189       InstructForm *instr2;
4190       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4191         // Ensure that match field is defined.
4192         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4193         if ( instr2->_matrule != NULL
4194             && (instr != instr2 )                // Skip self
4195             && (instr2->reduce_result() != NULL) // want same result
4196             && (strcmp(result, instr2->reduce_result()) == 0)) {
4197           MatchRule &mrule2 = *instr2->_matrule;
4198           Predicate *pred2  =  instr2->build_predicate();
4199           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4200         }
4201       }
4202     }
4203   }
4204 }
4205 
4206 //---------------------------build_cisc_spilling-------------------------------
4207 // Get info for the CISC_oracle and MachNode::cisc_version()
4208 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4209   // Output the table for cisc spilling
4210   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4211   _instructions.reset();
4212   InstructForm *inst = NULL;
4213   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4214     // Ensure this is a machine-world instruction
4215     if ( inst->ideal_only() )  continue;
4216     const char *inst_name = inst->_ident;
4217     int   operand   = inst->cisc_spill_operand();
4218     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4219       InstructForm *inst2 = inst->cisc_spill_alternate();
4220       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4221     }
4222   }
4223   fprintf(fp_cpp, "\n\n");
4224 }
4225 
4226 //---------------------------identify_short_branches----------------------------
4227 // Get info for our short branch replacement oracle.
4228 void ArchDesc::identify_short_branches() {
4229   // Walk over all instructions, checking to see if they match a short
4230   // branching alternate.
4231   _instructions.reset();
4232   InstructForm *instr;
4233   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4234     // The instruction must have a match rule.
4235     if (instr->_matrule != NULL &&
4236         instr->is_short_branch()) {
4237 
4238       _instructions.reset2();
4239       InstructForm *instr2;
4240       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4241         instr2->check_branch_variant(*this, instr);
4242       }
4243     }
4244   }
4245 }
4246 
4247 
4248 //---------------------------identify_unique_operands---------------------------
4249 // Identify unique operands.
4250 void ArchDesc::identify_unique_operands() {
4251   // Walk over all instructions.
4252   _instructions.reset();
4253   InstructForm *instr;
4254   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4255     // Ensure this is a machine-world instruction
4256     if (!instr->ideal_only()) {
4257       instr->set_unique_opnds();
4258     }
4259   }
4260 }