1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag,
 123     parameters_type_data_tag,
 124     speculative_trap_data_tag
 125   };
 126 
 127   enum {
 128     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 129     // The trap state breaks down further as [recompile:1 | reason:3].
 130     // This further breakdown is defined in deoptimization.cpp.
 131     // See Deoptimization::trap_state_reason for an assert that
 132     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 133     //
 134     // The trap_state is collected only if ProfileTraps is true.
 135     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 136     trap_shift = BitsPerByte - trap_bits,
 137     trap_mask = right_n_bits(trap_bits),
 138     trap_mask_in_place = (trap_mask << trap_shift),
 139     flag_limit = trap_shift,
 140     flag_mask = right_n_bits(flag_limit),
 141     first_flag = 0
 142   };
 143 
 144   // Size computation
 145   static int header_size_in_bytes() {
 146     return cell_size;
 147   }
 148   static int header_size_in_cells() {
 149     return 1;
 150   }
 151 
 152   static int compute_size_in_bytes(int cell_count) {
 153     return header_size_in_bytes() + cell_count * cell_size;
 154   }
 155 
 156   // Initialization
 157   void initialize(u1 tag, u2 bci, int cell_count);
 158 
 159   // Accessors
 160   u1 tag() {
 161     return _header._struct._tag;
 162   }
 163 
 164   // Return a few bits of trap state.  Range is [0..trap_mask].
 165   // The state tells if traps with zero, one, or many reasons have occurred.
 166   // It also tells whether zero or many recompilations have occurred.
 167   // The associated trap histogram in the MDO itself tells whether
 168   // traps are common or not.  If a BCI shows that a trap X has
 169   // occurred, and the MDO shows N occurrences of X, we make the
 170   // simplifying assumption that all N occurrences can be blamed
 171   // on that BCI.
 172   int trap_state() const {
 173     return ((_header._struct._flags >> trap_shift) & trap_mask);
 174   }
 175 
 176   void set_trap_state(int new_state) {
 177     assert(ProfileTraps, "used only under +ProfileTraps");
 178     uint old_flags = (_header._struct._flags & flag_mask);
 179     _header._struct._flags = (new_state << trap_shift) | old_flags;
 180   }
 181 
 182   u1 flags() const {
 183     return _header._struct._flags;
 184   }
 185 
 186   u2 bci() const {
 187     return _header._struct._bci;
 188   }
 189 
 190   void set_header(intptr_t value) {
 191     _header._bits = value;
 192   }
 193   intptr_t header() {
 194     return _header._bits;
 195   }
 196   void set_cell_at(int index, intptr_t value) {
 197     _cells[index] = value;
 198   }
 199   void release_set_cell_at(int index, intptr_t value) {
 200     OrderAccess::release_store_ptr(&_cells[index], value);
 201   }
 202   intptr_t cell_at(int index) const {
 203     return _cells[index];
 204   }
 205 
 206   void set_flag_at(int flag_number) {
 207     assert(flag_number < flag_limit, "oob");
 208     _header._struct._flags |= (0x1 << flag_number);
 209   }
 210   bool flag_at(int flag_number) const {
 211     assert(flag_number < flag_limit, "oob");
 212     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 213   }
 214 
 215   // Low-level support for code generation.
 216   static ByteSize header_offset() {
 217     return byte_offset_of(DataLayout, _header);
 218   }
 219   static ByteSize tag_offset() {
 220     return byte_offset_of(DataLayout, _header._struct._tag);
 221   }
 222   static ByteSize flags_offset() {
 223     return byte_offset_of(DataLayout, _header._struct._flags);
 224   }
 225   static ByteSize bci_offset() {
 226     return byte_offset_of(DataLayout, _header._struct._bci);
 227   }
 228   static ByteSize cell_offset(int index) {
 229     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 230   }
 231   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 232   static int flag_number_to_byte_constant(int flag_number) {
 233     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 234     DataLayout temp; temp.set_header(0);
 235     temp.set_flag_at(flag_number);
 236     return temp._header._struct._flags;
 237   }
 238   // Return a value which, when or-ed as a word into _header, sets the flag.
 239   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 240     DataLayout temp; temp.set_header(0);
 241     temp._header._struct._flags = byte_constant;
 242     return temp._header._bits;
 243   }
 244 
 245   ProfileData* data_in();
 246 
 247   // GC support
 248   void clean_weak_klass_links(BoolObjectClosure* cl);
 249 };
 250 
 251 
 252 // ProfileData class hierarchy
 253 class ProfileData;
 254 class   BitData;
 255 class     CounterData;
 256 class       ReceiverTypeData;
 257 class         VirtualCallData;
 258 class           VirtualCallTypeData;
 259 class       RetData;
 260 class       CallTypeData;
 261 class   JumpData;
 262 class     BranchData;
 263 class   ArrayData;
 264 class     MultiBranchData;
 265 class     ArgInfoData;
 266 class     ParametersTypeData;
 267 class   SpeculativeTrapData;
 268 
 269 // ProfileData
 270 //
 271 // A ProfileData object is created to refer to a section of profiling
 272 // data in a structured way.
 273 class ProfileData : public ResourceObj {
 274   friend class TypeEntries;
 275   friend class ReturnTypeEntry;
 276   friend class TypeStackSlotEntries;
 277 private:
 278 #ifndef PRODUCT
 279   enum {
 280     tab_width_one = 16,
 281     tab_width_two = 36
 282   };
 283 #endif // !PRODUCT
 284 
 285   // This is a pointer to a section of profiling data.
 286   DataLayout* _data;
 287 
 288   char* print_data_on_helper(const MethodData* md) const;
 289 
 290 protected:
 291   DataLayout* data() { return _data; }
 292   const DataLayout* data() const { return _data; }
 293 
 294   enum {
 295     cell_size = DataLayout::cell_size
 296   };
 297 
 298 public:
 299   // How many cells are in this?
 300   virtual int cell_count() const {
 301     ShouldNotReachHere();
 302     return -1;
 303   }
 304 
 305   // Return the size of this data.
 306   int size_in_bytes() {
 307     return DataLayout::compute_size_in_bytes(cell_count());
 308   }
 309 
 310 protected:
 311   // Low-level accessors for underlying data
 312   void set_intptr_at(int index, intptr_t value) {
 313     assert(0 <= index && index < cell_count(), "oob");
 314     data()->set_cell_at(index, value);
 315   }
 316   void release_set_intptr_at(int index, intptr_t value) {
 317     assert(0 <= index && index < cell_count(), "oob");
 318     data()->release_set_cell_at(index, value);
 319   }
 320   intptr_t intptr_at(int index) const {
 321     assert(0 <= index && index < cell_count(), "oob");
 322     return data()->cell_at(index);
 323   }
 324   void set_uint_at(int index, uint value) {
 325     set_intptr_at(index, (intptr_t) value);
 326   }
 327   void release_set_uint_at(int index, uint value) {
 328     release_set_intptr_at(index, (intptr_t) value);
 329   }
 330   uint uint_at(int index) const {
 331     return (uint)intptr_at(index);
 332   }
 333   void set_int_at(int index, int value) {
 334     set_intptr_at(index, (intptr_t) value);
 335   }
 336   void release_set_int_at(int index, int value) {
 337     release_set_intptr_at(index, (intptr_t) value);
 338   }
 339   int int_at(int index) const {
 340     return (int)intptr_at(index);
 341   }
 342   int int_at_unchecked(int index) const {
 343     return (int)data()->cell_at(index);
 344   }
 345   void set_oop_at(int index, oop value) {
 346     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 347   }
 348   oop oop_at(int index) const {
 349     return cast_to_oop(intptr_at(index));
 350   }
 351 
 352   void set_flag_at(int flag_number) {
 353     data()->set_flag_at(flag_number);
 354   }
 355   bool flag_at(int flag_number) const {
 356     return data()->flag_at(flag_number);
 357   }
 358 
 359   // two convenient imports for use by subclasses:
 360   static ByteSize cell_offset(int index) {
 361     return DataLayout::cell_offset(index);
 362   }
 363   static int flag_number_to_byte_constant(int flag_number) {
 364     return DataLayout::flag_number_to_byte_constant(flag_number);
 365   }
 366 
 367   ProfileData(DataLayout* data) {
 368     _data = data;
 369   }
 370 
 371 public:
 372   // Constructor for invalid ProfileData.
 373   ProfileData();
 374 
 375   u2 bci() const {
 376     return data()->bci();
 377   }
 378 
 379   address dp() {
 380     return (address)_data;
 381   }
 382 
 383   int trap_state() const {
 384     return data()->trap_state();
 385   }
 386   void set_trap_state(int new_state) {
 387     data()->set_trap_state(new_state);
 388   }
 389 
 390   // Type checking
 391   virtual bool is_BitData()         const { return false; }
 392   virtual bool is_CounterData()     const { return false; }
 393   virtual bool is_JumpData()        const { return false; }
 394   virtual bool is_ReceiverTypeData()const { return false; }
 395   virtual bool is_VirtualCallData() const { return false; }
 396   virtual bool is_RetData()         const { return false; }
 397   virtual bool is_BranchData()      const { return false; }
 398   virtual bool is_ArrayData()       const { return false; }
 399   virtual bool is_MultiBranchData() const { return false; }
 400   virtual bool is_ArgInfoData()     const { return false; }
 401   virtual bool is_CallTypeData()    const { return false; }
 402   virtual bool is_VirtualCallTypeData()const { return false; }
 403   virtual bool is_ParametersTypeData() const { return false; }
 404   virtual bool is_SpeculativeTrapData()const { return false; }
 405 
 406 
 407   BitData* as_BitData() const {
 408     assert(is_BitData(), "wrong type");
 409     return is_BitData()         ? (BitData*)        this : NULL;
 410   }
 411   CounterData* as_CounterData() const {
 412     assert(is_CounterData(), "wrong type");
 413     return is_CounterData()     ? (CounterData*)    this : NULL;
 414   }
 415   JumpData* as_JumpData() const {
 416     assert(is_JumpData(), "wrong type");
 417     return is_JumpData()        ? (JumpData*)       this : NULL;
 418   }
 419   ReceiverTypeData* as_ReceiverTypeData() const {
 420     assert(is_ReceiverTypeData(), "wrong type");
 421     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 422   }
 423   VirtualCallData* as_VirtualCallData() const {
 424     assert(is_VirtualCallData(), "wrong type");
 425     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 426   }
 427   RetData* as_RetData() const {
 428     assert(is_RetData(), "wrong type");
 429     return is_RetData()         ? (RetData*)        this : NULL;
 430   }
 431   BranchData* as_BranchData() const {
 432     assert(is_BranchData(), "wrong type");
 433     return is_BranchData()      ? (BranchData*)     this : NULL;
 434   }
 435   ArrayData* as_ArrayData() const {
 436     assert(is_ArrayData(), "wrong type");
 437     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 438   }
 439   MultiBranchData* as_MultiBranchData() const {
 440     assert(is_MultiBranchData(), "wrong type");
 441     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 442   }
 443   ArgInfoData* as_ArgInfoData() const {
 444     assert(is_ArgInfoData(), "wrong type");
 445     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 446   }
 447   CallTypeData* as_CallTypeData() const {
 448     assert(is_CallTypeData(), "wrong type");
 449     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 450   }
 451   VirtualCallTypeData* as_VirtualCallTypeData() const {
 452     assert(is_VirtualCallTypeData(), "wrong type");
 453     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 454   }
 455   ParametersTypeData* as_ParametersTypeData() const {
 456     assert(is_ParametersTypeData(), "wrong type");
 457     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 458   }
 459   SpeculativeTrapData* as_SpeculativeTrapData() const {
 460     assert(is_SpeculativeTrapData(), "wrong type");
 461     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 462   }
 463 
 464 
 465   // Subclass specific initialization
 466   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 467 
 468   // GC support
 469   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 470 
 471   // CI translation: ProfileData can represent both MethodDataOop data
 472   // as well as CIMethodData data. This function is provided for translating
 473   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 474   // most ProfileData don't require any translation, so we provide the null
 475   // translation here, and the required translators are in the ci subclasses.
 476   virtual void translate_from(const ProfileData* data) {}
 477 
 478   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
 479     ShouldNotReachHere();
 480   }
 481 
 482   void print_data_on(outputStream* st, const MethodData* md) const;
 483 
 484 #ifndef PRODUCT
 485   void print_shared(outputStream* st, const char* name, const char* extra) const;
 486   void tab(outputStream* st, bool first = false) const;
 487 #endif
 488 };
 489 
 490 // BitData
 491 //
 492 // A BitData holds a flag or two in its header.
 493 class BitData : public ProfileData {
 494 protected:
 495   enum {
 496     // null_seen:
 497     //  saw a null operand (cast/aastore/instanceof)
 498     null_seen_flag              = DataLayout::first_flag + 0
 499   };
 500   enum { bit_cell_count = 0 };  // no additional data fields needed.
 501 public:
 502   BitData(DataLayout* layout) : ProfileData(layout) {
 503   }
 504 
 505   virtual bool is_BitData() const { return true; }
 506 
 507   static int static_cell_count() {
 508     return bit_cell_count;
 509   }
 510 
 511   virtual int cell_count() const {
 512     return static_cell_count();
 513   }
 514 
 515   // Accessor
 516 
 517   // The null_seen flag bit is specially known to the interpreter.
 518   // Consulting it allows the compiler to avoid setting up null_check traps.
 519   bool null_seen()     { return flag_at(null_seen_flag); }
 520   void set_null_seen()    { set_flag_at(null_seen_flag); }
 521 
 522 
 523   // Code generation support
 524   static int null_seen_byte_constant() {
 525     return flag_number_to_byte_constant(null_seen_flag);
 526   }
 527 
 528   static ByteSize bit_data_size() {
 529     return cell_offset(bit_cell_count);
 530   }
 531 
 532 #ifndef PRODUCT
 533   void print_data_on(outputStream* st, const char* extra = NULL) const;
 534 #endif
 535 };
 536 
 537 // CounterData
 538 //
 539 // A CounterData corresponds to a simple counter.
 540 class CounterData : public BitData {
 541 protected:
 542   enum {
 543     count_off,
 544     counter_cell_count
 545   };
 546 public:
 547   CounterData(DataLayout* layout) : BitData(layout) {}
 548 
 549   virtual bool is_CounterData() const { return true; }
 550 
 551   static int static_cell_count() {
 552     return counter_cell_count;
 553   }
 554 
 555   virtual int cell_count() const {
 556     return static_cell_count();
 557   }
 558 
 559   // Direct accessor
 560   uint count() const {
 561     return uint_at(count_off);
 562   }
 563 
 564   // Code generation support
 565   static ByteSize count_offset() {
 566     return cell_offset(count_off);
 567   }
 568   static ByteSize counter_data_size() {
 569     return cell_offset(counter_cell_count);
 570   }
 571 
 572   void set_count(uint count) {
 573     set_uint_at(count_off, count);
 574   }
 575 
 576 #ifndef PRODUCT
 577   void print_data_on(outputStream* st, const char* extra = NULL) const;
 578 #endif
 579 };
 580 
 581 // JumpData
 582 //
 583 // A JumpData is used to access profiling information for a direct
 584 // branch.  It is a counter, used for counting the number of branches,
 585 // plus a data displacement, used for realigning the data pointer to
 586 // the corresponding target bci.
 587 class JumpData : public ProfileData {
 588 protected:
 589   enum {
 590     taken_off_set,
 591     displacement_off_set,
 592     jump_cell_count
 593   };
 594 
 595   void set_displacement(int displacement) {
 596     set_int_at(displacement_off_set, displacement);
 597   }
 598 
 599 public:
 600   JumpData(DataLayout* layout) : ProfileData(layout) {
 601     assert(layout->tag() == DataLayout::jump_data_tag ||
 602       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 603   }
 604 
 605   virtual bool is_JumpData() const { return true; }
 606 
 607   static int static_cell_count() {
 608     return jump_cell_count;
 609   }
 610 
 611   virtual int cell_count() const {
 612     return static_cell_count();
 613   }
 614 
 615   // Direct accessor
 616   uint taken() const {
 617     return uint_at(taken_off_set);
 618   }
 619 
 620   void set_taken(uint cnt) {
 621     set_uint_at(taken_off_set, cnt);
 622   }
 623 
 624   // Saturating counter
 625   uint inc_taken() {
 626     uint cnt = taken() + 1;
 627     // Did we wrap? Will compiler screw us??
 628     if (cnt == 0) cnt--;
 629     set_uint_at(taken_off_set, cnt);
 630     return cnt;
 631   }
 632 
 633   int displacement() const {
 634     return int_at(displacement_off_set);
 635   }
 636 
 637   // Code generation support
 638   static ByteSize taken_offset() {
 639     return cell_offset(taken_off_set);
 640   }
 641 
 642   static ByteSize displacement_offset() {
 643     return cell_offset(displacement_off_set);
 644   }
 645 
 646   // Specific initialization.
 647   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 648 
 649 #ifndef PRODUCT
 650   void print_data_on(outputStream* st, const char* extra = NULL) const;
 651 #endif
 652 };
 653 
 654 // Entries in a ProfileData object to record types: it can either be
 655 // none (no profile), unknown (conflicting profile data) or a klass if
 656 // a single one is seen. Whether a null reference was seen is also
 657 // recorded. No counter is associated with the type and a single type
 658 // is tracked (unlike VirtualCallData).
 659 class TypeEntries {
 660 
 661 public:
 662 
 663   // A single cell is used to record information for a type:
 664   // - the cell is initialized to 0
 665   // - when a type is discovered it is stored in the cell
 666   // - bit zero of the cell is used to record whether a null reference
 667   // was encountered or not
 668   // - bit 1 is set to record a conflict in the type information
 669 
 670   enum {
 671     null_seen = 1,
 672     type_mask = ~null_seen,
 673     type_unknown = 2,
 674     status_bits = null_seen | type_unknown,
 675     type_klass_mask = ~status_bits
 676   };
 677 
 678   // what to initialize a cell to
 679   static intptr_t type_none() {
 680     return 0;
 681   }
 682 
 683   // null seen = bit 0 set?
 684   static bool was_null_seen(intptr_t v) {
 685     return (v & null_seen) != 0;
 686   }
 687 
 688   // conflicting type information = bit 1 set?
 689   static bool is_type_unknown(intptr_t v) {
 690     return (v & type_unknown) != 0;
 691   }
 692 
 693   // not type information yet = all bits cleared, ignoring bit 0?
 694   static bool is_type_none(intptr_t v) {
 695     return (v & type_mask) == 0;
 696   }
 697 
 698   // recorded type: cell without bit 0 and 1
 699   static intptr_t klass_part(intptr_t v) {
 700     intptr_t r = v & type_klass_mask;
 701     return r;
 702   }
 703 
 704   // type recorded
 705   static Klass* valid_klass(intptr_t k) {
 706     if (!is_type_none(k) &&
 707         !is_type_unknown(k)) {
 708       Klass* res = (Klass*)klass_part(k);
 709       assert(res != NULL, "invalid");
 710       return res;
 711     } else {
 712       return NULL;
 713     }
 714   }
 715 
 716   static intptr_t with_status(intptr_t k, intptr_t in) {
 717     return k | (in & status_bits);
 718   }
 719 
 720   static intptr_t with_status(Klass* k, intptr_t in) {
 721     return with_status((intptr_t)k, in);
 722   }
 723 
 724 #ifndef PRODUCT
 725   static void print_klass(outputStream* st, intptr_t k);
 726 #endif
 727 
 728   // GC support
 729   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 730 
 731 protected:
 732   // ProfileData object these entries are part of
 733   ProfileData* _pd;
 734   // offset within the ProfileData object where the entries start
 735   const int _base_off;
 736 
 737   TypeEntries(int base_off)
 738     : _base_off(base_off), _pd(NULL) {}
 739 
 740   void set_intptr_at(int index, intptr_t value) {
 741     _pd->set_intptr_at(index, value);
 742   }
 743 
 744   intptr_t intptr_at(int index) const {
 745     return _pd->intptr_at(index);
 746   }
 747 
 748 public:
 749   void set_profile_data(ProfileData* pd) {
 750     _pd = pd;
 751   }
 752 };
 753 
 754 // Type entries used for arguments passed at a call and parameters on
 755 // method entry. 2 cells per entry: one for the type encoded as in
 756 // TypeEntries and one initialized with the stack slot where the
 757 // profiled object is to be found so that the interpreter can locate
 758 // it quickly.
 759 class TypeStackSlotEntries : public TypeEntries {
 760 
 761 private:
 762   enum {
 763     stack_slot_entry,
 764     type_entry,
 765     per_arg_cell_count
 766   };
 767 
 768   // offset of cell for stack slot for entry i within ProfileData object
 769   int stack_slot_offset(int i) const {
 770     return _base_off + stack_slot_local_offset(i);
 771   }
 772 
 773 protected:
 774   const int _number_of_entries;
 775 
 776   // offset of cell for type for entry i within ProfileData object
 777   int type_offset(int i) const {
 778     return _base_off + type_local_offset(i);
 779   }
 780 
 781 public:
 782 
 783   TypeStackSlotEntries(int base_off, int nb_entries)
 784     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 785 
 786   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 787 
 788   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 789 
 790   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 791   static int stack_slot_local_offset(int i) {
 792     return i * per_arg_cell_count + stack_slot_entry;
 793   }
 794 
 795   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 796   static int type_local_offset(int i) {
 797     return i * per_arg_cell_count + type_entry;
 798   }
 799 
 800   // stack slot for entry i
 801   uint stack_slot(int i) const {
 802     assert(i >= 0 && i < _number_of_entries, "oob");
 803     return _pd->uint_at(stack_slot_offset(i));
 804   }
 805 
 806   // set stack slot for entry i
 807   void set_stack_slot(int i, uint num) {
 808     assert(i >= 0 && i < _number_of_entries, "oob");
 809     _pd->set_uint_at(stack_slot_offset(i), num);
 810   }
 811 
 812   // type for entry i
 813   intptr_t type(int i) const {
 814     assert(i >= 0 && i < _number_of_entries, "oob");
 815     return _pd->intptr_at(type_offset(i));
 816   }
 817 
 818   // set type for entry i
 819   void set_type(int i, intptr_t k) {
 820     assert(i >= 0 && i < _number_of_entries, "oob");
 821     _pd->set_intptr_at(type_offset(i), k);
 822   }
 823 
 824   static ByteSize per_arg_size() {
 825     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 826   }
 827 
 828   static int per_arg_count() {
 829     return per_arg_cell_count ;
 830   }
 831 
 832   // GC support
 833   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 834 
 835 #ifndef PRODUCT
 836   void print_data_on(outputStream* st) const;
 837 #endif
 838 };
 839 
 840 // Type entry used for return from a call. A single cell to record the
 841 // type.
 842 class ReturnTypeEntry : public TypeEntries {
 843 
 844 private:
 845   enum {
 846     cell_count = 1
 847   };
 848 
 849 public:
 850   ReturnTypeEntry(int base_off)
 851     : TypeEntries(base_off) {}
 852 
 853   void post_initialize() {
 854     set_type(type_none());
 855   }
 856 
 857   intptr_t type() const {
 858     return _pd->intptr_at(_base_off);
 859   }
 860 
 861   void set_type(intptr_t k) {
 862     _pd->set_intptr_at(_base_off, k);
 863   }
 864 
 865   static int static_cell_count() {
 866     return cell_count;
 867   }
 868 
 869   static ByteSize size() {
 870     return in_ByteSize(cell_count * DataLayout::cell_size);
 871   }
 872 
 873   ByteSize type_offset() {
 874     return DataLayout::cell_offset(_base_off);
 875   }
 876 
 877   // GC support
 878   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 879 
 880 #ifndef PRODUCT
 881   void print_data_on(outputStream* st) const;
 882 #endif
 883 };
 884 
 885 // Entries to collect type information at a call: contains arguments
 886 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 887 // number of cells. Because the number of cells for the return type is
 888 // smaller than the number of cells for the type of an arguments, the
 889 // number of cells is used to tell how many arguments are profiled and
 890 // whether a return value is profiled. See has_arguments() and
 891 // has_return().
 892 class TypeEntriesAtCall {
 893 private:
 894   static int stack_slot_local_offset(int i) {
 895     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 896   }
 897 
 898   static int argument_type_local_offset(int i) {
 899     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
 900   }
 901 
 902 public:
 903 
 904   static int header_cell_count() {
 905     return 1;
 906   }
 907 
 908   static int cell_count_local_offset() {
 909     return 0;
 910   }
 911 
 912   static int compute_cell_count(BytecodeStream* stream);
 913 
 914   static void initialize(DataLayout* dl, int base, int cell_count) {
 915     int off = base + cell_count_local_offset();
 916     dl->set_cell_at(off, cell_count - base - header_cell_count());
 917   }
 918 
 919   static bool arguments_profiling_enabled();
 920   static bool return_profiling_enabled();
 921 
 922   // Code generation support
 923   static ByteSize cell_count_offset() {
 924     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
 925   }
 926 
 927   static ByteSize args_data_offset() {
 928     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
 929   }
 930 
 931   static ByteSize stack_slot_offset(int i) {
 932     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
 933   }
 934 
 935   static ByteSize argument_type_offset(int i) {
 936     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
 937   }
 938 };
 939 
 940 // CallTypeData
 941 //
 942 // A CallTypeData is used to access profiling information about a non
 943 // virtual call for which we collect type information about arguments
 944 // and return value.
 945 class CallTypeData : public CounterData {
 946 private:
 947   // entries for arguments if any
 948   TypeStackSlotEntries _args;
 949   // entry for return type if any
 950   ReturnTypeEntry _ret;
 951 
 952   int cell_count_global_offset() const {
 953     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
 954   }
 955 
 956   // number of cells not counting the header
 957   int cell_count_no_header() const {
 958     return uint_at(cell_count_global_offset());
 959   }
 960 
 961   void check_number_of_arguments(int total) {
 962     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
 963   }
 964 
 965 public:
 966   CallTypeData(DataLayout* layout) :
 967     CounterData(layout),
 968     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
 969     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
 970   {
 971     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
 972     // Some compilers (VC++) don't want this passed in member initialization list
 973     _args.set_profile_data(this);
 974     _ret.set_profile_data(this);
 975   }
 976 
 977   const TypeStackSlotEntries* args() const {
 978     assert(has_arguments(), "no profiling of arguments");
 979     return &_args;
 980   }
 981 
 982   const ReturnTypeEntry* ret() const {
 983     assert(has_return(), "no profiling of return value");
 984     return &_ret;
 985   }
 986 
 987   virtual bool is_CallTypeData() const { return true; }
 988 
 989   static int static_cell_count() {
 990     return -1;
 991   }
 992 
 993   static int compute_cell_count(BytecodeStream* stream) {
 994     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
 995   }
 996 
 997   static void initialize(DataLayout* dl, int cell_count) {
 998     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
 999   }
1000 
1001   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1002 
1003   virtual int cell_count() const {
1004     return CounterData::static_cell_count() +
1005       TypeEntriesAtCall::header_cell_count() +
1006       int_at_unchecked(cell_count_global_offset());
1007   }
1008 
1009   int number_of_arguments() const {
1010     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1011   }
1012 
1013   void set_argument_type(int i, Klass* k) {
1014     assert(has_arguments(), "no arguments!");
1015     intptr_t current = _args.type(i);
1016     _args.set_type(i, TypeEntries::with_status(k, current));
1017   }
1018 
1019   void set_return_type(Klass* k) {
1020     assert(has_return(), "no return!");
1021     intptr_t current = _ret.type();
1022     _ret.set_type(TypeEntries::with_status(k, current));
1023   }
1024 
1025   // An entry for a return value takes less space than an entry for an
1026   // argument so if the number of cells exceeds the number of cells
1027   // needed for an argument, this object contains type information for
1028   // at least one argument.
1029   bool has_arguments() const {
1030     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1031     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1032     return res;
1033   }
1034 
1035   // An entry for a return value takes less space than an entry for an
1036   // argument, so if the remainder of the number of cells divided by
1037   // the number of cells for an argument is not null, a return value
1038   // is profiled in this object.
1039   bool has_return() const {
1040     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1041     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1042     return res;
1043   }
1044 
1045   // Code generation support
1046   static ByteSize args_data_offset() {
1047     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1048   }
1049 
1050   // GC support
1051   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1052     if (has_arguments()) {
1053       _args.clean_weak_klass_links(is_alive_closure);
1054     }
1055     if (has_return()) {
1056       _ret.clean_weak_klass_links(is_alive_closure);
1057     }
1058   }
1059 
1060 #ifndef PRODUCT
1061   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1062 #endif
1063 };
1064 
1065 // ReceiverTypeData
1066 //
1067 // A ReceiverTypeData is used to access profiling information about a
1068 // dynamic type check.  It consists of a counter which counts the total times
1069 // that the check is reached, and a series of (Klass*, count) pairs
1070 // which are used to store a type profile for the receiver of the check.
1071 class ReceiverTypeData : public CounterData {
1072 protected:
1073   enum {
1074     receiver0_offset = counter_cell_count,
1075     count0_offset,
1076     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1077   };
1078 
1079 public:
1080   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1081     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1082            layout->tag() == DataLayout::virtual_call_data_tag ||
1083            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1084   }
1085 
1086   virtual bool is_ReceiverTypeData() const { return true; }
1087 
1088   static int static_cell_count() {
1089     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1090   }
1091 
1092   virtual int cell_count() const {
1093     return static_cell_count();
1094   }
1095 
1096   // Direct accessors
1097   static uint row_limit() {
1098     return TypeProfileWidth;
1099   }
1100   static int receiver_cell_index(uint row) {
1101     return receiver0_offset + row * receiver_type_row_cell_count;
1102   }
1103   static int receiver_count_cell_index(uint row) {
1104     return count0_offset + row * receiver_type_row_cell_count;
1105   }
1106 
1107   Klass* receiver(uint row) const {
1108     assert(row < row_limit(), "oob");
1109 
1110     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1111     assert(recv == NULL || recv->is_klass(), "wrong type");
1112     return recv;
1113   }
1114 
1115   void set_receiver(uint row, Klass* k) {
1116     assert((uint)row < row_limit(), "oob");
1117     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1118   }
1119 
1120   uint receiver_count(uint row) const {
1121     assert(row < row_limit(), "oob");
1122     return uint_at(receiver_count_cell_index(row));
1123   }
1124 
1125   void set_receiver_count(uint row, uint count) {
1126     assert(row < row_limit(), "oob");
1127     set_uint_at(receiver_count_cell_index(row), count);
1128   }
1129 
1130   void clear_row(uint row) {
1131     assert(row < row_limit(), "oob");
1132     // Clear total count - indicator of polymorphic call site.
1133     // The site may look like as monomorphic after that but
1134     // it allow to have more accurate profiling information because
1135     // there was execution phase change since klasses were unloaded.
1136     // If the site is still polymorphic then MDO will be updated
1137     // to reflect it. But it could be the case that the site becomes
1138     // only bimorphic. Then keeping total count not 0 will be wrong.
1139     // Even if we use monomorphic (when it is not) for compilation
1140     // we will only have trap, deoptimization and recompile again
1141     // with updated MDO after executing method in Interpreter.
1142     // An additional receiver will be recorded in the cleaned row
1143     // during next call execution.
1144     //
1145     // Note: our profiling logic works with empty rows in any slot.
1146     // We do sorting a profiling info (ciCallProfile) for compilation.
1147     //
1148     set_count(0);
1149     set_receiver(row, NULL);
1150     set_receiver_count(row, 0);
1151   }
1152 
1153   // Code generation support
1154   static ByteSize receiver_offset(uint row) {
1155     return cell_offset(receiver_cell_index(row));
1156   }
1157   static ByteSize receiver_count_offset(uint row) {
1158     return cell_offset(receiver_count_cell_index(row));
1159   }
1160   static ByteSize receiver_type_data_size() {
1161     return cell_offset(static_cell_count());
1162   }
1163 
1164   // GC support
1165   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1166 
1167 #ifndef PRODUCT
1168   void print_receiver_data_on(outputStream* st) const;
1169   void print_data_on(outputStream* st, const char* extra = NULL) const;
1170 #endif
1171 };
1172 
1173 // VirtualCallData
1174 //
1175 // A VirtualCallData is used to access profiling information about a
1176 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1177 class VirtualCallData : public ReceiverTypeData {
1178 public:
1179   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1180     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1181            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1182   }
1183 
1184   virtual bool is_VirtualCallData() const { return true; }
1185 
1186   static int static_cell_count() {
1187     // At this point we could add more profile state, e.g., for arguments.
1188     // But for now it's the same size as the base record type.
1189     return ReceiverTypeData::static_cell_count();
1190   }
1191 
1192   virtual int cell_count() const {
1193     return static_cell_count();
1194   }
1195 
1196   // Direct accessors
1197   static ByteSize virtual_call_data_size() {
1198     return cell_offset(static_cell_count());
1199   }
1200 
1201 #ifndef PRODUCT
1202   void print_data_on(outputStream* st, const char* extra = NULL) const;
1203 #endif
1204 };
1205 
1206 // VirtualCallTypeData
1207 //
1208 // A VirtualCallTypeData is used to access profiling information about
1209 // a virtual call for which we collect type information about
1210 // arguments and return value.
1211 class VirtualCallTypeData : public VirtualCallData {
1212 private:
1213   // entries for arguments if any
1214   TypeStackSlotEntries _args;
1215   // entry for return type if any
1216   ReturnTypeEntry _ret;
1217 
1218   int cell_count_global_offset() const {
1219     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1220   }
1221 
1222   // number of cells not counting the header
1223   int cell_count_no_header() const {
1224     return uint_at(cell_count_global_offset());
1225   }
1226 
1227   void check_number_of_arguments(int total) {
1228     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1229   }
1230 
1231 public:
1232   VirtualCallTypeData(DataLayout* layout) :
1233     VirtualCallData(layout),
1234     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1235     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1236   {
1237     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1238     // Some compilers (VC++) don't want this passed in member initialization list
1239     _args.set_profile_data(this);
1240     _ret.set_profile_data(this);
1241   }
1242 
1243   const TypeStackSlotEntries* args() const {
1244     assert(has_arguments(), "no profiling of arguments");
1245     return &_args;
1246   }
1247 
1248   const ReturnTypeEntry* ret() const {
1249     assert(has_return(), "no profiling of return value");
1250     return &_ret;
1251   }
1252 
1253   virtual bool is_VirtualCallTypeData() const { return true; }
1254 
1255   static int static_cell_count() {
1256     return -1;
1257   }
1258 
1259   static int compute_cell_count(BytecodeStream* stream) {
1260     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1261   }
1262 
1263   static void initialize(DataLayout* dl, int cell_count) {
1264     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1265   }
1266 
1267   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1268 
1269   virtual int cell_count() const {
1270     return VirtualCallData::static_cell_count() +
1271       TypeEntriesAtCall::header_cell_count() +
1272       int_at_unchecked(cell_count_global_offset());
1273   }
1274 
1275   int number_of_arguments() const {
1276     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1277   }
1278 
1279   void set_argument_type(int i, Klass* k) {
1280     assert(has_arguments(), "no arguments!");
1281     intptr_t current = _args.type(i);
1282     _args.set_type(i, TypeEntries::with_status(k, current));
1283   }
1284 
1285   void set_return_type(Klass* k) {
1286     assert(has_return(), "no return!");
1287     intptr_t current = _ret.type();
1288     _ret.set_type(TypeEntries::with_status(k, current));
1289   }
1290 
1291   // An entry for a return value takes less space than an entry for an
1292   // argument, so if the remainder of the number of cells divided by
1293   // the number of cells for an argument is not null, a return value
1294   // is profiled in this object.
1295   bool has_return() const {
1296     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1297     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1298     return res;
1299   }
1300 
1301   // An entry for a return value takes less space than an entry for an
1302   // argument so if the number of cells exceeds the number of cells
1303   // needed for an argument, this object contains type information for
1304   // at least one argument.
1305   bool has_arguments() const {
1306     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1307     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1308     return res;
1309   }
1310 
1311   // Code generation support
1312   static ByteSize args_data_offset() {
1313     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1314   }
1315 
1316   // GC support
1317   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1318     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1319     if (has_arguments()) {
1320       _args.clean_weak_klass_links(is_alive_closure);
1321     }
1322     if (has_return()) {
1323       _ret.clean_weak_klass_links(is_alive_closure);
1324     }
1325   }
1326 
1327 #ifndef PRODUCT
1328   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1329 #endif
1330 };
1331 
1332 // RetData
1333 //
1334 // A RetData is used to access profiling information for a ret bytecode.
1335 // It is composed of a count of the number of times that the ret has
1336 // been executed, followed by a series of triples of the form
1337 // (bci, count, di) which count the number of times that some bci was the
1338 // target of the ret and cache a corresponding data displacement.
1339 class RetData : public CounterData {
1340 protected:
1341   enum {
1342     bci0_offset = counter_cell_count,
1343     count0_offset,
1344     displacement0_offset,
1345     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1346   };
1347 
1348   void set_bci(uint row, int bci) {
1349     assert((uint)row < row_limit(), "oob");
1350     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1351   }
1352   void release_set_bci(uint row, int bci) {
1353     assert((uint)row < row_limit(), "oob");
1354     // 'release' when setting the bci acts as a valid flag for other
1355     // threads wrt bci_count and bci_displacement.
1356     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1357   }
1358   void set_bci_count(uint row, uint count) {
1359     assert((uint)row < row_limit(), "oob");
1360     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1361   }
1362   void set_bci_displacement(uint row, int disp) {
1363     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1364   }
1365 
1366 public:
1367   RetData(DataLayout* layout) : CounterData(layout) {
1368     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1369   }
1370 
1371   virtual bool is_RetData() const { return true; }
1372 
1373   enum {
1374     no_bci = -1 // value of bci when bci1/2 are not in use.
1375   };
1376 
1377   static int static_cell_count() {
1378     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1379   }
1380 
1381   virtual int cell_count() const {
1382     return static_cell_count();
1383   }
1384 
1385   static uint row_limit() {
1386     return BciProfileWidth;
1387   }
1388   static int bci_cell_index(uint row) {
1389     return bci0_offset + row * ret_row_cell_count;
1390   }
1391   static int bci_count_cell_index(uint row) {
1392     return count0_offset + row * ret_row_cell_count;
1393   }
1394   static int bci_displacement_cell_index(uint row) {
1395     return displacement0_offset + row * ret_row_cell_count;
1396   }
1397 
1398   // Direct accessors
1399   int bci(uint row) const {
1400     return int_at(bci_cell_index(row));
1401   }
1402   uint bci_count(uint row) const {
1403     return uint_at(bci_count_cell_index(row));
1404   }
1405   int bci_displacement(uint row) const {
1406     return int_at(bci_displacement_cell_index(row));
1407   }
1408 
1409   // Interpreter Runtime support
1410   address fixup_ret(int return_bci, MethodData* mdo);
1411 
1412   // Code generation support
1413   static ByteSize bci_offset(uint row) {
1414     return cell_offset(bci_cell_index(row));
1415   }
1416   static ByteSize bci_count_offset(uint row) {
1417     return cell_offset(bci_count_cell_index(row));
1418   }
1419   static ByteSize bci_displacement_offset(uint row) {
1420     return cell_offset(bci_displacement_cell_index(row));
1421   }
1422 
1423   // Specific initialization.
1424   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1425 
1426 #ifndef PRODUCT
1427   void print_data_on(outputStream* st, const char* extra = NULL) const;
1428 #endif
1429 };
1430 
1431 // BranchData
1432 //
1433 // A BranchData is used to access profiling data for a two-way branch.
1434 // It consists of taken and not_taken counts as well as a data displacement
1435 // for the taken case.
1436 class BranchData : public JumpData {
1437 protected:
1438   enum {
1439     not_taken_off_set = jump_cell_count,
1440     branch_cell_count
1441   };
1442 
1443   void set_displacement(int displacement) {
1444     set_int_at(displacement_off_set, displacement);
1445   }
1446 
1447 public:
1448   BranchData(DataLayout* layout) : JumpData(layout) {
1449     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1450   }
1451 
1452   virtual bool is_BranchData() const { return true; }
1453 
1454   static int static_cell_count() {
1455     return branch_cell_count;
1456   }
1457 
1458   virtual int cell_count() const {
1459     return static_cell_count();
1460   }
1461 
1462   // Direct accessor
1463   uint not_taken() const {
1464     return uint_at(not_taken_off_set);
1465   }
1466 
1467   void set_not_taken(uint cnt) {
1468     set_uint_at(not_taken_off_set, cnt);
1469   }
1470 
1471   uint inc_not_taken() {
1472     uint cnt = not_taken() + 1;
1473     // Did we wrap? Will compiler screw us??
1474     if (cnt == 0) cnt--;
1475     set_uint_at(not_taken_off_set, cnt);
1476     return cnt;
1477   }
1478 
1479   // Code generation support
1480   static ByteSize not_taken_offset() {
1481     return cell_offset(not_taken_off_set);
1482   }
1483   static ByteSize branch_data_size() {
1484     return cell_offset(branch_cell_count);
1485   }
1486 
1487   // Specific initialization.
1488   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1489 
1490 #ifndef PRODUCT
1491   void print_data_on(outputStream* st, const char* extra = NULL) const;
1492 #endif
1493 };
1494 
1495 // ArrayData
1496 //
1497 // A ArrayData is a base class for accessing profiling data which does
1498 // not have a statically known size.  It consists of an array length
1499 // and an array start.
1500 class ArrayData : public ProfileData {
1501 protected:
1502   friend class DataLayout;
1503 
1504   enum {
1505     array_len_off_set,
1506     array_start_off_set
1507   };
1508 
1509   uint array_uint_at(int index) const {
1510     int aindex = index + array_start_off_set;
1511     return uint_at(aindex);
1512   }
1513   int array_int_at(int index) const {
1514     int aindex = index + array_start_off_set;
1515     return int_at(aindex);
1516   }
1517   oop array_oop_at(int index) const {
1518     int aindex = index + array_start_off_set;
1519     return oop_at(aindex);
1520   }
1521   void array_set_int_at(int index, int value) {
1522     int aindex = index + array_start_off_set;
1523     set_int_at(aindex, value);
1524   }
1525 
1526   // Code generation support for subclasses.
1527   static ByteSize array_element_offset(int index) {
1528     return cell_offset(array_start_off_set + index);
1529   }
1530 
1531 public:
1532   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1533 
1534   virtual bool is_ArrayData() const { return true; }
1535 
1536   static int static_cell_count() {
1537     return -1;
1538   }
1539 
1540   int array_len() const {
1541     return int_at_unchecked(array_len_off_set);
1542   }
1543 
1544   virtual int cell_count() const {
1545     return array_len() + 1;
1546   }
1547 
1548   // Code generation support
1549   static ByteSize array_len_offset() {
1550     return cell_offset(array_len_off_set);
1551   }
1552   static ByteSize array_start_offset() {
1553     return cell_offset(array_start_off_set);
1554   }
1555 };
1556 
1557 // MultiBranchData
1558 //
1559 // A MultiBranchData is used to access profiling information for
1560 // a multi-way branch (*switch bytecodes).  It consists of a series
1561 // of (count, displacement) pairs, which count the number of times each
1562 // case was taken and specify the data displacment for each branch target.
1563 class MultiBranchData : public ArrayData {
1564 protected:
1565   enum {
1566     default_count_off_set,
1567     default_disaplacement_off_set,
1568     case_array_start
1569   };
1570   enum {
1571     relative_count_off_set,
1572     relative_displacement_off_set,
1573     per_case_cell_count
1574   };
1575 
1576   void set_default_displacement(int displacement) {
1577     array_set_int_at(default_disaplacement_off_set, displacement);
1578   }
1579   void set_displacement_at(int index, int displacement) {
1580     array_set_int_at(case_array_start +
1581                      index * per_case_cell_count +
1582                      relative_displacement_off_set,
1583                      displacement);
1584   }
1585 
1586 public:
1587   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1588     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1589   }
1590 
1591   virtual bool is_MultiBranchData() const { return true; }
1592 
1593   static int compute_cell_count(BytecodeStream* stream);
1594 
1595   int number_of_cases() const {
1596     int alen = array_len() - 2; // get rid of default case here.
1597     assert(alen % per_case_cell_count == 0, "must be even");
1598     return (alen / per_case_cell_count);
1599   }
1600 
1601   uint default_count() const {
1602     return array_uint_at(default_count_off_set);
1603   }
1604   int default_displacement() const {
1605     return array_int_at(default_disaplacement_off_set);
1606   }
1607 
1608   uint count_at(int index) const {
1609     return array_uint_at(case_array_start +
1610                          index * per_case_cell_count +
1611                          relative_count_off_set);
1612   }
1613   int displacement_at(int index) const {
1614     return array_int_at(case_array_start +
1615                         index * per_case_cell_count +
1616                         relative_displacement_off_set);
1617   }
1618 
1619   // Code generation support
1620   static ByteSize default_count_offset() {
1621     return array_element_offset(default_count_off_set);
1622   }
1623   static ByteSize default_displacement_offset() {
1624     return array_element_offset(default_disaplacement_off_set);
1625   }
1626   static ByteSize case_count_offset(int index) {
1627     return case_array_offset() +
1628            (per_case_size() * index) +
1629            relative_count_offset();
1630   }
1631   static ByteSize case_array_offset() {
1632     return array_element_offset(case_array_start);
1633   }
1634   static ByteSize per_case_size() {
1635     return in_ByteSize(per_case_cell_count) * cell_size;
1636   }
1637   static ByteSize relative_count_offset() {
1638     return in_ByteSize(relative_count_off_set) * cell_size;
1639   }
1640   static ByteSize relative_displacement_offset() {
1641     return in_ByteSize(relative_displacement_off_set) * cell_size;
1642   }
1643 
1644   // Specific initialization.
1645   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1646 
1647 #ifndef PRODUCT
1648   void print_data_on(outputStream* st, const char* extra = NULL) const;
1649 #endif
1650 };
1651 
1652 class ArgInfoData : public ArrayData {
1653 
1654 public:
1655   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1656     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1657   }
1658 
1659   virtual bool is_ArgInfoData() const { return true; }
1660 
1661 
1662   int number_of_args() const {
1663     return array_len();
1664   }
1665 
1666   uint arg_modified(int arg) const {
1667     return array_uint_at(arg);
1668   }
1669 
1670   void set_arg_modified(int arg, uint val) {
1671     array_set_int_at(arg, val);
1672   }
1673 
1674 #ifndef PRODUCT
1675   void print_data_on(outputStream* st, const char* extra = NULL) const;
1676 #endif
1677 };
1678 
1679 // ParametersTypeData
1680 //
1681 // A ParametersTypeData is used to access profiling information about
1682 // types of parameters to a method
1683 class ParametersTypeData : public ArrayData {
1684 
1685 private:
1686   TypeStackSlotEntries _parameters;
1687 
1688   static int stack_slot_local_offset(int i) {
1689     assert_profiling_enabled();
1690     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1691   }
1692 
1693   static int type_local_offset(int i) {
1694     assert_profiling_enabled();
1695     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1696   }
1697 
1698   static bool profiling_enabled();
1699   static void assert_profiling_enabled() {
1700     assert(profiling_enabled(), "method parameters profiling should be on");
1701   }
1702 
1703 public:
1704   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1705     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1706     // Some compilers (VC++) don't want this passed in member initialization list
1707     _parameters.set_profile_data(this);
1708   }
1709 
1710   static int compute_cell_count(Method* m);
1711 
1712   virtual bool is_ParametersTypeData() const { return true; }
1713 
1714   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1715 
1716   int number_of_parameters() const {
1717     return array_len() / TypeStackSlotEntries::per_arg_count();
1718   }
1719 
1720   const TypeStackSlotEntries* parameters() const { return &_parameters; }
1721 
1722   uint stack_slot(int i) const {
1723     return _parameters.stack_slot(i);
1724   }
1725 
1726   void set_type(int i, Klass* k) {
1727     intptr_t current = _parameters.type(i);
1728     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1729   }
1730 
1731   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1732     _parameters.clean_weak_klass_links(is_alive_closure);
1733   }
1734 
1735 #ifndef PRODUCT
1736   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1737 #endif
1738 
1739   static ByteSize stack_slot_offset(int i) {
1740     return cell_offset(stack_slot_local_offset(i));
1741   }
1742 
1743   static ByteSize type_offset(int i) {
1744     return cell_offset(type_local_offset(i));
1745   }
1746 };
1747 
1748 // SpeculativeTrapData
1749 //
1750 // A SpeculativeTrapData is used to record traps due to type
1751 // speculation. It records the root of the compilation: that type
1752 // speculation is wrong in the context of one compilation (for
1753 // method1) doesn't mean it's wrong in the context of another one (for
1754 // method2). Type speculation could have more/different data in the
1755 // context of the compilation of method2 and it's worthwhile to try an
1756 // optimization that failed for compilation of method1 in the context
1757 // of compilation of method2.
1758 // Space for SpeculativeTrapData entries is allocated from the extra
1759 // data space in the MDO. If we run out of space, the trap data for
1760 // the ProfileData at that bci is updated.
1761 class SpeculativeTrapData : public ProfileData {
1762 protected:
1763   enum {
1764     method_offset,
1765     speculative_trap_cell_count
1766   };
1767 public:
1768   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1769     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1770   }
1771 
1772   virtual bool is_SpeculativeTrapData() const { return true; }
1773 
1774   static int static_cell_count() {
1775     return speculative_trap_cell_count;
1776   }
1777 
1778   virtual int cell_count() const {
1779     return static_cell_count();
1780   }
1781 
1782   // Direct accessor
1783   Method* method() const {
1784     return (Method*)intptr_at(method_offset);
1785   }
1786 
1787   void set_method(Method* m) {
1788     set_intptr_at(method_offset, (intptr_t)m);
1789   }
1790 
1791 #ifndef PRODUCT
1792   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1793 #endif
1794 };
1795 
1796 // MethodData*
1797 //
1798 // A MethodData* holds information which has been collected about
1799 // a method.  Its layout looks like this:
1800 //
1801 // -----------------------------
1802 // | header                    |
1803 // | klass                     |
1804 // -----------------------------
1805 // | method                    |
1806 // | size of the MethodData* |
1807 // -----------------------------
1808 // | Data entries...           |
1809 // |   (variable size)         |
1810 // |                           |
1811 // .                           .
1812 // .                           .
1813 // .                           .
1814 // |                           |
1815 // -----------------------------
1816 //
1817 // The data entry area is a heterogeneous array of DataLayouts. Each
1818 // DataLayout in the array corresponds to a specific bytecode in the
1819 // method.  The entries in the array are sorted by the corresponding
1820 // bytecode.  Access to the data is via resource-allocated ProfileData,
1821 // which point to the underlying blocks of DataLayout structures.
1822 //
1823 // During interpretation, if profiling in enabled, the interpreter
1824 // maintains a method data pointer (mdp), which points at the entry
1825 // in the array corresponding to the current bci.  In the course of
1826 // intepretation, when a bytecode is encountered that has profile data
1827 // associated with it, the entry pointed to by mdp is updated, then the
1828 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1829 // is NULL to begin with, the interpreter assumes that the current method
1830 // is not (yet) being profiled.
1831 //
1832 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1833 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1834 // from the base of the data entry array.  A "displacement" is the byte offset
1835 // in certain ProfileData objects that indicate the amount the mdp must be
1836 // adjusted in the event of a change in control flow.
1837 //
1838 
1839 class MethodData : public Metadata {
1840   friend class VMStructs;
1841 private:
1842   friend class ProfileData;
1843 
1844   // Back pointer to the Method*
1845   Method* _method;
1846 
1847   // Size of this oop in bytes
1848   int _size;
1849 
1850   // Cached hint for bci_to_dp and bci_to_data
1851   int _hint_di;
1852 
1853   Mutex _extra_data_lock;
1854 
1855   MethodData(methodHandle method, int size, TRAPS);
1856 public:
1857   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
1858   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
1859 
1860   bool is_methodData() const volatile { return true; }
1861 
1862   // Whole-method sticky bits and flags
1863   enum {
1864     _trap_hist_limit    = 18,   // decoupled from Deoptimization::Reason_LIMIT
1865     _trap_hist_mask     = max_jubyte,
1866     _extra_data_count   = 4     // extra DataLayout headers, for trap history
1867   }; // Public flag values
1868 private:
1869   uint _nof_decompiles;             // count of all nmethod removals
1870   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1871   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1872   union {
1873     intptr_t _align;
1874     u1 _array[_trap_hist_limit];
1875   } _trap_hist;
1876 
1877   // Support for interprocedural escape analysis, from Thomas Kotzmann.
1878   intx              _eflags;          // flags on escape information
1879   intx              _arg_local;       // bit set of non-escaping arguments
1880   intx              _arg_stack;       // bit set of stack-allocatable arguments
1881   intx              _arg_returned;    // bit set of returned arguments
1882 
1883   int _creation_mileage;              // method mileage at MDO creation
1884 
1885   // How many invocations has this MDO seen?
1886   // These counters are used to determine the exact age of MDO.
1887   // We need those because in tiered a method can be concurrently
1888   // executed at different levels.
1889   InvocationCounter _invocation_counter;
1890   // Same for backedges.
1891   InvocationCounter _backedge_counter;
1892   // Counter values at the time profiling started.
1893   int               _invocation_counter_start;
1894   int               _backedge_counter_start;
1895   // Number of loops and blocks is computed when compiling the first
1896   // time with C1. It is used to determine if method is trivial.
1897   short             _num_loops;
1898   short             _num_blocks;
1899   // Highest compile level this method has ever seen.
1900   u1                _highest_comp_level;
1901   // Same for OSR level
1902   u1                _highest_osr_comp_level;
1903   // Does this method contain anything worth profiling?
1904   bool              _would_profile;
1905 
1906   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1907   int _data_size;
1908 
1909   // data index for the area dedicated to parameters. -1 if no
1910   // parameter profiling.
1911   int _parameters_type_data_di;
1912 
1913   // Beginning of the data entries
1914   intptr_t _data[1];
1915 
1916   // Helper for size computation
1917   static int compute_data_size(BytecodeStream* stream);
1918   static int bytecode_cell_count(Bytecodes::Code code);
1919   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
1920   enum { no_profile_data = -1, variable_cell_count = -2 };
1921 
1922   // Helper for initialization
1923   DataLayout* data_layout_at(int data_index) const {
1924     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1925     return (DataLayout*) (((address)_data) + data_index);
1926   }
1927 
1928   // Initialize an individual data segment.  Returns the size of
1929   // the segment in bytes.
1930   int initialize_data(BytecodeStream* stream, int data_index);
1931 
1932   // Helper for data_at
1933   DataLayout* limit_data_position() const {
1934     return (DataLayout*)((address)data_base() + _data_size);
1935   }
1936   bool out_of_bounds(int data_index) const {
1937     return data_index >= data_size();
1938   }
1939 
1940   // Give each of the data entries a chance to perform specific
1941   // data initialization.
1942   void post_initialize(BytecodeStream* stream);
1943 
1944   // hint accessors
1945   int      hint_di() const  { return _hint_di; }
1946   void set_hint_di(int di)  {
1947     assert(!out_of_bounds(di), "hint_di out of bounds");
1948     _hint_di = di;
1949   }
1950   ProfileData* data_before(int bci) {
1951     // avoid SEGV on this edge case
1952     if (data_size() == 0)
1953       return NULL;
1954     int hint = hint_di();
1955     if (data_layout_at(hint)->bci() <= bci)
1956       return data_at(hint);
1957     return first_data();
1958   }
1959 
1960   // What is the index of the first data entry?
1961   int first_di() const { return 0; }
1962 
1963   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
1964   // Find or create an extra ProfileData:
1965   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
1966 
1967   // return the argument info cell
1968   ArgInfoData *arg_info();
1969 
1970   enum {
1971     no_type_profile = 0,
1972     type_profile_jsr292 = 1,
1973     type_profile_all = 2
1974   };
1975 
1976   static bool profile_jsr292(methodHandle m, int bci);
1977   static int profile_arguments_flag();
1978   static bool profile_arguments_jsr292_only();
1979   static bool profile_all_arguments();
1980   static bool profile_arguments_for_invoke(methodHandle m, int bci);
1981   static int profile_return_flag();
1982   static bool profile_all_return();
1983   static bool profile_return_for_invoke(methodHandle m, int bci);
1984   static int profile_parameters_flag();
1985   static bool profile_parameters_jsr292_only();
1986   static bool profile_all_parameters();
1987 
1988   void clean_extra_data(BoolObjectClosure* is_alive);
1989   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
1990   void verify_extra_data_clean(BoolObjectClosure* is_alive);
1991 
1992 public:
1993   static int header_size() {
1994     return sizeof(MethodData)/wordSize;
1995   }
1996 
1997   // Compute the size of a MethodData* before it is created.
1998   static int compute_allocation_size_in_bytes(methodHandle method);
1999   static int compute_allocation_size_in_words(methodHandle method);
2000   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2001 
2002   // Determine if a given bytecode can have profile information.
2003   static bool bytecode_has_profile(Bytecodes::Code code) {
2004     return bytecode_cell_count(code) != no_profile_data;
2005   }
2006 
2007   // reset into original state
2008   void init();
2009 
2010   // My size
2011   int size_in_bytes() const { return _size; }
2012   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2013 #if INCLUDE_SERVICES
2014   void collect_statistics(KlassSizeStats *sz) const;
2015 #endif
2016 
2017   int      creation_mileage() const  { return _creation_mileage; }
2018   void set_creation_mileage(int x)   { _creation_mileage = x; }
2019 
2020   int invocation_count() {
2021     if (invocation_counter()->carry()) {
2022       return InvocationCounter::count_limit;
2023     }
2024     return invocation_counter()->count();
2025   }
2026   int backedge_count() {
2027     if (backedge_counter()->carry()) {
2028       return InvocationCounter::count_limit;
2029     }
2030     return backedge_counter()->count();
2031   }
2032 
2033   int invocation_count_start() {
2034     if (invocation_counter()->carry()) {
2035       return 0;
2036     }
2037     return _invocation_counter_start;
2038   }
2039 
2040   int backedge_count_start() {
2041     if (backedge_counter()->carry()) {
2042       return 0;
2043     }
2044     return _backedge_counter_start;
2045   }
2046 
2047   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2048   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2049 
2050   void reset_start_counters() {
2051     _invocation_counter_start = invocation_count();
2052     _backedge_counter_start = backedge_count();
2053   }
2054 
2055   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2056   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2057 
2058   void set_would_profile(bool p)              { _would_profile = p;    }
2059   bool would_profile() const                  { return _would_profile; }
2060 
2061   int highest_comp_level() const              { return _highest_comp_level;      }
2062   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
2063   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
2064   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
2065 
2066   int num_loops() const                       { return _num_loops;  }
2067   void set_num_loops(int n)                   { _num_loops = n;     }
2068   int num_blocks() const                      { return _num_blocks; }
2069   void set_num_blocks(int n)                  { _num_blocks = n;    }
2070 
2071   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2072   static int mileage_of(Method* m);
2073 
2074   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2075   enum EscapeFlag {
2076     estimated    = 1 << 0,
2077     return_local = 1 << 1,
2078     return_allocated = 1 << 2,
2079     allocated_escapes = 1 << 3,
2080     unknown_modified = 1 << 4
2081   };
2082 
2083   intx eflags()                                  { return _eflags; }
2084   intx arg_local()                               { return _arg_local; }
2085   intx arg_stack()                               { return _arg_stack; }
2086   intx arg_returned()                            { return _arg_returned; }
2087   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2088                                                    assert(aid != NULL, "arg_info must be not null");
2089                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2090                                                    return aid->arg_modified(a); }
2091 
2092   void set_eflags(intx v)                        { _eflags = v; }
2093   void set_arg_local(intx v)                     { _arg_local = v; }
2094   void set_arg_stack(intx v)                     { _arg_stack = v; }
2095   void set_arg_returned(intx v)                  { _arg_returned = v; }
2096   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2097                                                    assert(aid != NULL, "arg_info must be not null");
2098                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2099                                                    aid->set_arg_modified(a, v); }
2100 
2101   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2102 
2103   // Location and size of data area
2104   address data_base() const {
2105     return (address) _data;
2106   }
2107   int data_size() const {
2108     return _data_size;
2109   }
2110 
2111   // Accessors
2112   Method* method() const { return _method; }
2113 
2114   // Get the data at an arbitrary (sort of) data index.
2115   ProfileData* data_at(int data_index) const;
2116 
2117   // Walk through the data in order.
2118   ProfileData* first_data() const { return data_at(first_di()); }
2119   ProfileData* next_data(ProfileData* current) const;
2120   bool is_valid(ProfileData* current) const { return current != NULL; }
2121 
2122   // Convert a dp (data pointer) to a di (data index).
2123   int dp_to_di(address dp) const {
2124     return dp - ((address)_data);
2125   }
2126 
2127   address di_to_dp(int di) {
2128     return (address)data_layout_at(di);
2129   }
2130 
2131   // bci to di/dp conversion.
2132   address bci_to_dp(int bci);
2133   int bci_to_di(int bci) {
2134     return dp_to_di(bci_to_dp(bci));
2135   }
2136 
2137   // Get the data at an arbitrary bci, or NULL if there is none.
2138   ProfileData* bci_to_data(int bci);
2139 
2140   // Same, but try to create an extra_data record if one is needed:
2141   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2142     ProfileData* data = NULL;
2143     // If m not NULL, try to allocate a SpeculativeTrapData entry
2144     if (m == NULL) {
2145       data = bci_to_data(bci);
2146     }
2147     if (data != NULL) {
2148       return data;
2149     }
2150     data = bci_to_extra_data(bci, m, true);
2151     if (data != NULL) {
2152       return data;
2153     }
2154     // If SpeculativeTrapData allocation fails try to allocate a
2155     // regular entry
2156     data = bci_to_data(bci);
2157     if (data != NULL) {
2158       return data;
2159     }
2160     return bci_to_extra_data(bci, NULL, true);
2161   }
2162 
2163   // Add a handful of extra data records, for trap tracking.
2164   DataLayout* extra_data_base() const { return limit_data_position(); }
2165   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2166   int extra_data_size() const { return (address)extra_data_limit()
2167                                - (address)extra_data_base(); }
2168   static DataLayout* next_extra(DataLayout* dp);
2169 
2170   // Return (uint)-1 for overflow.
2171   uint trap_count(int reason) const {
2172     assert((uint)reason < _trap_hist_limit, "oob");
2173     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2174   }
2175   // For loops:
2176   static uint trap_reason_limit() { return _trap_hist_limit; }
2177   static uint trap_count_limit()  { return _trap_hist_mask; }
2178   uint inc_trap_count(int reason) {
2179     // Count another trap, anywhere in this method.
2180     assert(reason >= 0, "must be single trap");
2181     if ((uint)reason < _trap_hist_limit) {
2182       uint cnt1 = 1 + _trap_hist._array[reason];
2183       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2184         _trap_hist._array[reason] = cnt1;
2185         return cnt1;
2186       } else {
2187         return _trap_hist_mask + (++_nof_overflow_traps);
2188       }
2189     } else {
2190       // Could not represent the count in the histogram.
2191       return (++_nof_overflow_traps);
2192     }
2193   }
2194 
2195   uint overflow_trap_count() const {
2196     return _nof_overflow_traps;
2197   }
2198   uint overflow_recompile_count() const {
2199     return _nof_overflow_recompiles;
2200   }
2201   void inc_overflow_recompile_count() {
2202     _nof_overflow_recompiles += 1;
2203   }
2204   uint decompile_count() const {
2205     return _nof_decompiles;
2206   }
2207   void inc_decompile_count() {
2208     _nof_decompiles += 1;
2209     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2210       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2211     }
2212   }
2213 
2214   // Return pointer to area dedicated to parameters in MDO
2215   ParametersTypeData* parameters_type_data() const {
2216     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2217   }
2218 
2219   int parameters_type_data_di() const {
2220     assert(_parameters_type_data_di != -1, "no args type data");
2221     return _parameters_type_data_di;
2222   }
2223 
2224   // Support for code generation
2225   static ByteSize data_offset() {
2226     return byte_offset_of(MethodData, _data[0]);
2227   }
2228 
2229   static ByteSize invocation_counter_offset() {
2230     return byte_offset_of(MethodData, _invocation_counter);
2231   }
2232   static ByteSize backedge_counter_offset() {
2233     return byte_offset_of(MethodData, _backedge_counter);
2234   }
2235 
2236   static ByteSize parameters_type_data_di_offset() {
2237     return byte_offset_of(MethodData, _parameters_type_data_di);
2238   }
2239 
2240   // Deallocation support - no pointer fields to deallocate
2241   void deallocate_contents(ClassLoaderData* loader_data) {}
2242 
2243   // GC support
2244   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2245 
2246   // Printing
2247 #ifndef PRODUCT
2248   void print_on      (outputStream* st) const;
2249 #endif
2250   void print_value_on(outputStream* st) const;
2251 
2252 #ifndef PRODUCT
2253   // printing support for method data
2254   void print_data_on(outputStream* st) const;
2255 #endif
2256 
2257   const char* internal_name() const { return "{method data}"; }
2258 
2259   // verification
2260   void verify_on(outputStream* st);
2261   void verify_data_on(outputStream* st);
2262 
2263   static bool profile_parameters_for_method(methodHandle m);
2264   static bool profile_arguments();
2265   static bool profile_return();
2266   static bool profile_parameters();
2267   static bool profile_return_jsr292_only();
2268 
2269   void clean_method_data(BoolObjectClosure* is_alive);
2270 };
2271 
2272 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP