1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/node.hpp"
  55 #include "opto/opcodes.hpp"
  56 #include "opto/output.hpp"
  57 #include "opto/parse.hpp"
  58 #include "opto/phaseX.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/stringopts.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/timer.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #ifdef TARGET_ARCH_MODEL_x86_32
  71 # include "adfiles/ad_x86_32.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_MODEL_x86_64
  74 # include "adfiles/ad_x86_64.hpp"
  75 #endif
  76 #ifdef TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_MODEL_zero
  80 # include "adfiles/ad_zero.hpp"
  81 #endif
  82 #ifdef TARGET_ARCH_MODEL_arm
  83 # include "adfiles/ad_arm.hpp"
  84 #endif
  85 #ifdef TARGET_ARCH_MODEL_ppc
  86 # include "adfiles/ad_ppc.hpp"
  87 #endif
  88 
  89 
  90 // -------------------- Compile::mach_constant_base_node -----------------------
  91 // Constant table base node singleton.
  92 MachConstantBaseNode* Compile::mach_constant_base_node() {
  93   if (_mach_constant_base_node == NULL) {
  94     _mach_constant_base_node = new (C) MachConstantBaseNode();
  95     _mach_constant_base_node->add_req(C->root());
  96   }
  97   return _mach_constant_base_node;
  98 }
  99 
 100 
 101 /// Support for intrinsics.
 102 
 103 // Return the index at which m must be inserted (or already exists).
 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 105 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 106 #ifdef ASSERT
 107   for (int i = 1; i < _intrinsics->length(); i++) {
 108     CallGenerator* cg1 = _intrinsics->at(i-1);
 109     CallGenerator* cg2 = _intrinsics->at(i);
 110     assert(cg1->method() != cg2->method()
 111            ? cg1->method()     < cg2->method()
 112            : cg1->is_virtual() < cg2->is_virtual(),
 113            "compiler intrinsics list must stay sorted");
 114   }
 115 #endif
 116   // Binary search sorted list, in decreasing intervals [lo, hi].
 117   int lo = 0, hi = _intrinsics->length()-1;
 118   while (lo <= hi) {
 119     int mid = (uint)(hi + lo) / 2;
 120     ciMethod* mid_m = _intrinsics->at(mid)->method();
 121     if (m < mid_m) {
 122       hi = mid-1;
 123     } else if (m > mid_m) {
 124       lo = mid+1;
 125     } else {
 126       // look at minor sort key
 127       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 128       if (is_virtual < mid_virt) {
 129         hi = mid-1;
 130       } else if (is_virtual > mid_virt) {
 131         lo = mid+1;
 132       } else {
 133         return mid;  // exact match
 134       }
 135     }
 136   }
 137   return lo;  // inexact match
 138 }
 139 
 140 void Compile::register_intrinsic(CallGenerator* cg) {
 141   if (_intrinsics == NULL) {
 142     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 143   }
 144   // This code is stolen from ciObjectFactory::insert.
 145   // Really, GrowableArray should have methods for
 146   // insert_at, remove_at, and binary_search.
 147   int len = _intrinsics->length();
 148   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 149   if (index == len) {
 150     _intrinsics->append(cg);
 151   } else {
 152 #ifdef ASSERT
 153     CallGenerator* oldcg = _intrinsics->at(index);
 154     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 155 #endif
 156     _intrinsics->append(_intrinsics->at(len-1));
 157     int pos;
 158     for (pos = len-2; pos >= index; pos--) {
 159       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 160     }
 161     _intrinsics->at_put(index, cg);
 162   }
 163   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 164 }
 165 
 166 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 167   assert(m->is_loaded(), "don't try this on unloaded methods");
 168   if (_intrinsics != NULL) {
 169     int index = intrinsic_insertion_index(m, is_virtual);
 170     if (index < _intrinsics->length()
 171         && _intrinsics->at(index)->method() == m
 172         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 173       return _intrinsics->at(index);
 174     }
 175   }
 176   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 177   if (m->intrinsic_id() != vmIntrinsics::_none &&
 178       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 179     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 180     if (cg != NULL) {
 181       // Save it for next time:
 182       register_intrinsic(cg);
 183       return cg;
 184     } else {
 185       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 186     }
 187   }
 188   return NULL;
 189 }
 190 
 191 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 192 // in library_call.cpp.
 193 
 194 
 195 #ifndef PRODUCT
 196 // statistics gathering...
 197 
 198 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 199 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 200 
 201 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 202   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 203   int oflags = _intrinsic_hist_flags[id];
 204   assert(flags != 0, "what happened?");
 205   if (is_virtual) {
 206     flags |= _intrinsic_virtual;
 207   }
 208   bool changed = (flags != oflags);
 209   if ((flags & _intrinsic_worked) != 0) {
 210     juint count = (_intrinsic_hist_count[id] += 1);
 211     if (count == 1) {
 212       changed = true;           // first time
 213     }
 214     // increment the overall count also:
 215     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 216   }
 217   if (changed) {
 218     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 219       // Something changed about the intrinsic's virtuality.
 220       if ((flags & _intrinsic_virtual) != 0) {
 221         // This is the first use of this intrinsic as a virtual call.
 222         if (oflags != 0) {
 223           // We already saw it as a non-virtual, so note both cases.
 224           flags |= _intrinsic_both;
 225         }
 226       } else if ((oflags & _intrinsic_both) == 0) {
 227         // This is the first use of this intrinsic as a non-virtual
 228         flags |= _intrinsic_both;
 229       }
 230     }
 231     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 232   }
 233   // update the overall flags also:
 234   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 235   return changed;
 236 }
 237 
 238 static char* format_flags(int flags, char* buf) {
 239   buf[0] = 0;
 240   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 241   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 242   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 243   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 244   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 245   if (buf[0] == 0)  strcat(buf, ",");
 246   assert(buf[0] == ',', "must be");
 247   return &buf[1];
 248 }
 249 
 250 void Compile::print_intrinsic_statistics() {
 251   char flagsbuf[100];
 252   ttyLocker ttyl;
 253   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 254   tty->print_cr("Compiler intrinsic usage:");
 255   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 256   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 257   #define PRINT_STAT_LINE(name, c, f) \
 258     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 259   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 260     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 261     int   flags = _intrinsic_hist_flags[id];
 262     juint count = _intrinsic_hist_count[id];
 263     if ((flags | count) != 0) {
 264       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 265     }
 266   }
 267   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 268   if (xtty != NULL)  xtty->tail("statistics");
 269 }
 270 
 271 void Compile::print_statistics() {
 272   { ttyLocker ttyl;
 273     if (xtty != NULL)  xtty->head("statistics type='opto'");
 274     Parse::print_statistics();
 275     PhaseCCP::print_statistics();
 276     PhaseRegAlloc::print_statistics();
 277     Scheduling::print_statistics();
 278     PhasePeephole::print_statistics();
 279     PhaseIdealLoop::print_statistics();
 280     if (xtty != NULL)  xtty->tail("statistics");
 281   }
 282   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 283     // put this under its own <statistics> element.
 284     print_intrinsic_statistics();
 285   }
 286 }
 287 #endif //PRODUCT
 288 
 289 // Support for bundling info
 290 Bundle* Compile::node_bundling(const Node *n) {
 291   assert(valid_bundle_info(n), "oob");
 292   return &_node_bundling_base[n->_idx];
 293 }
 294 
 295 bool Compile::valid_bundle_info(const Node *n) {
 296   return (_node_bundling_limit > n->_idx);
 297 }
 298 
 299 
 300 void Compile::gvn_replace_by(Node* n, Node* nn) {
 301   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 302     Node* use = n->last_out(i);
 303     bool is_in_table = initial_gvn()->hash_delete(use);
 304     uint uses_found = 0;
 305     for (uint j = 0; j < use->len(); j++) {
 306       if (use->in(j) == n) {
 307         if (j < use->req())
 308           use->set_req(j, nn);
 309         else
 310           use->set_prec(j, nn);
 311         uses_found++;
 312       }
 313     }
 314     if (is_in_table) {
 315       // reinsert into table
 316       initial_gvn()->hash_find_insert(use);
 317     }
 318     record_for_igvn(use);
 319     i -= uses_found;    // we deleted 1 or more copies of this edge
 320   }
 321 }
 322 
 323 
 324 static inline bool not_a_node(const Node* n) {
 325   if (n == NULL)                   return true;
 326   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 327   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 328   return false;
 329 }
 330 
 331 // Identify all nodes that are reachable from below, useful.
 332 // Use breadth-first pass that records state in a Unique_Node_List,
 333 // recursive traversal is slower.
 334 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 335   int estimated_worklist_size = unique();
 336   useful.map( estimated_worklist_size, NULL );  // preallocate space
 337 
 338   // Initialize worklist
 339   if (root() != NULL)     { useful.push(root()); }
 340   // If 'top' is cached, declare it useful to preserve cached node
 341   if( cached_top_node() ) { useful.push(cached_top_node()); }
 342 
 343   // Push all useful nodes onto the list, breadthfirst
 344   for( uint next = 0; next < useful.size(); ++next ) {
 345     assert( next < unique(), "Unique useful nodes < total nodes");
 346     Node *n  = useful.at(next);
 347     uint max = n->len();
 348     for( uint i = 0; i < max; ++i ) {
 349       Node *m = n->in(i);
 350       if (not_a_node(m))  continue;
 351       useful.push(m);
 352     }
 353   }
 354 }
 355 
 356 // Update dead_node_list with any missing dead nodes using useful
 357 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 358 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 359   uint max_idx = unique();
 360   VectorSet& useful_node_set = useful.member_set();
 361 
 362   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 363     // If node with index node_idx is not in useful set,
 364     // mark it as dead in dead node list.
 365     if (! useful_node_set.test(node_idx) ) {
 366       record_dead_node(node_idx);
 367     }
 368   }
 369 }
 370 
 371 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 372   int shift = 0;
 373   for (int i = 0; i < inlines->length(); i++) {
 374     CallGenerator* cg = inlines->at(i);
 375     CallNode* call = cg->call_node();
 376     if (shift > 0) {
 377       inlines->at_put(i-shift, cg);
 378     }
 379     if (!useful.member(call)) {
 380       shift++;
 381     }
 382   }
 383   inlines->trunc_to(inlines->length()-shift);
 384 }
 385 
 386 // Disconnect all useless nodes by disconnecting those at the boundary.
 387 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 388   uint next = 0;
 389   while (next < useful.size()) {
 390     Node *n = useful.at(next++);
 391     // Use raw traversal of out edges since this code removes out edges
 392     int max = n->outcnt();
 393     for (int j = 0; j < max; ++j) {
 394       Node* child = n->raw_out(j);
 395       if (! useful.member(child)) {
 396         assert(!child->is_top() || child != top(),
 397                "If top is cached in Compile object it is in useful list");
 398         // Only need to remove this out-edge to the useless node
 399         n->raw_del_out(j);
 400         --j;
 401         --max;
 402       }
 403     }
 404     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 405       record_for_igvn(n->unique_out());
 406     }
 407   }
 408   // Remove useless macro and predicate opaq nodes
 409   for (int i = C->macro_count()-1; i >= 0; i--) {
 410     Node* n = C->macro_node(i);
 411     if (!useful.member(n)) {
 412       remove_macro_node(n);
 413     }
 414   }
 415   // Remove useless expensive node
 416   for (int i = C->expensive_count()-1; i >= 0; i--) {
 417     Node* n = C->expensive_node(i);
 418     if (!useful.member(n)) {
 419       remove_expensive_node(n);
 420     }
 421   }
 422   // clean up the late inline lists
 423   remove_useless_late_inlines(&_string_late_inlines, useful);
 424   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 425   remove_useless_late_inlines(&_late_inlines, useful);
 426   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 427 }
 428 
 429 //------------------------------frame_size_in_words-----------------------------
 430 // frame_slots in units of words
 431 int Compile::frame_size_in_words() const {
 432   // shift is 0 in LP32 and 1 in LP64
 433   const int shift = (LogBytesPerWord - LogBytesPerInt);
 434   int words = _frame_slots >> shift;
 435   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 436   return words;
 437 }
 438 
 439 // ============================================================================
 440 //------------------------------CompileWrapper---------------------------------
 441 class CompileWrapper : public StackObj {
 442   Compile *const _compile;
 443  public:
 444   CompileWrapper(Compile* compile);
 445 
 446   ~CompileWrapper();
 447 };
 448 
 449 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 450   // the Compile* pointer is stored in the current ciEnv:
 451   ciEnv* env = compile->env();
 452   assert(env == ciEnv::current(), "must already be a ciEnv active");
 453   assert(env->compiler_data() == NULL, "compile already active?");
 454   env->set_compiler_data(compile);
 455   assert(compile == Compile::current(), "sanity");
 456 
 457   compile->set_type_dict(NULL);
 458   compile->set_type_hwm(NULL);
 459   compile->set_type_last_size(0);
 460   compile->set_last_tf(NULL, NULL);
 461   compile->set_indexSet_arena(NULL);
 462   compile->set_indexSet_free_block_list(NULL);
 463   compile->init_type_arena();
 464   Type::Initialize(compile);
 465   _compile->set_scratch_buffer_blob(NULL);
 466   _compile->begin_method();
 467 }
 468 CompileWrapper::~CompileWrapper() {
 469   _compile->end_method();
 470   if (_compile->scratch_buffer_blob() != NULL)
 471     BufferBlob::free(_compile->scratch_buffer_blob());
 472   _compile->env()->set_compiler_data(NULL);
 473 }
 474 
 475 
 476 //----------------------------print_compile_messages---------------------------
 477 void Compile::print_compile_messages() {
 478 #ifndef PRODUCT
 479   // Check if recompiling
 480   if (_subsume_loads == false && PrintOpto) {
 481     // Recompiling without allowing machine instructions to subsume loads
 482     tty->print_cr("*********************************************************");
 483     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 484     tty->print_cr("*********************************************************");
 485   }
 486   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 487     // Recompiling without escape analysis
 488     tty->print_cr("*********************************************************");
 489     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 490     tty->print_cr("*********************************************************");
 491   }
 492   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 493     // Recompiling without boxing elimination
 494     tty->print_cr("*********************************************************");
 495     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 496     tty->print_cr("*********************************************************");
 497   }
 498   if (env()->break_at_compile()) {
 499     // Open the debugger when compiling this method.
 500     tty->print("### Breaking when compiling: ");
 501     method()->print_short_name();
 502     tty->cr();
 503     BREAKPOINT;
 504   }
 505 
 506   if( PrintOpto ) {
 507     if (is_osr_compilation()) {
 508       tty->print("[OSR]%3d", _compile_id);
 509     } else {
 510       tty->print("%3d", _compile_id);
 511     }
 512   }
 513 #endif
 514 }
 515 
 516 
 517 //-----------------------init_scratch_buffer_blob------------------------------
 518 // Construct a temporary BufferBlob and cache it for this compile.
 519 void Compile::init_scratch_buffer_blob(int const_size) {
 520   // If there is already a scratch buffer blob allocated and the
 521   // constant section is big enough, use it.  Otherwise free the
 522   // current and allocate a new one.
 523   BufferBlob* blob = scratch_buffer_blob();
 524   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 525     // Use the current blob.
 526   } else {
 527     if (blob != NULL) {
 528       BufferBlob::free(blob);
 529     }
 530 
 531     ResourceMark rm;
 532     _scratch_const_size = const_size;
 533     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 534     blob = BufferBlob::create("Compile::scratch_buffer", size);
 535     // Record the buffer blob for next time.
 536     set_scratch_buffer_blob(blob);
 537     // Have we run out of code space?
 538     if (scratch_buffer_blob() == NULL) {
 539       // Let CompilerBroker disable further compilations.
 540       record_failure("Not enough space for scratch buffer in CodeCache");
 541       return;
 542     }
 543   }
 544 
 545   // Initialize the relocation buffers
 546   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 547   set_scratch_locs_memory(locs_buf);
 548 }
 549 
 550 
 551 //-----------------------scratch_emit_size-------------------------------------
 552 // Helper function that computes size by emitting code
 553 uint Compile::scratch_emit_size(const Node* n) {
 554   // Start scratch_emit_size section.
 555   set_in_scratch_emit_size(true);
 556 
 557   // Emit into a trash buffer and count bytes emitted.
 558   // This is a pretty expensive way to compute a size,
 559   // but it works well enough if seldom used.
 560   // All common fixed-size instructions are given a size
 561   // method by the AD file.
 562   // Note that the scratch buffer blob and locs memory are
 563   // allocated at the beginning of the compile task, and
 564   // may be shared by several calls to scratch_emit_size.
 565   // The allocation of the scratch buffer blob is particularly
 566   // expensive, since it has to grab the code cache lock.
 567   BufferBlob* blob = this->scratch_buffer_blob();
 568   assert(blob != NULL, "Initialize BufferBlob at start");
 569   assert(blob->size() > MAX_inst_size, "sanity");
 570   relocInfo* locs_buf = scratch_locs_memory();
 571   address blob_begin = blob->content_begin();
 572   address blob_end   = (address)locs_buf;
 573   assert(blob->content_contains(blob_end), "sanity");
 574   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 575   buf.initialize_consts_size(_scratch_const_size);
 576   buf.initialize_stubs_size(MAX_stubs_size);
 577   assert(locs_buf != NULL, "sanity");
 578   int lsize = MAX_locs_size / 3;
 579   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 580   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 581   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 582 
 583   // Do the emission.
 584 
 585   Label fakeL; // Fake label for branch instructions.
 586   Label*   saveL = NULL;
 587   uint save_bnum = 0;
 588   bool is_branch = n->is_MachBranch();
 589   if (is_branch) {
 590     MacroAssembler masm(&buf);
 591     masm.bind(fakeL);
 592     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 593     n->as_MachBranch()->label_set(&fakeL, 0);
 594   }
 595   n->emit(buf, this->regalloc());
 596   if (is_branch) // Restore label.
 597     n->as_MachBranch()->label_set(saveL, save_bnum);
 598 
 599   // End scratch_emit_size section.
 600   set_in_scratch_emit_size(false);
 601 
 602   return buf.insts_size();
 603 }
 604 
 605 
 606 // ============================================================================
 607 //------------------------------Compile standard-------------------------------
 608 debug_only( int Compile::_debug_idx = 100000; )
 609 
 610 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 611 // the continuation bci for on stack replacement.
 612 
 613 
 614 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 615                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 616                 : Phase(Compiler),
 617                   _env(ci_env),
 618                   _log(ci_env->log()),
 619                   _compile_id(ci_env->compile_id()),
 620                   _save_argument_registers(false),
 621                   _stub_name(NULL),
 622                   _stub_function(NULL),
 623                   _stub_entry_point(NULL),
 624                   _method(target),
 625                   _entry_bci(osr_bci),
 626                   _initial_gvn(NULL),
 627                   _for_igvn(NULL),
 628                   _warm_calls(NULL),
 629                   _subsume_loads(subsume_loads),
 630                   _do_escape_analysis(do_escape_analysis),
 631                   _eliminate_boxing(eliminate_boxing),
 632                   _failure_reason(NULL),
 633                   _code_buffer("Compile::Fill_buffer"),
 634                   _orig_pc_slot(0),
 635                   _orig_pc_slot_offset_in_bytes(0),
 636                   _has_method_handle_invokes(false),
 637                   _mach_constant_base_node(NULL),
 638                   _node_bundling_limit(0),
 639                   _node_bundling_base(NULL),
 640                   _java_calls(0),
 641                   _inner_loops(0),
 642                   _scratch_const_size(-1),
 643                   _in_scratch_emit_size(false),
 644                   _dead_node_list(comp_arena()),
 645                   _dead_node_count(0),
 646 #ifndef PRODUCT
 647                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 648                   _printer(IdealGraphPrinter::printer()),
 649 #endif
 650                   _congraph(NULL),
 651                   _replay_inline_data(NULL),
 652                   _late_inlines(comp_arena(), 2, 0, NULL),
 653                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 654                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 655                   _late_inlines_pos(0),
 656                   _number_of_mh_late_inlines(0),
 657                   _inlining_progress(false),
 658                   _inlining_incrementally(false),
 659                   _print_inlining_list(NULL),
 660                   _print_inlining_idx(0),
 661                   _preserve_jvm_state(0) {
 662   C = this;
 663 
 664   CompileWrapper cw(this);
 665 #ifndef PRODUCT
 666   if (TimeCompiler2) {
 667     tty->print(" ");
 668     target->holder()->name()->print();
 669     tty->print(".");
 670     target->print_short_name();
 671     tty->print("  ");
 672   }
 673   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 674   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 675   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 676   if (!print_opto_assembly) {
 677     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 678     if (print_assembly && !Disassembler::can_decode()) {
 679       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 680       print_opto_assembly = true;
 681     }
 682   }
 683   set_print_assembly(print_opto_assembly);
 684   set_parsed_irreducible_loop(false);
 685 
 686   if (method()->has_option("ReplayInline")) {
 687     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 688   }
 689 #endif
 690   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 691   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 692 
 693   if (ProfileTraps) {
 694     // Make sure the method being compiled gets its own MDO,
 695     // so we can at least track the decompile_count().
 696     method()->ensure_method_data();
 697   }
 698 
 699   Init(::AliasLevel);
 700 
 701 
 702   print_compile_messages();
 703 
 704   _ilt = InlineTree::build_inline_tree_root();
 705 
 706   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 707   assert(num_alias_types() >= AliasIdxRaw, "");
 708 
 709 #define MINIMUM_NODE_HASH  1023
 710   // Node list that Iterative GVN will start with
 711   Unique_Node_List for_igvn(comp_arena());
 712   set_for_igvn(&for_igvn);
 713 
 714   // GVN that will be run immediately on new nodes
 715   uint estimated_size = method()->code_size()*4+64;
 716   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 717   PhaseGVN gvn(node_arena(), estimated_size);
 718   set_initial_gvn(&gvn);
 719 
 720   if (print_inlining() || print_intrinsics()) {
 721     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 722   }
 723   { // Scope for timing the parser
 724     TracePhase t3("parse", &_t_parser, true);
 725 
 726     // Put top into the hash table ASAP.
 727     initial_gvn()->transform_no_reclaim(top());
 728 
 729     // Set up tf(), start(), and find a CallGenerator.
 730     CallGenerator* cg = NULL;
 731     if (is_osr_compilation()) {
 732       const TypeTuple *domain = StartOSRNode::osr_domain();
 733       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 734       init_tf(TypeFunc::make(domain, range));
 735       StartNode* s = new (this) StartOSRNode(root(), domain);
 736       initial_gvn()->set_type_bottom(s);
 737       init_start(s);
 738       cg = CallGenerator::for_osr(method(), entry_bci());
 739     } else {
 740       // Normal case.
 741       init_tf(TypeFunc::make(method()));
 742       StartNode* s = new (this) StartNode(root(), tf()->domain());
 743       initial_gvn()->set_type_bottom(s);
 744       init_start(s);
 745       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 746         // With java.lang.ref.reference.get() we must go through the
 747         // intrinsic when G1 is enabled - even when get() is the root
 748         // method of the compile - so that, if necessary, the value in
 749         // the referent field of the reference object gets recorded by
 750         // the pre-barrier code.
 751         // Specifically, if G1 is enabled, the value in the referent
 752         // field is recorded by the G1 SATB pre barrier. This will
 753         // result in the referent being marked live and the reference
 754         // object removed from the list of discovered references during
 755         // reference processing.
 756         cg = find_intrinsic(method(), false);
 757       }
 758       if (cg == NULL) {
 759         float past_uses = method()->interpreter_invocation_count();
 760         float expected_uses = past_uses;
 761         cg = CallGenerator::for_inline(method(), expected_uses);
 762       }
 763     }
 764     if (failing())  return;
 765     if (cg == NULL) {
 766       record_method_not_compilable_all_tiers("cannot parse method");
 767       return;
 768     }
 769     JVMState* jvms = build_start_state(start(), tf());
 770     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 771       record_method_not_compilable("method parse failed");
 772       return;
 773     }
 774     GraphKit kit(jvms);
 775 
 776     if (!kit.stopped()) {
 777       // Accept return values, and transfer control we know not where.
 778       // This is done by a special, unique ReturnNode bound to root.
 779       return_values(kit.jvms());
 780     }
 781 
 782     if (kit.has_exceptions()) {
 783       // Any exceptions that escape from this call must be rethrown
 784       // to whatever caller is dynamically above us on the stack.
 785       // This is done by a special, unique RethrowNode bound to root.
 786       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 787     }
 788 
 789     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 790 
 791     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 792       inline_string_calls(true);
 793     }
 794 
 795     if (failing())  return;
 796 
 797     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 798 
 799     // Remove clutter produced by parsing.
 800     if (!failing()) {
 801       ResourceMark rm;
 802       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 803     }
 804   }
 805 
 806   // Note:  Large methods are capped off in do_one_bytecode().
 807   if (failing())  return;
 808 
 809   // After parsing, node notes are no longer automagic.
 810   // They must be propagated by register_new_node_with_optimizer(),
 811   // clone(), or the like.
 812   set_default_node_notes(NULL);
 813 
 814   for (;;) {
 815     int successes = Inline_Warm();
 816     if (failing())  return;
 817     if (successes == 0)  break;
 818   }
 819 
 820   // Drain the list.
 821   Finish_Warm();
 822 #ifndef PRODUCT
 823   if (_printer) {
 824     _printer->print_inlining(this);
 825   }
 826 #endif
 827 
 828   if (failing())  return;
 829   NOT_PRODUCT( verify_graph_edges(); )
 830 
 831   // Now optimize
 832   Optimize();
 833   if (failing())  return;
 834   NOT_PRODUCT( verify_graph_edges(); )
 835 
 836 #ifndef PRODUCT
 837   if (PrintIdeal) {
 838     ttyLocker ttyl;  // keep the following output all in one block
 839     // This output goes directly to the tty, not the compiler log.
 840     // To enable tools to match it up with the compilation activity,
 841     // be sure to tag this tty output with the compile ID.
 842     if (xtty != NULL) {
 843       xtty->head("ideal compile_id='%d'%s", compile_id(),
 844                  is_osr_compilation()    ? " compile_kind='osr'" :
 845                  "");
 846     }
 847     root()->dump(9999);
 848     if (xtty != NULL) {
 849       xtty->tail("ideal");
 850     }
 851   }
 852 #endif
 853 
 854   NOT_PRODUCT( verify_barriers(); )
 855 
 856   // Dump compilation data to replay it.
 857   if (method()->has_option("DumpReplay")) {
 858     env()->dump_replay_data(_compile_id);
 859   }
 860   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 861     env()->dump_inline_data(_compile_id);
 862   }
 863 
 864   // Now that we know the size of all the monitors we can add a fixed slot
 865   // for the original deopt pc.
 866 
 867   _orig_pc_slot =  fixed_slots();
 868   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 869   set_fixed_slots(next_slot);
 870 
 871   // Now generate code
 872   Code_Gen();
 873   if (failing())  return;
 874 
 875   // Check if we want to skip execution of all compiled code.
 876   {
 877 #ifndef PRODUCT
 878     if (OptoNoExecute) {
 879       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 880       return;
 881     }
 882     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 883 #endif
 884 
 885     if (is_osr_compilation()) {
 886       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 887       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 888     } else {
 889       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 890       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 891     }
 892 
 893     env()->register_method(_method, _entry_bci,
 894                            &_code_offsets,
 895                            _orig_pc_slot_offset_in_bytes,
 896                            code_buffer(),
 897                            frame_size_in_words(), _oop_map_set,
 898                            &_handler_table, &_inc_table,
 899                            compiler,
 900                            env()->comp_level(),
 901                            has_unsafe_access(),
 902                            SharedRuntime::is_wide_vector(max_vector_size())
 903                            );
 904 
 905     if (log() != NULL) // Print code cache state into compiler log
 906       log()->code_cache_state();
 907   }
 908 }
 909 
 910 //------------------------------Compile----------------------------------------
 911 // Compile a runtime stub
 912 Compile::Compile( ciEnv* ci_env,
 913                   TypeFunc_generator generator,
 914                   address stub_function,
 915                   const char *stub_name,
 916                   int is_fancy_jump,
 917                   bool pass_tls,
 918                   bool save_arg_registers,
 919                   bool return_pc )
 920   : Phase(Compiler),
 921     _env(ci_env),
 922     _log(ci_env->log()),
 923     _compile_id(0),
 924     _save_argument_registers(save_arg_registers),
 925     _method(NULL),
 926     _stub_name(stub_name),
 927     _stub_function(stub_function),
 928     _stub_entry_point(NULL),
 929     _entry_bci(InvocationEntryBci),
 930     _initial_gvn(NULL),
 931     _for_igvn(NULL),
 932     _warm_calls(NULL),
 933     _orig_pc_slot(0),
 934     _orig_pc_slot_offset_in_bytes(0),
 935     _subsume_loads(true),
 936     _do_escape_analysis(false),
 937     _eliminate_boxing(false),
 938     _failure_reason(NULL),
 939     _code_buffer("Compile::Fill_buffer"),
 940     _has_method_handle_invokes(false),
 941     _mach_constant_base_node(NULL),
 942     _node_bundling_limit(0),
 943     _node_bundling_base(NULL),
 944     _java_calls(0),
 945     _inner_loops(0),
 946 #ifndef PRODUCT
 947     _trace_opto_output(TraceOptoOutput),
 948     _printer(NULL),
 949 #endif
 950     _dead_node_list(comp_arena()),
 951     _dead_node_count(0),
 952     _congraph(NULL),
 953     _replay_inline_data(NULL),
 954     _number_of_mh_late_inlines(0),
 955     _inlining_progress(false),
 956     _inlining_incrementally(false),
 957     _print_inlining_list(NULL),
 958     _print_inlining_idx(0),
 959     _preserve_jvm_state(0) {
 960   C = this;
 961 
 962 #ifndef PRODUCT
 963   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 964   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 965   set_print_assembly(PrintFrameConverterAssembly);
 966   set_parsed_irreducible_loop(false);
 967 #endif
 968   CompileWrapper cw(this);
 969   Init(/*AliasLevel=*/ 0);
 970   init_tf((*generator)());
 971 
 972   {
 973     // The following is a dummy for the sake of GraphKit::gen_stub
 974     Unique_Node_List for_igvn(comp_arena());
 975     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 976     PhaseGVN gvn(Thread::current()->resource_area(),255);
 977     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 978     gvn.transform_no_reclaim(top());
 979 
 980     GraphKit kit;
 981     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 982   }
 983 
 984   NOT_PRODUCT( verify_graph_edges(); )
 985   Code_Gen();
 986   if (failing())  return;
 987 
 988 
 989   // Entry point will be accessed using compile->stub_entry_point();
 990   if (code_buffer() == NULL) {
 991     Matcher::soft_match_failure();
 992   } else {
 993     if (PrintAssembly && (WizardMode || Verbose))
 994       tty->print_cr("### Stub::%s", stub_name);
 995 
 996     if (!failing()) {
 997       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 998 
 999       // Make the NMethod
1000       // For now we mark the frame as never safe for profile stackwalking
1001       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1002                                                       code_buffer(),
1003                                                       CodeOffsets::frame_never_safe,
1004                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1005                                                       frame_size_in_words(),
1006                                                       _oop_map_set,
1007                                                       save_arg_registers);
1008       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1009 
1010       _stub_entry_point = rs->entry_point();
1011     }
1012   }
1013 }
1014 
1015 //------------------------------Init-------------------------------------------
1016 // Prepare for a single compilation
1017 void Compile::Init(int aliaslevel) {
1018   _unique  = 0;
1019   _regalloc = NULL;
1020 
1021   _tf      = NULL;  // filled in later
1022   _top     = NULL;  // cached later
1023   _matcher = NULL;  // filled in later
1024   _cfg     = NULL;  // filled in later
1025 
1026   set_24_bit_selection_and_mode(Use24BitFP, false);
1027 
1028   _node_note_array = NULL;
1029   _default_node_notes = NULL;
1030 
1031   _immutable_memory = NULL; // filled in at first inquiry
1032 
1033   // Globally visible Nodes
1034   // First set TOP to NULL to give safe behavior during creation of RootNode
1035   set_cached_top_node(NULL);
1036   set_root(new (this) RootNode());
1037   // Now that you have a Root to point to, create the real TOP
1038   set_cached_top_node( new (this) ConNode(Type::TOP) );
1039   set_recent_alloc(NULL, NULL);
1040 
1041   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1042   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1043   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1044   env()->set_dependencies(new Dependencies(env()));
1045 
1046   _fixed_slots = 0;
1047   set_has_split_ifs(false);
1048   set_has_loops(has_method() && method()->has_loops()); // first approximation
1049   set_has_stringbuilder(false);
1050   set_has_boxed_value(false);
1051   _trap_can_recompile = false;  // no traps emitted yet
1052   _major_progress = true; // start out assuming good things will happen
1053   set_has_unsafe_access(false);
1054   set_max_vector_size(0);
1055   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1056   set_decompile_count(0);
1057 
1058   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1059   set_num_loop_opts(LoopOptsCount);
1060   set_do_inlining(Inline);
1061   set_max_inline_size(MaxInlineSize);
1062   set_freq_inline_size(FreqInlineSize);
1063   set_do_scheduling(OptoScheduling);
1064   set_do_count_invocations(false);
1065   set_do_method_data_update(false);
1066 
1067   if (debug_info()->recording_non_safepoints()) {
1068     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1069                         (comp_arena(), 8, 0, NULL));
1070     set_default_node_notes(Node_Notes::make(this));
1071   }
1072 
1073   // // -- Initialize types before each compile --
1074   // // Update cached type information
1075   // if( _method && _method->constants() )
1076   //   Type::update_loaded_types(_method, _method->constants());
1077 
1078   // Init alias_type map.
1079   if (!_do_escape_analysis && aliaslevel == 3)
1080     aliaslevel = 2;  // No unique types without escape analysis
1081   _AliasLevel = aliaslevel;
1082   const int grow_ats = 16;
1083   _max_alias_types = grow_ats;
1084   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1085   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1086   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1087   {
1088     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1089   }
1090   // Initialize the first few types.
1091   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1092   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1093   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1094   _num_alias_types = AliasIdxRaw+1;
1095   // Zero out the alias type cache.
1096   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1097   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1098   probe_alias_cache(NULL)->_index = AliasIdxTop;
1099 
1100   _intrinsics = NULL;
1101   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1102   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1103   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1104   register_library_intrinsics();
1105 }
1106 
1107 //---------------------------init_start----------------------------------------
1108 // Install the StartNode on this compile object.
1109 void Compile::init_start(StartNode* s) {
1110   if (failing())
1111     return; // already failing
1112   assert(s == start(), "");
1113 }
1114 
1115 StartNode* Compile::start() const {
1116   assert(!failing(), "");
1117   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1118     Node* start = root()->fast_out(i);
1119     if( start->is_Start() )
1120       return start->as_Start();
1121   }
1122   ShouldNotReachHere();
1123   return NULL;
1124 }
1125 
1126 //-------------------------------immutable_memory-------------------------------------
1127 // Access immutable memory
1128 Node* Compile::immutable_memory() {
1129   if (_immutable_memory != NULL) {
1130     return _immutable_memory;
1131   }
1132   StartNode* s = start();
1133   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1134     Node *p = s->fast_out(i);
1135     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1136       _immutable_memory = p;
1137       return _immutable_memory;
1138     }
1139   }
1140   ShouldNotReachHere();
1141   return NULL;
1142 }
1143 
1144 //----------------------set_cached_top_node------------------------------------
1145 // Install the cached top node, and make sure Node::is_top works correctly.
1146 void Compile::set_cached_top_node(Node* tn) {
1147   if (tn != NULL)  verify_top(tn);
1148   Node* old_top = _top;
1149   _top = tn;
1150   // Calling Node::setup_is_top allows the nodes the chance to adjust
1151   // their _out arrays.
1152   if (_top != NULL)     _top->setup_is_top();
1153   if (old_top != NULL)  old_top->setup_is_top();
1154   assert(_top == NULL || top()->is_top(), "");
1155 }
1156 
1157 #ifdef ASSERT
1158 uint Compile::count_live_nodes_by_graph_walk() {
1159   Unique_Node_List useful(comp_arena());
1160   // Get useful node list by walking the graph.
1161   identify_useful_nodes(useful);
1162   return useful.size();
1163 }
1164 
1165 void Compile::print_missing_nodes() {
1166 
1167   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1168   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1169     return;
1170   }
1171 
1172   // This is an expensive function. It is executed only when the user
1173   // specifies VerifyIdealNodeCount option or otherwise knows the
1174   // additional work that needs to be done to identify reachable nodes
1175   // by walking the flow graph and find the missing ones using
1176   // _dead_node_list.
1177 
1178   Unique_Node_List useful(comp_arena());
1179   // Get useful node list by walking the graph.
1180   identify_useful_nodes(useful);
1181 
1182   uint l_nodes = C->live_nodes();
1183   uint l_nodes_by_walk = useful.size();
1184 
1185   if (l_nodes != l_nodes_by_walk) {
1186     if (_log != NULL) {
1187       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1188       _log->stamp();
1189       _log->end_head();
1190     }
1191     VectorSet& useful_member_set = useful.member_set();
1192     int last_idx = l_nodes_by_walk;
1193     for (int i = 0; i < last_idx; i++) {
1194       if (useful_member_set.test(i)) {
1195         if (_dead_node_list.test(i)) {
1196           if (_log != NULL) {
1197             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1198           }
1199           if (PrintIdealNodeCount) {
1200             // Print the log message to tty
1201               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1202               useful.at(i)->dump();
1203           }
1204         }
1205       }
1206       else if (! _dead_node_list.test(i)) {
1207         if (_log != NULL) {
1208           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1209         }
1210         if (PrintIdealNodeCount) {
1211           // Print the log message to tty
1212           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1213         }
1214       }
1215     }
1216     if (_log != NULL) {
1217       _log->tail("mismatched_nodes");
1218     }
1219   }
1220 }
1221 #endif
1222 
1223 #ifndef PRODUCT
1224 void Compile::verify_top(Node* tn) const {
1225   if (tn != NULL) {
1226     assert(tn->is_Con(), "top node must be a constant");
1227     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1228     assert(tn->in(0) != NULL, "must have live top node");
1229   }
1230 }
1231 #endif
1232 
1233 
1234 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1235 
1236 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1237   guarantee(arr != NULL, "");
1238   int num_blocks = arr->length();
1239   if (grow_by < num_blocks)  grow_by = num_blocks;
1240   int num_notes = grow_by * _node_notes_block_size;
1241   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1242   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1243   while (num_notes > 0) {
1244     arr->append(notes);
1245     notes     += _node_notes_block_size;
1246     num_notes -= _node_notes_block_size;
1247   }
1248   assert(num_notes == 0, "exact multiple, please");
1249 }
1250 
1251 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1252   if (source == NULL || dest == NULL)  return false;
1253 
1254   if (dest->is_Con())
1255     return false;               // Do not push debug info onto constants.
1256 
1257 #ifdef ASSERT
1258   // Leave a bread crumb trail pointing to the original node:
1259   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1260     dest->set_debug_orig(source);
1261   }
1262 #endif
1263 
1264   if (node_note_array() == NULL)
1265     return false;               // Not collecting any notes now.
1266 
1267   // This is a copy onto a pre-existing node, which may already have notes.
1268   // If both nodes have notes, do not overwrite any pre-existing notes.
1269   Node_Notes* source_notes = node_notes_at(source->_idx);
1270   if (source_notes == NULL || source_notes->is_clear())  return false;
1271   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1272   if (dest_notes == NULL || dest_notes->is_clear()) {
1273     return set_node_notes_at(dest->_idx, source_notes);
1274   }
1275 
1276   Node_Notes merged_notes = (*source_notes);
1277   // The order of operations here ensures that dest notes will win...
1278   merged_notes.update_from(dest_notes);
1279   return set_node_notes_at(dest->_idx, &merged_notes);
1280 }
1281 
1282 
1283 //--------------------------allow_range_check_smearing-------------------------
1284 // Gating condition for coalescing similar range checks.
1285 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1286 // single covering check that is at least as strong as any of them.
1287 // If the optimization succeeds, the simplified (strengthened) range check
1288 // will always succeed.  If it fails, we will deopt, and then give up
1289 // on the optimization.
1290 bool Compile::allow_range_check_smearing() const {
1291   // If this method has already thrown a range-check,
1292   // assume it was because we already tried range smearing
1293   // and it failed.
1294   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1295   return !already_trapped;
1296 }
1297 
1298 
1299 //------------------------------flatten_alias_type-----------------------------
1300 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1301   int offset = tj->offset();
1302   TypePtr::PTR ptr = tj->ptr();
1303 
1304   // Known instance (scalarizable allocation) alias only with itself.
1305   bool is_known_inst = tj->isa_oopptr() != NULL &&
1306                        tj->is_oopptr()->is_known_instance();
1307 
1308   // Process weird unsafe references.
1309   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1310     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1311     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1312     tj = TypeOopPtr::BOTTOM;
1313     ptr = tj->ptr();
1314     offset = tj->offset();
1315   }
1316 
1317   // Array pointers need some flattening
1318   const TypeAryPtr *ta = tj->isa_aryptr();
1319   if (ta && ta->is_stable()) {
1320     // Erase stability property for alias analysis.
1321     tj = ta = ta->cast_to_stable(false);
1322   }
1323   if( ta && is_known_inst ) {
1324     if ( offset != Type::OffsetBot &&
1325          offset > arrayOopDesc::length_offset_in_bytes() ) {
1326       offset = Type::OffsetBot; // Flatten constant access into array body only
1327       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1328     }
1329   } else if( ta && _AliasLevel >= 2 ) {
1330     // For arrays indexed by constant indices, we flatten the alias
1331     // space to include all of the array body.  Only the header, klass
1332     // and array length can be accessed un-aliased.
1333     if( offset != Type::OffsetBot ) {
1334       if( ta->const_oop() ) { // MethodData* or Method*
1335         offset = Type::OffsetBot;   // Flatten constant access into array body
1336         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1337       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1338         // range is OK as-is.
1339         tj = ta = TypeAryPtr::RANGE;
1340       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1341         tj = TypeInstPtr::KLASS; // all klass loads look alike
1342         ta = TypeAryPtr::RANGE; // generic ignored junk
1343         ptr = TypePtr::BotPTR;
1344       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1345         tj = TypeInstPtr::MARK;
1346         ta = TypeAryPtr::RANGE; // generic ignored junk
1347         ptr = TypePtr::BotPTR;
1348       } else {                  // Random constant offset into array body
1349         offset = Type::OffsetBot;   // Flatten constant access into array body
1350         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1351       }
1352     }
1353     // Arrays of fixed size alias with arrays of unknown size.
1354     if (ta->size() != TypeInt::POS) {
1355       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1356       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1357     }
1358     // Arrays of known objects become arrays of unknown objects.
1359     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1360       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1361       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1362     }
1363     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1364       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1365       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1366     }
1367     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1368     // cannot be distinguished by bytecode alone.
1369     if (ta->elem() == TypeInt::BOOL) {
1370       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1371       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1372       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1373     }
1374     // During the 2nd round of IterGVN, NotNull castings are removed.
1375     // Make sure the Bottom and NotNull variants alias the same.
1376     // Also, make sure exact and non-exact variants alias the same.
1377     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1378       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1379     }
1380   }
1381 
1382   // Oop pointers need some flattening
1383   const TypeInstPtr *to = tj->isa_instptr();
1384   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1385     ciInstanceKlass *k = to->klass()->as_instance_klass();
1386     if( ptr == TypePtr::Constant ) {
1387       if (to->klass() != ciEnv::current()->Class_klass() ||
1388           offset < k->size_helper() * wordSize) {
1389         // No constant oop pointers (such as Strings); they alias with
1390         // unknown strings.
1391         assert(!is_known_inst, "not scalarizable allocation");
1392         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1393       }
1394     } else if( is_known_inst ) {
1395       tj = to; // Keep NotNull and klass_is_exact for instance type
1396     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1397       // During the 2nd round of IterGVN, NotNull castings are removed.
1398       // Make sure the Bottom and NotNull variants alias the same.
1399       // Also, make sure exact and non-exact variants alias the same.
1400       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1401     }
1402     if (to->speculative() != NULL) {
1403       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1404     }
1405     // Canonicalize the holder of this field
1406     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1407       // First handle header references such as a LoadKlassNode, even if the
1408       // object's klass is unloaded at compile time (4965979).
1409       if (!is_known_inst) { // Do it only for non-instance types
1410         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1411       }
1412     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1413       // Static fields are in the space above the normal instance
1414       // fields in the java.lang.Class instance.
1415       if (to->klass() != ciEnv::current()->Class_klass()) {
1416         to = NULL;
1417         tj = TypeOopPtr::BOTTOM;
1418         offset = tj->offset();
1419       }
1420     } else {
1421       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1422       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1423         if( is_known_inst ) {
1424           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1425         } else {
1426           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1427         }
1428       }
1429     }
1430   }
1431 
1432   // Klass pointers to object array klasses need some flattening
1433   const TypeKlassPtr *tk = tj->isa_klassptr();
1434   if( tk ) {
1435     // If we are referencing a field within a Klass, we need
1436     // to assume the worst case of an Object.  Both exact and
1437     // inexact types must flatten to the same alias class so
1438     // use NotNull as the PTR.
1439     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1440 
1441       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1442                                    TypeKlassPtr::OBJECT->klass(),
1443                                    offset);
1444     }
1445 
1446     ciKlass* klass = tk->klass();
1447     if( klass->is_obj_array_klass() ) {
1448       ciKlass* k = TypeAryPtr::OOPS->klass();
1449       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1450         k = TypeInstPtr::BOTTOM->klass();
1451       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1452     }
1453 
1454     // Check for precise loads from the primary supertype array and force them
1455     // to the supertype cache alias index.  Check for generic array loads from
1456     // the primary supertype array and also force them to the supertype cache
1457     // alias index.  Since the same load can reach both, we need to merge
1458     // these 2 disparate memories into the same alias class.  Since the
1459     // primary supertype array is read-only, there's no chance of confusion
1460     // where we bypass an array load and an array store.
1461     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1462     if (offset == Type::OffsetBot ||
1463         (offset >= primary_supers_offset &&
1464          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1465         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1466       offset = in_bytes(Klass::secondary_super_cache_offset());
1467       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1468     }
1469   }
1470 
1471   // Flatten all Raw pointers together.
1472   if (tj->base() == Type::RawPtr)
1473     tj = TypeRawPtr::BOTTOM;
1474 
1475   if (tj->base() == Type::AnyPtr)
1476     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1477 
1478   // Flatten all to bottom for now
1479   switch( _AliasLevel ) {
1480   case 0:
1481     tj = TypePtr::BOTTOM;
1482     break;
1483   case 1:                       // Flatten to: oop, static, field or array
1484     switch (tj->base()) {
1485     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1486     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1487     case Type::AryPtr:   // do not distinguish arrays at all
1488     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1489     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1490     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1491     default: ShouldNotReachHere();
1492     }
1493     break;
1494   case 2:                       // No collapsing at level 2; keep all splits
1495   case 3:                       // No collapsing at level 3; keep all splits
1496     break;
1497   default:
1498     Unimplemented();
1499   }
1500 
1501   offset = tj->offset();
1502   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1503 
1504   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1505           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1506           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1507           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1508           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1509           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1510           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1511           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1512   assert( tj->ptr() != TypePtr::TopPTR &&
1513           tj->ptr() != TypePtr::AnyNull &&
1514           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1515 //    assert( tj->ptr() != TypePtr::Constant ||
1516 //            tj->base() == Type::RawPtr ||
1517 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1518 
1519   return tj;
1520 }
1521 
1522 void Compile::AliasType::Init(int i, const TypePtr* at) {
1523   _index = i;
1524   _adr_type = at;
1525   _field = NULL;
1526   _element = NULL;
1527   _is_rewritable = true; // default
1528   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1529   if (atoop != NULL && atoop->is_known_instance()) {
1530     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1531     _general_index = Compile::current()->get_alias_index(gt);
1532   } else {
1533     _general_index = 0;
1534   }
1535 }
1536 
1537 //---------------------------------print_on------------------------------------
1538 #ifndef PRODUCT
1539 void Compile::AliasType::print_on(outputStream* st) {
1540   if (index() < 10)
1541         st->print("@ <%d> ", index());
1542   else  st->print("@ <%d>",  index());
1543   st->print(is_rewritable() ? "   " : " RO");
1544   int offset = adr_type()->offset();
1545   if (offset == Type::OffsetBot)
1546         st->print(" +any");
1547   else  st->print(" +%-3d", offset);
1548   st->print(" in ");
1549   adr_type()->dump_on(st);
1550   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1551   if (field() != NULL && tjp) {
1552     if (tjp->klass()  != field()->holder() ||
1553         tjp->offset() != field()->offset_in_bytes()) {
1554       st->print(" != ");
1555       field()->print();
1556       st->print(" ***");
1557     }
1558   }
1559 }
1560 
1561 void print_alias_types() {
1562   Compile* C = Compile::current();
1563   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1564   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1565     C->alias_type(idx)->print_on(tty);
1566     tty->cr();
1567   }
1568 }
1569 #endif
1570 
1571 
1572 //----------------------------probe_alias_cache--------------------------------
1573 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1574   intptr_t key = (intptr_t) adr_type;
1575   key ^= key >> logAliasCacheSize;
1576   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1577 }
1578 
1579 
1580 //-----------------------------grow_alias_types--------------------------------
1581 void Compile::grow_alias_types() {
1582   const int old_ats  = _max_alias_types; // how many before?
1583   const int new_ats  = old_ats;          // how many more?
1584   const int grow_ats = old_ats+new_ats;  // how many now?
1585   _max_alias_types = grow_ats;
1586   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1587   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1588   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1589   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1590 }
1591 
1592 
1593 //--------------------------------find_alias_type------------------------------
1594 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1595   if (_AliasLevel == 0)
1596     return alias_type(AliasIdxBot);
1597 
1598   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1599   if (ace->_adr_type == adr_type) {
1600     return alias_type(ace->_index);
1601   }
1602 
1603   // Handle special cases.
1604   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1605   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1606 
1607   // Do it the slow way.
1608   const TypePtr* flat = flatten_alias_type(adr_type);
1609 
1610 #ifdef ASSERT
1611   assert(flat == flatten_alias_type(flat), "idempotent");
1612   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1613   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1614     const TypeOopPtr* foop = flat->is_oopptr();
1615     // Scalarizable allocations have exact klass always.
1616     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1617     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1618     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1619   }
1620   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1621 #endif
1622 
1623   int idx = AliasIdxTop;
1624   for (int i = 0; i < num_alias_types(); i++) {
1625     if (alias_type(i)->adr_type() == flat) {
1626       idx = i;
1627       break;
1628     }
1629   }
1630 
1631   if (idx == AliasIdxTop) {
1632     if (no_create)  return NULL;
1633     // Grow the array if necessary.
1634     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1635     // Add a new alias type.
1636     idx = _num_alias_types++;
1637     _alias_types[idx]->Init(idx, flat);
1638     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1639     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1640     if (flat->isa_instptr()) {
1641       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1642           && flat->is_instptr()->klass() == env()->Class_klass())
1643         alias_type(idx)->set_rewritable(false);
1644     }
1645     if (flat->isa_aryptr()) {
1646 #ifdef ASSERT
1647       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1648       // (T_BYTE has the weakest alignment and size restrictions...)
1649       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1650 #endif
1651       if (flat->offset() == TypePtr::OffsetBot) {
1652         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1653       }
1654     }
1655     if (flat->isa_klassptr()) {
1656       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1657         alias_type(idx)->set_rewritable(false);
1658       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1659         alias_type(idx)->set_rewritable(false);
1660       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1661         alias_type(idx)->set_rewritable(false);
1662       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1663         alias_type(idx)->set_rewritable(false);
1664     }
1665     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1666     // but the base pointer type is not distinctive enough to identify
1667     // references into JavaThread.)
1668 
1669     // Check for final fields.
1670     const TypeInstPtr* tinst = flat->isa_instptr();
1671     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1672       ciField* field;
1673       if (tinst->const_oop() != NULL &&
1674           tinst->klass() == ciEnv::current()->Class_klass() &&
1675           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1676         // static field
1677         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1678         field = k->get_field_by_offset(tinst->offset(), true);
1679       } else {
1680         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1681         field = k->get_field_by_offset(tinst->offset(), false);
1682       }
1683       assert(field == NULL ||
1684              original_field == NULL ||
1685              (field->holder() == original_field->holder() &&
1686               field->offset() == original_field->offset() &&
1687               field->is_static() == original_field->is_static()), "wrong field?");
1688       // Set field() and is_rewritable() attributes.
1689       if (field != NULL)  alias_type(idx)->set_field(field);
1690     }
1691   }
1692 
1693   // Fill the cache for next time.
1694   ace->_adr_type = adr_type;
1695   ace->_index    = idx;
1696   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1697 
1698   // Might as well try to fill the cache for the flattened version, too.
1699   AliasCacheEntry* face = probe_alias_cache(flat);
1700   if (face->_adr_type == NULL) {
1701     face->_adr_type = flat;
1702     face->_index    = idx;
1703     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1704   }
1705 
1706   return alias_type(idx);
1707 }
1708 
1709 
1710 Compile::AliasType* Compile::alias_type(ciField* field) {
1711   const TypeOopPtr* t;
1712   if (field->is_static())
1713     t = TypeInstPtr::make(field->holder()->java_mirror());
1714   else
1715     t = TypeOopPtr::make_from_klass_raw(field->holder());
1716   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1717   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1718   return atp;
1719 }
1720 
1721 
1722 //------------------------------have_alias_type--------------------------------
1723 bool Compile::have_alias_type(const TypePtr* adr_type) {
1724   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1725   if (ace->_adr_type == adr_type) {
1726     return true;
1727   }
1728 
1729   // Handle special cases.
1730   if (adr_type == NULL)             return true;
1731   if (adr_type == TypePtr::BOTTOM)  return true;
1732 
1733   return find_alias_type(adr_type, true, NULL) != NULL;
1734 }
1735 
1736 //-----------------------------must_alias--------------------------------------
1737 // True if all values of the given address type are in the given alias category.
1738 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1739   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1740   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1741   if (alias_idx == AliasIdxTop)         return false; // the empty category
1742   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1743 
1744   // the only remaining possible overlap is identity
1745   int adr_idx = get_alias_index(adr_type);
1746   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1747   assert(adr_idx == alias_idx ||
1748          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1749           && adr_type                       != TypeOopPtr::BOTTOM),
1750          "should not be testing for overlap with an unsafe pointer");
1751   return adr_idx == alias_idx;
1752 }
1753 
1754 //------------------------------can_alias--------------------------------------
1755 // True if any values of the given address type are in the given alias category.
1756 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1757   if (alias_idx == AliasIdxTop)         return false; // the empty category
1758   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1759   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1760   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1761 
1762   // the only remaining possible overlap is identity
1763   int adr_idx = get_alias_index(adr_type);
1764   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1765   return adr_idx == alias_idx;
1766 }
1767 
1768 
1769 
1770 //---------------------------pop_warm_call-------------------------------------
1771 WarmCallInfo* Compile::pop_warm_call() {
1772   WarmCallInfo* wci = _warm_calls;
1773   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1774   return wci;
1775 }
1776 
1777 //----------------------------Inline_Warm--------------------------------------
1778 int Compile::Inline_Warm() {
1779   // If there is room, try to inline some more warm call sites.
1780   // %%% Do a graph index compaction pass when we think we're out of space?
1781   if (!InlineWarmCalls)  return 0;
1782 
1783   int calls_made_hot = 0;
1784   int room_to_grow   = NodeCountInliningCutoff - unique();
1785   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1786   int amount_grown   = 0;
1787   WarmCallInfo* call;
1788   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1789     int est_size = (int)call->size();
1790     if (est_size > (room_to_grow - amount_grown)) {
1791       // This one won't fit anyway.  Get rid of it.
1792       call->make_cold();
1793       continue;
1794     }
1795     call->make_hot();
1796     calls_made_hot++;
1797     amount_grown   += est_size;
1798     amount_to_grow -= est_size;
1799   }
1800 
1801   if (calls_made_hot > 0)  set_major_progress();
1802   return calls_made_hot;
1803 }
1804 
1805 
1806 //----------------------------Finish_Warm--------------------------------------
1807 void Compile::Finish_Warm() {
1808   if (!InlineWarmCalls)  return;
1809   if (failing())  return;
1810   if (warm_calls() == NULL)  return;
1811 
1812   // Clean up loose ends, if we are out of space for inlining.
1813   WarmCallInfo* call;
1814   while ((call = pop_warm_call()) != NULL) {
1815     call->make_cold();
1816   }
1817 }
1818 
1819 //---------------------cleanup_loop_predicates-----------------------
1820 // Remove the opaque nodes that protect the predicates so that all unused
1821 // checks and uncommon_traps will be eliminated from the ideal graph
1822 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1823   if (predicate_count()==0) return;
1824   for (int i = predicate_count(); i > 0; i--) {
1825     Node * n = predicate_opaque1_node(i-1);
1826     assert(n->Opcode() == Op_Opaque1, "must be");
1827     igvn.replace_node(n, n->in(1));
1828   }
1829   assert(predicate_count()==0, "should be clean!");
1830 }
1831 
1832 // StringOpts and late inlining of string methods
1833 void Compile::inline_string_calls(bool parse_time) {
1834   {
1835     // remove useless nodes to make the usage analysis simpler
1836     ResourceMark rm;
1837     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1838   }
1839 
1840   {
1841     ResourceMark rm;
1842     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1843     PhaseStringOpts pso(initial_gvn(), for_igvn());
1844     print_method(PHASE_AFTER_STRINGOPTS, 3);
1845   }
1846 
1847   // now inline anything that we skipped the first time around
1848   if (!parse_time) {
1849     _late_inlines_pos = _late_inlines.length();
1850   }
1851 
1852   while (_string_late_inlines.length() > 0) {
1853     CallGenerator* cg = _string_late_inlines.pop();
1854     cg->do_late_inline();
1855     if (failing())  return;
1856   }
1857   _string_late_inlines.trunc_to(0);
1858 }
1859 
1860 // Late inlining of boxing methods
1861 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1862   if (_boxing_late_inlines.length() > 0) {
1863     assert(has_boxed_value(), "inconsistent");
1864 
1865     PhaseGVN* gvn = initial_gvn();
1866     set_inlining_incrementally(true);
1867 
1868     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1869     for_igvn()->clear();
1870     gvn->replace_with(&igvn);
1871 
1872     while (_boxing_late_inlines.length() > 0) {
1873       CallGenerator* cg = _boxing_late_inlines.pop();
1874       cg->do_late_inline();
1875       if (failing())  return;
1876     }
1877     _boxing_late_inlines.trunc_to(0);
1878 
1879     {
1880       ResourceMark rm;
1881       PhaseRemoveUseless pru(gvn, for_igvn());
1882     }
1883 
1884     igvn = PhaseIterGVN(gvn);
1885     igvn.optimize();
1886 
1887     set_inlining_progress(false);
1888     set_inlining_incrementally(false);
1889   }
1890 }
1891 
1892 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1893   assert(IncrementalInline, "incremental inlining should be on");
1894   PhaseGVN* gvn = initial_gvn();
1895 
1896   set_inlining_progress(false);
1897   for_igvn()->clear();
1898   gvn->replace_with(&igvn);
1899 
1900   int i = 0;
1901 
1902   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1903     CallGenerator* cg = _late_inlines.at(i);
1904     _late_inlines_pos = i+1;
1905     cg->do_late_inline();
1906     if (failing())  return;
1907   }
1908   int j = 0;
1909   for (; i < _late_inlines.length(); i++, j++) {
1910     _late_inlines.at_put(j, _late_inlines.at(i));
1911   }
1912   _late_inlines.trunc_to(j);
1913 
1914   {
1915     ResourceMark rm;
1916     PhaseRemoveUseless pru(gvn, for_igvn());
1917   }
1918 
1919   igvn = PhaseIterGVN(gvn);
1920 }
1921 
1922 // Perform incremental inlining until bound on number of live nodes is reached
1923 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1924   PhaseGVN* gvn = initial_gvn();
1925 
1926   set_inlining_incrementally(true);
1927   set_inlining_progress(true);
1928   uint low_live_nodes = 0;
1929 
1930   while(inlining_progress() && _late_inlines.length() > 0) {
1931 
1932     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1933       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1934         // PhaseIdealLoop is expensive so we only try it once we are
1935         // out of loop and we only try it again if the previous helped
1936         // got the number of nodes down significantly
1937         PhaseIdealLoop ideal_loop( igvn, false, true );
1938         if (failing())  return;
1939         low_live_nodes = live_nodes();
1940         _major_progress = true;
1941       }
1942 
1943       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1944         break;
1945       }
1946     }
1947 
1948     inline_incrementally_one(igvn);
1949 
1950     if (failing())  return;
1951 
1952     igvn.optimize();
1953 
1954     if (failing())  return;
1955   }
1956 
1957   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1958 
1959   if (_string_late_inlines.length() > 0) {
1960     assert(has_stringbuilder(), "inconsistent");
1961     for_igvn()->clear();
1962     initial_gvn()->replace_with(&igvn);
1963 
1964     inline_string_calls(false);
1965 
1966     if (failing())  return;
1967 
1968     {
1969       ResourceMark rm;
1970       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1971     }
1972 
1973     igvn = PhaseIterGVN(gvn);
1974 
1975     igvn.optimize();
1976   }
1977 
1978   set_inlining_incrementally(false);
1979 }
1980 
1981 
1982 //------------------------------Optimize---------------------------------------
1983 // Given a graph, optimize it.
1984 void Compile::Optimize() {
1985   TracePhase t1("optimizer", &_t_optimizer, true);
1986 
1987 #ifndef PRODUCT
1988   if (env()->break_at_compile()) {
1989     BREAKPOINT;
1990   }
1991 
1992 #endif
1993 
1994   ResourceMark rm;
1995   int          loop_opts_cnt;
1996 
1997   NOT_PRODUCT( verify_graph_edges(); )
1998 
1999   print_method(PHASE_AFTER_PARSING);
2000 
2001  {
2002   // Iterative Global Value Numbering, including ideal transforms
2003   // Initialize IterGVN with types and values from parse-time GVN
2004   PhaseIterGVN igvn(initial_gvn());
2005   {
2006     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2007     igvn.optimize();
2008   }
2009 
2010   print_method(PHASE_ITER_GVN1, 2);
2011 
2012   if (failing())  return;
2013 
2014   {
2015     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2016     inline_incrementally(igvn);
2017   }
2018 
2019   print_method(PHASE_INCREMENTAL_INLINE, 2);
2020 
2021   if (failing())  return;
2022 
2023   if (eliminate_boxing()) {
2024     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2025     // Inline valueOf() methods now.
2026     inline_boxing_calls(igvn);
2027 
2028     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2029 
2030     if (failing())  return;
2031   }
2032 
2033   // Remove the speculative part of types and clean up the graph from
2034   // the extra CastPP nodes whose only purpose is to carry them. Do
2035   // that early so that optimizations are not disrupted by the extra
2036   // CastPP nodes.
2037   remove_speculative_types(igvn);
2038 
2039   // No more new expensive nodes will be added to the list from here
2040   // so keep only the actual candidates for optimizations.
2041   cleanup_expensive_nodes(igvn);
2042 
2043   // Perform escape analysis
2044   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2045     if (has_loops()) {
2046       // Cleanup graph (remove dead nodes).
2047       TracePhase t2("idealLoop", &_t_idealLoop, true);
2048       PhaseIdealLoop ideal_loop( igvn, false, true );
2049       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2050       if (failing())  return;
2051     }
2052     ConnectionGraph::do_analysis(this, &igvn);
2053 
2054     if (failing())  return;
2055 
2056     // Optimize out fields loads from scalar replaceable allocations.
2057     igvn.optimize();
2058     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2059 
2060     if (failing())  return;
2061 
2062     if (congraph() != NULL && macro_count() > 0) {
2063       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2064       PhaseMacroExpand mexp(igvn);
2065       mexp.eliminate_macro_nodes();
2066       igvn.set_delay_transform(false);
2067 
2068       igvn.optimize();
2069       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2070 
2071       if (failing())  return;
2072     }
2073   }
2074 
2075   // Loop transforms on the ideal graph.  Range Check Elimination,
2076   // peeling, unrolling, etc.
2077 
2078   // Set loop opts counter
2079   loop_opts_cnt = num_loop_opts();
2080   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2081     {
2082       TracePhase t2("idealLoop", &_t_idealLoop, true);
2083       PhaseIdealLoop ideal_loop( igvn, true );
2084       loop_opts_cnt--;
2085       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2086       if (failing())  return;
2087     }
2088     // Loop opts pass if partial peeling occurred in previous pass
2089     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2090       TracePhase t3("idealLoop", &_t_idealLoop, true);
2091       PhaseIdealLoop ideal_loop( igvn, false );
2092       loop_opts_cnt--;
2093       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2094       if (failing())  return;
2095     }
2096     // Loop opts pass for loop-unrolling before CCP
2097     if(major_progress() && (loop_opts_cnt > 0)) {
2098       TracePhase t4("idealLoop", &_t_idealLoop, true);
2099       PhaseIdealLoop ideal_loop( igvn, false );
2100       loop_opts_cnt--;
2101       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2102     }
2103     if (!failing()) {
2104       // Verify that last round of loop opts produced a valid graph
2105       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2106       PhaseIdealLoop::verify(igvn);
2107     }
2108   }
2109   if (failing())  return;
2110 
2111   // Conditional Constant Propagation;
2112   PhaseCCP ccp( &igvn );
2113   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2114   {
2115     TracePhase t2("ccp", &_t_ccp, true);
2116     ccp.do_transform();
2117   }
2118   print_method(PHASE_CPP1, 2);
2119 
2120   assert( true, "Break here to ccp.dump_old2new_map()");
2121 
2122   // Iterative Global Value Numbering, including ideal transforms
2123   {
2124     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2125     igvn = ccp;
2126     igvn.optimize();
2127   }
2128 
2129   print_method(PHASE_ITER_GVN2, 2);
2130 
2131   if (failing())  return;
2132 
2133   // Loop transforms on the ideal graph.  Range Check Elimination,
2134   // peeling, unrolling, etc.
2135   if(loop_opts_cnt > 0) {
2136     debug_only( int cnt = 0; );
2137     while(major_progress() && (loop_opts_cnt > 0)) {
2138       TracePhase t2("idealLoop", &_t_idealLoop, true);
2139       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2140       PhaseIdealLoop ideal_loop( igvn, true);
2141       loop_opts_cnt--;
2142       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2143       if (failing())  return;
2144     }
2145   }
2146 
2147   {
2148     // Verify that all previous optimizations produced a valid graph
2149     // at least to this point, even if no loop optimizations were done.
2150     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2151     PhaseIdealLoop::verify(igvn);
2152   }
2153 
2154   {
2155     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2156     PhaseMacroExpand  mex(igvn);
2157     if (mex.expand_macro_nodes()) {
2158       assert(failing(), "must bail out w/ explicit message");
2159       return;
2160     }
2161   }
2162 
2163  } // (End scope of igvn; run destructor if necessary for asserts.)
2164 
2165   dump_inlining();
2166   // A method with only infinite loops has no edges entering loops from root
2167   {
2168     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2169     if (final_graph_reshaping()) {
2170       assert(failing(), "must bail out w/ explicit message");
2171       return;
2172     }
2173   }
2174 
2175   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2176 }
2177 
2178 
2179 //------------------------------Code_Gen---------------------------------------
2180 // Given a graph, generate code for it
2181 void Compile::Code_Gen() {
2182   if (failing()) {
2183     return;
2184   }
2185 
2186   // Perform instruction selection.  You might think we could reclaim Matcher
2187   // memory PDQ, but actually the Matcher is used in generating spill code.
2188   // Internals of the Matcher (including some VectorSets) must remain live
2189   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2190   // set a bit in reclaimed memory.
2191 
2192   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2193   // nodes.  Mapping is only valid at the root of each matched subtree.
2194   NOT_PRODUCT( verify_graph_edges(); )
2195 
2196   Matcher matcher;
2197   _matcher = &matcher;
2198   {
2199     TracePhase t2("matcher", &_t_matcher, true);
2200     matcher.match();
2201   }
2202   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2203   // nodes.  Mapping is only valid at the root of each matched subtree.
2204   NOT_PRODUCT( verify_graph_edges(); )
2205 
2206   // If you have too many nodes, or if matching has failed, bail out
2207   check_node_count(0, "out of nodes matching instructions");
2208   if (failing()) {
2209     return;
2210   }
2211 
2212   // Build a proper-looking CFG
2213   PhaseCFG cfg(node_arena(), root(), matcher);
2214   _cfg = &cfg;
2215   {
2216     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2217     bool success = cfg.do_global_code_motion();
2218     if (!success) {
2219       return;
2220     }
2221 
2222     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2223     NOT_PRODUCT( verify_graph_edges(); )
2224     debug_only( cfg.verify(); )
2225   }
2226 
2227   PhaseChaitin regalloc(unique(), cfg, matcher);
2228   _regalloc = &regalloc;
2229   {
2230     TracePhase t2("regalloc", &_t_registerAllocation, true);
2231     // Perform register allocation.  After Chaitin, use-def chains are
2232     // no longer accurate (at spill code) and so must be ignored.
2233     // Node->LRG->reg mappings are still accurate.
2234     _regalloc->Register_Allocate();
2235 
2236     // Bail out if the allocator builds too many nodes
2237     if (failing()) {
2238       return;
2239     }
2240   }
2241 
2242   // Prior to register allocation we kept empty basic blocks in case the
2243   // the allocator needed a place to spill.  After register allocation we
2244   // are not adding any new instructions.  If any basic block is empty, we
2245   // can now safely remove it.
2246   {
2247     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2248     cfg.remove_empty_blocks();
2249     if (do_freq_based_layout()) {
2250       PhaseBlockLayout layout(cfg);
2251     } else {
2252       cfg.set_loop_alignment();
2253     }
2254     cfg.fixup_flow();
2255   }
2256 
2257   // Apply peephole optimizations
2258   if( OptoPeephole ) {
2259     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2260     PhasePeephole peep( _regalloc, cfg);
2261     peep.do_transform();
2262   }
2263 
2264   // Convert Nodes to instruction bits in a buffer
2265   {
2266     // %%%% workspace merge brought two timers together for one job
2267     TracePhase t2a("output", &_t_output, true);
2268     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2269     Output();
2270   }
2271 
2272   print_method(PHASE_FINAL_CODE);
2273 
2274   // He's dead, Jim.
2275   _cfg     = (PhaseCFG*)0xdeadbeef;
2276   _regalloc = (PhaseChaitin*)0xdeadbeef;
2277 }
2278 
2279 
2280 //------------------------------dump_asm---------------------------------------
2281 // Dump formatted assembly
2282 #ifndef PRODUCT
2283 void Compile::dump_asm(int *pcs, uint pc_limit) {
2284   bool cut_short = false;
2285   tty->print_cr("#");
2286   tty->print("#  ");  _tf->dump();  tty->cr();
2287   tty->print_cr("#");
2288 
2289   // For all blocks
2290   int pc = 0x0;                 // Program counter
2291   char starts_bundle = ' ';
2292   _regalloc->dump_frame();
2293 
2294   Node *n = NULL;
2295   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2296     if (VMThread::should_terminate()) {
2297       cut_short = true;
2298       break;
2299     }
2300     Block* block = _cfg->get_block(i);
2301     if (block->is_connector() && !Verbose) {
2302       continue;
2303     }
2304     n = block->head();
2305     if (pcs && n->_idx < pc_limit) {
2306       tty->print("%3.3x   ", pcs[n->_idx]);
2307     } else {
2308       tty->print("      ");
2309     }
2310     block->dump_head(_cfg);
2311     if (block->is_connector()) {
2312       tty->print_cr("        # Empty connector block");
2313     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2314       tty->print_cr("        # Block is sole successor of call");
2315     }
2316 
2317     // For all instructions
2318     Node *delay = NULL;
2319     for (uint j = 0; j < block->number_of_nodes(); j++) {
2320       if (VMThread::should_terminate()) {
2321         cut_short = true;
2322         break;
2323       }
2324       n = block->get_node(j);
2325       if (valid_bundle_info(n)) {
2326         Bundle* bundle = node_bundling(n);
2327         if (bundle->used_in_unconditional_delay()) {
2328           delay = n;
2329           continue;
2330         }
2331         if (bundle->starts_bundle()) {
2332           starts_bundle = '+';
2333         }
2334       }
2335 
2336       if (WizardMode) {
2337         n->dump();
2338       }
2339 
2340       if( !n->is_Region() &&    // Dont print in the Assembly
2341           !n->is_Phi() &&       // a few noisely useless nodes
2342           !n->is_Proj() &&
2343           !n->is_MachTemp() &&
2344           !n->is_SafePointScalarObject() &&
2345           !n->is_Catch() &&     // Would be nice to print exception table targets
2346           !n->is_MergeMem() &&  // Not very interesting
2347           !n->is_top() &&       // Debug info table constants
2348           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2349           ) {
2350         if (pcs && n->_idx < pc_limit)
2351           tty->print("%3.3x", pcs[n->_idx]);
2352         else
2353           tty->print("   ");
2354         tty->print(" %c ", starts_bundle);
2355         starts_bundle = ' ';
2356         tty->print("\t");
2357         n->format(_regalloc, tty);
2358         tty->cr();
2359       }
2360 
2361       // If we have an instruction with a delay slot, and have seen a delay,
2362       // then back up and print it
2363       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2364         assert(delay != NULL, "no unconditional delay instruction");
2365         if (WizardMode) delay->dump();
2366 
2367         if (node_bundling(delay)->starts_bundle())
2368           starts_bundle = '+';
2369         if (pcs && n->_idx < pc_limit)
2370           tty->print("%3.3x", pcs[n->_idx]);
2371         else
2372           tty->print("   ");
2373         tty->print(" %c ", starts_bundle);
2374         starts_bundle = ' ';
2375         tty->print("\t");
2376         delay->format(_regalloc, tty);
2377         tty->print_cr("");
2378         delay = NULL;
2379       }
2380 
2381       // Dump the exception table as well
2382       if( n->is_Catch() && (Verbose || WizardMode) ) {
2383         // Print the exception table for this offset
2384         _handler_table.print_subtable_for(pc);
2385       }
2386     }
2387 
2388     if (pcs && n->_idx < pc_limit)
2389       tty->print_cr("%3.3x", pcs[n->_idx]);
2390     else
2391       tty->print_cr("");
2392 
2393     assert(cut_short || delay == NULL, "no unconditional delay branch");
2394 
2395   } // End of per-block dump
2396   tty->print_cr("");
2397 
2398   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2399 }
2400 #endif
2401 
2402 //------------------------------Final_Reshape_Counts---------------------------
2403 // This class defines counters to help identify when a method
2404 // may/must be executed using hardware with only 24-bit precision.
2405 struct Final_Reshape_Counts : public StackObj {
2406   int  _call_count;             // count non-inlined 'common' calls
2407   int  _float_count;            // count float ops requiring 24-bit precision
2408   int  _double_count;           // count double ops requiring more precision
2409   int  _java_call_count;        // count non-inlined 'java' calls
2410   int  _inner_loop_count;       // count loops which need alignment
2411   VectorSet _visited;           // Visitation flags
2412   Node_List _tests;             // Set of IfNodes & PCTableNodes
2413 
2414   Final_Reshape_Counts() :
2415     _call_count(0), _float_count(0), _double_count(0),
2416     _java_call_count(0), _inner_loop_count(0),
2417     _visited( Thread::current()->resource_area() ) { }
2418 
2419   void inc_call_count  () { _call_count  ++; }
2420   void inc_float_count () { _float_count ++; }
2421   void inc_double_count() { _double_count++; }
2422   void inc_java_call_count() { _java_call_count++; }
2423   void inc_inner_loop_count() { _inner_loop_count++; }
2424 
2425   int  get_call_count  () const { return _call_count  ; }
2426   int  get_float_count () const { return _float_count ; }
2427   int  get_double_count() const { return _double_count; }
2428   int  get_java_call_count() const { return _java_call_count; }
2429   int  get_inner_loop_count() const { return _inner_loop_count; }
2430 };
2431 
2432 #ifdef ASSERT
2433 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2434   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2435   // Make sure the offset goes inside the instance layout.
2436   return k->contains_field_offset(tp->offset());
2437   // Note that OffsetBot and OffsetTop are very negative.
2438 }
2439 #endif
2440 
2441 // Eliminate trivially redundant StoreCMs and accumulate their
2442 // precedence edges.
2443 void Compile::eliminate_redundant_card_marks(Node* n) {
2444   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2445   if (n->in(MemNode::Address)->outcnt() > 1) {
2446     // There are multiple users of the same address so it might be
2447     // possible to eliminate some of the StoreCMs
2448     Node* mem = n->in(MemNode::Memory);
2449     Node* adr = n->in(MemNode::Address);
2450     Node* val = n->in(MemNode::ValueIn);
2451     Node* prev = n;
2452     bool done = false;
2453     // Walk the chain of StoreCMs eliminating ones that match.  As
2454     // long as it's a chain of single users then the optimization is
2455     // safe.  Eliminating partially redundant StoreCMs would require
2456     // cloning copies down the other paths.
2457     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2458       if (adr == mem->in(MemNode::Address) &&
2459           val == mem->in(MemNode::ValueIn)) {
2460         // redundant StoreCM
2461         if (mem->req() > MemNode::OopStore) {
2462           // Hasn't been processed by this code yet.
2463           n->add_prec(mem->in(MemNode::OopStore));
2464         } else {
2465           // Already converted to precedence edge
2466           for (uint i = mem->req(); i < mem->len(); i++) {
2467             // Accumulate any precedence edges
2468             if (mem->in(i) != NULL) {
2469               n->add_prec(mem->in(i));
2470             }
2471           }
2472           // Everything above this point has been processed.
2473           done = true;
2474         }
2475         // Eliminate the previous StoreCM
2476         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2477         assert(mem->outcnt() == 0, "should be dead");
2478         mem->disconnect_inputs(NULL, this);
2479       } else {
2480         prev = mem;
2481       }
2482       mem = prev->in(MemNode::Memory);
2483     }
2484   }
2485 }
2486 
2487 //------------------------------final_graph_reshaping_impl----------------------
2488 // Implement items 1-5 from final_graph_reshaping below.
2489 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2490 
2491   if ( n->outcnt() == 0 ) return; // dead node
2492   uint nop = n->Opcode();
2493 
2494   // Check for 2-input instruction with "last use" on right input.
2495   // Swap to left input.  Implements item (2).
2496   if( n->req() == 3 &&          // two-input instruction
2497       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2498       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2499       n->in(2)->outcnt() == 1 &&// right use IS a last use
2500       !n->in(2)->is_Con() ) {   // right use is not a constant
2501     // Check for commutative opcode
2502     switch( nop ) {
2503     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2504     case Op_MaxI:  case Op_MinI:
2505     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2506     case Op_AndL:  case Op_XorL:  case Op_OrL:
2507     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2508       // Move "last use" input to left by swapping inputs
2509       n->swap_edges(1, 2);
2510       break;
2511     }
2512     default:
2513       break;
2514     }
2515   }
2516 
2517 #ifdef ASSERT
2518   if( n->is_Mem() ) {
2519     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2520     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2521             // oop will be recorded in oop map if load crosses safepoint
2522             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2523                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2524             "raw memory operations should have control edge");
2525   }
2526 #endif
2527   // Count FPU ops and common calls, implements item (3)
2528   switch( nop ) {
2529   // Count all float operations that may use FPU
2530   case Op_AddF:
2531   case Op_SubF:
2532   case Op_MulF:
2533   case Op_DivF:
2534   case Op_NegF:
2535   case Op_ModF:
2536   case Op_ConvI2F:
2537   case Op_ConF:
2538   case Op_CmpF:
2539   case Op_CmpF3:
2540   // case Op_ConvL2F: // longs are split into 32-bit halves
2541     frc.inc_float_count();
2542     break;
2543 
2544   case Op_ConvF2D:
2545   case Op_ConvD2F:
2546     frc.inc_float_count();
2547     frc.inc_double_count();
2548     break;
2549 
2550   // Count all double operations that may use FPU
2551   case Op_AddD:
2552   case Op_SubD:
2553   case Op_MulD:
2554   case Op_DivD:
2555   case Op_NegD:
2556   case Op_ModD:
2557   case Op_ConvI2D:
2558   case Op_ConvD2I:
2559   // case Op_ConvL2D: // handled by leaf call
2560   // case Op_ConvD2L: // handled by leaf call
2561   case Op_ConD:
2562   case Op_CmpD:
2563   case Op_CmpD3:
2564     frc.inc_double_count();
2565     break;
2566   case Op_Opaque1:              // Remove Opaque Nodes before matching
2567   case Op_Opaque2:              // Remove Opaque Nodes before matching
2568     n->subsume_by(n->in(1), this);
2569     break;
2570   case Op_CallStaticJava:
2571   case Op_CallJava:
2572   case Op_CallDynamicJava:
2573     frc.inc_java_call_count(); // Count java call site;
2574   case Op_CallRuntime:
2575   case Op_CallLeaf:
2576   case Op_CallLeafNoFP: {
2577     assert( n->is_Call(), "" );
2578     CallNode *call = n->as_Call();
2579     // Count call sites where the FP mode bit would have to be flipped.
2580     // Do not count uncommon runtime calls:
2581     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2582     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2583     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2584       frc.inc_call_count();   // Count the call site
2585     } else {                  // See if uncommon argument is shared
2586       Node *n = call->in(TypeFunc::Parms);
2587       int nop = n->Opcode();
2588       // Clone shared simple arguments to uncommon calls, item (1).
2589       if( n->outcnt() > 1 &&
2590           !n->is_Proj() &&
2591           nop != Op_CreateEx &&
2592           nop != Op_CheckCastPP &&
2593           nop != Op_DecodeN &&
2594           nop != Op_DecodeNKlass &&
2595           !n->is_Mem() ) {
2596         Node *x = n->clone();
2597         call->set_req( TypeFunc::Parms, x );
2598       }
2599     }
2600     break;
2601   }
2602 
2603   case Op_StoreD:
2604   case Op_LoadD:
2605   case Op_LoadD_unaligned:
2606     frc.inc_double_count();
2607     goto handle_mem;
2608   case Op_StoreF:
2609   case Op_LoadF:
2610     frc.inc_float_count();
2611     goto handle_mem;
2612 
2613   case Op_StoreCM:
2614     {
2615       // Convert OopStore dependence into precedence edge
2616       Node* prec = n->in(MemNode::OopStore);
2617       n->del_req(MemNode::OopStore);
2618       n->add_prec(prec);
2619       eliminate_redundant_card_marks(n);
2620     }
2621 
2622     // fall through
2623 
2624   case Op_StoreB:
2625   case Op_StoreC:
2626   case Op_StorePConditional:
2627   case Op_StoreI:
2628   case Op_StoreL:
2629   case Op_StoreIConditional:
2630   case Op_StoreLConditional:
2631   case Op_CompareAndSwapI:
2632   case Op_CompareAndSwapL:
2633   case Op_CompareAndSwapP:
2634   case Op_CompareAndSwapN:
2635   case Op_GetAndAddI:
2636   case Op_GetAndAddL:
2637   case Op_GetAndSetI:
2638   case Op_GetAndSetL:
2639   case Op_GetAndSetP:
2640   case Op_GetAndSetN:
2641   case Op_StoreP:
2642   case Op_StoreN:
2643   case Op_StoreNKlass:
2644   case Op_LoadB:
2645   case Op_LoadUB:
2646   case Op_LoadUS:
2647   case Op_LoadI:
2648   case Op_LoadKlass:
2649   case Op_LoadNKlass:
2650   case Op_LoadL:
2651   case Op_LoadL_unaligned:
2652   case Op_LoadPLocked:
2653   case Op_LoadP:
2654   case Op_LoadN:
2655   case Op_LoadRange:
2656   case Op_LoadS: {
2657   handle_mem:
2658 #ifdef ASSERT
2659     if( VerifyOptoOopOffsets ) {
2660       assert( n->is_Mem(), "" );
2661       MemNode *mem  = (MemNode*)n;
2662       // Check to see if address types have grounded out somehow.
2663       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2664       assert( !tp || oop_offset_is_sane(tp), "" );
2665     }
2666 #endif
2667     break;
2668   }
2669 
2670   case Op_AddP: {               // Assert sane base pointers
2671     Node *addp = n->in(AddPNode::Address);
2672     assert( !addp->is_AddP() ||
2673             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2674             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2675             "Base pointers must match" );
2676 #ifdef _LP64
2677     if ((UseCompressedOops || UseCompressedClassPointers) &&
2678         addp->Opcode() == Op_ConP &&
2679         addp == n->in(AddPNode::Base) &&
2680         n->in(AddPNode::Offset)->is_Con()) {
2681       // Use addressing with narrow klass to load with offset on x86.
2682       // On sparc loading 32-bits constant and decoding it have less
2683       // instructions (4) then load 64-bits constant (7).
2684       // Do this transformation here since IGVN will convert ConN back to ConP.
2685       const Type* t = addp->bottom_type();
2686       if (t->isa_oopptr() || t->isa_klassptr()) {
2687         Node* nn = NULL;
2688 
2689         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2690 
2691         // Look for existing ConN node of the same exact type.
2692         Node* r  = root();
2693         uint cnt = r->outcnt();
2694         for (uint i = 0; i < cnt; i++) {
2695           Node* m = r->raw_out(i);
2696           if (m!= NULL && m->Opcode() == op &&
2697               m->bottom_type()->make_ptr() == t) {
2698             nn = m;
2699             break;
2700           }
2701         }
2702         if (nn != NULL) {
2703           // Decode a narrow oop to match address
2704           // [R12 + narrow_oop_reg<<3 + offset]
2705           if (t->isa_oopptr()) {
2706             nn = new (this) DecodeNNode(nn, t);
2707           } else {
2708             nn = new (this) DecodeNKlassNode(nn, t);
2709           }
2710           n->set_req(AddPNode::Base, nn);
2711           n->set_req(AddPNode::Address, nn);
2712           if (addp->outcnt() == 0) {
2713             addp->disconnect_inputs(NULL, this);
2714           }
2715         }
2716       }
2717     }
2718 #endif
2719     break;
2720   }
2721 
2722 #ifdef _LP64
2723   case Op_CastPP:
2724     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2725       Node* in1 = n->in(1);
2726       const Type* t = n->bottom_type();
2727       Node* new_in1 = in1->clone();
2728       new_in1->as_DecodeN()->set_type(t);
2729 
2730       if (!Matcher::narrow_oop_use_complex_address()) {
2731         //
2732         // x86, ARM and friends can handle 2 adds in addressing mode
2733         // and Matcher can fold a DecodeN node into address by using
2734         // a narrow oop directly and do implicit NULL check in address:
2735         //
2736         // [R12 + narrow_oop_reg<<3 + offset]
2737         // NullCheck narrow_oop_reg
2738         //
2739         // On other platforms (Sparc) we have to keep new DecodeN node and
2740         // use it to do implicit NULL check in address:
2741         //
2742         // decode_not_null narrow_oop_reg, base_reg
2743         // [base_reg + offset]
2744         // NullCheck base_reg
2745         //
2746         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2747         // to keep the information to which NULL check the new DecodeN node
2748         // corresponds to use it as value in implicit_null_check().
2749         //
2750         new_in1->set_req(0, n->in(0));
2751       }
2752 
2753       n->subsume_by(new_in1, this);
2754       if (in1->outcnt() == 0) {
2755         in1->disconnect_inputs(NULL, this);
2756       }
2757     }
2758     break;
2759 
2760   case Op_CmpP:
2761     // Do this transformation here to preserve CmpPNode::sub() and
2762     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2763     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2764       Node* in1 = n->in(1);
2765       Node* in2 = n->in(2);
2766       if (!in1->is_DecodeNarrowPtr()) {
2767         in2 = in1;
2768         in1 = n->in(2);
2769       }
2770       assert(in1->is_DecodeNarrowPtr(), "sanity");
2771 
2772       Node* new_in2 = NULL;
2773       if (in2->is_DecodeNarrowPtr()) {
2774         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2775         new_in2 = in2->in(1);
2776       } else if (in2->Opcode() == Op_ConP) {
2777         const Type* t = in2->bottom_type();
2778         if (t == TypePtr::NULL_PTR) {
2779           assert(in1->is_DecodeN(), "compare klass to null?");
2780           // Don't convert CmpP null check into CmpN if compressed
2781           // oops implicit null check is not generated.
2782           // This will allow to generate normal oop implicit null check.
2783           if (Matcher::gen_narrow_oop_implicit_null_checks())
2784             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2785           //
2786           // This transformation together with CastPP transformation above
2787           // will generated code for implicit NULL checks for compressed oops.
2788           //
2789           // The original code after Optimize()
2790           //
2791           //    LoadN memory, narrow_oop_reg
2792           //    decode narrow_oop_reg, base_reg
2793           //    CmpP base_reg, NULL
2794           //    CastPP base_reg // NotNull
2795           //    Load [base_reg + offset], val_reg
2796           //
2797           // after these transformations will be
2798           //
2799           //    LoadN memory, narrow_oop_reg
2800           //    CmpN narrow_oop_reg, NULL
2801           //    decode_not_null narrow_oop_reg, base_reg
2802           //    Load [base_reg + offset], val_reg
2803           //
2804           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2805           // since narrow oops can be used in debug info now (see the code in
2806           // final_graph_reshaping_walk()).
2807           //
2808           // At the end the code will be matched to
2809           // on x86:
2810           //
2811           //    Load_narrow_oop memory, narrow_oop_reg
2812           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2813           //    NullCheck narrow_oop_reg
2814           //
2815           // and on sparc:
2816           //
2817           //    Load_narrow_oop memory, narrow_oop_reg
2818           //    decode_not_null narrow_oop_reg, base_reg
2819           //    Load [base_reg + offset], val_reg
2820           //    NullCheck base_reg
2821           //
2822         } else if (t->isa_oopptr()) {
2823           new_in2 = ConNode::make(this, t->make_narrowoop());
2824         } else if (t->isa_klassptr()) {
2825           new_in2 = ConNode::make(this, t->make_narrowklass());
2826         }
2827       }
2828       if (new_in2 != NULL) {
2829         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2830         n->subsume_by(cmpN, this);
2831         if (in1->outcnt() == 0) {
2832           in1->disconnect_inputs(NULL, this);
2833         }
2834         if (in2->outcnt() == 0) {
2835           in2->disconnect_inputs(NULL, this);
2836         }
2837       }
2838     }
2839     break;
2840 
2841   case Op_DecodeN:
2842   case Op_DecodeNKlass:
2843     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2844     // DecodeN could be pinned when it can't be fold into
2845     // an address expression, see the code for Op_CastPP above.
2846     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2847     break;
2848 
2849   case Op_EncodeP:
2850   case Op_EncodePKlass: {
2851     Node* in1 = n->in(1);
2852     if (in1->is_DecodeNarrowPtr()) {
2853       n->subsume_by(in1->in(1), this);
2854     } else if (in1->Opcode() == Op_ConP) {
2855       const Type* t = in1->bottom_type();
2856       if (t == TypePtr::NULL_PTR) {
2857         assert(t->isa_oopptr(), "null klass?");
2858         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2859       } else if (t->isa_oopptr()) {
2860         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2861       } else if (t->isa_klassptr()) {
2862         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2863       }
2864     }
2865     if (in1->outcnt() == 0) {
2866       in1->disconnect_inputs(NULL, this);
2867     }
2868     break;
2869   }
2870 
2871   case Op_Proj: {
2872     if (OptimizeStringConcat) {
2873       ProjNode* p = n->as_Proj();
2874       if (p->_is_io_use) {
2875         // Separate projections were used for the exception path which
2876         // are normally removed by a late inline.  If it wasn't inlined
2877         // then they will hang around and should just be replaced with
2878         // the original one.
2879         Node* proj = NULL;
2880         // Replace with just one
2881         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2882           Node *use = i.get();
2883           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2884             proj = use;
2885             break;
2886           }
2887         }
2888         assert(proj != NULL, "must be found");
2889         p->subsume_by(proj, this);
2890       }
2891     }
2892     break;
2893   }
2894 
2895   case Op_Phi:
2896     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2897       // The EncodeP optimization may create Phi with the same edges
2898       // for all paths. It is not handled well by Register Allocator.
2899       Node* unique_in = n->in(1);
2900       assert(unique_in != NULL, "");
2901       uint cnt = n->req();
2902       for (uint i = 2; i < cnt; i++) {
2903         Node* m = n->in(i);
2904         assert(m != NULL, "");
2905         if (unique_in != m)
2906           unique_in = NULL;
2907       }
2908       if (unique_in != NULL) {
2909         n->subsume_by(unique_in, this);
2910       }
2911     }
2912     break;
2913 
2914 #endif
2915 
2916   case Op_ModI:
2917     if (UseDivMod) {
2918       // Check if a%b and a/b both exist
2919       Node* d = n->find_similar(Op_DivI);
2920       if (d) {
2921         // Replace them with a fused divmod if supported
2922         if (Matcher::has_match_rule(Op_DivModI)) {
2923           DivModINode* divmod = DivModINode::make(this, n);
2924           d->subsume_by(divmod->div_proj(), this);
2925           n->subsume_by(divmod->mod_proj(), this);
2926         } else {
2927           // replace a%b with a-((a/b)*b)
2928           Node* mult = new (this) MulINode(d, d->in(2));
2929           Node* sub  = new (this) SubINode(d->in(1), mult);
2930           n->subsume_by(sub, this);
2931         }
2932       }
2933     }
2934     break;
2935 
2936   case Op_ModL:
2937     if (UseDivMod) {
2938       // Check if a%b and a/b both exist
2939       Node* d = n->find_similar(Op_DivL);
2940       if (d) {
2941         // Replace them with a fused divmod if supported
2942         if (Matcher::has_match_rule(Op_DivModL)) {
2943           DivModLNode* divmod = DivModLNode::make(this, n);
2944           d->subsume_by(divmod->div_proj(), this);
2945           n->subsume_by(divmod->mod_proj(), this);
2946         } else {
2947           // replace a%b with a-((a/b)*b)
2948           Node* mult = new (this) MulLNode(d, d->in(2));
2949           Node* sub  = new (this) SubLNode(d->in(1), mult);
2950           n->subsume_by(sub, this);
2951         }
2952       }
2953     }
2954     break;
2955 
2956   case Op_LoadVector:
2957   case Op_StoreVector:
2958     break;
2959 
2960   case Op_PackB:
2961   case Op_PackS:
2962   case Op_PackI:
2963   case Op_PackF:
2964   case Op_PackL:
2965   case Op_PackD:
2966     if (n->req()-1 > 2) {
2967       // Replace many operand PackNodes with a binary tree for matching
2968       PackNode* p = (PackNode*) n;
2969       Node* btp = p->binary_tree_pack(this, 1, n->req());
2970       n->subsume_by(btp, this);
2971     }
2972     break;
2973   case Op_Loop:
2974   case Op_CountedLoop:
2975     if (n->as_Loop()->is_inner_loop()) {
2976       frc.inc_inner_loop_count();
2977     }
2978     break;
2979   case Op_LShiftI:
2980   case Op_RShiftI:
2981   case Op_URShiftI:
2982   case Op_LShiftL:
2983   case Op_RShiftL:
2984   case Op_URShiftL:
2985     if (Matcher::need_masked_shift_count) {
2986       // The cpu's shift instructions don't restrict the count to the
2987       // lower 5/6 bits. We need to do the masking ourselves.
2988       Node* in2 = n->in(2);
2989       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2990       const TypeInt* t = in2->find_int_type();
2991       if (t != NULL && t->is_con()) {
2992         juint shift = t->get_con();
2993         if (shift > mask) { // Unsigned cmp
2994           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2995         }
2996       } else {
2997         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2998           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2999           n->set_req(2, shift);
3000         }
3001       }
3002       if (in2->outcnt() == 0) { // Remove dead node
3003         in2->disconnect_inputs(NULL, this);
3004       }
3005     }
3006     break;
3007   case Op_MemBarStoreStore:
3008   case Op_MemBarRelease:
3009     // Break the link with AllocateNode: it is no longer useful and
3010     // confuses register allocation.
3011     if (n->req() > MemBarNode::Precedent) {
3012       n->set_req(MemBarNode::Precedent, top());
3013     }
3014     break;
3015   default:
3016     assert( !n->is_Call(), "" );
3017     assert( !n->is_Mem(), "" );
3018     break;
3019   }
3020 
3021   // Collect CFG split points
3022   if (n->is_MultiBranch())
3023     frc._tests.push(n);
3024 }
3025 
3026 //------------------------------final_graph_reshaping_walk---------------------
3027 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3028 // requires that the walk visits a node's inputs before visiting the node.
3029 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3030   ResourceArea *area = Thread::current()->resource_area();
3031   Unique_Node_List sfpt(area);
3032 
3033   frc._visited.set(root->_idx); // first, mark node as visited
3034   uint cnt = root->req();
3035   Node *n = root;
3036   uint  i = 0;
3037   while (true) {
3038     if (i < cnt) {
3039       // Place all non-visited non-null inputs onto stack
3040       Node* m = n->in(i);
3041       ++i;
3042       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3043         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3044           sfpt.push(m);
3045         cnt = m->req();
3046         nstack.push(n, i); // put on stack parent and next input's index
3047         n = m;
3048         i = 0;
3049       }
3050     } else {
3051       // Now do post-visit work
3052       final_graph_reshaping_impl( n, frc );
3053       if (nstack.is_empty())
3054         break;             // finished
3055       n = nstack.node();   // Get node from stack
3056       cnt = n->req();
3057       i = nstack.index();
3058       nstack.pop();        // Shift to the next node on stack
3059     }
3060   }
3061 
3062   // Skip next transformation if compressed oops are not used.
3063   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3064       (!UseCompressedOops && !UseCompressedClassPointers))
3065     return;
3066 
3067   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3068   // It could be done for an uncommon traps or any safepoints/calls
3069   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3070   while (sfpt.size() > 0) {
3071     n = sfpt.pop();
3072     JVMState *jvms = n->as_SafePoint()->jvms();
3073     assert(jvms != NULL, "sanity");
3074     int start = jvms->debug_start();
3075     int end   = n->req();
3076     bool is_uncommon = (n->is_CallStaticJava() &&
3077                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3078     for (int j = start; j < end; j++) {
3079       Node* in = n->in(j);
3080       if (in->is_DecodeNarrowPtr()) {
3081         bool safe_to_skip = true;
3082         if (!is_uncommon ) {
3083           // Is it safe to skip?
3084           for (uint i = 0; i < in->outcnt(); i++) {
3085             Node* u = in->raw_out(i);
3086             if (!u->is_SafePoint() ||
3087                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3088               safe_to_skip = false;
3089             }
3090           }
3091         }
3092         if (safe_to_skip) {
3093           n->set_req(j, in->in(1));
3094         }
3095         if (in->outcnt() == 0) {
3096           in->disconnect_inputs(NULL, this);
3097         }
3098       }
3099     }
3100   }
3101 }
3102 
3103 //------------------------------final_graph_reshaping--------------------------
3104 // Final Graph Reshaping.
3105 //
3106 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3107 //     and not commoned up and forced early.  Must come after regular
3108 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3109 //     inputs to Loop Phis; these will be split by the allocator anyways.
3110 //     Remove Opaque nodes.
3111 // (2) Move last-uses by commutative operations to the left input to encourage
3112 //     Intel update-in-place two-address operations and better register usage
3113 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3114 //     calls canonicalizing them back.
3115 // (3) Count the number of double-precision FP ops, single-precision FP ops
3116 //     and call sites.  On Intel, we can get correct rounding either by
3117 //     forcing singles to memory (requires extra stores and loads after each
3118 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3119 //     clearing the mode bit around call sites).  The mode bit is only used
3120 //     if the relative frequency of single FP ops to calls is low enough.
3121 //     This is a key transform for SPEC mpeg_audio.
3122 // (4) Detect infinite loops; blobs of code reachable from above but not
3123 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3124 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3125 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3126 //     Detection is by looking for IfNodes where only 1 projection is
3127 //     reachable from below or CatchNodes missing some targets.
3128 // (5) Assert for insane oop offsets in debug mode.
3129 
3130 bool Compile::final_graph_reshaping() {
3131   // an infinite loop may have been eliminated by the optimizer,
3132   // in which case the graph will be empty.
3133   if (root()->req() == 1) {
3134     record_method_not_compilable("trivial infinite loop");
3135     return true;
3136   }
3137 
3138   // Expensive nodes have their control input set to prevent the GVN
3139   // from freely commoning them. There's no GVN beyond this point so
3140   // no need to keep the control input. We want the expensive nodes to
3141   // be freely moved to the least frequent code path by gcm.
3142   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3143   for (int i = 0; i < expensive_count(); i++) {
3144     _expensive_nodes->at(i)->set_req(0, NULL);
3145   }
3146 
3147   Final_Reshape_Counts frc;
3148 
3149   // Visit everybody reachable!
3150   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3151   Node_Stack nstack(unique() >> 1);
3152   final_graph_reshaping_walk(nstack, root(), frc);
3153 
3154   // Check for unreachable (from below) code (i.e., infinite loops).
3155   for( uint i = 0; i < frc._tests.size(); i++ ) {
3156     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3157     // Get number of CFG targets.
3158     // Note that PCTables include exception targets after calls.
3159     uint required_outcnt = n->required_outcnt();
3160     if (n->outcnt() != required_outcnt) {
3161       // Check for a few special cases.  Rethrow Nodes never take the
3162       // 'fall-thru' path, so expected kids is 1 less.
3163       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3164         if (n->in(0)->in(0)->is_Call()) {
3165           CallNode *call = n->in(0)->in(0)->as_Call();
3166           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3167             required_outcnt--;      // Rethrow always has 1 less kid
3168           } else if (call->req() > TypeFunc::Parms &&
3169                      call->is_CallDynamicJava()) {
3170             // Check for null receiver. In such case, the optimizer has
3171             // detected that the virtual call will always result in a null
3172             // pointer exception. The fall-through projection of this CatchNode
3173             // will not be populated.
3174             Node *arg0 = call->in(TypeFunc::Parms);
3175             if (arg0->is_Type() &&
3176                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3177               required_outcnt--;
3178             }
3179           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3180                      call->req() > TypeFunc::Parms+1 &&
3181                      call->is_CallStaticJava()) {
3182             // Check for negative array length. In such case, the optimizer has
3183             // detected that the allocation attempt will always result in an
3184             // exception. There is no fall-through projection of this CatchNode .
3185             Node *arg1 = call->in(TypeFunc::Parms+1);
3186             if (arg1->is_Type() &&
3187                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3188               required_outcnt--;
3189             }
3190           }
3191         }
3192       }
3193       // Recheck with a better notion of 'required_outcnt'
3194       if (n->outcnt() != required_outcnt) {
3195         record_method_not_compilable("malformed control flow");
3196         return true;            // Not all targets reachable!
3197       }
3198     }
3199     // Check that I actually visited all kids.  Unreached kids
3200     // must be infinite loops.
3201     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3202       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3203         record_method_not_compilable("infinite loop");
3204         return true;            // Found unvisited kid; must be unreach
3205       }
3206   }
3207 
3208   // If original bytecodes contained a mixture of floats and doubles
3209   // check if the optimizer has made it homogenous, item (3).
3210   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3211       frc.get_float_count() > 32 &&
3212       frc.get_double_count() == 0 &&
3213       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3214     set_24_bit_selection_and_mode( false,  true );
3215   }
3216 
3217   set_java_calls(frc.get_java_call_count());
3218   set_inner_loops(frc.get_inner_loop_count());
3219 
3220   // No infinite loops, no reason to bail out.
3221   return false;
3222 }
3223 
3224 //-----------------------------too_many_traps----------------------------------
3225 // Report if there are too many traps at the current method and bci.
3226 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3227 bool Compile::too_many_traps(ciMethod* method,
3228                              int bci,
3229                              Deoptimization::DeoptReason reason) {
3230   ciMethodData* md = method->method_data();
3231   if (md->is_empty()) {
3232     // Assume the trap has not occurred, or that it occurred only
3233     // because of a transient condition during start-up in the interpreter.
3234     return false;
3235   }
3236   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3237   if (md->has_trap_at(bci, m, reason) != 0) {
3238     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3239     // Also, if there are multiple reasons, or if there is no per-BCI record,
3240     // assume the worst.
3241     if (log())
3242       log()->elem("observe trap='%s' count='%d'",
3243                   Deoptimization::trap_reason_name(reason),
3244                   md->trap_count(reason));
3245     return true;
3246   } else {
3247     // Ignore method/bci and see if there have been too many globally.
3248     return too_many_traps(reason, md);
3249   }
3250 }
3251 
3252 // Less-accurate variant which does not require a method and bci.
3253 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3254                              ciMethodData* logmd) {
3255   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3256     // Too many traps globally.
3257     // Note that we use cumulative trap_count, not just md->trap_count.
3258     if (log()) {
3259       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3260       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3261                   Deoptimization::trap_reason_name(reason),
3262                   mcount, trap_count(reason));
3263     }
3264     return true;
3265   } else {
3266     // The coast is clear.
3267     return false;
3268   }
3269 }
3270 
3271 //--------------------------too_many_recompiles--------------------------------
3272 // Report if there are too many recompiles at the current method and bci.
3273 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3274 // Is not eager to return true, since this will cause the compiler to use
3275 // Action_none for a trap point, to avoid too many recompilations.
3276 bool Compile::too_many_recompiles(ciMethod* method,
3277                                   int bci,
3278                                   Deoptimization::DeoptReason reason) {
3279   ciMethodData* md = method->method_data();
3280   if (md->is_empty()) {
3281     // Assume the trap has not occurred, or that it occurred only
3282     // because of a transient condition during start-up in the interpreter.
3283     return false;
3284   }
3285   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3286   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3287   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3288   Deoptimization::DeoptReason per_bc_reason
3289     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3290   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3291   if ((per_bc_reason == Deoptimization::Reason_none
3292        || md->has_trap_at(bci, m, reason) != 0)
3293       // The trap frequency measure we care about is the recompile count:
3294       && md->trap_recompiled_at(bci, m)
3295       && md->overflow_recompile_count() >= bc_cutoff) {
3296     // Do not emit a trap here if it has already caused recompilations.
3297     // Also, if there are multiple reasons, or if there is no per-BCI record,
3298     // assume the worst.
3299     if (log())
3300       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3301                   Deoptimization::trap_reason_name(reason),
3302                   md->trap_count(reason),
3303                   md->overflow_recompile_count());
3304     return true;
3305   } else if (trap_count(reason) != 0
3306              && decompile_count() >= m_cutoff) {
3307     // Too many recompiles globally, and we have seen this sort of trap.
3308     // Use cumulative decompile_count, not just md->decompile_count.
3309     if (log())
3310       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3311                   Deoptimization::trap_reason_name(reason),
3312                   md->trap_count(reason), trap_count(reason),
3313                   md->decompile_count(), decompile_count());
3314     return true;
3315   } else {
3316     // The coast is clear.
3317     return false;
3318   }
3319 }
3320 
3321 
3322 #ifndef PRODUCT
3323 //------------------------------verify_graph_edges---------------------------
3324 // Walk the Graph and verify that there is a one-to-one correspondence
3325 // between Use-Def edges and Def-Use edges in the graph.
3326 void Compile::verify_graph_edges(bool no_dead_code) {
3327   if (VerifyGraphEdges) {
3328     ResourceArea *area = Thread::current()->resource_area();
3329     Unique_Node_List visited(area);
3330     // Call recursive graph walk to check edges
3331     _root->verify_edges(visited);
3332     if (no_dead_code) {
3333       // Now make sure that no visited node is used by an unvisited node.
3334       bool dead_nodes = 0;
3335       Unique_Node_List checked(area);
3336       while (visited.size() > 0) {
3337         Node* n = visited.pop();
3338         checked.push(n);
3339         for (uint i = 0; i < n->outcnt(); i++) {
3340           Node* use = n->raw_out(i);
3341           if (checked.member(use))  continue;  // already checked
3342           if (visited.member(use))  continue;  // already in the graph
3343           if (use->is_Con())        continue;  // a dead ConNode is OK
3344           // At this point, we have found a dead node which is DU-reachable.
3345           if (dead_nodes++ == 0)
3346             tty->print_cr("*** Dead nodes reachable via DU edges:");
3347           use->dump(2);
3348           tty->print_cr("---");
3349           checked.push(use);  // No repeats; pretend it is now checked.
3350         }
3351       }
3352       assert(dead_nodes == 0, "using nodes must be reachable from root");
3353     }
3354   }
3355 }
3356 
3357 // Verify GC barriers consistency
3358 // Currently supported:
3359 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3360 void Compile::verify_barriers() {
3361   if (UseG1GC) {
3362     // Verify G1 pre-barriers
3363     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3364 
3365     ResourceArea *area = Thread::current()->resource_area();
3366     Unique_Node_List visited(area);
3367     Node_List worklist(area);
3368     // We're going to walk control flow backwards starting from the Root
3369     worklist.push(_root);
3370     while (worklist.size() > 0) {
3371       Node* x = worklist.pop();
3372       if (x == NULL || x == top()) continue;
3373       if (visited.member(x)) {
3374         continue;
3375       } else {
3376         visited.push(x);
3377       }
3378 
3379       if (x->is_Region()) {
3380         for (uint i = 1; i < x->req(); i++) {
3381           worklist.push(x->in(i));
3382         }
3383       } else {
3384         worklist.push(x->in(0));
3385         // We are looking for the pattern:
3386         //                            /->ThreadLocal
3387         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3388         //              \->ConI(0)
3389         // We want to verify that the If and the LoadB have the same control
3390         // See GraphKit::g1_write_barrier_pre()
3391         if (x->is_If()) {
3392           IfNode *iff = x->as_If();
3393           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3394             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3395             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3396                 && cmp->in(1)->is_Load()) {
3397               LoadNode* load = cmp->in(1)->as_Load();
3398               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3399                   && load->in(2)->in(3)->is_Con()
3400                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3401 
3402                 Node* if_ctrl = iff->in(0);
3403                 Node* load_ctrl = load->in(0);
3404 
3405                 if (if_ctrl != load_ctrl) {
3406                   // Skip possible CProj->NeverBranch in infinite loops
3407                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3408                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3409                     if_ctrl = if_ctrl->in(0)->in(0);
3410                   }
3411                 }
3412                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3413               }
3414             }
3415           }
3416         }
3417       }
3418     }
3419   }
3420 }
3421 
3422 #endif
3423 
3424 // The Compile object keeps track of failure reasons separately from the ciEnv.
3425 // This is required because there is not quite a 1-1 relation between the
3426 // ciEnv and its compilation task and the Compile object.  Note that one
3427 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3428 // to backtrack and retry without subsuming loads.  Other than this backtracking
3429 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3430 // by the logic in C2Compiler.
3431 void Compile::record_failure(const char* reason) {
3432   if (log() != NULL) {
3433     log()->elem("failure reason='%s' phase='compile'", reason);
3434   }
3435   if (_failure_reason == NULL) {
3436     // Record the first failure reason.
3437     _failure_reason = reason;
3438   }
3439 
3440   EventCompilerFailure event;
3441   if (event.should_commit()) {
3442     event.set_compileID(Compile::compile_id());
3443     event.set_failure(reason);
3444     event.commit();
3445   }
3446 
3447   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3448     C->print_method(PHASE_FAILURE);
3449   }
3450   _root = NULL;  // flush the graph, too
3451 }
3452 
3453 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3454   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3455     _phase_name(name), _dolog(dolog)
3456 {
3457   if (dolog) {
3458     C = Compile::current();
3459     _log = C->log();
3460   } else {
3461     C = NULL;
3462     _log = NULL;
3463   }
3464   if (_log != NULL) {
3465     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3466     _log->stamp();
3467     _log->end_head();
3468   }
3469 }
3470 
3471 Compile::TracePhase::~TracePhase() {
3472 
3473   C = Compile::current();
3474   if (_dolog) {
3475     _log = C->log();
3476   } else {
3477     _log = NULL;
3478   }
3479 
3480 #ifdef ASSERT
3481   if (PrintIdealNodeCount) {
3482     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3483                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3484   }
3485 
3486   if (VerifyIdealNodeCount) {
3487     Compile::current()->print_missing_nodes();
3488   }
3489 #endif
3490 
3491   if (_log != NULL) {
3492     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3493   }
3494 }
3495 
3496 //=============================================================================
3497 // Two Constant's are equal when the type and the value are equal.
3498 bool Compile::Constant::operator==(const Constant& other) {
3499   if (type()          != other.type()         )  return false;
3500   if (can_be_reused() != other.can_be_reused())  return false;
3501   // For floating point values we compare the bit pattern.
3502   switch (type()) {
3503   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3504   case T_LONG:
3505   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3506   case T_OBJECT:
3507   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3508   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3509   case T_METADATA: return (_v._metadata == other._v._metadata);
3510   default: ShouldNotReachHere();
3511   }
3512   return false;
3513 }
3514 
3515 static int type_to_size_in_bytes(BasicType t) {
3516   switch (t) {
3517   case T_LONG:    return sizeof(jlong  );
3518   case T_FLOAT:   return sizeof(jfloat );
3519   case T_DOUBLE:  return sizeof(jdouble);
3520   case T_METADATA: return sizeof(Metadata*);
3521     // We use T_VOID as marker for jump-table entries (labels) which
3522     // need an internal word relocation.
3523   case T_VOID:
3524   case T_ADDRESS:
3525   case T_OBJECT:  return sizeof(jobject);
3526   }
3527 
3528   ShouldNotReachHere();
3529   return -1;
3530 }
3531 
3532 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3533   // sort descending
3534   if (a->freq() > b->freq())  return -1;
3535   if (a->freq() < b->freq())  return  1;
3536   return 0;
3537 }
3538 
3539 void Compile::ConstantTable::calculate_offsets_and_size() {
3540   // First, sort the array by frequencies.
3541   _constants.sort(qsort_comparator);
3542 
3543 #ifdef ASSERT
3544   // Make sure all jump-table entries were sorted to the end of the
3545   // array (they have a negative frequency).
3546   bool found_void = false;
3547   for (int i = 0; i < _constants.length(); i++) {
3548     Constant con = _constants.at(i);
3549     if (con.type() == T_VOID)
3550       found_void = true;  // jump-tables
3551     else
3552       assert(!found_void, "wrong sorting");
3553   }
3554 #endif
3555 
3556   int offset = 0;
3557   for (int i = 0; i < _constants.length(); i++) {
3558     Constant* con = _constants.adr_at(i);
3559 
3560     // Align offset for type.
3561     int typesize = type_to_size_in_bytes(con->type());
3562     offset = align_size_up(offset, typesize);
3563     con->set_offset(offset);   // set constant's offset
3564 
3565     if (con->type() == T_VOID) {
3566       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3567       offset = offset + typesize * n->outcnt();  // expand jump-table
3568     } else {
3569       offset = offset + typesize;
3570     }
3571   }
3572 
3573   // Align size up to the next section start (which is insts; see
3574   // CodeBuffer::align_at_start).
3575   assert(_size == -1, "already set?");
3576   _size = align_size_up(offset, CodeEntryAlignment);
3577 }
3578 
3579 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3580   MacroAssembler _masm(&cb);
3581   for (int i = 0; i < _constants.length(); i++) {
3582     Constant con = _constants.at(i);
3583     address constant_addr;
3584     switch (con.type()) {
3585     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3586     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3587     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3588     case T_OBJECT: {
3589       jobject obj = con.get_jobject();
3590       int oop_index = _masm.oop_recorder()->find_index(obj);
3591       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3592       break;
3593     }
3594     case T_ADDRESS: {
3595       address addr = (address) con.get_jobject();
3596       constant_addr = _masm.address_constant(addr);
3597       break;
3598     }
3599     // We use T_VOID as marker for jump-table entries (labels) which
3600     // need an internal word relocation.
3601     case T_VOID: {
3602       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3603       // Fill the jump-table with a dummy word.  The real value is
3604       // filled in later in fill_jump_table.
3605       address dummy = (address) n;
3606       constant_addr = _masm.address_constant(dummy);
3607       // Expand jump-table
3608       for (uint i = 1; i < n->outcnt(); i++) {
3609         address temp_addr = _masm.address_constant(dummy + i);
3610         assert(temp_addr, "consts section too small");
3611       }
3612       break;
3613     }
3614     case T_METADATA: {
3615       Metadata* obj = con.get_metadata();
3616       int metadata_index = _masm.oop_recorder()->find_index(obj);
3617       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3618       break;
3619     }
3620     default: ShouldNotReachHere();
3621     }
3622     assert(constant_addr, "consts section too small");
3623     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3624   }
3625 }
3626 
3627 int Compile::ConstantTable::find_offset(Constant& con) const {
3628   int idx = _constants.find(con);
3629   assert(idx != -1, "constant must be in constant table");
3630   int offset = _constants.at(idx).offset();
3631   assert(offset != -1, "constant table not emitted yet?");
3632   return offset;
3633 }
3634 
3635 void Compile::ConstantTable::add(Constant& con) {
3636   if (con.can_be_reused()) {
3637     int idx = _constants.find(con);
3638     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3639       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3640       return;
3641     }
3642   }
3643   (void) _constants.append(con);
3644 }
3645 
3646 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3647   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3648   Constant con(type, value, b->_freq);
3649   add(con);
3650   return con;
3651 }
3652 
3653 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3654   Constant con(metadata);
3655   add(con);
3656   return con;
3657 }
3658 
3659 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3660   jvalue value;
3661   BasicType type = oper->type()->basic_type();
3662   switch (type) {
3663   case T_LONG:    value.j = oper->constantL(); break;
3664   case T_FLOAT:   value.f = oper->constantF(); break;
3665   case T_DOUBLE:  value.d = oper->constantD(); break;
3666   case T_OBJECT:
3667   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3668   case T_METADATA: return add((Metadata*)oper->constant()); break;
3669   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3670   }
3671   return add(n, type, value);
3672 }
3673 
3674 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3675   jvalue value;
3676   // We can use the node pointer here to identify the right jump-table
3677   // as this method is called from Compile::Fill_buffer right before
3678   // the MachNodes are emitted and the jump-table is filled (means the
3679   // MachNode pointers do not change anymore).
3680   value.l = (jobject) n;
3681   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3682   add(con);
3683   return con;
3684 }
3685 
3686 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3687   // If called from Compile::scratch_emit_size do nothing.
3688   if (Compile::current()->in_scratch_emit_size())  return;
3689 
3690   assert(labels.is_nonempty(), "must be");
3691   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3692 
3693   // Since MachConstantNode::constant_offset() also contains
3694   // table_base_offset() we need to subtract the table_base_offset()
3695   // to get the plain offset into the constant table.
3696   int offset = n->constant_offset() - table_base_offset();
3697 
3698   MacroAssembler _masm(&cb);
3699   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3700 
3701   for (uint i = 0; i < n->outcnt(); i++) {
3702     address* constant_addr = &jump_table_base[i];
3703     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3704     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3705     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3706   }
3707 }
3708 
3709 void Compile::dump_inlining() {
3710   if (print_inlining() || print_intrinsics()) {
3711     // Print inlining message for candidates that we couldn't inline
3712     // for lack of space or non constant receiver
3713     for (int i = 0; i < _late_inlines.length(); i++) {
3714       CallGenerator* cg = _late_inlines.at(i);
3715       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3716     }
3717     Unique_Node_List useful;
3718     useful.push(root());
3719     for (uint next = 0; next < useful.size(); ++next) {
3720       Node* n  = useful.at(next);
3721       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3722         CallNode* call = n->as_Call();
3723         CallGenerator* cg = call->generator();
3724         cg->print_inlining_late("receiver not constant");
3725       }
3726       uint max = n->len();
3727       for ( uint i = 0; i < max; ++i ) {
3728         Node *m = n->in(i);
3729         if ( m == NULL ) continue;
3730         useful.push(m);
3731       }
3732     }
3733     for (int i = 0; i < _print_inlining_list->length(); i++) {
3734       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3735     }
3736   }
3737 }
3738 
3739 // Dump inlining replay data to the stream.
3740 // Don't change thread state and acquire any locks.
3741 void Compile::dump_inline_data(outputStream* out) {
3742   InlineTree* inl_tree = ilt();
3743   if (inl_tree != NULL) {
3744     out->print(" inline %d", inl_tree->count());
3745     inl_tree->dump_replay_data(out);
3746   }
3747 }
3748 
3749 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3750   if (n1->Opcode() < n2->Opcode())      return -1;
3751   else if (n1->Opcode() > n2->Opcode()) return 1;
3752 
3753   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3754   for (uint i = 1; i < n1->req(); i++) {
3755     if (n1->in(i) < n2->in(i))      return -1;
3756     else if (n1->in(i) > n2->in(i)) return 1;
3757   }
3758 
3759   return 0;
3760 }
3761 
3762 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3763   Node* n1 = *n1p;
3764   Node* n2 = *n2p;
3765 
3766   return cmp_expensive_nodes(n1, n2);
3767 }
3768 
3769 void Compile::sort_expensive_nodes() {
3770   if (!expensive_nodes_sorted()) {
3771     _expensive_nodes->sort(cmp_expensive_nodes);
3772   }
3773 }
3774 
3775 bool Compile::expensive_nodes_sorted() const {
3776   for (int i = 1; i < _expensive_nodes->length(); i++) {
3777     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3778       return false;
3779     }
3780   }
3781   return true;
3782 }
3783 
3784 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3785   if (_expensive_nodes->length() == 0) {
3786     return false;
3787   }
3788 
3789   assert(OptimizeExpensiveOps, "optimization off?");
3790 
3791   // Take this opportunity to remove dead nodes from the list
3792   int j = 0;
3793   for (int i = 0; i < _expensive_nodes->length(); i++) {
3794     Node* n = _expensive_nodes->at(i);
3795     if (!n->is_unreachable(igvn)) {
3796       assert(n->is_expensive(), "should be expensive");
3797       _expensive_nodes->at_put(j, n);
3798       j++;
3799     }
3800   }
3801   _expensive_nodes->trunc_to(j);
3802 
3803   // Then sort the list so that similar nodes are next to each other
3804   // and check for at least two nodes of identical kind with same data
3805   // inputs.
3806   sort_expensive_nodes();
3807 
3808   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3809     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3810       return true;
3811     }
3812   }
3813 
3814   return false;
3815 }
3816 
3817 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3818   if (_expensive_nodes->length() == 0) {
3819     return;
3820   }
3821 
3822   assert(OptimizeExpensiveOps, "optimization off?");
3823 
3824   // Sort to bring similar nodes next to each other and clear the
3825   // control input of nodes for which there's only a single copy.
3826   sort_expensive_nodes();
3827 
3828   int j = 0;
3829   int identical = 0;
3830   int i = 0;
3831   for (; i < _expensive_nodes->length()-1; i++) {
3832     assert(j <= i, "can't write beyond current index");
3833     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3834       identical++;
3835       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3836       continue;
3837     }
3838     if (identical > 0) {
3839       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3840       identical = 0;
3841     } else {
3842       Node* n = _expensive_nodes->at(i);
3843       igvn.hash_delete(n);
3844       n->set_req(0, NULL);
3845       igvn.hash_insert(n);
3846     }
3847   }
3848   if (identical > 0) {
3849     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3850   } else if (_expensive_nodes->length() >= 1) {
3851     Node* n = _expensive_nodes->at(i);
3852     igvn.hash_delete(n);
3853     n->set_req(0, NULL);
3854     igvn.hash_insert(n);
3855   }
3856   _expensive_nodes->trunc_to(j);
3857 }
3858 
3859 void Compile::add_expensive_node(Node * n) {
3860   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3861   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3862   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3863   if (OptimizeExpensiveOps) {
3864     _expensive_nodes->append(n);
3865   } else {
3866     // Clear control input and let IGVN optimize expensive nodes if
3867     // OptimizeExpensiveOps is off.
3868     n->set_req(0, NULL);
3869   }
3870 }
3871 
3872 /**
3873  * Remove the speculative part of types and clean up the graph
3874  */
3875 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3876   if (UseTypeSpeculation) {
3877     Unique_Node_List worklist;
3878     worklist.push(root());
3879     int modified = 0;
3880     // Go over all type nodes that carry a speculative type, drop the
3881     // speculative part of the type and enqueue the node for an igvn
3882     // which may optimize it out.
3883     for (uint next = 0; next < worklist.size(); ++next) {
3884       Node *n  = worklist.at(next);
3885       if (n->is_Type()) {
3886         TypeNode* tn = n->as_Type();
3887         const Type* t = tn->type();
3888         const Type* t_no_spec = t->remove_speculative();
3889         if (t_no_spec != t) {
3890           bool in_hash = igvn.hash_delete(n);
3891           assert(in_hash, "node should be in igvn hash table");
3892           tn->set_type(t_no_spec);
3893           igvn.hash_insert(n);
3894           igvn._worklist.push(n); // give it a chance to go away
3895           modified++;
3896         }
3897       }
3898       uint max = n->len();
3899       for( uint i = 0; i < max; ++i ) {
3900         Node *m = n->in(i);
3901         if (not_a_node(m))  continue;
3902         worklist.push(m);
3903       }
3904     }
3905     // Drop the speculative part of all types in the igvn's type table
3906     igvn.remove_speculative_types();
3907     if (modified > 0) {
3908       igvn.optimize();
3909     }
3910 #ifdef ASSERT
3911     // Verify that after the IGVN is over no speculative type has resurfaced
3912     worklist.clear();
3913     worklist.push(root());
3914     for (uint next = 0; next < worklist.size(); ++next) {
3915       Node *n  = worklist.at(next);
3916       const Type* t = igvn.type(n);
3917       assert(t == t->remove_speculative(), "no more speculative types");
3918       if (n->is_Type()) {
3919         t = n->as_Type()->type();
3920         assert(t == t->remove_speculative(), "no more speculative types");
3921       }
3922       uint max = n->len();
3923       for( uint i = 0; i < max; ++i ) {
3924         Node *m = n->in(i);
3925         if (not_a_node(m))  continue;
3926         worklist.push(m);
3927       }
3928     }
3929     igvn.check_no_speculative_types();
3930 #endif
3931   }
3932 }
3933 
3934 // Auxiliary method to support randomized stressing/fuzzing.
3935 //
3936 // This method can be called the arbitrary number of times, with current count
3937 // as the argument. The logic allows selecting a single candidate from the
3938 // running list of candidates as follows:
3939 //    int count = 0;
3940 //    Cand* selected = null;
3941 //    while(cand = cand->next()) {
3942 //      if (randomized_select(++count)) {
3943 //        selected = cand;
3944 //      }
3945 //    }
3946 //
3947 // Including count equalizes the chances any candidate is "selected".
3948 // This is useful when we don't have the complete list of candidates to choose
3949 // from uniformly. In this case, we need to adjust the randomicity of the
3950 // selection, or else we will end up biasing the selection towards the latter
3951 // candidates.
3952 //
3953 // Quick back-envelope calculation shows that for the list of n candidates
3954 // the equal probability for the candidate to persist as "best" can be
3955 // achieved by replacing it with "next" k-th candidate with the probability
3956 // of 1/k. It can be easily shown that by the end of the run, the
3957 // probability for any candidate is converged to 1/n, thus giving the
3958 // uniform distribution among all the candidates.
3959 //
3960 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3961 #define RANDOMIZED_DOMAIN_POW 29
3962 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3963 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3964 bool Compile::randomized_select(int count) {
3965   assert(count > 0, "only positive");
3966   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3967 }