1 /* 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "oops/method.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/idealGraphPrinter.hpp" 31 #include "opto/locknode.hpp" 32 #include "opto/memnode.hpp" 33 #include "opto/parse.hpp" 34 #include "opto/rootnode.hpp" 35 #include "opto/runtime.hpp" 36 #include "runtime/arguments.hpp" 37 #include "runtime/handles.inline.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 #include "utilities/copy.hpp" 40 41 // Static array so we can figure out which bytecodes stop us from compiling 42 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 43 // and eventually should be encapsulated in a proper class (gri 8/18/98). 44 45 int nodes_created = 0; 46 int methods_parsed = 0; 47 int methods_seen = 0; 48 int blocks_parsed = 0; 49 int blocks_seen = 0; 50 51 int explicit_null_checks_inserted = 0; 52 int explicit_null_checks_elided = 0; 53 int all_null_checks_found = 0, implicit_null_checks = 0; 54 int implicit_null_throws = 0; 55 56 int reclaim_idx = 0; 57 int reclaim_in = 0; 58 int reclaim_node = 0; 59 60 #ifndef PRODUCT 61 bool Parse::BytecodeParseHistogram::_initialized = false; 62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 66 #endif 67 68 //------------------------------print_statistics------------------------------- 69 #ifndef PRODUCT 70 void Parse::print_statistics() { 71 tty->print_cr("--- Compiler Statistics ---"); 72 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed); 73 tty->print(" Nodes created: %d", nodes_created); 74 tty->cr(); 75 if (methods_seen != methods_parsed) 76 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 77 tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen); 78 79 if( explicit_null_checks_inserted ) 80 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found); 81 if( all_null_checks_found ) 82 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks, 83 (100*implicit_null_checks)/all_null_checks_found); 84 if( implicit_null_throws ) 85 tty->print_cr("%d implicit null exceptions at runtime", 86 implicit_null_throws); 87 88 if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) { 89 BytecodeParseHistogram::print(); 90 } 91 } 92 #endif 93 94 //------------------------------ON STACK REPLACEMENT--------------------------- 95 96 // Construct a node which can be used to get incoming state for 97 // on stack replacement. 98 Node *Parse::fetch_interpreter_state(int index, 99 BasicType bt, 100 Node *local_addrs, 101 Node *local_addrs_base) { 102 Node *mem = memory(Compile::AliasIdxRaw); 103 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 104 Node *ctl = control(); 105 106 // Very similar to LoadNode::make, except we handle un-aligned longs and 107 // doubles on Sparc. Intel can handle them just fine directly. 108 Node *l; 109 switch( bt ) { // Signature is flattened 110 case T_INT: l = new (C) LoadINode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break; 111 case T_FLOAT: l = new (C) LoadFNode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break; 112 case T_ADDRESS: l = new (C) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM ); break; 113 case T_OBJECT: l = new (C) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break; 114 case T_LONG: 115 case T_DOUBLE: { 116 // Since arguments are in reverse order, the argument address 'adr' 117 // refers to the back half of the long/double. Recompute adr. 118 adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize ); 119 if( Matcher::misaligned_doubles_ok ) { 120 l = (bt == T_DOUBLE) 121 ? (Node*)new (C) LoadDNode( ctl, mem, adr, TypeRawPtr::BOTTOM ) 122 : (Node*)new (C) LoadLNode( ctl, mem, adr, TypeRawPtr::BOTTOM ); 123 } else { 124 l = (bt == T_DOUBLE) 125 ? (Node*)new (C) LoadD_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM ) 126 : (Node*)new (C) LoadL_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM ); 127 } 128 break; 129 } 130 default: ShouldNotReachHere(); 131 } 132 return _gvn.transform(l); 133 } 134 135 // Helper routine to prevent the interpreter from handing 136 // unexpected typestate to an OSR method. 137 // The Node l is a value newly dug out of the interpreter frame. 138 // The type is the type predicted by ciTypeFlow. Note that it is 139 // not a general type, but can only come from Type::get_typeflow_type. 140 // The safepoint is a map which will feed an uncommon trap. 141 Node* Parse::check_interpreter_type(Node* l, const Type* type, 142 SafePointNode* &bad_type_exit) { 143 144 const TypeOopPtr* tp = type->isa_oopptr(); 145 146 // TypeFlow may assert null-ness if a type appears unloaded. 147 if (type == TypePtr::NULL_PTR || 148 (tp != NULL && !tp->klass()->is_loaded())) { 149 // Value must be null, not a real oop. 150 Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) ); 151 Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) ); 152 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 153 set_control(_gvn.transform( new (C) IfTrueNode(iff) )); 154 Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) ); 155 bad_type_exit->control()->add_req(bad_type); 156 l = null(); 157 } 158 159 // Typeflow can also cut off paths from the CFG, based on 160 // types which appear unloaded, or call sites which appear unlinked. 161 // When paths are cut off, values at later merge points can rise 162 // toward more specific classes. Make sure these specific classes 163 // are still in effect. 164 if (tp != NULL && tp->klass() != C->env()->Object_klass()) { 165 // TypeFlow asserted a specific object type. Value must have that type. 166 Node* bad_type_ctrl = NULL; 167 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl); 168 bad_type_exit->control()->add_req(bad_type_ctrl); 169 } 170 171 BasicType bt_l = _gvn.type(l)->basic_type(); 172 BasicType bt_t = type->basic_type(); 173 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 174 return l; 175 } 176 177 // Helper routine which sets up elements of the initial parser map when 178 // performing a parse for on stack replacement. Add values into map. 179 // The only parameter contains the address of a interpreter arguments. 180 void Parse::load_interpreter_state(Node* osr_buf) { 181 int index; 182 int max_locals = jvms()->loc_size(); 183 int max_stack = jvms()->stk_size(); 184 185 186 // Mismatch between method and jvms can occur since map briefly held 187 // an OSR entry state (which takes up one RawPtr word). 188 assert(max_locals == method()->max_locals(), "sanity"); 189 assert(max_stack >= method()->max_stack(), "sanity"); 190 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 191 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 192 193 // Find the start block. 194 Block* osr_block = start_block(); 195 assert(osr_block->start() == osr_bci(), "sanity"); 196 197 // Set initial BCI. 198 set_parse_bci(osr_block->start()); 199 200 // Set initial stack depth. 201 set_sp(osr_block->start_sp()); 202 203 // Check bailouts. We currently do not perform on stack replacement 204 // of loops in catch blocks or loops which branch with a non-empty stack. 205 if (sp() != 0) { 206 C->record_method_not_compilable("OSR starts with non-empty stack"); 207 return; 208 } 209 // Do not OSR inside finally clauses: 210 if (osr_block->has_trap_at(osr_block->start())) { 211 C->record_method_not_compilable("OSR starts with an immediate trap"); 212 return; 213 } 214 215 // Commute monitors from interpreter frame to compiler frame. 216 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 217 int mcnt = osr_block->flow()->monitor_count(); 218 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 219 for (index = 0; index < mcnt; index++) { 220 // Make a BoxLockNode for the monitor. 221 Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor())); 222 223 224 // Displaced headers and locked objects are interleaved in the 225 // temp OSR buffer. We only copy the locked objects out here. 226 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 227 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 228 // Try and copy the displaced header to the BoxNode 229 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 230 231 232 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw); 233 234 // Build a bogus FastLockNode (no code will be generated) and push the 235 // monitor into our debug info. 236 const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock(); 237 map()->push_monitor(flock); 238 239 // If the lock is our method synchronization lock, tuck it away in 240 // _sync_lock for return and rethrow exit paths. 241 if (index == 0 && method()->is_synchronized()) { 242 _synch_lock = flock; 243 } 244 } 245 246 // Use the raw liveness computation to make sure that unexpected 247 // values don't propagate into the OSR frame. 248 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 249 if (!live_locals.is_valid()) { 250 // Degenerate or breakpointed method. 251 C->record_method_not_compilable("OSR in empty or breakpointed method"); 252 return; 253 } 254 255 // Extract the needed locals from the interpreter frame. 256 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 257 258 // find all the locals that the interpreter thinks contain live oops 259 const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 260 for (index = 0; index < max_locals; index++) { 261 262 if (!live_locals.at(index)) { 263 continue; 264 } 265 266 const Type *type = osr_block->local_type_at(index); 267 268 if (type->isa_oopptr() != NULL) { 269 270 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 271 // else we might load a stale oop if the MethodLiveness disagrees with the 272 // result of the interpreter. If the interpreter says it is dead we agree 273 // by making the value go to top. 274 // 275 276 if (!live_oops.at(index)) { 277 if (C->log() != NULL) { 278 C->log()->elem("OSR_mismatch local_index='%d'",index); 279 } 280 set_local(index, null()); 281 // and ignore it for the loads 282 continue; 283 } 284 } 285 286 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 287 if (type == Type::TOP || type == Type::HALF) { 288 continue; 289 } 290 // If the type falls to bottom, then this must be a local that 291 // is mixing ints and oops or some such. Forcing it to top 292 // makes it go dead. 293 if (type == Type::BOTTOM) { 294 continue; 295 } 296 // Construct code to access the appropriate local. 297 BasicType bt = type->basic_type(); 298 if (type == TypePtr::NULL_PTR) { 299 // Ptr types are mixed together with T_ADDRESS but NULL is 300 // really for T_OBJECT types so correct it. 301 bt = T_OBJECT; 302 } 303 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 304 set_local(index, value); 305 } 306 307 // Extract the needed stack entries from the interpreter frame. 308 for (index = 0; index < sp(); index++) { 309 const Type *type = osr_block->stack_type_at(index); 310 if (type != Type::TOP) { 311 // Currently the compiler bails out when attempting to on stack replace 312 // at a bci with a non-empty stack. We should not reach here. 313 ShouldNotReachHere(); 314 } 315 } 316 317 // End the OSR migration 318 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 319 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 320 "OSR_migration_end", TypeRawPtr::BOTTOM, 321 osr_buf); 322 323 // Now that the interpreter state is loaded, make sure it will match 324 // at execution time what the compiler is expecting now: 325 SafePointNode* bad_type_exit = clone_map(); 326 bad_type_exit->set_control(new (C) RegionNode(1)); 327 328 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 329 for (index = 0; index < max_locals; index++) { 330 if (stopped()) break; 331 Node* l = local(index); 332 if (l->is_top()) continue; // nothing here 333 const Type *type = osr_block->local_type_at(index); 334 if (type->isa_oopptr() != NULL) { 335 if (!live_oops.at(index)) { 336 // skip type check for dead oops 337 continue; 338 } 339 } 340 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 341 // In our current system it's illegal for jsr addresses to be 342 // live into an OSR entry point because the compiler performs 343 // inlining of jsrs. ciTypeFlow has a bailout that detect this 344 // case and aborts the compile if addresses are live into an OSR 345 // entry point. Because of that we can assume that any address 346 // locals at the OSR entry point are dead. Method liveness 347 // isn't precise enought to figure out that they are dead in all 348 // cases so simply skip checking address locals all 349 // together. Any type check is guaranteed to fail since the 350 // interpreter type is the result of a load which might have any 351 // value and the expected type is a constant. 352 continue; 353 } 354 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 355 } 356 357 for (index = 0; index < sp(); index++) { 358 if (stopped()) break; 359 Node* l = stack(index); 360 if (l->is_top()) continue; // nothing here 361 const Type *type = osr_block->stack_type_at(index); 362 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 363 } 364 365 if (bad_type_exit->control()->req() > 1) { 366 // Build an uncommon trap here, if any inputs can be unexpected. 367 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 368 record_for_igvn(bad_type_exit->control()); 369 SafePointNode* types_are_good = map(); 370 set_map(bad_type_exit); 371 // The unexpected type happens because a new edge is active 372 // in the CFG, which typeflow had previously ignored. 373 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 374 // This x will be typed as Integer if notReached is not yet linked. 375 // It could also happen due to a problem in ciTypeFlow analysis. 376 uncommon_trap(Deoptimization::Reason_constraint, 377 Deoptimization::Action_reinterpret); 378 set_map(types_are_good); 379 } 380 } 381 382 //------------------------------Parse------------------------------------------ 383 // Main parser constructor. 384 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses, Parse* parent) 385 : _exits(caller), _parent(parent) 386 { 387 // Init some variables 388 _caller = caller; 389 _method = parse_method; 390 _expected_uses = expected_uses; 391 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 392 _wrote_final = false; 393 _alloc_with_final = NULL; 394 _entry_bci = InvocationEntryBci; 395 _tf = NULL; 396 _block = NULL; 397 debug_only(_block_count = -1); 398 debug_only(_blocks = (Block*)-1); 399 #ifndef PRODUCT 400 if (PrintCompilation || PrintOpto) { 401 // Make sure I have an inline tree, so I can print messages about it. 402 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; 403 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); 404 } 405 _max_switch_depth = 0; 406 _est_switch_depth = 0; 407 #endif 408 409 _tf = TypeFunc::make(method()); 410 _iter.reset_to_method(method()); 411 _flow = method()->get_flow_analysis(); 412 if (_flow->failing()) { 413 C->record_method_not_compilable_all_tiers(_flow->failure_reason()); 414 } 415 416 #ifndef PRODUCT 417 if (_flow->has_irreducible_entry()) { 418 C->set_parsed_irreducible_loop(true); 419 } 420 #endif 421 422 if (_expected_uses <= 0) { 423 _prof_factor = 1; 424 } else { 425 float prof_total = parse_method->interpreter_invocation_count(); 426 if (prof_total <= _expected_uses) { 427 _prof_factor = 1; 428 } else { 429 _prof_factor = _expected_uses / prof_total; 430 } 431 } 432 433 CompileLog* log = C->log(); 434 if (log != NULL) { 435 log->begin_head("parse method='%d' uses='%g'", 436 log->identify(parse_method), expected_uses); 437 if (depth() == 1 && C->is_osr_compilation()) { 438 log->print(" osr_bci='%d'", C->entry_bci()); 439 } 440 log->stamp(); 441 log->end_head(); 442 } 443 444 // Accumulate deoptimization counts. 445 // (The range_check and store_check counts are checked elsewhere.) 446 ciMethodData* md = method()->method_data(); 447 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 448 uint md_count = md->trap_count(reason); 449 if (md_count != 0) { 450 if (md_count == md->trap_count_limit()) 451 md_count += md->overflow_trap_count(); 452 uint total_count = C->trap_count(reason); 453 uint old_count = total_count; 454 total_count += md_count; 455 // Saturate the add if it overflows. 456 if (total_count < old_count || total_count < md_count) 457 total_count = (uint)-1; 458 C->set_trap_count(reason, total_count); 459 if (log != NULL) 460 log->elem("observe trap='%s' count='%d' total='%d'", 461 Deoptimization::trap_reason_name(reason), 462 md_count, total_count); 463 } 464 } 465 // Accumulate total sum of decompilations, also. 466 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 467 468 _count_invocations = C->do_count_invocations(); 469 _method_data_update = C->do_method_data_update(); 470 471 if (log != NULL && method()->has_exception_handlers()) { 472 log->elem("observe that='has_exception_handlers'"); 473 } 474 475 assert(method()->can_be_compiled(), "Can not parse this method, cutout earlier"); 476 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 477 478 // Always register dependence if JVMTI is enabled, because 479 // either breakpoint setting or hotswapping of methods may 480 // cause deoptimization. 481 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 482 C->dependencies()->assert_evol_method(method()); 483 } 484 485 methods_seen++; 486 487 // Do some special top-level things. 488 if (depth() == 1 && C->is_osr_compilation()) { 489 _entry_bci = C->entry_bci(); 490 _flow = method()->get_osr_flow_analysis(osr_bci()); 491 if (_flow->failing()) { 492 C->record_method_not_compilable(_flow->failure_reason()); 493 #ifndef PRODUCT 494 if (PrintOpto && (Verbose || WizardMode)) { 495 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 496 if (Verbose) { 497 method()->print(); 498 method()->print_codes(); 499 _flow->print(); 500 } 501 } 502 #endif 503 } 504 _tf = C->tf(); // the OSR entry type is different 505 } 506 507 #ifdef ASSERT 508 if (depth() == 1) { 509 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 510 if (C->tf() != tf()) { 511 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag); 512 assert(C->env()->system_dictionary_modification_counter_changed(), 513 "Must invalidate if TypeFuncs differ"); 514 } 515 } else { 516 assert(!this->is_osr_parse(), "no recursive OSR"); 517 } 518 #endif 519 520 methods_parsed++; 521 #ifndef PRODUCT 522 // add method size here to guarantee that inlined methods are added too 523 if (TimeCompiler) 524 _total_bytes_compiled += method()->code_size(); 525 526 show_parse_info(); 527 #endif 528 529 if (failing()) { 530 if (log) log->done("parse"); 531 return; 532 } 533 534 gvn().set_type(root(), root()->bottom_type()); 535 gvn().transform(top()); 536 537 // Import the results of the ciTypeFlow. 538 init_blocks(); 539 540 // Merge point for all normal exits 541 build_exits(); 542 543 // Setup the initial JVM state map. 544 SafePointNode* entry_map = create_entry_map(); 545 546 // Check for bailouts during map initialization 547 if (failing() || entry_map == NULL) { 548 if (log) log->done("parse"); 549 return; 550 } 551 552 Node_Notes* caller_nn = C->default_node_notes(); 553 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 554 if (DebugInlinedCalls || depth() == 1) { 555 C->set_default_node_notes(make_node_notes(caller_nn)); 556 } 557 558 if (is_osr_parse()) { 559 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 560 entry_map->set_req(TypeFunc::Parms+0, top()); 561 set_map(entry_map); 562 load_interpreter_state(osr_buf); 563 } else { 564 set_map(entry_map); 565 do_method_entry(); 566 } 567 if (depth() == 1) { 568 // Add check to deoptimize the nmethod if RTM state was changed 569 rtm_deopt(); 570 } 571 572 // Check for bailouts during method entry. 573 if (failing()) { 574 if (log) log->done("parse"); 575 C->set_default_node_notes(caller_nn); 576 return; 577 } 578 579 entry_map = map(); // capture any changes performed by method setup code 580 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 581 582 // We begin parsing as if we have just encountered a jump to the 583 // method entry. 584 Block* entry_block = start_block(); 585 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 586 set_map_clone(entry_map); 587 merge_common(entry_block, entry_block->next_path_num()); 588 589 #ifndef PRODUCT 590 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 591 set_parse_histogram( parse_histogram_obj ); 592 #endif 593 594 // Parse all the basic blocks. 595 do_all_blocks(); 596 597 C->set_default_node_notes(caller_nn); 598 599 // Check for bailouts during conversion to graph 600 if (failing()) { 601 if (log) log->done("parse"); 602 return; 603 } 604 605 // Fix up all exiting control flow. 606 set_map(entry_map); 607 do_exits(); 608 609 if (log) log->done("parse nodes='%d' live='%d' memory='%d'", 610 C->unique(), C->live_nodes(), C->node_arena()->used()); 611 } 612 613 //---------------------------do_all_blocks------------------------------------- 614 void Parse::do_all_blocks() { 615 bool has_irreducible = flow()->has_irreducible_entry(); 616 617 // Walk over all blocks in Reverse Post-Order. 618 while (true) { 619 bool progress = false; 620 for (int rpo = 0; rpo < block_count(); rpo++) { 621 Block* block = rpo_at(rpo); 622 623 if (block->is_parsed()) continue; 624 625 if (!block->is_merged()) { 626 // Dead block, no state reaches this block 627 continue; 628 } 629 630 // Prepare to parse this block. 631 load_state_from(block); 632 633 if (stopped()) { 634 // Block is dead. 635 continue; 636 } 637 638 blocks_parsed++; 639 640 progress = true; 641 if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) { 642 // Not all preds have been parsed. We must build phis everywhere. 643 // (Note that dead locals do not get phis built, ever.) 644 ensure_phis_everywhere(); 645 646 if (block->is_SEL_head() && 647 (UseLoopPredicate || LoopLimitCheck)) { 648 // Add predicate to single entry (not irreducible) loop head. 649 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 650 // Need correct bci for predicate. 651 // It is fine to set it here since do_one_block() will set it anyway. 652 set_parse_bci(block->start()); 653 add_predicate(); 654 // Add new region for back branches. 655 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 656 RegionNode *r = new (C) RegionNode(edges+1); 657 _gvn.set_type(r, Type::CONTROL); 658 record_for_igvn(r); 659 r->init_req(edges, control()); 660 set_control(r); 661 // Add new phis. 662 ensure_phis_everywhere(); 663 } 664 665 // Leave behind an undisturbed copy of the map, for future merges. 666 set_map(clone_map()); 667 } 668 669 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 670 // In the absence of irreducible loops, the Region and Phis 671 // associated with a merge that doesn't involve a backedge can 672 // be simplified now since the RPO parsing order guarantees 673 // that any path which was supposed to reach here has already 674 // been parsed or must be dead. 675 Node* c = control(); 676 Node* result = _gvn.transform_no_reclaim(control()); 677 if (c != result && TraceOptoParse) { 678 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 679 } 680 if (result != top()) { 681 record_for_igvn(result); 682 } 683 } 684 685 // Parse the block. 686 do_one_block(); 687 688 // Check for bailouts. 689 if (failing()) return; 690 } 691 692 // with irreducible loops multiple passes might be necessary to parse everything 693 if (!has_irreducible || !progress) { 694 break; 695 } 696 } 697 698 blocks_seen += block_count(); 699 700 #ifndef PRODUCT 701 // Make sure there are no half-processed blocks remaining. 702 // Every remaining unprocessed block is dead and may be ignored now. 703 for (int rpo = 0; rpo < block_count(); rpo++) { 704 Block* block = rpo_at(rpo); 705 if (!block->is_parsed()) { 706 if (TraceOptoParse) { 707 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 708 } 709 assert(!block->is_merged(), "no half-processed blocks"); 710 } 711 } 712 #endif 713 } 714 715 //-------------------------------build_exits---------------------------------- 716 // Build normal and exceptional exit merge points. 717 void Parse::build_exits() { 718 // make a clone of caller to prevent sharing of side-effects 719 _exits.set_map(_exits.clone_map()); 720 _exits.clean_stack(_exits.sp()); 721 _exits.sync_jvms(); 722 723 RegionNode* region = new (C) RegionNode(1); 724 record_for_igvn(region); 725 gvn().set_type_bottom(region); 726 _exits.set_control(region); 727 728 // Note: iophi and memphi are not transformed until do_exits. 729 Node* iophi = new (C) PhiNode(region, Type::ABIO); 730 Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 731 gvn().set_type_bottom(iophi); 732 gvn().set_type_bottom(memphi); 733 _exits.set_i_o(iophi); 734 _exits.set_all_memory(memphi); 735 736 // Add a return value to the exit state. (Do not push it yet.) 737 if (tf()->range()->cnt() > TypeFunc::Parms) { 738 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 739 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 740 // becomes loaded during the subsequent parsing, the loaded and unloaded 741 // types will not join when we transform and push in do_exits(). 742 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 743 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) { 744 ret_type = TypeOopPtr::BOTTOM; 745 } 746 int ret_size = type2size[ret_type->basic_type()]; 747 Node* ret_phi = new (C) PhiNode(region, ret_type); 748 gvn().set_type_bottom(ret_phi); 749 _exits.ensure_stack(ret_size); 750 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 751 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 752 _exits.set_argument(0, ret_phi); // here is where the parser finds it 753 // Note: ret_phi is not yet pushed, until do_exits. 754 } 755 } 756 757 758 //----------------------------build_start_state------------------------------- 759 // Construct a state which contains only the incoming arguments from an 760 // unknown caller. The method & bci will be NULL & InvocationEntryBci. 761 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 762 int arg_size = tf->domain()->cnt(); 763 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 764 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 765 SafePointNode* map = new (this) SafePointNode(max_size, NULL); 766 record_for_igvn(map); 767 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 768 Node_Notes* old_nn = default_node_notes(); 769 if (old_nn != NULL && has_method()) { 770 Node_Notes* entry_nn = old_nn->clone(this); 771 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 772 entry_jvms->set_offsets(0); 773 entry_jvms->set_bci(entry_bci()); 774 entry_nn->set_jvms(entry_jvms); 775 set_default_node_notes(entry_nn); 776 } 777 uint i; 778 for (i = 0; i < (uint)arg_size; i++) { 779 Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i)); 780 map->init_req(i, parm); 781 // Record all these guys for later GVN. 782 record_for_igvn(parm); 783 } 784 for (; i < map->req(); i++) { 785 map->init_req(i, top()); 786 } 787 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 788 set_default_node_notes(old_nn); 789 map->set_jvms(jvms); 790 jvms->set_map(map); 791 return jvms; 792 } 793 794 //-----------------------------make_node_notes--------------------------------- 795 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 796 if (caller_nn == NULL) return NULL; 797 Node_Notes* nn = caller_nn->clone(C); 798 JVMState* caller_jvms = nn->jvms(); 799 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 800 jvms->set_offsets(0); 801 jvms->set_bci(_entry_bci); 802 nn->set_jvms(jvms); 803 return nn; 804 } 805 806 807 //--------------------------return_values-------------------------------------- 808 void Compile::return_values(JVMState* jvms) { 809 GraphKit kit(jvms); 810 Node* ret = new (this) ReturnNode(TypeFunc::Parms, 811 kit.control(), 812 kit.i_o(), 813 kit.reset_memory(), 814 kit.frameptr(), 815 kit.returnadr()); 816 // Add zero or 1 return values 817 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 818 if (ret_size > 0) { 819 kit.inc_sp(-ret_size); // pop the return value(s) 820 kit.sync_jvms(); 821 ret->add_req(kit.argument(0)); 822 // Note: The second dummy edge is not needed by a ReturnNode. 823 } 824 // bind it to root 825 root()->add_req(ret); 826 record_for_igvn(ret); 827 initial_gvn()->transform_no_reclaim(ret); 828 } 829 830 //------------------------rethrow_exceptions----------------------------------- 831 // Bind all exception states in the list into a single RethrowNode. 832 void Compile::rethrow_exceptions(JVMState* jvms) { 833 GraphKit kit(jvms); 834 if (!kit.has_exceptions()) return; // nothing to generate 835 // Load my combined exception state into the kit, with all phis transformed: 836 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 837 Node* ex_oop = kit.use_exception_state(ex_map); 838 RethrowNode* exit = new (this) RethrowNode(kit.control(), 839 kit.i_o(), kit.reset_memory(), 840 kit.frameptr(), kit.returnadr(), 841 // like a return but with exception input 842 ex_oop); 843 // bind to root 844 root()->add_req(exit); 845 record_for_igvn(exit); 846 initial_gvn()->transform_no_reclaim(exit); 847 } 848 849 //---------------------------do_exceptions------------------------------------- 850 // Process exceptions arising from the current bytecode. 851 // Send caught exceptions to the proper handler within this method. 852 // Unhandled exceptions feed into _exit. 853 void Parse::do_exceptions() { 854 if (!has_exceptions()) return; 855 856 if (failing()) { 857 // Pop them all off and throw them away. 858 while (pop_exception_state() != NULL) ; 859 return; 860 } 861 862 PreserveJVMState pjvms(this, false); 863 864 SafePointNode* ex_map; 865 while ((ex_map = pop_exception_state()) != NULL) { 866 if (!method()->has_exception_handlers()) { 867 // Common case: Transfer control outward. 868 // Doing it this early allows the exceptions to common up 869 // even between adjacent method calls. 870 throw_to_exit(ex_map); 871 } else { 872 // Have to look at the exception first. 873 assert(stopped(), "catch_inline_exceptions trashes the map"); 874 catch_inline_exceptions(ex_map); 875 stop_and_kill_map(); // we used up this exception state; kill it 876 } 877 } 878 879 // We now return to our regularly scheduled program: 880 } 881 882 //---------------------------throw_to_exit------------------------------------- 883 // Merge the given map into an exception exit from this method. 884 // The exception exit will handle any unlocking of receiver. 885 // The ex_oop must be saved within the ex_map, unlike merge_exception. 886 void Parse::throw_to_exit(SafePointNode* ex_map) { 887 // Pop the JVMS to (a copy of) the caller. 888 GraphKit caller; 889 caller.set_map_clone(_caller->map()); 890 caller.set_bci(_caller->bci()); 891 caller.set_sp(_caller->sp()); 892 // Copy out the standard machine state: 893 for (uint i = 0; i < TypeFunc::Parms; i++) { 894 caller.map()->set_req(i, ex_map->in(i)); 895 } 896 // ...and the exception: 897 Node* ex_oop = saved_ex_oop(ex_map); 898 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 899 // Finally, collect the new exception state in my exits: 900 _exits.add_exception_state(caller_ex_map); 901 } 902 903 //------------------------------do_exits--------------------------------------- 904 void Parse::do_exits() { 905 set_parse_bci(InvocationEntryBci); 906 907 // Now peephole on the return bits 908 Node* region = _exits.control(); 909 _exits.set_control(gvn().transform(region)); 910 911 Node* iophi = _exits.i_o(); 912 _exits.set_i_o(gvn().transform(iophi)); 913 914 if (wrote_final()) { 915 // This method (which must be a constructor by the rules of Java) 916 // wrote a final. The effects of all initializations must be 917 // committed to memory before any code after the constructor 918 // publishes the reference to the newly constructor object. 919 // Rather than wait for the publication, we simply block the 920 // writes here. Rather than put a barrier on only those writes 921 // which are required to complete, we force all writes to complete. 922 // 923 // "All bets are off" unless the first publication occurs after a 924 // normal return from the constructor. We do not attempt to detect 925 // such unusual early publications. But no barrier is needed on 926 // exceptional returns, since they cannot publish normally. 927 // 928 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); 929 #ifndef PRODUCT 930 if (PrintOpto && (Verbose || WizardMode)) { 931 method()->print_name(); 932 tty->print_cr(" writes finals and needs a memory barrier"); 933 } 934 #endif 935 } 936 937 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 938 // transform each slice of the original memphi: 939 mms.set_memory(_gvn.transform(mms.memory())); 940 } 941 942 if (tf()->range()->cnt() > TypeFunc::Parms) { 943 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 944 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 945 assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined"); 946 _exits.push_node(ret_type->basic_type(), ret_phi); 947 } 948 949 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 950 951 // Unlock along the exceptional paths. 952 // This is done late so that we can common up equivalent exceptions 953 // (e.g., null checks) arising from multiple points within this method. 954 // See GraphKit::add_exception_state, which performs the commoning. 955 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 956 957 // record exit from a method if compiled while Dtrace is turned on. 958 if (do_synch || C->env()->dtrace_method_probes()) { 959 // First move the exception list out of _exits: 960 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 961 SafePointNode* normal_map = kit.map(); // keep this guy safe 962 // Now re-collect the exceptions into _exits: 963 SafePointNode* ex_map; 964 while ((ex_map = kit.pop_exception_state()) != NULL) { 965 Node* ex_oop = kit.use_exception_state(ex_map); 966 // Force the exiting JVM state to have this method at InvocationEntryBci. 967 // The exiting JVM state is otherwise a copy of the calling JVMS. 968 JVMState* caller = kit.jvms(); 969 JVMState* ex_jvms = caller->clone_shallow(C); 970 ex_jvms->set_map(kit.clone_map()); 971 ex_jvms->map()->set_jvms(ex_jvms); 972 ex_jvms->set_bci( InvocationEntryBci); 973 kit.set_jvms(ex_jvms); 974 if (do_synch) { 975 // Add on the synchronized-method box/object combo 976 kit.map()->push_monitor(_synch_lock); 977 // Unlock! 978 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 979 } 980 if (C->env()->dtrace_method_probes()) { 981 kit.make_dtrace_method_exit(method()); 982 } 983 // Done with exception-path processing. 984 ex_map = kit.make_exception_state(ex_oop); 985 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 986 // Pop the last vestige of this method: 987 ex_map->set_jvms(caller->clone_shallow(C)); 988 ex_map->jvms()->set_map(ex_map); 989 _exits.push_exception_state(ex_map); 990 } 991 assert(_exits.map() == normal_map, "keep the same return state"); 992 } 993 994 { 995 // Capture very early exceptions (receiver null checks) from caller JVMS 996 GraphKit caller(_caller); 997 SafePointNode* ex_map; 998 while ((ex_map = caller.pop_exception_state()) != NULL) { 999 _exits.add_exception_state(ex_map); 1000 } 1001 } 1002 } 1003 1004 //-----------------------------create_entry_map------------------------------- 1005 // Initialize our parser map to contain the types at method entry. 1006 // For OSR, the map contains a single RawPtr parameter. 1007 // Initial monitor locking for sync. methods is performed by do_method_entry. 1008 SafePointNode* Parse::create_entry_map() { 1009 // Check for really stupid bail-out cases. 1010 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1011 if (len >= 32760) { 1012 C->record_method_not_compilable_all_tiers("too many local variables"); 1013 return NULL; 1014 } 1015 1016 // If this is an inlined method, we may have to do a receiver null check. 1017 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1018 GraphKit kit(_caller); 1019 kit.null_check_receiver_before_call(method()); 1020 _caller = kit.transfer_exceptions_into_jvms(); 1021 if (kit.stopped()) { 1022 _exits.add_exception_states_from(_caller); 1023 _exits.set_jvms(_caller); 1024 return NULL; 1025 } 1026 } 1027 1028 assert(method() != NULL, "parser must have a method"); 1029 1030 // Create an initial safepoint to hold JVM state during parsing 1031 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL); 1032 set_map(new (C) SafePointNode(len, jvms)); 1033 jvms->set_map(map()); 1034 record_for_igvn(map()); 1035 assert(jvms->endoff() == len, "correct jvms sizing"); 1036 1037 SafePointNode* inmap = _caller->map(); 1038 assert(inmap != NULL, "must have inmap"); 1039 1040 uint i; 1041 1042 // Pass thru the predefined input parameters. 1043 for (i = 0; i < TypeFunc::Parms; i++) { 1044 map()->init_req(i, inmap->in(i)); 1045 } 1046 1047 if (depth() == 1) { 1048 assert(map()->memory()->Opcode() == Op_Parm, ""); 1049 // Insert the memory aliasing node 1050 set_all_memory(reset_memory()); 1051 } 1052 assert(merged_memory(), ""); 1053 1054 // Now add the locals which are initially bound to arguments: 1055 uint arg_size = tf()->domain()->cnt(); 1056 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1057 for (i = TypeFunc::Parms; i < arg_size; i++) { 1058 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1059 } 1060 1061 // Clear out the rest of the map (locals and stack) 1062 for (i = arg_size; i < len; i++) { 1063 map()->init_req(i, top()); 1064 } 1065 1066 SafePointNode* entry_map = stop(); 1067 return entry_map; 1068 } 1069 1070 //-----------------------------do_method_entry-------------------------------- 1071 // Emit any code needed in the pseudo-block before BCI zero. 1072 // The main thing to do is lock the receiver of a synchronized method. 1073 void Parse::do_method_entry() { 1074 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1075 set_sp(0); // Java Stack Pointer 1076 1077 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1078 1079 if (C->env()->dtrace_method_probes()) { 1080 make_dtrace_method_entry(method()); 1081 } 1082 1083 // If the method is synchronized, we need to construct a lock node, attach 1084 // it to the Start node, and pin it there. 1085 if (method()->is_synchronized()) { 1086 // Insert a FastLockNode right after the Start which takes as arguments 1087 // the current thread pointer, the "this" pointer & the address of the 1088 // stack slot pair used for the lock. The "this" pointer is a projection 1089 // off the start node, but the locking spot has to be constructed by 1090 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1091 // becomes the second argument to the FastLockNode call. The 1092 // FastLockNode becomes the new control parent to pin it to the start. 1093 1094 // Setup Object Pointer 1095 Node *lock_obj = NULL; 1096 if(method()->is_static()) { 1097 ciInstance* mirror = _method->holder()->java_mirror(); 1098 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1099 lock_obj = makecon(t_lock); 1100 } else { // Else pass the "this" pointer, 1101 lock_obj = local(0); // which is Parm0 from StartNode 1102 } 1103 // Clear out dead values from the debug info. 1104 kill_dead_locals(); 1105 // Build the FastLockNode 1106 _synch_lock = shared_lock(lock_obj); 1107 } 1108 1109 // Feed profiling data for parameters to the type system so it can 1110 // propagate it as speculative types 1111 record_profiled_parameters_for_speculation(); 1112 1113 if (depth() == 1) { 1114 increment_and_test_invocation_counter(Tier2CompileThreshold); 1115 } 1116 } 1117 1118 //------------------------------init_blocks------------------------------------ 1119 // Initialize our parser map to contain the types/monitors at method entry. 1120 void Parse::init_blocks() { 1121 // Create the blocks. 1122 _block_count = flow()->block_count(); 1123 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1124 Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count); 1125 1126 int rpo; 1127 1128 // Initialize the structs. 1129 for (rpo = 0; rpo < block_count(); rpo++) { 1130 Block* block = rpo_at(rpo); 1131 block->init_node(this, rpo); 1132 } 1133 1134 // Collect predecessor and successor information. 1135 for (rpo = 0; rpo < block_count(); rpo++) { 1136 Block* block = rpo_at(rpo); 1137 block->init_graph(this); 1138 } 1139 } 1140 1141 //-------------------------------init_node------------------------------------- 1142 void Parse::Block::init_node(Parse* outer, int rpo) { 1143 _flow = outer->flow()->rpo_at(rpo); 1144 _pred_count = 0; 1145 _preds_parsed = 0; 1146 _count = 0; 1147 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1148 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1149 assert(_live_locals.size() == 0, "sanity"); 1150 1151 // entry point has additional predecessor 1152 if (flow()->is_start()) _pred_count++; 1153 assert(flow()->is_start() == (this == outer->start_block()), ""); 1154 } 1155 1156 //-------------------------------init_graph------------------------------------ 1157 void Parse::Block::init_graph(Parse* outer) { 1158 // Create the successor list for this parser block. 1159 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1160 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1161 int ns = tfs->length(); 1162 int ne = tfe->length(); 1163 _num_successors = ns; 1164 _all_successors = ns+ne; 1165 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1166 int p = 0; 1167 for (int i = 0; i < ns+ne; i++) { 1168 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1169 Block* block2 = outer->rpo_at(tf2->rpo()); 1170 _successors[i] = block2; 1171 1172 // Accumulate pred info for the other block, too. 1173 if (i < ns) { 1174 block2->_pred_count++; 1175 } else { 1176 block2->_is_handler = true; 1177 } 1178 1179 #ifdef ASSERT 1180 // A block's successors must be distinguishable by BCI. 1181 // That is, no bytecode is allowed to branch to two different 1182 // clones of the same code location. 1183 for (int j = 0; j < i; j++) { 1184 Block* block1 = _successors[j]; 1185 if (block1 == block2) continue; // duplicates are OK 1186 assert(block1->start() != block2->start(), "successors have unique bcis"); 1187 } 1188 #endif 1189 } 1190 1191 // Note: We never call next_path_num along exception paths, so they 1192 // never get processed as "ready". Also, the input phis of exception 1193 // handlers get specially processed, so that 1194 } 1195 1196 //---------------------------successor_for_bci--------------------------------- 1197 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1198 for (int i = 0; i < all_successors(); i++) { 1199 Block* block2 = successor_at(i); 1200 if (block2->start() == bci) return block2; 1201 } 1202 // We can actually reach here if ciTypeFlow traps out a block 1203 // due to an unloaded class, and concurrently with compilation the 1204 // class is then loaded, so that a later phase of the parser is 1205 // able to see more of the bytecode CFG. Or, the flow pass and 1206 // the parser can have a minor difference of opinion about executability 1207 // of bytecodes. For example, "obj.field = null" is executable even 1208 // if the field's type is an unloaded class; the flow pass used to 1209 // make a trap for such code. 1210 return NULL; 1211 } 1212 1213 1214 //-----------------------------stack_type_at----------------------------------- 1215 const Type* Parse::Block::stack_type_at(int i) const { 1216 return get_type(flow()->stack_type_at(i)); 1217 } 1218 1219 1220 //-----------------------------local_type_at----------------------------------- 1221 const Type* Parse::Block::local_type_at(int i) const { 1222 // Make dead locals fall to bottom. 1223 if (_live_locals.size() == 0) { 1224 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1225 // This bitmap can be zero length if we saw a breakpoint. 1226 // In such cases, pretend they are all live. 1227 ((Block*)this)->_live_locals = live_locals; 1228 } 1229 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1230 return Type::BOTTOM; 1231 1232 return get_type(flow()->local_type_at(i)); 1233 } 1234 1235 1236 #ifndef PRODUCT 1237 1238 //----------------------------name_for_bc-------------------------------------- 1239 // helper method for BytecodeParseHistogram 1240 static const char* name_for_bc(int i) { 1241 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1242 } 1243 1244 //----------------------------BytecodeParseHistogram------------------------------------ 1245 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1246 _parser = p; 1247 _compiler = c; 1248 if( ! _initialized ) { _initialized = true; reset(); } 1249 } 1250 1251 //----------------------------current_count------------------------------------ 1252 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1253 switch( bph_type ) { 1254 case BPH_transforms: { return _parser->gvn().made_progress(); } 1255 case BPH_values: { return _parser->gvn().made_new_values(); } 1256 default: { ShouldNotReachHere(); return 0; } 1257 } 1258 } 1259 1260 //----------------------------initialized-------------------------------------- 1261 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1262 1263 //----------------------------reset-------------------------------------------- 1264 void Parse::BytecodeParseHistogram::reset() { 1265 int i = Bytecodes::number_of_codes; 1266 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1267 } 1268 1269 //----------------------------set_initial_state-------------------------------- 1270 // Record info when starting to parse one bytecode 1271 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1272 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1273 _initial_bytecode = bc; 1274 _initial_node_count = _compiler->unique(); 1275 _initial_transforms = current_count(BPH_transforms); 1276 _initial_values = current_count(BPH_values); 1277 } 1278 } 1279 1280 //----------------------------record_change-------------------------------- 1281 // Record results of parsing one bytecode 1282 void Parse::BytecodeParseHistogram::record_change() { 1283 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1284 ++_bytecodes_parsed[_initial_bytecode]; 1285 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1286 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1287 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1288 } 1289 } 1290 1291 1292 //----------------------------print-------------------------------------------- 1293 void Parse::BytecodeParseHistogram::print(float cutoff) { 1294 ResourceMark rm; 1295 // print profile 1296 int total = 0; 1297 int i = 0; 1298 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1299 int abs_sum = 0; 1300 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1301 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1302 if( total == 0 ) { return; } 1303 tty->cr(); 1304 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1305 tty->print_cr("relative: percentage contribution to compiled nodes"); 1306 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1307 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1308 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled"); 1309 tty->print_cr("values : Average number of node values improved per bytecode"); 1310 tty->print_cr("name : Bytecode name"); 1311 tty->cr(); 1312 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1313 tty->print_cr("----------------------------------------------------------------------"); 1314 while (--i > 0) { 1315 int abs = _bytecodes_parsed[i]; 1316 float rel = abs * 100.0F / total; 1317 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1318 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1319 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1320 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1321 if (cutoff <= rel) { 1322 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1323 abs_sum += abs; 1324 } 1325 } 1326 tty->print_cr("----------------------------------------------------------------------"); 1327 float rel_sum = abs_sum * 100.0F / total; 1328 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1329 tty->print_cr("----------------------------------------------------------------------"); 1330 tty->cr(); 1331 } 1332 #endif 1333 1334 //----------------------------load_state_from---------------------------------- 1335 // Load block/map/sp. But not do not touch iter/bci. 1336 void Parse::load_state_from(Block* block) { 1337 set_block(block); 1338 // load the block's JVM state: 1339 set_map(block->start_map()); 1340 set_sp( block->start_sp()); 1341 } 1342 1343 1344 //-----------------------------record_state------------------------------------ 1345 void Parse::Block::record_state(Parse* p) { 1346 assert(!is_merged(), "can only record state once, on 1st inflow"); 1347 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1348 set_start_map(p->stop()); 1349 } 1350 1351 1352 //------------------------------do_one_block----------------------------------- 1353 void Parse::do_one_block() { 1354 if (TraceOptoParse) { 1355 Block *b = block(); 1356 int ns = b->num_successors(); 1357 int nt = b->all_successors(); 1358 1359 tty->print("Parsing block #%d at bci [%d,%d), successors: ", 1360 block()->rpo(), block()->start(), block()->limit()); 1361 for (int i = 0; i < nt; i++) { 1362 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); 1363 } 1364 if (b->is_loop_head()) tty->print(" lphd"); 1365 tty->print_cr(""); 1366 } 1367 1368 assert(block()->is_merged(), "must be merged before being parsed"); 1369 block()->mark_parsed(); 1370 ++_blocks_parsed; 1371 1372 // Set iterator to start of block. 1373 iter().reset_to_bci(block()->start()); 1374 1375 CompileLog* log = C->log(); 1376 1377 // Parse bytecodes 1378 while (!stopped() && !failing()) { 1379 iter().next(); 1380 1381 // Learn the current bci from the iterator: 1382 set_parse_bci(iter().cur_bci()); 1383 1384 if (bci() == block()->limit()) { 1385 // Do not walk into the next block until directed by do_all_blocks. 1386 merge(bci()); 1387 break; 1388 } 1389 assert(bci() < block()->limit(), "bci still in block"); 1390 1391 if (log != NULL) { 1392 // Output an optional context marker, to help place actions 1393 // that occur during parsing of this BC. If there is no log 1394 // output until the next context string, this context string 1395 // will be silently ignored. 1396 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1397 } 1398 1399 if (block()->has_trap_at(bci())) { 1400 // We must respect the flow pass's traps, because it will refuse 1401 // to produce successors for trapping blocks. 1402 int trap_index = block()->flow()->trap_index(); 1403 assert(trap_index != 0, "trap index must be valid"); 1404 uncommon_trap(trap_index); 1405 break; 1406 } 1407 1408 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1409 1410 #ifdef ASSERT 1411 int pre_bc_sp = sp(); 1412 int inputs, depth; 1413 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1414 assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs)); 1415 #endif //ASSERT 1416 1417 do_one_bytecode(); 1418 1419 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1420 err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth)); 1421 1422 do_exceptions(); 1423 1424 NOT_PRODUCT( parse_histogram()->record_change(); ); 1425 1426 if (log != NULL) 1427 log->clear_context(); // skip marker if nothing was printed 1428 1429 // Fall into next bytecode. Each bytecode normally has 1 sequential 1430 // successor which is typically made ready by visiting this bytecode. 1431 // If the successor has several predecessors, then it is a merge 1432 // point, starts a new basic block, and is handled like other basic blocks. 1433 } 1434 } 1435 1436 1437 //------------------------------merge------------------------------------------ 1438 void Parse::set_parse_bci(int bci) { 1439 set_bci(bci); 1440 Node_Notes* nn = C->default_node_notes(); 1441 if (nn == NULL) return; 1442 1443 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1444 if (!DebugInlinedCalls && depth() > 1) { 1445 return; 1446 } 1447 1448 // Update the JVMS annotation, if present. 1449 JVMState* jvms = nn->jvms(); 1450 if (jvms != NULL && jvms->bci() != bci) { 1451 // Update the JVMS. 1452 jvms = jvms->clone_shallow(C); 1453 jvms->set_bci(bci); 1454 nn->set_jvms(jvms); 1455 } 1456 } 1457 1458 //------------------------------merge------------------------------------------ 1459 // Merge the current mapping into the basic block starting at bci 1460 void Parse::merge(int target_bci) { 1461 Block* target = successor_for_bci(target_bci); 1462 if (target == NULL) { handle_missing_successor(target_bci); return; } 1463 assert(!target->is_ready(), "our arrival must be expected"); 1464 int pnum = target->next_path_num(); 1465 merge_common(target, pnum); 1466 } 1467 1468 //-------------------------merge_new_path-------------------------------------- 1469 // Merge the current mapping into the basic block, using a new path 1470 void Parse::merge_new_path(int target_bci) { 1471 Block* target = successor_for_bci(target_bci); 1472 if (target == NULL) { handle_missing_successor(target_bci); return; } 1473 assert(!target->is_ready(), "new path into frozen graph"); 1474 int pnum = target->add_new_path(); 1475 merge_common(target, pnum); 1476 } 1477 1478 //-------------------------merge_exception------------------------------------- 1479 // Merge the current mapping into the basic block starting at bci 1480 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1481 void Parse::merge_exception(int target_bci) { 1482 assert(sp() == 1, "must have only the throw exception on the stack"); 1483 Block* target = successor_for_bci(target_bci); 1484 if (target == NULL) { handle_missing_successor(target_bci); return; } 1485 assert(target->is_handler(), "exceptions are handled by special blocks"); 1486 int pnum = target->add_new_path(); 1487 merge_common(target, pnum); 1488 } 1489 1490 //--------------------handle_missing_successor--------------------------------- 1491 void Parse::handle_missing_successor(int target_bci) { 1492 #ifndef PRODUCT 1493 Block* b = block(); 1494 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1495 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1496 #endif 1497 ShouldNotReachHere(); 1498 } 1499 1500 //--------------------------merge_common--------------------------------------- 1501 void Parse::merge_common(Parse::Block* target, int pnum) { 1502 if (TraceOptoParse) { 1503 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1504 } 1505 1506 // Zap extra stack slots to top 1507 assert(sp() == target->start_sp(), ""); 1508 clean_stack(sp()); 1509 1510 if (!target->is_merged()) { // No prior mapping at this bci 1511 if (TraceOptoParse) { tty->print(" with empty state"); } 1512 1513 // If this path is dead, do not bother capturing it as a merge. 1514 // It is "as if" we had 1 fewer predecessors from the beginning. 1515 if (stopped()) { 1516 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1517 return; 1518 } 1519 1520 // Record that a new block has been merged. 1521 ++_blocks_merged; 1522 1523 // Make a region if we know there are multiple or unpredictable inputs. 1524 // (Also, if this is a plain fall-through, we might see another region, 1525 // which must not be allowed into this block's map.) 1526 if (pnum > PhiNode::Input // Known multiple inputs. 1527 || target->is_handler() // These have unpredictable inputs. 1528 || target->is_loop_head() // Known multiple inputs 1529 || control()->is_Region()) { // We must hide this guy. 1530 1531 int current_bci = bci(); 1532 set_parse_bci(target->start()); // Set target bci 1533 if (target->is_SEL_head()) { 1534 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1535 if (target->start() == 0) { 1536 // Add loop predicate for the special case when 1537 // there are backbranches to the method entry. 1538 add_predicate(); 1539 } 1540 } 1541 // Add a Region to start the new basic block. Phis will be added 1542 // later lazily. 1543 int edges = target->pred_count(); 1544 if (edges < pnum) edges = pnum; // might be a new path! 1545 RegionNode *r = new (C) RegionNode(edges+1); 1546 gvn().set_type(r, Type::CONTROL); 1547 record_for_igvn(r); 1548 // zap all inputs to NULL for debugging (done in Node(uint) constructor) 1549 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); } 1550 r->init_req(pnum, control()); 1551 set_control(r); 1552 set_parse_bci(current_bci); // Restore bci 1553 } 1554 1555 // Convert the existing Parser mapping into a mapping at this bci. 1556 store_state_to(target); 1557 assert(target->is_merged(), "do not come here twice"); 1558 1559 } else { // Prior mapping at this bci 1560 if (TraceOptoParse) { tty->print(" with previous state"); } 1561 #ifdef ASSERT 1562 if (target->is_SEL_head()) { 1563 target->mark_merged_backedge(block()); 1564 } 1565 #endif 1566 // We must not manufacture more phis if the target is already parsed. 1567 bool nophi = target->is_parsed(); 1568 1569 SafePointNode* newin = map();// Hang on to incoming mapping 1570 Block* save_block = block(); // Hang on to incoming block; 1571 load_state_from(target); // Get prior mapping 1572 1573 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1574 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1575 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1576 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1577 1578 // Iterate over my current mapping and the old mapping. 1579 // Where different, insert Phi functions. 1580 // Use any existing Phi functions. 1581 assert(control()->is_Region(), "must be merging to a region"); 1582 RegionNode* r = control()->as_Region(); 1583 1584 // Compute where to merge into 1585 // Merge incoming control path 1586 r->init_req(pnum, newin->control()); 1587 1588 if (pnum == 1) { // Last merge for this Region? 1589 if (!block()->flow()->is_irreducible_entry()) { 1590 Node* result = _gvn.transform_no_reclaim(r); 1591 if (r != result && TraceOptoParse) { 1592 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1593 } 1594 } 1595 record_for_igvn(r); 1596 } 1597 1598 // Update all the non-control inputs to map: 1599 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1600 bool check_elide_phi = target->is_SEL_backedge(save_block); 1601 for (uint j = 1; j < newin->req(); j++) { 1602 Node* m = map()->in(j); // Current state of target. 1603 Node* n = newin->in(j); // Incoming change to target state. 1604 PhiNode* phi; 1605 if (m->is_Phi() && m->as_Phi()->region() == r) 1606 phi = m->as_Phi(); 1607 else 1608 phi = NULL; 1609 if (m != n) { // Different; must merge 1610 switch (j) { 1611 // Frame pointer and Return Address never changes 1612 case TypeFunc::FramePtr:// Drop m, use the original value 1613 case TypeFunc::ReturnAdr: 1614 break; 1615 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1616 assert(phi == NULL, "the merge contains phis, not vice versa"); 1617 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1618 continue; 1619 default: // All normal stuff 1620 if (phi == NULL) { 1621 const JVMState* jvms = map()->jvms(); 1622 if (EliminateNestedLocks && 1623 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1624 // BoxLock nodes are not commoning. 1625 // Use old BoxLock node as merged box. 1626 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1627 // This assert also tests that nodes are BoxLock. 1628 assert(BoxLockNode::same_slot(n, m), "sanity"); 1629 C->gvn_replace_by(n, m); 1630 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1631 phi = ensure_phi(j, nophi); 1632 } 1633 } 1634 break; 1635 } 1636 } 1637 // At this point, n might be top if: 1638 // - there is no phi (because TypeFlow detected a conflict), or 1639 // - the corresponding control edges is top (a dead incoming path) 1640 // It is a bug if we create a phi which sees a garbage value on a live path. 1641 1642 if (phi != NULL) { 1643 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1644 assert(phi->region() == r, ""); 1645 phi->set_req(pnum, n); // Then add 'n' to the merge 1646 if (pnum == PhiNode::Input) { 1647 // Last merge for this Phi. 1648 // So far, Phis have had a reasonable type from ciTypeFlow. 1649 // Now _gvn will join that with the meet of current inputs. 1650 // BOTTOM is never permissible here, 'cause pessimistically 1651 // Phis of pointers cannot lose the basic pointer type. 1652 debug_only(const Type* bt1 = phi->bottom_type()); 1653 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1654 map()->set_req(j, _gvn.transform_no_reclaim(phi)); 1655 debug_only(const Type* bt2 = phi->bottom_type()); 1656 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1657 record_for_igvn(phi); 1658 } 1659 } 1660 } // End of for all values to be merged 1661 1662 if (pnum == PhiNode::Input && 1663 !r->in(0)) { // The occasional useless Region 1664 assert(control() == r, ""); 1665 set_control(r->nonnull_req()); 1666 } 1667 1668 // newin has been subsumed into the lazy merge, and is now dead. 1669 set_block(save_block); 1670 1671 stop(); // done with this guy, for now 1672 } 1673 1674 if (TraceOptoParse) { 1675 tty->print_cr(" on path %d", pnum); 1676 } 1677 1678 // Done with this parser state. 1679 assert(stopped(), ""); 1680 } 1681 1682 1683 //--------------------------merge_memory_edges--------------------------------- 1684 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1685 // (nophi means we must not create phis, because we already parsed here) 1686 assert(n != NULL, ""); 1687 // Merge the inputs to the MergeMems 1688 MergeMemNode* m = merged_memory(); 1689 1690 assert(control()->is_Region(), "must be merging to a region"); 1691 RegionNode* r = control()->as_Region(); 1692 1693 PhiNode* base = NULL; 1694 MergeMemNode* remerge = NULL; 1695 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1696 Node *p = mms.force_memory(); 1697 Node *q = mms.memory2(); 1698 if (mms.is_empty() && nophi) { 1699 // Trouble: No new splits allowed after a loop body is parsed. 1700 // Instead, wire the new split into a MergeMem on the backedge. 1701 // The optimizer will sort it out, slicing the phi. 1702 if (remerge == NULL) { 1703 assert(base != NULL, ""); 1704 assert(base->in(0) != NULL, "should not be xformed away"); 1705 remerge = MergeMemNode::make(C, base->in(pnum)); 1706 gvn().set_type(remerge, Type::MEMORY); 1707 base->set_req(pnum, remerge); 1708 } 1709 remerge->set_memory_at(mms.alias_idx(), q); 1710 continue; 1711 } 1712 assert(!q->is_MergeMem(), ""); 1713 PhiNode* phi; 1714 if (p != q) { 1715 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1716 } else { 1717 if (p->is_Phi() && p->as_Phi()->region() == r) 1718 phi = p->as_Phi(); 1719 else 1720 phi = NULL; 1721 } 1722 // Insert q into local phi 1723 if (phi != NULL) { 1724 assert(phi->region() == r, ""); 1725 p = phi; 1726 phi->set_req(pnum, q); 1727 if (mms.at_base_memory()) { 1728 base = phi; // delay transforming it 1729 } else if (pnum == 1) { 1730 record_for_igvn(phi); 1731 p = _gvn.transform_no_reclaim(phi); 1732 } 1733 mms.set_memory(p);// store back through the iterator 1734 } 1735 } 1736 // Transform base last, in case we must fiddle with remerging. 1737 if (base != NULL && pnum == 1) { 1738 record_for_igvn(base); 1739 m->set_base_memory( _gvn.transform_no_reclaim(base) ); 1740 } 1741 } 1742 1743 1744 //------------------------ensure_phis_everywhere------------------------------- 1745 void Parse::ensure_phis_everywhere() { 1746 ensure_phi(TypeFunc::I_O); 1747 1748 // Ensure a phi on all currently known memories. 1749 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1750 ensure_memory_phi(mms.alias_idx()); 1751 debug_only(mms.set_memory()); // keep the iterator happy 1752 } 1753 1754 // Note: This is our only chance to create phis for memory slices. 1755 // If we miss a slice that crops up later, it will have to be 1756 // merged into the base-memory phi that we are building here. 1757 // Later, the optimizer will comb out the knot, and build separate 1758 // phi-loops for each memory slice that matters. 1759 1760 // Monitors must nest nicely and not get confused amongst themselves. 1761 // Phi-ify everything up to the monitors, though. 1762 uint monoff = map()->jvms()->monoff(); 1763 uint nof_monitors = map()->jvms()->nof_monitors(); 1764 1765 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1766 bool check_elide_phi = block()->is_SEL_head(); 1767 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1768 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1769 ensure_phi(i); 1770 } 1771 } 1772 1773 // Even monitors need Phis, though they are well-structured. 1774 // This is true for OSR methods, and also for the rare cases where 1775 // a monitor object is the subject of a replace_in_map operation. 1776 // See bugs 4426707 and 5043395. 1777 for (uint m = 0; m < nof_monitors; m++) { 1778 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1779 } 1780 } 1781 1782 1783 //-----------------------------add_new_path------------------------------------ 1784 // Add a previously unaccounted predecessor to this block. 1785 int Parse::Block::add_new_path() { 1786 // If there is no map, return the lowest unused path number. 1787 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1788 1789 SafePointNode* map = start_map(); 1790 if (!map->control()->is_Region()) 1791 return pred_count()+1; // there may be a region some day 1792 RegionNode* r = map->control()->as_Region(); 1793 1794 // Add new path to the region. 1795 uint pnum = r->req(); 1796 r->add_req(NULL); 1797 1798 for (uint i = 1; i < map->req(); i++) { 1799 Node* n = map->in(i); 1800 if (i == TypeFunc::Memory) { 1801 // Ensure a phi on all currently known memories. 1802 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 1803 Node* phi = mms.memory(); 1804 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 1805 assert(phi->req() == pnum, "must be same size as region"); 1806 phi->add_req(NULL); 1807 } 1808 } 1809 } else { 1810 if (n->is_Phi() && n->as_Phi()->region() == r) { 1811 assert(n->req() == pnum, "must be same size as region"); 1812 n->add_req(NULL); 1813 } 1814 } 1815 } 1816 1817 return pnum; 1818 } 1819 1820 //------------------------------ensure_phi------------------------------------- 1821 // Turn the idx'th entry of the current map into a Phi 1822 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 1823 SafePointNode* map = this->map(); 1824 Node* region = map->control(); 1825 assert(region->is_Region(), ""); 1826 1827 Node* o = map->in(idx); 1828 assert(o != NULL, ""); 1829 1830 if (o == top()) return NULL; // TOP always merges into TOP 1831 1832 if (o->is_Phi() && o->as_Phi()->region() == region) { 1833 return o->as_Phi(); 1834 } 1835 1836 // Now use a Phi here for merging 1837 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1838 const JVMState* jvms = map->jvms(); 1839 const Type* t; 1840 if (jvms->is_loc(idx)) { 1841 t = block()->local_type_at(idx - jvms->locoff()); 1842 } else if (jvms->is_stk(idx)) { 1843 t = block()->stack_type_at(idx - jvms->stkoff()); 1844 } else if (jvms->is_mon(idx)) { 1845 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 1846 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 1847 } else if ((uint)idx < TypeFunc::Parms) { 1848 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 1849 } else { 1850 assert(false, "no type information for this phi"); 1851 } 1852 1853 // If the type falls to bottom, then this must be a local that 1854 // is mixing ints and oops or some such. Forcing it to top 1855 // makes it go dead. 1856 if (t == Type::BOTTOM) { 1857 map->set_req(idx, top()); 1858 return NULL; 1859 } 1860 1861 // Do not create phis for top either. 1862 // A top on a non-null control flow must be an unused even after the.phi. 1863 if (t == Type::TOP || t == Type::HALF) { 1864 map->set_req(idx, top()); 1865 return NULL; 1866 } 1867 1868 PhiNode* phi = PhiNode::make(region, o, t); 1869 gvn().set_type(phi, t); 1870 if (C->do_escape_analysis()) record_for_igvn(phi); 1871 map->set_req(idx, phi); 1872 return phi; 1873 } 1874 1875 //--------------------------ensure_memory_phi---------------------------------- 1876 // Turn the idx'th slice of the current memory into a Phi 1877 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 1878 MergeMemNode* mem = merged_memory(); 1879 Node* region = control(); 1880 assert(region->is_Region(), ""); 1881 1882 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 1883 assert(o != NULL && o != top(), ""); 1884 1885 PhiNode* phi; 1886 if (o->is_Phi() && o->as_Phi()->region() == region) { 1887 phi = o->as_Phi(); 1888 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 1889 // clone the shared base memory phi to make a new memory split 1890 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1891 const Type* t = phi->bottom_type(); 1892 const TypePtr* adr_type = C->get_adr_type(idx); 1893 phi = phi->slice_memory(adr_type); 1894 gvn().set_type(phi, t); 1895 } 1896 return phi; 1897 } 1898 1899 // Now use a Phi here for merging 1900 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1901 const Type* t = o->bottom_type(); 1902 const TypePtr* adr_type = C->get_adr_type(idx); 1903 phi = PhiNode::make(region, o, t, adr_type); 1904 gvn().set_type(phi, t); 1905 if (idx == Compile::AliasIdxBot) 1906 mem->set_base_memory(phi); 1907 else 1908 mem->set_memory_at(idx, phi); 1909 return phi; 1910 } 1911 1912 //------------------------------call_register_finalizer----------------------- 1913 // Check the klass of the receiver and call register_finalizer if the 1914 // class need finalization. 1915 void Parse::call_register_finalizer() { 1916 Node* receiver = local(0); 1917 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL, 1918 "must have non-null instance type"); 1919 1920 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 1921 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) { 1922 // The type isn't known exactly so see if CHA tells us anything. 1923 ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); 1924 if (!Dependencies::has_finalizable_subclass(ik)) { 1925 // No finalizable subclasses so skip the dynamic check. 1926 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 1927 return; 1928 } 1929 } 1930 1931 // Insert a dynamic test for whether the instance needs 1932 // finalization. In general this will fold up since the concrete 1933 // class is often visible so the access flags are constant. 1934 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 1935 Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) ); 1936 1937 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); 1938 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT); 1939 1940 Node* mask = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); 1941 Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0))); 1942 Node* test = _gvn.transform(new (C) BoolNode(check, BoolTest::ne)); 1943 1944 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 1945 1946 RegionNode* result_rgn = new (C) RegionNode(3); 1947 record_for_igvn(result_rgn); 1948 1949 Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff)); 1950 result_rgn->init_req(1, skip_register); 1951 1952 Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff)); 1953 set_control(needs_register); 1954 if (stopped()) { 1955 // There is no slow path. 1956 result_rgn->init_req(2, top()); 1957 } else { 1958 Node *call = make_runtime_call(RC_NO_LEAF, 1959 OptoRuntime::register_finalizer_Type(), 1960 OptoRuntime::register_finalizer_Java(), 1961 NULL, TypePtr::BOTTOM, 1962 receiver); 1963 make_slow_call_ex(call, env()->Throwable_klass(), true); 1964 1965 Node* fast_io = call->in(TypeFunc::I_O); 1966 Node* fast_mem = call->in(TypeFunc::Memory); 1967 // These two phis are pre-filled with copies of of the fast IO and Memory 1968 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 1969 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 1970 1971 result_rgn->init_req(2, control()); 1972 io_phi ->init_req(2, i_o()); 1973 mem_phi ->init_req(2, reset_memory()); 1974 1975 set_all_memory( _gvn.transform(mem_phi) ); 1976 set_i_o( _gvn.transform(io_phi) ); 1977 } 1978 1979 set_control( _gvn.transform(result_rgn) ); 1980 } 1981 1982 // Add check to deoptimize if RTM state is not ProfileRTM 1983 void Parse::rtm_deopt() { 1984 #if INCLUDE_RTM_OPT 1985 if (C->profile_rtm()) { 1986 assert(C->method() != NULL, "only for normal compilations"); 1987 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state"); 1988 assert(depth() == 1, "generate check only for main compiled method"); 1989 1990 // Set starting bci for uncommon trap. 1991 set_parse_bci(is_osr_parse() ? osr_bci() : 0); 1992 1993 // Load the rtm_state from the MethodData. 1994 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data()); 1995 Node* mdo = makecon(adr_type); 1996 int offset = MethodData::rtm_state_offset_in_bytes(); 1997 Node* adr_node = basic_plus_adr(mdo, mdo, offset); 1998 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 1999 2000 // Separate Load from Cmp by Opaque. 2001 // In expand_macro_nodes() it will be replaced either 2002 // with this load when there are locks in the code 2003 // or with ProfileRTM (cmp->in(2)) otherwise so that 2004 // the check will fold. 2005 Node* profile_state = makecon(TypeInt::make(ProfileRTM)); 2006 Node* opq = _gvn.transform( new (C) Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) ); 2007 Node* chk = _gvn.transform( new (C) CmpINode(opq, profile_state) ); 2008 Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) ); 2009 // Branch to failure if state was changed 2010 { BuildCutout unless(this, tst, PROB_ALWAYS); 2011 uncommon_trap(Deoptimization::Reason_rtm_state_change, 2012 Deoptimization::Action_make_not_entrant); 2013 } 2014 } 2015 #endif 2016 } 2017 2018 //------------------------------return_current--------------------------------- 2019 // Append current _map to _exit_return 2020 void Parse::return_current(Node* value) { 2021 if (RegisterFinalizersAtInit && 2022 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2023 call_register_finalizer(); 2024 } 2025 2026 // Do not set_parse_bci, so that return goo is credited to the return insn. 2027 set_bci(InvocationEntryBci); 2028 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2029 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2030 } 2031 if (C->env()->dtrace_method_probes()) { 2032 make_dtrace_method_exit(method()); 2033 } 2034 SafePointNode* exit_return = _exits.map(); 2035 exit_return->in( TypeFunc::Control )->add_req( control() ); 2036 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2037 Node *mem = exit_return->in( TypeFunc::Memory ); 2038 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2039 if (mms.is_empty()) { 2040 // get a copy of the base memory, and patch just this one input 2041 const TypePtr* adr_type = mms.adr_type(C); 2042 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2043 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2044 gvn().set_type_bottom(phi); 2045 phi->del_req(phi->req()-1); // prepare to re-patch 2046 mms.set_memory(phi); 2047 } 2048 mms.memory()->add_req(mms.memory2()); 2049 } 2050 2051 // frame pointer is always same, already captured 2052 if (value != NULL) { 2053 // If returning oops to an interface-return, there is a silent free 2054 // cast from oop to interface allowed by the Verifier. Make it explicit 2055 // here. 2056 Node* phi = _exits.argument(0); 2057 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr(); 2058 if( tr && tr->klass()->is_loaded() && 2059 tr->klass()->is_interface() ) { 2060 const TypeInstPtr *tp = value->bottom_type()->isa_instptr(); 2061 if (tp && tp->klass()->is_loaded() && 2062 !tp->klass()->is_interface()) { 2063 // sharpen the type eagerly; this eases certain assert checking 2064 if (tp->higher_equal(TypeInstPtr::NOTNULL)) 2065 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr(); 2066 value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr)); 2067 } 2068 } 2069 phi->add_req(value); 2070 } 2071 2072 stop_and_kill_map(); // This CFG path dies here 2073 } 2074 2075 2076 //------------------------------add_safepoint---------------------------------- 2077 void Parse::add_safepoint() { 2078 // See if we can avoid this safepoint. No need for a SafePoint immediately 2079 // after a Call (except Leaf Call) or another SafePoint. 2080 Node *proj = control(); 2081 bool add_poll_param = SafePointNode::needs_polling_address_input(); 2082 uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms; 2083 if( proj->is_Proj() ) { 2084 Node *n0 = proj->in(0); 2085 if( n0->is_Catch() ) { 2086 n0 = n0->in(0)->in(0); 2087 assert( n0->is_Call(), "expect a call here" ); 2088 } 2089 if( n0->is_Call() ) { 2090 if( n0->as_Call()->guaranteed_safepoint() ) 2091 return; 2092 } else if( n0->is_SafePoint() && n0->req() >= parms ) { 2093 return; 2094 } 2095 } 2096 2097 // Clear out dead values from the debug info. 2098 kill_dead_locals(); 2099 2100 // Clone the JVM State 2101 SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL); 2102 2103 // Capture memory state BEFORE a SafePoint. Since we can block at a 2104 // SafePoint we need our GC state to be safe; i.e. we need all our current 2105 // write barriers (card marks) to not float down after the SafePoint so we 2106 // must read raw memory. Likewise we need all oop stores to match the card 2107 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2108 // state on a deopt). 2109 2110 // We do not need to WRITE the memory state after a SafePoint. The control 2111 // edge will keep card-marks and oop-stores from floating up from below a 2112 // SafePoint and our true dependency added here will keep them from floating 2113 // down below a SafePoint. 2114 2115 // Clone the current memory state 2116 Node* mem = MergeMemNode::make(C, map()->memory()); 2117 2118 mem = _gvn.transform(mem); 2119 2120 // Pass control through the safepoint 2121 sfpnt->init_req(TypeFunc::Control , control()); 2122 // Fix edges normally used by a call 2123 sfpnt->init_req(TypeFunc::I_O , top() ); 2124 sfpnt->init_req(TypeFunc::Memory , mem ); 2125 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2126 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2127 2128 // Create a node for the polling address 2129 if( add_poll_param ) { 2130 Node *polladr = ConPNode::make(C, (address)os::get_polling_page()); 2131 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2132 } 2133 2134 // Fix up the JVM State edges 2135 add_safepoint_edges(sfpnt); 2136 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2137 set_control(transformed_sfpnt); 2138 2139 // Provide an edge from root to safepoint. This makes the safepoint 2140 // appear useful until the parse has completed. 2141 if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) { 2142 assert(C->root() != NULL, "Expect parse is still valid"); 2143 C->root()->add_prec(transformed_sfpnt); 2144 } 2145 } 2146 2147 #ifndef PRODUCT 2148 //------------------------show_parse_info-------------------------------------- 2149 void Parse::show_parse_info() { 2150 InlineTree* ilt = NULL; 2151 if (C->ilt() != NULL) { 2152 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2153 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2154 } 2155 if (PrintCompilation && Verbose) { 2156 if (depth() == 1) { 2157 if( ilt->count_inlines() ) { 2158 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2159 ilt->count_inline_bcs()); 2160 tty->cr(); 2161 } 2162 } else { 2163 if (method()->is_synchronized()) tty->print("s"); 2164 if (method()->has_exception_handlers()) tty->print("!"); 2165 // Check this is not the final compiled version 2166 if (C->trap_can_recompile()) { 2167 tty->print("-"); 2168 } else { 2169 tty->print(" "); 2170 } 2171 method()->print_short_name(); 2172 if (is_osr_parse()) { 2173 tty->print(" @ %d", osr_bci()); 2174 } 2175 tty->print(" (%d bytes)",method()->code_size()); 2176 if (ilt->count_inlines()) { 2177 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2178 ilt->count_inline_bcs()); 2179 } 2180 tty->cr(); 2181 } 2182 } 2183 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2184 // Print that we succeeded; suppress this message on the first osr parse. 2185 2186 if (method()->is_synchronized()) tty->print("s"); 2187 if (method()->has_exception_handlers()) tty->print("!"); 2188 // Check this is not the final compiled version 2189 if (C->trap_can_recompile() && depth() == 1) { 2190 tty->print("-"); 2191 } else { 2192 tty->print(" "); 2193 } 2194 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2195 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2196 method()->print_short_name(); 2197 if (is_osr_parse()) { 2198 tty->print(" @ %d", osr_bci()); 2199 } 2200 if (ilt->caller_bci() != -1) { 2201 tty->print(" @ %d", ilt->caller_bci()); 2202 } 2203 tty->print(" (%d bytes)",method()->code_size()); 2204 if (ilt->count_inlines()) { 2205 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2206 ilt->count_inline_bcs()); 2207 } 2208 tty->cr(); 2209 } 2210 } 2211 2212 2213 //------------------------------dump------------------------------------------- 2214 // Dump information associated with the bytecodes of current _method 2215 void Parse::dump() { 2216 if( method() != NULL ) { 2217 // Iterate over bytecodes 2218 ciBytecodeStream iter(method()); 2219 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2220 dump_bci( iter.cur_bci() ); 2221 tty->cr(); 2222 } 2223 } 2224 } 2225 2226 // Dump information associated with a byte code index, 'bci' 2227 void Parse::dump_bci(int bci) { 2228 // Output info on merge-points, cloning, and within _jsr..._ret 2229 // NYI 2230 tty->print(" bci:%d", bci); 2231 } 2232 2233 #endif