1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 // Static array so we can figure out which bytecodes stop us from compiling
  42 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  43 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  44 
  45 int nodes_created              = 0;
  46 int methods_parsed             = 0;
  47 int methods_seen               = 0;
  48 int blocks_parsed              = 0;
  49 int blocks_seen                = 0;
  50 
  51 int explicit_null_checks_inserted = 0;
  52 int explicit_null_checks_elided   = 0;
  53 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  54 int implicit_null_throws          = 0;
  55 
  56 int reclaim_idx  = 0;
  57 int reclaim_in   = 0;
  58 int reclaim_node = 0;
  59 
  60 #ifndef PRODUCT
  61 bool Parse::BytecodeParseHistogram::_initialized = false;
  62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  66 #endif
  67 
  68 //------------------------------print_statistics-------------------------------
  69 #ifndef PRODUCT
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %d", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed)
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  78 
  79   if( explicit_null_checks_inserted )
  80     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  81   if( all_null_checks_found )
  82     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  83                   (100*implicit_null_checks)/all_null_checks_found);
  84   if( implicit_null_throws )
  85     tty->print_cr("%d implicit null exceptions at runtime",
  86                   implicit_null_throws);
  87 
  88   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  89     BytecodeParseHistogram::print();
  90   }
  91 }
  92 #endif
  93 
  94 //------------------------------ON STACK REPLACEMENT---------------------------
  95 
  96 // Construct a node which can be used to get incoming state for
  97 // on stack replacement.
  98 Node *Parse::fetch_interpreter_state(int index,
  99                                      BasicType bt,
 100                                      Node *local_addrs,
 101                                      Node *local_addrs_base) {
 102   Node *mem = memory(Compile::AliasIdxRaw);
 103   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 104   Node *ctl = control();
 105 
 106   // Very similar to LoadNode::make, except we handle un-aligned longs and
 107   // doubles on Sparc.  Intel can handle them just fine directly.
 108   Node *l;
 109   switch( bt ) {                // Signature is flattened
 110   case T_INT:     l = new (C) LoadINode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break;
 111   case T_FLOAT:   l = new (C) LoadFNode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break;
 112   case T_ADDRESS: l = new (C) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM  ); break;
 113   case T_OBJECT:  l = new (C) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
 114   case T_LONG:
 115   case T_DOUBLE: {
 116     // Since arguments are in reverse order, the argument address 'adr'
 117     // refers to the back half of the long/double.  Recompute adr.
 118     adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
 119     if( Matcher::misaligned_doubles_ok ) {
 120       l = (bt == T_DOUBLE)
 121         ? (Node*)new (C) LoadDNode( ctl, mem, adr, TypeRawPtr::BOTTOM )
 122         : (Node*)new (C) LoadLNode( ctl, mem, adr, TypeRawPtr::BOTTOM );
 123     } else {
 124       l = (bt == T_DOUBLE)
 125         ? (Node*)new (C) LoadD_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM )
 126         : (Node*)new (C) LoadL_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM );
 127     }
 128     break;
 129   }
 130   default: ShouldNotReachHere();
 131   }
 132   return _gvn.transform(l);
 133 }
 134 
 135 // Helper routine to prevent the interpreter from handing
 136 // unexpected typestate to an OSR method.
 137 // The Node l is a value newly dug out of the interpreter frame.
 138 // The type is the type predicted by ciTypeFlow.  Note that it is
 139 // not a general type, but can only come from Type::get_typeflow_type.
 140 // The safepoint is a map which will feed an uncommon trap.
 141 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 142                                     SafePointNode* &bad_type_exit) {
 143 
 144   const TypeOopPtr* tp = type->isa_oopptr();
 145 
 146   // TypeFlow may assert null-ness if a type appears unloaded.
 147   if (type == TypePtr::NULL_PTR ||
 148       (tp != NULL && !tp->klass()->is_loaded())) {
 149     // Value must be null, not a real oop.
 150     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
 151     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 152     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 153     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
 154     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
 155     bad_type_exit->control()->add_req(bad_type);
 156     l = null();
 157   }
 158 
 159   // Typeflow can also cut off paths from the CFG, based on
 160   // types which appear unloaded, or call sites which appear unlinked.
 161   // When paths are cut off, values at later merge points can rise
 162   // toward more specific classes.  Make sure these specific classes
 163   // are still in effect.
 164   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 165     // TypeFlow asserted a specific object type.  Value must have that type.
 166     Node* bad_type_ctrl = NULL;
 167     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 168     bad_type_exit->control()->add_req(bad_type_ctrl);
 169   }
 170 
 171   BasicType bt_l = _gvn.type(l)->basic_type();
 172   BasicType bt_t = type->basic_type();
 173   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 174   return l;
 175 }
 176 
 177 // Helper routine which sets up elements of the initial parser map when
 178 // performing a parse for on stack replacement.  Add values into map.
 179 // The only parameter contains the address of a interpreter arguments.
 180 void Parse::load_interpreter_state(Node* osr_buf) {
 181   int index;
 182   int max_locals = jvms()->loc_size();
 183   int max_stack  = jvms()->stk_size();
 184 
 185 
 186   // Mismatch between method and jvms can occur since map briefly held
 187   // an OSR entry state (which takes up one RawPtr word).
 188   assert(max_locals == method()->max_locals(), "sanity");
 189   assert(max_stack  >= method()->max_stack(),  "sanity");
 190   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 191   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 192 
 193   // Find the start block.
 194   Block* osr_block = start_block();
 195   assert(osr_block->start() == osr_bci(), "sanity");
 196 
 197   // Set initial BCI.
 198   set_parse_bci(osr_block->start());
 199 
 200   // Set initial stack depth.
 201   set_sp(osr_block->start_sp());
 202 
 203   // Check bailouts.  We currently do not perform on stack replacement
 204   // of loops in catch blocks or loops which branch with a non-empty stack.
 205   if (sp() != 0) {
 206     C->record_method_not_compilable("OSR starts with non-empty stack");
 207     return;
 208   }
 209   // Do not OSR inside finally clauses:
 210   if (osr_block->has_trap_at(osr_block->start())) {
 211     C->record_method_not_compilable("OSR starts with an immediate trap");
 212     return;
 213   }
 214 
 215   // Commute monitors from interpreter frame to compiler frame.
 216   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 217   int mcnt = osr_block->flow()->monitor_count();
 218   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 219   for (index = 0; index < mcnt; index++) {
 220     // Make a BoxLockNode for the monitor.
 221     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
 222 
 223 
 224     // Displaced headers and locked objects are interleaved in the
 225     // temp OSR buffer.  We only copy the locked objects out here.
 226     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 227     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 228     // Try and copy the displaced header to the BoxNode
 229     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 230 
 231 
 232     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
 233 
 234     // Build a bogus FastLockNode (no code will be generated) and push the
 235     // monitor into our debug info.
 236     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
 237     map()->push_monitor(flock);
 238 
 239     // If the lock is our method synchronization lock, tuck it away in
 240     // _sync_lock for return and rethrow exit paths.
 241     if (index == 0 && method()->is_synchronized()) {
 242       _synch_lock = flock;
 243     }
 244   }
 245 
 246   // Use the raw liveness computation to make sure that unexpected
 247   // values don't propagate into the OSR frame.
 248   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 249   if (!live_locals.is_valid()) {
 250     // Degenerate or breakpointed method.
 251     C->record_method_not_compilable("OSR in empty or breakpointed method");
 252     return;
 253   }
 254 
 255   // Extract the needed locals from the interpreter frame.
 256   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 257 
 258   // find all the locals that the interpreter thinks contain live oops
 259   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 260   for (index = 0; index < max_locals; index++) {
 261 
 262     if (!live_locals.at(index)) {
 263       continue;
 264     }
 265 
 266     const Type *type = osr_block->local_type_at(index);
 267 
 268     if (type->isa_oopptr() != NULL) {
 269 
 270       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 271       // else we might load a stale oop if the MethodLiveness disagrees with the
 272       // result of the interpreter. If the interpreter says it is dead we agree
 273       // by making the value go to top.
 274       //
 275 
 276       if (!live_oops.at(index)) {
 277         if (C->log() != NULL) {
 278           C->log()->elem("OSR_mismatch local_index='%d'",index);
 279         }
 280         set_local(index, null());
 281         // and ignore it for the loads
 282         continue;
 283       }
 284     }
 285 
 286     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 287     if (type == Type::TOP || type == Type::HALF) {
 288       continue;
 289     }
 290     // If the type falls to bottom, then this must be a local that
 291     // is mixing ints and oops or some such.  Forcing it to top
 292     // makes it go dead.
 293     if (type == Type::BOTTOM) {
 294       continue;
 295     }
 296     // Construct code to access the appropriate local.
 297     BasicType bt = type->basic_type();
 298     if (type == TypePtr::NULL_PTR) {
 299       // Ptr types are mixed together with T_ADDRESS but NULL is
 300       // really for T_OBJECT types so correct it.
 301       bt = T_OBJECT;
 302     }
 303     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 304     set_local(index, value);
 305   }
 306 
 307   // Extract the needed stack entries from the interpreter frame.
 308   for (index = 0; index < sp(); index++) {
 309     const Type *type = osr_block->stack_type_at(index);
 310     if (type != Type::TOP) {
 311       // Currently the compiler bails out when attempting to on stack replace
 312       // at a bci with a non-empty stack.  We should not reach here.
 313       ShouldNotReachHere();
 314     }
 315   }
 316 
 317   // End the OSR migration
 318   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 319                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 320                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 321                     osr_buf);
 322 
 323   // Now that the interpreter state is loaded, make sure it will match
 324   // at execution time what the compiler is expecting now:
 325   SafePointNode* bad_type_exit = clone_map();
 326   bad_type_exit->set_control(new (C) RegionNode(1));
 327 
 328   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 329   for (index = 0; index < max_locals; index++) {
 330     if (stopped())  break;
 331     Node* l = local(index);
 332     if (l->is_top())  continue;  // nothing here
 333     const Type *type = osr_block->local_type_at(index);
 334     if (type->isa_oopptr() != NULL) {
 335       if (!live_oops.at(index)) {
 336         // skip type check for dead oops
 337         continue;
 338       }
 339     }
 340     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 341       // In our current system it's illegal for jsr addresses to be
 342       // live into an OSR entry point because the compiler performs
 343       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 344       // case and aborts the compile if addresses are live into an OSR
 345       // entry point.  Because of that we can assume that any address
 346       // locals at the OSR entry point are dead.  Method liveness
 347       // isn't precise enought to figure out that they are dead in all
 348       // cases so simply skip checking address locals all
 349       // together. Any type check is guaranteed to fail since the
 350       // interpreter type is the result of a load which might have any
 351       // value and the expected type is a constant.
 352       continue;
 353     }
 354     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 355   }
 356 
 357   for (index = 0; index < sp(); index++) {
 358     if (stopped())  break;
 359     Node* l = stack(index);
 360     if (l->is_top())  continue;  // nothing here
 361     const Type *type = osr_block->stack_type_at(index);
 362     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 363   }
 364 
 365   if (bad_type_exit->control()->req() > 1) {
 366     // Build an uncommon trap here, if any inputs can be unexpected.
 367     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 368     record_for_igvn(bad_type_exit->control());
 369     SafePointNode* types_are_good = map();
 370     set_map(bad_type_exit);
 371     // The unexpected type happens because a new edge is active
 372     // in the CFG, which typeflow had previously ignored.
 373     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 374     // This x will be typed as Integer if notReached is not yet linked.
 375     // It could also happen due to a problem in ciTypeFlow analysis.
 376     uncommon_trap(Deoptimization::Reason_constraint,
 377                   Deoptimization::Action_reinterpret);
 378     set_map(types_are_good);
 379   }
 380 }
 381 
 382 //------------------------------Parse------------------------------------------
 383 // Main parser constructor.
 384 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses, Parse* parent)
 385   : _exits(caller), _parent(parent)
 386 {
 387   // Init some variables
 388   _caller = caller;
 389   _method = parse_method;
 390   _expected_uses = expected_uses;
 391   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 392   _wrote_final = false;
 393   _alloc_with_final = NULL;
 394   _entry_bci = InvocationEntryBci;
 395   _tf = NULL;
 396   _block = NULL;
 397   debug_only(_block_count = -1);
 398   debug_only(_blocks = (Block*)-1);
 399 #ifndef PRODUCT
 400   if (PrintCompilation || PrintOpto) {
 401     // Make sure I have an inline tree, so I can print messages about it.
 402     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 403     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 404   }
 405   _max_switch_depth = 0;
 406   _est_switch_depth = 0;
 407 #endif
 408 
 409   _tf = TypeFunc::make(method());
 410   _iter.reset_to_method(method());
 411   _flow = method()->get_flow_analysis();
 412   if (_flow->failing()) {
 413     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 414   }
 415 
 416 #ifndef PRODUCT
 417   if (_flow->has_irreducible_entry()) {
 418     C->set_parsed_irreducible_loop(true);
 419   }
 420 #endif
 421 
 422   if (_expected_uses <= 0) {
 423     _prof_factor = 1;
 424   } else {
 425     float prof_total = parse_method->interpreter_invocation_count();
 426     if (prof_total <= _expected_uses) {
 427       _prof_factor = 1;
 428     } else {
 429       _prof_factor = _expected_uses / prof_total;
 430     }
 431   }
 432 
 433   CompileLog* log = C->log();
 434   if (log != NULL) {
 435     log->begin_head("parse method='%d' uses='%g'",
 436                     log->identify(parse_method), expected_uses);
 437     if (depth() == 1 && C->is_osr_compilation()) {
 438       log->print(" osr_bci='%d'", C->entry_bci());
 439     }
 440     log->stamp();
 441     log->end_head();
 442   }
 443 
 444   // Accumulate deoptimization counts.
 445   // (The range_check and store_check counts are checked elsewhere.)
 446   ciMethodData* md = method()->method_data();
 447   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 448     uint md_count = md->trap_count(reason);
 449     if (md_count != 0) {
 450       if (md_count == md->trap_count_limit())
 451         md_count += md->overflow_trap_count();
 452       uint total_count = C->trap_count(reason);
 453       uint old_count   = total_count;
 454       total_count += md_count;
 455       // Saturate the add if it overflows.
 456       if (total_count < old_count || total_count < md_count)
 457         total_count = (uint)-1;
 458       C->set_trap_count(reason, total_count);
 459       if (log != NULL)
 460         log->elem("observe trap='%s' count='%d' total='%d'",
 461                   Deoptimization::trap_reason_name(reason),
 462                   md_count, total_count);
 463     }
 464   }
 465   // Accumulate total sum of decompilations, also.
 466   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 467 
 468   _count_invocations = C->do_count_invocations();
 469   _method_data_update = C->do_method_data_update();
 470 
 471   if (log != NULL && method()->has_exception_handlers()) {
 472     log->elem("observe that='has_exception_handlers'");
 473   }
 474 
 475   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 476   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 477 
 478   // Always register dependence if JVMTI is enabled, because
 479   // either breakpoint setting or hotswapping of methods may
 480   // cause deoptimization.
 481   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 482     C->dependencies()->assert_evol_method(method());
 483   }
 484 
 485   methods_seen++;
 486 
 487   // Do some special top-level things.
 488   if (depth() == 1 && C->is_osr_compilation()) {
 489     _entry_bci = C->entry_bci();
 490     _flow = method()->get_osr_flow_analysis(osr_bci());
 491     if (_flow->failing()) {
 492       C->record_method_not_compilable(_flow->failure_reason());
 493 #ifndef PRODUCT
 494       if (PrintOpto && (Verbose || WizardMode)) {
 495         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 496         if (Verbose) {
 497           method()->print();
 498           method()->print_codes();
 499           _flow->print();
 500         }
 501       }
 502 #endif
 503     }
 504     _tf = C->tf();     // the OSR entry type is different
 505   }
 506 
 507 #ifdef ASSERT
 508   if (depth() == 1) {
 509     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 510     if (C->tf() != tf()) {
 511       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 512       assert(C->env()->system_dictionary_modification_counter_changed(),
 513              "Must invalidate if TypeFuncs differ");
 514     }
 515   } else {
 516     assert(!this->is_osr_parse(), "no recursive OSR");
 517   }
 518 #endif
 519 
 520   methods_parsed++;
 521 #ifndef PRODUCT
 522   // add method size here to guarantee that inlined methods are added too
 523   if (TimeCompiler)
 524     _total_bytes_compiled += method()->code_size();
 525 
 526   show_parse_info();
 527 #endif
 528 
 529   if (failing()) {
 530     if (log)  log->done("parse");
 531     return;
 532   }
 533 
 534   gvn().set_type(root(), root()->bottom_type());
 535   gvn().transform(top());
 536 
 537   // Import the results of the ciTypeFlow.
 538   init_blocks();
 539 
 540   // Merge point for all normal exits
 541   build_exits();
 542 
 543   // Setup the initial JVM state map.
 544   SafePointNode* entry_map = create_entry_map();
 545 
 546   // Check for bailouts during map initialization
 547   if (failing() || entry_map == NULL) {
 548     if (log)  log->done("parse");
 549     return;
 550   }
 551 
 552   Node_Notes* caller_nn = C->default_node_notes();
 553   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 554   if (DebugInlinedCalls || depth() == 1) {
 555     C->set_default_node_notes(make_node_notes(caller_nn));
 556   }
 557 
 558   if (is_osr_parse()) {
 559     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 560     entry_map->set_req(TypeFunc::Parms+0, top());
 561     set_map(entry_map);
 562     load_interpreter_state(osr_buf);
 563   } else {
 564     set_map(entry_map);
 565     do_method_entry();
 566   }
 567   if (depth() == 1) {
 568     // Add check to deoptimize the nmethod if RTM state was changed
 569     rtm_deopt();
 570   }
 571 
 572   // Check for bailouts during method entry.
 573   if (failing()) {
 574     if (log)  log->done("parse");
 575     C->set_default_node_notes(caller_nn);
 576     return;
 577   }
 578 
 579   entry_map = map();  // capture any changes performed by method setup code
 580   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 581 
 582   // We begin parsing as if we have just encountered a jump to the
 583   // method entry.
 584   Block* entry_block = start_block();
 585   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 586   set_map_clone(entry_map);
 587   merge_common(entry_block, entry_block->next_path_num());
 588 
 589 #ifndef PRODUCT
 590   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 591   set_parse_histogram( parse_histogram_obj );
 592 #endif
 593 
 594   // Parse all the basic blocks.
 595   do_all_blocks();
 596 
 597   C->set_default_node_notes(caller_nn);
 598 
 599   // Check for bailouts during conversion to graph
 600   if (failing()) {
 601     if (log)  log->done("parse");
 602     return;
 603   }
 604 
 605   // Fix up all exiting control flow.
 606   set_map(entry_map);
 607   do_exits();
 608 
 609   if (log)  log->done("parse nodes='%d' live='%d' memory='%d'",
 610                       C->unique(), C->live_nodes(), C->node_arena()->used());
 611 }
 612 
 613 //---------------------------do_all_blocks-------------------------------------
 614 void Parse::do_all_blocks() {
 615   bool has_irreducible = flow()->has_irreducible_entry();
 616 
 617   // Walk over all blocks in Reverse Post-Order.
 618   while (true) {
 619     bool progress = false;
 620     for (int rpo = 0; rpo < block_count(); rpo++) {
 621       Block* block = rpo_at(rpo);
 622 
 623       if (block->is_parsed()) continue;
 624 
 625       if (!block->is_merged()) {
 626         // Dead block, no state reaches this block
 627         continue;
 628       }
 629 
 630       // Prepare to parse this block.
 631       load_state_from(block);
 632 
 633       if (stopped()) {
 634         // Block is dead.
 635         continue;
 636       }
 637 
 638       blocks_parsed++;
 639 
 640       progress = true;
 641       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 642         // Not all preds have been parsed.  We must build phis everywhere.
 643         // (Note that dead locals do not get phis built, ever.)
 644         ensure_phis_everywhere();
 645 
 646         if (block->is_SEL_head() &&
 647             (UseLoopPredicate || LoopLimitCheck)) {
 648           // Add predicate to single entry (not irreducible) loop head.
 649           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 650           // Need correct bci for predicate.
 651           // It is fine to set it here since do_one_block() will set it anyway.
 652           set_parse_bci(block->start());
 653           add_predicate();
 654           // Add new region for back branches.
 655           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 656           RegionNode *r = new (C) RegionNode(edges+1);
 657           _gvn.set_type(r, Type::CONTROL);
 658           record_for_igvn(r);
 659           r->init_req(edges, control());
 660           set_control(r);
 661           // Add new phis.
 662           ensure_phis_everywhere();
 663         }
 664 
 665         // Leave behind an undisturbed copy of the map, for future merges.
 666         set_map(clone_map());
 667       }
 668 
 669       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 670         // In the absence of irreducible loops, the Region and Phis
 671         // associated with a merge that doesn't involve a backedge can
 672         // be simplified now since the RPO parsing order guarantees
 673         // that any path which was supposed to reach here has already
 674         // been parsed or must be dead.
 675         Node* c = control();
 676         Node* result = _gvn.transform_no_reclaim(control());
 677         if (c != result && TraceOptoParse) {
 678           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 679         }
 680         if (result != top()) {
 681           record_for_igvn(result);
 682         }
 683       }
 684 
 685       // Parse the block.
 686       do_one_block();
 687 
 688       // Check for bailouts.
 689       if (failing())  return;
 690     }
 691 
 692     // with irreducible loops multiple passes might be necessary to parse everything
 693     if (!has_irreducible || !progress) {
 694       break;
 695     }
 696   }
 697 
 698   blocks_seen += block_count();
 699 
 700 #ifndef PRODUCT
 701   // Make sure there are no half-processed blocks remaining.
 702   // Every remaining unprocessed block is dead and may be ignored now.
 703   for (int rpo = 0; rpo < block_count(); rpo++) {
 704     Block* block = rpo_at(rpo);
 705     if (!block->is_parsed()) {
 706       if (TraceOptoParse) {
 707         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 708       }
 709       assert(!block->is_merged(), "no half-processed blocks");
 710     }
 711   }
 712 #endif
 713 }
 714 
 715 //-------------------------------build_exits----------------------------------
 716 // Build normal and exceptional exit merge points.
 717 void Parse::build_exits() {
 718   // make a clone of caller to prevent sharing of side-effects
 719   _exits.set_map(_exits.clone_map());
 720   _exits.clean_stack(_exits.sp());
 721   _exits.sync_jvms();
 722 
 723   RegionNode* region = new (C) RegionNode(1);
 724   record_for_igvn(region);
 725   gvn().set_type_bottom(region);
 726   _exits.set_control(region);
 727 
 728   // Note:  iophi and memphi are not transformed until do_exits.
 729   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
 730   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 731   gvn().set_type_bottom(iophi);
 732   gvn().set_type_bottom(memphi);
 733   _exits.set_i_o(iophi);
 734   _exits.set_all_memory(memphi);
 735 
 736   // Add a return value to the exit state.  (Do not push it yet.)
 737   if (tf()->range()->cnt() > TypeFunc::Parms) {
 738     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 739     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 740     // becomes loaded during the subsequent parsing, the loaded and unloaded
 741     // types will not join when we transform and push in do_exits().
 742     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 743     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 744       ret_type = TypeOopPtr::BOTTOM;
 745     }
 746     int         ret_size = type2size[ret_type->basic_type()];
 747     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
 748     gvn().set_type_bottom(ret_phi);
 749     _exits.ensure_stack(ret_size);
 750     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 751     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 752     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 753     // Note:  ret_phi is not yet pushed, until do_exits.
 754   }
 755 }
 756 
 757 
 758 //----------------------------build_start_state-------------------------------
 759 // Construct a state which contains only the incoming arguments from an
 760 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 761 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 762   int        arg_size = tf->domain()->cnt();
 763   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 764   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 765   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
 766   record_for_igvn(map);
 767   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 768   Node_Notes* old_nn = default_node_notes();
 769   if (old_nn != NULL && has_method()) {
 770     Node_Notes* entry_nn = old_nn->clone(this);
 771     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 772     entry_jvms->set_offsets(0);
 773     entry_jvms->set_bci(entry_bci());
 774     entry_nn->set_jvms(entry_jvms);
 775     set_default_node_notes(entry_nn);
 776   }
 777   uint i;
 778   for (i = 0; i < (uint)arg_size; i++) {
 779     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
 780     map->init_req(i, parm);
 781     // Record all these guys for later GVN.
 782     record_for_igvn(parm);
 783   }
 784   for (; i < map->req(); i++) {
 785     map->init_req(i, top());
 786   }
 787   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 788   set_default_node_notes(old_nn);
 789   map->set_jvms(jvms);
 790   jvms->set_map(map);
 791   return jvms;
 792 }
 793 
 794 //-----------------------------make_node_notes---------------------------------
 795 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 796   if (caller_nn == NULL)  return NULL;
 797   Node_Notes* nn = caller_nn->clone(C);
 798   JVMState* caller_jvms = nn->jvms();
 799   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 800   jvms->set_offsets(0);
 801   jvms->set_bci(_entry_bci);
 802   nn->set_jvms(jvms);
 803   return nn;
 804 }
 805 
 806 
 807 //--------------------------return_values--------------------------------------
 808 void Compile::return_values(JVMState* jvms) {
 809   GraphKit kit(jvms);
 810   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
 811                              kit.control(),
 812                              kit.i_o(),
 813                              kit.reset_memory(),
 814                              kit.frameptr(),
 815                              kit.returnadr());
 816   // Add zero or 1 return values
 817   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 818   if (ret_size > 0) {
 819     kit.inc_sp(-ret_size);  // pop the return value(s)
 820     kit.sync_jvms();
 821     ret->add_req(kit.argument(0));
 822     // Note:  The second dummy edge is not needed by a ReturnNode.
 823   }
 824   // bind it to root
 825   root()->add_req(ret);
 826   record_for_igvn(ret);
 827   initial_gvn()->transform_no_reclaim(ret);
 828 }
 829 
 830 //------------------------rethrow_exceptions-----------------------------------
 831 // Bind all exception states in the list into a single RethrowNode.
 832 void Compile::rethrow_exceptions(JVMState* jvms) {
 833   GraphKit kit(jvms);
 834   if (!kit.has_exceptions())  return;  // nothing to generate
 835   // Load my combined exception state into the kit, with all phis transformed:
 836   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 837   Node* ex_oop = kit.use_exception_state(ex_map);
 838   RethrowNode* exit = new (this) RethrowNode(kit.control(),
 839                                       kit.i_o(), kit.reset_memory(),
 840                                       kit.frameptr(), kit.returnadr(),
 841                                       // like a return but with exception input
 842                                       ex_oop);
 843   // bind to root
 844   root()->add_req(exit);
 845   record_for_igvn(exit);
 846   initial_gvn()->transform_no_reclaim(exit);
 847 }
 848 
 849 //---------------------------do_exceptions-------------------------------------
 850 // Process exceptions arising from the current bytecode.
 851 // Send caught exceptions to the proper handler within this method.
 852 // Unhandled exceptions feed into _exit.
 853 void Parse::do_exceptions() {
 854   if (!has_exceptions())  return;
 855 
 856   if (failing()) {
 857     // Pop them all off and throw them away.
 858     while (pop_exception_state() != NULL) ;
 859     return;
 860   }
 861 
 862   PreserveJVMState pjvms(this, false);
 863 
 864   SafePointNode* ex_map;
 865   while ((ex_map = pop_exception_state()) != NULL) {
 866     if (!method()->has_exception_handlers()) {
 867       // Common case:  Transfer control outward.
 868       // Doing it this early allows the exceptions to common up
 869       // even between adjacent method calls.
 870       throw_to_exit(ex_map);
 871     } else {
 872       // Have to look at the exception first.
 873       assert(stopped(), "catch_inline_exceptions trashes the map");
 874       catch_inline_exceptions(ex_map);
 875       stop_and_kill_map();      // we used up this exception state; kill it
 876     }
 877   }
 878 
 879   // We now return to our regularly scheduled program:
 880 }
 881 
 882 //---------------------------throw_to_exit-------------------------------------
 883 // Merge the given map into an exception exit from this method.
 884 // The exception exit will handle any unlocking of receiver.
 885 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 886 void Parse::throw_to_exit(SafePointNode* ex_map) {
 887   // Pop the JVMS to (a copy of) the caller.
 888   GraphKit caller;
 889   caller.set_map_clone(_caller->map());
 890   caller.set_bci(_caller->bci());
 891   caller.set_sp(_caller->sp());
 892   // Copy out the standard machine state:
 893   for (uint i = 0; i < TypeFunc::Parms; i++) {
 894     caller.map()->set_req(i, ex_map->in(i));
 895   }
 896   // ...and the exception:
 897   Node*          ex_oop        = saved_ex_oop(ex_map);
 898   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 899   // Finally, collect the new exception state in my exits:
 900   _exits.add_exception_state(caller_ex_map);
 901 }
 902 
 903 //------------------------------do_exits---------------------------------------
 904 void Parse::do_exits() {
 905   set_parse_bci(InvocationEntryBci);
 906 
 907   // Now peephole on the return bits
 908   Node* region = _exits.control();
 909   _exits.set_control(gvn().transform(region));
 910 
 911   Node* iophi = _exits.i_o();
 912   _exits.set_i_o(gvn().transform(iophi));
 913 
 914   if (wrote_final()) {
 915     // This method (which must be a constructor by the rules of Java)
 916     // wrote a final.  The effects of all initializations must be
 917     // committed to memory before any code after the constructor
 918     // publishes the reference to the newly constructor object.
 919     // Rather than wait for the publication, we simply block the
 920     // writes here.  Rather than put a barrier on only those writes
 921     // which are required to complete, we force all writes to complete.
 922     //
 923     // "All bets are off" unless the first publication occurs after a
 924     // normal return from the constructor.  We do not attempt to detect
 925     // such unusual early publications.  But no barrier is needed on
 926     // exceptional returns, since they cannot publish normally.
 927     //
 928     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 929 #ifndef PRODUCT
 930     if (PrintOpto && (Verbose || WizardMode)) {
 931       method()->print_name();
 932       tty->print_cr(" writes finals and needs a memory barrier");
 933     }
 934 #endif
 935   }
 936 
 937   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 938     // transform each slice of the original memphi:
 939     mms.set_memory(_gvn.transform(mms.memory()));
 940   }
 941 
 942   if (tf()->range()->cnt() > TypeFunc::Parms) {
 943     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 944     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 945     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 946     _exits.push_node(ret_type->basic_type(), ret_phi);
 947   }
 948 
 949   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 950 
 951   // Unlock along the exceptional paths.
 952   // This is done late so that we can common up equivalent exceptions
 953   // (e.g., null checks) arising from multiple points within this method.
 954   // See GraphKit::add_exception_state, which performs the commoning.
 955   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 956 
 957   // record exit from a method if compiled while Dtrace is turned on.
 958   if (do_synch || C->env()->dtrace_method_probes()) {
 959     // First move the exception list out of _exits:
 960     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 961     SafePointNode* normal_map = kit.map();  // keep this guy safe
 962     // Now re-collect the exceptions into _exits:
 963     SafePointNode* ex_map;
 964     while ((ex_map = kit.pop_exception_state()) != NULL) {
 965       Node* ex_oop = kit.use_exception_state(ex_map);
 966       // Force the exiting JVM state to have this method at InvocationEntryBci.
 967       // The exiting JVM state is otherwise a copy of the calling JVMS.
 968       JVMState* caller = kit.jvms();
 969       JVMState* ex_jvms = caller->clone_shallow(C);
 970       ex_jvms->set_map(kit.clone_map());
 971       ex_jvms->map()->set_jvms(ex_jvms);
 972       ex_jvms->set_bci(   InvocationEntryBci);
 973       kit.set_jvms(ex_jvms);
 974       if (do_synch) {
 975         // Add on the synchronized-method box/object combo
 976         kit.map()->push_monitor(_synch_lock);
 977         // Unlock!
 978         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
 979       }
 980       if (C->env()->dtrace_method_probes()) {
 981         kit.make_dtrace_method_exit(method());
 982       }
 983       // Done with exception-path processing.
 984       ex_map = kit.make_exception_state(ex_oop);
 985       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
 986       // Pop the last vestige of this method:
 987       ex_map->set_jvms(caller->clone_shallow(C));
 988       ex_map->jvms()->set_map(ex_map);
 989       _exits.push_exception_state(ex_map);
 990     }
 991     assert(_exits.map() == normal_map, "keep the same return state");
 992   }
 993 
 994   {
 995     // Capture very early exceptions (receiver null checks) from caller JVMS
 996     GraphKit caller(_caller);
 997     SafePointNode* ex_map;
 998     while ((ex_map = caller.pop_exception_state()) != NULL) {
 999       _exits.add_exception_state(ex_map);
1000     }
1001   }
1002 }
1003 
1004 //-----------------------------create_entry_map-------------------------------
1005 // Initialize our parser map to contain the types at method entry.
1006 // For OSR, the map contains a single RawPtr parameter.
1007 // Initial monitor locking for sync. methods is performed by do_method_entry.
1008 SafePointNode* Parse::create_entry_map() {
1009   // Check for really stupid bail-out cases.
1010   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1011   if (len >= 32760) {
1012     C->record_method_not_compilable_all_tiers("too many local variables");
1013     return NULL;
1014   }
1015 
1016   // If this is an inlined method, we may have to do a receiver null check.
1017   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1018     GraphKit kit(_caller);
1019     kit.null_check_receiver_before_call(method());
1020     _caller = kit.transfer_exceptions_into_jvms();
1021     if (kit.stopped()) {
1022       _exits.add_exception_states_from(_caller);
1023       _exits.set_jvms(_caller);
1024       return NULL;
1025     }
1026   }
1027 
1028   assert(method() != NULL, "parser must have a method");
1029 
1030   // Create an initial safepoint to hold JVM state during parsing
1031   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1032   set_map(new (C) SafePointNode(len, jvms));
1033   jvms->set_map(map());
1034   record_for_igvn(map());
1035   assert(jvms->endoff() == len, "correct jvms sizing");
1036 
1037   SafePointNode* inmap = _caller->map();
1038   assert(inmap != NULL, "must have inmap");
1039 
1040   uint i;
1041 
1042   // Pass thru the predefined input parameters.
1043   for (i = 0; i < TypeFunc::Parms; i++) {
1044     map()->init_req(i, inmap->in(i));
1045   }
1046 
1047   if (depth() == 1) {
1048     assert(map()->memory()->Opcode() == Op_Parm, "");
1049     // Insert the memory aliasing node
1050     set_all_memory(reset_memory());
1051   }
1052   assert(merged_memory(), "");
1053 
1054   // Now add the locals which are initially bound to arguments:
1055   uint arg_size = tf()->domain()->cnt();
1056   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1057   for (i = TypeFunc::Parms; i < arg_size; i++) {
1058     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1059   }
1060 
1061   // Clear out the rest of the map (locals and stack)
1062   for (i = arg_size; i < len; i++) {
1063     map()->init_req(i, top());
1064   }
1065 
1066   SafePointNode* entry_map = stop();
1067   return entry_map;
1068 }
1069 
1070 //-----------------------------do_method_entry--------------------------------
1071 // Emit any code needed in the pseudo-block before BCI zero.
1072 // The main thing to do is lock the receiver of a synchronized method.
1073 void Parse::do_method_entry() {
1074   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1075   set_sp(0);                      // Java Stack Pointer
1076 
1077   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1078 
1079   if (C->env()->dtrace_method_probes()) {
1080     make_dtrace_method_entry(method());
1081   }
1082 
1083   // If the method is synchronized, we need to construct a lock node, attach
1084   // it to the Start node, and pin it there.
1085   if (method()->is_synchronized()) {
1086     // Insert a FastLockNode right after the Start which takes as arguments
1087     // the current thread pointer, the "this" pointer & the address of the
1088     // stack slot pair used for the lock.  The "this" pointer is a projection
1089     // off the start node, but the locking spot has to be constructed by
1090     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1091     // becomes the second argument to the FastLockNode call.  The
1092     // FastLockNode becomes the new control parent to pin it to the start.
1093 
1094     // Setup Object Pointer
1095     Node *lock_obj = NULL;
1096     if(method()->is_static()) {
1097       ciInstance* mirror = _method->holder()->java_mirror();
1098       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1099       lock_obj = makecon(t_lock);
1100     } else {                  // Else pass the "this" pointer,
1101       lock_obj = local(0);    // which is Parm0 from StartNode
1102     }
1103     // Clear out dead values from the debug info.
1104     kill_dead_locals();
1105     // Build the FastLockNode
1106     _synch_lock = shared_lock(lock_obj);
1107   }
1108 
1109   // Feed profiling data for parameters to the type system so it can
1110   // propagate it as speculative types
1111   record_profiled_parameters_for_speculation();
1112 
1113   if (depth() == 1) {
1114     increment_and_test_invocation_counter(Tier2CompileThreshold);
1115   }
1116 }
1117 
1118 //------------------------------init_blocks------------------------------------
1119 // Initialize our parser map to contain the types/monitors at method entry.
1120 void Parse::init_blocks() {
1121   // Create the blocks.
1122   _block_count = flow()->block_count();
1123   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1124   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1125 
1126   int rpo;
1127 
1128   // Initialize the structs.
1129   for (rpo = 0; rpo < block_count(); rpo++) {
1130     Block* block = rpo_at(rpo);
1131     block->init_node(this, rpo);
1132   }
1133 
1134   // Collect predecessor and successor information.
1135   for (rpo = 0; rpo < block_count(); rpo++) {
1136     Block* block = rpo_at(rpo);
1137     block->init_graph(this);
1138   }
1139 }
1140 
1141 //-------------------------------init_node-------------------------------------
1142 void Parse::Block::init_node(Parse* outer, int rpo) {
1143   _flow = outer->flow()->rpo_at(rpo);
1144   _pred_count = 0;
1145   _preds_parsed = 0;
1146   _count = 0;
1147   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1148   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1149   assert(_live_locals.size() == 0, "sanity");
1150 
1151   // entry point has additional predecessor
1152   if (flow()->is_start())  _pred_count++;
1153   assert(flow()->is_start() == (this == outer->start_block()), "");
1154 }
1155 
1156 //-------------------------------init_graph------------------------------------
1157 void Parse::Block::init_graph(Parse* outer) {
1158   // Create the successor list for this parser block.
1159   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1160   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1161   int ns = tfs->length();
1162   int ne = tfe->length();
1163   _num_successors = ns;
1164   _all_successors = ns+ne;
1165   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1166   int p = 0;
1167   for (int i = 0; i < ns+ne; i++) {
1168     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1169     Block* block2 = outer->rpo_at(tf2->rpo());
1170     _successors[i] = block2;
1171 
1172     // Accumulate pred info for the other block, too.
1173     if (i < ns) {
1174       block2->_pred_count++;
1175     } else {
1176       block2->_is_handler = true;
1177     }
1178 
1179     #ifdef ASSERT
1180     // A block's successors must be distinguishable by BCI.
1181     // That is, no bytecode is allowed to branch to two different
1182     // clones of the same code location.
1183     for (int j = 0; j < i; j++) {
1184       Block* block1 = _successors[j];
1185       if (block1 == block2)  continue;  // duplicates are OK
1186       assert(block1->start() != block2->start(), "successors have unique bcis");
1187     }
1188     #endif
1189   }
1190 
1191   // Note: We never call next_path_num along exception paths, so they
1192   // never get processed as "ready".  Also, the input phis of exception
1193   // handlers get specially processed, so that
1194 }
1195 
1196 //---------------------------successor_for_bci---------------------------------
1197 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1198   for (int i = 0; i < all_successors(); i++) {
1199     Block* block2 = successor_at(i);
1200     if (block2->start() == bci)  return block2;
1201   }
1202   // We can actually reach here if ciTypeFlow traps out a block
1203   // due to an unloaded class, and concurrently with compilation the
1204   // class is then loaded, so that a later phase of the parser is
1205   // able to see more of the bytecode CFG.  Or, the flow pass and
1206   // the parser can have a minor difference of opinion about executability
1207   // of bytecodes.  For example, "obj.field = null" is executable even
1208   // if the field's type is an unloaded class; the flow pass used to
1209   // make a trap for such code.
1210   return NULL;
1211 }
1212 
1213 
1214 //-----------------------------stack_type_at-----------------------------------
1215 const Type* Parse::Block::stack_type_at(int i) const {
1216   return get_type(flow()->stack_type_at(i));
1217 }
1218 
1219 
1220 //-----------------------------local_type_at-----------------------------------
1221 const Type* Parse::Block::local_type_at(int i) const {
1222   // Make dead locals fall to bottom.
1223   if (_live_locals.size() == 0) {
1224     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1225     // This bitmap can be zero length if we saw a breakpoint.
1226     // In such cases, pretend they are all live.
1227     ((Block*)this)->_live_locals = live_locals;
1228   }
1229   if (_live_locals.size() > 0 && !_live_locals.at(i))
1230     return Type::BOTTOM;
1231 
1232   return get_type(flow()->local_type_at(i));
1233 }
1234 
1235 
1236 #ifndef PRODUCT
1237 
1238 //----------------------------name_for_bc--------------------------------------
1239 // helper method for BytecodeParseHistogram
1240 static const char* name_for_bc(int i) {
1241   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1242 }
1243 
1244 //----------------------------BytecodeParseHistogram------------------------------------
1245 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1246   _parser   = p;
1247   _compiler = c;
1248   if( ! _initialized ) { _initialized = true; reset(); }
1249 }
1250 
1251 //----------------------------current_count------------------------------------
1252 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1253   switch( bph_type ) {
1254   case BPH_transforms: { return _parser->gvn().made_progress(); }
1255   case BPH_values:     { return _parser->gvn().made_new_values(); }
1256   default: { ShouldNotReachHere(); return 0; }
1257   }
1258 }
1259 
1260 //----------------------------initialized--------------------------------------
1261 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1262 
1263 //----------------------------reset--------------------------------------------
1264 void Parse::BytecodeParseHistogram::reset() {
1265   int i = Bytecodes::number_of_codes;
1266   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1267 }
1268 
1269 //----------------------------set_initial_state--------------------------------
1270 // Record info when starting to parse one bytecode
1271 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1272   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1273     _initial_bytecode    = bc;
1274     _initial_node_count  = _compiler->unique();
1275     _initial_transforms  = current_count(BPH_transforms);
1276     _initial_values      = current_count(BPH_values);
1277   }
1278 }
1279 
1280 //----------------------------record_change--------------------------------
1281 // Record results of parsing one bytecode
1282 void Parse::BytecodeParseHistogram::record_change() {
1283   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1284     ++_bytecodes_parsed[_initial_bytecode];
1285     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1286     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1287     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1288   }
1289 }
1290 
1291 
1292 //----------------------------print--------------------------------------------
1293 void Parse::BytecodeParseHistogram::print(float cutoff) {
1294   ResourceMark rm;
1295   // print profile
1296   int total  = 0;
1297   int i      = 0;
1298   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1299   int abs_sum = 0;
1300   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1301   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1302   if( total == 0 ) { return; }
1303   tty->cr();
1304   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1305   tty->print_cr("relative:  percentage contribution to compiled nodes");
1306   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1307   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1308   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1309   tty->print_cr("values  :  Average number of node values improved per bytecode");
1310   tty->print_cr("name    :  Bytecode name");
1311   tty->cr();
1312   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1313   tty->print_cr("----------------------------------------------------------------------");
1314   while (--i > 0) {
1315     int       abs = _bytecodes_parsed[i];
1316     float     rel = abs * 100.0F / total;
1317     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1318     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1319     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1320     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1321     if (cutoff <= rel) {
1322       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1323       abs_sum += abs;
1324     }
1325   }
1326   tty->print_cr("----------------------------------------------------------------------");
1327   float rel_sum = abs_sum * 100.0F / total;
1328   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1329   tty->print_cr("----------------------------------------------------------------------");
1330   tty->cr();
1331 }
1332 #endif
1333 
1334 //----------------------------load_state_from----------------------------------
1335 // Load block/map/sp.  But not do not touch iter/bci.
1336 void Parse::load_state_from(Block* block) {
1337   set_block(block);
1338   // load the block's JVM state:
1339   set_map(block->start_map());
1340   set_sp( block->start_sp());
1341 }
1342 
1343 
1344 //-----------------------------record_state------------------------------------
1345 void Parse::Block::record_state(Parse* p) {
1346   assert(!is_merged(), "can only record state once, on 1st inflow");
1347   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1348   set_start_map(p->stop());
1349 }
1350 
1351 
1352 //------------------------------do_one_block-----------------------------------
1353 void Parse::do_one_block() {
1354   if (TraceOptoParse) {
1355     Block *b = block();
1356     int ns = b->num_successors();
1357     int nt = b->all_successors();
1358 
1359     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1360                   block()->rpo(), block()->start(), block()->limit());
1361     for (int i = 0; i < nt; i++) {
1362       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1363     }
1364     if (b->is_loop_head()) tty->print("  lphd");
1365     tty->print_cr("");
1366   }
1367 
1368   assert(block()->is_merged(), "must be merged before being parsed");
1369   block()->mark_parsed();
1370   ++_blocks_parsed;
1371 
1372   // Set iterator to start of block.
1373   iter().reset_to_bci(block()->start());
1374 
1375   CompileLog* log = C->log();
1376 
1377   // Parse bytecodes
1378   while (!stopped() && !failing()) {
1379     iter().next();
1380 
1381     // Learn the current bci from the iterator:
1382     set_parse_bci(iter().cur_bci());
1383 
1384     if (bci() == block()->limit()) {
1385       // Do not walk into the next block until directed by do_all_blocks.
1386       merge(bci());
1387       break;
1388     }
1389     assert(bci() < block()->limit(), "bci still in block");
1390 
1391     if (log != NULL) {
1392       // Output an optional context marker, to help place actions
1393       // that occur during parsing of this BC.  If there is no log
1394       // output until the next context string, this context string
1395       // will be silently ignored.
1396       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1397     }
1398 
1399     if (block()->has_trap_at(bci())) {
1400       // We must respect the flow pass's traps, because it will refuse
1401       // to produce successors for trapping blocks.
1402       int trap_index = block()->flow()->trap_index();
1403       assert(trap_index != 0, "trap index must be valid");
1404       uncommon_trap(trap_index);
1405       break;
1406     }
1407 
1408     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1409 
1410 #ifdef ASSERT
1411     int pre_bc_sp = sp();
1412     int inputs, depth;
1413     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1414     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1415 #endif //ASSERT
1416 
1417     do_one_bytecode();
1418 
1419     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1420            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1421 
1422     do_exceptions();
1423 
1424     NOT_PRODUCT( parse_histogram()->record_change(); );
1425 
1426     if (log != NULL)
1427       log->clear_context();  // skip marker if nothing was printed
1428 
1429     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1430     // successor which is typically made ready by visiting this bytecode.
1431     // If the successor has several predecessors, then it is a merge
1432     // point, starts a new basic block, and is handled like other basic blocks.
1433   }
1434 }
1435 
1436 
1437 //------------------------------merge------------------------------------------
1438 void Parse::set_parse_bci(int bci) {
1439   set_bci(bci);
1440   Node_Notes* nn = C->default_node_notes();
1441   if (nn == NULL)  return;
1442 
1443   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1444   if (!DebugInlinedCalls && depth() > 1) {
1445     return;
1446   }
1447 
1448   // Update the JVMS annotation, if present.
1449   JVMState* jvms = nn->jvms();
1450   if (jvms != NULL && jvms->bci() != bci) {
1451     // Update the JVMS.
1452     jvms = jvms->clone_shallow(C);
1453     jvms->set_bci(bci);
1454     nn->set_jvms(jvms);
1455   }
1456 }
1457 
1458 //------------------------------merge------------------------------------------
1459 // Merge the current mapping into the basic block starting at bci
1460 void Parse::merge(int target_bci) {
1461   Block* target = successor_for_bci(target_bci);
1462   if (target == NULL) { handle_missing_successor(target_bci); return; }
1463   assert(!target->is_ready(), "our arrival must be expected");
1464   int pnum = target->next_path_num();
1465   merge_common(target, pnum);
1466 }
1467 
1468 //-------------------------merge_new_path--------------------------------------
1469 // Merge the current mapping into the basic block, using a new path
1470 void Parse::merge_new_path(int target_bci) {
1471   Block* target = successor_for_bci(target_bci);
1472   if (target == NULL) { handle_missing_successor(target_bci); return; }
1473   assert(!target->is_ready(), "new path into frozen graph");
1474   int pnum = target->add_new_path();
1475   merge_common(target, pnum);
1476 }
1477 
1478 //-------------------------merge_exception-------------------------------------
1479 // Merge the current mapping into the basic block starting at bci
1480 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1481 void Parse::merge_exception(int target_bci) {
1482   assert(sp() == 1, "must have only the throw exception on the stack");
1483   Block* target = successor_for_bci(target_bci);
1484   if (target == NULL) { handle_missing_successor(target_bci); return; }
1485   assert(target->is_handler(), "exceptions are handled by special blocks");
1486   int pnum = target->add_new_path();
1487   merge_common(target, pnum);
1488 }
1489 
1490 //--------------------handle_missing_successor---------------------------------
1491 void Parse::handle_missing_successor(int target_bci) {
1492 #ifndef PRODUCT
1493   Block* b = block();
1494   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1495   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1496 #endif
1497   ShouldNotReachHere();
1498 }
1499 
1500 //--------------------------merge_common---------------------------------------
1501 void Parse::merge_common(Parse::Block* target, int pnum) {
1502   if (TraceOptoParse) {
1503     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1504   }
1505 
1506   // Zap extra stack slots to top
1507   assert(sp() == target->start_sp(), "");
1508   clean_stack(sp());
1509 
1510   if (!target->is_merged()) {   // No prior mapping at this bci
1511     if (TraceOptoParse) { tty->print(" with empty state");  }
1512 
1513     // If this path is dead, do not bother capturing it as a merge.
1514     // It is "as if" we had 1 fewer predecessors from the beginning.
1515     if (stopped()) {
1516       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1517       return;
1518     }
1519 
1520     // Record that a new block has been merged.
1521     ++_blocks_merged;
1522 
1523     // Make a region if we know there are multiple or unpredictable inputs.
1524     // (Also, if this is a plain fall-through, we might see another region,
1525     // which must not be allowed into this block's map.)
1526     if (pnum > PhiNode::Input         // Known multiple inputs.
1527         || target->is_handler()       // These have unpredictable inputs.
1528         || target->is_loop_head()     // Known multiple inputs
1529         || control()->is_Region()) {  // We must hide this guy.
1530 
1531       int current_bci = bci();
1532       set_parse_bci(target->start()); // Set target bci
1533       if (target->is_SEL_head()) {
1534         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1535         if (target->start() == 0) {
1536           // Add loop predicate for the special case when
1537           // there are backbranches to the method entry.
1538           add_predicate();
1539         }
1540       }
1541       // Add a Region to start the new basic block.  Phis will be added
1542       // later lazily.
1543       int edges = target->pred_count();
1544       if (edges < pnum)  edges = pnum;  // might be a new path!
1545       RegionNode *r = new (C) RegionNode(edges+1);
1546       gvn().set_type(r, Type::CONTROL);
1547       record_for_igvn(r);
1548       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1549       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1550       r->init_req(pnum, control());
1551       set_control(r);
1552       set_parse_bci(current_bci); // Restore bci
1553     }
1554 
1555     // Convert the existing Parser mapping into a mapping at this bci.
1556     store_state_to(target);
1557     assert(target->is_merged(), "do not come here twice");
1558 
1559   } else {                      // Prior mapping at this bci
1560     if (TraceOptoParse) {  tty->print(" with previous state"); }
1561 #ifdef ASSERT
1562     if (target->is_SEL_head()) {
1563       target->mark_merged_backedge(block());
1564     }
1565 #endif
1566     // We must not manufacture more phis if the target is already parsed.
1567     bool nophi = target->is_parsed();
1568 
1569     SafePointNode* newin = map();// Hang on to incoming mapping
1570     Block* save_block = block(); // Hang on to incoming block;
1571     load_state_from(target);    // Get prior mapping
1572 
1573     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1574     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1575     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1576     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1577 
1578     // Iterate over my current mapping and the old mapping.
1579     // Where different, insert Phi functions.
1580     // Use any existing Phi functions.
1581     assert(control()->is_Region(), "must be merging to a region");
1582     RegionNode* r = control()->as_Region();
1583 
1584     // Compute where to merge into
1585     // Merge incoming control path
1586     r->init_req(pnum, newin->control());
1587 
1588     if (pnum == 1) {            // Last merge for this Region?
1589       if (!block()->flow()->is_irreducible_entry()) {
1590         Node* result = _gvn.transform_no_reclaim(r);
1591         if (r != result && TraceOptoParse) {
1592           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1593         }
1594       }
1595       record_for_igvn(r);
1596     }
1597 
1598     // Update all the non-control inputs to map:
1599     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1600     bool check_elide_phi = target->is_SEL_backedge(save_block);
1601     for (uint j = 1; j < newin->req(); j++) {
1602       Node* m = map()->in(j);   // Current state of target.
1603       Node* n = newin->in(j);   // Incoming change to target state.
1604       PhiNode* phi;
1605       if (m->is_Phi() && m->as_Phi()->region() == r)
1606         phi = m->as_Phi();
1607       else
1608         phi = NULL;
1609       if (m != n) {             // Different; must merge
1610         switch (j) {
1611         // Frame pointer and Return Address never changes
1612         case TypeFunc::FramePtr:// Drop m, use the original value
1613         case TypeFunc::ReturnAdr:
1614           break;
1615         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1616           assert(phi == NULL, "the merge contains phis, not vice versa");
1617           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1618           continue;
1619         default:                // All normal stuff
1620           if (phi == NULL) {
1621             const JVMState* jvms = map()->jvms();
1622             if (EliminateNestedLocks &&
1623                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1624               // BoxLock nodes are not commoning.
1625               // Use old BoxLock node as merged box.
1626               assert(newin->jvms()->is_monitor_box(j), "sanity");
1627               // This assert also tests that nodes are BoxLock.
1628               assert(BoxLockNode::same_slot(n, m), "sanity");
1629               C->gvn_replace_by(n, m);
1630             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1631               phi = ensure_phi(j, nophi);
1632             }
1633           }
1634           break;
1635         }
1636       }
1637       // At this point, n might be top if:
1638       //  - there is no phi (because TypeFlow detected a conflict), or
1639       //  - the corresponding control edges is top (a dead incoming path)
1640       // It is a bug if we create a phi which sees a garbage value on a live path.
1641 
1642       if (phi != NULL) {
1643         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1644         assert(phi->region() == r, "");
1645         phi->set_req(pnum, n);  // Then add 'n' to the merge
1646         if (pnum == PhiNode::Input) {
1647           // Last merge for this Phi.
1648           // So far, Phis have had a reasonable type from ciTypeFlow.
1649           // Now _gvn will join that with the meet of current inputs.
1650           // BOTTOM is never permissible here, 'cause pessimistically
1651           // Phis of pointers cannot lose the basic pointer type.
1652           debug_only(const Type* bt1 = phi->bottom_type());
1653           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1654           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1655           debug_only(const Type* bt2 = phi->bottom_type());
1656           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1657           record_for_igvn(phi);
1658         }
1659       }
1660     } // End of for all values to be merged
1661 
1662     if (pnum == PhiNode::Input &&
1663         !r->in(0)) {         // The occasional useless Region
1664       assert(control() == r, "");
1665       set_control(r->nonnull_req());
1666     }
1667 
1668     // newin has been subsumed into the lazy merge, and is now dead.
1669     set_block(save_block);
1670 
1671     stop();                     // done with this guy, for now
1672   }
1673 
1674   if (TraceOptoParse) {
1675     tty->print_cr(" on path %d", pnum);
1676   }
1677 
1678   // Done with this parser state.
1679   assert(stopped(), "");
1680 }
1681 
1682 
1683 //--------------------------merge_memory_edges---------------------------------
1684 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1685   // (nophi means we must not create phis, because we already parsed here)
1686   assert(n != NULL, "");
1687   // Merge the inputs to the MergeMems
1688   MergeMemNode* m = merged_memory();
1689 
1690   assert(control()->is_Region(), "must be merging to a region");
1691   RegionNode* r = control()->as_Region();
1692 
1693   PhiNode* base = NULL;
1694   MergeMemNode* remerge = NULL;
1695   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1696     Node *p = mms.force_memory();
1697     Node *q = mms.memory2();
1698     if (mms.is_empty() && nophi) {
1699       // Trouble:  No new splits allowed after a loop body is parsed.
1700       // Instead, wire the new split into a MergeMem on the backedge.
1701       // The optimizer will sort it out, slicing the phi.
1702       if (remerge == NULL) {
1703         assert(base != NULL, "");
1704         assert(base->in(0) != NULL, "should not be xformed away");
1705         remerge = MergeMemNode::make(C, base->in(pnum));
1706         gvn().set_type(remerge, Type::MEMORY);
1707         base->set_req(pnum, remerge);
1708       }
1709       remerge->set_memory_at(mms.alias_idx(), q);
1710       continue;
1711     }
1712     assert(!q->is_MergeMem(), "");
1713     PhiNode* phi;
1714     if (p != q) {
1715       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1716     } else {
1717       if (p->is_Phi() && p->as_Phi()->region() == r)
1718         phi = p->as_Phi();
1719       else
1720         phi = NULL;
1721     }
1722     // Insert q into local phi
1723     if (phi != NULL) {
1724       assert(phi->region() == r, "");
1725       p = phi;
1726       phi->set_req(pnum, q);
1727       if (mms.at_base_memory()) {
1728         base = phi;  // delay transforming it
1729       } else if (pnum == 1) {
1730         record_for_igvn(phi);
1731         p = _gvn.transform_no_reclaim(phi);
1732       }
1733       mms.set_memory(p);// store back through the iterator
1734     }
1735   }
1736   // Transform base last, in case we must fiddle with remerging.
1737   if (base != NULL && pnum == 1) {
1738     record_for_igvn(base);
1739     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1740   }
1741 }
1742 
1743 
1744 //------------------------ensure_phis_everywhere-------------------------------
1745 void Parse::ensure_phis_everywhere() {
1746   ensure_phi(TypeFunc::I_O);
1747 
1748   // Ensure a phi on all currently known memories.
1749   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1750     ensure_memory_phi(mms.alias_idx());
1751     debug_only(mms.set_memory());  // keep the iterator happy
1752   }
1753 
1754   // Note:  This is our only chance to create phis for memory slices.
1755   // If we miss a slice that crops up later, it will have to be
1756   // merged into the base-memory phi that we are building here.
1757   // Later, the optimizer will comb out the knot, and build separate
1758   // phi-loops for each memory slice that matters.
1759 
1760   // Monitors must nest nicely and not get confused amongst themselves.
1761   // Phi-ify everything up to the monitors, though.
1762   uint monoff = map()->jvms()->monoff();
1763   uint nof_monitors = map()->jvms()->nof_monitors();
1764 
1765   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1766   bool check_elide_phi = block()->is_SEL_head();
1767   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1768     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1769       ensure_phi(i);
1770     }
1771   }
1772 
1773   // Even monitors need Phis, though they are well-structured.
1774   // This is true for OSR methods, and also for the rare cases where
1775   // a monitor object is the subject of a replace_in_map operation.
1776   // See bugs 4426707 and 5043395.
1777   for (uint m = 0; m < nof_monitors; m++) {
1778     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1779   }
1780 }
1781 
1782 
1783 //-----------------------------add_new_path------------------------------------
1784 // Add a previously unaccounted predecessor to this block.
1785 int Parse::Block::add_new_path() {
1786   // If there is no map, return the lowest unused path number.
1787   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1788 
1789   SafePointNode* map = start_map();
1790   if (!map->control()->is_Region())
1791     return pred_count()+1;  // there may be a region some day
1792   RegionNode* r = map->control()->as_Region();
1793 
1794   // Add new path to the region.
1795   uint pnum = r->req();
1796   r->add_req(NULL);
1797 
1798   for (uint i = 1; i < map->req(); i++) {
1799     Node* n = map->in(i);
1800     if (i == TypeFunc::Memory) {
1801       // Ensure a phi on all currently known memories.
1802       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1803         Node* phi = mms.memory();
1804         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1805           assert(phi->req() == pnum, "must be same size as region");
1806           phi->add_req(NULL);
1807         }
1808       }
1809     } else {
1810       if (n->is_Phi() && n->as_Phi()->region() == r) {
1811         assert(n->req() == pnum, "must be same size as region");
1812         n->add_req(NULL);
1813       }
1814     }
1815   }
1816 
1817   return pnum;
1818 }
1819 
1820 //------------------------------ensure_phi-------------------------------------
1821 // Turn the idx'th entry of the current map into a Phi
1822 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1823   SafePointNode* map = this->map();
1824   Node* region = map->control();
1825   assert(region->is_Region(), "");
1826 
1827   Node* o = map->in(idx);
1828   assert(o != NULL, "");
1829 
1830   if (o == top())  return NULL; // TOP always merges into TOP
1831 
1832   if (o->is_Phi() && o->as_Phi()->region() == region) {
1833     return o->as_Phi();
1834   }
1835 
1836   // Now use a Phi here for merging
1837   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1838   const JVMState* jvms = map->jvms();
1839   const Type* t;
1840   if (jvms->is_loc(idx)) {
1841     t = block()->local_type_at(idx - jvms->locoff());
1842   } else if (jvms->is_stk(idx)) {
1843     t = block()->stack_type_at(idx - jvms->stkoff());
1844   } else if (jvms->is_mon(idx)) {
1845     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1846     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1847   } else if ((uint)idx < TypeFunc::Parms) {
1848     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1849   } else {
1850     assert(false, "no type information for this phi");
1851   }
1852 
1853   // If the type falls to bottom, then this must be a local that
1854   // is mixing ints and oops or some such.  Forcing it to top
1855   // makes it go dead.
1856   if (t == Type::BOTTOM) {
1857     map->set_req(idx, top());
1858     return NULL;
1859   }
1860 
1861   // Do not create phis for top either.
1862   // A top on a non-null control flow must be an unused even after the.phi.
1863   if (t == Type::TOP || t == Type::HALF) {
1864     map->set_req(idx, top());
1865     return NULL;
1866   }
1867 
1868   PhiNode* phi = PhiNode::make(region, o, t);
1869   gvn().set_type(phi, t);
1870   if (C->do_escape_analysis()) record_for_igvn(phi);
1871   map->set_req(idx, phi);
1872   return phi;
1873 }
1874 
1875 //--------------------------ensure_memory_phi----------------------------------
1876 // Turn the idx'th slice of the current memory into a Phi
1877 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1878   MergeMemNode* mem = merged_memory();
1879   Node* region = control();
1880   assert(region->is_Region(), "");
1881 
1882   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1883   assert(o != NULL && o != top(), "");
1884 
1885   PhiNode* phi;
1886   if (o->is_Phi() && o->as_Phi()->region() == region) {
1887     phi = o->as_Phi();
1888     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1889       // clone the shared base memory phi to make a new memory split
1890       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1891       const Type* t = phi->bottom_type();
1892       const TypePtr* adr_type = C->get_adr_type(idx);
1893       phi = phi->slice_memory(adr_type);
1894       gvn().set_type(phi, t);
1895     }
1896     return phi;
1897   }
1898 
1899   // Now use a Phi here for merging
1900   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1901   const Type* t = o->bottom_type();
1902   const TypePtr* adr_type = C->get_adr_type(idx);
1903   phi = PhiNode::make(region, o, t, adr_type);
1904   gvn().set_type(phi, t);
1905   if (idx == Compile::AliasIdxBot)
1906     mem->set_base_memory(phi);
1907   else
1908     mem->set_memory_at(idx, phi);
1909   return phi;
1910 }
1911 
1912 //------------------------------call_register_finalizer-----------------------
1913 // Check the klass of the receiver and call register_finalizer if the
1914 // class need finalization.
1915 void Parse::call_register_finalizer() {
1916   Node* receiver = local(0);
1917   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1918          "must have non-null instance type");
1919 
1920   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1921   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1922     // The type isn't known exactly so see if CHA tells us anything.
1923     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1924     if (!Dependencies::has_finalizable_subclass(ik)) {
1925       // No finalizable subclasses so skip the dynamic check.
1926       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1927       return;
1928     }
1929   }
1930 
1931   // Insert a dynamic test for whether the instance needs
1932   // finalization.  In general this will fold up since the concrete
1933   // class is often visible so the access flags are constant.
1934   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1935   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1936 
1937   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1938   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
1939 
1940   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1941   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
1942   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
1943 
1944   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1945 
1946   RegionNode* result_rgn = new (C) RegionNode(3);
1947   record_for_igvn(result_rgn);
1948 
1949   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
1950   result_rgn->init_req(1, skip_register);
1951 
1952   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
1953   set_control(needs_register);
1954   if (stopped()) {
1955     // There is no slow path.
1956     result_rgn->init_req(2, top());
1957   } else {
1958     Node *call = make_runtime_call(RC_NO_LEAF,
1959                                    OptoRuntime::register_finalizer_Type(),
1960                                    OptoRuntime::register_finalizer_Java(),
1961                                    NULL, TypePtr::BOTTOM,
1962                                    receiver);
1963     make_slow_call_ex(call, env()->Throwable_klass(), true);
1964 
1965     Node* fast_io  = call->in(TypeFunc::I_O);
1966     Node* fast_mem = call->in(TypeFunc::Memory);
1967     // These two phis are pre-filled with copies of of the fast IO and Memory
1968     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
1969     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1970 
1971     result_rgn->init_req(2, control());
1972     io_phi    ->init_req(2, i_o());
1973     mem_phi   ->init_req(2, reset_memory());
1974 
1975     set_all_memory( _gvn.transform(mem_phi) );
1976     set_i_o(        _gvn.transform(io_phi) );
1977   }
1978 
1979   set_control( _gvn.transform(result_rgn) );
1980 }
1981 
1982 // Add check to deoptimize if RTM state is not ProfileRTM
1983 void Parse::rtm_deopt() {
1984 #if INCLUDE_RTM_OPT
1985   if (C->profile_rtm()) {
1986     assert(C->method() != NULL, "only for normal compilations");
1987     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
1988     assert(depth() == 1, "generate check only for main compiled method");
1989 
1990     // Set starting bci for uncommon trap.
1991     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
1992 
1993     // Load the rtm_state from the MethodData.
1994     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
1995     Node* mdo = makecon(adr_type);
1996     int offset = MethodData::rtm_state_offset_in_bytes();
1997     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
1998     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1999 
2000     // Separate Load from Cmp by Opaque.
2001     // In expand_macro_nodes() it will be replaced either
2002     // with this load when there are locks in the code
2003     // or with ProfileRTM (cmp->in(2)) otherwise so that
2004     // the check will fold.
2005     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2006     Node* opq   = _gvn.transform( new (C) Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2007     Node* chk   = _gvn.transform( new (C) CmpINode(opq, profile_state) );
2008     Node* tst   = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
2009     // Branch to failure if state was changed
2010     { BuildCutout unless(this, tst, PROB_ALWAYS);
2011       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2012                     Deoptimization::Action_make_not_entrant);
2013     }
2014   }
2015 #endif
2016 }
2017 
2018 //------------------------------return_current---------------------------------
2019 // Append current _map to _exit_return
2020 void Parse::return_current(Node* value) {
2021   if (RegisterFinalizersAtInit &&
2022       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2023     call_register_finalizer();
2024   }
2025 
2026   // Do not set_parse_bci, so that return goo is credited to the return insn.
2027   set_bci(InvocationEntryBci);
2028   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2029     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2030   }
2031   if (C->env()->dtrace_method_probes()) {
2032     make_dtrace_method_exit(method());
2033   }
2034   SafePointNode* exit_return = _exits.map();
2035   exit_return->in( TypeFunc::Control  )->add_req( control() );
2036   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2037   Node *mem = exit_return->in( TypeFunc::Memory   );
2038   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2039     if (mms.is_empty()) {
2040       // get a copy of the base memory, and patch just this one input
2041       const TypePtr* adr_type = mms.adr_type(C);
2042       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2043       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2044       gvn().set_type_bottom(phi);
2045       phi->del_req(phi->req()-1);  // prepare to re-patch
2046       mms.set_memory(phi);
2047     }
2048     mms.memory()->add_req(mms.memory2());
2049   }
2050 
2051   // frame pointer is always same, already captured
2052   if (value != NULL) {
2053     // If returning oops to an interface-return, there is a silent free
2054     // cast from oop to interface allowed by the Verifier.  Make it explicit
2055     // here.
2056     Node* phi = _exits.argument(0);
2057     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2058     if( tr && tr->klass()->is_loaded() &&
2059         tr->klass()->is_interface() ) {
2060       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2061       if (tp && tp->klass()->is_loaded() &&
2062           !tp->klass()->is_interface()) {
2063         // sharpen the type eagerly; this eases certain assert checking
2064         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2065           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2066         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
2067       }
2068     }
2069     phi->add_req(value);
2070   }
2071 
2072   stop_and_kill_map();          // This CFG path dies here
2073 }
2074 
2075 
2076 //------------------------------add_safepoint----------------------------------
2077 void Parse::add_safepoint() {
2078   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2079   // after a Call (except Leaf Call) or another SafePoint.
2080   Node *proj = control();
2081   bool add_poll_param = SafePointNode::needs_polling_address_input();
2082   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2083   if( proj->is_Proj() ) {
2084     Node *n0 = proj->in(0);
2085     if( n0->is_Catch() ) {
2086       n0 = n0->in(0)->in(0);
2087       assert( n0->is_Call(), "expect a call here" );
2088     }
2089     if( n0->is_Call() ) {
2090       if( n0->as_Call()->guaranteed_safepoint() )
2091         return;
2092     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2093       return;
2094     }
2095   }
2096 
2097   // Clear out dead values from the debug info.
2098   kill_dead_locals();
2099 
2100   // Clone the JVM State
2101   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
2102 
2103   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2104   // SafePoint we need our GC state to be safe; i.e. we need all our current
2105   // write barriers (card marks) to not float down after the SafePoint so we
2106   // must read raw memory.  Likewise we need all oop stores to match the card
2107   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2108   // state on a deopt).
2109 
2110   // We do not need to WRITE the memory state after a SafePoint.  The control
2111   // edge will keep card-marks and oop-stores from floating up from below a
2112   // SafePoint and our true dependency added here will keep them from floating
2113   // down below a SafePoint.
2114 
2115   // Clone the current memory state
2116   Node* mem = MergeMemNode::make(C, map()->memory());
2117 
2118   mem = _gvn.transform(mem);
2119 
2120   // Pass control through the safepoint
2121   sfpnt->init_req(TypeFunc::Control  , control());
2122   // Fix edges normally used by a call
2123   sfpnt->init_req(TypeFunc::I_O      , top() );
2124   sfpnt->init_req(TypeFunc::Memory   , mem   );
2125   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2126   sfpnt->init_req(TypeFunc::FramePtr , top() );
2127 
2128   // Create a node for the polling address
2129   if( add_poll_param ) {
2130     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2131     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2132   }
2133 
2134   // Fix up the JVM State edges
2135   add_safepoint_edges(sfpnt);
2136   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2137   set_control(transformed_sfpnt);
2138 
2139   // Provide an edge from root to safepoint.  This makes the safepoint
2140   // appear useful until the parse has completed.
2141   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2142     assert(C->root() != NULL, "Expect parse is still valid");
2143     C->root()->add_prec(transformed_sfpnt);
2144   }
2145 }
2146 
2147 #ifndef PRODUCT
2148 //------------------------show_parse_info--------------------------------------
2149 void Parse::show_parse_info() {
2150   InlineTree* ilt = NULL;
2151   if (C->ilt() != NULL) {
2152     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2153     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2154   }
2155   if (PrintCompilation && Verbose) {
2156     if (depth() == 1) {
2157       if( ilt->count_inlines() ) {
2158         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2159                      ilt->count_inline_bcs());
2160         tty->cr();
2161       }
2162     } else {
2163       if (method()->is_synchronized())         tty->print("s");
2164       if (method()->has_exception_handlers())  tty->print("!");
2165       // Check this is not the final compiled version
2166       if (C->trap_can_recompile()) {
2167         tty->print("-");
2168       } else {
2169         tty->print(" ");
2170       }
2171       method()->print_short_name();
2172       if (is_osr_parse()) {
2173         tty->print(" @ %d", osr_bci());
2174       }
2175       tty->print(" (%d bytes)",method()->code_size());
2176       if (ilt->count_inlines()) {
2177         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2178                    ilt->count_inline_bcs());
2179       }
2180       tty->cr();
2181     }
2182   }
2183   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2184     // Print that we succeeded; suppress this message on the first osr parse.
2185 
2186     if (method()->is_synchronized())         tty->print("s");
2187     if (method()->has_exception_handlers())  tty->print("!");
2188     // Check this is not the final compiled version
2189     if (C->trap_can_recompile() && depth() == 1) {
2190       tty->print("-");
2191     } else {
2192       tty->print(" ");
2193     }
2194     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2195     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2196     method()->print_short_name();
2197     if (is_osr_parse()) {
2198       tty->print(" @ %d", osr_bci());
2199     }
2200     if (ilt->caller_bci() != -1) {
2201       tty->print(" @ %d", ilt->caller_bci());
2202     }
2203     tty->print(" (%d bytes)",method()->code_size());
2204     if (ilt->count_inlines()) {
2205       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2206                  ilt->count_inline_bcs());
2207     }
2208     tty->cr();
2209   }
2210 }
2211 
2212 
2213 //------------------------------dump-------------------------------------------
2214 // Dump information associated with the bytecodes of current _method
2215 void Parse::dump() {
2216   if( method() != NULL ) {
2217     // Iterate over bytecodes
2218     ciBytecodeStream iter(method());
2219     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2220       dump_bci( iter.cur_bci() );
2221       tty->cr();
2222     }
2223   }
2224 }
2225 
2226 // Dump information associated with a byte code index, 'bci'
2227 void Parse::dump_bci(int bci) {
2228   // Output info on merge-points, cloning, and within _jsr..._ret
2229   // NYI
2230   tty->print(" bci:%d", bci);
2231 }
2232 
2233 #endif