1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc
  87 # include "adfiles/ad_ppc.hpp"
  88 #endif
  89 
  90 
  91 // For debugging purposes:
  92 //  To force FullGCALot inside a runtime function, add the following two lines
  93 //
  94 //  Universe::release_fullgc_alot_dummy();
  95 //  MarkSweep::invoke(0, "Debugging");
  96 //
  97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  98 
  99 
 100 
 101 
 102 // Compiled code entry points
 103 address OptoRuntime::_new_instance_Java                           = NULL;
 104 address OptoRuntime::_new_array_Java                              = NULL;
 105 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 106 address OptoRuntime::_multianewarray2_Java                        = NULL;
 107 address OptoRuntime::_multianewarray3_Java                        = NULL;
 108 address OptoRuntime::_multianewarray4_Java                        = NULL;
 109 address OptoRuntime::_multianewarray5_Java                        = NULL;
 110 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 111 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 112 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 113 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 114 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 115 address OptoRuntime::_rethrow_Java                                = NULL;
 116 
 117 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 118 address OptoRuntime::_register_finalizer_Java                     = NULL;
 119 
 120 # ifdef ENABLE_ZAP_DEAD_LOCALS
 121 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 122 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 123 # endif
 124 
 125 ExceptionBlob* OptoRuntime::_exception_blob;
 126 
 127 // This should be called in an assertion at the start of OptoRuntime routines
 128 // which are entered from compiled code (all of them)
 129 #ifdef ASSERT
 130 static bool check_compiled_frame(JavaThread* thread) {
 131   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 132   RegisterMap map(thread, false);
 133   frame caller = thread->last_frame().sender(&map);
 134   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 135   return true;
 136 }
 137 #endif // ASSERT
 138 
 139 
 140 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 141   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 142   if (var == NULL) { return false; }
 143 
 144 bool OptoRuntime::generate(ciEnv* env) {
 145 
 146   generate_exception_blob();
 147 
 148   // Note: tls: Means fetching the return oop out of the thread-local storage
 149   //
 150   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 151   // -------------------------------------------------------------------------------------------------------------------------------
 152   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 153   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 154   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 155   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 156   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 157   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 158   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 159   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 160   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 161   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 162   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 163   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 164 
 165   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 166   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 167 
 168 # ifdef ENABLE_ZAP_DEAD_LOCALS
 169   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 170   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 171 # endif
 172   return true;
 173 }
 174 
 175 #undef gen
 176 
 177 
 178 // Helper method to do generation of RunTimeStub's
 179 address OptoRuntime::generate_stub( ciEnv* env,
 180                                     TypeFunc_generator gen, address C_function,
 181                                     const char *name, int is_fancy_jump,
 182                                     bool pass_tls,
 183                                     bool save_argument_registers,
 184                                     bool return_pc ) {
 185   ResourceMark rm;
 186   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 187   return  C.stub_entry_point();
 188 }
 189 
 190 const char* OptoRuntime::stub_name(address entry) {
 191 #ifndef PRODUCT
 192   CodeBlob* cb = CodeCache::find_blob(entry);
 193   RuntimeStub* rs =(RuntimeStub *)cb;
 194   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 195   return rs->name();
 196 #else
 197   // Fast implementation for product mode (maybe it should be inlined too)
 198   return "runtime stub";
 199 #endif
 200 }
 201 
 202 
 203 //=============================================================================
 204 // Opto compiler runtime routines
 205 //=============================================================================
 206 
 207 
 208 //=============================allocation======================================
 209 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 210 // and try allocation again.
 211 
 212 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 213   // After any safepoint, just before going back to compiled code,
 214   // we inform the GC that we will be doing initializing writes to
 215   // this object in the future without emitting card-marks, so
 216   // GC may take any compensating steps.
 217   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 218 
 219   oop new_obj = thread->vm_result();
 220   if (new_obj == NULL)  return;
 221 
 222   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 223          "compiler must check this first");
 224   // GC may decide to give back a safer copy of new_obj.
 225   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 226   thread->set_vm_result(new_obj);
 227 }
 228 
 229 // object allocation
 230 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 231   JRT_BLOCK;
 232 #ifndef PRODUCT
 233   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 234 #endif
 235   assert(check_compiled_frame(thread), "incorrect caller");
 236 
 237   // These checks are cheap to make and support reflective allocation.
 238   int lh = klass->layout_helper();
 239   if (Klass::layout_helper_needs_slow_path(lh)
 240       || !InstanceKlass::cast(klass)->is_initialized()) {
 241     KlassHandle kh(THREAD, klass);
 242     kh->check_valid_for_instantiation(false, THREAD);
 243     if (!HAS_PENDING_EXCEPTION) {
 244       InstanceKlass::cast(kh())->initialize(THREAD);
 245     }
 246     if (!HAS_PENDING_EXCEPTION) {
 247       klass = kh();
 248     } else {
 249       klass = NULL;
 250     }
 251   }
 252 
 253   if (klass != NULL) {
 254     // Scavenge and allocate an instance.
 255     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 256     thread->set_vm_result(result);
 257 
 258     // Pass oops back through thread local storage.  Our apparent type to Java
 259     // is that we return an oop, but we can block on exit from this routine and
 260     // a GC can trash the oop in C's return register.  The generated stub will
 261     // fetch the oop from TLS after any possible GC.
 262   }
 263 
 264   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 265   JRT_BLOCK_END;
 266 
 267   if (GraphKit::use_ReduceInitialCardMarks()) {
 268     // inform GC that we won't do card marks for initializing writes.
 269     new_store_pre_barrier(thread);
 270   }
 271 JRT_END
 272 
 273 
 274 // array allocation
 275 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 276   JRT_BLOCK;
 277 #ifndef PRODUCT
 278   SharedRuntime::_new_array_ctr++;            // new array requires GC
 279 #endif
 280   assert(check_compiled_frame(thread), "incorrect caller");
 281 
 282   // Scavenge and allocate an instance.
 283   oop result;
 284 
 285   if (array_type->oop_is_typeArray()) {
 286     // The oopFactory likes to work with the element type.
 287     // (We could bypass the oopFactory, since it doesn't add much value.)
 288     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 289     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 290   } else {
 291     // Although the oopFactory likes to work with the elem_type,
 292     // the compiler prefers the array_type, since it must already have
 293     // that latter value in hand for the fast path.
 294     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 295     result = oopFactory::new_objArray(elem_type, len, THREAD);
 296   }
 297 
 298   // Pass oops back through thread local storage.  Our apparent type to Java
 299   // is that we return an oop, but we can block on exit from this routine and
 300   // a GC can trash the oop in C's return register.  The generated stub will
 301   // fetch the oop from TLS after any possible GC.
 302   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 303   thread->set_vm_result(result);
 304   JRT_BLOCK_END;
 305 
 306   if (GraphKit::use_ReduceInitialCardMarks()) {
 307     // inform GC that we won't do card marks for initializing writes.
 308     new_store_pre_barrier(thread);
 309   }
 310 JRT_END
 311 
 312 // array allocation without zeroing
 313 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 314   JRT_BLOCK;
 315 #ifndef PRODUCT
 316   SharedRuntime::_new_array_ctr++;            // new array requires GC
 317 #endif
 318   assert(check_compiled_frame(thread), "incorrect caller");
 319 
 320   // Scavenge and allocate an instance.
 321   oop result;
 322 
 323   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 324   // The oopFactory likes to work with the element type.
 325   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 326   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 327 
 328   // Pass oops back through thread local storage.  Our apparent type to Java
 329   // is that we return an oop, but we can block on exit from this routine and
 330   // a GC can trash the oop in C's return register.  The generated stub will
 331   // fetch the oop from TLS after any possible GC.
 332   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 333   thread->set_vm_result(result);
 334   JRT_BLOCK_END;
 335 
 336   if (GraphKit::use_ReduceInitialCardMarks()) {
 337     // inform GC that we won't do card marks for initializing writes.
 338     new_store_pre_barrier(thread);
 339   }
 340 
 341   oop result = thread->vm_result();
 342   if ((len > 0) && (result != NULL) &&
 343       is_deoptimized_caller_frame(thread)) {
 344     // Zero array here if the caller is deoptimized.
 345     int size = ((typeArrayOop)result)->object_size();
 346     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 347     const size_t hs = arrayOopDesc::header_size(elem_type);
 348     // Align to next 8 bytes to avoid trashing arrays's length.
 349     const size_t aligned_hs = align_object_offset(hs);
 350     HeapWord* obj = (HeapWord*)result;
 351     if (aligned_hs > hs) {
 352       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 353     }
 354     // Optimized zeroing.
 355     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 356   }
 357 
 358 JRT_END
 359 
 360 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 361 
 362 // multianewarray for 2 dimensions
 363 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 364 #ifndef PRODUCT
 365   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 366 #endif
 367   assert(check_compiled_frame(thread), "incorrect caller");
 368   assert(elem_type->is_klass(), "not a class");
 369   jint dims[2];
 370   dims[0] = len1;
 371   dims[1] = len2;
 372   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 373   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 374   thread->set_vm_result(obj);
 375 JRT_END
 376 
 377 // multianewarray for 3 dimensions
 378 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 379 #ifndef PRODUCT
 380   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 381 #endif
 382   assert(check_compiled_frame(thread), "incorrect caller");
 383   assert(elem_type->is_klass(), "not a class");
 384   jint dims[3];
 385   dims[0] = len1;
 386   dims[1] = len2;
 387   dims[2] = len3;
 388   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 389   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 390   thread->set_vm_result(obj);
 391 JRT_END
 392 
 393 // multianewarray for 4 dimensions
 394 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 395 #ifndef PRODUCT
 396   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 397 #endif
 398   assert(check_compiled_frame(thread), "incorrect caller");
 399   assert(elem_type->is_klass(), "not a class");
 400   jint dims[4];
 401   dims[0] = len1;
 402   dims[1] = len2;
 403   dims[2] = len3;
 404   dims[3] = len4;
 405   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 406   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 407   thread->set_vm_result(obj);
 408 JRT_END
 409 
 410 // multianewarray for 5 dimensions
 411 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 412 #ifndef PRODUCT
 413   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 414 #endif
 415   assert(check_compiled_frame(thread), "incorrect caller");
 416   assert(elem_type->is_klass(), "not a class");
 417   jint dims[5];
 418   dims[0] = len1;
 419   dims[1] = len2;
 420   dims[2] = len3;
 421   dims[3] = len4;
 422   dims[4] = len5;
 423   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 424   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 425   thread->set_vm_result(obj);
 426 JRT_END
 427 
 428 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 429   assert(check_compiled_frame(thread), "incorrect caller");
 430   assert(elem_type->is_klass(), "not a class");
 431   assert(oop(dims)->is_typeArray(), "not an array");
 432 
 433   ResourceMark rm;
 434   jint len = dims->length();
 435   assert(len > 0, "Dimensions array should contain data");
 436   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 437   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 438   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 439 
 440   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 441   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 442   thread->set_vm_result(obj);
 443 JRT_END
 444 
 445 
 446 const TypeFunc *OptoRuntime::new_instance_Type() {
 447   // create input type (domain)
 448   const Type **fields = TypeTuple::fields(1);
 449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 450   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 451 
 452   // create result type (range)
 453   fields = TypeTuple::fields(1);
 454   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 455 
 456   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 457 
 458   return TypeFunc::make(domain, range);
 459 }
 460 
 461 
 462 const TypeFunc *OptoRuntime::athrow_Type() {
 463   // create input type (domain)
 464   const Type **fields = TypeTuple::fields(1);
 465   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 466   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 467 
 468   // create result type (range)
 469   fields = TypeTuple::fields(0);
 470 
 471   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 472 
 473   return TypeFunc::make(domain, range);
 474 }
 475 
 476 
 477 const TypeFunc *OptoRuntime::new_array_Type() {
 478   // create input type (domain)
 479   const Type **fields = TypeTuple::fields(2);
 480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 481   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 483 
 484   // create result type (range)
 485   fields = TypeTuple::fields(1);
 486   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 487 
 488   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 489 
 490   return TypeFunc::make(domain, range);
 491 }
 492 
 493 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 494   // create input type (domain)
 495   const int nargs = ndim + 1;
 496   const Type **fields = TypeTuple::fields(nargs);
 497   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 498   for( int i = 1; i < nargs; i++ )
 499     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 500   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 501 
 502   // create result type (range)
 503   fields = TypeTuple::fields(1);
 504   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 505   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 506 
 507   return TypeFunc::make(domain, range);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 511   return multianewarray_Type(2);
 512 }
 513 
 514 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 515   return multianewarray_Type(3);
 516 }
 517 
 518 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 519   return multianewarray_Type(4);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 523   return multianewarray_Type(5);
 524 }
 525 
 526 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 527   // create input type (domain)
 528   const Type **fields = TypeTuple::fields(2);
 529   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 530   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 531   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 532 
 533   // create result type (range)
 534   fields = TypeTuple::fields(1);
 535   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 537 
 538   return TypeFunc::make(domain, range);
 539 }
 540 
 541 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 542   const Type **fields = TypeTuple::fields(2);
 543   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 544   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 546 
 547   // create result type (range)
 548   fields = TypeTuple::fields(0);
 549   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 550 
 551   return TypeFunc::make(domain, range);
 552 }
 553 
 554 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 555 
 556   const Type **fields = TypeTuple::fields(2);
 557   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 558   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 559   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 560 
 561   // create result type (range)
 562   fields = TypeTuple::fields(0);
 563   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 564 
 565   return TypeFunc::make(domain, range);
 566 }
 567 
 568 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 569   // create input type (domain)
 570   const Type **fields = TypeTuple::fields(1);
 571   // Symbol* name of class to be loaded
 572   fields[TypeFunc::Parms+0] = TypeInt::INT;
 573   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 574 
 575   // create result type (range)
 576   fields = TypeTuple::fields(0);
 577   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 578 
 579   return TypeFunc::make(domain, range);
 580 }
 581 
 582 # ifdef ENABLE_ZAP_DEAD_LOCALS
 583 // Type used for stub generation for zap_dead_locals.
 584 // No inputs or outputs
 585 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 586   // create input type (domain)
 587   const Type **fields = TypeTuple::fields(0);
 588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 589 
 590   // create result type (range)
 591   fields = TypeTuple::fields(0);
 592   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 593 
 594   return TypeFunc::make(domain,range);
 595 }
 596 # endif
 597 
 598 
 599 //-----------------------------------------------------------------------------
 600 // Monitor Handling
 601 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 602   // create input type (domain)
 603   const Type **fields = TypeTuple::fields(2);
 604   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 605   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 606   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 607 
 608   // create result type (range)
 609   fields = TypeTuple::fields(0);
 610 
 611   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 612 
 613   return TypeFunc::make(domain,range);
 614 }
 615 
 616 
 617 //-----------------------------------------------------------------------------
 618 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 619   // create input type (domain)
 620   const Type **fields = TypeTuple::fields(2);
 621   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 622   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 623   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 624 
 625   // create result type (range)
 626   fields = TypeTuple::fields(0);
 627 
 628   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 629 
 630   return TypeFunc::make(domain,range);
 631 }
 632 
 633 const TypeFunc* OptoRuntime::flush_windows_Type() {
 634   // create input type (domain)
 635   const Type** fields = TypeTuple::fields(1);
 636   fields[TypeFunc::Parms+0] = NULL; // void
 637   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 638 
 639   // create result type
 640   fields = TypeTuple::fields(1);
 641   fields[TypeFunc::Parms+0] = NULL; // void
 642   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 643 
 644   return TypeFunc::make(domain, range);
 645 }
 646 
 647 const TypeFunc* OptoRuntime::l2f_Type() {
 648   // create input type (domain)
 649   const Type **fields = TypeTuple::fields(2);
 650   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 651   fields[TypeFunc::Parms+1] = Type::HALF;
 652   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 653 
 654   // create result type (range)
 655   fields = TypeTuple::fields(1);
 656   fields[TypeFunc::Parms+0] = Type::FLOAT;
 657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 658 
 659   return TypeFunc::make(domain, range);
 660 }
 661 
 662 const TypeFunc* OptoRuntime::modf_Type() {
 663   const Type **fields = TypeTuple::fields(2);
 664   fields[TypeFunc::Parms+0] = Type::FLOAT;
 665   fields[TypeFunc::Parms+1] = Type::FLOAT;
 666   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 667 
 668   // create result type (range)
 669   fields = TypeTuple::fields(1);
 670   fields[TypeFunc::Parms+0] = Type::FLOAT;
 671 
 672   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 673 
 674   return TypeFunc::make(domain, range);
 675 }
 676 
 677 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 678   // create input type (domain)
 679   const Type **fields = TypeTuple::fields(2);
 680   // Symbol* name of class to be loaded
 681   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 682   fields[TypeFunc::Parms+1] = Type::HALF;
 683   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 684 
 685   // create result type (range)
 686   fields = TypeTuple::fields(2);
 687   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 688   fields[TypeFunc::Parms+1] = Type::HALF;
 689   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 690 
 691   return TypeFunc::make(domain, range);
 692 }
 693 
 694 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 695   const Type **fields = TypeTuple::fields(4);
 696   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 697   fields[TypeFunc::Parms+1] = Type::HALF;
 698   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 699   fields[TypeFunc::Parms+3] = Type::HALF;
 700   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 701 
 702   // create result type (range)
 703   fields = TypeTuple::fields(2);
 704   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 705   fields[TypeFunc::Parms+1] = Type::HALF;
 706   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 707 
 708   return TypeFunc::make(domain, range);
 709 }
 710 
 711 //-------------- currentTimeMillis, currentTimeNanos, etc
 712 
 713 const TypeFunc* OptoRuntime::void_long_Type() {
 714   // create input type (domain)
 715   const Type **fields = TypeTuple::fields(0);
 716   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 717 
 718   // create result type (range)
 719   fields = TypeTuple::fields(2);
 720   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 721   fields[TypeFunc::Parms+1] = Type::HALF;
 722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 723 
 724   return TypeFunc::make(domain, range);
 725 }
 726 
 727 // arraycopy stub variations:
 728 enum ArrayCopyType {
 729   ac_fast,                      // void(ptr, ptr, size_t)
 730   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 731   ac_slow,                      // void(ptr, int, ptr, int, int)
 732   ac_generic                    //  int(ptr, int, ptr, int, int)
 733 };
 734 
 735 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 736   // create input type (domain)
 737   int num_args      = (act == ac_fast ? 3 : 5);
 738   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 739   int argcnt = num_args;
 740   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 741   const Type** fields = TypeTuple::fields(argcnt);
 742   int argp = TypeFunc::Parms;
 743   fields[argp++] = TypePtr::NOTNULL;    // src
 744   if (num_size_args == 0) {
 745     fields[argp++] = TypeInt::INT;      // src_pos
 746   }
 747   fields[argp++] = TypePtr::NOTNULL;    // dest
 748   if (num_size_args == 0) {
 749     fields[argp++] = TypeInt::INT;      // dest_pos
 750     fields[argp++] = TypeInt::INT;      // length
 751   }
 752   while (num_size_args-- > 0) {
 753     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 754     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 755   }
 756   if (act == ac_checkcast) {
 757     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 758   }
 759   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 760   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 761 
 762   // create result type if needed
 763   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 764   fields = TypeTuple::fields(1);
 765   if (retcnt == 0)
 766     fields[TypeFunc::Parms+0] = NULL; // void
 767   else
 768     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 769   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 770   return TypeFunc::make(domain, range);
 771 }
 772 
 773 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 774   // This signature is simple:  Two base pointers and a size_t.
 775   return make_arraycopy_Type(ac_fast);
 776 }
 777 
 778 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 779   // An extension of fast_arraycopy_Type which adds type checking.
 780   return make_arraycopy_Type(ac_checkcast);
 781 }
 782 
 783 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 784   // This signature is exactly the same as System.arraycopy.
 785   // There are no intptr_t (int/long) arguments.
 786   return make_arraycopy_Type(ac_slow);
 787 }
 788 
 789 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 790   // This signature is like System.arraycopy, except that it returns status.
 791   return make_arraycopy_Type(ac_generic);
 792 }
 793 
 794 
 795 const TypeFunc* OptoRuntime::array_fill_Type() {
 796   // create input type (domain): pointer, int, size_t
 797   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 798   int argp = TypeFunc::Parms;
 799   fields[argp++] = TypePtr::NOTNULL;
 800   fields[argp++] = TypeInt::INT;
 801   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 802   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 803   const TypeTuple *domain = TypeTuple::make(argp, fields);
 804 
 805   // create result type
 806   fields = TypeTuple::fields(1);
 807   fields[TypeFunc::Parms+0] = NULL; // void
 808   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 809 
 810   return TypeFunc::make(domain, range);
 811 }
 812 
 813 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 814 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 815   // create input type (domain)
 816   int num_args      = 3;
 817   if (Matcher::pass_original_key_for_aes()) {
 818     num_args = 4;
 819   }
 820   int argcnt = num_args;
 821   const Type** fields = TypeTuple::fields(argcnt);
 822   int argp = TypeFunc::Parms;
 823   fields[argp++] = TypePtr::NOTNULL;    // src
 824   fields[argp++] = TypePtr::NOTNULL;    // dest
 825   fields[argp++] = TypePtr::NOTNULL;    // k array
 826   if (Matcher::pass_original_key_for_aes()) {
 827     fields[argp++] = TypePtr::NOTNULL;    // original k array
 828   }
 829   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 830   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 831 
 832   // no result type needed
 833   fields = TypeTuple::fields(1);
 834   fields[TypeFunc::Parms+0] = NULL; // void
 835   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 836   return TypeFunc::make(domain, range);
 837 }
 838 
 839 /**
 840  * int updateBytesCRC32(int crc, byte* b, int len)
 841  */
 842 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 843   // create input type (domain)
 844   int num_args      = 3;
 845   int argcnt = num_args;
 846   const Type** fields = TypeTuple::fields(argcnt);
 847   int argp = TypeFunc::Parms;
 848   fields[argp++] = TypeInt::INT;        // crc
 849   fields[argp++] = TypePtr::NOTNULL;    // src
 850   fields[argp++] = TypeInt::INT;        // len
 851   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 852   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 853 
 854   // result type needed
 855   fields = TypeTuple::fields(1);
 856   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 857   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 858   return TypeFunc::make(domain, range);
 859 }
 860 
 861 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
 862 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 863   // create input type (domain)
 864   int num_args      = 5;
 865   if (Matcher::pass_original_key_for_aes()) {
 866     num_args = 6;
 867   }
 868   int argcnt = num_args;
 869   const Type** fields = TypeTuple::fields(argcnt);
 870   int argp = TypeFunc::Parms;
 871   fields[argp++] = TypePtr::NOTNULL;    // src
 872   fields[argp++] = TypePtr::NOTNULL;    // dest
 873   fields[argp++] = TypePtr::NOTNULL;    // k array
 874   fields[argp++] = TypePtr::NOTNULL;    // r array
 875   fields[argp++] = TypeInt::INT;        // src len
 876   if (Matcher::pass_original_key_for_aes()) {
 877     fields[argp++] = TypePtr::NOTNULL;    // original k array
 878   }
 879   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 880   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 881 
 882   // returning cipher len (int)
 883   fields = TypeTuple::fields(1);
 884   fields[TypeFunc::Parms+0] = TypeInt::INT;
 885   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 886   return TypeFunc::make(domain, range);
 887 }
 888 
 889 //------------- Interpreter state access for on stack replacement
 890 const TypeFunc* OptoRuntime::osr_end_Type() {
 891   // create input type (domain)
 892   const Type **fields = TypeTuple::fields(1);
 893   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 894   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 895 
 896   // create result type
 897   fields = TypeTuple::fields(1);
 898   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 899   fields[TypeFunc::Parms+0] = NULL; // void
 900   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 901   return TypeFunc::make(domain, range);
 902 }
 903 
 904 //-------------- methodData update helpers
 905 
 906 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 907   // create input type (domain)
 908   const Type **fields = TypeTuple::fields(2);
 909   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 910   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 911   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 912 
 913   // create result type
 914   fields = TypeTuple::fields(1);
 915   fields[TypeFunc::Parms+0] = NULL; // void
 916   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 917   return TypeFunc::make(domain,range);
 918 }
 919 
 920 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 921   if (receiver == NULL) return;
 922   Klass* receiver_klass = receiver->klass();
 923 
 924   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 925   int empty_row = -1;           // free row, if any is encountered
 926 
 927   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 928   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 929     // if (vc->receiver(row) == receiver_klass)
 930     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 931     intptr_t row_recv = *(mdp + receiver_off);
 932     if (row_recv == (intptr_t) receiver_klass) {
 933       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 934       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 935       *(mdp + count_off) += DataLayout::counter_increment;
 936       return;
 937     } else if (row_recv == 0) {
 938       // else if (vc->receiver(row) == NULL)
 939       empty_row = (int) row;
 940     }
 941   }
 942 
 943   if (empty_row != -1) {
 944     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
 945     // vc->set_receiver(empty_row, receiver_klass);
 946     *(mdp + receiver_off) = (intptr_t) receiver_klass;
 947     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
 948     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
 949     *(mdp + count_off) = DataLayout::counter_increment;
 950   } else {
 951     // Receiver did not match any saved receiver and there is no empty row for it.
 952     // Increment total counter to indicate polymorphic case.
 953     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
 954     *count_p += DataLayout::counter_increment;
 955   }
 956 JRT_END
 957 
 958 //-------------------------------------------------------------------------------------
 959 // register policy
 960 
 961 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
 962   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
 963   switch (register_save_policy[reg]) {
 964     case 'C': return false; //SOC
 965     case 'E': return true ; //SOE
 966     case 'N': return false; //NS
 967     case 'A': return false; //AS
 968   }
 969   ShouldNotReachHere();
 970   return false;
 971 }
 972 
 973 //-----------------------------------------------------------------------
 974 // Exceptions
 975 //
 976 
 977 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
 978 
 979 // The method is an entry that is always called by a C++ method not
 980 // directly from compiled code. Compiled code will call the C++ method following.
 981 // We can't allow async exception to be installed during  exception processing.
 982 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
 983 
 984   // Do not confuse exception_oop with pending_exception. The exception_oop
 985   // is only used to pass arguments into the method. Not for general
 986   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
 987   // the runtime stubs checks this on exit.
 988   assert(thread->exception_oop() != NULL, "exception oop is found");
 989   address handler_address = NULL;
 990 
 991   Handle exception(thread, thread->exception_oop());
 992   address pc = thread->exception_pc();
 993 
 994   // Clear out the exception oop and pc since looking up an
 995   // exception handler can cause class loading, which might throw an
 996   // exception and those fields are expected to be clear during
 997   // normal bytecode execution.
 998   thread->clear_exception_oop_and_pc();
 999 
1000   if (TraceExceptions) {
1001     trace_exception(exception(), pc, "");
1002   }
1003 
1004   // for AbortVMOnException flag
1005   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1006 
1007 #ifdef ASSERT
1008   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1009     // should throw an exception here
1010     ShouldNotReachHere();
1011   }
1012 #endif
1013 
1014   // new exception handling: this method is entered only from adapters
1015   // exceptions from compiled java methods are handled in compiled code
1016   // using rethrow node
1017 
1018   nm = CodeCache::find_nmethod(pc);
1019   assert(nm != NULL, "No NMethod found");
1020   if (nm->is_native_method()) {
1021     fatal("Native method should not have path to exception handling");
1022   } else {
1023     // we are switching to old paradigm: search for exception handler in caller_frame
1024     // instead in exception handler of caller_frame.sender()
1025 
1026     if (JvmtiExport::can_post_on_exceptions()) {
1027       // "Full-speed catching" is not necessary here,
1028       // since we're notifying the VM on every catch.
1029       // Force deoptimization and the rest of the lookup
1030       // will be fine.
1031       deoptimize_caller_frame(thread);
1032     }
1033 
1034     // Check the stack guard pages.  If enabled, look for handler in this frame;
1035     // otherwise, forcibly unwind the frame.
1036     //
1037     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1038     bool force_unwind = !thread->reguard_stack();
1039     bool deopting = false;
1040     if (nm->is_deopt_pc(pc)) {
1041       deopting = true;
1042       RegisterMap map(thread, false);
1043       frame deoptee = thread->last_frame().sender(&map);
1044       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1045       // Adjust the pc back to the original throwing pc
1046       pc = deoptee.pc();
1047     }
1048 
1049     // If we are forcing an unwind because of stack overflow then deopt is
1050     // irrelevant sice we are throwing the frame away anyway.
1051 
1052     if (deopting && !force_unwind) {
1053       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1054     } else {
1055 
1056       handler_address =
1057         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1058 
1059       if (handler_address == NULL) {
1060         Handle original_exception(thread, exception());
1061         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1062         assert (handler_address != NULL, "must have compiled handler");
1063         // Update the exception cache only when the unwind was not forced
1064         // and there didn't happen another exception during the computation of the
1065         // compiled exception handler.
1066         if (!force_unwind && original_exception() == exception()) {
1067           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1068         }
1069       } else {
1070         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1071       }
1072     }
1073 
1074     thread->set_exception_pc(pc);
1075     thread->set_exception_handler_pc(handler_address);
1076 
1077     // Check if the exception PC is a MethodHandle call site.
1078     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1079   }
1080 
1081   // Restore correct return pc.  Was saved above.
1082   thread->set_exception_oop(exception());
1083   return handler_address;
1084 
1085 JRT_END
1086 
1087 // We are entering here from exception_blob
1088 // If there is a compiled exception handler in this method, we will continue there;
1089 // otherwise we will unwind the stack and continue at the caller of top frame method
1090 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1091 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1092 // we looked up the handler for has been deoptimized in the meantime. If it has been
1093 // we must not use the handler and instread return the deopt blob.
1094 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1095 //
1096 // We are in Java not VM and in debug mode we have a NoHandleMark
1097 //
1098 #ifndef PRODUCT
1099   SharedRuntime::_find_handler_ctr++;          // find exception handler
1100 #endif
1101   debug_only(NoHandleMark __hm;)
1102   nmethod* nm = NULL;
1103   address handler_address = NULL;
1104   {
1105     // Enter the VM
1106 
1107     ResetNoHandleMark rnhm;
1108     handler_address = handle_exception_C_helper(thread, nm);
1109   }
1110 
1111   // Back in java: Use no oops, DON'T safepoint
1112 
1113   // Now check to see if the handler we are returning is in a now
1114   // deoptimized frame
1115 
1116   if (nm != NULL) {
1117     RegisterMap map(thread, false);
1118     frame caller = thread->last_frame().sender(&map);
1119 #ifdef ASSERT
1120     assert(caller.is_compiled_frame(), "must be");
1121 #endif // ASSERT
1122     if (caller.is_deoptimized_frame()) {
1123       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1124     }
1125   }
1126   return handler_address;
1127 }
1128 
1129 //------------------------------rethrow----------------------------------------
1130 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1131 // is either throwing or rethrowing an exception.  The callee-save registers
1132 // have been restored, synchronized objects have been unlocked and the callee
1133 // stack frame has been removed.  The return address was passed in.
1134 // Exception oop is passed as the 1st argument.  This routine is then called
1135 // from the stub.  On exit, we know where to jump in the caller's code.
1136 // After this C code exits, the stub will pop his frame and end in a jump
1137 // (instead of a return).  We enter the caller's default handler.
1138 //
1139 // This must be JRT_LEAF:
1140 //     - caller will not change its state as we cannot block on exit,
1141 //       therefore raw_exception_handler_for_return_address is all it takes
1142 //       to handle deoptimized blobs
1143 //
1144 // However, there needs to be a safepoint check in the middle!  So compiled
1145 // safepoints are completely watertight.
1146 //
1147 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1148 //
1149 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1150 //
1151 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1152 #ifndef PRODUCT
1153   SharedRuntime::_rethrow_ctr++;               // count rethrows
1154 #endif
1155   assert (exception != NULL, "should have thrown a NULLPointerException");
1156 #ifdef ASSERT
1157   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1158     // should throw an exception here
1159     ShouldNotReachHere();
1160   }
1161 #endif
1162 
1163   thread->set_vm_result(exception);
1164   // Frame not compiled (handles deoptimization blob)
1165   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1166 }
1167 
1168 
1169 const TypeFunc *OptoRuntime::rethrow_Type() {
1170   // create input type (domain)
1171   const Type **fields = TypeTuple::fields(1);
1172   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1173   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1174 
1175   // create result type (range)
1176   fields = TypeTuple::fields(1);
1177   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1178   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1179 
1180   return TypeFunc::make(domain, range);
1181 }
1182 
1183 
1184 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1185   // Deoptimize the caller before continuing, as the compiled
1186   // exception handler table may not be valid.
1187   if (!StressCompiledExceptionHandlers && doit) {
1188     deoptimize_caller_frame(thread);
1189   }
1190 }
1191 
1192 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1193   // Called from within the owner thread, so no need for safepoint
1194   RegisterMap reg_map(thread);
1195   frame stub_frame = thread->last_frame();
1196   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1197   frame caller_frame = stub_frame.sender(&reg_map);
1198 
1199   // Deoptimize the caller frame.
1200   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1201 }
1202 
1203 
1204 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1205   // Called from within the owner thread, so no need for safepoint
1206   RegisterMap reg_map(thread);
1207   frame stub_frame = thread->last_frame();
1208   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1209   frame caller_frame = stub_frame.sender(&reg_map);
1210   return caller_frame.is_deoptimized_frame();
1211 }
1212 
1213 
1214 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1215   // create input type (domain)
1216   const Type **fields = TypeTuple::fields(1);
1217   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1218   // // The JavaThread* is passed to each routine as the last argument
1219   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1220   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1221 
1222   // create result type (range)
1223   fields = TypeTuple::fields(0);
1224 
1225   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1226 
1227   return TypeFunc::make(domain,range);
1228 }
1229 
1230 
1231 //-----------------------------------------------------------------------------
1232 // Dtrace support.  entry and exit probes have the same signature
1233 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1234   // create input type (domain)
1235   const Type **fields = TypeTuple::fields(2);
1236   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1237   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1238   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1239 
1240   // create result type (range)
1241   fields = TypeTuple::fields(0);
1242 
1243   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1244 
1245   return TypeFunc::make(domain,range);
1246 }
1247 
1248 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1249   // create input type (domain)
1250   const Type **fields = TypeTuple::fields(2);
1251   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1252   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1253 
1254   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1255 
1256   // create result type (range)
1257   fields = TypeTuple::fields(0);
1258 
1259   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1260 
1261   return TypeFunc::make(domain,range);
1262 }
1263 
1264 
1265 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1266   assert(obj->is_oop(), "must be a valid oop");
1267   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1268   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1269 JRT_END
1270 
1271 //-----------------------------------------------------------------------------
1272 
1273 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1274 
1275 //
1276 // dump the collected NamedCounters.
1277 //
1278 void OptoRuntime::print_named_counters() {
1279   int total_lock_count = 0;
1280   int eliminated_lock_count = 0;
1281 
1282   NamedCounter* c = _named_counters;
1283   while (c) {
1284     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1285       int count = c->count();
1286       if (count > 0) {
1287         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1288         if (Verbose) {
1289           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1290         }
1291         total_lock_count += count;
1292         if (eliminated) {
1293           eliminated_lock_count += count;
1294         }
1295       }
1296     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1297       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1298       if (blc->nonzero()) {
1299         tty->print_cr("%s", c->name());
1300         blc->print_on(tty);
1301       }
1302     }
1303     c = c->next();
1304   }
1305   if (total_lock_count > 0) {
1306     tty->print_cr("dynamic locks: %d", total_lock_count);
1307     if (eliminated_lock_count) {
1308       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1309                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1310     }
1311   }
1312 }
1313 
1314 //
1315 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1316 //  name which consists of method@line for the inlining tree.
1317 //
1318 
1319 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1320   int max_depth = youngest_jvms->depth();
1321 
1322   // Visit scopes from youngest to oldest.
1323   bool first = true;
1324   stringStream st;
1325   for (int depth = max_depth; depth >= 1; depth--) {
1326     JVMState* jvms = youngest_jvms->of_depth(depth);
1327     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1328     if (!first) {
1329       st.print(" ");
1330     } else {
1331       first = false;
1332     }
1333     int bci = jvms->bci();
1334     if (bci < 0) bci = 0;
1335     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1336     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1337   }
1338   NamedCounter* c;
1339   if (tag == NamedCounter::BiasedLockingCounter) {
1340     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1341   } else {
1342     c = new NamedCounter(strdup(st.as_string()), tag);
1343   }
1344 
1345   // atomically add the new counter to the head of the list.  We only
1346   // add counters so this is safe.
1347   NamedCounter* head;
1348   do {
1349     head = _named_counters;
1350     c->set_next(head);
1351   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1352   return c;
1353 }
1354 
1355 //-----------------------------------------------------------------------------
1356 // Non-product code
1357 #ifndef PRODUCT
1358 
1359 int trace_exception_counter = 0;
1360 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1361   ttyLocker ttyl;
1362   trace_exception_counter++;
1363   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1364   exception_oop->print_value();
1365   tty->print(" in ");
1366   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1367   if (blob->is_nmethod()) {
1368     nmethod* nm = blob->as_nmethod_or_null();
1369     nm->method()->print_value();
1370   } else if (blob->is_runtime_stub()) {
1371     tty->print("<runtime-stub>");
1372   } else {
1373     tty->print("<unknown>");
1374   }
1375   tty->print(" at " INTPTR_FORMAT,  exception_pc);
1376   tty->print_cr("]");
1377 }
1378 
1379 #endif  // PRODUCT
1380 
1381 
1382 # ifdef ENABLE_ZAP_DEAD_LOCALS
1383 // Called from call sites in compiled code with oop maps (actually safepoints)
1384 // Zaps dead locals in first java frame.
1385 // Is entry because may need to lock to generate oop maps
1386 // Currently, only used for compiler frames, but someday may be used
1387 // for interpreter frames, too.
1388 
1389 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1390 
1391 // avoid pointers to member funcs with these helpers
1392 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1393 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1394 
1395 
1396 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1397                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1398   assert(JavaThread::current() == thread, "is this needed?");
1399 
1400   if ( !ZapDeadCompiledLocals )  return;
1401 
1402   bool skip = false;
1403 
1404        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1405   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1406   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1407     warning("starting zapping after skipping");
1408 
1409        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1410   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1411   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1412     warning("about to zap last zap");
1413 
1414   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1415 
1416   if ( skip )  return;
1417 
1418   // find java frame and zap it
1419 
1420   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1421     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1422       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1423       return;
1424     }
1425   }
1426   warning("no frame found to zap in zap_dead_Java_locals_C");
1427 }
1428 
1429 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1430   zap_dead_java_or_native_locals(thread, is_java_frame);
1431 JRT_END
1432 
1433 // The following does not work because for one thing, the
1434 // thread state is wrong; it expects java, but it is native.
1435 // Also, the invariants in a native stub are different and
1436 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1437 // in there.
1438 // So for now, we do not zap in native stubs.
1439 
1440 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1441   zap_dead_java_or_native_locals(thread, is_native_frame);
1442 JRT_END
1443 
1444 # endif