1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifndef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  69 #else
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #endif // IA32 || AMD64
  75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  93 };
  94 
  95 // Map ideal registers (machine types) to ideal types
  96 const Type *Type::mreg2type[_last_machine_leaf];
  97 
  98 // Map basic types to canonical Type* pointers.
  99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 100 
 101 // Map basic types to constant-zero Types.
 102 const Type* Type::            _zero_type[T_CONFLICT+1];
 103 
 104 // Map basic types to array-body alias types.
 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 106 
 107 //=============================================================================
 108 // Convenience common pre-built types.
 109 const Type *Type::ABIO;         // State-of-machine only
 110 const Type *Type::BOTTOM;       // All values
 111 const Type *Type::CONTROL;      // Control only
 112 const Type *Type::DOUBLE;       // All doubles
 113 const Type *Type::FLOAT;        // All floats
 114 const Type *Type::HALF;         // Placeholder half of doublewide type
 115 const Type *Type::MEMORY;       // Abstract store only
 116 const Type *Type::RETURN_ADDRESS;
 117 const Type *Type::TOP;          // No values in set
 118 
 119 //------------------------------get_const_type---------------------------
 120 const Type* Type::get_const_type(ciType* type) {
 121   if (type == NULL) {
 122     return NULL;
 123   } else if (type->is_primitive_type()) {
 124     return get_const_basic_type(type->basic_type());
 125   } else {
 126     return TypeOopPtr::make_from_klass(type->as_klass());
 127   }
 128 }
 129 
 130 //---------------------------array_element_basic_type---------------------------------
 131 // Mapping to the array element's basic type.
 132 BasicType Type::array_element_basic_type() const {
 133   BasicType bt = basic_type();
 134   if (bt == T_INT) {
 135     if (this == TypeInt::INT)   return T_INT;
 136     if (this == TypeInt::CHAR)  return T_CHAR;
 137     if (this == TypeInt::BYTE)  return T_BYTE;
 138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 139     if (this == TypeInt::SHORT) return T_SHORT;
 140     return T_VOID;
 141   }
 142   return bt;
 143 }
 144 
 145 //---------------------------get_typeflow_type---------------------------------
 146 // Import a type produced by ciTypeFlow.
 147 const Type* Type::get_typeflow_type(ciType* type) {
 148   switch (type->basic_type()) {
 149 
 150   case ciTypeFlow::StateVector::T_BOTTOM:
 151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 152     return Type::BOTTOM;
 153 
 154   case ciTypeFlow::StateVector::T_TOP:
 155     assert(type == ciTypeFlow::StateVector::top_type(), "");
 156     return Type::TOP;
 157 
 158   case ciTypeFlow::StateVector::T_NULL:
 159     assert(type == ciTypeFlow::StateVector::null_type(), "");
 160     return TypePtr::NULL_PTR;
 161 
 162   case ciTypeFlow::StateVector::T_LONG2:
 163     // The ciTypeFlow pass pushes a long, then the half.
 164     // We do the same.
 165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 166     return TypeInt::TOP;
 167 
 168   case ciTypeFlow::StateVector::T_DOUBLE2:
 169     // The ciTypeFlow pass pushes double, then the half.
 170     // Our convention is the same.
 171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 172     return Type::TOP;
 173 
 174   case T_ADDRESS:
 175     assert(type->is_return_address(), "");
 176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 177 
 178   default:
 179     // make sure we did not mix up the cases:
 180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 181     assert(type != ciTypeFlow::StateVector::top_type(), "");
 182     assert(type != ciTypeFlow::StateVector::null_type(), "");
 183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 185     assert(!type->is_return_address(), "");
 186 
 187     return Type::get_const_type(type);
 188   }
 189 }
 190 
 191 
 192 //-----------------------make_from_constant------------------------------------
 193 const Type* Type::make_from_constant(ciConstant constant,
 194                                      bool require_constant, bool is_autobox_cache) {
 195   switch (constant.basic_type()) {
 196   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 197   case T_CHAR:     return TypeInt::make(constant.as_char());
 198   case T_BYTE:     return TypeInt::make(constant.as_byte());
 199   case T_SHORT:    return TypeInt::make(constant.as_short());
 200   case T_INT:      return TypeInt::make(constant.as_int());
 201   case T_LONG:     return TypeLong::make(constant.as_long());
 202   case T_FLOAT:    return TypeF::make(constant.as_float());
 203   case T_DOUBLE:   return TypeD::make(constant.as_double());
 204   case T_ARRAY:
 205   case T_OBJECT:
 206     {
 207       // cases:
 208       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 209       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 210       // An oop is not scavengable if it is in the perm gen.
 211       ciObject* oop_constant = constant.as_object();
 212       if (oop_constant->is_null_object()) {
 213         return Type::get_zero_type(T_OBJECT);
 214       } else if (require_constant || oop_constant->should_be_constant()) {
 215         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 216       }
 217     }
 218   }
 219   // Fall through to failure
 220   return NULL;
 221 }
 222 
 223 
 224 //------------------------------make-------------------------------------------
 225 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 226 // and look for an existing copy in the type dictionary.
 227 const Type *Type::make( enum TYPES t ) {
 228   return (new Type(t))->hashcons();
 229 }
 230 
 231 //------------------------------cmp--------------------------------------------
 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 233   if( t1->_base != t2->_base )
 234     return 1;                   // Missed badly
 235   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 236   return !t1->eq(t2);           // Return ZERO if equal
 237 }
 238 
 239 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 240   if (!include_speculative) {
 241     return remove_speculative();
 242   }
 243   return this;
 244 }
 245 
 246 //------------------------------hash-------------------------------------------
 247 int Type::uhash( const Type *const t ) {
 248   return t->hash();
 249 }
 250 
 251 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 252 
 253 //--------------------------Initialize_shared----------------------------------
 254 void Type::Initialize_shared(Compile* current) {
 255   // This method does not need to be locked because the first system
 256   // compilations (stub compilations) occur serially.  If they are
 257   // changed to proceed in parallel, then this section will need
 258   // locking.
 259 
 260   Arena* save = current->type_arena();
 261   Arena* shared_type_arena = new (mtCompiler)Arena();
 262 
 263   current->set_type_arena(shared_type_arena);
 264   _shared_type_dict =
 265     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 266                                   shared_type_arena, 128 );
 267   current->set_type_dict(_shared_type_dict);
 268 
 269   // Make shared pre-built types.
 270   CONTROL = make(Control);      // Control only
 271   TOP     = make(Top);          // No values in set
 272   MEMORY  = make(Memory);       // Abstract store only
 273   ABIO    = make(Abio);         // State-of-machine only
 274   RETURN_ADDRESS=make(Return_Address);
 275   FLOAT   = make(FloatBot);     // All floats
 276   DOUBLE  = make(DoubleBot);    // All doubles
 277   BOTTOM  = make(Bottom);       // Everything
 278   HALF    = make(Half);         // Placeholder half of doublewide type
 279 
 280   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 281   TypeF::ONE  = TypeF::make(1.0); // Float 1
 282 
 283   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 284   TypeD::ONE  = TypeD::make(1.0); // Double 1
 285 
 286   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 287   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 288   TypeInt::ONE     = TypeInt::make( 1);  //  1
 289   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 290   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 291   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 292   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 293   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 294   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 295   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 296   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 297   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 298   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 299   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 300   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 301   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 302   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 303   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 304   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 305   // CmpL is overloaded both as the bytecode computation returning
 306   // a trinary (-1,0,+1) integer result AND as an efficient long
 307   // compare returning optimizer ideal-type flags.
 308   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 309   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 310   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 311   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 312   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 313 
 314   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 315   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 316   TypeLong::ONE     = TypeLong::make( 1);        //  1
 317   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 318   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 319   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 320   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 321   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 322 
 323   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 324   fboth[0] = Type::CONTROL;
 325   fboth[1] = Type::CONTROL;
 326   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 327 
 328   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 329   ffalse[0] = Type::CONTROL;
 330   ffalse[1] = Type::TOP;
 331   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 332 
 333   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 334   fneither[0] = Type::TOP;
 335   fneither[1] = Type::TOP;
 336   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 337 
 338   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 339   ftrue[0] = Type::TOP;
 340   ftrue[1] = Type::CONTROL;
 341   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 342 
 343   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 344   floop[0] = Type::CONTROL;
 345   floop[1] = TypeInt::INT;
 346   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 347 
 348   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 349   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 350   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 351 
 352   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 353   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 354 
 355   const Type **fmembar = TypeTuple::fields(0);
 356   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 357 
 358   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 359   fsc[0] = TypeInt::CC;
 360   fsc[1] = Type::MEMORY;
 361   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 362 
 363   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 364   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 365   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 366   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 367                                            false, 0, oopDesc::mark_offset_in_bytes());
 368   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 369                                            false, 0, oopDesc::klass_offset_in_bytes());
 370   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
 371 
 372   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 373 
 374   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 375   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 376 
 377   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 378 
 379   mreg2type[Op_Node] = Type::BOTTOM;
 380   mreg2type[Op_Set ] = 0;
 381   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 382   mreg2type[Op_RegI] = TypeInt::INT;
 383   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 384   mreg2type[Op_RegF] = Type::FLOAT;
 385   mreg2type[Op_RegD] = Type::DOUBLE;
 386   mreg2type[Op_RegL] = TypeLong::LONG;
 387   mreg2type[Op_RegFlags] = TypeInt::CC;
 388 
 389   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 390 
 391   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 392 
 393 #ifdef _LP64
 394   if (UseCompressedOops) {
 395     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 396     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 397   } else
 398 #endif
 399   {
 400     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 401     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 402   }
 403   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 404   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 405   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 406   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 407   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 408   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 409   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 410 
 411   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 412   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 413   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 414   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 415   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 416   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 417   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 418   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 419   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 420   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 421   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 422   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 423 
 424   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 425   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 426 
 427   const Type **fi2c = TypeTuple::fields(2);
 428   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 429   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 430   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 431 
 432   const Type **intpair = TypeTuple::fields(2);
 433   intpair[0] = TypeInt::INT;
 434   intpair[1] = TypeInt::INT;
 435   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 436 
 437   const Type **longpair = TypeTuple::fields(2);
 438   longpair[0] = TypeLong::LONG;
 439   longpair[1] = TypeLong::LONG;
 440   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 441 
 442   const Type **intccpair = TypeTuple::fields(2);
 443   intccpair[0] = TypeInt::INT;
 444   intccpair[1] = TypeInt::CC;
 445   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 446 
 447   const Type **longccpair = TypeTuple::fields(2);
 448   longccpair[0] = TypeLong::LONG;
 449   longccpair[1] = TypeInt::CC;
 450   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 451 
 452   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 453   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 454   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 455   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 456   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 457   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 458   _const_basic_type[T_INT]         = TypeInt::INT;
 459   _const_basic_type[T_LONG]        = TypeLong::LONG;
 460   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 461   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 462   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 463   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 464   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 465   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 466   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 467 
 468   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 469   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 470   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 471   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 472   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 473   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 474   _zero_type[T_INT]         = TypeInt::ZERO;
 475   _zero_type[T_LONG]        = TypeLong::ZERO;
 476   _zero_type[T_FLOAT]       = TypeF::ZERO;
 477   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 478   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 479   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 480   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 481   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 482 
 483   // get_zero_type() should not happen for T_CONFLICT
 484   _zero_type[T_CONFLICT]= NULL;
 485 
 486   // Vector predefined types, it needs initialized _const_basic_type[].
 487   if (Matcher::vector_size_supported(T_BYTE,4)) {
 488     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 489   }
 490   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 491     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 492   }
 493   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 494     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 495   }
 496   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 497     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 498   }
 499   mreg2type[Op_VecS] = TypeVect::VECTS;
 500   mreg2type[Op_VecD] = TypeVect::VECTD;
 501   mreg2type[Op_VecX] = TypeVect::VECTX;
 502   mreg2type[Op_VecY] = TypeVect::VECTY;
 503 
 504   // Restore working type arena.
 505   current->set_type_arena(save);
 506   current->set_type_dict(NULL);
 507 }
 508 
 509 //------------------------------Initialize-------------------------------------
 510 void Type::Initialize(Compile* current) {
 511   assert(current->type_arena() != NULL, "must have created type arena");
 512 
 513   if (_shared_type_dict == NULL) {
 514     Initialize_shared(current);
 515   }
 516 
 517   Arena* type_arena = current->type_arena();
 518 
 519   // Create the hash-cons'ing dictionary with top-level storage allocation
 520   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 521   current->set_type_dict(tdic);
 522 
 523   // Transfer the shared types.
 524   DictI i(_shared_type_dict);
 525   for( ; i.test(); ++i ) {
 526     Type* t = (Type*)i._value;
 527     tdic->Insert(t,t);  // New Type, insert into Type table
 528   }
 529 }
 530 
 531 //------------------------------hashcons---------------------------------------
 532 // Do the hash-cons trick.  If the Type already exists in the type table,
 533 // delete the current Type and return the existing Type.  Otherwise stick the
 534 // current Type in the Type table.
 535 const Type *Type::hashcons(void) {
 536   debug_only(base());           // Check the assertion in Type::base().
 537   // Look up the Type in the Type dictionary
 538   Dict *tdic = type_dict();
 539   Type* old = (Type*)(tdic->Insert(this, this, false));
 540   if( old ) {                   // Pre-existing Type?
 541     if( old != this )           // Yes, this guy is not the pre-existing?
 542       delete this;              // Yes, Nuke this guy
 543     assert( old->_dual, "" );
 544     return old;                 // Return pre-existing
 545   }
 546 
 547   // Every type has a dual (to make my lattice symmetric).
 548   // Since we just discovered a new Type, compute its dual right now.
 549   assert( !_dual, "" );         // No dual yet
 550   _dual = xdual();              // Compute the dual
 551   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 552     _dual = this;
 553     return this;
 554   }
 555   assert( !_dual->_dual, "" );  // No reverse dual yet
 556   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 557   // New Type, insert into Type table
 558   tdic->Insert((void*)_dual,(void*)_dual);
 559   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 560 #ifdef ASSERT
 561   Type *dual_dual = (Type*)_dual->xdual();
 562   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 563   delete dual_dual;
 564 #endif
 565   return this;                  // Return new Type
 566 }
 567 
 568 //------------------------------eq---------------------------------------------
 569 // Structural equality check for Type representations
 570 bool Type::eq( const Type * ) const {
 571   return true;                  // Nothing else can go wrong
 572 }
 573 
 574 //------------------------------hash-------------------------------------------
 575 // Type-specific hashing function.
 576 int Type::hash(void) const {
 577   return _base;
 578 }
 579 
 580 //------------------------------is_finite--------------------------------------
 581 // Has a finite value
 582 bool Type::is_finite() const {
 583   return false;
 584 }
 585 
 586 //------------------------------is_nan-----------------------------------------
 587 // Is not a number (NaN)
 588 bool Type::is_nan()    const {
 589   return false;
 590 }
 591 
 592 //----------------------interface_vs_oop---------------------------------------
 593 #ifdef ASSERT
 594 bool Type::interface_vs_oop_helper(const Type *t) const {
 595   bool result = false;
 596 
 597   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 598   const TypePtr*    t_ptr =    t->make_ptr();
 599   if( this_ptr == NULL || t_ptr == NULL )
 600     return result;
 601 
 602   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 603   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 604   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 605     bool this_interface = this_inst->klass()->is_interface();
 606     bool    t_interface =    t_inst->klass()->is_interface();
 607     result = this_interface ^ t_interface;
 608   }
 609 
 610   return result;
 611 }
 612 
 613 bool Type::interface_vs_oop(const Type *t) const {
 614   if (interface_vs_oop_helper(t)) {
 615     return true;
 616   }
 617   // Now check the speculative parts as well
 618   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
 619   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
 620   if (this_spec != NULL && t_spec != NULL) {
 621     if (this_spec->interface_vs_oop_helper(t_spec)) {
 622       return true;
 623     }
 624     return false;
 625   }
 626   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 627     return true;
 628   }
 629   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 630     return true;
 631   }
 632   return false;
 633 }
 634 
 635 #endif
 636 
 637 //------------------------------meet-------------------------------------------
 638 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 639 // commutative and the lattice is symmetric.
 640 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 641   if (isa_narrowoop() && t->isa_narrowoop()) {
 642     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 643     return result->make_narrowoop();
 644   }
 645   if (isa_narrowklass() && t->isa_narrowklass()) {
 646     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 647     return result->make_narrowklass();
 648   }
 649 
 650   const Type *this_t = maybe_remove_speculative(include_speculative);
 651   t = t->maybe_remove_speculative(include_speculative);
 652 
 653   const Type *mt = this_t->xmeet(t);
 654   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 655   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 656 #ifdef ASSERT
 657   assert(mt == t->xmeet(this_t), "meet not commutative");
 658   const Type* dual_join = mt->_dual;
 659   const Type *t2t    = dual_join->xmeet(t->_dual);
 660   const Type *t2this = dual_join->xmeet(this_t->_dual);
 661 
 662   // Interface meet Oop is Not Symmetric:
 663   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 664   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 665 
 666   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 667     tty->print_cr("=== Meet Not Symmetric ===");
 668     tty->print("t   =                   ");              t->dump(); tty->cr();
 669     tty->print("this=                   ");         this_t->dump(); tty->cr();
 670     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 671 
 672     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 673     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 674     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 675 
 676     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 677     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 678 
 679     fatal("meet not symmetric" );
 680   }
 681 #endif
 682   return mt;
 683 }
 684 
 685 //------------------------------xmeet------------------------------------------
 686 // Compute the MEET of two types.  It returns a new Type object.
 687 const Type *Type::xmeet( const Type *t ) const {
 688   // Perform a fast test for common case; meeting the same types together.
 689   if( this == t ) return this;  // Meeting same type-rep?
 690 
 691   // Meeting TOP with anything?
 692   if( _base == Top ) return t;
 693 
 694   // Meeting BOTTOM with anything?
 695   if( _base == Bottom ) return BOTTOM;
 696 
 697   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 698   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 699   switch (t->base()) {  // Switch on original type
 700 
 701   // Cut in half the number of cases I must handle.  Only need cases for when
 702   // the given enum "t->type" is less than or equal to the local enum "type".
 703   case FloatCon:
 704   case DoubleCon:
 705   case Int:
 706   case Long:
 707     return t->xmeet(this);
 708 
 709   case OopPtr:
 710     return t->xmeet(this);
 711 
 712   case InstPtr:
 713     return t->xmeet(this);
 714 
 715   case MetadataPtr:
 716   case KlassPtr:
 717     return t->xmeet(this);
 718 
 719   case AryPtr:
 720     return t->xmeet(this);
 721 
 722   case NarrowOop:
 723     return t->xmeet(this);
 724 
 725   case NarrowKlass:
 726     return t->xmeet(this);
 727 
 728   case Bad:                     // Type check
 729   default:                      // Bogus type not in lattice
 730     typerr(t);
 731     return Type::BOTTOM;
 732 
 733   case Bottom:                  // Ye Olde Default
 734     return t;
 735 
 736   case FloatTop:
 737     if( _base == FloatTop ) return this;
 738   case FloatBot:                // Float
 739     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 740     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 741     typerr(t);
 742     return Type::BOTTOM;
 743 
 744   case DoubleTop:
 745     if( _base == DoubleTop ) return this;
 746   case DoubleBot:               // Double
 747     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 748     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 749     typerr(t);
 750     return Type::BOTTOM;
 751 
 752   // These next few cases must match exactly or it is a compile-time error.
 753   case Control:                 // Control of code
 754   case Abio:                    // State of world outside of program
 755   case Memory:
 756     if( _base == t->_base )  return this;
 757     typerr(t);
 758     return Type::BOTTOM;
 759 
 760   case Top:                     // Top of the lattice
 761     return this;
 762   }
 763 
 764   // The type is unchanged
 765   return this;
 766 }
 767 
 768 //-----------------------------filter------------------------------------------
 769 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 770   const Type* ft = join_helper(kills, include_speculative);
 771   if (ft->empty())
 772     return Type::TOP;           // Canonical empty value
 773   return ft;
 774 }
 775 
 776 //------------------------------xdual------------------------------------------
 777 // Compute dual right now.
 778 const Type::TYPES Type::dual_type[Type::lastype] = {
 779   Bad,          // Bad
 780   Control,      // Control
 781   Bottom,       // Top
 782   Bad,          // Int - handled in v-call
 783   Bad,          // Long - handled in v-call
 784   Half,         // Half
 785   Bad,          // NarrowOop - handled in v-call
 786   Bad,          // NarrowKlass - handled in v-call
 787 
 788   Bad,          // Tuple - handled in v-call
 789   Bad,          // Array - handled in v-call
 790   Bad,          // VectorS - handled in v-call
 791   Bad,          // VectorD - handled in v-call
 792   Bad,          // VectorX - handled in v-call
 793   Bad,          // VectorY - handled in v-call
 794 
 795   Bad,          // AnyPtr - handled in v-call
 796   Bad,          // RawPtr - handled in v-call
 797   Bad,          // OopPtr - handled in v-call
 798   Bad,          // InstPtr - handled in v-call
 799   Bad,          // AryPtr - handled in v-call
 800 
 801   Bad,          //  MetadataPtr - handled in v-call
 802   Bad,          // KlassPtr - handled in v-call
 803 
 804   Bad,          // Function - handled in v-call
 805   Abio,         // Abio
 806   Return_Address,// Return_Address
 807   Memory,       // Memory
 808   FloatBot,     // FloatTop
 809   FloatCon,     // FloatCon
 810   FloatTop,     // FloatBot
 811   DoubleBot,    // DoubleTop
 812   DoubleCon,    // DoubleCon
 813   DoubleTop,    // DoubleBot
 814   Top           // Bottom
 815 };
 816 
 817 const Type *Type::xdual() const {
 818   // Note: the base() accessor asserts the sanity of _base.
 819   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 820   return new Type(_type_info[_base].dual_type);
 821 }
 822 
 823 //------------------------------has_memory-------------------------------------
 824 bool Type::has_memory() const {
 825   Type::TYPES tx = base();
 826   if (tx == Memory) return true;
 827   if (tx == Tuple) {
 828     const TypeTuple *t = is_tuple();
 829     for (uint i=0; i < t->cnt(); i++) {
 830       tx = t->field_at(i)->base();
 831       if (tx == Memory)  return true;
 832     }
 833   }
 834   return false;
 835 }
 836 
 837 #ifndef PRODUCT
 838 //------------------------------dump2------------------------------------------
 839 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 840   st->print(_type_info[_base].msg);
 841 }
 842 
 843 //------------------------------dump-------------------------------------------
 844 void Type::dump_on(outputStream *st) const {
 845   ResourceMark rm;
 846   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 847   dump2(d,1, st);
 848   if (is_ptr_to_narrowoop()) {
 849     st->print(" [narrow]");
 850   } else if (is_ptr_to_narrowklass()) {
 851     st->print(" [narrowklass]");
 852   }
 853 }
 854 #endif
 855 
 856 //------------------------------singleton--------------------------------------
 857 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 858 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 859 bool Type::singleton(void) const {
 860   return _base == Top || _base == Half;
 861 }
 862 
 863 //------------------------------empty------------------------------------------
 864 // TRUE if Type is a type with no values, FALSE otherwise.
 865 bool Type::empty(void) const {
 866   switch (_base) {
 867   case DoubleTop:
 868   case FloatTop:
 869   case Top:
 870     return true;
 871 
 872   case Half:
 873   case Abio:
 874   case Return_Address:
 875   case Memory:
 876   case Bottom:
 877   case FloatBot:
 878   case DoubleBot:
 879     return false;  // never a singleton, therefore never empty
 880   }
 881 
 882   ShouldNotReachHere();
 883   return false;
 884 }
 885 
 886 //------------------------------dump_stats-------------------------------------
 887 // Dump collected statistics to stderr
 888 #ifndef PRODUCT
 889 void Type::dump_stats() {
 890   tty->print("Types made: %d\n", type_dict()->Size());
 891 }
 892 #endif
 893 
 894 //------------------------------typerr-----------------------------------------
 895 void Type::typerr( const Type *t ) const {
 896 #ifndef PRODUCT
 897   tty->print("\nError mixing types: ");
 898   dump();
 899   tty->print(" and ");
 900   t->dump();
 901   tty->print("\n");
 902 #endif
 903   ShouldNotReachHere();
 904 }
 905 
 906 
 907 //=============================================================================
 908 // Convenience common pre-built types.
 909 const TypeF *TypeF::ZERO;       // Floating point zero
 910 const TypeF *TypeF::ONE;        // Floating point one
 911 
 912 //------------------------------make-------------------------------------------
 913 // Create a float constant
 914 const TypeF *TypeF::make(float f) {
 915   return (TypeF*)(new TypeF(f))->hashcons();
 916 }
 917 
 918 //------------------------------meet-------------------------------------------
 919 // Compute the MEET of two types.  It returns a new Type object.
 920 const Type *TypeF::xmeet( const Type *t ) const {
 921   // Perform a fast test for common case; meeting the same types together.
 922   if( this == t ) return this;  // Meeting same type-rep?
 923 
 924   // Current "this->_base" is FloatCon
 925   switch (t->base()) {          // Switch on original type
 926   case AnyPtr:                  // Mixing with oops happens when javac
 927   case RawPtr:                  // reuses local variables
 928   case OopPtr:
 929   case InstPtr:
 930   case AryPtr:
 931   case MetadataPtr:
 932   case KlassPtr:
 933   case NarrowOop:
 934   case NarrowKlass:
 935   case Int:
 936   case Long:
 937   case DoubleTop:
 938   case DoubleCon:
 939   case DoubleBot:
 940   case Bottom:                  // Ye Olde Default
 941     return Type::BOTTOM;
 942 
 943   case FloatBot:
 944     return t;
 945 
 946   default:                      // All else is a mistake
 947     typerr(t);
 948 
 949   case FloatCon:                // Float-constant vs Float-constant?
 950     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 951                                 // must compare bitwise as positive zero, negative zero and NaN have
 952                                 // all the same representation in C++
 953       return FLOAT;             // Return generic float
 954                                 // Equal constants
 955   case Top:
 956   case FloatTop:
 957     break;                      // Return the float constant
 958   }
 959   return this;                  // Return the float constant
 960 }
 961 
 962 //------------------------------xdual------------------------------------------
 963 // Dual: symmetric
 964 const Type *TypeF::xdual() const {
 965   return this;
 966 }
 967 
 968 //------------------------------eq---------------------------------------------
 969 // Structural equality check for Type representations
 970 bool TypeF::eq( const Type *t ) const {
 971   if( g_isnan(_f) ||
 972       g_isnan(t->getf()) ) {
 973     // One or both are NANs.  If both are NANs return true, else false.
 974     return (g_isnan(_f) && g_isnan(t->getf()));
 975   }
 976   if (_f == t->getf()) {
 977     // (NaN is impossible at this point, since it is not equal even to itself)
 978     if (_f == 0.0) {
 979       // difference between positive and negative zero
 980       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 981     }
 982     return true;
 983   }
 984   return false;
 985 }
 986 
 987 //------------------------------hash-------------------------------------------
 988 // Type-specific hashing function.
 989 int TypeF::hash(void) const {
 990   return *(int*)(&_f);
 991 }
 992 
 993 //------------------------------is_finite--------------------------------------
 994 // Has a finite value
 995 bool TypeF::is_finite() const {
 996   return g_isfinite(getf()) != 0;
 997 }
 998 
 999 //------------------------------is_nan-----------------------------------------
1000 // Is not a number (NaN)
1001 bool TypeF::is_nan()    const {
1002   return g_isnan(getf()) != 0;
1003 }
1004 
1005 //------------------------------dump2------------------------------------------
1006 // Dump float constant Type
1007 #ifndef PRODUCT
1008 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1009   Type::dump2(d,depth, st);
1010   st->print("%f", _f);
1011 }
1012 #endif
1013 
1014 //------------------------------singleton--------------------------------------
1015 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1016 // constants (Ldi nodes).  Singletons are integer, float or double constants
1017 // or a single symbol.
1018 bool TypeF::singleton(void) const {
1019   return true;                  // Always a singleton
1020 }
1021 
1022 bool TypeF::empty(void) const {
1023   return false;                 // always exactly a singleton
1024 }
1025 
1026 //=============================================================================
1027 // Convenience common pre-built types.
1028 const TypeD *TypeD::ZERO;       // Floating point zero
1029 const TypeD *TypeD::ONE;        // Floating point one
1030 
1031 //------------------------------make-------------------------------------------
1032 const TypeD *TypeD::make(double d) {
1033   return (TypeD*)(new TypeD(d))->hashcons();
1034 }
1035 
1036 //------------------------------meet-------------------------------------------
1037 // Compute the MEET of two types.  It returns a new Type object.
1038 const Type *TypeD::xmeet( const Type *t ) const {
1039   // Perform a fast test for common case; meeting the same types together.
1040   if( this == t ) return this;  // Meeting same type-rep?
1041 
1042   // Current "this->_base" is DoubleCon
1043   switch (t->base()) {          // Switch on original type
1044   case AnyPtr:                  // Mixing with oops happens when javac
1045   case RawPtr:                  // reuses local variables
1046   case OopPtr:
1047   case InstPtr:
1048   case AryPtr:
1049   case MetadataPtr:
1050   case KlassPtr:
1051   case NarrowOop:
1052   case NarrowKlass:
1053   case Int:
1054   case Long:
1055   case FloatTop:
1056   case FloatCon:
1057   case FloatBot:
1058   case Bottom:                  // Ye Olde Default
1059     return Type::BOTTOM;
1060 
1061   case DoubleBot:
1062     return t;
1063 
1064   default:                      // All else is a mistake
1065     typerr(t);
1066 
1067   case DoubleCon:               // Double-constant vs Double-constant?
1068     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1069       return DOUBLE;            // Return generic double
1070   case Top:
1071   case DoubleTop:
1072     break;
1073   }
1074   return this;                  // Return the double constant
1075 }
1076 
1077 //------------------------------xdual------------------------------------------
1078 // Dual: symmetric
1079 const Type *TypeD::xdual() const {
1080   return this;
1081 }
1082 
1083 //------------------------------eq---------------------------------------------
1084 // Structural equality check for Type representations
1085 bool TypeD::eq( const Type *t ) const {
1086   if( g_isnan(_d) ||
1087       g_isnan(t->getd()) ) {
1088     // One or both are NANs.  If both are NANs return true, else false.
1089     return (g_isnan(_d) && g_isnan(t->getd()));
1090   }
1091   if (_d == t->getd()) {
1092     // (NaN is impossible at this point, since it is not equal even to itself)
1093     if (_d == 0.0) {
1094       // difference between positive and negative zero
1095       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1096     }
1097     return true;
1098   }
1099   return false;
1100 }
1101 
1102 //------------------------------hash-------------------------------------------
1103 // Type-specific hashing function.
1104 int TypeD::hash(void) const {
1105   return *(int*)(&_d);
1106 }
1107 
1108 //------------------------------is_finite--------------------------------------
1109 // Has a finite value
1110 bool TypeD::is_finite() const {
1111   return g_isfinite(getd()) != 0;
1112 }
1113 
1114 //------------------------------is_nan-----------------------------------------
1115 // Is not a number (NaN)
1116 bool TypeD::is_nan()    const {
1117   return g_isnan(getd()) != 0;
1118 }
1119 
1120 //------------------------------dump2------------------------------------------
1121 // Dump double constant Type
1122 #ifndef PRODUCT
1123 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1124   Type::dump2(d,depth,st);
1125   st->print("%f", _d);
1126 }
1127 #endif
1128 
1129 //------------------------------singleton--------------------------------------
1130 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1131 // constants (Ldi nodes).  Singletons are integer, float or double constants
1132 // or a single symbol.
1133 bool TypeD::singleton(void) const {
1134   return true;                  // Always a singleton
1135 }
1136 
1137 bool TypeD::empty(void) const {
1138   return false;                 // always exactly a singleton
1139 }
1140 
1141 //=============================================================================
1142 // Convience common pre-built types.
1143 const TypeInt *TypeInt::MINUS_1;// -1
1144 const TypeInt *TypeInt::ZERO;   // 0
1145 const TypeInt *TypeInt::ONE;    // 1
1146 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1147 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1148 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1149 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1150 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1151 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1152 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1153 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1154 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1155 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1156 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1157 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1158 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1159 const TypeInt *TypeInt::INT;    // 32-bit integers
1160 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1161 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1162 
1163 //------------------------------TypeInt----------------------------------------
1164 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1165 }
1166 
1167 //------------------------------make-------------------------------------------
1168 const TypeInt *TypeInt::make( jint lo ) {
1169   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1170 }
1171 
1172 static int normalize_int_widen( jint lo, jint hi, int w ) {
1173   // Certain normalizations keep us sane when comparing types.
1174   // The 'SMALLINT' covers constants and also CC and its relatives.
1175   if (lo <= hi) {
1176     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1177     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1178   } else {
1179     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1180     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1181   }
1182   return w;
1183 }
1184 
1185 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1186   w = normalize_int_widen(lo, hi, w);
1187   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1188 }
1189 
1190 //------------------------------meet-------------------------------------------
1191 // Compute the MEET of two types.  It returns a new Type representation object
1192 // with reference count equal to the number of Types pointing at it.
1193 // Caller should wrap a Types around it.
1194 const Type *TypeInt::xmeet( const Type *t ) const {
1195   // Perform a fast test for common case; meeting the same types together.
1196   if( this == t ) return this;  // Meeting same type?
1197 
1198   // Currently "this->_base" is a TypeInt
1199   switch (t->base()) {          // Switch on original type
1200   case AnyPtr:                  // Mixing with oops happens when javac
1201   case RawPtr:                  // reuses local variables
1202   case OopPtr:
1203   case InstPtr:
1204   case AryPtr:
1205   case MetadataPtr:
1206   case KlassPtr:
1207   case NarrowOop:
1208   case NarrowKlass:
1209   case Long:
1210   case FloatTop:
1211   case FloatCon:
1212   case FloatBot:
1213   case DoubleTop:
1214   case DoubleCon:
1215   case DoubleBot:
1216   case Bottom:                  // Ye Olde Default
1217     return Type::BOTTOM;
1218   default:                      // All else is a mistake
1219     typerr(t);
1220   case Top:                     // No change
1221     return this;
1222   case Int:                     // Int vs Int?
1223     break;
1224   }
1225 
1226   // Expand covered set
1227   const TypeInt *r = t->is_int();
1228   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1229 }
1230 
1231 //------------------------------xdual------------------------------------------
1232 // Dual: reverse hi & lo; flip widen
1233 const Type *TypeInt::xdual() const {
1234   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1235   return new TypeInt(_hi,_lo,w);
1236 }
1237 
1238 //------------------------------widen------------------------------------------
1239 // Only happens for optimistic top-down optimizations.
1240 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1241   // Coming from TOP or such; no widening
1242   if( old->base() != Int ) return this;
1243   const TypeInt *ot = old->is_int();
1244 
1245   // If new guy is equal to old guy, no widening
1246   if( _lo == ot->_lo && _hi == ot->_hi )
1247     return old;
1248 
1249   // If new guy contains old, then we widened
1250   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1251     // New contains old
1252     // If new guy is already wider than old, no widening
1253     if( _widen > ot->_widen ) return this;
1254     // If old guy was a constant, do not bother
1255     if (ot->_lo == ot->_hi)  return this;
1256     // Now widen new guy.
1257     // Check for widening too far
1258     if (_widen == WidenMax) {
1259       int max = max_jint;
1260       int min = min_jint;
1261       if (limit->isa_int()) {
1262         max = limit->is_int()->_hi;
1263         min = limit->is_int()->_lo;
1264       }
1265       if (min < _lo && _hi < max) {
1266         // If neither endpoint is extremal yet, push out the endpoint
1267         // which is closer to its respective limit.
1268         if (_lo >= 0 ||                 // easy common case
1269             (juint)(_lo - min) >= (juint)(max - _hi)) {
1270           // Try to widen to an unsigned range type of 31 bits:
1271           return make(_lo, max, WidenMax);
1272         } else {
1273           return make(min, _hi, WidenMax);
1274         }
1275       }
1276       return TypeInt::INT;
1277     }
1278     // Returned widened new guy
1279     return make(_lo,_hi,_widen+1);
1280   }
1281 
1282   // If old guy contains new, then we probably widened too far & dropped to
1283   // bottom.  Return the wider fellow.
1284   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1285     return old;
1286 
1287   //fatal("Integer value range is not subset");
1288   //return this;
1289   return TypeInt::INT;
1290 }
1291 
1292 //------------------------------narrow---------------------------------------
1293 // Only happens for pessimistic optimizations.
1294 const Type *TypeInt::narrow( const Type *old ) const {
1295   if (_lo >= _hi)  return this;   // already narrow enough
1296   if (old == NULL)  return this;
1297   const TypeInt* ot = old->isa_int();
1298   if (ot == NULL)  return this;
1299   jint olo = ot->_lo;
1300   jint ohi = ot->_hi;
1301 
1302   // If new guy is equal to old guy, no narrowing
1303   if (_lo == olo && _hi == ohi)  return old;
1304 
1305   // If old guy was maximum range, allow the narrowing
1306   if (olo == min_jint && ohi == max_jint)  return this;
1307 
1308   if (_lo < olo || _hi > ohi)
1309     return this;                // doesn't narrow; pretty wierd
1310 
1311   // The new type narrows the old type, so look for a "death march".
1312   // See comments on PhaseTransform::saturate.
1313   juint nrange = _hi - _lo;
1314   juint orange = ohi - olo;
1315   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1316     // Use the new type only if the range shrinks a lot.
1317     // We do not want the optimizer computing 2^31 point by point.
1318     return old;
1319   }
1320 
1321   return this;
1322 }
1323 
1324 //-----------------------------filter------------------------------------------
1325 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1326   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1327   if (ft == NULL || ft->empty())
1328     return Type::TOP;           // Canonical empty value
1329   if (ft->_widen < this->_widen) {
1330     // Do not allow the value of kill->_widen to affect the outcome.
1331     // The widen bits must be allowed to run freely through the graph.
1332     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1333   }
1334   return ft;
1335 }
1336 
1337 //------------------------------eq---------------------------------------------
1338 // Structural equality check for Type representations
1339 bool TypeInt::eq( const Type *t ) const {
1340   const TypeInt *r = t->is_int(); // Handy access
1341   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1342 }
1343 
1344 //------------------------------hash-------------------------------------------
1345 // Type-specific hashing function.
1346 int TypeInt::hash(void) const {
1347   return _lo+_hi+_widen+(int)Type::Int;
1348 }
1349 
1350 //------------------------------is_finite--------------------------------------
1351 // Has a finite value
1352 bool TypeInt::is_finite() const {
1353   return true;
1354 }
1355 
1356 //------------------------------dump2------------------------------------------
1357 // Dump TypeInt
1358 #ifndef PRODUCT
1359 static const char* intname(char* buf, jint n) {
1360   if (n == min_jint)
1361     return "min";
1362   else if (n < min_jint + 10000)
1363     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1364   else if (n == max_jint)
1365     return "max";
1366   else if (n > max_jint - 10000)
1367     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1368   else
1369     sprintf(buf, INT32_FORMAT, n);
1370   return buf;
1371 }
1372 
1373 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1374   char buf[40], buf2[40];
1375   if (_lo == min_jint && _hi == max_jint)
1376     st->print("int");
1377   else if (is_con())
1378     st->print("int:%s", intname(buf, get_con()));
1379   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1380     st->print("bool");
1381   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1382     st->print("byte");
1383   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1384     st->print("char");
1385   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1386     st->print("short");
1387   else if (_hi == max_jint)
1388     st->print("int:>=%s", intname(buf, _lo));
1389   else if (_lo == min_jint)
1390     st->print("int:<=%s", intname(buf, _hi));
1391   else
1392     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1393 
1394   if (_widen != 0 && this != TypeInt::INT)
1395     st->print(":%.*s", _widen, "wwww");
1396 }
1397 #endif
1398 
1399 //------------------------------singleton--------------------------------------
1400 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1401 // constants.
1402 bool TypeInt::singleton(void) const {
1403   return _lo >= _hi;
1404 }
1405 
1406 bool TypeInt::empty(void) const {
1407   return _lo > _hi;
1408 }
1409 
1410 //=============================================================================
1411 // Convenience common pre-built types.
1412 const TypeLong *TypeLong::MINUS_1;// -1
1413 const TypeLong *TypeLong::ZERO; // 0
1414 const TypeLong *TypeLong::ONE;  // 1
1415 const TypeLong *TypeLong::POS;  // >=0
1416 const TypeLong *TypeLong::LONG; // 64-bit integers
1417 const TypeLong *TypeLong::INT;  // 32-bit subrange
1418 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1419 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1420 
1421 //------------------------------TypeLong---------------------------------------
1422 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1423 }
1424 
1425 //------------------------------make-------------------------------------------
1426 const TypeLong *TypeLong::make( jlong lo ) {
1427   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1428 }
1429 
1430 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1431   // Certain normalizations keep us sane when comparing types.
1432   // The 'SMALLINT' covers constants.
1433   if (lo <= hi) {
1434     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1435     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1436   } else {
1437     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1438     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1439   }
1440   return w;
1441 }
1442 
1443 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1444   w = normalize_long_widen(lo, hi, w);
1445   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1446 }
1447 
1448 
1449 //------------------------------meet-------------------------------------------
1450 // Compute the MEET of two types.  It returns a new Type representation object
1451 // with reference count equal to the number of Types pointing at it.
1452 // Caller should wrap a Types around it.
1453 const Type *TypeLong::xmeet( const Type *t ) const {
1454   // Perform a fast test for common case; meeting the same types together.
1455   if( this == t ) return this;  // Meeting same type?
1456 
1457   // Currently "this->_base" is a TypeLong
1458   switch (t->base()) {          // Switch on original type
1459   case AnyPtr:                  // Mixing with oops happens when javac
1460   case RawPtr:                  // reuses local variables
1461   case OopPtr:
1462   case InstPtr:
1463   case AryPtr:
1464   case MetadataPtr:
1465   case KlassPtr:
1466   case NarrowOop:
1467   case NarrowKlass:
1468   case Int:
1469   case FloatTop:
1470   case FloatCon:
1471   case FloatBot:
1472   case DoubleTop:
1473   case DoubleCon:
1474   case DoubleBot:
1475   case Bottom:                  // Ye Olde Default
1476     return Type::BOTTOM;
1477   default:                      // All else is a mistake
1478     typerr(t);
1479   case Top:                     // No change
1480     return this;
1481   case Long:                    // Long vs Long?
1482     break;
1483   }
1484 
1485   // Expand covered set
1486   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1487   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1488 }
1489 
1490 //------------------------------xdual------------------------------------------
1491 // Dual: reverse hi & lo; flip widen
1492 const Type *TypeLong::xdual() const {
1493   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1494   return new TypeLong(_hi,_lo,w);
1495 }
1496 
1497 //------------------------------widen------------------------------------------
1498 // Only happens for optimistic top-down optimizations.
1499 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1500   // Coming from TOP or such; no widening
1501   if( old->base() != Long ) return this;
1502   const TypeLong *ot = old->is_long();
1503 
1504   // If new guy is equal to old guy, no widening
1505   if( _lo == ot->_lo && _hi == ot->_hi )
1506     return old;
1507 
1508   // If new guy contains old, then we widened
1509   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1510     // New contains old
1511     // If new guy is already wider than old, no widening
1512     if( _widen > ot->_widen ) return this;
1513     // If old guy was a constant, do not bother
1514     if (ot->_lo == ot->_hi)  return this;
1515     // Now widen new guy.
1516     // Check for widening too far
1517     if (_widen == WidenMax) {
1518       jlong max = max_jlong;
1519       jlong min = min_jlong;
1520       if (limit->isa_long()) {
1521         max = limit->is_long()->_hi;
1522         min = limit->is_long()->_lo;
1523       }
1524       if (min < _lo && _hi < max) {
1525         // If neither endpoint is extremal yet, push out the endpoint
1526         // which is closer to its respective limit.
1527         if (_lo >= 0 ||                 // easy common case
1528             (julong)(_lo - min) >= (julong)(max - _hi)) {
1529           // Try to widen to an unsigned range type of 32/63 bits:
1530           if (max >= max_juint && _hi < max_juint)
1531             return make(_lo, max_juint, WidenMax);
1532           else
1533             return make(_lo, max, WidenMax);
1534         } else {
1535           return make(min, _hi, WidenMax);
1536         }
1537       }
1538       return TypeLong::LONG;
1539     }
1540     // Returned widened new guy
1541     return make(_lo,_hi,_widen+1);
1542   }
1543 
1544   // If old guy contains new, then we probably widened too far & dropped to
1545   // bottom.  Return the wider fellow.
1546   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1547     return old;
1548 
1549   //  fatal("Long value range is not subset");
1550   // return this;
1551   return TypeLong::LONG;
1552 }
1553 
1554 //------------------------------narrow----------------------------------------
1555 // Only happens for pessimistic optimizations.
1556 const Type *TypeLong::narrow( const Type *old ) const {
1557   if (_lo >= _hi)  return this;   // already narrow enough
1558   if (old == NULL)  return this;
1559   const TypeLong* ot = old->isa_long();
1560   if (ot == NULL)  return this;
1561   jlong olo = ot->_lo;
1562   jlong ohi = ot->_hi;
1563 
1564   // If new guy is equal to old guy, no narrowing
1565   if (_lo == olo && _hi == ohi)  return old;
1566 
1567   // If old guy was maximum range, allow the narrowing
1568   if (olo == min_jlong && ohi == max_jlong)  return this;
1569 
1570   if (_lo < olo || _hi > ohi)
1571     return this;                // doesn't narrow; pretty wierd
1572 
1573   // The new type narrows the old type, so look for a "death march".
1574   // See comments on PhaseTransform::saturate.
1575   julong nrange = _hi - _lo;
1576   julong orange = ohi - olo;
1577   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1578     // Use the new type only if the range shrinks a lot.
1579     // We do not want the optimizer computing 2^31 point by point.
1580     return old;
1581   }
1582 
1583   return this;
1584 }
1585 
1586 //-----------------------------filter------------------------------------------
1587 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1588   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1589   if (ft == NULL || ft->empty())
1590     return Type::TOP;           // Canonical empty value
1591   if (ft->_widen < this->_widen) {
1592     // Do not allow the value of kill->_widen to affect the outcome.
1593     // The widen bits must be allowed to run freely through the graph.
1594     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1595   }
1596   return ft;
1597 }
1598 
1599 //------------------------------eq---------------------------------------------
1600 // Structural equality check for Type representations
1601 bool TypeLong::eq( const Type *t ) const {
1602   const TypeLong *r = t->is_long(); // Handy access
1603   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1604 }
1605 
1606 //------------------------------hash-------------------------------------------
1607 // Type-specific hashing function.
1608 int TypeLong::hash(void) const {
1609   return (int)(_lo+_hi+_widen+(int)Type::Long);
1610 }
1611 
1612 //------------------------------is_finite--------------------------------------
1613 // Has a finite value
1614 bool TypeLong::is_finite() const {
1615   return true;
1616 }
1617 
1618 //------------------------------dump2------------------------------------------
1619 // Dump TypeLong
1620 #ifndef PRODUCT
1621 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1622   if (n > x) {
1623     if (n >= x + 10000)  return NULL;
1624     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1625   } else if (n < x) {
1626     if (n <= x - 10000)  return NULL;
1627     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1628   } else {
1629     return xname;
1630   }
1631   return buf;
1632 }
1633 
1634 static const char* longname(char* buf, jlong n) {
1635   const char* str;
1636   if (n == min_jlong)
1637     return "min";
1638   else if (n < min_jlong + 10000)
1639     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1640   else if (n == max_jlong)
1641     return "max";
1642   else if (n > max_jlong - 10000)
1643     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1644   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1645     return str;
1646   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1647     return str;
1648   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1649     return str;
1650   else
1651     sprintf(buf, JLONG_FORMAT, n);
1652   return buf;
1653 }
1654 
1655 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1656   char buf[80], buf2[80];
1657   if (_lo == min_jlong && _hi == max_jlong)
1658     st->print("long");
1659   else if (is_con())
1660     st->print("long:%s", longname(buf, get_con()));
1661   else if (_hi == max_jlong)
1662     st->print("long:>=%s", longname(buf, _lo));
1663   else if (_lo == min_jlong)
1664     st->print("long:<=%s", longname(buf, _hi));
1665   else
1666     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1667 
1668   if (_widen != 0 && this != TypeLong::LONG)
1669     st->print(":%.*s", _widen, "wwww");
1670 }
1671 #endif
1672 
1673 //------------------------------singleton--------------------------------------
1674 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1675 // constants
1676 bool TypeLong::singleton(void) const {
1677   return _lo >= _hi;
1678 }
1679 
1680 bool TypeLong::empty(void) const {
1681   return _lo > _hi;
1682 }
1683 
1684 //=============================================================================
1685 // Convenience common pre-built types.
1686 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1687 const TypeTuple *TypeTuple::IFFALSE;
1688 const TypeTuple *TypeTuple::IFTRUE;
1689 const TypeTuple *TypeTuple::IFNEITHER;
1690 const TypeTuple *TypeTuple::LOOPBODY;
1691 const TypeTuple *TypeTuple::MEMBAR;
1692 const TypeTuple *TypeTuple::STORECONDITIONAL;
1693 const TypeTuple *TypeTuple::START_I2C;
1694 const TypeTuple *TypeTuple::INT_PAIR;
1695 const TypeTuple *TypeTuple::LONG_PAIR;
1696 const TypeTuple *TypeTuple::INT_CC_PAIR;
1697 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1698 
1699 
1700 //------------------------------make-------------------------------------------
1701 // Make a TypeTuple from the range of a method signature
1702 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1703   ciType* return_type = sig->return_type();
1704   uint total_fields = TypeFunc::Parms + return_type->size();
1705   const Type **field_array = fields(total_fields);
1706   switch (return_type->basic_type()) {
1707   case T_LONG:
1708     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1709     field_array[TypeFunc::Parms+1] = Type::HALF;
1710     break;
1711   case T_DOUBLE:
1712     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1713     field_array[TypeFunc::Parms+1] = Type::HALF;
1714     break;
1715   case T_OBJECT:
1716   case T_ARRAY:
1717   case T_BOOLEAN:
1718   case T_CHAR:
1719   case T_FLOAT:
1720   case T_BYTE:
1721   case T_SHORT:
1722   case T_INT:
1723     field_array[TypeFunc::Parms] = get_const_type(return_type);
1724     break;
1725   case T_VOID:
1726     break;
1727   default:
1728     ShouldNotReachHere();
1729   }
1730   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1731 }
1732 
1733 // Make a TypeTuple from the domain of a method signature
1734 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1735   uint total_fields = TypeFunc::Parms + sig->size();
1736 
1737   uint pos = TypeFunc::Parms;
1738   const Type **field_array;
1739   if (recv != NULL) {
1740     total_fields++;
1741     field_array = fields(total_fields);
1742     // Use get_const_type here because it respects UseUniqueSubclasses:
1743     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1744   } else {
1745     field_array = fields(total_fields);
1746   }
1747 
1748   int i = 0;
1749   while (pos < total_fields) {
1750     ciType* type = sig->type_at(i);
1751 
1752     switch (type->basic_type()) {
1753     case T_LONG:
1754       field_array[pos++] = TypeLong::LONG;
1755       field_array[pos++] = Type::HALF;
1756       break;
1757     case T_DOUBLE:
1758       field_array[pos++] = Type::DOUBLE;
1759       field_array[pos++] = Type::HALF;
1760       break;
1761     case T_OBJECT:
1762     case T_ARRAY:
1763     case T_BOOLEAN:
1764     case T_CHAR:
1765     case T_FLOAT:
1766     case T_BYTE:
1767     case T_SHORT:
1768     case T_INT:
1769       field_array[pos++] = get_const_type(type);
1770       break;
1771     default:
1772       ShouldNotReachHere();
1773     }
1774     i++;
1775   }
1776   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1777 }
1778 
1779 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1780   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1781 }
1782 
1783 //------------------------------fields-----------------------------------------
1784 // Subroutine call type with space allocated for argument types
1785 const Type **TypeTuple::fields( uint arg_cnt ) {
1786   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1787   flds[TypeFunc::Control  ] = Type::CONTROL;
1788   flds[TypeFunc::I_O      ] = Type::ABIO;
1789   flds[TypeFunc::Memory   ] = Type::MEMORY;
1790   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1791   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1792 
1793   return flds;
1794 }
1795 
1796 //------------------------------meet-------------------------------------------
1797 // Compute the MEET of two types.  It returns a new Type object.
1798 const Type *TypeTuple::xmeet( const Type *t ) const {
1799   // Perform a fast test for common case; meeting the same types together.
1800   if( this == t ) return this;  // Meeting same type-rep?
1801 
1802   // Current "this->_base" is Tuple
1803   switch (t->base()) {          // switch on original type
1804 
1805   case Bottom:                  // Ye Olde Default
1806     return t;
1807 
1808   default:                      // All else is a mistake
1809     typerr(t);
1810 
1811   case Tuple: {                 // Meeting 2 signatures?
1812     const TypeTuple *x = t->is_tuple();
1813     assert( _cnt == x->_cnt, "" );
1814     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1815     for( uint i=0; i<_cnt; i++ )
1816       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1817     return TypeTuple::make(_cnt,fields);
1818   }
1819   case Top:
1820     break;
1821   }
1822   return this;                  // Return the double constant
1823 }
1824 
1825 //------------------------------xdual------------------------------------------
1826 // Dual: compute field-by-field dual
1827 const Type *TypeTuple::xdual() const {
1828   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1829   for( uint i=0; i<_cnt; i++ )
1830     fields[i] = _fields[i]->dual();
1831   return new TypeTuple(_cnt,fields);
1832 }
1833 
1834 //------------------------------eq---------------------------------------------
1835 // Structural equality check for Type representations
1836 bool TypeTuple::eq( const Type *t ) const {
1837   const TypeTuple *s = (const TypeTuple *)t;
1838   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1839   for (uint i = 0; i < _cnt; i++)
1840     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1841       return false;             // Missed
1842   return true;
1843 }
1844 
1845 //------------------------------hash-------------------------------------------
1846 // Type-specific hashing function.
1847 int TypeTuple::hash(void) const {
1848   intptr_t sum = _cnt;
1849   for( uint i=0; i<_cnt; i++ )
1850     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1851   return sum;
1852 }
1853 
1854 //------------------------------dump2------------------------------------------
1855 // Dump signature Type
1856 #ifndef PRODUCT
1857 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1858   st->print("{");
1859   if( !depth || d[this] ) {     // Check for recursive print
1860     st->print("...}");
1861     return;
1862   }
1863   d.Insert((void*)this, (void*)this);   // Stop recursion
1864   if( _cnt ) {
1865     uint i;
1866     for( i=0; i<_cnt-1; i++ ) {
1867       st->print("%d:", i);
1868       _fields[i]->dump2(d, depth-1, st);
1869       st->print(", ");
1870     }
1871     st->print("%d:", i);
1872     _fields[i]->dump2(d, depth-1, st);
1873   }
1874   st->print("}");
1875 }
1876 #endif
1877 
1878 //------------------------------singleton--------------------------------------
1879 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1880 // constants (Ldi nodes).  Singletons are integer, float or double constants
1881 // or a single symbol.
1882 bool TypeTuple::singleton(void) const {
1883   return false;                 // Never a singleton
1884 }
1885 
1886 bool TypeTuple::empty(void) const {
1887   for( uint i=0; i<_cnt; i++ ) {
1888     if (_fields[i]->empty())  return true;
1889   }
1890   return false;
1891 }
1892 
1893 //=============================================================================
1894 // Convenience common pre-built types.
1895 
1896 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1897   // Certain normalizations keep us sane when comparing types.
1898   // We do not want arrayOop variables to differ only by the wideness
1899   // of their index types.  Pick minimum wideness, since that is the
1900   // forced wideness of small ranges anyway.
1901   if (size->_widen != Type::WidenMin)
1902     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1903   else
1904     return size;
1905 }
1906 
1907 //------------------------------make-------------------------------------------
1908 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1909   if (UseCompressedOops && elem->isa_oopptr()) {
1910     elem = elem->make_narrowoop();
1911   }
1912   size = normalize_array_size(size);
1913   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1914 }
1915 
1916 //------------------------------meet-------------------------------------------
1917 // Compute the MEET of two types.  It returns a new Type object.
1918 const Type *TypeAry::xmeet( const Type *t ) const {
1919   // Perform a fast test for common case; meeting the same types together.
1920   if( this == t ) return this;  // Meeting same type-rep?
1921 
1922   // Current "this->_base" is Ary
1923   switch (t->base()) {          // switch on original type
1924 
1925   case Bottom:                  // Ye Olde Default
1926     return t;
1927 
1928   default:                      // All else is a mistake
1929     typerr(t);
1930 
1931   case Array: {                 // Meeting 2 arrays?
1932     const TypeAry *a = t->is_ary();
1933     return TypeAry::make(_elem->meet_speculative(a->_elem),
1934                          _size->xmeet(a->_size)->is_int(),
1935                          _stable & a->_stable);
1936   }
1937   case Top:
1938     break;
1939   }
1940   return this;                  // Return the double constant
1941 }
1942 
1943 //------------------------------xdual------------------------------------------
1944 // Dual: compute field-by-field dual
1945 const Type *TypeAry::xdual() const {
1946   const TypeInt* size_dual = _size->dual()->is_int();
1947   size_dual = normalize_array_size(size_dual);
1948   return new TypeAry(_elem->dual(), size_dual, !_stable);
1949 }
1950 
1951 //------------------------------eq---------------------------------------------
1952 // Structural equality check for Type representations
1953 bool TypeAry::eq( const Type *t ) const {
1954   const TypeAry *a = (const TypeAry*)t;
1955   return _elem == a->_elem &&
1956     _stable == a->_stable &&
1957     _size == a->_size;
1958 }
1959 
1960 //------------------------------hash-------------------------------------------
1961 // Type-specific hashing function.
1962 int TypeAry::hash(void) const {
1963   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1964 }
1965 
1966 /**
1967  * Return same type without a speculative part in the element
1968  */
1969 const Type* TypeAry::remove_speculative() const {
1970   return make(_elem->remove_speculative(), _size, _stable);
1971 }
1972 
1973 //----------------------interface_vs_oop---------------------------------------
1974 #ifdef ASSERT
1975 bool TypeAry::interface_vs_oop(const Type *t) const {
1976   const TypeAry* t_ary = t->is_ary();
1977   if (t_ary) {
1978     return _elem->interface_vs_oop(t_ary->_elem);
1979   }
1980   return false;
1981 }
1982 #endif
1983 
1984 //------------------------------dump2------------------------------------------
1985 #ifndef PRODUCT
1986 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1987   if (_stable)  st->print("stable:");
1988   _elem->dump2(d, depth, st);
1989   st->print("[");
1990   _size->dump2(d, depth, st);
1991   st->print("]");
1992 }
1993 #endif
1994 
1995 //------------------------------singleton--------------------------------------
1996 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1997 // constants (Ldi nodes).  Singletons are integer, float or double constants
1998 // or a single symbol.
1999 bool TypeAry::singleton(void) const {
2000   return false;                 // Never a singleton
2001 }
2002 
2003 bool TypeAry::empty(void) const {
2004   return _elem->empty() || _size->empty();
2005 }
2006 
2007 //--------------------------ary_must_be_exact----------------------------------
2008 bool TypeAry::ary_must_be_exact() const {
2009   if (!UseExactTypes)       return false;
2010   // This logic looks at the element type of an array, and returns true
2011   // if the element type is either a primitive or a final instance class.
2012   // In such cases, an array built on this ary must have no subclasses.
2013   if (_elem == BOTTOM)      return false;  // general array not exact
2014   if (_elem == TOP   )      return false;  // inverted general array not exact
2015   const TypeOopPtr*  toop = NULL;
2016   if (UseCompressedOops && _elem->isa_narrowoop()) {
2017     toop = _elem->make_ptr()->isa_oopptr();
2018   } else {
2019     toop = _elem->isa_oopptr();
2020   }
2021   if (!toop)                return true;   // a primitive type, like int
2022   ciKlass* tklass = toop->klass();
2023   if (tklass == NULL)       return false;  // unloaded class
2024   if (!tklass->is_loaded()) return false;  // unloaded class
2025   const TypeInstPtr* tinst;
2026   if (_elem->isa_narrowoop())
2027     tinst = _elem->make_ptr()->isa_instptr();
2028   else
2029     tinst = _elem->isa_instptr();
2030   if (tinst)
2031     return tklass->as_instance_klass()->is_final();
2032   const TypeAryPtr*  tap;
2033   if (_elem->isa_narrowoop())
2034     tap = _elem->make_ptr()->isa_aryptr();
2035   else
2036     tap = _elem->isa_aryptr();
2037   if (tap)
2038     return tap->ary()->ary_must_be_exact();
2039   return false;
2040 }
2041 
2042 //==============================TypeVect=======================================
2043 // Convenience common pre-built types.
2044 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2045 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2046 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2047 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2048 
2049 //------------------------------make-------------------------------------------
2050 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2051   BasicType elem_bt = elem->array_element_basic_type();
2052   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2053   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2054   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2055   int size = length * type2aelembytes(elem_bt);
2056   switch (Matcher::vector_ideal_reg(size)) {
2057   case Op_VecS:
2058     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2059   case Op_VecD:
2060   case Op_RegD:
2061     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2062   case Op_VecX:
2063     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2064   case Op_VecY:
2065     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2066   }
2067  ShouldNotReachHere();
2068   return NULL;
2069 }
2070 
2071 //------------------------------meet-------------------------------------------
2072 // Compute the MEET of two types.  It returns a new Type object.
2073 const Type *TypeVect::xmeet( const Type *t ) const {
2074   // Perform a fast test for common case; meeting the same types together.
2075   if( this == t ) return this;  // Meeting same type-rep?
2076 
2077   // Current "this->_base" is Vector
2078   switch (t->base()) {          // switch on original type
2079 
2080   case Bottom:                  // Ye Olde Default
2081     return t;
2082 
2083   default:                      // All else is a mistake
2084     typerr(t);
2085 
2086   case VectorS:
2087   case VectorD:
2088   case VectorX:
2089   case VectorY: {                // Meeting 2 vectors?
2090     const TypeVect* v = t->is_vect();
2091     assert(  base() == v->base(), "");
2092     assert(length() == v->length(), "");
2093     assert(element_basic_type() == v->element_basic_type(), "");
2094     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2095   }
2096   case Top:
2097     break;
2098   }
2099   return this;
2100 }
2101 
2102 //------------------------------xdual------------------------------------------
2103 // Dual: compute field-by-field dual
2104 const Type *TypeVect::xdual() const {
2105   return new TypeVect(base(), _elem->dual(), _length);
2106 }
2107 
2108 //------------------------------eq---------------------------------------------
2109 // Structural equality check for Type representations
2110 bool TypeVect::eq(const Type *t) const {
2111   const TypeVect *v = t->is_vect();
2112   return (_elem == v->_elem) && (_length == v->_length);
2113 }
2114 
2115 //------------------------------hash-------------------------------------------
2116 // Type-specific hashing function.
2117 int TypeVect::hash(void) const {
2118   return (intptr_t)_elem + (intptr_t)_length;
2119 }
2120 
2121 //------------------------------singleton--------------------------------------
2122 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2123 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2124 // constant value (when vector is created with Replicate code).
2125 bool TypeVect::singleton(void) const {
2126 // There is no Con node for vectors yet.
2127 //  return _elem->singleton();
2128   return false;
2129 }
2130 
2131 bool TypeVect::empty(void) const {
2132   return _elem->empty();
2133 }
2134 
2135 //------------------------------dump2------------------------------------------
2136 #ifndef PRODUCT
2137 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2138   switch (base()) {
2139   case VectorS:
2140     st->print("vectors["); break;
2141   case VectorD:
2142     st->print("vectord["); break;
2143   case VectorX:
2144     st->print("vectorx["); break;
2145   case VectorY:
2146     st->print("vectory["); break;
2147   default:
2148     ShouldNotReachHere();
2149   }
2150   st->print("%d]:{", _length);
2151   _elem->dump2(d, depth, st);
2152   st->print("}");
2153 }
2154 #endif
2155 
2156 
2157 //=============================================================================
2158 // Convenience common pre-built types.
2159 const TypePtr *TypePtr::NULL_PTR;
2160 const TypePtr *TypePtr::NOTNULL;
2161 const TypePtr *TypePtr::BOTTOM;
2162 
2163 //------------------------------meet-------------------------------------------
2164 // Meet over the PTR enum
2165 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2166   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2167   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2168   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2169   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2170   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2171   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2172   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2173 };
2174 
2175 //------------------------------make-------------------------------------------
2176 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2177   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2178 }
2179 
2180 //------------------------------cast_to_ptr_type-------------------------------
2181 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2182   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2183   if( ptr == _ptr ) return this;
2184   return make(_base, ptr, _offset);
2185 }
2186 
2187 //------------------------------get_con----------------------------------------
2188 intptr_t TypePtr::get_con() const {
2189   assert( _ptr == Null, "" );
2190   return _offset;
2191 }
2192 
2193 //------------------------------meet-------------------------------------------
2194 // Compute the MEET of two types.  It returns a new Type object.
2195 const Type *TypePtr::xmeet( const Type *t ) const {
2196   // Perform a fast test for common case; meeting the same types together.
2197   if( this == t ) return this;  // Meeting same type-rep?
2198 
2199   // Current "this->_base" is AnyPtr
2200   switch (t->base()) {          // switch on original type
2201   case Int:                     // Mixing ints & oops happens when javac
2202   case Long:                    // reuses local variables
2203   case FloatTop:
2204   case FloatCon:
2205   case FloatBot:
2206   case DoubleTop:
2207   case DoubleCon:
2208   case DoubleBot:
2209   case NarrowOop:
2210   case NarrowKlass:
2211   case Bottom:                  // Ye Olde Default
2212     return Type::BOTTOM;
2213   case Top:
2214     return this;
2215 
2216   case AnyPtr: {                // Meeting to AnyPtrs
2217     const TypePtr *tp = t->is_ptr();
2218     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2219   }
2220   case RawPtr:                  // For these, flip the call around to cut down
2221   case OopPtr:
2222   case InstPtr:                 // on the cases I have to handle.
2223   case AryPtr:
2224   case MetadataPtr:
2225   case KlassPtr:
2226     return t->xmeet(this);      // Call in reverse direction
2227   default:                      // All else is a mistake
2228     typerr(t);
2229 
2230   }
2231   return this;
2232 }
2233 
2234 //------------------------------meet_offset------------------------------------
2235 int TypePtr::meet_offset( int offset ) const {
2236   // Either is 'TOP' offset?  Return the other offset!
2237   if( _offset == OffsetTop ) return offset;
2238   if( offset == OffsetTop ) return _offset;
2239   // If either is different, return 'BOTTOM' offset
2240   if( _offset != offset ) return OffsetBot;
2241   return _offset;
2242 }
2243 
2244 //------------------------------dual_offset------------------------------------
2245 int TypePtr::dual_offset( ) const {
2246   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2247   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2248   return _offset;               // Map everything else into self
2249 }
2250 
2251 //------------------------------xdual------------------------------------------
2252 // Dual: compute field-by-field dual
2253 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2254   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2255 };
2256 const Type *TypePtr::xdual() const {
2257   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2258 }
2259 
2260 //------------------------------xadd_offset------------------------------------
2261 int TypePtr::xadd_offset( intptr_t offset ) const {
2262   // Adding to 'TOP' offset?  Return 'TOP'!
2263   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2264   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2265   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2266   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2267   offset += (intptr_t)_offset;
2268   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2269 
2270   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2271   // It is possible to construct a negative offset during PhaseCCP
2272 
2273   return (int)offset;        // Sum valid offsets
2274 }
2275 
2276 //------------------------------add_offset-------------------------------------
2277 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2278   return make( AnyPtr, _ptr, xadd_offset(offset) );
2279 }
2280 
2281 //------------------------------eq---------------------------------------------
2282 // Structural equality check for Type representations
2283 bool TypePtr::eq( const Type *t ) const {
2284   const TypePtr *a = (const TypePtr*)t;
2285   return _ptr == a->ptr() && _offset == a->offset();
2286 }
2287 
2288 //------------------------------hash-------------------------------------------
2289 // Type-specific hashing function.
2290 int TypePtr::hash(void) const {
2291   return _ptr + _offset;
2292 }
2293 
2294 //------------------------------dump2------------------------------------------
2295 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2296   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2297 };
2298 
2299 #ifndef PRODUCT
2300 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2301   if( _ptr == Null ) st->print("NULL");
2302   else st->print("%s *", ptr_msg[_ptr]);
2303   if( _offset == OffsetTop ) st->print("+top");
2304   else if( _offset == OffsetBot ) st->print("+bot");
2305   else if( _offset ) st->print("+%d", _offset);
2306 }
2307 #endif
2308 
2309 //------------------------------singleton--------------------------------------
2310 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2311 // constants
2312 bool TypePtr::singleton(void) const {
2313   // TopPTR, Null, AnyNull, Constant are all singletons
2314   return (_offset != OffsetBot) && !below_centerline(_ptr);
2315 }
2316 
2317 bool TypePtr::empty(void) const {
2318   return (_offset == OffsetTop) || above_centerline(_ptr);
2319 }
2320 
2321 //=============================================================================
2322 // Convenience common pre-built types.
2323 const TypeRawPtr *TypeRawPtr::BOTTOM;
2324 const TypeRawPtr *TypeRawPtr::NOTNULL;
2325 
2326 //------------------------------make-------------------------------------------
2327 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2328   assert( ptr != Constant, "what is the constant?" );
2329   assert( ptr != Null, "Use TypePtr for NULL" );
2330   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2331 }
2332 
2333 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2334   assert( bits, "Use TypePtr for NULL" );
2335   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2336 }
2337 
2338 //------------------------------cast_to_ptr_type-------------------------------
2339 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2340   assert( ptr != Constant, "what is the constant?" );
2341   assert( ptr != Null, "Use TypePtr for NULL" );
2342   assert( _bits==0, "Why cast a constant address?");
2343   if( ptr == _ptr ) return this;
2344   return make(ptr);
2345 }
2346 
2347 //------------------------------get_con----------------------------------------
2348 intptr_t TypeRawPtr::get_con() const {
2349   assert( _ptr == Null || _ptr == Constant, "" );
2350   return (intptr_t)_bits;
2351 }
2352 
2353 //------------------------------meet-------------------------------------------
2354 // Compute the MEET of two types.  It returns a new Type object.
2355 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2356   // Perform a fast test for common case; meeting the same types together.
2357   if( this == t ) return this;  // Meeting same type-rep?
2358 
2359   // Current "this->_base" is RawPtr
2360   switch( t->base() ) {         // switch on original type
2361   case Bottom:                  // Ye Olde Default
2362     return t;
2363   case Top:
2364     return this;
2365   case AnyPtr:                  // Meeting to AnyPtrs
2366     break;
2367   case RawPtr: {                // might be top, bot, any/not or constant
2368     enum PTR tptr = t->is_ptr()->ptr();
2369     enum PTR ptr = meet_ptr( tptr );
2370     if( ptr == Constant ) {     // Cannot be equal constants, so...
2371       if( tptr == Constant && _ptr != Constant)  return t;
2372       if( _ptr == Constant && tptr != Constant)  return this;
2373       ptr = NotNull;            // Fall down in lattice
2374     }
2375     return make( ptr );
2376   }
2377 
2378   case OopPtr:
2379   case InstPtr:
2380   case AryPtr:
2381   case MetadataPtr:
2382   case KlassPtr:
2383     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2384   default:                      // All else is a mistake
2385     typerr(t);
2386   }
2387 
2388   // Found an AnyPtr type vs self-RawPtr type
2389   const TypePtr *tp = t->is_ptr();
2390   switch (tp->ptr()) {
2391   case TypePtr::TopPTR:  return this;
2392   case TypePtr::BotPTR:  return t;
2393   case TypePtr::Null:
2394     if( _ptr == TypePtr::TopPTR ) return t;
2395     return TypeRawPtr::BOTTOM;
2396   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2397   case TypePtr::AnyNull:
2398     if( _ptr == TypePtr::Constant) return this;
2399     return make( meet_ptr(TypePtr::AnyNull) );
2400   default: ShouldNotReachHere();
2401   }
2402   return this;
2403 }
2404 
2405 //------------------------------xdual------------------------------------------
2406 // Dual: compute field-by-field dual
2407 const Type *TypeRawPtr::xdual() const {
2408   return new TypeRawPtr( dual_ptr(), _bits );
2409 }
2410 
2411 //------------------------------add_offset-------------------------------------
2412 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2413   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2414   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2415   if( offset == 0 ) return this; // No change
2416   switch (_ptr) {
2417   case TypePtr::TopPTR:
2418   case TypePtr::BotPTR:
2419   case TypePtr::NotNull:
2420     return this;
2421   case TypePtr::Null:
2422   case TypePtr::Constant: {
2423     address bits = _bits+offset;
2424     if ( bits == 0 ) return TypePtr::NULL_PTR;
2425     return make( bits );
2426   }
2427   default:  ShouldNotReachHere();
2428   }
2429   return NULL;                  // Lint noise
2430 }
2431 
2432 //------------------------------eq---------------------------------------------
2433 // Structural equality check for Type representations
2434 bool TypeRawPtr::eq( const Type *t ) const {
2435   const TypeRawPtr *a = (const TypeRawPtr*)t;
2436   return _bits == a->_bits && TypePtr::eq(t);
2437 }
2438 
2439 //------------------------------hash-------------------------------------------
2440 // Type-specific hashing function.
2441 int TypeRawPtr::hash(void) const {
2442   return (intptr_t)_bits + TypePtr::hash();
2443 }
2444 
2445 //------------------------------dump2------------------------------------------
2446 #ifndef PRODUCT
2447 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2448   if( _ptr == Constant )
2449     st->print(INTPTR_FORMAT, _bits);
2450   else
2451     st->print("rawptr:%s", ptr_msg[_ptr]);
2452 }
2453 #endif
2454 
2455 //=============================================================================
2456 // Convenience common pre-built type.
2457 const TypeOopPtr *TypeOopPtr::BOTTOM;
2458 
2459 //------------------------------TypeOopPtr-------------------------------------
2460 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth)
2461   : TypePtr(t, ptr, offset),
2462     _const_oop(o), _klass(k),
2463     _klass_is_exact(xk),
2464     _is_ptr_to_narrowoop(false),
2465     _is_ptr_to_narrowklass(false),
2466     _is_ptr_to_boxed_value(false),
2467     _instance_id(instance_id),
2468     _speculative(speculative),
2469     _inline_depth(inline_depth){
2470   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2471       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2472     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2473   }
2474 #ifdef _LP64
2475   if (_offset != 0) {
2476     if (_offset == oopDesc::klass_offset_in_bytes()) {
2477       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2478     } else if (klass() == NULL) {
2479       // Array with unknown body type
2480       assert(this->isa_aryptr(), "only arrays without klass");
2481       _is_ptr_to_narrowoop = UseCompressedOops;
2482     } else if (this->isa_aryptr()) {
2483       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2484                              _offset != arrayOopDesc::length_offset_in_bytes());
2485     } else if (klass()->is_instance_klass()) {
2486       ciInstanceKlass* ik = klass()->as_instance_klass();
2487       ciField* field = NULL;
2488       if (this->isa_klassptr()) {
2489         // Perm objects don't use compressed references
2490       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2491         // unsafe access
2492         _is_ptr_to_narrowoop = UseCompressedOops;
2493       } else { // exclude unsafe ops
2494         assert(this->isa_instptr(), "must be an instance ptr.");
2495 
2496         if (klass() == ciEnv::current()->Class_klass() &&
2497             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2498              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2499           // Special hidden fields from the Class.
2500           assert(this->isa_instptr(), "must be an instance ptr.");
2501           _is_ptr_to_narrowoop = false;
2502         } else if (klass() == ciEnv::current()->Class_klass() &&
2503                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2504           // Static fields
2505           assert(o != NULL, "must be constant");
2506           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2507           ciField* field = k->get_field_by_offset(_offset, true);
2508           assert(field != NULL, "missing field");
2509           BasicType basic_elem_type = field->layout_type();
2510           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2511                                                        basic_elem_type == T_ARRAY);
2512         } else {
2513           // Instance fields which contains a compressed oop references.
2514           field = ik->get_field_by_offset(_offset, false);
2515           if (field != NULL) {
2516             BasicType basic_elem_type = field->layout_type();
2517             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2518                                                          basic_elem_type == T_ARRAY);
2519           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2520             // Compile::find_alias_type() cast exactness on all types to verify
2521             // that it does not affect alias type.
2522             _is_ptr_to_narrowoop = UseCompressedOops;
2523           } else {
2524             // Type for the copy start in LibraryCallKit::inline_native_clone().
2525             _is_ptr_to_narrowoop = UseCompressedOops;
2526           }
2527         }
2528       }
2529     }
2530   }
2531 #endif
2532 }
2533 
2534 //------------------------------make-------------------------------------------
2535 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2536                                    int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
2537   assert(ptr != Constant, "no constant generic pointers");
2538   ciKlass*  k = Compile::current()->env()->Object_klass();
2539   bool      xk = false;
2540   ciObject* o = NULL;
2541   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2542 }
2543 
2544 
2545 //------------------------------cast_to_ptr_type-------------------------------
2546 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2547   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2548   if( ptr == _ptr ) return this;
2549   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2550 }
2551 
2552 //-----------------------------cast_to_instance_id----------------------------
2553 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2554   // There are no instances of a general oop.
2555   // Return self unchanged.
2556   return this;
2557 }
2558 
2559 //-----------------------------cast_to_exactness-------------------------------
2560 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2561   // There is no such thing as an exact general oop.
2562   // Return self unchanged.
2563   return this;
2564 }
2565 
2566 
2567 //------------------------------as_klass_type----------------------------------
2568 // Return the klass type corresponding to this instance or array type.
2569 // It is the type that is loaded from an object of this type.
2570 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2571   ciKlass* k = klass();
2572   bool    xk = klass_is_exact();
2573   if (k == NULL)
2574     return TypeKlassPtr::OBJECT;
2575   else
2576     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2577 }
2578 
2579 const Type *TypeOopPtr::xmeet(const Type *t) const {
2580   const Type* res = xmeet_helper(t);
2581   if (res->isa_oopptr() == NULL) {
2582     return res;
2583   }
2584 
2585   const TypeOopPtr* res_oopptr = res->is_oopptr();
2586   if (res_oopptr->speculative() != NULL) {
2587     // type->speculative() == NULL means that speculation is no better
2588     // than type, i.e. type->speculative() == type. So there are 2
2589     // ways to represent the fact that we have no useful speculative
2590     // data and we should use a single one to be able to test for
2591     // equality between types. Check whether type->speculative() ==
2592     // type and set speculative to NULL if it is the case.
2593     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
2594       return res_oopptr->remove_speculative();
2595     }
2596   }
2597 
2598   return res;
2599 }
2600 
2601 //------------------------------meet-------------------------------------------
2602 // Compute the MEET of two types.  It returns a new Type object.
2603 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2604   // Perform a fast test for common case; meeting the same types together.
2605   if( this == t ) return this;  // Meeting same type-rep?
2606 
2607   // Current "this->_base" is OopPtr
2608   switch (t->base()) {          // switch on original type
2609 
2610   case Int:                     // Mixing ints & oops happens when javac
2611   case Long:                    // reuses local variables
2612   case FloatTop:
2613   case FloatCon:
2614   case FloatBot:
2615   case DoubleTop:
2616   case DoubleCon:
2617   case DoubleBot:
2618   case NarrowOop:
2619   case NarrowKlass:
2620   case Bottom:                  // Ye Olde Default
2621     return Type::BOTTOM;
2622   case Top:
2623     return this;
2624 
2625   default:                      // All else is a mistake
2626     typerr(t);
2627 
2628   case RawPtr:
2629   case MetadataPtr:
2630   case KlassPtr:
2631     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2632 
2633   case AnyPtr: {
2634     // Found an AnyPtr type vs self-OopPtr type
2635     const TypePtr *tp = t->is_ptr();
2636     int offset = meet_offset(tp->offset());
2637     PTR ptr = meet_ptr(tp->ptr());
2638     switch (tp->ptr()) {
2639     case Null:
2640       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2641       // else fall through:
2642     case TopPTR:
2643     case AnyNull: {
2644       int instance_id = meet_instance_id(InstanceTop);
2645       const TypeOopPtr* speculative = _speculative;
2646       return make(ptr, offset, instance_id, speculative, _inline_depth);
2647     }
2648     case BotPTR:
2649     case NotNull:
2650       return TypePtr::make(AnyPtr, ptr, offset);
2651     default: typerr(t);
2652     }
2653   }
2654 
2655   case OopPtr: {                 // Meeting to other OopPtrs
2656     const TypeOopPtr *tp = t->is_oopptr();
2657     int instance_id = meet_instance_id(tp->instance_id());
2658     const TypeOopPtr* speculative = xmeet_speculative(tp);
2659     int depth = meet_inline_depth(tp->inline_depth());
2660     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2661   }
2662 
2663   case InstPtr:                  // For these, flip the call around to cut down
2664   case AryPtr:
2665     return t->xmeet(this);      // Call in reverse direction
2666 
2667   } // End of switch
2668   return this;                  // Return the double constant
2669 }
2670 
2671 
2672 //------------------------------xdual------------------------------------------
2673 // Dual of a pure heap pointer.  No relevant klass or oop information.
2674 const Type *TypeOopPtr::xdual() const {
2675   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2676   assert(const_oop() == NULL,             "no constants here");
2677   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2678 }
2679 
2680 //--------------------------make_from_klass_common-----------------------------
2681 // Computes the element-type given a klass.
2682 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2683   if (klass->is_instance_klass()) {
2684     Compile* C = Compile::current();
2685     Dependencies* deps = C->dependencies();
2686     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2687     // Element is an instance
2688     bool klass_is_exact = false;
2689     if (klass->is_loaded()) {
2690       // Try to set klass_is_exact.
2691       ciInstanceKlass* ik = klass->as_instance_klass();
2692       klass_is_exact = ik->is_final();
2693       if (!klass_is_exact && klass_change
2694           && deps != NULL && UseUniqueSubclasses) {
2695         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2696         if (sub != NULL) {
2697           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2698           klass = ik = sub;
2699           klass_is_exact = sub->is_final();
2700         }
2701       }
2702       if (!klass_is_exact && try_for_exact
2703           && deps != NULL && UseExactTypes) {
2704         if (!ik->is_interface() && !ik->has_subklass()) {
2705           // Add a dependence; if concrete subclass added we need to recompile
2706           deps->assert_leaf_type(ik);
2707           klass_is_exact = true;
2708         }
2709       }
2710     }
2711     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2712   } else if (klass->is_obj_array_klass()) {
2713     // Element is an object array. Recursively call ourself.
2714     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2715     bool xk = etype->klass_is_exact();
2716     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2717     // We used to pass NotNull in here, asserting that the sub-arrays
2718     // are all not-null.  This is not true in generally, as code can
2719     // slam NULLs down in the subarrays.
2720     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2721     return arr;
2722   } else if (klass->is_type_array_klass()) {
2723     // Element is an typeArray
2724     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2725     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2726     // We used to pass NotNull in here, asserting that the array pointer
2727     // is not-null. That was not true in general.
2728     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2729     return arr;
2730   } else {
2731     ShouldNotReachHere();
2732     return NULL;
2733   }
2734 }
2735 
2736 //------------------------------make_from_constant-----------------------------
2737 // Make a java pointer from an oop constant
2738 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2739                                                  bool require_constant,
2740                                                  bool is_autobox_cache) {
2741   assert(!o->is_null_object(), "null object not yet handled here.");
2742   ciKlass* klass = o->klass();
2743   if (klass->is_instance_klass()) {
2744     // Element is an instance
2745     if (require_constant) {
2746       if (!o->can_be_constant())  return NULL;
2747     } else if (!o->should_be_constant()) {
2748       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2749     }
2750     return TypeInstPtr::make(o);
2751   } else if (klass->is_obj_array_klass()) {
2752     // Element is an object array. Recursively call ourself.
2753     const TypeOopPtr *etype =
2754       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2755     if (is_autobox_cache) {
2756       // The pointers in the autobox arrays are always non-null.
2757       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2758     }
2759     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2760     // We used to pass NotNull in here, asserting that the sub-arrays
2761     // are all not-null.  This is not true in generally, as code can
2762     // slam NULLs down in the subarrays.
2763     if (require_constant) {
2764       if (!o->can_be_constant())  return NULL;
2765     } else if (!o->should_be_constant()) {
2766       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2767     }
2768     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
2769     return arr;
2770   } else if (klass->is_type_array_klass()) {
2771     // Element is an typeArray
2772     const Type* etype =
2773       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2774     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2775     // We used to pass NotNull in here, asserting that the array pointer
2776     // is not-null. That was not true in general.
2777     if (require_constant) {
2778       if (!o->can_be_constant())  return NULL;
2779     } else if (!o->should_be_constant()) {
2780       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2781     }
2782     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2783     return arr;
2784   }
2785 
2786   fatal("unhandled object type");
2787   return NULL;
2788 }
2789 
2790 //------------------------------get_con----------------------------------------
2791 intptr_t TypeOopPtr::get_con() const {
2792   assert( _ptr == Null || _ptr == Constant, "" );
2793   assert( _offset >= 0, "" );
2794 
2795   if (_offset != 0) {
2796     // After being ported to the compiler interface, the compiler no longer
2797     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2798     // to a handle at compile time.  This handle is embedded in the generated
2799     // code and dereferenced at the time the nmethod is made.  Until that time,
2800     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2801     // have access to the addresses!).  This does not seem to currently happen,
2802     // but this assertion here is to help prevent its occurence.
2803     tty->print_cr("Found oop constant with non-zero offset");
2804     ShouldNotReachHere();
2805   }
2806 
2807   return (intptr_t)const_oop()->constant_encoding();
2808 }
2809 
2810 
2811 //-----------------------------filter------------------------------------------
2812 // Do not allow interface-vs.-noninterface joins to collapse to top.
2813 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
2814 
2815   const Type* ft = join_helper(kills, include_speculative);
2816   const TypeInstPtr* ftip = ft->isa_instptr();
2817   const TypeInstPtr* ktip = kills->isa_instptr();
2818 
2819   if (ft->empty()) {
2820     // Check for evil case of 'this' being a class and 'kills' expecting an
2821     // interface.  This can happen because the bytecodes do not contain
2822     // enough type info to distinguish a Java-level interface variable
2823     // from a Java-level object variable.  If we meet 2 classes which
2824     // both implement interface I, but their meet is at 'j/l/O' which
2825     // doesn't implement I, we have no way to tell if the result should
2826     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2827     // into a Phi which "knows" it's an Interface type we'll have to
2828     // uplift the type.
2829     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2830       return kills;             // Uplift to interface
2831 
2832     return Type::TOP;           // Canonical empty value
2833   }
2834 
2835   // If we have an interface-typed Phi or cast and we narrow to a class type,
2836   // the join should report back the class.  However, if we have a J/L/Object
2837   // class-typed Phi and an interface flows in, it's possible that the meet &
2838   // join report an interface back out.  This isn't possible but happens
2839   // because the type system doesn't interact well with interfaces.
2840   if (ftip != NULL && ktip != NULL &&
2841       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2842       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2843     // Happens in a CTW of rt.jar, 320-341, no extra flags
2844     assert(!ftip->klass_is_exact(), "interface could not be exact");
2845     return ktip->cast_to_ptr_type(ftip->ptr());
2846   }
2847 
2848   return ft;
2849 }
2850 
2851 //------------------------------eq---------------------------------------------
2852 // Structural equality check for Type representations
2853 bool TypeOopPtr::eq( const Type *t ) const {
2854   const TypeOopPtr *a = (const TypeOopPtr*)t;
2855   if (_klass_is_exact != a->_klass_is_exact ||
2856       _instance_id != a->_instance_id ||
2857       !eq_speculative(a) ||
2858       _inline_depth != a->_inline_depth)  return false;
2859   ciObject* one = const_oop();
2860   ciObject* two = a->const_oop();
2861   if (one == NULL || two == NULL) {
2862     return (one == two) && TypePtr::eq(t);
2863   } else {
2864     return one->equals(two) && TypePtr::eq(t);
2865   }
2866 }
2867 
2868 //------------------------------hash-------------------------------------------
2869 // Type-specific hashing function.
2870 int TypeOopPtr::hash(void) const {
2871   return
2872     (const_oop() ? const_oop()->hash() : 0) +
2873     _klass_is_exact +
2874     _instance_id +
2875     hash_speculative() +
2876     _inline_depth +
2877     TypePtr::hash();
2878 }
2879 
2880 //------------------------------dump2------------------------------------------
2881 #ifndef PRODUCT
2882 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2883   st->print("oopptr:%s", ptr_msg[_ptr]);
2884   if( _klass_is_exact ) st->print(":exact");
2885   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2886   switch( _offset ) {
2887   case OffsetTop: st->print("+top"); break;
2888   case OffsetBot: st->print("+any"); break;
2889   case         0: break;
2890   default:        st->print("+%d",_offset); break;
2891   }
2892   if (_instance_id == InstanceTop)
2893     st->print(",iid=top");
2894   else if (_instance_id != InstanceBot)
2895     st->print(",iid=%d",_instance_id);
2896 
2897   dump_inline_depth(st);
2898   dump_speculative(st);
2899 }
2900 
2901 /**
2902  *dump the speculative part of the type
2903  */
2904 void TypeOopPtr::dump_speculative(outputStream *st) const {
2905   if (_speculative != NULL) {
2906     st->print(" (speculative=");
2907     _speculative->dump_on(st);
2908     st->print(")");
2909   }
2910 }
2911 
2912 void TypeOopPtr::dump_inline_depth(outputStream *st) const {
2913   if (_inline_depth != InlineDepthBottom) {
2914     if (_inline_depth == InlineDepthTop) {
2915       st->print(" (inline_depth=InlineDepthTop)");
2916     } else {
2917       st->print(" (inline_depth=%d)", _inline_depth);
2918     }
2919   }
2920 }
2921 #endif
2922 
2923 //------------------------------singleton--------------------------------------
2924 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2925 // constants
2926 bool TypeOopPtr::singleton(void) const {
2927   // detune optimizer to not generate constant oop + constant offset as a constant!
2928   // TopPTR, Null, AnyNull, Constant are all singletons
2929   return (_offset == 0) && !below_centerline(_ptr);
2930 }
2931 
2932 //------------------------------add_offset-------------------------------------
2933 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
2934   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
2935 }
2936 
2937 /**
2938  * Return same type without a speculative part
2939  */
2940 const Type* TypeOopPtr::remove_speculative() const {
2941   if (_speculative == NULL) {
2942     return this;
2943   }
2944   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2945   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
2946 }
2947 
2948 /**
2949  * Return same type but with a different inline depth (used for speculation)
2950  *
2951  * @param depth  depth to meet with
2952  */
2953 const TypeOopPtr* TypeOopPtr::with_inline_depth(int depth) const {
2954   if (!UseInlineDepthForSpeculativeTypes) {
2955     return this;
2956   }
2957   return make(_ptr, _offset, _instance_id, _speculative, depth);
2958 }
2959 
2960 /**
2961  * Check whether new profiling would improve speculative type
2962  *
2963  * @param   exact_kls    class from profiling
2964  * @param   inline_depth inlining depth of profile point
2965  *
2966  * @return  true if type profile is valuable
2967  */
2968 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2969   // no way to improve an already exact type
2970   if (klass_is_exact()) {
2971     return false;
2972   }
2973   // no profiling?
2974   if (exact_kls == NULL) {
2975     return false;
2976   }
2977   // no speculative type or non exact speculative type?
2978   if (speculative_type() == NULL) {
2979     return true;
2980   }
2981   // If the node already has an exact speculative type keep it,
2982   // unless it was provided by profiling that is at a deeper
2983   // inlining level. Profiling at a higher inlining depth is
2984   // expected to be less accurate.
2985   if (_speculative->inline_depth() == InlineDepthBottom) {
2986     return false;
2987   }
2988   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2989   return inline_depth < _speculative->inline_depth();
2990 }
2991 
2992 //------------------------------meet_instance_id--------------------------------
2993 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2994   // Either is 'TOP' instance?  Return the other instance!
2995   if( _instance_id == InstanceTop ) return  instance_id;
2996   if(  instance_id == InstanceTop ) return _instance_id;
2997   // If either is different, return 'BOTTOM' instance
2998   if( _instance_id != instance_id ) return InstanceBot;
2999   return _instance_id;
3000 }
3001 
3002 //------------------------------dual_instance_id--------------------------------
3003 int TypeOopPtr::dual_instance_id( ) const {
3004   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3005   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3006   return _instance_id;              // Map everything else into self
3007 }
3008 
3009 /**
3010  * meet of the speculative parts of 2 types
3011  *
3012  * @param other  type to meet with
3013  */
3014 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
3015   bool this_has_spec = (_speculative != NULL);
3016   bool other_has_spec = (other->speculative() != NULL);
3017 
3018   if (!this_has_spec && !other_has_spec) {
3019     return NULL;
3020   }
3021 
3022   // If we are at a point where control flow meets and one branch has
3023   // a speculative type and the other has not, we meet the speculative
3024   // type of one branch with the actual type of the other. If the
3025   // actual type is exact and the speculative is as well, then the
3026   // result is a speculative type which is exact and we can continue
3027   // speculation further.
3028   const TypeOopPtr* this_spec = _speculative;
3029   const TypeOopPtr* other_spec = other->speculative();
3030 
3031   if (!this_has_spec) {
3032     this_spec = this;
3033   }
3034 
3035   if (!other_has_spec) {
3036     other_spec = other;
3037   }
3038 
3039   return this_spec->meet_speculative(other_spec)->is_oopptr();
3040 }
3041 
3042 /**
3043  * dual of the speculative part of the type
3044  */
3045 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
3046   if (_speculative == NULL) {
3047     return NULL;
3048   }
3049   return _speculative->dual()->is_oopptr();
3050 }
3051 
3052 /**
3053  * add offset to the speculative part of the type
3054  *
3055  * @param offset  offset to add
3056  */
3057 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
3058   if (_speculative == NULL) {
3059     return NULL;
3060   }
3061   return _speculative->add_offset(offset)->is_oopptr();
3062 }
3063 
3064 /**
3065  * Are the speculative parts of 2 types equal?
3066  *
3067  * @param other  type to compare this one to
3068  */
3069 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
3070   if (_speculative == NULL || other->speculative() == NULL) {
3071     return _speculative == other->speculative();
3072   }
3073 
3074   if (_speculative->base() != other->speculative()->base()) {
3075     return false;
3076   }
3077 
3078   return _speculative->eq(other->speculative());
3079 }
3080 
3081 /**
3082  * Hash of the speculative part of the type
3083  */
3084 int TypeOopPtr::hash_speculative() const {
3085   if (_speculative == NULL) {
3086     return 0;
3087   }
3088 
3089   return _speculative->hash();
3090 }
3091 
3092 /**
3093  * dual of the inline depth for this type (used for speculation)
3094  */
3095 int TypeOopPtr::dual_inline_depth() const {
3096   return -inline_depth();
3097 }
3098 
3099 /**
3100  * meet of 2 inline depth (used for speculation)
3101  *
3102  * @param depth  depth to meet with
3103  */
3104 int TypeOopPtr::meet_inline_depth(int depth) const {
3105   return MAX2(inline_depth(), depth);
3106 }
3107 
3108 //=============================================================================
3109 // Convenience common pre-built types.
3110 const TypeInstPtr *TypeInstPtr::NOTNULL;
3111 const TypeInstPtr *TypeInstPtr::BOTTOM;
3112 const TypeInstPtr *TypeInstPtr::MIRROR;
3113 const TypeInstPtr *TypeInstPtr::MARK;
3114 const TypeInstPtr *TypeInstPtr::KLASS;
3115 
3116 //------------------------------TypeInstPtr-------------------------------------
3117 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative, int inline_depth)
3118   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), _name(k->name()) {
3119    assert(k != NULL &&
3120           (k->is_loaded() || o == NULL),
3121           "cannot have constants with non-loaded klass");
3122 };
3123 
3124 //------------------------------make-------------------------------------------
3125 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3126                                      ciKlass* k,
3127                                      bool xk,
3128                                      ciObject* o,
3129                                      int offset,
3130                                      int instance_id,
3131                                      const TypeOopPtr* speculative,
3132                                      int inline_depth) {
3133   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3134   // Either const_oop() is NULL or else ptr is Constant
3135   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3136           "constant pointers must have a value supplied" );
3137   // Ptr is never Null
3138   assert( ptr != Null, "NULL pointers are not typed" );
3139 
3140   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3141   if (!UseExactTypes)  xk = false;
3142   if (ptr == Constant) {
3143     // Note:  This case includes meta-object constants, such as methods.
3144     xk = true;
3145   } else if (k->is_loaded()) {
3146     ciInstanceKlass* ik = k->as_instance_klass();
3147     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3148     if (xk && ik->is_interface())  xk = false;  // no exact interface
3149   }
3150 
3151   // Now hash this baby
3152   TypeInstPtr *result =
3153     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3154 
3155   return result;
3156 }
3157 
3158 /**
3159  *  Create constant type for a constant boxed value
3160  */
3161 const Type* TypeInstPtr::get_const_boxed_value() const {
3162   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3163   assert((const_oop() != NULL), "should be called only for constant object");
3164   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3165   BasicType bt = constant.basic_type();
3166   switch (bt) {
3167     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3168     case T_INT:      return TypeInt::make(constant.as_int());
3169     case T_CHAR:     return TypeInt::make(constant.as_char());
3170     case T_BYTE:     return TypeInt::make(constant.as_byte());
3171     case T_SHORT:    return TypeInt::make(constant.as_short());
3172     case T_FLOAT:    return TypeF::make(constant.as_float());
3173     case T_DOUBLE:   return TypeD::make(constant.as_double());
3174     case T_LONG:     return TypeLong::make(constant.as_long());
3175     default:         break;
3176   }
3177   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3178   return NULL;
3179 }
3180 
3181 //------------------------------cast_to_ptr_type-------------------------------
3182 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3183   if( ptr == _ptr ) return this;
3184   // Reconstruct _sig info here since not a problem with later lazy
3185   // construction, _sig will show up on demand.
3186   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3187 }
3188 
3189 
3190 //-----------------------------cast_to_exactness-------------------------------
3191 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3192   if( klass_is_exact == _klass_is_exact ) return this;
3193   if (!UseExactTypes)  return this;
3194   if (!_klass->is_loaded())  return this;
3195   ciInstanceKlass* ik = _klass->as_instance_klass();
3196   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3197   if( ik->is_interface() )              return this;  // cannot set xk
3198   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3199 }
3200 
3201 //-----------------------------cast_to_instance_id----------------------------
3202 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3203   if( instance_id == _instance_id ) return this;
3204   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3205 }
3206 
3207 //------------------------------xmeet_unloaded---------------------------------
3208 // Compute the MEET of two InstPtrs when at least one is unloaded.
3209 // Assume classes are different since called after check for same name/class-loader
3210 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3211     int off = meet_offset(tinst->offset());
3212     PTR ptr = meet_ptr(tinst->ptr());
3213     int instance_id = meet_instance_id(tinst->instance_id());
3214     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3215     int depth = meet_inline_depth(tinst->inline_depth());
3216 
3217     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3218     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3219     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3220       //
3221       // Meet unloaded class with java/lang/Object
3222       //
3223       // Meet
3224       //          |                     Unloaded Class
3225       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3226       //  ===================================================================
3227       //   TOP    | ..........................Unloaded......................|
3228       //  AnyNull |  U-AN    |................Unloaded......................|
3229       // Constant | ... O-NN .................................. |   O-BOT   |
3230       //  NotNull | ... O-NN .................................. |   O-BOT   |
3231       //  BOTTOM  | ........................Object-BOTTOM ..................|
3232       //
3233       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3234       //
3235       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3236       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3237       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3238       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3239         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3240         else                                      { return TypeInstPtr::NOTNULL; }
3241       }
3242       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3243 
3244       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3245     }
3246 
3247     // Both are unloaded, not the same class, not Object
3248     // Or meet unloaded with a different loaded class, not java/lang/Object
3249     if( ptr != TypePtr::BotPTR ) {
3250       return TypeInstPtr::NOTNULL;
3251     }
3252     return TypeInstPtr::BOTTOM;
3253 }
3254 
3255 
3256 //------------------------------meet-------------------------------------------
3257 // Compute the MEET of two types.  It returns a new Type object.
3258 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3259   // Perform a fast test for common case; meeting the same types together.
3260   if( this == t ) return this;  // Meeting same type-rep?
3261 
3262   // Current "this->_base" is Pointer
3263   switch (t->base()) {          // switch on original type
3264 
3265   case Int:                     // Mixing ints & oops happens when javac
3266   case Long:                    // reuses local variables
3267   case FloatTop:
3268   case FloatCon:
3269   case FloatBot:
3270   case DoubleTop:
3271   case DoubleCon:
3272   case DoubleBot:
3273   case NarrowOop:
3274   case NarrowKlass:
3275   case Bottom:                  // Ye Olde Default
3276     return Type::BOTTOM;
3277   case Top:
3278     return this;
3279 
3280   default:                      // All else is a mistake
3281     typerr(t);
3282 
3283   case MetadataPtr:
3284   case KlassPtr:
3285   case RawPtr: return TypePtr::BOTTOM;
3286 
3287   case AryPtr: {                // All arrays inherit from Object class
3288     const TypeAryPtr *tp = t->is_aryptr();
3289     int offset = meet_offset(tp->offset());
3290     PTR ptr = meet_ptr(tp->ptr());
3291     int instance_id = meet_instance_id(tp->instance_id());
3292     const TypeOopPtr* speculative = xmeet_speculative(tp);
3293     int depth = meet_inline_depth(tp->inline_depth());
3294     switch (ptr) {
3295     case TopPTR:
3296     case AnyNull:                // Fall 'down' to dual of object klass
3297       // For instances when a subclass meets a superclass we fall
3298       // below the centerline when the superclass is exact. We need to
3299       // do the same here.
3300       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3301         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3302       } else {
3303         // cannot subclass, so the meet has to fall badly below the centerline
3304         ptr = NotNull;
3305         instance_id = InstanceBot;
3306         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3307       }
3308     case Constant:
3309     case NotNull:
3310     case BotPTR:                // Fall down to object klass
3311       // LCA is object_klass, but if we subclass from the top we can do better
3312       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3313         // If 'this' (InstPtr) is above the centerline and it is Object class
3314         // then we can subclass in the Java class hierarchy.
3315         // For instances when a subclass meets a superclass we fall
3316         // below the centerline when the superclass is exact. We need
3317         // to do the same here.
3318         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3319           // that is, tp's array type is a subtype of my klass
3320           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3321                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3322         }
3323       }
3324       // The other case cannot happen, since I cannot be a subtype of an array.
3325       // The meet falls down to Object class below centerline.
3326       if( ptr == Constant )
3327          ptr = NotNull;
3328       instance_id = InstanceBot;
3329       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3330     default: typerr(t);
3331     }
3332   }
3333 
3334   case OopPtr: {                // Meeting to OopPtrs
3335     // Found a OopPtr type vs self-InstPtr type
3336     const TypeOopPtr *tp = t->is_oopptr();
3337     int offset = meet_offset(tp->offset());
3338     PTR ptr = meet_ptr(tp->ptr());
3339     switch (tp->ptr()) {
3340     case TopPTR:
3341     case AnyNull: {
3342       int instance_id = meet_instance_id(InstanceTop);
3343       const TypeOopPtr* speculative = xmeet_speculative(tp);
3344       int depth = meet_inline_depth(tp->inline_depth());
3345       return make(ptr, klass(), klass_is_exact(),
3346                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3347     }
3348     case NotNull:
3349     case BotPTR: {
3350       int instance_id = meet_instance_id(tp->instance_id());
3351       const TypeOopPtr* speculative = xmeet_speculative(tp);
3352       int depth = meet_inline_depth(tp->inline_depth());
3353       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3354     }
3355     default: typerr(t);
3356     }
3357   }
3358 
3359   case AnyPtr: {                // Meeting to AnyPtrs
3360     // Found an AnyPtr type vs self-InstPtr type
3361     const TypePtr *tp = t->is_ptr();
3362     int offset = meet_offset(tp->offset());
3363     PTR ptr = meet_ptr(tp->ptr());
3364     switch (tp->ptr()) {
3365     case Null:
3366       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3367       // else fall through to AnyNull
3368     case TopPTR:
3369     case AnyNull: {
3370       int instance_id = meet_instance_id(InstanceTop);
3371       const TypeOopPtr* speculative = _speculative;
3372       return make(ptr, klass(), klass_is_exact(),
3373                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, _inline_depth);
3374     }
3375     case NotNull:
3376     case BotPTR:
3377       return TypePtr::make(AnyPtr, ptr, offset);
3378     default: typerr(t);
3379     }
3380   }
3381 
3382   /*
3383                  A-top         }
3384                /   |   \       }  Tops
3385            B-top A-any C-top   }
3386               | /  |  \ |      }  Any-nulls
3387            B-any   |   C-any   }
3388               |    |    |
3389            B-con A-con C-con   } constants; not comparable across classes
3390               |    |    |
3391            B-not   |   C-not   }
3392               | \  |  / |      }  not-nulls
3393            B-bot A-not C-bot   }
3394                \   |   /       }  Bottoms
3395                  A-bot         }
3396   */
3397 
3398   case InstPtr: {                // Meeting 2 Oops?
3399     // Found an InstPtr sub-type vs self-InstPtr type
3400     const TypeInstPtr *tinst = t->is_instptr();
3401     int off = meet_offset( tinst->offset() );
3402     PTR ptr = meet_ptr( tinst->ptr() );
3403     int instance_id = meet_instance_id(tinst->instance_id());
3404     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3405     int depth = meet_inline_depth(tinst->inline_depth());
3406 
3407     // Check for easy case; klasses are equal (and perhaps not loaded!)
3408     // If we have constants, then we created oops so classes are loaded
3409     // and we can handle the constants further down.  This case handles
3410     // both-not-loaded or both-loaded classes
3411     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3412       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3413     }
3414 
3415     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3416     ciKlass* tinst_klass = tinst->klass();
3417     ciKlass* this_klass  = this->klass();
3418     bool tinst_xk = tinst->klass_is_exact();
3419     bool this_xk  = this->klass_is_exact();
3420     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3421       // One of these classes has not been loaded
3422       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3423 #ifndef PRODUCT
3424       if( PrintOpto && Verbose ) {
3425         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3426         tty->print("  this == "); this->dump(); tty->cr();
3427         tty->print(" tinst == "); tinst->dump(); tty->cr();
3428       }
3429 #endif
3430       return unloaded_meet;
3431     }
3432 
3433     // Handle mixing oops and interfaces first.
3434     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3435                                         tinst_klass == ciEnv::current()->Object_klass())) {
3436       ciKlass *tmp = tinst_klass; // Swap interface around
3437       tinst_klass = this_klass;
3438       this_klass = tmp;
3439       bool tmp2 = tinst_xk;
3440       tinst_xk = this_xk;
3441       this_xk = tmp2;
3442     }
3443     if (tinst_klass->is_interface() &&
3444         !(this_klass->is_interface() ||
3445           // Treat java/lang/Object as an honorary interface,
3446           // because we need a bottom for the interface hierarchy.
3447           this_klass == ciEnv::current()->Object_klass())) {
3448       // Oop meets interface!
3449 
3450       // See if the oop subtypes (implements) interface.
3451       ciKlass *k;
3452       bool xk;
3453       if( this_klass->is_subtype_of( tinst_klass ) ) {
3454         // Oop indeed subtypes.  Now keep oop or interface depending
3455         // on whether we are both above the centerline or either is
3456         // below the centerline.  If we are on the centerline
3457         // (e.g., Constant vs. AnyNull interface), use the constant.
3458         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3459         // If we are keeping this_klass, keep its exactness too.
3460         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3461       } else {                  // Does not implement, fall to Object
3462         // Oop does not implement interface, so mixing falls to Object
3463         // just like the verifier does (if both are above the
3464         // centerline fall to interface)
3465         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3466         xk = above_centerline(ptr) ? tinst_xk : false;
3467         // Watch out for Constant vs. AnyNull interface.
3468         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3469         instance_id = InstanceBot;
3470       }
3471       ciObject* o = NULL;  // the Constant value, if any
3472       if (ptr == Constant) {
3473         // Find out which constant.
3474         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3475       }
3476       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3477     }
3478 
3479     // Either oop vs oop or interface vs interface or interface vs Object
3480 
3481     // !!! Here's how the symmetry requirement breaks down into invariants:
3482     // If we split one up & one down AND they subtype, take the down man.
3483     // If we split one up & one down AND they do NOT subtype, "fall hard".
3484     // If both are up and they subtype, take the subtype class.
3485     // If both are up and they do NOT subtype, "fall hard".
3486     // If both are down and they subtype, take the supertype class.
3487     // If both are down and they do NOT subtype, "fall hard".
3488     // Constants treated as down.
3489 
3490     // Now, reorder the above list; observe that both-down+subtype is also
3491     // "fall hard"; "fall hard" becomes the default case:
3492     // If we split one up & one down AND they subtype, take the down man.
3493     // If both are up and they subtype, take the subtype class.
3494 
3495     // If both are down and they subtype, "fall hard".
3496     // If both are down and they do NOT subtype, "fall hard".
3497     // If both are up and they do NOT subtype, "fall hard".
3498     // If we split one up & one down AND they do NOT subtype, "fall hard".
3499 
3500     // If a proper subtype is exact, and we return it, we return it exactly.
3501     // If a proper supertype is exact, there can be no subtyping relationship!
3502     // If both types are equal to the subtype, exactness is and-ed below the
3503     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3504 
3505     // Check for subtyping:
3506     ciKlass *subtype = NULL;
3507     bool subtype_exact = false;
3508     if( tinst_klass->equals(this_klass) ) {
3509       subtype = this_klass;
3510       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3511     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3512       subtype = this_klass;     // Pick subtyping class
3513       subtype_exact = this_xk;
3514     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3515       subtype = tinst_klass;    // Pick subtyping class
3516       subtype_exact = tinst_xk;
3517     }
3518 
3519     if( subtype ) {
3520       if( above_centerline(ptr) ) { // both are up?
3521         this_klass = tinst_klass = subtype;
3522         this_xk = tinst_xk = subtype_exact;
3523       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3524         this_klass = tinst_klass; // tinst is down; keep down man
3525         this_xk = tinst_xk;
3526       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3527         tinst_klass = this_klass; // this is down; keep down man
3528         tinst_xk = this_xk;
3529       } else {
3530         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3531       }
3532     }
3533 
3534     // Check for classes now being equal
3535     if (tinst_klass->equals(this_klass)) {
3536       // If the klasses are equal, the constants may still differ.  Fall to
3537       // NotNull if they do (neither constant is NULL; that is a special case
3538       // handled elsewhere).
3539       ciObject* o = NULL;             // Assume not constant when done
3540       ciObject* this_oop  = const_oop();
3541       ciObject* tinst_oop = tinst->const_oop();
3542       if( ptr == Constant ) {
3543         if (this_oop != NULL && tinst_oop != NULL &&
3544             this_oop->equals(tinst_oop) )
3545           o = this_oop;
3546         else if (above_centerline(this ->_ptr))
3547           o = tinst_oop;
3548         else if (above_centerline(tinst ->_ptr))
3549           o = this_oop;
3550         else
3551           ptr = NotNull;
3552       }
3553       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3554     } // Else classes are not equal
3555 
3556     // Since klasses are different, we require a LCA in the Java
3557     // class hierarchy - which means we have to fall to at least NotNull.
3558     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3559       ptr = NotNull;
3560     instance_id = InstanceBot;
3561 
3562     // Now we find the LCA of Java classes
3563     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3564     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3565   } // End of case InstPtr
3566 
3567   } // End of switch
3568   return this;                  // Return the double constant
3569 }
3570 
3571 
3572 //------------------------java_mirror_type--------------------------------------
3573 ciType* TypeInstPtr::java_mirror_type() const {
3574   // must be a singleton type
3575   if( const_oop() == NULL )  return NULL;
3576 
3577   // must be of type java.lang.Class
3578   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3579 
3580   return const_oop()->as_instance()->java_mirror_type();
3581 }
3582 
3583 
3584 //------------------------------xdual------------------------------------------
3585 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3586 // inheritance mechanism.
3587 const Type *TypeInstPtr::xdual() const {
3588   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3589 }
3590 
3591 //------------------------------eq---------------------------------------------
3592 // Structural equality check for Type representations
3593 bool TypeInstPtr::eq( const Type *t ) const {
3594   const TypeInstPtr *p = t->is_instptr();
3595   return
3596     klass()->equals(p->klass()) &&
3597     TypeOopPtr::eq(p);          // Check sub-type stuff
3598 }
3599 
3600 //------------------------------hash-------------------------------------------
3601 // Type-specific hashing function.
3602 int TypeInstPtr::hash(void) const {
3603   int hash = klass()->hash() + TypeOopPtr::hash();
3604   return hash;
3605 }
3606 
3607 //------------------------------dump2------------------------------------------
3608 // Dump oop Type
3609 #ifndef PRODUCT
3610 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3611   // Print the name of the klass.
3612   klass()->print_name_on(st);
3613 
3614   switch( _ptr ) {
3615   case Constant:
3616     // TO DO: Make CI print the hex address of the underlying oop.
3617     if (WizardMode || Verbose) {
3618       const_oop()->print_oop(st);
3619     }
3620   case BotPTR:
3621     if (!WizardMode && !Verbose) {
3622       if( _klass_is_exact ) st->print(":exact");
3623       break;
3624     }
3625   case TopPTR:
3626   case AnyNull:
3627   case NotNull:
3628     st->print(":%s", ptr_msg[_ptr]);
3629     if( _klass_is_exact ) st->print(":exact");
3630     break;
3631   }
3632 
3633   if( _offset ) {               // Dump offset, if any
3634     if( _offset == OffsetBot )      st->print("+any");
3635     else if( _offset == OffsetTop ) st->print("+unknown");
3636     else st->print("+%d", _offset);
3637   }
3638 
3639   st->print(" *");
3640   if (_instance_id == InstanceTop)
3641     st->print(",iid=top");
3642   else if (_instance_id != InstanceBot)
3643     st->print(",iid=%d",_instance_id);
3644 
3645   dump_inline_depth(st);
3646   dump_speculative(st);
3647 }
3648 #endif
3649 
3650 //------------------------------add_offset-------------------------------------
3651 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3652   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
3653 }
3654 
3655 const Type *TypeInstPtr::remove_speculative() const {
3656   if (_speculative == NULL) {
3657     return this;
3658   }
3659   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3660   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL, _inline_depth);
3661 }
3662 
3663 const TypeOopPtr *TypeInstPtr::with_inline_depth(int depth) const {
3664   if (!UseInlineDepthForSpeculativeTypes) {
3665     return this;
3666   }
3667   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3668 }
3669 
3670 //=============================================================================
3671 // Convenience common pre-built types.
3672 const TypeAryPtr *TypeAryPtr::RANGE;
3673 const TypeAryPtr *TypeAryPtr::OOPS;
3674 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3675 const TypeAryPtr *TypeAryPtr::BYTES;
3676 const TypeAryPtr *TypeAryPtr::SHORTS;
3677 const TypeAryPtr *TypeAryPtr::CHARS;
3678 const TypeAryPtr *TypeAryPtr::INTS;
3679 const TypeAryPtr *TypeAryPtr::LONGS;
3680 const TypeAryPtr *TypeAryPtr::FLOATS;
3681 const TypeAryPtr *TypeAryPtr::DOUBLES;
3682 
3683 //------------------------------make-------------------------------------------
3684 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth) {
3685   assert(!(k == NULL && ary->_elem->isa_int()),
3686          "integral arrays must be pre-equipped with a class");
3687   if (!xk)  xk = ary->ary_must_be_exact();
3688   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3689   if (!UseExactTypes)  xk = (ptr == Constant);
3690   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3691 }
3692 
3693 //------------------------------make-------------------------------------------
3694 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, int inline_depth, bool is_autobox_cache) {
3695   assert(!(k == NULL && ary->_elem->isa_int()),
3696          "integral arrays must be pre-equipped with a class");
3697   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3698   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3699   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3700   if (!UseExactTypes)  xk = (ptr == Constant);
3701   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3702 }
3703 
3704 //------------------------------cast_to_ptr_type-------------------------------
3705 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3706   if( ptr == _ptr ) return this;
3707   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3708 }
3709 
3710 
3711 //-----------------------------cast_to_exactness-------------------------------
3712 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3713   if( klass_is_exact == _klass_is_exact ) return this;
3714   if (!UseExactTypes)  return this;
3715   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3716   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3717 }
3718 
3719 //-----------------------------cast_to_instance_id----------------------------
3720 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3721   if( instance_id == _instance_id ) return this;
3722   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3723 }
3724 
3725 //-----------------------------narrow_size_type-------------------------------
3726 // Local cache for arrayOopDesc::max_array_length(etype),
3727 // which is kind of slow (and cached elsewhere by other users).
3728 static jint max_array_length_cache[T_CONFLICT+1];
3729 static jint max_array_length(BasicType etype) {
3730   jint& cache = max_array_length_cache[etype];
3731   jint res = cache;
3732   if (res == 0) {
3733     switch (etype) {
3734     case T_NARROWOOP:
3735       etype = T_OBJECT;
3736       break;
3737     case T_NARROWKLASS:
3738     case T_CONFLICT:
3739     case T_ILLEGAL:
3740     case T_VOID:
3741       etype = T_BYTE;           // will produce conservatively high value
3742     }
3743     cache = res = arrayOopDesc::max_array_length(etype);
3744   }
3745   return res;
3746 }
3747 
3748 // Narrow the given size type to the index range for the given array base type.
3749 // Return NULL if the resulting int type becomes empty.
3750 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3751   jint hi = size->_hi;
3752   jint lo = size->_lo;
3753   jint min_lo = 0;
3754   jint max_hi = max_array_length(elem()->basic_type());
3755   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3756   bool chg = false;
3757   if (lo < min_lo) {
3758     lo = min_lo;
3759     if (size->is_con()) {
3760       hi = lo;
3761     }
3762     chg = true;
3763   }
3764   if (hi > max_hi) {
3765     hi = max_hi;
3766     if (size->is_con()) {
3767       lo = hi;
3768     }
3769     chg = true;
3770   }
3771   // Negative length arrays will produce weird intermediate dead fast-path code
3772   if (lo > hi)
3773     return TypeInt::ZERO;
3774   if (!chg)
3775     return size;
3776   return TypeInt::make(lo, hi, Type::WidenMin);
3777 }
3778 
3779 //-------------------------------cast_to_size----------------------------------
3780 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3781   assert(new_size != NULL, "");
3782   new_size = narrow_size_type(new_size);
3783   if (new_size == size())  return this;
3784   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3785   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3786 }
3787 
3788 
3789 //------------------------------cast_to_stable---------------------------------
3790 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3791   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3792     return this;
3793 
3794   const Type* elem = this->elem();
3795   const TypePtr* elem_ptr = elem->make_ptr();
3796 
3797   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3798     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3799     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3800   }
3801 
3802   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3803 
3804   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3805 }
3806 
3807 //-----------------------------stable_dimension--------------------------------
3808 int TypeAryPtr::stable_dimension() const {
3809   if (!is_stable())  return 0;
3810   int dim = 1;
3811   const TypePtr* elem_ptr = elem()->make_ptr();
3812   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3813     dim += elem_ptr->is_aryptr()->stable_dimension();
3814   return dim;
3815 }
3816 
3817 //------------------------------eq---------------------------------------------
3818 // Structural equality check for Type representations
3819 bool TypeAryPtr::eq( const Type *t ) const {
3820   const TypeAryPtr *p = t->is_aryptr();
3821   return
3822     _ary == p->_ary &&  // Check array
3823     TypeOopPtr::eq(p);  // Check sub-parts
3824 }
3825 
3826 //------------------------------hash-------------------------------------------
3827 // Type-specific hashing function.
3828 int TypeAryPtr::hash(void) const {
3829   return (intptr_t)_ary + TypeOopPtr::hash();
3830 }
3831 
3832 //------------------------------meet-------------------------------------------
3833 // Compute the MEET of two types.  It returns a new Type object.
3834 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3835   // Perform a fast test for common case; meeting the same types together.
3836   if( this == t ) return this;  // Meeting same type-rep?
3837   // Current "this->_base" is Pointer
3838   switch (t->base()) {          // switch on original type
3839 
3840   // Mixing ints & oops happens when javac reuses local variables
3841   case Int:
3842   case Long:
3843   case FloatTop:
3844   case FloatCon:
3845   case FloatBot:
3846   case DoubleTop:
3847   case DoubleCon:
3848   case DoubleBot:
3849   case NarrowOop:
3850   case NarrowKlass:
3851   case Bottom:                  // Ye Olde Default
3852     return Type::BOTTOM;
3853   case Top:
3854     return this;
3855 
3856   default:                      // All else is a mistake
3857     typerr(t);
3858 
3859   case OopPtr: {                // Meeting to OopPtrs
3860     // Found a OopPtr type vs self-AryPtr type
3861     const TypeOopPtr *tp = t->is_oopptr();
3862     int offset = meet_offset(tp->offset());
3863     PTR ptr = meet_ptr(tp->ptr());
3864     int depth = meet_inline_depth(tp->inline_depth());
3865     switch (tp->ptr()) {
3866     case TopPTR:
3867     case AnyNull: {
3868       int instance_id = meet_instance_id(InstanceTop);
3869       const TypeOopPtr* speculative = xmeet_speculative(tp);
3870       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3871                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
3872     }
3873     case BotPTR:
3874     case NotNull: {
3875       int instance_id = meet_instance_id(tp->instance_id());
3876       const TypeOopPtr* speculative = xmeet_speculative(tp);
3877       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3878     }
3879     default: ShouldNotReachHere();
3880     }
3881   }
3882 
3883   case AnyPtr: {                // Meeting two AnyPtrs
3884     // Found an AnyPtr type vs self-AryPtr type
3885     const TypePtr *tp = t->is_ptr();
3886     int offset = meet_offset(tp->offset());
3887     PTR ptr = meet_ptr(tp->ptr());
3888     switch (tp->ptr()) {
3889     case TopPTR:
3890       return this;
3891     case BotPTR:
3892     case NotNull:
3893       return TypePtr::make(AnyPtr, ptr, offset);
3894     case Null:
3895       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3896       // else fall through to AnyNull
3897     case AnyNull: {
3898       int instance_id = meet_instance_id(InstanceTop);
3899       const TypeOopPtr* speculative = _speculative;
3900       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3901                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, _inline_depth);
3902     }
3903     default: ShouldNotReachHere();
3904     }
3905   }
3906 
3907   case MetadataPtr:
3908   case KlassPtr:
3909   case RawPtr: return TypePtr::BOTTOM;
3910 
3911   case AryPtr: {                // Meeting 2 references?
3912     const TypeAryPtr *tap = t->is_aryptr();
3913     int off = meet_offset(tap->offset());
3914     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
3915     PTR ptr = meet_ptr(tap->ptr());
3916     int instance_id = meet_instance_id(tap->instance_id());
3917     const TypeOopPtr* speculative = xmeet_speculative(tap);
3918     int depth = meet_inline_depth(tap->inline_depth());
3919     ciKlass* lazy_klass = NULL;
3920     if (tary->_elem->isa_int()) {
3921       // Integral array element types have irrelevant lattice relations.
3922       // It is the klass that determines array layout, not the element type.
3923       if (_klass == NULL)
3924         lazy_klass = tap->_klass;
3925       else if (tap->_klass == NULL || tap->_klass == _klass) {
3926         lazy_klass = _klass;
3927       } else {
3928         // Something like byte[int+] meets char[int+].
3929         // This must fall to bottom, not (int[-128..65535])[int+].
3930         instance_id = InstanceBot;
3931         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3932       }
3933     } else // Non integral arrays.
3934       // Must fall to bottom if exact klasses in upper lattice
3935       // are not equal or super klass is exact.
3936       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
3937           // meet with top[] and bottom[] are processed further down:
3938           tap->_klass != NULL  && this->_klass != NULL   &&
3939           // both are exact and not equal:
3940           ((tap->_klass_is_exact && this->_klass_is_exact) ||
3941            // 'tap'  is exact and super or unrelated:
3942            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3943            // 'this' is exact and super or unrelated:
3944            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3945       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3946       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
3947     }
3948 
3949     bool xk = false;
3950     switch (tap->ptr()) {
3951     case AnyNull:
3952     case TopPTR:
3953       // Compute new klass on demand, do not use tap->_klass
3954       if (below_centerline(this->_ptr)) {
3955         xk = this->_klass_is_exact;
3956       } else {
3957         xk = (tap->_klass_is_exact | this->_klass_is_exact);
3958       }
3959       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
3960     case Constant: {
3961       ciObject* o = const_oop();
3962       if( _ptr == Constant ) {
3963         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3964           xk = (klass() == tap->klass());
3965           ptr = NotNull;
3966           o = NULL;
3967           instance_id = InstanceBot;
3968         } else {
3969           xk = true;
3970         }
3971       } else if(above_centerline(_ptr)) {
3972         o = tap->const_oop();
3973         xk = true;
3974       } else {
3975         // Only precise for identical arrays
3976         xk = this->_klass_is_exact && (klass() == tap->klass());
3977       }
3978       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
3979     }
3980     case NotNull:
3981     case BotPTR:
3982       // Compute new klass on demand, do not use tap->_klass
3983       if (above_centerline(this->_ptr))
3984             xk = tap->_klass_is_exact;
3985       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3986               (klass() == tap->klass()); // Only precise for identical arrays
3987       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
3988     default: ShouldNotReachHere();
3989     }
3990   }
3991 
3992   // All arrays inherit from Object class
3993   case InstPtr: {
3994     const TypeInstPtr *tp = t->is_instptr();
3995     int offset = meet_offset(tp->offset());
3996     PTR ptr = meet_ptr(tp->ptr());
3997     int instance_id = meet_instance_id(tp->instance_id());
3998     const TypeOopPtr* speculative = xmeet_speculative(tp);
3999     int depth = meet_inline_depth(tp->inline_depth());
4000     switch (ptr) {
4001     case TopPTR:
4002     case AnyNull:                // Fall 'down' to dual of object klass
4003       // For instances when a subclass meets a superclass we fall
4004       // below the centerline when the superclass is exact. We need to
4005       // do the same here.
4006       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4007         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4008       } else {
4009         // cannot subclass, so the meet has to fall badly below the centerline
4010         ptr = NotNull;
4011         instance_id = InstanceBot;
4012         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4013       }
4014     case Constant:
4015     case NotNull:
4016     case BotPTR:                // Fall down to object klass
4017       // LCA is object_klass, but if we subclass from the top we can do better
4018       if (above_centerline(tp->ptr())) {
4019         // If 'tp'  is above the centerline and it is Object class
4020         // then we can subclass in the Java class hierarchy.
4021         // For instances when a subclass meets a superclass we fall
4022         // below the centerline when the superclass is exact. We need
4023         // to do the same here.
4024         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4025           // that is, my array type is a subtype of 'tp' klass
4026           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4027                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4028         }
4029       }
4030       // The other case cannot happen, since t cannot be a subtype of an array.
4031       // The meet falls down to Object class below centerline.
4032       if( ptr == Constant )
4033          ptr = NotNull;
4034       instance_id = InstanceBot;
4035       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4036     default: typerr(t);
4037     }
4038   }
4039   }
4040   return this;                  // Lint noise
4041 }
4042 
4043 //------------------------------xdual------------------------------------------
4044 // Dual: compute field-by-field dual
4045 const Type *TypeAryPtr::xdual() const {
4046   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4047 }
4048 
4049 //----------------------interface_vs_oop---------------------------------------
4050 #ifdef ASSERT
4051 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4052   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4053   if (t_aryptr) {
4054     return _ary->interface_vs_oop(t_aryptr->_ary);
4055   }
4056   return false;
4057 }
4058 #endif
4059 
4060 //------------------------------dump2------------------------------------------
4061 #ifndef PRODUCT
4062 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4063   _ary->dump2(d,depth,st);
4064   switch( _ptr ) {
4065   case Constant:
4066     const_oop()->print(st);
4067     break;
4068   case BotPTR:
4069     if (!WizardMode && !Verbose) {
4070       if( _klass_is_exact ) st->print(":exact");
4071       break;
4072     }
4073   case TopPTR:
4074   case AnyNull:
4075   case NotNull:
4076     st->print(":%s", ptr_msg[_ptr]);
4077     if( _klass_is_exact ) st->print(":exact");
4078     break;
4079   }
4080 
4081   if( _offset != 0 ) {
4082     int header_size = objArrayOopDesc::header_size() * wordSize;
4083     if( _offset == OffsetTop )       st->print("+undefined");
4084     else if( _offset == OffsetBot )  st->print("+any");
4085     else if( _offset < header_size ) st->print("+%d", _offset);
4086     else {
4087       BasicType basic_elem_type = elem()->basic_type();
4088       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4089       int elem_size = type2aelembytes(basic_elem_type);
4090       st->print("[%d]", (_offset - array_base)/elem_size);
4091     }
4092   }
4093   st->print(" *");
4094   if (_instance_id == InstanceTop)
4095     st->print(",iid=top");
4096   else if (_instance_id != InstanceBot)
4097     st->print(",iid=%d",_instance_id);
4098 
4099   dump_inline_depth(st);
4100   dump_speculative(st);
4101 }
4102 #endif
4103 
4104 bool TypeAryPtr::empty(void) const {
4105   if (_ary->empty())       return true;
4106   return TypeOopPtr::empty();
4107 }
4108 
4109 //------------------------------add_offset-------------------------------------
4110 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4111   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4112 }
4113 
4114 const Type *TypeAryPtr::remove_speculative() const {
4115   if (_speculative == NULL) {
4116     return this;
4117   }
4118   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4119   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4120 }
4121 
4122 const TypeOopPtr *TypeAryPtr::with_inline_depth(int depth) const {
4123   if (!UseInlineDepthForSpeculativeTypes) {
4124     return this;
4125   }
4126   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4127 }
4128 
4129 //=============================================================================
4130 
4131 //------------------------------hash-------------------------------------------
4132 // Type-specific hashing function.
4133 int TypeNarrowPtr::hash(void) const {
4134   return _ptrtype->hash() + 7;
4135 }
4136 
4137 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4138   return _ptrtype->singleton();
4139 }
4140 
4141 bool TypeNarrowPtr::empty(void) const {
4142   return _ptrtype->empty();
4143 }
4144 
4145 intptr_t TypeNarrowPtr::get_con() const {
4146   return _ptrtype->get_con();
4147 }
4148 
4149 bool TypeNarrowPtr::eq( const Type *t ) const {
4150   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4151   if (tc != NULL) {
4152     if (_ptrtype->base() != tc->_ptrtype->base()) {
4153       return false;
4154     }
4155     return tc->_ptrtype->eq(_ptrtype);
4156   }
4157   return false;
4158 }
4159 
4160 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4161   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4162   return make_same_narrowptr(odual);
4163 }
4164 
4165 
4166 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4167   if (isa_same_narrowptr(kills)) {
4168     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4169     if (ft->empty())
4170       return Type::TOP;           // Canonical empty value
4171     if (ft->isa_ptr()) {
4172       return make_hash_same_narrowptr(ft->isa_ptr());
4173     }
4174     return ft;
4175   } else if (kills->isa_ptr()) {
4176     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4177     if (ft->empty())
4178       return Type::TOP;           // Canonical empty value
4179     return ft;
4180   } else {
4181     return Type::TOP;
4182   }
4183 }
4184 
4185 //------------------------------xmeet------------------------------------------
4186 // Compute the MEET of two types.  It returns a new Type object.
4187 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4188   // Perform a fast test for common case; meeting the same types together.
4189   if( this == t ) return this;  // Meeting same type-rep?
4190 
4191   if (t->base() == base()) {
4192     const Type* result = _ptrtype->xmeet(t->make_ptr());
4193     if (result->isa_ptr()) {
4194       return make_hash_same_narrowptr(result->is_ptr());
4195     }
4196     return result;
4197   }
4198 
4199   // Current "this->_base" is NarrowKlass or NarrowOop
4200   switch (t->base()) {          // switch on original type
4201 
4202   case Int:                     // Mixing ints & oops happens when javac
4203   case Long:                    // reuses local variables
4204   case FloatTop:
4205   case FloatCon:
4206   case FloatBot:
4207   case DoubleTop:
4208   case DoubleCon:
4209   case DoubleBot:
4210   case AnyPtr:
4211   case RawPtr:
4212   case OopPtr:
4213   case InstPtr:
4214   case AryPtr:
4215   case MetadataPtr:
4216   case KlassPtr:
4217   case NarrowOop:
4218   case NarrowKlass:
4219 
4220   case Bottom:                  // Ye Olde Default
4221     return Type::BOTTOM;
4222   case Top:
4223     return this;
4224 
4225   default:                      // All else is a mistake
4226     typerr(t);
4227 
4228   } // End of switch
4229 
4230   return this;
4231 }
4232 
4233 #ifndef PRODUCT
4234 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4235   _ptrtype->dump2(d, depth, st);
4236 }
4237 #endif
4238 
4239 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4240 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4241 
4242 
4243 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4244   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4245 }
4246 
4247 
4248 #ifndef PRODUCT
4249 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4250   st->print("narrowoop: ");
4251   TypeNarrowPtr::dump2(d, depth, st);
4252 }
4253 #endif
4254 
4255 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4256 
4257 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4258   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4259 }
4260 
4261 #ifndef PRODUCT
4262 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4263   st->print("narrowklass: ");
4264   TypeNarrowPtr::dump2(d, depth, st);
4265 }
4266 #endif
4267 
4268 
4269 //------------------------------eq---------------------------------------------
4270 // Structural equality check for Type representations
4271 bool TypeMetadataPtr::eq( const Type *t ) const {
4272   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4273   ciMetadata* one = metadata();
4274   ciMetadata* two = a->metadata();
4275   if (one == NULL || two == NULL) {
4276     return (one == two) && TypePtr::eq(t);
4277   } else {
4278     return one->equals(two) && TypePtr::eq(t);
4279   }
4280 }
4281 
4282 //------------------------------hash-------------------------------------------
4283 // Type-specific hashing function.
4284 int TypeMetadataPtr::hash(void) const {
4285   return
4286     (metadata() ? metadata()->hash() : 0) +
4287     TypePtr::hash();
4288 }
4289 
4290 //------------------------------singleton--------------------------------------
4291 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4292 // constants
4293 bool TypeMetadataPtr::singleton(void) const {
4294   // detune optimizer to not generate constant metadta + constant offset as a constant!
4295   // TopPTR, Null, AnyNull, Constant are all singletons
4296   return (_offset == 0) && !below_centerline(_ptr);
4297 }
4298 
4299 //------------------------------add_offset-------------------------------------
4300 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4301   return make( _ptr, _metadata, xadd_offset(offset));
4302 }
4303 
4304 //-----------------------------filter------------------------------------------
4305 // Do not allow interface-vs.-noninterface joins to collapse to top.
4306 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4307   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4308   if (ft == NULL || ft->empty())
4309     return Type::TOP;           // Canonical empty value
4310   return ft;
4311 }
4312 
4313  //------------------------------get_con----------------------------------------
4314 intptr_t TypeMetadataPtr::get_con() const {
4315   assert( _ptr == Null || _ptr == Constant, "" );
4316   assert( _offset >= 0, "" );
4317 
4318   if (_offset != 0) {
4319     // After being ported to the compiler interface, the compiler no longer
4320     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4321     // to a handle at compile time.  This handle is embedded in the generated
4322     // code and dereferenced at the time the nmethod is made.  Until that time,
4323     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4324     // have access to the addresses!).  This does not seem to currently happen,
4325     // but this assertion here is to help prevent its occurence.
4326     tty->print_cr("Found oop constant with non-zero offset");
4327     ShouldNotReachHere();
4328   }
4329 
4330   return (intptr_t)metadata()->constant_encoding();
4331 }
4332 
4333 //------------------------------cast_to_ptr_type-------------------------------
4334 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4335   if( ptr == _ptr ) return this;
4336   return make(ptr, metadata(), _offset);
4337 }
4338 
4339 //------------------------------meet-------------------------------------------
4340 // Compute the MEET of two types.  It returns a new Type object.
4341 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4342   // Perform a fast test for common case; meeting the same types together.
4343   if( this == t ) return this;  // Meeting same type-rep?
4344 
4345   // Current "this->_base" is OopPtr
4346   switch (t->base()) {          // switch on original type
4347 
4348   case Int:                     // Mixing ints & oops happens when javac
4349   case Long:                    // reuses local variables
4350   case FloatTop:
4351   case FloatCon:
4352   case FloatBot:
4353   case DoubleTop:
4354   case DoubleCon:
4355   case DoubleBot:
4356   case NarrowOop:
4357   case NarrowKlass:
4358   case Bottom:                  // Ye Olde Default
4359     return Type::BOTTOM;
4360   case Top:
4361     return this;
4362 
4363   default:                      // All else is a mistake
4364     typerr(t);
4365 
4366   case AnyPtr: {
4367     // Found an AnyPtr type vs self-OopPtr type
4368     const TypePtr *tp = t->is_ptr();
4369     int offset = meet_offset(tp->offset());
4370     PTR ptr = meet_ptr(tp->ptr());
4371     switch (tp->ptr()) {
4372     case Null:
4373       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4374       // else fall through:
4375     case TopPTR:
4376     case AnyNull: {
4377       return make(ptr, _metadata, offset);
4378     }
4379     case BotPTR:
4380     case NotNull:
4381       return TypePtr::make(AnyPtr, ptr, offset);
4382     default: typerr(t);
4383     }
4384   }
4385 
4386   case RawPtr:
4387   case KlassPtr:
4388   case OopPtr:
4389   case InstPtr:
4390   case AryPtr:
4391     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4392 
4393   case MetadataPtr: {
4394     const TypeMetadataPtr *tp = t->is_metadataptr();
4395     int offset = meet_offset(tp->offset());
4396     PTR tptr = tp->ptr();
4397     PTR ptr = meet_ptr(tptr);
4398     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4399     if (tptr == TopPTR || _ptr == TopPTR ||
4400         metadata()->equals(tp->metadata())) {
4401       return make(ptr, md, offset);
4402     }
4403     // metadata is different
4404     if( ptr == Constant ) {  // Cannot be equal constants, so...
4405       if( tptr == Constant && _ptr != Constant)  return t;
4406       if( _ptr == Constant && tptr != Constant)  return this;
4407       ptr = NotNull;            // Fall down in lattice
4408     }
4409     return make(ptr, NULL, offset);
4410     break;
4411   }
4412   } // End of switch
4413   return this;                  // Return the double constant
4414 }
4415 
4416 
4417 //------------------------------xdual------------------------------------------
4418 // Dual of a pure metadata pointer.
4419 const Type *TypeMetadataPtr::xdual() const {
4420   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4421 }
4422 
4423 //------------------------------dump2------------------------------------------
4424 #ifndef PRODUCT
4425 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4426   st->print("metadataptr:%s", ptr_msg[_ptr]);
4427   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4428   switch( _offset ) {
4429   case OffsetTop: st->print("+top"); break;
4430   case OffsetBot: st->print("+any"); break;
4431   case         0: break;
4432   default:        st->print("+%d",_offset); break;
4433   }
4434 }
4435 #endif
4436 
4437 
4438 //=============================================================================
4439 // Convenience common pre-built type.
4440 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4441 
4442 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4443   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4444 }
4445 
4446 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4447   return make(Constant, m, 0);
4448 }
4449 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4450   return make(Constant, m, 0);
4451 }
4452 
4453 //------------------------------make-------------------------------------------
4454 // Create a meta data constant
4455 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4456   assert(m == NULL || !m->is_klass(), "wrong type");
4457   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4458 }
4459 
4460 
4461 //=============================================================================
4462 // Convenience common pre-built types.
4463 
4464 // Not-null object klass or below
4465 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4466 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4467 
4468 //------------------------------TypeKlassPtr-----------------------------------
4469 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4470   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4471 }
4472 
4473 //------------------------------make-------------------------------------------
4474 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4475 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4476   assert( k != NULL, "Expect a non-NULL klass");
4477   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4478   TypeKlassPtr *r =
4479     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4480 
4481   return r;
4482 }
4483 
4484 //------------------------------eq---------------------------------------------
4485 // Structural equality check for Type representations
4486 bool TypeKlassPtr::eq( const Type *t ) const {
4487   const TypeKlassPtr *p = t->is_klassptr();
4488   return
4489     klass()->equals(p->klass()) &&
4490     TypePtr::eq(p);
4491 }
4492 
4493 //------------------------------hash-------------------------------------------
4494 // Type-specific hashing function.
4495 int TypeKlassPtr::hash(void) const {
4496   return klass()->hash() + TypePtr::hash();
4497 }
4498 
4499 //------------------------------singleton--------------------------------------
4500 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4501 // constants
4502 bool TypeKlassPtr::singleton(void) const {
4503   // detune optimizer to not generate constant klass + constant offset as a constant!
4504   // TopPTR, Null, AnyNull, Constant are all singletons
4505   return (_offset == 0) && !below_centerline(_ptr);
4506 }
4507 
4508 // Do not allow interface-vs.-noninterface joins to collapse to top.
4509 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4510   // logic here mirrors the one from TypeOopPtr::filter. See comments
4511   // there.
4512   const Type* ft = join_helper(kills, include_speculative);
4513   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4514   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4515 
4516   if (ft->empty()) {
4517     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4518       return kills;             // Uplift to interface
4519 
4520     return Type::TOP;           // Canonical empty value
4521   }
4522 
4523   // Interface klass type could be exact in opposite to interface type,
4524   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4525   if (ftkp != NULL && ktkp != NULL &&
4526       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4527       !ftkp->klass_is_exact() && // Keep exact interface klass
4528       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4529     return ktkp->cast_to_ptr_type(ftkp->ptr());
4530   }
4531 
4532   return ft;
4533 }
4534 
4535 //----------------------compute_klass------------------------------------------
4536 // Compute the defining klass for this class
4537 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4538   // Compute _klass based on element type.
4539   ciKlass* k_ary = NULL;
4540   const TypeInstPtr *tinst;
4541   const TypeAryPtr *tary;
4542   const Type* el = elem();
4543   if (el->isa_narrowoop()) {
4544     el = el->make_ptr();
4545   }
4546 
4547   // Get element klass
4548   if ((tinst = el->isa_instptr()) != NULL) {
4549     // Compute array klass from element klass
4550     k_ary = ciObjArrayKlass::make(tinst->klass());
4551   } else if ((tary = el->isa_aryptr()) != NULL) {
4552     // Compute array klass from element klass
4553     ciKlass* k_elem = tary->klass();
4554     // If element type is something like bottom[], k_elem will be null.
4555     if (k_elem != NULL)
4556       k_ary = ciObjArrayKlass::make(k_elem);
4557   } else if ((el->base() == Type::Top) ||
4558              (el->base() == Type::Bottom)) {
4559     // element type of Bottom occurs from meet of basic type
4560     // and object; Top occurs when doing join on Bottom.
4561     // Leave k_ary at NULL.
4562   } else {
4563     // Cannot compute array klass directly from basic type,
4564     // since subtypes of TypeInt all have basic type T_INT.
4565 #ifdef ASSERT
4566     if (verify && el->isa_int()) {
4567       // Check simple cases when verifying klass.
4568       BasicType bt = T_ILLEGAL;
4569       if (el == TypeInt::BYTE) {
4570         bt = T_BYTE;
4571       } else if (el == TypeInt::SHORT) {
4572         bt = T_SHORT;
4573       } else if (el == TypeInt::CHAR) {
4574         bt = T_CHAR;
4575       } else if (el == TypeInt::INT) {
4576         bt = T_INT;
4577       } else {
4578         return _klass; // just return specified klass
4579       }
4580       return ciTypeArrayKlass::make(bt);
4581     }
4582 #endif
4583     assert(!el->isa_int(),
4584            "integral arrays must be pre-equipped with a class");
4585     // Compute array klass directly from basic type
4586     k_ary = ciTypeArrayKlass::make(el->basic_type());
4587   }
4588   return k_ary;
4589 }
4590 
4591 //------------------------------klass------------------------------------------
4592 // Return the defining klass for this class
4593 ciKlass* TypeAryPtr::klass() const {
4594   if( _klass ) return _klass;   // Return cached value, if possible
4595 
4596   // Oops, need to compute _klass and cache it
4597   ciKlass* k_ary = compute_klass();
4598 
4599   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4600     // The _klass field acts as a cache of the underlying
4601     // ciKlass for this array type.  In order to set the field,
4602     // we need to cast away const-ness.
4603     //
4604     // IMPORTANT NOTE: we *never* set the _klass field for the
4605     // type TypeAryPtr::OOPS.  This Type is shared between all
4606     // active compilations.  However, the ciKlass which represents
4607     // this Type is *not* shared between compilations, so caching
4608     // this value would result in fetching a dangling pointer.
4609     //
4610     // Recomputing the underlying ciKlass for each request is
4611     // a bit less efficient than caching, but calls to
4612     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4613     ((TypeAryPtr*)this)->_klass = k_ary;
4614     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4615         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4616       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4617     }
4618   }
4619   return k_ary;
4620 }
4621 
4622 
4623 //------------------------------add_offset-------------------------------------
4624 // Access internals of klass object
4625 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4626   return make( _ptr, klass(), xadd_offset(offset) );
4627 }
4628 
4629 //------------------------------cast_to_ptr_type-------------------------------
4630 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4631   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4632   if( ptr == _ptr ) return this;
4633   return make(ptr, _klass, _offset);
4634 }
4635 
4636 
4637 //-----------------------------cast_to_exactness-------------------------------
4638 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4639   if( klass_is_exact == _klass_is_exact ) return this;
4640   if (!UseExactTypes)  return this;
4641   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4642 }
4643 
4644 
4645 //-----------------------------as_instance_type--------------------------------
4646 // Corresponding type for an instance of the given class.
4647 // It will be NotNull, and exact if and only if the klass type is exact.
4648 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4649   ciKlass* k = klass();
4650   bool    xk = klass_is_exact();
4651   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4652   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4653   guarantee(toop != NULL, "need type for given klass");
4654   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4655   return toop->cast_to_exactness(xk)->is_oopptr();
4656 }
4657 
4658 
4659 //------------------------------xmeet------------------------------------------
4660 // Compute the MEET of two types, return a new Type object.
4661 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4662   // Perform a fast test for common case; meeting the same types together.
4663   if( this == t ) return this;  // Meeting same type-rep?
4664 
4665   // Current "this->_base" is Pointer
4666   switch (t->base()) {          // switch on original type
4667 
4668   case Int:                     // Mixing ints & oops happens when javac
4669   case Long:                    // reuses local variables
4670   case FloatTop:
4671   case FloatCon:
4672   case FloatBot:
4673   case DoubleTop:
4674   case DoubleCon:
4675   case DoubleBot:
4676   case NarrowOop:
4677   case NarrowKlass:
4678   case Bottom:                  // Ye Olde Default
4679     return Type::BOTTOM;
4680   case Top:
4681     return this;
4682 
4683   default:                      // All else is a mistake
4684     typerr(t);
4685 
4686   case AnyPtr: {                // Meeting to AnyPtrs
4687     // Found an AnyPtr type vs self-KlassPtr type
4688     const TypePtr *tp = t->is_ptr();
4689     int offset = meet_offset(tp->offset());
4690     PTR ptr = meet_ptr(tp->ptr());
4691     switch (tp->ptr()) {
4692     case TopPTR:
4693       return this;
4694     case Null:
4695       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4696     case AnyNull:
4697       return make( ptr, klass(), offset );
4698     case BotPTR:
4699     case NotNull:
4700       return TypePtr::make(AnyPtr, ptr, offset);
4701     default: typerr(t);
4702     }
4703   }
4704 
4705   case RawPtr:
4706   case MetadataPtr:
4707   case OopPtr:
4708   case AryPtr:                  // Meet with AryPtr
4709   case InstPtr:                 // Meet with InstPtr
4710     return TypePtr::BOTTOM;
4711 
4712   //
4713   //             A-top         }
4714   //           /   |   \       }  Tops
4715   //       B-top A-any C-top   }
4716   //          | /  |  \ |      }  Any-nulls
4717   //       B-any   |   C-any   }
4718   //          |    |    |
4719   //       B-con A-con C-con   } constants; not comparable across classes
4720   //          |    |    |
4721   //       B-not   |   C-not   }
4722   //          | \  |  / |      }  not-nulls
4723   //       B-bot A-not C-bot   }
4724   //           \   |   /       }  Bottoms
4725   //             A-bot         }
4726   //
4727 
4728   case KlassPtr: {  // Meet two KlassPtr types
4729     const TypeKlassPtr *tkls = t->is_klassptr();
4730     int  off     = meet_offset(tkls->offset());
4731     PTR  ptr     = meet_ptr(tkls->ptr());
4732 
4733     // Check for easy case; klasses are equal (and perhaps not loaded!)
4734     // If we have constants, then we created oops so classes are loaded
4735     // and we can handle the constants further down.  This case handles
4736     // not-loaded classes
4737     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4738       return make( ptr, klass(), off );
4739     }
4740 
4741     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4742     ciKlass* tkls_klass = tkls->klass();
4743     ciKlass* this_klass = this->klass();
4744     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4745     assert( this_klass->is_loaded(), "This class should have been loaded.");
4746 
4747     // If 'this' type is above the centerline and is a superclass of the
4748     // other, we can treat 'this' as having the same type as the other.
4749     if ((above_centerline(this->ptr())) &&
4750         tkls_klass->is_subtype_of(this_klass)) {
4751       this_klass = tkls_klass;
4752     }
4753     // If 'tinst' type is above the centerline and is a superclass of the
4754     // other, we can treat 'tinst' as having the same type as the other.
4755     if ((above_centerline(tkls->ptr())) &&
4756         this_klass->is_subtype_of(tkls_klass)) {
4757       tkls_klass = this_klass;
4758     }
4759 
4760     // Check for classes now being equal
4761     if (tkls_klass->equals(this_klass)) {
4762       // If the klasses are equal, the constants may still differ.  Fall to
4763       // NotNull if they do (neither constant is NULL; that is a special case
4764       // handled elsewhere).
4765       if( ptr == Constant ) {
4766         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4767             this->klass()->equals(tkls->klass()));
4768         else if (above_centerline(this->ptr()));
4769         else if (above_centerline(tkls->ptr()));
4770         else
4771           ptr = NotNull;
4772       }
4773       return make( ptr, this_klass, off );
4774     } // Else classes are not equal
4775 
4776     // Since klasses are different, we require the LCA in the Java
4777     // class hierarchy - which means we have to fall to at least NotNull.
4778     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4779       ptr = NotNull;
4780     // Now we find the LCA of Java classes
4781     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4782     return   make( ptr, k, off );
4783   } // End of case KlassPtr
4784 
4785   } // End of switch
4786   return this;                  // Return the double constant
4787 }
4788 
4789 //------------------------------xdual------------------------------------------
4790 // Dual: compute field-by-field dual
4791 const Type    *TypeKlassPtr::xdual() const {
4792   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4793 }
4794 
4795 //------------------------------get_con----------------------------------------
4796 intptr_t TypeKlassPtr::get_con() const {
4797   assert( _ptr == Null || _ptr == Constant, "" );
4798   assert( _offset >= 0, "" );
4799 
4800   if (_offset != 0) {
4801     // After being ported to the compiler interface, the compiler no longer
4802     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4803     // to a handle at compile time.  This handle is embedded in the generated
4804     // code and dereferenced at the time the nmethod is made.  Until that time,
4805     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4806     // have access to the addresses!).  This does not seem to currently happen,
4807     // but this assertion here is to help prevent its occurence.
4808     tty->print_cr("Found oop constant with non-zero offset");
4809     ShouldNotReachHere();
4810   }
4811 
4812   return (intptr_t)klass()->constant_encoding();
4813 }
4814 //------------------------------dump2------------------------------------------
4815 // Dump Klass Type
4816 #ifndef PRODUCT
4817 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4818   switch( _ptr ) {
4819   case Constant:
4820     st->print("precise ");
4821   case NotNull:
4822     {
4823       const char *name = klass()->name()->as_utf8();
4824       if( name ) {
4825         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4826       } else {
4827         ShouldNotReachHere();
4828       }
4829     }
4830   case BotPTR:
4831     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4832   case TopPTR:
4833   case AnyNull:
4834     st->print(":%s", ptr_msg[_ptr]);
4835     if( _klass_is_exact ) st->print(":exact");
4836     break;
4837   }
4838 
4839   if( _offset ) {               // Dump offset, if any
4840     if( _offset == OffsetBot )      { st->print("+any"); }
4841     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4842     else                            { st->print("+%d", _offset); }
4843   }
4844 
4845   st->print(" *");
4846 }
4847 #endif
4848 
4849 
4850 
4851 //=============================================================================
4852 // Convenience common pre-built types.
4853 
4854 //------------------------------make-------------------------------------------
4855 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4856   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4857 }
4858 
4859 //------------------------------make-------------------------------------------
4860 const TypeFunc *TypeFunc::make(ciMethod* method) {
4861   Compile* C = Compile::current();
4862   const TypeFunc* tf = C->last_tf(method); // check cache
4863   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4864   const TypeTuple *domain;
4865   if (method->is_static()) {
4866     domain = TypeTuple::make_domain(NULL, method->signature());
4867   } else {
4868     domain = TypeTuple::make_domain(method->holder(), method->signature());
4869   }
4870   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4871   tf = TypeFunc::make(domain, range);
4872   C->set_last_tf(method, tf);  // fill cache
4873   return tf;
4874 }
4875 
4876 //------------------------------meet-------------------------------------------
4877 // Compute the MEET of two types.  It returns a new Type object.
4878 const Type *TypeFunc::xmeet( const Type *t ) const {
4879   // Perform a fast test for common case; meeting the same types together.
4880   if( this == t ) return this;  // Meeting same type-rep?
4881 
4882   // Current "this->_base" is Func
4883   switch (t->base()) {          // switch on original type
4884 
4885   case Bottom:                  // Ye Olde Default
4886     return t;
4887 
4888   default:                      // All else is a mistake
4889     typerr(t);
4890 
4891   case Top:
4892     break;
4893   }
4894   return this;                  // Return the double constant
4895 }
4896 
4897 //------------------------------xdual------------------------------------------
4898 // Dual: compute field-by-field dual
4899 const Type *TypeFunc::xdual() const {
4900   return this;
4901 }
4902 
4903 //------------------------------eq---------------------------------------------
4904 // Structural equality check for Type representations
4905 bool TypeFunc::eq( const Type *t ) const {
4906   const TypeFunc *a = (const TypeFunc*)t;
4907   return _domain == a->_domain &&
4908     _range == a->_range;
4909 }
4910 
4911 //------------------------------hash-------------------------------------------
4912 // Type-specific hashing function.
4913 int TypeFunc::hash(void) const {
4914   return (intptr_t)_domain + (intptr_t)_range;
4915 }
4916 
4917 //------------------------------dump2------------------------------------------
4918 // Dump Function Type
4919 #ifndef PRODUCT
4920 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4921   if( _range->_cnt <= Parms )
4922     st->print("void");
4923   else {
4924     uint i;
4925     for (i = Parms; i < _range->_cnt-1; i++) {
4926       _range->field_at(i)->dump2(d,depth,st);
4927       st->print("/");
4928     }
4929     _range->field_at(i)->dump2(d,depth,st);
4930   }
4931   st->print(" ");
4932   st->print("( ");
4933   if( !depth || d[this] ) {     // Check for recursive dump
4934     st->print("...)");
4935     return;
4936   }
4937   d.Insert((void*)this,(void*)this);    // Stop recursion
4938   if (Parms < _domain->_cnt)
4939     _domain->field_at(Parms)->dump2(d,depth-1,st);
4940   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4941     st->print(", ");
4942     _domain->field_at(i)->dump2(d,depth-1,st);
4943   }
4944   st->print(" )");
4945 }
4946 #endif
4947 
4948 //------------------------------singleton--------------------------------------
4949 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4950 // constants (Ldi nodes).  Singletons are integer, float or double constants
4951 // or a single symbol.
4952 bool TypeFunc::singleton(void) const {
4953   return false;                 // Never a singleton
4954 }
4955 
4956 bool TypeFunc::empty(void) const {
4957   return false;                 // Never empty
4958 }
4959 
4960 
4961 BasicType TypeFunc::return_type() const{
4962   if (range()->cnt() == TypeFunc::Parms) {
4963     return T_VOID;
4964   }
4965   return range()->field_at(TypeFunc::Parms)->basic_type();
4966 }