1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/osThread.hpp"
  62 #include "runtime/safepoint.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/statSampler.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/task.hpp"
  67 #include "runtime/thread.inline.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/threadLocalStorage.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "runtime/vm_operations.hpp"
  75 #include "services/attachListener.hpp"
  76 #include "services/management.hpp"
  77 #include "services/memTracker.hpp"
  78 #include "services/threadService.hpp"
  79 #include "trace/tracing.hpp"
  80 #include "trace/traceMacros.hpp"
  81 #include "utilities/defaultStream.hpp"
  82 #include "utilities/dtrace.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/preserveException.hpp"
  85 #include "utilities/macros.hpp"
  86 #ifdef TARGET_OS_FAMILY_linux
  87 # include "os_linux.inline.hpp"
  88 #endif
  89 #ifdef TARGET_OS_FAMILY_solaris
  90 # include "os_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 #endif
  95 #ifdef TARGET_OS_FAMILY_bsd
  96 # include "os_bsd.inline.hpp"
  97 #endif
  98 #if INCLUDE_ALL_GCS
  99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 #if INCLUDE_RTM_OPT
 111 #include "runtime/rtmLocking.hpp"
 112 #endif
 113 
 114 #ifdef DTRACE_ENABLED
 115 
 116 // Only bother with this argument setup if dtrace is available
 117 
 118 #ifndef USDT2
 119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 120 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 121 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 122   intptr_t, intptr_t, bool);
 123 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 124   intptr_t, intptr_t, bool);
 125 
 126 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 127   {                                                                        \
 128     ResourceMark rm(this);                                                 \
 129     int len = 0;                                                           \
 130     const char* name = (javathread)->get_thread_name();                    \
 131     len = strlen(name);                                                    \
 132     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 133       name, len,                                                           \
 134       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 135       (javathread)->osthread()->thread_id(),                               \
 136       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 137   }
 138 
 139 #else /* USDT2 */
 140 
 141 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 142 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 143 
 144 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 145   {                                                                        \
 146     ResourceMark rm(this);                                                 \
 147     int len = 0;                                                           \
 148     const char* name = (javathread)->get_thread_name();                    \
 149     len = strlen(name);                                                    \
 150     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 151       (char *) name, len,                                                           \
 152       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 153       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 154       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 155   }
 156 
 157 #endif /* USDT2 */
 158 
 159 #else //  ndef DTRACE_ENABLED
 160 
 161 #define DTRACE_THREAD_PROBE(probe, javathread)
 162 
 163 #endif // ndef DTRACE_ENABLED
 164 
 165 
 166 // Class hierarchy
 167 // - Thread
 168 //   - VMThread
 169 //   - WatcherThread
 170 //   - ConcurrentMarkSweepThread
 171 //   - JavaThread
 172 //     - CompilerThread
 173 
 174 // ======= Thread ========
 175 // Support for forcing alignment of thread objects for biased locking
 176 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 177   if (UseBiasedLocking) {
 178     const int alignment = markOopDesc::biased_lock_alignment;
 179     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 180     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 181                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 182                                               AllocFailStrategy::RETURN_NULL);
 183     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 184     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 185            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 186            "JavaThread alignment code overflowed allocated storage");
 187     if (TraceBiasedLocking) {
 188       if (aligned_addr != real_malloc_addr)
 189         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 190                       real_malloc_addr, aligned_addr);
 191     }
 192     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 193     return aligned_addr;
 194   } else {
 195     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 196                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 197   }
 198 }
 199 
 200 void Thread::operator delete(void* p) {
 201   if (UseBiasedLocking) {
 202     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 203     FreeHeap(real_malloc_addr, mtThread);
 204   } else {
 205     FreeHeap(p, mtThread);
 206   }
 207 }
 208 
 209 
 210 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 211 // JavaThread
 212 
 213 
 214 Thread::Thread() {
 215   // stack and get_thread
 216   set_stack_base(NULL);
 217   set_stack_size(0);
 218   set_self_raw_id(0);
 219   set_lgrp_id(-1);
 220 
 221   // allocated data structures
 222   set_osthread(NULL);
 223   set_resource_area(new (mtThread)ResourceArea());
 224   DEBUG_ONLY(_current_resource_mark = NULL;)
 225   set_handle_area(new (mtThread) HandleArea(NULL));
 226   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 227   set_active_handles(NULL);
 228   set_free_handle_block(NULL);
 229   set_last_handle_mark(NULL);
 230 
 231   // This initial value ==> never claimed.
 232   _oops_do_parity = 0;
 233 
 234   // the handle mark links itself to last_handle_mark
 235   new HandleMark(this);
 236 
 237   // plain initialization
 238   debug_only(_owned_locks = NULL;)
 239   debug_only(_allow_allocation_count = 0;)
 240   NOT_PRODUCT(_allow_safepoint_count = 0;)
 241   NOT_PRODUCT(_skip_gcalot = false;)
 242   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 243   _jvmti_env_iteration_count = 0;
 244   set_allocated_bytes(0);
 245   _vm_operation_started_count = 0;
 246   _vm_operation_completed_count = 0;
 247   _current_pending_monitor = NULL;
 248   _current_pending_monitor_is_from_java = true;
 249   _current_waiting_monitor = NULL;
 250   _num_nested_signal = 0;
 251   omFreeList = NULL ;
 252   omFreeCount = 0 ;
 253   omFreeProvision = 32 ;
 254   omInUseList = NULL ;
 255   omInUseCount = 0 ;
 256 
 257 #ifdef ASSERT
 258   _visited_for_critical_count = false;
 259 #endif
 260 
 261   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 262   _suspend_flags = 0;
 263 
 264   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 265   _hashStateX = os::random() ;
 266   _hashStateY = 842502087 ;
 267   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 268   _hashStateW = 273326509 ;
 269 
 270   _OnTrap   = 0 ;
 271   _schedctl = NULL ;
 272   _Stalled  = 0 ;
 273   _TypeTag  = 0x2BAD ;
 274 
 275   // Many of the following fields are effectively final - immutable
 276   // Note that nascent threads can't use the Native Monitor-Mutex
 277   // construct until the _MutexEvent is initialized ...
 278   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 279   // we might instead use a stack of ParkEvents that we could provision on-demand.
 280   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 281   // and ::Release()
 282   _ParkEvent   = ParkEvent::Allocate (this) ;
 283   _SleepEvent  = ParkEvent::Allocate (this) ;
 284   _MutexEvent  = ParkEvent::Allocate (this) ;
 285   _MuxEvent    = ParkEvent::Allocate (this) ;
 286 
 287 #ifdef CHECK_UNHANDLED_OOPS
 288   if (CheckUnhandledOops) {
 289     _unhandled_oops = new UnhandledOops(this);
 290   }
 291 #endif // CHECK_UNHANDLED_OOPS
 292 #ifdef ASSERT
 293   if (UseBiasedLocking) {
 294     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 295     assert(this == _real_malloc_address ||
 296            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 297            "bug in forced alignment of thread objects");
 298   }
 299 #endif /* ASSERT */
 300 }
 301 
 302 void Thread::initialize_thread_local_storage() {
 303   // Note: Make sure this method only calls
 304   // non-blocking operations. Otherwise, it might not work
 305   // with the thread-startup/safepoint interaction.
 306 
 307   // During Java thread startup, safepoint code should allow this
 308   // method to complete because it may need to allocate memory to
 309   // store information for the new thread.
 310 
 311   // initialize structure dependent on thread local storage
 312   ThreadLocalStorage::set_thread(this);
 313 }
 314 
 315 void Thread::record_stack_base_and_size() {
 316   set_stack_base(os::current_stack_base());
 317   set_stack_size(os::current_stack_size());
 318   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 319   // in initialize_thread(). Without the adjustment, stack size is
 320   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 321   // So far, only Solaris has real implementation of initialize_thread().
 322   //
 323   // set up any platform-specific state.
 324   os::initialize_thread(this);
 325 
 326 #if INCLUDE_NMT
 327   // record thread's native stack, stack grows downward
 328   address stack_low_addr = stack_base() - stack_size();
 329   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 330       CURRENT_PC);
 331 #endif // INCLUDE_NMT
 332 }
 333 
 334 
 335 Thread::~Thread() {
 336   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 337   ObjectSynchronizer::omFlush (this) ;
 338 
 339   EVENT_THREAD_DESTRUCT(this);
 340 
 341   // stack_base can be NULL if the thread is never started or exited before
 342   // record_stack_base_and_size called. Although, we would like to ensure
 343   // that all started threads do call record_stack_base_and_size(), there is
 344   // not proper way to enforce that.
 345 #if INCLUDE_NMT
 346   if (_stack_base != NULL) {
 347     address low_stack_addr = stack_base() - stack_size();
 348     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 349 #ifdef ASSERT
 350     set_stack_base(NULL);
 351 #endif
 352   }
 353 #endif // INCLUDE_NMT
 354 
 355   // deallocate data structures
 356   delete resource_area();
 357   // since the handle marks are using the handle area, we have to deallocated the root
 358   // handle mark before deallocating the thread's handle area,
 359   assert(last_handle_mark() != NULL, "check we have an element");
 360   delete last_handle_mark();
 361   assert(last_handle_mark() == NULL, "check we have reached the end");
 362 
 363   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 364   // We NULL out the fields for good hygiene.
 365   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 366   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 367   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 368   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 369 
 370   delete handle_area();
 371   delete metadata_handles();
 372 
 373   // osthread() can be NULL, if creation of thread failed.
 374   if (osthread() != NULL) os::free_thread(osthread());
 375 
 376   delete _SR_lock;
 377 
 378   // clear thread local storage if the Thread is deleting itself
 379   if (this == Thread::current()) {
 380     ThreadLocalStorage::set_thread(NULL);
 381   } else {
 382     // In the case where we're not the current thread, invalidate all the
 383     // caches in case some code tries to get the current thread or the
 384     // thread that was destroyed, and gets stale information.
 385     ThreadLocalStorage::invalidate_all();
 386   }
 387   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 388 }
 389 
 390 // NOTE: dummy function for assertion purpose.
 391 void Thread::run() {
 392   ShouldNotReachHere();
 393 }
 394 
 395 #ifdef ASSERT
 396 // Private method to check for dangling thread pointer
 397 void check_for_dangling_thread_pointer(Thread *thread) {
 398  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 399          "possibility of dangling Thread pointer");
 400 }
 401 #endif
 402 
 403 
 404 #ifndef PRODUCT
 405 // Tracing method for basic thread operations
 406 void Thread::trace(const char* msg, const Thread* const thread) {
 407   if (!TraceThreadEvents) return;
 408   ResourceMark rm;
 409   ThreadCritical tc;
 410   const char *name = "non-Java thread";
 411   int prio = -1;
 412   if (thread->is_Java_thread()
 413       && !thread->is_Compiler_thread()) {
 414     // The Threads_lock must be held to get information about
 415     // this thread but may not be in some situations when
 416     // tracing  thread events.
 417     bool release_Threads_lock = false;
 418     if (!Threads_lock->owned_by_self()) {
 419       Threads_lock->lock();
 420       release_Threads_lock = true;
 421     }
 422     JavaThread* jt = (JavaThread *)thread;
 423     name = (char *)jt->get_thread_name();
 424     oop thread_oop = jt->threadObj();
 425     if (thread_oop != NULL) {
 426       prio = java_lang_Thread::priority(thread_oop);
 427     }
 428     if (release_Threads_lock) {
 429       Threads_lock->unlock();
 430     }
 431   }
 432   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 433 }
 434 #endif
 435 
 436 
 437 ThreadPriority Thread::get_priority(const Thread* const thread) {
 438   trace("get priority", thread);
 439   ThreadPriority priority;
 440   // Can return an error!
 441   (void)os::get_priority(thread, priority);
 442   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 443   return priority;
 444 }
 445 
 446 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 447   trace("set priority", thread);
 448   debug_only(check_for_dangling_thread_pointer(thread);)
 449   // Can return an error!
 450   (void)os::set_priority(thread, priority);
 451 }
 452 
 453 
 454 void Thread::start(Thread* thread) {
 455   trace("start", thread);
 456   // Start is different from resume in that its safety is guaranteed by context or
 457   // being called from a Java method synchronized on the Thread object.
 458   if (!DisableStartThread) {
 459     if (thread->is_Java_thread()) {
 460       // Initialize the thread state to RUNNABLE before starting this thread.
 461       // Can not set it after the thread started because we do not know the
 462       // exact thread state at that time. It could be in MONITOR_WAIT or
 463       // in SLEEPING or some other state.
 464       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 465                                           java_lang_Thread::RUNNABLE);
 466     }
 467     os::start_thread(thread);
 468   }
 469 }
 470 
 471 // Enqueue a VM_Operation to do the job for us - sometime later
 472 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 473   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 474   VMThread::execute(vm_stop);
 475 }
 476 
 477 
 478 //
 479 // Check if an external suspend request has completed (or has been
 480 // cancelled). Returns true if the thread is externally suspended and
 481 // false otherwise.
 482 //
 483 // The bits parameter returns information about the code path through
 484 // the routine. Useful for debugging:
 485 //
 486 // set in is_ext_suspend_completed():
 487 // 0x00000001 - routine was entered
 488 // 0x00000010 - routine return false at end
 489 // 0x00000100 - thread exited (return false)
 490 // 0x00000200 - suspend request cancelled (return false)
 491 // 0x00000400 - thread suspended (return true)
 492 // 0x00001000 - thread is in a suspend equivalent state (return true)
 493 // 0x00002000 - thread is native and walkable (return true)
 494 // 0x00004000 - thread is native_trans and walkable (needed retry)
 495 //
 496 // set in wait_for_ext_suspend_completion():
 497 // 0x00010000 - routine was entered
 498 // 0x00020000 - suspend request cancelled before loop (return false)
 499 // 0x00040000 - thread suspended before loop (return true)
 500 // 0x00080000 - suspend request cancelled in loop (return false)
 501 // 0x00100000 - thread suspended in loop (return true)
 502 // 0x00200000 - suspend not completed during retry loop (return false)
 503 //
 504 
 505 // Helper class for tracing suspend wait debug bits.
 506 //
 507 // 0x00000100 indicates that the target thread exited before it could
 508 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 509 // 0x00080000 each indicate a cancelled suspend request so they don't
 510 // count as wait failures either.
 511 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 512 
 513 class TraceSuspendDebugBits : public StackObj {
 514  private:
 515   JavaThread * jt;
 516   bool         is_wait;
 517   bool         called_by_wait;  // meaningful when !is_wait
 518   uint32_t *   bits;
 519 
 520  public:
 521   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 522                         uint32_t *_bits) {
 523     jt             = _jt;
 524     is_wait        = _is_wait;
 525     called_by_wait = _called_by_wait;
 526     bits           = _bits;
 527   }
 528 
 529   ~TraceSuspendDebugBits() {
 530     if (!is_wait) {
 531 #if 1
 532       // By default, don't trace bits for is_ext_suspend_completed() calls.
 533       // That trace is very chatty.
 534       return;
 535 #else
 536       if (!called_by_wait) {
 537         // If tracing for is_ext_suspend_completed() is enabled, then only
 538         // trace calls to it from wait_for_ext_suspend_completion()
 539         return;
 540       }
 541 #endif
 542     }
 543 
 544     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 545       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 546         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 547         ResourceMark rm;
 548 
 549         tty->print_cr(
 550             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 551             jt->get_thread_name(), *bits);
 552 
 553         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 554       }
 555     }
 556   }
 557 };
 558 #undef DEBUG_FALSE_BITS
 559 
 560 
 561 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 562   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 563 
 564   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 565   bool do_trans_retry;           // flag to force the retry
 566 
 567   *bits |= 0x00000001;
 568 
 569   do {
 570     do_trans_retry = false;
 571 
 572     if (is_exiting()) {
 573       // Thread is in the process of exiting. This is always checked
 574       // first to reduce the risk of dereferencing a freed JavaThread.
 575       *bits |= 0x00000100;
 576       return false;
 577     }
 578 
 579     if (!is_external_suspend()) {
 580       // Suspend request is cancelled. This is always checked before
 581       // is_ext_suspended() to reduce the risk of a rogue resume
 582       // confusing the thread that made the suspend request.
 583       *bits |= 0x00000200;
 584       return false;
 585     }
 586 
 587     if (is_ext_suspended()) {
 588       // thread is suspended
 589       *bits |= 0x00000400;
 590       return true;
 591     }
 592 
 593     // Now that we no longer do hard suspends of threads running
 594     // native code, the target thread can be changing thread state
 595     // while we are in this routine:
 596     //
 597     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 598     //
 599     // We save a copy of the thread state as observed at this moment
 600     // and make our decision about suspend completeness based on the
 601     // copy. This closes the race where the thread state is seen as
 602     // _thread_in_native_trans in the if-thread_blocked check, but is
 603     // seen as _thread_blocked in if-thread_in_native_trans check.
 604     JavaThreadState save_state = thread_state();
 605 
 606     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 607       // If the thread's state is _thread_blocked and this blocking
 608       // condition is known to be equivalent to a suspend, then we can
 609       // consider the thread to be externally suspended. This means that
 610       // the code that sets _thread_blocked has been modified to do
 611       // self-suspension if the blocking condition releases. We also
 612       // used to check for CONDVAR_WAIT here, but that is now covered by
 613       // the _thread_blocked with self-suspension check.
 614       //
 615       // Return true since we wouldn't be here unless there was still an
 616       // external suspend request.
 617       *bits |= 0x00001000;
 618       return true;
 619     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 620       // Threads running native code will self-suspend on native==>VM/Java
 621       // transitions. If its stack is walkable (should always be the case
 622       // unless this function is called before the actual java_suspend()
 623       // call), then the wait is done.
 624       *bits |= 0x00002000;
 625       return true;
 626     } else if (!called_by_wait && !did_trans_retry &&
 627                save_state == _thread_in_native_trans &&
 628                frame_anchor()->walkable()) {
 629       // The thread is transitioning from thread_in_native to another
 630       // thread state. check_safepoint_and_suspend_for_native_trans()
 631       // will force the thread to self-suspend. If it hasn't gotten
 632       // there yet we may have caught the thread in-between the native
 633       // code check above and the self-suspend. Lucky us. If we were
 634       // called by wait_for_ext_suspend_completion(), then it
 635       // will be doing the retries so we don't have to.
 636       //
 637       // Since we use the saved thread state in the if-statement above,
 638       // there is a chance that the thread has already transitioned to
 639       // _thread_blocked by the time we get here. In that case, we will
 640       // make a single unnecessary pass through the logic below. This
 641       // doesn't hurt anything since we still do the trans retry.
 642 
 643       *bits |= 0x00004000;
 644 
 645       // Once the thread leaves thread_in_native_trans for another
 646       // thread state, we break out of this retry loop. We shouldn't
 647       // need this flag to prevent us from getting back here, but
 648       // sometimes paranoia is good.
 649       did_trans_retry = true;
 650 
 651       // We wait for the thread to transition to a more usable state.
 652       for (int i = 1; i <= SuspendRetryCount; i++) {
 653         // We used to do an "os::yield_all(i)" call here with the intention
 654         // that yielding would increase on each retry. However, the parameter
 655         // is ignored on Linux which means the yield didn't scale up. Waiting
 656         // on the SR_lock below provides a much more predictable scale up for
 657         // the delay. It also provides a simple/direct point to check for any
 658         // safepoint requests from the VMThread
 659 
 660         // temporarily drops SR_lock while doing wait with safepoint check
 661         // (if we're a JavaThread - the WatcherThread can also call this)
 662         // and increase delay with each retry
 663         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 664 
 665         // check the actual thread state instead of what we saved above
 666         if (thread_state() != _thread_in_native_trans) {
 667           // the thread has transitioned to another thread state so
 668           // try all the checks (except this one) one more time.
 669           do_trans_retry = true;
 670           break;
 671         }
 672       } // end retry loop
 673 
 674 
 675     }
 676   } while (do_trans_retry);
 677 
 678   *bits |= 0x00000010;
 679   return false;
 680 }
 681 
 682 //
 683 // Wait for an external suspend request to complete (or be cancelled).
 684 // Returns true if the thread is externally suspended and false otherwise.
 685 //
 686 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 687        uint32_t *bits) {
 688   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 689                              false /* !called_by_wait */, bits);
 690 
 691   // local flag copies to minimize SR_lock hold time
 692   bool is_suspended;
 693   bool pending;
 694   uint32_t reset_bits;
 695 
 696   // set a marker so is_ext_suspend_completed() knows we are the caller
 697   *bits |= 0x00010000;
 698 
 699   // We use reset_bits to reinitialize the bits value at the top of
 700   // each retry loop. This allows the caller to make use of any
 701   // unused bits for their own marking purposes.
 702   reset_bits = *bits;
 703 
 704   {
 705     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 706     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 707                                             delay, bits);
 708     pending = is_external_suspend();
 709   }
 710   // must release SR_lock to allow suspension to complete
 711 
 712   if (!pending) {
 713     // A cancelled suspend request is the only false return from
 714     // is_ext_suspend_completed() that keeps us from entering the
 715     // retry loop.
 716     *bits |= 0x00020000;
 717     return false;
 718   }
 719 
 720   if (is_suspended) {
 721     *bits |= 0x00040000;
 722     return true;
 723   }
 724 
 725   for (int i = 1; i <= retries; i++) {
 726     *bits = reset_bits;  // reinit to only track last retry
 727 
 728     // We used to do an "os::yield_all(i)" call here with the intention
 729     // that yielding would increase on each retry. However, the parameter
 730     // is ignored on Linux which means the yield didn't scale up. Waiting
 731     // on the SR_lock below provides a much more predictable scale up for
 732     // the delay. It also provides a simple/direct point to check for any
 733     // safepoint requests from the VMThread
 734 
 735     {
 736       MutexLocker ml(SR_lock());
 737       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 738       // can also call this)  and increase delay with each retry
 739       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 740 
 741       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 742                                               delay, bits);
 743 
 744       // It is possible for the external suspend request to be cancelled
 745       // (by a resume) before the actual suspend operation is completed.
 746       // Refresh our local copy to see if we still need to wait.
 747       pending = is_external_suspend();
 748     }
 749 
 750     if (!pending) {
 751       // A cancelled suspend request is the only false return from
 752       // is_ext_suspend_completed() that keeps us from staying in the
 753       // retry loop.
 754       *bits |= 0x00080000;
 755       return false;
 756     }
 757 
 758     if (is_suspended) {
 759       *bits |= 0x00100000;
 760       return true;
 761     }
 762   } // end retry loop
 763 
 764   // thread did not suspend after all our retries
 765   *bits |= 0x00200000;
 766   return false;
 767 }
 768 
 769 #ifndef PRODUCT
 770 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 771 
 772   // This should not need to be atomic as the only way for simultaneous
 773   // updates is via interrupts. Even then this should be rare or non-existant
 774   // and we don't care that much anyway.
 775 
 776   int index = _jmp_ring_index;
 777   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 778   _jmp_ring[index]._target = (intptr_t) target;
 779   _jmp_ring[index]._instruction = (intptr_t) instr;
 780   _jmp_ring[index]._file = file;
 781   _jmp_ring[index]._line = line;
 782 }
 783 #endif /* PRODUCT */
 784 
 785 // Called by flat profiler
 786 // Callers have already called wait_for_ext_suspend_completion
 787 // The assertion for that is currently too complex to put here:
 788 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 789   bool gotframe = false;
 790   // self suspension saves needed state.
 791   if (has_last_Java_frame() && _anchor.walkable()) {
 792      *_fr = pd_last_frame();
 793      gotframe = true;
 794   }
 795   return gotframe;
 796 }
 797 
 798 void Thread::interrupt(Thread* thread) {
 799   trace("interrupt", thread);
 800   debug_only(check_for_dangling_thread_pointer(thread);)
 801   os::interrupt(thread);
 802 }
 803 
 804 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 805   trace("is_interrupted", thread);
 806   debug_only(check_for_dangling_thread_pointer(thread);)
 807   // Note:  If clear_interrupted==false, this simply fetches and
 808   // returns the value of the field osthread()->interrupted().
 809   return os::is_interrupted(thread, clear_interrupted);
 810 }
 811 
 812 
 813 // GC Support
 814 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 815   jint thread_parity = _oops_do_parity;
 816   if (thread_parity != strong_roots_parity) {
 817     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 818     if (res == thread_parity) {
 819       return true;
 820     } else {
 821       guarantee(res == strong_roots_parity, "Or else what?");
 822       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 823          "Should only fail when parallel.");
 824       return false;
 825     }
 826   }
 827   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 828          "Should only fail when parallel.");
 829   return false;
 830 }
 831 
 832 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
 833   active_handles()->oops_do(f);
 834   // Do oop for ThreadShadow
 835   f->do_oop((oop*)&_pending_exception);
 836   handle_area()->oops_do(f);
 837 }
 838 
 839 void Thread::nmethods_do(CodeBlobClosure* cf) {
 840   // no nmethods in a generic thread...
 841 }
 842 
 843 void Thread::metadata_do(void f(Metadata*)) {
 844   if (metadata_handles() != NULL) {
 845     for (int i = 0; i< metadata_handles()->length(); i++) {
 846       f(metadata_handles()->at(i));
 847     }
 848   }
 849 }
 850 
 851 void Thread::print_on(outputStream* st) const {
 852   // get_priority assumes osthread initialized
 853   if (osthread() != NULL) {
 854     int os_prio;
 855     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 856       st->print("os_prio=%d ", os_prio);
 857     }
 858     st->print("tid=" INTPTR_FORMAT " ", this);
 859     osthread()->print_on(st);
 860   }
 861   debug_only(if (WizardMode) print_owned_locks_on(st);)
 862 }
 863 
 864 // Thread::print_on_error() is called by fatal error handler. Don't use
 865 // any lock or allocate memory.
 866 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 867   if      (is_VM_thread())                  st->print("VMThread");
 868   else if (is_Compiler_thread())            st->print("CompilerThread");
 869   else if (is_Java_thread())                st->print("JavaThread");
 870   else if (is_GC_task_thread())             st->print("GCTaskThread");
 871   else if (is_Watcher_thread())             st->print("WatcherThread");
 872   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 873   else st->print("Thread");
 874 
 875   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 876             _stack_base - _stack_size, _stack_base);
 877 
 878   if (osthread()) {
 879     st->print(" [id=%d]", osthread()->thread_id());
 880   }
 881 }
 882 
 883 #ifdef ASSERT
 884 void Thread::print_owned_locks_on(outputStream* st) const {
 885   Monitor *cur = _owned_locks;
 886   if (cur == NULL) {
 887     st->print(" (no locks) ");
 888   } else {
 889     st->print_cr(" Locks owned:");
 890     while(cur) {
 891       cur->print_on(st);
 892       cur = cur->next();
 893     }
 894   }
 895 }
 896 
 897 static int ref_use_count  = 0;
 898 
 899 bool Thread::owns_locks_but_compiled_lock() const {
 900   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 901     if (cur != Compile_lock) return true;
 902   }
 903   return false;
 904 }
 905 
 906 
 907 #endif
 908 
 909 #ifndef PRODUCT
 910 
 911 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 912 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 913 // no threads which allow_vm_block's are held
 914 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 915     // Check if current thread is allowed to block at a safepoint
 916     if (!(_allow_safepoint_count == 0))
 917       fatal("Possible safepoint reached by thread that does not allow it");
 918     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 919       fatal("LEAF method calling lock?");
 920     }
 921 
 922 #ifdef ASSERT
 923     if (potential_vm_operation && is_Java_thread()
 924         && !Universe::is_bootstrapping()) {
 925       // Make sure we do not hold any locks that the VM thread also uses.
 926       // This could potentially lead to deadlocks
 927       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 928         // Threads_lock is special, since the safepoint synchronization will not start before this is
 929         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 930         // since it is used to transfer control between JavaThreads and the VMThread
 931         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 932         if ( (cur->allow_vm_block() &&
 933               cur != Threads_lock &&
 934               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 935               cur != VMOperationRequest_lock &&
 936               cur != VMOperationQueue_lock) ||
 937               cur->rank() == Mutex::special) {
 938           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 939         }
 940       }
 941     }
 942 
 943     if (GCALotAtAllSafepoints) {
 944       // We could enter a safepoint here and thus have a gc
 945       InterfaceSupport::check_gc_alot();
 946     }
 947 #endif
 948 }
 949 #endif
 950 
 951 bool Thread::is_in_stack(address adr) const {
 952   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 953   address end = os::current_stack_pointer();
 954   // Allow non Java threads to call this without stack_base
 955   if (_stack_base == NULL) return true;
 956   if (stack_base() >= adr && adr >= end) return true;
 957 
 958   return false;
 959 }
 960 
 961 
 962 bool Thread::is_in_usable_stack(address adr) const {
 963   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 964   size_t usable_stack_size = _stack_size - stack_guard_size;
 965 
 966   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 967 }
 968 
 969 
 970 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 971 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 972 // used for compilation in the future. If that change is made, the need for these methods
 973 // should be revisited, and they should be removed if possible.
 974 
 975 bool Thread::is_lock_owned(address adr) const {
 976   return on_local_stack(adr);
 977 }
 978 
 979 bool Thread::set_as_starting_thread() {
 980  // NOTE: this must be called inside the main thread.
 981   return os::create_main_thread((JavaThread*)this);
 982 }
 983 
 984 static void initialize_class(Symbol* class_name, TRAPS) {
 985   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 986   InstanceKlass::cast(klass)->initialize(CHECK);
 987 }
 988 
 989 
 990 // Creates the initial ThreadGroup
 991 static Handle create_initial_thread_group(TRAPS) {
 992   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 993   instanceKlassHandle klass (THREAD, k);
 994 
 995   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 996   {
 997     JavaValue result(T_VOID);
 998     JavaCalls::call_special(&result,
 999                             system_instance,
1000                             klass,
1001                             vmSymbols::object_initializer_name(),
1002                             vmSymbols::void_method_signature(),
1003                             CHECK_NH);
1004   }
1005   Universe::set_system_thread_group(system_instance());
1006 
1007   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1008   {
1009     JavaValue result(T_VOID);
1010     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1011     JavaCalls::call_special(&result,
1012                             main_instance,
1013                             klass,
1014                             vmSymbols::object_initializer_name(),
1015                             vmSymbols::threadgroup_string_void_signature(),
1016                             system_instance,
1017                             string,
1018                             CHECK_NH);
1019   }
1020   return main_instance;
1021 }
1022 
1023 // Creates the initial Thread
1024 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1025   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1026   instanceKlassHandle klass (THREAD, k);
1027   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1028 
1029   java_lang_Thread::set_thread(thread_oop(), thread);
1030   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1031   thread->set_threadObj(thread_oop());
1032 
1033   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1034 
1035   JavaValue result(T_VOID);
1036   JavaCalls::call_special(&result, thread_oop,
1037                                    klass,
1038                                    vmSymbols::object_initializer_name(),
1039                                    vmSymbols::threadgroup_string_void_signature(),
1040                                    thread_group,
1041                                    string,
1042                                    CHECK_NULL);
1043   return thread_oop();
1044 }
1045 
1046 static void call_initializeSystemClass(TRAPS) {
1047   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1048   instanceKlassHandle klass (THREAD, k);
1049 
1050   JavaValue result(T_VOID);
1051   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1052                                          vmSymbols::void_method_signature(), CHECK);
1053 }
1054 
1055 char java_runtime_name[128] = "";
1056 char java_runtime_version[128] = "";
1057 
1058 // extract the JRE name from sun.misc.Version.java_runtime_name
1059 static const char* get_java_runtime_name(TRAPS) {
1060   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1061                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1062   fieldDescriptor fd;
1063   bool found = k != NULL &&
1064                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1065                                                         vmSymbols::string_signature(), &fd);
1066   if (found) {
1067     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1068     if (name_oop == NULL)
1069       return NULL;
1070     const char* name = java_lang_String::as_utf8_string(name_oop,
1071                                                         java_runtime_name,
1072                                                         sizeof(java_runtime_name));
1073     return name;
1074   } else {
1075     return NULL;
1076   }
1077 }
1078 
1079 // extract the JRE version from sun.misc.Version.java_runtime_version
1080 static const char* get_java_runtime_version(TRAPS) {
1081   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1082                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1083   fieldDescriptor fd;
1084   bool found = k != NULL &&
1085                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1086                                                         vmSymbols::string_signature(), &fd);
1087   if (found) {
1088     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1089     if (name_oop == NULL)
1090       return NULL;
1091     const char* name = java_lang_String::as_utf8_string(name_oop,
1092                                                         java_runtime_version,
1093                                                         sizeof(java_runtime_version));
1094     return name;
1095   } else {
1096     return NULL;
1097   }
1098 }
1099 
1100 // General purpose hook into Java code, run once when the VM is initialized.
1101 // The Java library method itself may be changed independently from the VM.
1102 static void call_postVMInitHook(TRAPS) {
1103   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1104   instanceKlassHandle klass (THREAD, k);
1105   if (klass.not_null()) {
1106     JavaValue result(T_VOID);
1107     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1108                                            vmSymbols::void_method_signature(),
1109                                            CHECK);
1110   }
1111 }
1112 
1113 static void reset_vm_info_property(TRAPS) {
1114   // the vm info string
1115   ResourceMark rm(THREAD);
1116   const char *vm_info = VM_Version::vm_info_string();
1117 
1118   // java.lang.System class
1119   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1120   instanceKlassHandle klass (THREAD, k);
1121 
1122   // setProperty arguments
1123   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1124   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1125 
1126   // return value
1127   JavaValue r(T_OBJECT);
1128 
1129   // public static String setProperty(String key, String value);
1130   JavaCalls::call_static(&r,
1131                          klass,
1132                          vmSymbols::setProperty_name(),
1133                          vmSymbols::string_string_string_signature(),
1134                          key_str,
1135                          value_str,
1136                          CHECK);
1137 }
1138 
1139 
1140 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1141   assert(thread_group.not_null(), "thread group should be specified");
1142   assert(threadObj() == NULL, "should only create Java thread object once");
1143 
1144   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1145   instanceKlassHandle klass (THREAD, k);
1146   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1147 
1148   java_lang_Thread::set_thread(thread_oop(), this);
1149   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1150   set_threadObj(thread_oop());
1151 
1152   JavaValue result(T_VOID);
1153   if (thread_name != NULL) {
1154     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1155     // Thread gets assigned specified name and null target
1156     JavaCalls::call_special(&result,
1157                             thread_oop,
1158                             klass,
1159                             vmSymbols::object_initializer_name(),
1160                             vmSymbols::threadgroup_string_void_signature(),
1161                             thread_group, // Argument 1
1162                             name,         // Argument 2
1163                             THREAD);
1164   } else {
1165     // Thread gets assigned name "Thread-nnn" and null target
1166     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1167     JavaCalls::call_special(&result,
1168                             thread_oop,
1169                             klass,
1170                             vmSymbols::object_initializer_name(),
1171                             vmSymbols::threadgroup_runnable_void_signature(),
1172                             thread_group, // Argument 1
1173                             Handle(),     // Argument 2
1174                             THREAD);
1175   }
1176 
1177 
1178   if (daemon) {
1179       java_lang_Thread::set_daemon(thread_oop());
1180   }
1181 
1182   if (HAS_PENDING_EXCEPTION) {
1183     return;
1184   }
1185 
1186   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1187   Handle threadObj(this, this->threadObj());
1188 
1189   JavaCalls::call_special(&result,
1190                          thread_group,
1191                          group,
1192                          vmSymbols::add_method_name(),
1193                          vmSymbols::thread_void_signature(),
1194                          threadObj,          // Arg 1
1195                          THREAD);
1196 
1197 
1198 }
1199 
1200 // NamedThread --  non-JavaThread subclasses with multiple
1201 // uniquely named instances should derive from this.
1202 NamedThread::NamedThread() : Thread() {
1203   _name = NULL;
1204   _processed_thread = NULL;
1205 }
1206 
1207 NamedThread::~NamedThread() {
1208   if (_name != NULL) {
1209     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1210     _name = NULL;
1211   }
1212 }
1213 
1214 void NamedThread::set_name(const char* format, ...) {
1215   guarantee(_name == NULL, "Only get to set name once.");
1216   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1217   guarantee(_name != NULL, "alloc failure");
1218   va_list ap;
1219   va_start(ap, format);
1220   jio_vsnprintf(_name, max_name_len, format, ap);
1221   va_end(ap);
1222 }
1223 
1224 // ======= WatcherThread ========
1225 
1226 // The watcher thread exists to simulate timer interrupts.  It should
1227 // be replaced by an abstraction over whatever native support for
1228 // timer interrupts exists on the platform.
1229 
1230 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1231 bool WatcherThread::_startable = false;
1232 volatile bool  WatcherThread::_should_terminate = false;
1233 
1234 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1235   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1236   if (os::create_thread(this, os::watcher_thread)) {
1237     _watcher_thread = this;
1238 
1239     // Set the watcher thread to the highest OS priority which should not be
1240     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1241     // is created. The only normal thread using this priority is the reference
1242     // handler thread, which runs for very short intervals only.
1243     // If the VMThread's priority is not lower than the WatcherThread profiling
1244     // will be inaccurate.
1245     os::set_priority(this, MaxPriority);
1246     if (!DisableStartThread) {
1247       os::start_thread(this);
1248     }
1249   }
1250 }
1251 
1252 int WatcherThread::sleep() const {
1253   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1254 
1255   // remaining will be zero if there are no tasks,
1256   // causing the WatcherThread to sleep until a task is
1257   // enrolled
1258   int remaining = PeriodicTask::time_to_wait();
1259   int time_slept = 0;
1260 
1261   // we expect this to timeout - we only ever get unparked when
1262   // we should terminate or when a new task has been enrolled
1263   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1264 
1265   jlong time_before_loop = os::javaTimeNanos();
1266 
1267   for (;;) {
1268     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1269     jlong now = os::javaTimeNanos();
1270 
1271     if (remaining == 0) {
1272         // if we didn't have any tasks we could have waited for a long time
1273         // consider the time_slept zero and reset time_before_loop
1274         time_slept = 0;
1275         time_before_loop = now;
1276     } else {
1277         // need to recalulate since we might have new tasks in _tasks
1278         time_slept = (int) ((now - time_before_loop) / 1000000);
1279     }
1280 
1281     // Change to task list or spurious wakeup of some kind
1282     if (timedout || _should_terminate) {
1283         break;
1284     }
1285 
1286     remaining = PeriodicTask::time_to_wait();
1287     if (remaining == 0) {
1288         // Last task was just disenrolled so loop around and wait until
1289         // another task gets enrolled
1290         continue;
1291     }
1292 
1293     remaining -= time_slept;
1294     if (remaining <= 0)
1295       break;
1296   }
1297 
1298   return time_slept;
1299 }
1300 
1301 void WatcherThread::run() {
1302   assert(this == watcher_thread(), "just checking");
1303 
1304   this->record_stack_base_and_size();
1305   this->initialize_thread_local_storage();
1306   this->set_active_handles(JNIHandleBlock::allocate_block());
1307   while(!_should_terminate) {
1308     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1309     assert(watcher_thread() == this,  "thread consistency check");
1310 
1311     // Calculate how long it'll be until the next PeriodicTask work
1312     // should be done, and sleep that amount of time.
1313     int time_waited = sleep();
1314 
1315     if (is_error_reported()) {
1316       // A fatal error has happened, the error handler(VMError::report_and_die)
1317       // should abort JVM after creating an error log file. However in some
1318       // rare cases, the error handler itself might deadlock. Here we try to
1319       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1320       //
1321       // This code is in WatcherThread because WatcherThread wakes up
1322       // periodically so the fatal error handler doesn't need to do anything;
1323       // also because the WatcherThread is less likely to crash than other
1324       // threads.
1325 
1326       for (;;) {
1327         if (!ShowMessageBoxOnError
1328          && (OnError == NULL || OnError[0] == '\0')
1329          && Arguments::abort_hook() == NULL) {
1330              os::sleep(this, 2 * 60 * 1000, false);
1331              fdStream err(defaultStream::output_fd());
1332              err.print_raw_cr("# [ timer expired, abort... ]");
1333              // skip atexit/vm_exit/vm_abort hooks
1334              os::die();
1335         }
1336 
1337         // Wake up 5 seconds later, the fatal handler may reset OnError or
1338         // ShowMessageBoxOnError when it is ready to abort.
1339         os::sleep(this, 5 * 1000, false);
1340       }
1341     }
1342 
1343     PeriodicTask::real_time_tick(time_waited);
1344   }
1345 
1346   // Signal that it is terminated
1347   {
1348     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1349     _watcher_thread = NULL;
1350     Terminator_lock->notify();
1351   }
1352 
1353   // Thread destructor usually does this..
1354   ThreadLocalStorage::set_thread(NULL);
1355 }
1356 
1357 void WatcherThread::start() {
1358   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1359 
1360   if (watcher_thread() == NULL && _startable) {
1361     _should_terminate = false;
1362     // Create the single instance of WatcherThread
1363     new WatcherThread();
1364   }
1365 }
1366 
1367 void WatcherThread::make_startable() {
1368   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1369   _startable = true;
1370 }
1371 
1372 void WatcherThread::stop() {
1373   {
1374     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1375     _should_terminate = true;
1376     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1377 
1378     WatcherThread* watcher = watcher_thread();
1379     if (watcher != NULL)
1380       watcher->unpark();
1381   }
1382 
1383   // it is ok to take late safepoints here, if needed
1384   MutexLocker mu(Terminator_lock);
1385 
1386   while(watcher_thread() != NULL) {
1387     // This wait should make safepoint checks, wait without a timeout,
1388     // and wait as a suspend-equivalent condition.
1389     //
1390     // Note: If the FlatProfiler is running, then this thread is waiting
1391     // for the WatcherThread to terminate and the WatcherThread, via the
1392     // FlatProfiler task, is waiting for the external suspend request on
1393     // this thread to complete. wait_for_ext_suspend_completion() will
1394     // eventually timeout, but that takes time. Making this wait a
1395     // suspend-equivalent condition solves that timeout problem.
1396     //
1397     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1398                           Mutex::_as_suspend_equivalent_flag);
1399   }
1400 }
1401 
1402 void WatcherThread::unpark() {
1403   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1404   PeriodicTask_lock->notify();
1405 }
1406 
1407 void WatcherThread::print_on(outputStream* st) const {
1408   st->print("\"%s\" ", name());
1409   Thread::print_on(st);
1410   st->cr();
1411 }
1412 
1413 // ======= JavaThread ========
1414 
1415 // A JavaThread is a normal Java thread
1416 
1417 void JavaThread::initialize() {
1418   // Initialize fields
1419 
1420   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1421   set_claimed_par_id(-1);
1422 
1423   set_saved_exception_pc(NULL);
1424   set_threadObj(NULL);
1425   _anchor.clear();
1426   set_entry_point(NULL);
1427   set_jni_functions(jni_functions());
1428   set_callee_target(NULL);
1429   set_vm_result(NULL);
1430   set_vm_result_2(NULL);
1431   set_vframe_array_head(NULL);
1432   set_vframe_array_last(NULL);
1433   set_deferred_locals(NULL);
1434   set_deopt_mark(NULL);
1435   set_deopt_nmethod(NULL);
1436   clear_must_deopt_id();
1437   set_monitor_chunks(NULL);
1438   set_next(NULL);
1439   set_thread_state(_thread_new);
1440 #if INCLUDE_NMT
1441   set_recorder(NULL);
1442 #endif
1443   _terminated = _not_terminated;
1444   _privileged_stack_top = NULL;
1445   _array_for_gc = NULL;
1446   _suspend_equivalent = false;
1447   _in_deopt_handler = 0;
1448   _doing_unsafe_access = false;
1449   _stack_guard_state = stack_guard_unused;
1450   (void)const_cast<oop&>(_exception_oop = NULL);
1451   _exception_pc  = 0;
1452   _exception_handler_pc = 0;
1453   _is_method_handle_return = 0;
1454   _jvmti_thread_state= NULL;
1455   _should_post_on_exceptions_flag = JNI_FALSE;
1456   _jvmti_get_loaded_classes_closure = NULL;
1457   _interp_only_mode    = 0;
1458   _special_runtime_exit_condition = _no_async_condition;
1459   _pending_async_exception = NULL;
1460   _thread_stat = NULL;
1461   _thread_stat = new ThreadStatistics();
1462   _blocked_on_compilation = false;
1463   _jni_active_critical = 0;
1464   _do_not_unlock_if_synchronized = false;
1465   _cached_monitor_info = NULL;
1466   _parker = Parker::Allocate(this) ;
1467 
1468 #ifndef PRODUCT
1469   _jmp_ring_index = 0;
1470   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1471     record_jump(NULL, NULL, NULL, 0);
1472   }
1473 #endif /* PRODUCT */
1474 
1475   set_thread_profiler(NULL);
1476   if (FlatProfiler::is_active()) {
1477     // This is where we would decide to either give each thread it's own profiler
1478     // or use one global one from FlatProfiler,
1479     // or up to some count of the number of profiled threads, etc.
1480     ThreadProfiler* pp = new ThreadProfiler();
1481     pp->engage();
1482     set_thread_profiler(pp);
1483   }
1484 
1485   // Setup safepoint state info for this thread
1486   ThreadSafepointState::create(this);
1487 
1488   debug_only(_java_call_counter = 0);
1489 
1490   // JVMTI PopFrame support
1491   _popframe_condition = popframe_inactive;
1492   _popframe_preserved_args = NULL;
1493   _popframe_preserved_args_size = 0;
1494 
1495   pd_initialize();
1496 }
1497 
1498 #if INCLUDE_ALL_GCS
1499 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1500 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1501 #endif // INCLUDE_ALL_GCS
1502 
1503 JavaThread::JavaThread(bool is_attaching_via_jni) :
1504   Thread()
1505 #if INCLUDE_ALL_GCS
1506   , _satb_mark_queue(&_satb_mark_queue_set),
1507   _dirty_card_queue(&_dirty_card_queue_set)
1508 #endif // INCLUDE_ALL_GCS
1509 {
1510   initialize();
1511   if (is_attaching_via_jni) {
1512     _jni_attach_state = _attaching_via_jni;
1513   } else {
1514     _jni_attach_state = _not_attaching_via_jni;
1515   }
1516   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1517   _safepoint_visible = false;
1518 }
1519 
1520 bool JavaThread::reguard_stack(address cur_sp) {
1521   if (_stack_guard_state != stack_guard_yellow_disabled) {
1522     return true; // Stack already guarded or guard pages not needed.
1523   }
1524 
1525   if (register_stack_overflow()) {
1526     // For those architectures which have separate register and
1527     // memory stacks, we must check the register stack to see if
1528     // it has overflowed.
1529     return false;
1530   }
1531 
1532   // Java code never executes within the yellow zone: the latter is only
1533   // there to provoke an exception during stack banging.  If java code
1534   // is executing there, either StackShadowPages should be larger, or
1535   // some exception code in c1, c2 or the interpreter isn't unwinding
1536   // when it should.
1537   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1538 
1539   enable_stack_yellow_zone();
1540   return true;
1541 }
1542 
1543 bool JavaThread::reguard_stack(void) {
1544   return reguard_stack(os::current_stack_pointer());
1545 }
1546 
1547 
1548 void JavaThread::block_if_vm_exited() {
1549   if (_terminated == _vm_exited) {
1550     // _vm_exited is set at safepoint, and Threads_lock is never released
1551     // we will block here forever
1552     Threads_lock->lock_without_safepoint_check();
1553     ShouldNotReachHere();
1554   }
1555 }
1556 
1557 
1558 // Remove this ifdef when C1 is ported to the compiler interface.
1559 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1560 
1561 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1562   Thread()
1563 #if INCLUDE_ALL_GCS
1564   , _satb_mark_queue(&_satb_mark_queue_set),
1565   _dirty_card_queue(&_dirty_card_queue_set)
1566 #endif // INCLUDE_ALL_GCS
1567 {
1568   if (TraceThreadEvents) {
1569     tty->print_cr("creating thread %p", this);
1570   }
1571   initialize();
1572   _jni_attach_state = _not_attaching_via_jni;
1573   set_entry_point(entry_point);
1574   // Create the native thread itself.
1575   // %note runtime_23
1576   os::ThreadType thr_type = os::java_thread;
1577   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1578                                                      os::java_thread;
1579   os::create_thread(this, thr_type, stack_sz);
1580   _safepoint_visible = false;
1581   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1582   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1583   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1584   // the exception consists of creating the exception object & initializing it, initialization
1585   // will leave the VM via a JavaCall and then all locks must be unlocked).
1586   //
1587   // The thread is still suspended when we reach here. Thread must be explicit started
1588   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1589   // by calling Threads:add. The reason why this is not done here, is because the thread
1590   // object must be fully initialized (take a look at JVM_Start)
1591 }
1592 
1593 JavaThread::~JavaThread() {
1594   if (TraceThreadEvents) {
1595       tty->print_cr("terminate thread %p", this);
1596   }
1597 
1598   // By now, this thread should already be invisible to safepoint,
1599   // and its per-thread recorder also collected.
1600   assert(!is_safepoint_visible(), "wrong state");
1601 #if INCLUDE_NMT
1602   assert(get_recorder() == NULL, "Already collected");
1603 #endif // INCLUDE_NMT
1604 
1605   // JSR166 -- return the parker to the free list
1606   Parker::Release(_parker);
1607   _parker = NULL ;
1608 
1609   // Free any remaining  previous UnrollBlock
1610   vframeArray* old_array = vframe_array_last();
1611 
1612   if (old_array != NULL) {
1613     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1614     old_array->set_unroll_block(NULL);
1615     delete old_info;
1616     delete old_array;
1617   }
1618 
1619   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1620   if (deferred != NULL) {
1621     // This can only happen if thread is destroyed before deoptimization occurs.
1622     assert(deferred->length() != 0, "empty array!");
1623     do {
1624       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1625       deferred->remove_at(0);
1626       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1627       delete dlv;
1628     } while (deferred->length() != 0);
1629     delete deferred;
1630   }
1631 
1632   // All Java related clean up happens in exit
1633   ThreadSafepointState::destroy(this);
1634   if (_thread_profiler != NULL) delete _thread_profiler;
1635   if (_thread_stat != NULL) delete _thread_stat;
1636 }
1637 
1638 
1639 // The first routine called by a new Java thread
1640 void JavaThread::run() {
1641   // initialize thread-local alloc buffer related fields
1642   this->initialize_tlab();
1643 
1644   // used to test validitity of stack trace backs
1645   this->record_base_of_stack_pointer();
1646 
1647   // Record real stack base and size.
1648   this->record_stack_base_and_size();
1649 
1650   // Initialize thread local storage; set before calling MutexLocker
1651   this->initialize_thread_local_storage();
1652 
1653   this->create_stack_guard_pages();
1654 
1655   this->cache_global_variables();
1656 
1657   // Thread is now sufficient initialized to be handled by the safepoint code as being
1658   // in the VM. Change thread state from _thread_new to _thread_in_vm
1659   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1660 
1661   assert(JavaThread::current() == this, "sanity check");
1662   assert(!Thread::current()->owns_locks(), "sanity check");
1663 
1664   DTRACE_THREAD_PROBE(start, this);
1665 
1666   // This operation might block. We call that after all safepoint checks for a new thread has
1667   // been completed.
1668   this->set_active_handles(JNIHandleBlock::allocate_block());
1669 
1670   if (JvmtiExport::should_post_thread_life()) {
1671     JvmtiExport::post_thread_start(this);
1672   }
1673 
1674   EventThreadStart event;
1675   if (event.should_commit()) {
1676      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1677      event.commit();
1678   }
1679 
1680   // We call another function to do the rest so we are sure that the stack addresses used
1681   // from there will be lower than the stack base just computed
1682   thread_main_inner();
1683 
1684   // Note, thread is no longer valid at this point!
1685 }
1686 
1687 
1688 void JavaThread::thread_main_inner() {
1689   assert(JavaThread::current() == this, "sanity check");
1690   assert(this->threadObj() != NULL, "just checking");
1691 
1692   // Execute thread entry point unless this thread has a pending exception
1693   // or has been stopped before starting.
1694   // Note: Due to JVM_StopThread we can have pending exceptions already!
1695   if (!this->has_pending_exception() &&
1696       !java_lang_Thread::is_stillborn(this->threadObj())) {
1697     {
1698       ResourceMark rm(this);
1699       this->set_native_thread_name(this->get_thread_name());
1700     }
1701     HandleMark hm(this);
1702     this->entry_point()(this, this);
1703   }
1704 
1705   DTRACE_THREAD_PROBE(stop, this);
1706 
1707   this->exit(false);
1708   delete this;
1709 }
1710 
1711 
1712 static void ensure_join(JavaThread* thread) {
1713   // We do not need to grap the Threads_lock, since we are operating on ourself.
1714   Handle threadObj(thread, thread->threadObj());
1715   assert(threadObj.not_null(), "java thread object must exist");
1716   ObjectLocker lock(threadObj, thread);
1717   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1718   thread->clear_pending_exception();
1719   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1720   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1721   // Clear the native thread instance - this makes isAlive return false and allows the join()
1722   // to complete once we've done the notify_all below
1723   java_lang_Thread::set_thread(threadObj(), NULL);
1724   lock.notify_all(thread);
1725   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1726   thread->clear_pending_exception();
1727 }
1728 
1729 
1730 // For any new cleanup additions, please check to see if they need to be applied to
1731 // cleanup_failed_attach_current_thread as well.
1732 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1733   assert(this == JavaThread::current(),  "thread consistency check");
1734 
1735   HandleMark hm(this);
1736   Handle uncaught_exception(this, this->pending_exception());
1737   this->clear_pending_exception();
1738   Handle threadObj(this, this->threadObj());
1739   assert(threadObj.not_null(), "Java thread object should be created");
1740 
1741   if (get_thread_profiler() != NULL) {
1742     get_thread_profiler()->disengage();
1743     ResourceMark rm;
1744     get_thread_profiler()->print(get_thread_name());
1745   }
1746 
1747 
1748   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1749   {
1750     EXCEPTION_MARK;
1751 
1752     CLEAR_PENDING_EXCEPTION;
1753   }
1754   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1755   // has to be fixed by a runtime query method
1756   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1757     // JSR-166: change call from from ThreadGroup.uncaughtException to
1758     // java.lang.Thread.dispatchUncaughtException
1759     if (uncaught_exception.not_null()) {
1760       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1761       {
1762         EXCEPTION_MARK;
1763         // Check if the method Thread.dispatchUncaughtException() exists. If so
1764         // call it.  Otherwise we have an older library without the JSR-166 changes,
1765         // so call ThreadGroup.uncaughtException()
1766         KlassHandle recvrKlass(THREAD, threadObj->klass());
1767         CallInfo callinfo;
1768         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1769         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1770                                            vmSymbols::dispatchUncaughtException_name(),
1771                                            vmSymbols::throwable_void_signature(),
1772                                            KlassHandle(), false, false, THREAD);
1773         CLEAR_PENDING_EXCEPTION;
1774         methodHandle method = callinfo.selected_method();
1775         if (method.not_null()) {
1776           JavaValue result(T_VOID);
1777           JavaCalls::call_virtual(&result,
1778                                   threadObj, thread_klass,
1779                                   vmSymbols::dispatchUncaughtException_name(),
1780                                   vmSymbols::throwable_void_signature(),
1781                                   uncaught_exception,
1782                                   THREAD);
1783         } else {
1784           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1785           JavaValue result(T_VOID);
1786           JavaCalls::call_virtual(&result,
1787                                   group, thread_group,
1788                                   vmSymbols::uncaughtException_name(),
1789                                   vmSymbols::thread_throwable_void_signature(),
1790                                   threadObj,           // Arg 1
1791                                   uncaught_exception,  // Arg 2
1792                                   THREAD);
1793         }
1794         if (HAS_PENDING_EXCEPTION) {
1795           ResourceMark rm(this);
1796           jio_fprintf(defaultStream::error_stream(),
1797                 "\nException: %s thrown from the UncaughtExceptionHandler"
1798                 " in thread \"%s\"\n",
1799                 pending_exception()->klass()->external_name(),
1800                 get_thread_name());
1801           CLEAR_PENDING_EXCEPTION;
1802         }
1803       }
1804     }
1805 
1806     // Called before the java thread exit since we want to read info
1807     // from java_lang_Thread object
1808     EventThreadEnd event;
1809     if (event.should_commit()) {
1810         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1811         event.commit();
1812     }
1813 
1814     // Call after last event on thread
1815     EVENT_THREAD_EXIT(this);
1816 
1817     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1818     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1819     // is deprecated anyhow.
1820     if (!is_Compiler_thread()) {
1821       int count = 3;
1822       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1823         EXCEPTION_MARK;
1824         JavaValue result(T_VOID);
1825         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1826         JavaCalls::call_virtual(&result,
1827                               threadObj, thread_klass,
1828                               vmSymbols::exit_method_name(),
1829                               vmSymbols::void_method_signature(),
1830                               THREAD);
1831         CLEAR_PENDING_EXCEPTION;
1832       }
1833     }
1834     // notify JVMTI
1835     if (JvmtiExport::should_post_thread_life()) {
1836       JvmtiExport::post_thread_end(this);
1837     }
1838 
1839     // We have notified the agents that we are exiting, before we go on,
1840     // we must check for a pending external suspend request and honor it
1841     // in order to not surprise the thread that made the suspend request.
1842     while (true) {
1843       {
1844         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1845         if (!is_external_suspend()) {
1846           set_terminated(_thread_exiting);
1847           ThreadService::current_thread_exiting(this);
1848           break;
1849         }
1850         // Implied else:
1851         // Things get a little tricky here. We have a pending external
1852         // suspend request, but we are holding the SR_lock so we
1853         // can't just self-suspend. So we temporarily drop the lock
1854         // and then self-suspend.
1855       }
1856 
1857       ThreadBlockInVM tbivm(this);
1858       java_suspend_self();
1859 
1860       // We're done with this suspend request, but we have to loop around
1861       // and check again. Eventually we will get SR_lock without a pending
1862       // external suspend request and will be able to mark ourselves as
1863       // exiting.
1864     }
1865     // no more external suspends are allowed at this point
1866   } else {
1867     // before_exit() has already posted JVMTI THREAD_END events
1868   }
1869 
1870   // Notify waiters on thread object. This has to be done after exit() is called
1871   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1872   // group should have the destroyed bit set before waiters are notified).
1873   ensure_join(this);
1874   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1875 
1876   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1877   // held by this thread must be released.  A detach operation must only
1878   // get here if there are no Java frames on the stack.  Therefore, any
1879   // owned monitors at this point MUST be JNI-acquired monitors which are
1880   // pre-inflated and in the monitor cache.
1881   //
1882   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1883   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1884     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1885     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1886     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1887   }
1888 
1889   // These things needs to be done while we are still a Java Thread. Make sure that thread
1890   // is in a consistent state, in case GC happens
1891   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1892 
1893   if (active_handles() != NULL) {
1894     JNIHandleBlock* block = active_handles();
1895     set_active_handles(NULL);
1896     JNIHandleBlock::release_block(block);
1897   }
1898 
1899   if (free_handle_block() != NULL) {
1900     JNIHandleBlock* block = free_handle_block();
1901     set_free_handle_block(NULL);
1902     JNIHandleBlock::release_block(block);
1903   }
1904 
1905   // These have to be removed while this is still a valid thread.
1906   remove_stack_guard_pages();
1907 
1908   if (UseTLAB) {
1909     tlab().make_parsable(true);  // retire TLAB
1910   }
1911 
1912   if (JvmtiEnv::environments_might_exist()) {
1913     JvmtiExport::cleanup_thread(this);
1914   }
1915 
1916   // We must flush any deferred card marks before removing a thread from
1917   // the list of active threads.
1918   Universe::heap()->flush_deferred_store_barrier(this);
1919   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1920 
1921 #if INCLUDE_ALL_GCS
1922   // We must flush the G1-related buffers before removing a thread
1923   // from the list of active threads. We must do this after any deferred
1924   // card marks have been flushed (above) so that any entries that are
1925   // added to the thread's dirty card queue as a result are not lost.
1926   if (UseG1GC) {
1927     flush_barrier_queues();
1928   }
1929 #endif // INCLUDE_ALL_GCS
1930 
1931   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1932   Threads::remove(this);
1933 }
1934 
1935 #if INCLUDE_ALL_GCS
1936 // Flush G1-related queues.
1937 void JavaThread::flush_barrier_queues() {
1938   satb_mark_queue().flush();
1939   dirty_card_queue().flush();
1940 }
1941 
1942 void JavaThread::initialize_queues() {
1943   assert(!SafepointSynchronize::is_at_safepoint(),
1944          "we should not be at a safepoint");
1945 
1946   ObjPtrQueue& satb_queue = satb_mark_queue();
1947   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1948   // The SATB queue should have been constructed with its active
1949   // field set to false.
1950   assert(!satb_queue.is_active(), "SATB queue should not be active");
1951   assert(satb_queue.is_empty(), "SATB queue should be empty");
1952   // If we are creating the thread during a marking cycle, we should
1953   // set the active field of the SATB queue to true.
1954   if (satb_queue_set.is_active()) {
1955     satb_queue.set_active(true);
1956   }
1957 
1958   DirtyCardQueue& dirty_queue = dirty_card_queue();
1959   // The dirty card queue should have been constructed with its
1960   // active field set to true.
1961   assert(dirty_queue.is_active(), "dirty card queue should be active");
1962 }
1963 #endif // INCLUDE_ALL_GCS
1964 
1965 void JavaThread::cleanup_failed_attach_current_thread() {
1966   if (get_thread_profiler() != NULL) {
1967     get_thread_profiler()->disengage();
1968     ResourceMark rm;
1969     get_thread_profiler()->print(get_thread_name());
1970   }
1971 
1972   if (active_handles() != NULL) {
1973     JNIHandleBlock* block = active_handles();
1974     set_active_handles(NULL);
1975     JNIHandleBlock::release_block(block);
1976   }
1977 
1978   if (free_handle_block() != NULL) {
1979     JNIHandleBlock* block = free_handle_block();
1980     set_free_handle_block(NULL);
1981     JNIHandleBlock::release_block(block);
1982   }
1983 
1984   // These have to be removed while this is still a valid thread.
1985   remove_stack_guard_pages();
1986 
1987   if (UseTLAB) {
1988     tlab().make_parsable(true);  // retire TLAB, if any
1989   }
1990 
1991 #if INCLUDE_ALL_GCS
1992   if (UseG1GC) {
1993     flush_barrier_queues();
1994   }
1995 #endif // INCLUDE_ALL_GCS
1996 
1997   Threads::remove(this);
1998   delete this;
1999 }
2000 
2001 
2002 
2003 
2004 JavaThread* JavaThread::active() {
2005   Thread* thread = ThreadLocalStorage::thread();
2006   assert(thread != NULL, "just checking");
2007   if (thread->is_Java_thread()) {
2008     return (JavaThread*) thread;
2009   } else {
2010     assert(thread->is_VM_thread(), "this must be a vm thread");
2011     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2012     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2013     assert(ret->is_Java_thread(), "must be a Java thread");
2014     return ret;
2015   }
2016 }
2017 
2018 bool JavaThread::is_lock_owned(address adr) const {
2019   if (Thread::is_lock_owned(adr)) return true;
2020 
2021   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2022     if (chunk->contains(adr)) return true;
2023   }
2024 
2025   return false;
2026 }
2027 
2028 
2029 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2030   chunk->set_next(monitor_chunks());
2031   set_monitor_chunks(chunk);
2032 }
2033 
2034 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2035   guarantee(monitor_chunks() != NULL, "must be non empty");
2036   if (monitor_chunks() == chunk) {
2037     set_monitor_chunks(chunk->next());
2038   } else {
2039     MonitorChunk* prev = monitor_chunks();
2040     while (prev->next() != chunk) prev = prev->next();
2041     prev->set_next(chunk->next());
2042   }
2043 }
2044 
2045 // JVM support.
2046 
2047 // Note: this function shouldn't block if it's called in
2048 // _thread_in_native_trans state (such as from
2049 // check_special_condition_for_native_trans()).
2050 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2051 
2052   if (has_last_Java_frame() && has_async_condition()) {
2053     // If we are at a polling page safepoint (not a poll return)
2054     // then we must defer async exception because live registers
2055     // will be clobbered by the exception path. Poll return is
2056     // ok because the call we a returning from already collides
2057     // with exception handling registers and so there is no issue.
2058     // (The exception handling path kills call result registers but
2059     //  this is ok since the exception kills the result anyway).
2060 
2061     if (is_at_poll_safepoint()) {
2062       // if the code we are returning to has deoptimized we must defer
2063       // the exception otherwise live registers get clobbered on the
2064       // exception path before deoptimization is able to retrieve them.
2065       //
2066       RegisterMap map(this, false);
2067       frame caller_fr = last_frame().sender(&map);
2068       assert(caller_fr.is_compiled_frame(), "what?");
2069       if (caller_fr.is_deoptimized_frame()) {
2070         if (TraceExceptions) {
2071           ResourceMark rm;
2072           tty->print_cr("deferred async exception at compiled safepoint");
2073         }
2074         return;
2075       }
2076     }
2077   }
2078 
2079   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2080   if (condition == _no_async_condition) {
2081     // Conditions have changed since has_special_runtime_exit_condition()
2082     // was called:
2083     // - if we were here only because of an external suspend request,
2084     //   then that was taken care of above (or cancelled) so we are done
2085     // - if we were here because of another async request, then it has
2086     //   been cleared between the has_special_runtime_exit_condition()
2087     //   and now so again we are done
2088     return;
2089   }
2090 
2091   // Check for pending async. exception
2092   if (_pending_async_exception != NULL) {
2093     // Only overwrite an already pending exception, if it is not a threadDeath.
2094     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2095 
2096       // We cannot call Exceptions::_throw(...) here because we cannot block
2097       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2098 
2099       if (TraceExceptions) {
2100         ResourceMark rm;
2101         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2102         if (has_last_Java_frame() ) {
2103           frame f = last_frame();
2104           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2105         }
2106         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2107       }
2108       _pending_async_exception = NULL;
2109       clear_has_async_exception();
2110     }
2111   }
2112 
2113   if (check_unsafe_error &&
2114       condition == _async_unsafe_access_error && !has_pending_exception()) {
2115     condition = _no_async_condition;  // done
2116     switch (thread_state()) {
2117     case _thread_in_vm:
2118       {
2119         JavaThread* THREAD = this;
2120         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2121       }
2122     case _thread_in_native:
2123       {
2124         ThreadInVMfromNative tiv(this);
2125         JavaThread* THREAD = this;
2126         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2127       }
2128     case _thread_in_Java:
2129       {
2130         ThreadInVMfromJava tiv(this);
2131         JavaThread* THREAD = this;
2132         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2133       }
2134     default:
2135       ShouldNotReachHere();
2136     }
2137   }
2138 
2139   assert(condition == _no_async_condition || has_pending_exception() ||
2140          (!check_unsafe_error && condition == _async_unsafe_access_error),
2141          "must have handled the async condition, if no exception");
2142 }
2143 
2144 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2145   //
2146   // Check for pending external suspend. Internal suspend requests do
2147   // not use handle_special_runtime_exit_condition().
2148   // If JNIEnv proxies are allowed, don't self-suspend if the target
2149   // thread is not the current thread. In older versions of jdbx, jdbx
2150   // threads could call into the VM with another thread's JNIEnv so we
2151   // can be here operating on behalf of a suspended thread (4432884).
2152   bool do_self_suspend = is_external_suspend_with_lock();
2153   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2154     //
2155     // Because thread is external suspended the safepoint code will count
2156     // thread as at a safepoint. This can be odd because we can be here
2157     // as _thread_in_Java which would normally transition to _thread_blocked
2158     // at a safepoint. We would like to mark the thread as _thread_blocked
2159     // before calling java_suspend_self like all other callers of it but
2160     // we must then observe proper safepoint protocol. (We can't leave
2161     // _thread_blocked with a safepoint in progress). However we can be
2162     // here as _thread_in_native_trans so we can't use a normal transition
2163     // constructor/destructor pair because they assert on that type of
2164     // transition. We could do something like:
2165     //
2166     // JavaThreadState state = thread_state();
2167     // set_thread_state(_thread_in_vm);
2168     // {
2169     //   ThreadBlockInVM tbivm(this);
2170     //   java_suspend_self()
2171     // }
2172     // set_thread_state(_thread_in_vm_trans);
2173     // if (safepoint) block;
2174     // set_thread_state(state);
2175     //
2176     // but that is pretty messy. Instead we just go with the way the
2177     // code has worked before and note that this is the only path to
2178     // java_suspend_self that doesn't put the thread in _thread_blocked
2179     // mode.
2180 
2181     frame_anchor()->make_walkable(this);
2182     java_suspend_self();
2183 
2184     // We might be here for reasons in addition to the self-suspend request
2185     // so check for other async requests.
2186   }
2187 
2188   if (check_asyncs) {
2189     check_and_handle_async_exceptions();
2190   }
2191 }
2192 
2193 void JavaThread::send_thread_stop(oop java_throwable)  {
2194   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2195   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2196   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2197 
2198   // Do not throw asynchronous exceptions against the compiler thread
2199   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2200   if (is_Compiler_thread()) return;
2201 
2202   {
2203     // Actually throw the Throwable against the target Thread - however
2204     // only if there is no thread death exception installed already.
2205     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2206       // If the topmost frame is a runtime stub, then we are calling into
2207       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2208       // must deoptimize the caller before continuing, as the compiled  exception handler table
2209       // may not be valid
2210       if (has_last_Java_frame()) {
2211         frame f = last_frame();
2212         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2213           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2214           RegisterMap reg_map(this, UseBiasedLocking);
2215           frame compiled_frame = f.sender(&reg_map);
2216           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2217             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2218           }
2219         }
2220       }
2221 
2222       // Set async. pending exception in thread.
2223       set_pending_async_exception(java_throwable);
2224 
2225       if (TraceExceptions) {
2226        ResourceMark rm;
2227        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2228       }
2229       // for AbortVMOnException flag
2230       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2231     }
2232   }
2233 
2234 
2235   // Interrupt thread so it will wake up from a potential wait()
2236   Thread::interrupt(this);
2237 }
2238 
2239 // External suspension mechanism.
2240 //
2241 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2242 // to any VM_locks and it is at a transition
2243 // Self-suspension will happen on the transition out of the vm.
2244 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2245 //
2246 // Guarantees on return:
2247 //   + Target thread will not execute any new bytecode (that's why we need to
2248 //     force a safepoint)
2249 //   + Target thread will not enter any new monitors
2250 //
2251 void JavaThread::java_suspend() {
2252   { MutexLocker mu(Threads_lock);
2253     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2254        return;
2255     }
2256   }
2257 
2258   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2259     if (!is_external_suspend()) {
2260       // a racing resume has cancelled us; bail out now
2261       return;
2262     }
2263 
2264     // suspend is done
2265     uint32_t debug_bits = 0;
2266     // Warning: is_ext_suspend_completed() may temporarily drop the
2267     // SR_lock to allow the thread to reach a stable thread state if
2268     // it is currently in a transient thread state.
2269     if (is_ext_suspend_completed(false /* !called_by_wait */,
2270                                  SuspendRetryDelay, &debug_bits) ) {
2271       return;
2272     }
2273   }
2274 
2275   VM_ForceSafepoint vm_suspend;
2276   VMThread::execute(&vm_suspend);
2277 }
2278 
2279 // Part II of external suspension.
2280 // A JavaThread self suspends when it detects a pending external suspend
2281 // request. This is usually on transitions. It is also done in places
2282 // where continuing to the next transition would surprise the caller,
2283 // e.g., monitor entry.
2284 //
2285 // Returns the number of times that the thread self-suspended.
2286 //
2287 // Note: DO NOT call java_suspend_self() when you just want to block current
2288 //       thread. java_suspend_self() is the second stage of cooperative
2289 //       suspension for external suspend requests and should only be used
2290 //       to complete an external suspend request.
2291 //
2292 int JavaThread::java_suspend_self() {
2293   int ret = 0;
2294 
2295   // we are in the process of exiting so don't suspend
2296   if (is_exiting()) {
2297      clear_external_suspend();
2298      return ret;
2299   }
2300 
2301   assert(_anchor.walkable() ||
2302     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2303     "must have walkable stack");
2304 
2305   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2306 
2307   assert(!this->is_ext_suspended(),
2308     "a thread trying to self-suspend should not already be suspended");
2309 
2310   if (this->is_suspend_equivalent()) {
2311     // If we are self-suspending as a result of the lifting of a
2312     // suspend equivalent condition, then the suspend_equivalent
2313     // flag is not cleared until we set the ext_suspended flag so
2314     // that wait_for_ext_suspend_completion() returns consistent
2315     // results.
2316     this->clear_suspend_equivalent();
2317   }
2318 
2319   // A racing resume may have cancelled us before we grabbed SR_lock
2320   // above. Or another external suspend request could be waiting for us
2321   // by the time we return from SR_lock()->wait(). The thread
2322   // that requested the suspension may already be trying to walk our
2323   // stack and if we return now, we can change the stack out from under
2324   // it. This would be a "bad thing (TM)" and cause the stack walker
2325   // to crash. We stay self-suspended until there are no more pending
2326   // external suspend requests.
2327   while (is_external_suspend()) {
2328     ret++;
2329     this->set_ext_suspended();
2330 
2331     // _ext_suspended flag is cleared by java_resume()
2332     while (is_ext_suspended()) {
2333       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2334     }
2335   }
2336 
2337   return ret;
2338 }
2339 
2340 #ifdef ASSERT
2341 // verify the JavaThread has not yet been published in the Threads::list, and
2342 // hence doesn't need protection from concurrent access at this stage
2343 void JavaThread::verify_not_published() {
2344   if (!Threads_lock->owned_by_self()) {
2345    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2346    assert( !Threads::includes(this),
2347            "java thread shouldn't have been published yet!");
2348   }
2349   else {
2350    assert( !Threads::includes(this),
2351            "java thread shouldn't have been published yet!");
2352   }
2353 }
2354 #endif
2355 
2356 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2357 // progress or when _suspend_flags is non-zero.
2358 // Current thread needs to self-suspend if there is a suspend request and/or
2359 // block if a safepoint is in progress.
2360 // Async exception ISN'T checked.
2361 // Note only the ThreadInVMfromNative transition can call this function
2362 // directly and when thread state is _thread_in_native_trans
2363 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2364   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2365 
2366   JavaThread *curJT = JavaThread::current();
2367   bool do_self_suspend = thread->is_external_suspend();
2368 
2369   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2370 
2371   // If JNIEnv proxies are allowed, don't self-suspend if the target
2372   // thread is not the current thread. In older versions of jdbx, jdbx
2373   // threads could call into the VM with another thread's JNIEnv so we
2374   // can be here operating on behalf of a suspended thread (4432884).
2375   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2376     JavaThreadState state = thread->thread_state();
2377 
2378     // We mark this thread_blocked state as a suspend-equivalent so
2379     // that a caller to is_ext_suspend_completed() won't be confused.
2380     // The suspend-equivalent state is cleared by java_suspend_self().
2381     thread->set_suspend_equivalent();
2382 
2383     // If the safepoint code sees the _thread_in_native_trans state, it will
2384     // wait until the thread changes to other thread state. There is no
2385     // guarantee on how soon we can obtain the SR_lock and complete the
2386     // self-suspend request. It would be a bad idea to let safepoint wait for
2387     // too long. Temporarily change the state to _thread_blocked to
2388     // let the VM thread know that this thread is ready for GC. The problem
2389     // of changing thread state is that safepoint could happen just after
2390     // java_suspend_self() returns after being resumed, and VM thread will
2391     // see the _thread_blocked state. We must check for safepoint
2392     // after restoring the state and make sure we won't leave while a safepoint
2393     // is in progress.
2394     thread->set_thread_state(_thread_blocked);
2395     thread->java_suspend_self();
2396     thread->set_thread_state(state);
2397     // Make sure new state is seen by VM thread
2398     if (os::is_MP()) {
2399       if (UseMembar) {
2400         // Force a fence between the write above and read below
2401         OrderAccess::fence();
2402       } else {
2403         // Must use this rather than serialization page in particular on Windows
2404         InterfaceSupport::serialize_memory(thread);
2405       }
2406     }
2407   }
2408 
2409   if (SafepointSynchronize::do_call_back()) {
2410     // If we are safepointing, then block the caller which may not be
2411     // the same as the target thread (see above).
2412     SafepointSynchronize::block(curJT);
2413   }
2414 
2415   if (thread->is_deopt_suspend()) {
2416     thread->clear_deopt_suspend();
2417     RegisterMap map(thread, false);
2418     frame f = thread->last_frame();
2419     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2420       f = f.sender(&map);
2421     }
2422     if (f.id() == thread->must_deopt_id()) {
2423       thread->clear_must_deopt_id();
2424       f.deoptimize(thread);
2425     } else {
2426       fatal("missed deoptimization!");
2427     }
2428   }
2429 }
2430 
2431 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2432 // progress or when _suspend_flags is non-zero.
2433 // Current thread needs to self-suspend if there is a suspend request and/or
2434 // block if a safepoint is in progress.
2435 // Also check for pending async exception (not including unsafe access error).
2436 // Note only the native==>VM/Java barriers can call this function and when
2437 // thread state is _thread_in_native_trans.
2438 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2439   check_safepoint_and_suspend_for_native_trans(thread);
2440 
2441   if (thread->has_async_exception()) {
2442     // We are in _thread_in_native_trans state, don't handle unsafe
2443     // access error since that may block.
2444     thread->check_and_handle_async_exceptions(false);
2445   }
2446 }
2447 
2448 // This is a variant of the normal
2449 // check_special_condition_for_native_trans with slightly different
2450 // semantics for use by critical native wrappers.  It does all the
2451 // normal checks but also performs the transition back into
2452 // thread_in_Java state.  This is required so that critical natives
2453 // can potentially block and perform a GC if they are the last thread
2454 // exiting the GC_locker.
2455 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2456   check_special_condition_for_native_trans(thread);
2457 
2458   // Finish the transition
2459   thread->set_thread_state(_thread_in_Java);
2460 
2461   if (thread->do_critical_native_unlock()) {
2462     ThreadInVMfromJavaNoAsyncException tiv(thread);
2463     GC_locker::unlock_critical(thread);
2464     thread->clear_critical_native_unlock();
2465   }
2466 }
2467 
2468 // We need to guarantee the Threads_lock here, since resumes are not
2469 // allowed during safepoint synchronization
2470 // Can only resume from an external suspension
2471 void JavaThread::java_resume() {
2472   assert_locked_or_safepoint(Threads_lock);
2473 
2474   // Sanity check: thread is gone, has started exiting or the thread
2475   // was not externally suspended.
2476   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2477     return;
2478   }
2479 
2480   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2481 
2482   clear_external_suspend();
2483 
2484   if (is_ext_suspended()) {
2485     clear_ext_suspended();
2486     SR_lock()->notify_all();
2487   }
2488 }
2489 
2490 void JavaThread::create_stack_guard_pages() {
2491   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2492   address low_addr = stack_base() - stack_size();
2493   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2494 
2495   int allocate = os::allocate_stack_guard_pages();
2496   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2497 
2498   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2499     warning("Attempt to allocate stack guard pages failed.");
2500     return;
2501   }
2502 
2503   if (os::guard_memory((char *) low_addr, len)) {
2504     _stack_guard_state = stack_guard_enabled;
2505   } else {
2506     warning("Attempt to protect stack guard pages failed.");
2507     if (os::uncommit_memory((char *) low_addr, len)) {
2508       warning("Attempt to deallocate stack guard pages failed.");
2509     }
2510   }
2511 }
2512 
2513 void JavaThread::remove_stack_guard_pages() {
2514   assert(Thread::current() == this, "from different thread");
2515   if (_stack_guard_state == stack_guard_unused) return;
2516   address low_addr = stack_base() - stack_size();
2517   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2518 
2519   if (os::allocate_stack_guard_pages()) {
2520     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2521       _stack_guard_state = stack_guard_unused;
2522     } else {
2523       warning("Attempt to deallocate stack guard pages failed.");
2524     }
2525   } else {
2526     if (_stack_guard_state == stack_guard_unused) return;
2527     if (os::unguard_memory((char *) low_addr, len)) {
2528       _stack_guard_state = stack_guard_unused;
2529     } else {
2530         warning("Attempt to unprotect stack guard pages failed.");
2531     }
2532   }
2533 }
2534 
2535 void JavaThread::enable_stack_yellow_zone() {
2536   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2537   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2538 
2539   // The base notation is from the stacks point of view, growing downward.
2540   // We need to adjust it to work correctly with guard_memory()
2541   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2542 
2543   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2544   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2545 
2546   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2547     _stack_guard_state = stack_guard_enabled;
2548   } else {
2549     warning("Attempt to guard stack yellow zone failed.");
2550   }
2551   enable_register_stack_guard();
2552 }
2553 
2554 void JavaThread::disable_stack_yellow_zone() {
2555   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2556   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2557 
2558   // Simply return if called for a thread that does not use guard pages.
2559   if (_stack_guard_state == stack_guard_unused) return;
2560 
2561   // The base notation is from the stacks point of view, growing downward.
2562   // We need to adjust it to work correctly with guard_memory()
2563   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2564 
2565   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2566     _stack_guard_state = stack_guard_yellow_disabled;
2567   } else {
2568     warning("Attempt to unguard stack yellow zone failed.");
2569   }
2570   disable_register_stack_guard();
2571 }
2572 
2573 void JavaThread::enable_stack_red_zone() {
2574   // The base notation is from the stacks point of view, growing downward.
2575   // We need to adjust it to work correctly with guard_memory()
2576   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2577   address base = stack_red_zone_base() - stack_red_zone_size();
2578 
2579   guarantee(base < stack_base(),"Error calculating stack red zone");
2580   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2581 
2582   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2583     warning("Attempt to guard stack red zone failed.");
2584   }
2585 }
2586 
2587 void JavaThread::disable_stack_red_zone() {
2588   // The base notation is from the stacks point of view, growing downward.
2589   // We need to adjust it to work correctly with guard_memory()
2590   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2591   address base = stack_red_zone_base() - stack_red_zone_size();
2592   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2593     warning("Attempt to unguard stack red zone failed.");
2594   }
2595 }
2596 
2597 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2598   // ignore is there is no stack
2599   if (!has_last_Java_frame()) return;
2600   // traverse the stack frames. Starts from top frame.
2601   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2602     frame* fr = fst.current();
2603     f(fr, fst.register_map());
2604   }
2605 }
2606 
2607 
2608 #ifndef PRODUCT
2609 // Deoptimization
2610 // Function for testing deoptimization
2611 void JavaThread::deoptimize() {
2612   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2613   StackFrameStream fst(this, UseBiasedLocking);
2614   bool deopt = false;           // Dump stack only if a deopt actually happens.
2615   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2616   // Iterate over all frames in the thread and deoptimize
2617   for(; !fst.is_done(); fst.next()) {
2618     if(fst.current()->can_be_deoptimized()) {
2619 
2620       if (only_at) {
2621         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2622         // consists of comma or carriage return separated numbers so
2623         // search for the current bci in that string.
2624         address pc = fst.current()->pc();
2625         nmethod* nm =  (nmethod*) fst.current()->cb();
2626         ScopeDesc* sd = nm->scope_desc_at( pc);
2627         char buffer[8];
2628         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2629         size_t len = strlen(buffer);
2630         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2631         while (found != NULL) {
2632           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2633               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2634             // Check that the bci found is bracketed by terminators.
2635             break;
2636           }
2637           found = strstr(found + 1, buffer);
2638         }
2639         if (!found) {
2640           continue;
2641         }
2642       }
2643 
2644       if (DebugDeoptimization && !deopt) {
2645         deopt = true; // One-time only print before deopt
2646         tty->print_cr("[BEFORE Deoptimization]");
2647         trace_frames();
2648         trace_stack();
2649       }
2650       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2651     }
2652   }
2653 
2654   if (DebugDeoptimization && deopt) {
2655     tty->print_cr("[AFTER Deoptimization]");
2656     trace_frames();
2657   }
2658 }
2659 
2660 
2661 // Make zombies
2662 void JavaThread::make_zombies() {
2663   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2664     if (fst.current()->can_be_deoptimized()) {
2665       // it is a Java nmethod
2666       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2667       nm->make_not_entrant();
2668     }
2669   }
2670 }
2671 #endif // PRODUCT
2672 
2673 
2674 void JavaThread::deoptimized_wrt_marked_nmethods() {
2675   if (!has_last_Java_frame()) return;
2676   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2677   StackFrameStream fst(this, UseBiasedLocking);
2678   for(; !fst.is_done(); fst.next()) {
2679     if (fst.current()->should_be_deoptimized()) {
2680       if (LogCompilation && xtty != NULL) {
2681         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2682         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2683                    this->name(), nm != NULL ? nm->compile_id() : -1);
2684       }
2685 
2686       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2687     }
2688   }
2689 }
2690 
2691 
2692 // GC support
2693 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2694 
2695 void JavaThread::gc_epilogue() {
2696   frames_do(frame_gc_epilogue);
2697 }
2698 
2699 
2700 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2701 
2702 void JavaThread::gc_prologue() {
2703   frames_do(frame_gc_prologue);
2704 }
2705 
2706 // If the caller is a NamedThread, then remember, in the current scope,
2707 // the given JavaThread in its _processed_thread field.
2708 class RememberProcessedThread: public StackObj {
2709   NamedThread* _cur_thr;
2710 public:
2711   RememberProcessedThread(JavaThread* jthr) {
2712     Thread* thread = Thread::current();
2713     if (thread->is_Named_thread()) {
2714       _cur_thr = (NamedThread *)thread;
2715       _cur_thr->set_processed_thread(jthr);
2716     } else {
2717       _cur_thr = NULL;
2718     }
2719   }
2720 
2721   ~RememberProcessedThread() {
2722     if (_cur_thr) {
2723       _cur_thr->set_processed_thread(NULL);
2724     }
2725   }
2726 };
2727 
2728 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2729   // Verify that the deferred card marks have been flushed.
2730   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2731 
2732   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2733   // since there may be more than one thread using each ThreadProfiler.
2734 
2735   // Traverse the GCHandles
2736   Thread::oops_do(f, cld_f, cf);
2737 
2738   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2739           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2740 
2741   if (has_last_Java_frame()) {
2742     // Record JavaThread to GC thread
2743     RememberProcessedThread rpt(this);
2744 
2745     // Traverse the privileged stack
2746     if (_privileged_stack_top != NULL) {
2747       _privileged_stack_top->oops_do(f);
2748     }
2749 
2750     // traverse the registered growable array
2751     if (_array_for_gc != NULL) {
2752       for (int index = 0; index < _array_for_gc->length(); index++) {
2753         f->do_oop(_array_for_gc->adr_at(index));
2754       }
2755     }
2756 
2757     // Traverse the monitor chunks
2758     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2759       chunk->oops_do(f);
2760     }
2761 
2762     // Traverse the execution stack
2763     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2764       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2765     }
2766   }
2767 
2768   // callee_target is never live across a gc point so NULL it here should
2769   // it still contain a methdOop.
2770 
2771   set_callee_target(NULL);
2772 
2773   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2774   // If we have deferred set_locals there might be oops waiting to be
2775   // written
2776   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2777   if (list != NULL) {
2778     for (int i = 0; i < list->length(); i++) {
2779       list->at(i)->oops_do(f);
2780     }
2781   }
2782 
2783   // Traverse instance variables at the end since the GC may be moving things
2784   // around using this function
2785   f->do_oop((oop*) &_threadObj);
2786   f->do_oop((oop*) &_vm_result);
2787   f->do_oop((oop*) &_exception_oop);
2788   f->do_oop((oop*) &_pending_async_exception);
2789 
2790   if (jvmti_thread_state() != NULL) {
2791     jvmti_thread_state()->oops_do(f);
2792   }
2793 }
2794 
2795 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2796   Thread::nmethods_do(cf);  // (super method is a no-op)
2797 
2798   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2799           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2800 
2801   if (has_last_Java_frame()) {
2802     // Traverse the execution stack
2803     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2804       fst.current()->nmethods_do(cf);
2805     }
2806   }
2807 }
2808 
2809 void JavaThread::metadata_do(void f(Metadata*)) {
2810   Thread::metadata_do(f);
2811   if (has_last_Java_frame()) {
2812     // Traverse the execution stack to call f() on the methods in the stack
2813     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2814       fst.current()->metadata_do(f);
2815     }
2816   } else if (is_Compiler_thread()) {
2817     // need to walk ciMetadata in current compile tasks to keep alive.
2818     CompilerThread* ct = (CompilerThread*)this;
2819     if (ct->env() != NULL) {
2820       ct->env()->metadata_do(f);
2821     }
2822   }
2823 }
2824 
2825 // Printing
2826 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2827   switch (_thread_state) {
2828   case _thread_uninitialized:     return "_thread_uninitialized";
2829   case _thread_new:               return "_thread_new";
2830   case _thread_new_trans:         return "_thread_new_trans";
2831   case _thread_in_native:         return "_thread_in_native";
2832   case _thread_in_native_trans:   return "_thread_in_native_trans";
2833   case _thread_in_vm:             return "_thread_in_vm";
2834   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2835   case _thread_in_Java:           return "_thread_in_Java";
2836   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2837   case _thread_blocked:           return "_thread_blocked";
2838   case _thread_blocked_trans:     return "_thread_blocked_trans";
2839   default:                        return "unknown thread state";
2840   }
2841 }
2842 
2843 #ifndef PRODUCT
2844 void JavaThread::print_thread_state_on(outputStream *st) const {
2845   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2846 };
2847 void JavaThread::print_thread_state() const {
2848   print_thread_state_on(tty);
2849 };
2850 #endif // PRODUCT
2851 
2852 // Called by Threads::print() for VM_PrintThreads operation
2853 void JavaThread::print_on(outputStream *st) const {
2854   st->print("\"%s\" ", get_thread_name());
2855   oop thread_oop = threadObj();
2856   if (thread_oop != NULL) {
2857     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2858     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2859     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2860   }
2861   Thread::print_on(st);
2862   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2863   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2864   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2865     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2866   }
2867 #ifndef PRODUCT
2868   print_thread_state_on(st);
2869   _safepoint_state->print_on(st);
2870 #endif // PRODUCT
2871 }
2872 
2873 // Called by fatal error handler. The difference between this and
2874 // JavaThread::print() is that we can't grab lock or allocate memory.
2875 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2876   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2877   oop thread_obj = threadObj();
2878   if (thread_obj != NULL) {
2879      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2880   }
2881   st->print(" [");
2882   st->print("%s", _get_thread_state_name(_thread_state));
2883   if (osthread()) {
2884     st->print(", id=%d", osthread()->thread_id());
2885   }
2886   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2887             _stack_base - _stack_size, _stack_base);
2888   st->print("]");
2889   return;
2890 }
2891 
2892 // Verification
2893 
2894 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2895 
2896 void JavaThread::verify() {
2897   // Verify oops in the thread.
2898   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2899 
2900   // Verify the stack frames.
2901   frames_do(frame_verify);
2902 }
2903 
2904 // CR 6300358 (sub-CR 2137150)
2905 // Most callers of this method assume that it can't return NULL but a
2906 // thread may not have a name whilst it is in the process of attaching to
2907 // the VM - see CR 6412693, and there are places where a JavaThread can be
2908 // seen prior to having it's threadObj set (eg JNI attaching threads and
2909 // if vm exit occurs during initialization). These cases can all be accounted
2910 // for such that this method never returns NULL.
2911 const char* JavaThread::get_thread_name() const {
2912 #ifdef ASSERT
2913   // early safepoints can hit while current thread does not yet have TLS
2914   if (!SafepointSynchronize::is_at_safepoint()) {
2915     Thread *cur = Thread::current();
2916     if (!(cur->is_Java_thread() && cur == this)) {
2917       // Current JavaThreads are allowed to get their own name without
2918       // the Threads_lock.
2919       assert_locked_or_safepoint(Threads_lock);
2920     }
2921   }
2922 #endif // ASSERT
2923     return get_thread_name_string();
2924 }
2925 
2926 // Returns a non-NULL representation of this thread's name, or a suitable
2927 // descriptive string if there is no set name
2928 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2929   const char* name_str;
2930   oop thread_obj = threadObj();
2931   if (thread_obj != NULL) {
2932     typeArrayOop name = java_lang_Thread::name(thread_obj);
2933     if (name != NULL) {
2934       if (buf == NULL) {
2935         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2936       }
2937       else {
2938         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2939       }
2940     }
2941     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2942       name_str = "<no-name - thread is attaching>";
2943     }
2944     else {
2945       name_str = Thread::name();
2946     }
2947   }
2948   else {
2949     name_str = Thread::name();
2950   }
2951   assert(name_str != NULL, "unexpected NULL thread name");
2952   return name_str;
2953 }
2954 
2955 
2956 const char* JavaThread::get_threadgroup_name() const {
2957   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2958   oop thread_obj = threadObj();
2959   if (thread_obj != NULL) {
2960     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2961     if (thread_group != NULL) {
2962       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2963       // ThreadGroup.name can be null
2964       if (name != NULL) {
2965         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2966         return str;
2967       }
2968     }
2969   }
2970   return NULL;
2971 }
2972 
2973 const char* JavaThread::get_parent_name() const {
2974   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2975   oop thread_obj = threadObj();
2976   if (thread_obj != NULL) {
2977     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2978     if (thread_group != NULL) {
2979       oop parent = java_lang_ThreadGroup::parent(thread_group);
2980       if (parent != NULL) {
2981         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2982         // ThreadGroup.name can be null
2983         if (name != NULL) {
2984           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2985           return str;
2986         }
2987       }
2988     }
2989   }
2990   return NULL;
2991 }
2992 
2993 ThreadPriority JavaThread::java_priority() const {
2994   oop thr_oop = threadObj();
2995   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2996   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2997   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2998   return priority;
2999 }
3000 
3001 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3002 
3003   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3004   // Link Java Thread object <-> C++ Thread
3005 
3006   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3007   // and put it into a new Handle.  The Handle "thread_oop" can then
3008   // be used to pass the C++ thread object to other methods.
3009 
3010   // Set the Java level thread object (jthread) field of the
3011   // new thread (a JavaThread *) to C++ thread object using the
3012   // "thread_oop" handle.
3013 
3014   // Set the thread field (a JavaThread *) of the
3015   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3016 
3017   Handle thread_oop(Thread::current(),
3018                     JNIHandles::resolve_non_null(jni_thread));
3019   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3020     "must be initialized");
3021   set_threadObj(thread_oop());
3022   java_lang_Thread::set_thread(thread_oop(), this);
3023 
3024   if (prio == NoPriority) {
3025     prio = java_lang_Thread::priority(thread_oop());
3026     assert(prio != NoPriority, "A valid priority should be present");
3027   }
3028 
3029   // Push the Java priority down to the native thread; needs Threads_lock
3030   Thread::set_priority(this, prio);
3031 
3032   // Add the new thread to the Threads list and set it in motion.
3033   // We must have threads lock in order to call Threads::add.
3034   // It is crucial that we do not block before the thread is
3035   // added to the Threads list for if a GC happens, then the java_thread oop
3036   // will not be visited by GC.
3037   Threads::add(this);
3038 }
3039 
3040 oop JavaThread::current_park_blocker() {
3041   // Support for JSR-166 locks
3042   oop thread_oop = threadObj();
3043   if (thread_oop != NULL &&
3044       JDK_Version::current().supports_thread_park_blocker()) {
3045     return java_lang_Thread::park_blocker(thread_oop);
3046   }
3047   return NULL;
3048 }
3049 
3050 
3051 void JavaThread::print_stack_on(outputStream* st) {
3052   if (!has_last_Java_frame()) return;
3053   ResourceMark rm;
3054   HandleMark   hm;
3055 
3056   RegisterMap reg_map(this);
3057   vframe* start_vf = last_java_vframe(&reg_map);
3058   int count = 0;
3059   for (vframe* f = start_vf; f; f = f->sender() ) {
3060     if (f->is_java_frame()) {
3061       javaVFrame* jvf = javaVFrame::cast(f);
3062       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3063 
3064       // Print out lock information
3065       if (JavaMonitorsInStackTrace) {
3066         jvf->print_lock_info_on(st, count);
3067       }
3068     } else {
3069       // Ignore non-Java frames
3070     }
3071 
3072     // Bail-out case for too deep stacks
3073     count++;
3074     if (MaxJavaStackTraceDepth == count) return;
3075   }
3076 }
3077 
3078 
3079 // JVMTI PopFrame support
3080 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3081   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3082   if (in_bytes(size_in_bytes) != 0) {
3083     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3084     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3085     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3086   }
3087 }
3088 
3089 void* JavaThread::popframe_preserved_args() {
3090   return _popframe_preserved_args;
3091 }
3092 
3093 ByteSize JavaThread::popframe_preserved_args_size() {
3094   return in_ByteSize(_popframe_preserved_args_size);
3095 }
3096 
3097 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3098   int sz = in_bytes(popframe_preserved_args_size());
3099   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3100   return in_WordSize(sz / wordSize);
3101 }
3102 
3103 void JavaThread::popframe_free_preserved_args() {
3104   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3105   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3106   _popframe_preserved_args = NULL;
3107   _popframe_preserved_args_size = 0;
3108 }
3109 
3110 #ifndef PRODUCT
3111 
3112 void JavaThread::trace_frames() {
3113   tty->print_cr("[Describe stack]");
3114   int frame_no = 1;
3115   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3116     tty->print("  %d. ", frame_no++);
3117     fst.current()->print_value_on(tty,this);
3118     tty->cr();
3119   }
3120 }
3121 
3122 class PrintAndVerifyOopClosure: public OopClosure {
3123  protected:
3124   template <class T> inline void do_oop_work(T* p) {
3125     oop obj = oopDesc::load_decode_heap_oop(p);
3126     if (obj == NULL) return;
3127     tty->print(INTPTR_FORMAT ": ", p);
3128     if (obj->is_oop_or_null()) {
3129       if (obj->is_objArray()) {
3130         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3131       } else {
3132         obj->print();
3133       }
3134     } else {
3135       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3136     }
3137     tty->cr();
3138   }
3139  public:
3140   virtual void do_oop(oop* p) { do_oop_work(p); }
3141   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3142 };
3143 
3144 
3145 static void oops_print(frame* f, const RegisterMap *map) {
3146   PrintAndVerifyOopClosure print;
3147   f->print_value();
3148   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3149 }
3150 
3151 // Print our all the locations that contain oops and whether they are
3152 // valid or not.  This useful when trying to find the oldest frame
3153 // where an oop has gone bad since the frame walk is from youngest to
3154 // oldest.
3155 void JavaThread::trace_oops() {
3156   tty->print_cr("[Trace oops]");
3157   frames_do(oops_print);
3158 }
3159 
3160 
3161 #ifdef ASSERT
3162 // Print or validate the layout of stack frames
3163 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3164   ResourceMark rm;
3165   PRESERVE_EXCEPTION_MARK;
3166   FrameValues values;
3167   int frame_no = 0;
3168   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3169     fst.current()->describe(values, ++frame_no);
3170     if (depth == frame_no) break;
3171   }
3172   if (validate_only) {
3173     values.validate();
3174   } else {
3175     tty->print_cr("[Describe stack layout]");
3176     values.print(this);
3177   }
3178 }
3179 #endif
3180 
3181 void JavaThread::trace_stack_from(vframe* start_vf) {
3182   ResourceMark rm;
3183   int vframe_no = 1;
3184   for (vframe* f = start_vf; f; f = f->sender() ) {
3185     if (f->is_java_frame()) {
3186       javaVFrame::cast(f)->print_activation(vframe_no++);
3187     } else {
3188       f->print();
3189     }
3190     if (vframe_no > StackPrintLimit) {
3191       tty->print_cr("...<more frames>...");
3192       return;
3193     }
3194   }
3195 }
3196 
3197 
3198 void JavaThread::trace_stack() {
3199   if (!has_last_Java_frame()) return;
3200   ResourceMark rm;
3201   HandleMark   hm;
3202   RegisterMap reg_map(this);
3203   trace_stack_from(last_java_vframe(&reg_map));
3204 }
3205 
3206 
3207 #endif // PRODUCT
3208 
3209 
3210 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3211   assert(reg_map != NULL, "a map must be given");
3212   frame f = last_frame();
3213   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3214     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3215   }
3216   return NULL;
3217 }
3218 
3219 
3220 Klass* JavaThread::security_get_caller_class(int depth) {
3221   vframeStream vfst(this);
3222   vfst.security_get_caller_frame(depth);
3223   if (!vfst.at_end()) {
3224     return vfst.method()->method_holder();
3225   }
3226   return NULL;
3227 }
3228 
3229 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3230   assert(thread->is_Compiler_thread(), "must be compiler thread");
3231   CompileBroker::compiler_thread_loop();
3232 }
3233 
3234 // Create a CompilerThread
3235 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3236 : JavaThread(&compiler_thread_entry) {
3237   _env   = NULL;
3238   _log   = NULL;
3239   _task  = NULL;
3240   _queue = queue;
3241   _counters = counters;
3242   _buffer_blob = NULL;
3243   _scanned_nmethod = NULL;
3244   _compiler = NULL;
3245 
3246 #ifndef PRODUCT
3247   _ideal_graph_printer = NULL;
3248 #endif
3249 }
3250 
3251 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3252   JavaThread::oops_do(f, cld_f, cf);
3253   if (_scanned_nmethod != NULL && cf != NULL) {
3254     // Safepoints can occur when the sweeper is scanning an nmethod so
3255     // process it here to make sure it isn't unloaded in the middle of
3256     // a scan.
3257     cf->do_code_blob(_scanned_nmethod);
3258   }
3259 }
3260 
3261 
3262 // ======= Threads ========
3263 
3264 // The Threads class links together all active threads, and provides
3265 // operations over all threads.  It is protected by its own Mutex
3266 // lock, which is also used in other contexts to protect thread
3267 // operations from having the thread being operated on from exiting
3268 // and going away unexpectedly (e.g., safepoint synchronization)
3269 
3270 JavaThread* Threads::_thread_list = NULL;
3271 int         Threads::_number_of_threads = 0;
3272 int         Threads::_number_of_non_daemon_threads = 0;
3273 int         Threads::_return_code = 0;
3274 size_t      JavaThread::_stack_size_at_create = 0;
3275 #ifdef ASSERT
3276 bool        Threads::_vm_complete = false;
3277 #endif
3278 
3279 // All JavaThreads
3280 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3281 
3282 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3283 void Threads::threads_do(ThreadClosure* tc) {
3284   assert_locked_or_safepoint(Threads_lock);
3285   // ALL_JAVA_THREADS iterates through all JavaThreads
3286   ALL_JAVA_THREADS(p) {
3287     tc->do_thread(p);
3288   }
3289   // Someday we could have a table or list of all non-JavaThreads.
3290   // For now, just manually iterate through them.
3291   tc->do_thread(VMThread::vm_thread());
3292   Universe::heap()->gc_threads_do(tc);
3293   WatcherThread *wt = WatcherThread::watcher_thread();
3294   // Strictly speaking, the following NULL check isn't sufficient to make sure
3295   // the data for WatcherThread is still valid upon being examined. However,
3296   // considering that WatchThread terminates when the VM is on the way to
3297   // exit at safepoint, the chance of the above is extremely small. The right
3298   // way to prevent termination of WatcherThread would be to acquire
3299   // Terminator_lock, but we can't do that without violating the lock rank
3300   // checking in some cases.
3301   if (wt != NULL)
3302     tc->do_thread(wt);
3303 
3304   // If CompilerThreads ever become non-JavaThreads, add them here
3305 }
3306 
3307 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3308 
3309   extern void JDK_Version_init();
3310 
3311   // Check version
3312   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3313 
3314   // Initialize the output stream module
3315   ostream_init();
3316 
3317   // Process java launcher properties.
3318   Arguments::process_sun_java_launcher_properties(args);
3319 
3320   // Initialize the os module before using TLS
3321   os::init();
3322 
3323   // Initialize system properties.
3324   Arguments::init_system_properties();
3325 
3326   // So that JDK version can be used as a discrimintor when parsing arguments
3327   JDK_Version_init();
3328 
3329   // Update/Initialize System properties after JDK version number is known
3330   Arguments::init_version_specific_system_properties();
3331 
3332   // Parse arguments
3333   jint parse_result = Arguments::parse(args);
3334   if (parse_result != JNI_OK) return parse_result;
3335 
3336   os::init_before_ergo();
3337 
3338   jint ergo_result = Arguments::apply_ergo();
3339   if (ergo_result != JNI_OK) return ergo_result;
3340 
3341   if (PauseAtStartup) {
3342     os::pause();
3343   }
3344 
3345 #ifndef USDT2
3346   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3347 #else /* USDT2 */
3348   HOTSPOT_VM_INIT_BEGIN();
3349 #endif /* USDT2 */
3350 
3351   // Record VM creation timing statistics
3352   TraceVmCreationTime create_vm_timer;
3353   create_vm_timer.start();
3354 
3355   // Timing (must come after argument parsing)
3356   TraceTime timer("Create VM", TraceStartupTime);
3357 
3358   // Initialize the os module after parsing the args
3359   jint os_init_2_result = os::init_2();
3360   if (os_init_2_result != JNI_OK) return os_init_2_result;
3361 
3362   jint adjust_after_os_result = Arguments::adjust_after_os();
3363   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3364 
3365   // intialize TLS
3366   ThreadLocalStorage::init();
3367 
3368   // Bootstrap native memory tracking, so it can start recording memory
3369   // activities before worker thread is started. This is the first phase
3370   // of bootstrapping, VM is currently running in single-thread mode.
3371   MemTracker::bootstrap_single_thread();
3372 
3373   // Initialize output stream logging
3374   ostream_init_log();
3375 
3376   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3377   // Must be before create_vm_init_agents()
3378   if (Arguments::init_libraries_at_startup()) {
3379     convert_vm_init_libraries_to_agents();
3380   }
3381 
3382   // Launch -agentlib/-agentpath and converted -Xrun agents
3383   if (Arguments::init_agents_at_startup()) {
3384     create_vm_init_agents();
3385   }
3386 
3387   // Initialize Threads state
3388   _thread_list = NULL;
3389   _number_of_threads = 0;
3390   _number_of_non_daemon_threads = 0;
3391 
3392   // Initialize global data structures and create system classes in heap
3393   vm_init_globals();
3394 
3395   // Attach the main thread to this os thread
3396   JavaThread* main_thread = new JavaThread();
3397   main_thread->set_thread_state(_thread_in_vm);
3398   // must do this before set_active_handles and initialize_thread_local_storage
3399   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3400   // change the stack size recorded here to one based on the java thread
3401   // stacksize. This adjusted size is what is used to figure the placement
3402   // of the guard pages.
3403   main_thread->record_stack_base_and_size();
3404   main_thread->initialize_thread_local_storage();
3405 
3406   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3407 
3408   if (!main_thread->set_as_starting_thread()) {
3409     vm_shutdown_during_initialization(
3410       "Failed necessary internal allocation. Out of swap space");
3411     delete main_thread;
3412     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3413     return JNI_ENOMEM;
3414   }
3415 
3416   // Enable guard page *after* os::create_main_thread(), otherwise it would
3417   // crash Linux VM, see notes in os_linux.cpp.
3418   main_thread->create_stack_guard_pages();
3419 
3420   // Initialize Java-Level synchronization subsystem
3421   ObjectMonitor::Initialize() ;
3422 
3423   // Second phase of bootstrapping, VM is about entering multi-thread mode
3424   MemTracker::bootstrap_multi_thread();
3425 
3426   // Initialize global modules
3427   jint status = init_globals();
3428   if (status != JNI_OK) {
3429     delete main_thread;
3430     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3431     return status;
3432   }
3433 
3434   // Should be done after the heap is fully created
3435   main_thread->cache_global_variables();
3436 
3437   HandleMark hm;
3438 
3439   { MutexLocker mu(Threads_lock);
3440     Threads::add(main_thread);
3441   }
3442 
3443   // Any JVMTI raw monitors entered in onload will transition into
3444   // real raw monitor. VM is setup enough here for raw monitor enter.
3445   JvmtiExport::transition_pending_onload_raw_monitors();
3446 
3447   // Fully start NMT
3448   MemTracker::start();
3449 
3450   // Create the VMThread
3451   { TraceTime timer("Start VMThread", TraceStartupTime);
3452     VMThread::create();
3453     Thread* vmthread = VMThread::vm_thread();
3454 
3455     if (!os::create_thread(vmthread, os::vm_thread))
3456       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3457 
3458     // Wait for the VM thread to become ready, and VMThread::run to initialize
3459     // Monitors can have spurious returns, must always check another state flag
3460     {
3461       MutexLocker ml(Notify_lock);
3462       os::start_thread(vmthread);
3463       while (vmthread->active_handles() == NULL) {
3464         Notify_lock->wait();
3465       }
3466     }
3467   }
3468 
3469   assert (Universe::is_fully_initialized(), "not initialized");
3470   if (VerifyDuringStartup) {
3471     // Make sure we're starting with a clean slate.
3472     VM_Verify verify_op;
3473     VMThread::execute(&verify_op);
3474   }
3475 
3476   EXCEPTION_MARK;
3477 
3478   // At this point, the Universe is initialized, but we have not executed
3479   // any byte code.  Now is a good time (the only time) to dump out the
3480   // internal state of the JVM for sharing.
3481   if (DumpSharedSpaces) {
3482     MetaspaceShared::preload_and_dump(CHECK_0);
3483     ShouldNotReachHere();
3484   }
3485 
3486   // Always call even when there are not JVMTI environments yet, since environments
3487   // may be attached late and JVMTI must track phases of VM execution
3488   JvmtiExport::enter_start_phase();
3489 
3490   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3491   JvmtiExport::post_vm_start();
3492 
3493   {
3494     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3495 
3496     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3497       create_vm_init_libraries();
3498     }
3499 
3500     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3501 
3502     // Initialize java_lang.System (needed before creating the thread)
3503     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3504     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3505     Handle thread_group = create_initial_thread_group(CHECK_0);
3506     Universe::set_main_thread_group(thread_group());
3507     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3508     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3509     main_thread->set_threadObj(thread_object);
3510     // Set thread status to running since main thread has
3511     // been started and running.
3512     java_lang_Thread::set_thread_status(thread_object,
3513                                         java_lang_Thread::RUNNABLE);
3514 
3515     // The VM creates & returns objects of this class. Make sure it's initialized.
3516     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3517 
3518     // The VM preresolves methods to these classes. Make sure that they get initialized
3519     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3520     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3521     call_initializeSystemClass(CHECK_0);
3522 
3523     // get the Java runtime name after java.lang.System is initialized
3524     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3525     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3526 
3527     // an instance of OutOfMemory exception has been allocated earlier
3528     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3529     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3530     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3531     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3532     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3533     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3534     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3535     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3536   }
3537 
3538   // See        : bugid 4211085.
3539   // Background : the static initializer of java.lang.Compiler tries to read
3540   //              property"java.compiler" and read & write property "java.vm.info".
3541   //              When a security manager is installed through the command line
3542   //              option "-Djava.security.manager", the above properties are not
3543   //              readable and the static initializer for java.lang.Compiler fails
3544   //              resulting in a NoClassDefFoundError.  This can happen in any
3545   //              user code which calls methods in java.lang.Compiler.
3546   // Hack :       the hack is to pre-load and initialize this class, so that only
3547   //              system domains are on the stack when the properties are read.
3548   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3549   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3550   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3551   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3552   //              Once that is done, we should remove this hack.
3553   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3554 
3555   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3556   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3557   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3558   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3559   // This should also be taken out as soon as 4211383 gets fixed.
3560   reset_vm_info_property(CHECK_0);
3561 
3562   quicken_jni_functions();
3563 
3564   // Must be run after init_ft which initializes ft_enabled
3565   if (TRACE_INITIALIZE() != JNI_OK) {
3566     vm_exit_during_initialization("Failed to initialize tracing backend");
3567   }
3568 
3569   // Set flag that basic initialization has completed. Used by exceptions and various
3570   // debug stuff, that does not work until all basic classes have been initialized.
3571   set_init_completed();
3572 
3573 #ifndef USDT2
3574   HS_DTRACE_PROBE(hotspot, vm__init__end);
3575 #else /* USDT2 */
3576   HOTSPOT_VM_INIT_END();
3577 #endif /* USDT2 */
3578 
3579   // record VM initialization completion time
3580 #if INCLUDE_MANAGEMENT
3581   Management::record_vm_init_completed();
3582 #endif // INCLUDE_MANAGEMENT
3583 
3584   // Compute system loader. Note that this has to occur after set_init_completed, since
3585   // valid exceptions may be thrown in the process.
3586   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3587   // set_init_completed has just been called, causing exceptions not to be shortcut
3588   // anymore. We call vm_exit_during_initialization directly instead.
3589   SystemDictionary::compute_java_system_loader(THREAD);
3590   if (HAS_PENDING_EXCEPTION) {
3591     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3592   }
3593 
3594 #if INCLUDE_ALL_GCS
3595   // Support for ConcurrentMarkSweep. This should be cleaned up
3596   // and better encapsulated. The ugly nested if test would go away
3597   // once things are properly refactored. XXX YSR
3598   if (UseConcMarkSweepGC || UseG1GC) {
3599     if (UseConcMarkSweepGC) {
3600       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3601     } else {
3602       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3603     }
3604     if (HAS_PENDING_EXCEPTION) {
3605       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3606     }
3607   }
3608 #endif // INCLUDE_ALL_GCS
3609 
3610   // Always call even when there are not JVMTI environments yet, since environments
3611   // may be attached late and JVMTI must track phases of VM execution
3612   JvmtiExport::enter_live_phase();
3613 
3614   // Signal Dispatcher needs to be started before VMInit event is posted
3615   os::signal_init();
3616 
3617   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3618   if (!DisableAttachMechanism) {
3619     AttachListener::vm_start();
3620     if (StartAttachListener || AttachListener::init_at_startup()) {
3621       AttachListener::init();
3622     }
3623   }
3624 
3625   // Launch -Xrun agents
3626   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3627   // back-end can launch with -Xdebug -Xrunjdwp.
3628   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3629     create_vm_init_libraries();
3630   }
3631 
3632   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3633   JvmtiExport::post_vm_initialized();
3634 
3635   if (TRACE_START() != JNI_OK) {
3636     vm_exit_during_initialization("Failed to start tracing backend.");
3637   }
3638 
3639   if (CleanChunkPoolAsync) {
3640     Chunk::start_chunk_pool_cleaner_task();
3641   }
3642 
3643   // initialize compiler(s)
3644 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3645   CompileBroker::compilation_init();
3646 #endif
3647 
3648   if (EnableInvokeDynamic) {
3649     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3650     // It is done after compilers are initialized, because otherwise compilations of
3651     // signature polymorphic MH intrinsics can be missed
3652     // (see SystemDictionary::find_method_handle_intrinsic).
3653     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3654     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3655     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3656   }
3657 
3658 #if INCLUDE_MANAGEMENT
3659   Management::initialize(THREAD);
3660 #endif // INCLUDE_MANAGEMENT
3661 
3662   if (HAS_PENDING_EXCEPTION) {
3663     // management agent fails to start possibly due to
3664     // configuration problem and is responsible for printing
3665     // stack trace if appropriate. Simply exit VM.
3666     vm_exit(1);
3667   }
3668 
3669   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3670   if (MemProfiling)                   MemProfiler::engage();
3671   StatSampler::engage();
3672   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3673 
3674   BiasedLocking::init();
3675 
3676 #if INCLUDE_RTM_OPT
3677   RTMLockingCounters::init();
3678 #endif
3679 
3680   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3681     call_postVMInitHook(THREAD);
3682     // The Java side of PostVMInitHook.run must deal with all
3683     // exceptions and provide means of diagnosis.
3684     if (HAS_PENDING_EXCEPTION) {
3685       CLEAR_PENDING_EXCEPTION;
3686     }
3687   }
3688 
3689   {
3690       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3691       // Make sure the watcher thread can be started by WatcherThread::start()
3692       // or by dynamic enrollment.
3693       WatcherThread::make_startable();
3694       // Start up the WatcherThread if there are any periodic tasks
3695       // NOTE:  All PeriodicTasks should be registered by now. If they
3696       //   aren't, late joiners might appear to start slowly (we might
3697       //   take a while to process their first tick).
3698       if (PeriodicTask::num_tasks() > 0) {
3699           WatcherThread::start();
3700       }
3701   }
3702 
3703   // Give os specific code one last chance to start
3704   os::init_3();
3705 
3706   create_vm_timer.end();
3707 #ifdef ASSERT
3708   _vm_complete = true;
3709 #endif
3710   return JNI_OK;
3711 }
3712 
3713 // type for the Agent_OnLoad and JVM_OnLoad entry points
3714 extern "C" {
3715   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3716 }
3717 // Find a command line agent library and return its entry point for
3718 //         -agentlib:  -agentpath:   -Xrun
3719 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3720 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3721   OnLoadEntry_t on_load_entry = NULL;
3722   void *library = NULL;
3723 
3724   if (!agent->valid()) {
3725     char buffer[JVM_MAXPATHLEN];
3726     char ebuf[1024];
3727     const char *name = agent->name();
3728     const char *msg = "Could not find agent library ";
3729 
3730     // First check to see if agent is statically linked into executable
3731     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3732       library = agent->os_lib();
3733     } else if (agent->is_absolute_path()) {
3734       library = os::dll_load(name, ebuf, sizeof ebuf);
3735       if (library == NULL) {
3736         const char *sub_msg = " in absolute path, with error: ";
3737         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3738         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3739         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3740         // If we can't find the agent, exit.
3741         vm_exit_during_initialization(buf, NULL);
3742         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3743       }
3744     } else {
3745       // Try to load the agent from the standard dll directory
3746       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3747                              name)) {
3748         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3749       }
3750       if (library == NULL) { // Try the local directory
3751         char ns[1] = {0};
3752         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3753           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3754         }
3755         if (library == NULL) {
3756           const char *sub_msg = " on the library path, with error: ";
3757           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3758           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3759           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3760           // If we can't find the agent, exit.
3761           vm_exit_during_initialization(buf, NULL);
3762           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3763         }
3764       }
3765     }
3766     agent->set_os_lib(library);
3767     agent->set_valid();
3768   }
3769 
3770   // Find the OnLoad function.
3771   on_load_entry =
3772     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3773                                                           false,
3774                                                           on_load_symbols,
3775                                                           num_symbol_entries));
3776   return on_load_entry;
3777 }
3778 
3779 // Find the JVM_OnLoad entry point
3780 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3781   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3782   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3783 }
3784 
3785 // Find the Agent_OnLoad entry point
3786 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3787   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3788   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3789 }
3790 
3791 // For backwards compatibility with -Xrun
3792 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3793 // treated like -agentpath:
3794 // Must be called before agent libraries are created
3795 void Threads::convert_vm_init_libraries_to_agents() {
3796   AgentLibrary* agent;
3797   AgentLibrary* next;
3798 
3799   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3800     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3801     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3802 
3803     // If there is an JVM_OnLoad function it will get called later,
3804     // otherwise see if there is an Agent_OnLoad
3805     if (on_load_entry == NULL) {
3806       on_load_entry = lookup_agent_on_load(agent);
3807       if (on_load_entry != NULL) {
3808         // switch it to the agent list -- so that Agent_OnLoad will be called,
3809         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3810         Arguments::convert_library_to_agent(agent);
3811       } else {
3812         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3813       }
3814     }
3815   }
3816 }
3817 
3818 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3819 // Invokes Agent_OnLoad
3820 // Called very early -- before JavaThreads exist
3821 void Threads::create_vm_init_agents() {
3822   extern struct JavaVM_ main_vm;
3823   AgentLibrary* agent;
3824 
3825   JvmtiExport::enter_onload_phase();
3826 
3827   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3828     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3829 
3830     if (on_load_entry != NULL) {
3831       // Invoke the Agent_OnLoad function
3832       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3833       if (err != JNI_OK) {
3834         vm_exit_during_initialization("agent library failed to init", agent->name());
3835       }
3836     } else {
3837       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3838     }
3839   }
3840   JvmtiExport::enter_primordial_phase();
3841 }
3842 
3843 extern "C" {
3844   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3845 }
3846 
3847 void Threads::shutdown_vm_agents() {
3848   // Send any Agent_OnUnload notifications
3849   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3850   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3851   extern struct JavaVM_ main_vm;
3852   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3853 
3854     // Find the Agent_OnUnload function.
3855     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3856       os::find_agent_function(agent,
3857       false,
3858       on_unload_symbols,
3859       num_symbol_entries));
3860 
3861     // Invoke the Agent_OnUnload function
3862     if (unload_entry != NULL) {
3863       JavaThread* thread = JavaThread::current();
3864       ThreadToNativeFromVM ttn(thread);
3865       HandleMark hm(thread);
3866       (*unload_entry)(&main_vm);
3867     }
3868   }
3869 }
3870 
3871 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3872 // Invokes JVM_OnLoad
3873 void Threads::create_vm_init_libraries() {
3874   extern struct JavaVM_ main_vm;
3875   AgentLibrary* agent;
3876 
3877   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3878     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3879 
3880     if (on_load_entry != NULL) {
3881       // Invoke the JVM_OnLoad function
3882       JavaThread* thread = JavaThread::current();
3883       ThreadToNativeFromVM ttn(thread);
3884       HandleMark hm(thread);
3885       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3886       if (err != JNI_OK) {
3887         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3888       }
3889     } else {
3890       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3891     }
3892   }
3893 }
3894 
3895 // Last thread running calls java.lang.Shutdown.shutdown()
3896 void JavaThread::invoke_shutdown_hooks() {
3897   HandleMark hm(this);
3898 
3899   // We could get here with a pending exception, if so clear it now.
3900   if (this->has_pending_exception()) {
3901     this->clear_pending_exception();
3902   }
3903 
3904   EXCEPTION_MARK;
3905   Klass* k =
3906     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3907                                       THREAD);
3908   if (k != NULL) {
3909     // SystemDictionary::resolve_or_null will return null if there was
3910     // an exception.  If we cannot load the Shutdown class, just don't
3911     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3912     // and finalizers (if runFinalizersOnExit is set) won't be run.
3913     // Note that if a shutdown hook was registered or runFinalizersOnExit
3914     // was called, the Shutdown class would have already been loaded
3915     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3916     instanceKlassHandle shutdown_klass (THREAD, k);
3917     JavaValue result(T_VOID);
3918     JavaCalls::call_static(&result,
3919                            shutdown_klass,
3920                            vmSymbols::shutdown_method_name(),
3921                            vmSymbols::void_method_signature(),
3922                            THREAD);
3923   }
3924   CLEAR_PENDING_EXCEPTION;
3925 }
3926 
3927 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3928 // the program falls off the end of main(). Another VM exit path is through
3929 // vm_exit() when the program calls System.exit() to return a value or when
3930 // there is a serious error in VM. The two shutdown paths are not exactly
3931 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3932 // and VM_Exit op at VM level.
3933 //
3934 // Shutdown sequence:
3935 //   + Shutdown native memory tracking if it is on
3936 //   + Wait until we are the last non-daemon thread to execute
3937 //     <-- every thing is still working at this moment -->
3938 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3939 //        shutdown hooks, run finalizers if finalization-on-exit
3940 //   + Call before_exit(), prepare for VM exit
3941 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3942 //        currently the only user of this mechanism is File.deleteOnExit())
3943 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3944 //        post thread end and vm death events to JVMTI,
3945 //        stop signal thread
3946 //   + Call JavaThread::exit(), it will:
3947 //      > release JNI handle blocks, remove stack guard pages
3948 //      > remove this thread from Threads list
3949 //     <-- no more Java code from this thread after this point -->
3950 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3951 //     the compiler threads at safepoint
3952 //     <-- do not use anything that could get blocked by Safepoint -->
3953 //   + Disable tracing at JNI/JVM barriers
3954 //   + Set _vm_exited flag for threads that are still running native code
3955 //   + Delete this thread
3956 //   + Call exit_globals()
3957 //      > deletes tty
3958 //      > deletes PerfMemory resources
3959 //   + Return to caller
3960 
3961 bool Threads::destroy_vm() {
3962   JavaThread* thread = JavaThread::current();
3963 
3964 #ifdef ASSERT
3965   _vm_complete = false;
3966 #endif
3967   // Wait until we are the last non-daemon thread to execute
3968   { MutexLocker nu(Threads_lock);
3969     while (Threads::number_of_non_daemon_threads() > 1 )
3970       // This wait should make safepoint checks, wait without a timeout,
3971       // and wait as a suspend-equivalent condition.
3972       //
3973       // Note: If the FlatProfiler is running and this thread is waiting
3974       // for another non-daemon thread to finish, then the FlatProfiler
3975       // is waiting for the external suspend request on this thread to
3976       // complete. wait_for_ext_suspend_completion() will eventually
3977       // timeout, but that takes time. Making this wait a suspend-
3978       // equivalent condition solves that timeout problem.
3979       //
3980       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3981                          Mutex::_as_suspend_equivalent_flag);
3982   }
3983 
3984   // Hang forever on exit if we are reporting an error.
3985   if (ShowMessageBoxOnError && is_error_reported()) {
3986     os::infinite_sleep();
3987   }
3988   os::wait_for_keypress_at_exit();
3989 
3990   if (JDK_Version::is_jdk12x_version()) {
3991     // We are the last thread running, so check if finalizers should be run.
3992     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3993     HandleMark rm(thread);
3994     Universe::run_finalizers_on_exit();
3995   } else {
3996     // run Java level shutdown hooks
3997     thread->invoke_shutdown_hooks();
3998   }
3999 
4000   before_exit(thread);
4001 
4002   thread->exit(true);
4003 
4004   // Stop VM thread.
4005   {
4006     // 4945125 The vm thread comes to a safepoint during exit.
4007     // GC vm_operations can get caught at the safepoint, and the
4008     // heap is unparseable if they are caught. Grab the Heap_lock
4009     // to prevent this. The GC vm_operations will not be able to
4010     // queue until after the vm thread is dead.
4011     // After this point, we'll never emerge out of the safepoint before
4012     // the VM exits, so concurrent GC threads do not need to be explicitly
4013     // stopped; they remain inactive until the process exits.
4014     // Note: some concurrent G1 threads may be running during a safepoint,
4015     // but these will not be accessing the heap, just some G1-specific side
4016     // data structures that are not accessed by any other threads but them
4017     // after this point in a terminal safepoint.
4018 
4019     MutexLocker ml(Heap_lock);
4020 
4021     VMThread::wait_for_vm_thread_exit();
4022     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4023     VMThread::destroy();
4024   }
4025 
4026   // clean up ideal graph printers
4027 #if defined(COMPILER2) && !defined(PRODUCT)
4028   IdealGraphPrinter::clean_up();
4029 #endif
4030 
4031   // Now, all Java threads are gone except daemon threads. Daemon threads
4032   // running Java code or in VM are stopped by the Safepoint. However,
4033   // daemon threads executing native code are still running.  But they
4034   // will be stopped at native=>Java/VM barriers. Note that we can't
4035   // simply kill or suspend them, as it is inherently deadlock-prone.
4036 
4037 #ifndef PRODUCT
4038   // disable function tracing at JNI/JVM barriers
4039   TraceJNICalls = false;
4040   TraceJVMCalls = false;
4041   TraceRuntimeCalls = false;
4042 #endif
4043 
4044   VM_Exit::set_vm_exited();
4045 
4046   notify_vm_shutdown();
4047 
4048   delete thread;
4049 
4050   // exit_globals() will delete tty
4051   exit_globals();
4052 
4053   return true;
4054 }
4055 
4056 
4057 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4058   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4059   return is_supported_jni_version(version);
4060 }
4061 
4062 
4063 jboolean Threads::is_supported_jni_version(jint version) {
4064   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4065   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4066   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4067   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4068   return JNI_FALSE;
4069 }
4070 
4071 
4072 void Threads::add(JavaThread* p, bool force_daemon) {
4073   // The threads lock must be owned at this point
4074   assert_locked_or_safepoint(Threads_lock);
4075 
4076   // See the comment for this method in thread.hpp for its purpose and
4077   // why it is called here.
4078   p->initialize_queues();
4079   p->set_next(_thread_list);
4080   _thread_list = p;
4081   _number_of_threads++;
4082   oop threadObj = p->threadObj();
4083   bool daemon = true;
4084   // Bootstrapping problem: threadObj can be null for initial
4085   // JavaThread (or for threads attached via JNI)
4086   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4087     _number_of_non_daemon_threads++;
4088     daemon = false;
4089   }
4090 
4091   p->set_safepoint_visible(true);
4092 
4093   ThreadService::add_thread(p, daemon);
4094 
4095   // Possible GC point.
4096   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4097 }
4098 
4099 void Threads::remove(JavaThread* p) {
4100   // Extra scope needed for Thread_lock, so we can check
4101   // that we do not remove thread without safepoint code notice
4102   { MutexLocker ml(Threads_lock);
4103 
4104     assert(includes(p), "p must be present");
4105 
4106     JavaThread* current = _thread_list;
4107     JavaThread* prev    = NULL;
4108 
4109     while (current != p) {
4110       prev    = current;
4111       current = current->next();
4112     }
4113 
4114     if (prev) {
4115       prev->set_next(current->next());
4116     } else {
4117       _thread_list = p->next();
4118     }
4119     _number_of_threads--;
4120     oop threadObj = p->threadObj();
4121     bool daemon = true;
4122     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4123       _number_of_non_daemon_threads--;
4124       daemon = false;
4125 
4126       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4127       // on destroy_vm will wake up.
4128       if (number_of_non_daemon_threads() == 1)
4129         Threads_lock->notify_all();
4130     }
4131     ThreadService::remove_thread(p, daemon);
4132 
4133     // Make sure that safepoint code disregard this thread. This is needed since
4134     // the thread might mess around with locks after this point. This can cause it
4135     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4136     // of this thread since it is removed from the queue.
4137     p->set_terminated_value();
4138 
4139     // Now, this thread is not visible to safepoint
4140     p->set_safepoint_visible(false);
4141     // once the thread becomes safepoint invisible, we can not use its per-thread
4142     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4143     // to release its per-thread recorder here.
4144     MemTracker::thread_exiting(p);
4145   } // unlock Threads_lock
4146 
4147   // Since Events::log uses a lock, we grab it outside the Threads_lock
4148   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4149 }
4150 
4151 // Threads_lock must be held when this is called (or must be called during a safepoint)
4152 bool Threads::includes(JavaThread* p) {
4153   assert(Threads_lock->is_locked(), "sanity check");
4154   ALL_JAVA_THREADS(q) {
4155     if (q == p ) {
4156       return true;
4157     }
4158   }
4159   return false;
4160 }
4161 
4162 // Operations on the Threads list for GC.  These are not explicitly locked,
4163 // but the garbage collector must provide a safe context for them to run.
4164 // In particular, these things should never be called when the Threads_lock
4165 // is held by some other thread. (Note: the Safepoint abstraction also
4166 // uses the Threads_lock to gurantee this property. It also makes sure that
4167 // all threads gets blocked when exiting or starting).
4168 
4169 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4170   ALL_JAVA_THREADS(p) {
4171     p->oops_do(f, cld_f, cf);
4172   }
4173   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4174 }
4175 
4176 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4177   // Introduce a mechanism allowing parallel threads to claim threads as
4178   // root groups.  Overhead should be small enough to use all the time,
4179   // even in sequential code.
4180   SharedHeap* sh = SharedHeap::heap();
4181   // Cannot yet substitute active_workers for n_par_threads
4182   // because of G1CollectedHeap::verify() use of
4183   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4184   // turn off parallelism in process_strong_roots while active_workers
4185   // is being used for parallelism elsewhere.
4186   bool is_par = sh->n_par_threads() > 0;
4187   assert(!is_par ||
4188          (SharedHeap::heap()->n_par_threads() ==
4189           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4190   int cp = SharedHeap::heap()->strong_roots_parity();
4191   ALL_JAVA_THREADS(p) {
4192     if (p->claim_oops_do(is_par, cp)) {
4193       p->oops_do(f, cld_f, cf);
4194     }
4195   }
4196   VMThread* vmt = VMThread::vm_thread();
4197   if (vmt->claim_oops_do(is_par, cp)) {
4198     vmt->oops_do(f, cld_f, cf);
4199   }
4200 }
4201 
4202 #if INCLUDE_ALL_GCS
4203 // Used by ParallelScavenge
4204 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4205   ALL_JAVA_THREADS(p) {
4206     q->enqueue(new ThreadRootsTask(p));
4207   }
4208   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4209 }
4210 
4211 // Used by Parallel Old
4212 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4213   ALL_JAVA_THREADS(p) {
4214     q->enqueue(new ThreadRootsMarkingTask(p));
4215   }
4216   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4217 }
4218 #endif // INCLUDE_ALL_GCS
4219 
4220 void Threads::nmethods_do(CodeBlobClosure* cf) {
4221   ALL_JAVA_THREADS(p) {
4222     p->nmethods_do(cf);
4223   }
4224   VMThread::vm_thread()->nmethods_do(cf);
4225 }
4226 
4227 void Threads::metadata_do(void f(Metadata*)) {
4228   ALL_JAVA_THREADS(p) {
4229     p->metadata_do(f);
4230   }
4231 }
4232 
4233 void Threads::gc_epilogue() {
4234   ALL_JAVA_THREADS(p) {
4235     p->gc_epilogue();
4236   }
4237 }
4238 
4239 void Threads::gc_prologue() {
4240   ALL_JAVA_THREADS(p) {
4241     p->gc_prologue();
4242   }
4243 }
4244 
4245 void Threads::deoptimized_wrt_marked_nmethods() {
4246   ALL_JAVA_THREADS(p) {
4247     p->deoptimized_wrt_marked_nmethods();
4248   }
4249 }
4250 
4251 
4252 // Get count Java threads that are waiting to enter the specified monitor.
4253 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4254   address monitor, bool doLock) {
4255   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4256     "must grab Threads_lock or be at safepoint");
4257   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4258 
4259   int i = 0;
4260   {
4261     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4262     ALL_JAVA_THREADS(p) {
4263       if (p->is_Compiler_thread()) continue;
4264 
4265       address pending = (address)p->current_pending_monitor();
4266       if (pending == monitor) {             // found a match
4267         if (i < count) result->append(p);   // save the first count matches
4268         i++;
4269       }
4270     }
4271   }
4272   return result;
4273 }
4274 
4275 
4276 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4277   assert(doLock ||
4278          Threads_lock->owned_by_self() ||
4279          SafepointSynchronize::is_at_safepoint(),
4280          "must grab Threads_lock or be at safepoint");
4281 
4282   // NULL owner means not locked so we can skip the search
4283   if (owner == NULL) return NULL;
4284 
4285   {
4286     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4287     ALL_JAVA_THREADS(p) {
4288       // first, see if owner is the address of a Java thread
4289       if (owner == (address)p) return p;
4290     }
4291   }
4292   // Cannot assert on lack of success here since this function may be
4293   // used by code that is trying to report useful problem information
4294   // like deadlock detection.
4295   if (UseHeavyMonitors) return NULL;
4296 
4297   //
4298   // If we didn't find a matching Java thread and we didn't force use of
4299   // heavyweight monitors, then the owner is the stack address of the
4300   // Lock Word in the owning Java thread's stack.
4301   //
4302   JavaThread* the_owner = NULL;
4303   {
4304     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4305     ALL_JAVA_THREADS(q) {
4306       if (q->is_lock_owned(owner)) {
4307         the_owner = q;
4308         break;
4309       }
4310     }
4311   }
4312   // cannot assert on lack of success here; see above comment
4313   return the_owner;
4314 }
4315 
4316 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4317 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4318   char buf[32];
4319   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4320 
4321   st->print_cr("Full thread dump %s (%s %s):",
4322                 Abstract_VM_Version::vm_name(),
4323                 Abstract_VM_Version::vm_release(),
4324                 Abstract_VM_Version::vm_info_string()
4325                );
4326   st->cr();
4327 
4328 #if INCLUDE_ALL_GCS
4329   // Dump concurrent locks
4330   ConcurrentLocksDump concurrent_locks;
4331   if (print_concurrent_locks) {
4332     concurrent_locks.dump_at_safepoint();
4333   }
4334 #endif // INCLUDE_ALL_GCS
4335 
4336   ALL_JAVA_THREADS(p) {
4337     ResourceMark rm;
4338     p->print_on(st);
4339     if (print_stacks) {
4340       if (internal_format) {
4341         p->trace_stack();
4342       } else {
4343         p->print_stack_on(st);
4344       }
4345     }
4346     st->cr();
4347 #if INCLUDE_ALL_GCS
4348     if (print_concurrent_locks) {
4349       concurrent_locks.print_locks_on(p, st);
4350     }
4351 #endif // INCLUDE_ALL_GCS
4352   }
4353 
4354   VMThread::vm_thread()->print_on(st);
4355   st->cr();
4356   Universe::heap()->print_gc_threads_on(st);
4357   WatcherThread* wt = WatcherThread::watcher_thread();
4358   if (wt != NULL) {
4359     wt->print_on(st);
4360     st->cr();
4361   }
4362   CompileBroker::print_compiler_threads_on(st);
4363   st->flush();
4364 }
4365 
4366 // Threads::print_on_error() is called by fatal error handler. It's possible
4367 // that VM is not at safepoint and/or current thread is inside signal handler.
4368 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4369 // memory (even in resource area), it might deadlock the error handler.
4370 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4371   bool found_current = false;
4372   st->print_cr("Java Threads: ( => current thread )");
4373   ALL_JAVA_THREADS(thread) {
4374     bool is_current = (current == thread);
4375     found_current = found_current || is_current;
4376 
4377     st->print("%s", is_current ? "=>" : "  ");
4378 
4379     st->print(PTR_FORMAT, thread);
4380     st->print(" ");
4381     thread->print_on_error(st, buf, buflen);
4382     st->cr();
4383   }
4384   st->cr();
4385 
4386   st->print_cr("Other Threads:");
4387   if (VMThread::vm_thread()) {
4388     bool is_current = (current == VMThread::vm_thread());
4389     found_current = found_current || is_current;
4390     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4391 
4392     st->print(PTR_FORMAT, VMThread::vm_thread());
4393     st->print(" ");
4394     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4395     st->cr();
4396   }
4397   WatcherThread* wt = WatcherThread::watcher_thread();
4398   if (wt != NULL) {
4399     bool is_current = (current == wt);
4400     found_current = found_current || is_current;
4401     st->print("%s", is_current ? "=>" : "  ");
4402 
4403     st->print(PTR_FORMAT, wt);
4404     st->print(" ");
4405     wt->print_on_error(st, buf, buflen);
4406     st->cr();
4407   }
4408   if (!found_current) {
4409     st->cr();
4410     st->print("=>" PTR_FORMAT " (exited) ", current);
4411     current->print_on_error(st, buf, buflen);
4412     st->cr();
4413   }
4414 }
4415 
4416 // Internal SpinLock and Mutex
4417 // Based on ParkEvent
4418 
4419 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4420 //
4421 // We employ SpinLocks _only for low-contention, fixed-length
4422 // short-duration critical sections where we're concerned
4423 // about native mutex_t or HotSpot Mutex:: latency.
4424 // The mux construct provides a spin-then-block mutual exclusion
4425 // mechanism.
4426 //
4427 // Testing has shown that contention on the ListLock guarding gFreeList
4428 // is common.  If we implement ListLock as a simple SpinLock it's common
4429 // for the JVM to devolve to yielding with little progress.  This is true
4430 // despite the fact that the critical sections protected by ListLock are
4431 // extremely short.
4432 //
4433 // TODO-FIXME: ListLock should be of type SpinLock.
4434 // We should make this a 1st-class type, integrated into the lock
4435 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4436 // should have sufficient padding to avoid false-sharing and excessive
4437 // cache-coherency traffic.
4438 
4439 
4440 typedef volatile int SpinLockT ;
4441 
4442 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4443   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4444      return ;   // normal fast-path return
4445   }
4446 
4447   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4448   TEVENT (SpinAcquire - ctx) ;
4449   int ctr = 0 ;
4450   int Yields = 0 ;
4451   for (;;) {
4452      while (*adr != 0) {
4453         ++ctr ;
4454         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4455            if (Yields > 5) {
4456              os::naked_short_sleep(1);
4457            } else {
4458              os::NakedYield() ;
4459              ++Yields ;
4460            }
4461         } else {
4462            SpinPause() ;
4463         }
4464      }
4465      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4466   }
4467 }
4468 
4469 void Thread::SpinRelease (volatile int * adr) {
4470   assert (*adr != 0, "invariant") ;
4471   OrderAccess::fence() ;      // guarantee at least release consistency.
4472   // Roach-motel semantics.
4473   // It's safe if subsequent LDs and STs float "up" into the critical section,
4474   // but prior LDs and STs within the critical section can't be allowed
4475   // to reorder or float past the ST that releases the lock.
4476   *adr = 0 ;
4477 }
4478 
4479 // muxAcquire and muxRelease:
4480 //
4481 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4482 //    The LSB of the word is set IFF the lock is held.
4483 //    The remainder of the word points to the head of a singly-linked list
4484 //    of threads blocked on the lock.
4485 //
4486 // *  The current implementation of muxAcquire-muxRelease uses its own
4487 //    dedicated Thread._MuxEvent instance.  If we're interested in
4488 //    minimizing the peak number of extant ParkEvent instances then
4489 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4490 //    as certain invariants were satisfied.  Specifically, care would need
4491 //    to be taken with regards to consuming unpark() "permits".
4492 //    A safe rule of thumb is that a thread would never call muxAcquire()
4493 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4494 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4495 //    consume an unpark() permit intended for monitorenter, for instance.
4496 //    One way around this would be to widen the restricted-range semaphore
4497 //    implemented in park().  Another alternative would be to provide
4498 //    multiple instances of the PlatformEvent() for each thread.  One
4499 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4500 //
4501 // *  Usage:
4502 //    -- Only as leaf locks
4503 //    -- for short-term locking only as muxAcquire does not perform
4504 //       thread state transitions.
4505 //
4506 // Alternatives:
4507 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4508 //    but with parking or spin-then-park instead of pure spinning.
4509 // *  Use Taura-Oyama-Yonenzawa locks.
4510 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4511 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4512 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4513 //    acquiring threads use timers (ParkTimed) to detect and recover from
4514 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4515 //    boundaries by using placement-new.
4516 // *  Augment MCS with advisory back-link fields maintained with CAS().
4517 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4518 //    The validity of the backlinks must be ratified before we trust the value.
4519 //    If the backlinks are invalid the exiting thread must back-track through the
4520 //    the forward links, which are always trustworthy.
4521 // *  Add a successor indication.  The LockWord is currently encoded as
4522 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4523 //    to provide the usual futile-wakeup optimization.
4524 //    See RTStt for details.
4525 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4526 //
4527 
4528 
4529 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4530 enum MuxBits { LOCKBIT = 1 } ;
4531 
4532 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4533   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4534   if (w == 0) return ;
4535   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4536      return ;
4537   }
4538 
4539   TEVENT (muxAcquire - Contention) ;
4540   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4541   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4542   for (;;) {
4543      int its = (os::is_MP() ? 100 : 0) + 1 ;
4544 
4545      // Optional spin phase: spin-then-park strategy
4546      while (--its >= 0) {
4547        w = *Lock ;
4548        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4549           return ;
4550        }
4551      }
4552 
4553      Self->reset() ;
4554      Self->OnList = intptr_t(Lock) ;
4555      // The following fence() isn't _strictly necessary as the subsequent
4556      // CAS() both serializes execution and ratifies the fetched *Lock value.
4557      OrderAccess::fence();
4558      for (;;) {
4559         w = *Lock ;
4560         if ((w & LOCKBIT) == 0) {
4561             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4562                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4563                 return ;
4564             }
4565             continue ;      // Interference -- *Lock changed -- Just retry
4566         }
4567         assert (w & LOCKBIT, "invariant") ;
4568         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4569         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4570      }
4571 
4572      while (Self->OnList != 0) {
4573         Self->park() ;
4574      }
4575   }
4576 }
4577 
4578 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4579   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4580   if (w == 0) return ;
4581   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4582     return ;
4583   }
4584 
4585   TEVENT (muxAcquire - Contention) ;
4586   ParkEvent * ReleaseAfter = NULL ;
4587   if (ev == NULL) {
4588     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4589   }
4590   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4591   for (;;) {
4592     guarantee (ev->OnList == 0, "invariant") ;
4593     int its = (os::is_MP() ? 100 : 0) + 1 ;
4594 
4595     // Optional spin phase: spin-then-park strategy
4596     while (--its >= 0) {
4597       w = *Lock ;
4598       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4599         if (ReleaseAfter != NULL) {
4600           ParkEvent::Release (ReleaseAfter) ;
4601         }
4602         return ;
4603       }
4604     }
4605 
4606     ev->reset() ;
4607     ev->OnList = intptr_t(Lock) ;
4608     // The following fence() isn't _strictly necessary as the subsequent
4609     // CAS() both serializes execution and ratifies the fetched *Lock value.
4610     OrderAccess::fence();
4611     for (;;) {
4612       w = *Lock ;
4613       if ((w & LOCKBIT) == 0) {
4614         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4615           ev->OnList = 0 ;
4616           // We call ::Release while holding the outer lock, thus
4617           // artificially lengthening the critical section.
4618           // Consider deferring the ::Release() until the subsequent unlock(),
4619           // after we've dropped the outer lock.
4620           if (ReleaseAfter != NULL) {
4621             ParkEvent::Release (ReleaseAfter) ;
4622           }
4623           return ;
4624         }
4625         continue ;      // Interference -- *Lock changed -- Just retry
4626       }
4627       assert (w & LOCKBIT, "invariant") ;
4628       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4629       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4630     }
4631 
4632     while (ev->OnList != 0) {
4633       ev->park() ;
4634     }
4635   }
4636 }
4637 
4638 // Release() must extract a successor from the list and then wake that thread.
4639 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4640 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4641 // Release() would :
4642 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4643 // (B) Extract a successor from the private list "in-hand"
4644 // (C) attempt to CAS() the residual back into *Lock over null.
4645 //     If there were any newly arrived threads and the CAS() would fail.
4646 //     In that case Release() would detach the RATs, re-merge the list in-hand
4647 //     with the RATs and repeat as needed.  Alternately, Release() might
4648 //     detach and extract a successor, but then pass the residual list to the wakee.
4649 //     The wakee would be responsible for reattaching and remerging before it
4650 //     competed for the lock.
4651 //
4652 // Both "pop" and DMR are immune from ABA corruption -- there can be
4653 // multiple concurrent pushers, but only one popper or detacher.
4654 // This implementation pops from the head of the list.  This is unfair,
4655 // but tends to provide excellent throughput as hot threads remain hot.
4656 // (We wake recently run threads first).
4657 
4658 void Thread::muxRelease (volatile intptr_t * Lock)  {
4659   for (;;) {
4660     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4661     assert (w & LOCKBIT, "invariant") ;
4662     if (w == LOCKBIT) return ;
4663     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4664     assert (List != NULL, "invariant") ;
4665     assert (List->OnList == intptr_t(Lock), "invariant") ;
4666     ParkEvent * nxt = List->ListNext ;
4667 
4668     // The following CAS() releases the lock and pops the head element.
4669     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4670       continue ;
4671     }
4672     List->OnList = 0 ;
4673     OrderAccess::fence() ;
4674     List->unpark () ;
4675     return ;
4676   }
4677 }
4678 
4679 
4680 void Threads::verify() {
4681   ALL_JAVA_THREADS(p) {
4682     p->verify();
4683   }
4684   VMThread* thread = VMThread::vm_thread();
4685   if (thread != NULL) thread->verify();
4686 }