1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 // Static array so we can figure out which bytecodes stop us from compiling
  42 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  43 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  44 
  45 int nodes_created              = 0;
  46 int methods_parsed             = 0;
  47 int methods_seen               = 0;
  48 int blocks_parsed              = 0;
  49 int blocks_seen                = 0;
  50 
  51 int explicit_null_checks_inserted = 0;
  52 int explicit_null_checks_elided   = 0;
  53 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  54 int implicit_null_throws          = 0;
  55 
  56 int reclaim_idx  = 0;
  57 int reclaim_in   = 0;
  58 int reclaim_node = 0;
  59 
  60 #ifndef PRODUCT
  61 bool Parse::BytecodeParseHistogram::_initialized = false;
  62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  66 #endif
  67 
  68 //------------------------------print_statistics-------------------------------
  69 #ifndef PRODUCT
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %d", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed)
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  78 
  79   if( explicit_null_checks_inserted )
  80     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  81   if( all_null_checks_found )
  82     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  83                   (100*implicit_null_checks)/all_null_checks_found);
  84   if( implicit_null_throws )
  85     tty->print_cr("%d implicit null exceptions at runtime",
  86                   implicit_null_throws);
  87 
  88   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  89     BytecodeParseHistogram::print();
  90   }
  91 }
  92 #endif
  93 
  94 //------------------------------ON STACK REPLACEMENT---------------------------
  95 
  96 // Construct a node which can be used to get incoming state for
  97 // on stack replacement.
  98 Node *Parse::fetch_interpreter_state(int index,
  99                                      BasicType bt,
 100                                      Node *local_addrs,
 101                                      Node *local_addrs_base) {
 102   Node *mem = memory(Compile::AliasIdxRaw);
 103   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 104   Node *ctl = control();
 105 
 106   // Very similar to LoadNode::make, except we handle un-aligned longs and
 107   // doubles on Sparc.  Intel can handle them just fine directly.
 108   Node *l;
 109   switch (bt) {                // Signature is flattened
 110   case T_INT:     l = new (C) LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 111   case T_FLOAT:   l = new (C) LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 112   case T_ADDRESS: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 113   case T_OBJECT:  l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 114   case T_LONG:
 115   case T_DOUBLE: {
 116     // Since arguments are in reverse order, the argument address 'adr'
 117     // refers to the back half of the long/double.  Recompute adr.
 118     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 119     if (Matcher::misaligned_doubles_ok) {
 120       l = (bt == T_DOUBLE)
 121         ? (Node*)new (C) LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 122         : (Node*)new (C) LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 123     } else {
 124       l = (bt == T_DOUBLE)
 125         ? (Node*)new (C) LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 126         : (Node*)new (C) LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 127     }
 128     break;
 129   }
 130   default: ShouldNotReachHere();
 131   }
 132   return _gvn.transform(l);
 133 }
 134 
 135 // Helper routine to prevent the interpreter from handing
 136 // unexpected typestate to an OSR method.
 137 // The Node l is a value newly dug out of the interpreter frame.
 138 // The type is the type predicted by ciTypeFlow.  Note that it is
 139 // not a general type, but can only come from Type::get_typeflow_type.
 140 // The safepoint is a map which will feed an uncommon trap.
 141 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 142                                     SafePointNode* &bad_type_exit) {
 143 
 144   const TypeOopPtr* tp = type->isa_oopptr();
 145 
 146   // TypeFlow may assert null-ness if a type appears unloaded.
 147   if (type == TypePtr::NULL_PTR ||
 148       (tp != NULL && !tp->klass()->is_loaded())) {
 149     // Value must be null, not a real oop.
 150     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
 151     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 152     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 153     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
 154     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
 155     bad_type_exit->control()->add_req(bad_type);
 156     l = null();
 157   }
 158 
 159   // Typeflow can also cut off paths from the CFG, based on
 160   // types which appear unloaded, or call sites which appear unlinked.
 161   // When paths are cut off, values at later merge points can rise
 162   // toward more specific classes.  Make sure these specific classes
 163   // are still in effect.
 164   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 165     // TypeFlow asserted a specific object type.  Value must have that type.
 166     Node* bad_type_ctrl = NULL;
 167     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 168     bad_type_exit->control()->add_req(bad_type_ctrl);
 169   }
 170 
 171   BasicType bt_l = _gvn.type(l)->basic_type();
 172   BasicType bt_t = type->basic_type();
 173   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 174   return l;
 175 }
 176 
 177 // Helper routine which sets up elements of the initial parser map when
 178 // performing a parse for on stack replacement.  Add values into map.
 179 // The only parameter contains the address of a interpreter arguments.
 180 void Parse::load_interpreter_state(Node* osr_buf) {
 181   int index;
 182   int max_locals = jvms()->loc_size();
 183   int max_stack  = jvms()->stk_size();
 184 
 185 
 186   // Mismatch between method and jvms can occur since map briefly held
 187   // an OSR entry state (which takes up one RawPtr word).
 188   assert(max_locals == method()->max_locals(), "sanity");
 189   assert(max_stack  >= method()->max_stack(),  "sanity");
 190   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 191   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 192 
 193   // Find the start block.
 194   Block* osr_block = start_block();
 195   assert(osr_block->start() == osr_bci(), "sanity");
 196 
 197   // Set initial BCI.
 198   set_parse_bci(osr_block->start());
 199 
 200   // Set initial stack depth.
 201   set_sp(osr_block->start_sp());
 202 
 203   // Check bailouts.  We currently do not perform on stack replacement
 204   // of loops in catch blocks or loops which branch with a non-empty stack.
 205   if (sp() != 0) {
 206     C->record_method_not_compilable("OSR starts with non-empty stack");
 207     return;
 208   }
 209   // Do not OSR inside finally clauses:
 210   if (osr_block->has_trap_at(osr_block->start())) {
 211     C->record_method_not_compilable("OSR starts with an immediate trap");
 212     return;
 213   }
 214 
 215   // Commute monitors from interpreter frame to compiler frame.
 216   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 217   int mcnt = osr_block->flow()->monitor_count();
 218   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 219   for (index = 0; index < mcnt; index++) {
 220     // Make a BoxLockNode for the monitor.
 221     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
 222 
 223 
 224     // Displaced headers and locked objects are interleaved in the
 225     // temp OSR buffer.  We only copy the locked objects out here.
 226     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 227     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 228     // Try and copy the displaced header to the BoxNode
 229     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 230 
 231 
 232     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 233 
 234     // Build a bogus FastLockNode (no code will be generated) and push the
 235     // monitor into our debug info.
 236     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
 237     map()->push_monitor(flock);
 238 
 239     // If the lock is our method synchronization lock, tuck it away in
 240     // _sync_lock for return and rethrow exit paths.
 241     if (index == 0 && method()->is_synchronized()) {
 242       _synch_lock = flock;
 243     }
 244   }
 245 
 246   // Use the raw liveness computation to make sure that unexpected
 247   // values don't propagate into the OSR frame.
 248   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 249   if (!live_locals.is_valid()) {
 250     // Degenerate or breakpointed method.
 251     C->record_method_not_compilable("OSR in empty or breakpointed method");
 252     return;
 253   }
 254 
 255   // Extract the needed locals from the interpreter frame.
 256   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 257 
 258   // find all the locals that the interpreter thinks contain live oops
 259   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 260   for (index = 0; index < max_locals; index++) {
 261 
 262     if (!live_locals.at(index)) {
 263       continue;
 264     }
 265 
 266     const Type *type = osr_block->local_type_at(index);
 267 
 268     if (type->isa_oopptr() != NULL) {
 269 
 270       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 271       // else we might load a stale oop if the MethodLiveness disagrees with the
 272       // result of the interpreter. If the interpreter says it is dead we agree
 273       // by making the value go to top.
 274       //
 275 
 276       if (!live_oops.at(index)) {
 277         if (C->log() != NULL) {
 278           C->log()->elem("OSR_mismatch local_index='%d'",index);
 279         }
 280         set_local(index, null());
 281         // and ignore it for the loads
 282         continue;
 283       }
 284     }
 285 
 286     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 287     if (type == Type::TOP || type == Type::HALF) {
 288       continue;
 289     }
 290     // If the type falls to bottom, then this must be a local that
 291     // is mixing ints and oops or some such.  Forcing it to top
 292     // makes it go dead.
 293     if (type == Type::BOTTOM) {
 294       continue;
 295     }
 296     // Construct code to access the appropriate local.
 297     BasicType bt = type->basic_type();
 298     if (type == TypePtr::NULL_PTR) {
 299       // Ptr types are mixed together with T_ADDRESS but NULL is
 300       // really for T_OBJECT types so correct it.
 301       bt = T_OBJECT;
 302     }
 303     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 304     set_local(index, value);
 305   }
 306 
 307   // Extract the needed stack entries from the interpreter frame.
 308   for (index = 0; index < sp(); index++) {
 309     const Type *type = osr_block->stack_type_at(index);
 310     if (type != Type::TOP) {
 311       // Currently the compiler bails out when attempting to on stack replace
 312       // at a bci with a non-empty stack.  We should not reach here.
 313       ShouldNotReachHere();
 314     }
 315   }
 316 
 317   // End the OSR migration
 318   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 319                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 320                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 321                     osr_buf);
 322 
 323   // Now that the interpreter state is loaded, make sure it will match
 324   // at execution time what the compiler is expecting now:
 325   SafePointNode* bad_type_exit = clone_map();
 326   bad_type_exit->set_control(new (C) RegionNode(1));
 327 
 328   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 329   for (index = 0; index < max_locals; index++) {
 330     if (stopped())  break;
 331     Node* l = local(index);
 332     if (l->is_top())  continue;  // nothing here
 333     const Type *type = osr_block->local_type_at(index);
 334     if (type->isa_oopptr() != NULL) {
 335       if (!live_oops.at(index)) {
 336         // skip type check for dead oops
 337         continue;
 338       }
 339     }
 340     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 341       // In our current system it's illegal for jsr addresses to be
 342       // live into an OSR entry point because the compiler performs
 343       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 344       // case and aborts the compile if addresses are live into an OSR
 345       // entry point.  Because of that we can assume that any address
 346       // locals at the OSR entry point are dead.  Method liveness
 347       // isn't precise enought to figure out that they are dead in all
 348       // cases so simply skip checking address locals all
 349       // together. Any type check is guaranteed to fail since the
 350       // interpreter type is the result of a load which might have any
 351       // value and the expected type is a constant.
 352       continue;
 353     }
 354     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 355   }
 356 
 357   for (index = 0; index < sp(); index++) {
 358     if (stopped())  break;
 359     Node* l = stack(index);
 360     if (l->is_top())  continue;  // nothing here
 361     const Type *type = osr_block->stack_type_at(index);
 362     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 363   }
 364 
 365   if (bad_type_exit->control()->req() > 1) {
 366     // Build an uncommon trap here, if any inputs can be unexpected.
 367     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 368     record_for_igvn(bad_type_exit->control());
 369     SafePointNode* types_are_good = map();
 370     set_map(bad_type_exit);
 371     // The unexpected type happens because a new edge is active
 372     // in the CFG, which typeflow had previously ignored.
 373     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 374     // This x will be typed as Integer if notReached is not yet linked.
 375     // It could also happen due to a problem in ciTypeFlow analysis.
 376     uncommon_trap(Deoptimization::Reason_constraint,
 377                   Deoptimization::Action_reinterpret);
 378     set_map(types_are_good);
 379   }
 380 }
 381 
 382 //------------------------------Parse------------------------------------------
 383 // Main parser constructor.
 384 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses, Parse* parent)
 385   : _exits(caller), _parent(parent)
 386 {
 387   // Init some variables
 388   _caller = caller;
 389   _method = parse_method;
 390   _expected_uses = expected_uses;
 391   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 392   _wrote_final = false;
 393   _wrote_volatile = false;
 394   _wrote_stable = false;
 395   _wrote_fields = false;
 396   _alloc_with_final = NULL;
 397   _entry_bci = InvocationEntryBci;
 398   _tf = NULL;
 399   _block = NULL;
 400   debug_only(_block_count = -1);
 401   debug_only(_blocks = (Block*)-1);
 402 #ifndef PRODUCT
 403   if (PrintCompilation || PrintOpto) {
 404     // Make sure I have an inline tree, so I can print messages about it.
 405     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 406     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 407   }
 408   _max_switch_depth = 0;
 409   _est_switch_depth = 0;
 410 #endif
 411 
 412   _tf = TypeFunc::make(method());
 413   _iter.reset_to_method(method());
 414   _flow = method()->get_flow_analysis();
 415   if (_flow->failing()) {
 416     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 417   }
 418 
 419 #ifndef PRODUCT
 420   if (_flow->has_irreducible_entry()) {
 421     C->set_parsed_irreducible_loop(true);
 422   }
 423 #endif
 424 
 425   if (_expected_uses <= 0) {
 426     _prof_factor = 1;
 427   } else {
 428     float prof_total = parse_method->interpreter_invocation_count();
 429     if (prof_total <= _expected_uses) {
 430       _prof_factor = 1;
 431     } else {
 432       _prof_factor = _expected_uses / prof_total;
 433     }
 434   }
 435 
 436   CompileLog* log = C->log();
 437   if (log != NULL) {
 438     log->begin_head("parse method='%d' uses='%g'",
 439                     log->identify(parse_method), expected_uses);
 440     if (depth() == 1 && C->is_osr_compilation()) {
 441       log->print(" osr_bci='%d'", C->entry_bci());
 442     }
 443     log->stamp();
 444     log->end_head();
 445   }
 446 
 447   // Accumulate deoptimization counts.
 448   // (The range_check and store_check counts are checked elsewhere.)
 449   ciMethodData* md = method()->method_data();
 450   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 451     uint md_count = md->trap_count(reason);
 452     if (md_count != 0) {
 453       if (md_count == md->trap_count_limit())
 454         md_count += md->overflow_trap_count();
 455       uint total_count = C->trap_count(reason);
 456       uint old_count   = total_count;
 457       total_count += md_count;
 458       // Saturate the add if it overflows.
 459       if (total_count < old_count || total_count < md_count)
 460         total_count = (uint)-1;
 461       C->set_trap_count(reason, total_count);
 462       if (log != NULL)
 463         log->elem("observe trap='%s' count='%d' total='%d'",
 464                   Deoptimization::trap_reason_name(reason),
 465                   md_count, total_count);
 466     }
 467   }
 468   // Accumulate total sum of decompilations, also.
 469   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 470 
 471   _count_invocations = C->do_count_invocations();
 472   _method_data_update = C->do_method_data_update();
 473 
 474   if (log != NULL && method()->has_exception_handlers()) {
 475     log->elem("observe that='has_exception_handlers'");
 476   }
 477 
 478   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 479   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 480 
 481   // Always register dependence if JVMTI is enabled, because
 482   // either breakpoint setting or hotswapping of methods may
 483   // cause deoptimization.
 484   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 485     C->dependencies()->assert_evol_method(method());
 486   }
 487 
 488   methods_seen++;
 489 
 490   // Do some special top-level things.
 491   if (depth() == 1 && C->is_osr_compilation()) {
 492     _entry_bci = C->entry_bci();
 493     _flow = method()->get_osr_flow_analysis(osr_bci());
 494     if (_flow->failing()) {
 495       C->record_method_not_compilable(_flow->failure_reason());
 496 #ifndef PRODUCT
 497       if (PrintOpto && (Verbose || WizardMode)) {
 498         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 499         if (Verbose) {
 500           method()->print();
 501           method()->print_codes();
 502           _flow->print();
 503         }
 504       }
 505 #endif
 506     }
 507     _tf = C->tf();     // the OSR entry type is different
 508   }
 509 
 510 #ifdef ASSERT
 511   if (depth() == 1) {
 512     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 513     if (C->tf() != tf()) {
 514       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 515       assert(C->env()->system_dictionary_modification_counter_changed(),
 516              "Must invalidate if TypeFuncs differ");
 517     }
 518   } else {
 519     assert(!this->is_osr_parse(), "no recursive OSR");
 520   }
 521 #endif
 522 
 523   methods_parsed++;
 524 #ifndef PRODUCT
 525   // add method size here to guarantee that inlined methods are added too
 526   if (TimeCompiler)
 527     _total_bytes_compiled += method()->code_size();
 528 
 529   show_parse_info();
 530 #endif
 531 
 532   if (failing()) {
 533     if (log)  log->done("parse");
 534     return;
 535   }
 536 
 537   gvn().set_type(root(), root()->bottom_type());
 538   gvn().transform(top());
 539 
 540   // Import the results of the ciTypeFlow.
 541   init_blocks();
 542 
 543   // Merge point for all normal exits
 544   build_exits();
 545 
 546   // Setup the initial JVM state map.
 547   SafePointNode* entry_map = create_entry_map();
 548 
 549   // Check for bailouts during map initialization
 550   if (failing() || entry_map == NULL) {
 551     if (log)  log->done("parse");
 552     return;
 553   }
 554 
 555   Node_Notes* caller_nn = C->default_node_notes();
 556   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 557   if (DebugInlinedCalls || depth() == 1) {
 558     C->set_default_node_notes(make_node_notes(caller_nn));
 559   }
 560 
 561   if (is_osr_parse()) {
 562     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 563     entry_map->set_req(TypeFunc::Parms+0, top());
 564     set_map(entry_map);
 565     load_interpreter_state(osr_buf);
 566   } else {
 567     set_map(entry_map);
 568     do_method_entry();
 569   }
 570   if (depth() == 1) {
 571     // Add check to deoptimize the nmethod if RTM state was changed
 572     rtm_deopt();
 573   }
 574 
 575   // Check for bailouts during method entry.
 576   if (failing()) {
 577     if (log)  log->done("parse");
 578     C->set_default_node_notes(caller_nn);
 579     return;
 580   }
 581 
 582   entry_map = map();  // capture any changes performed by method setup code
 583   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 584 
 585   // We begin parsing as if we have just encountered a jump to the
 586   // method entry.
 587   Block* entry_block = start_block();
 588   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 589   set_map_clone(entry_map);
 590   merge_common(entry_block, entry_block->next_path_num());
 591 
 592 #ifndef PRODUCT
 593   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 594   set_parse_histogram( parse_histogram_obj );
 595 #endif
 596 
 597   // Parse all the basic blocks.
 598   do_all_blocks();
 599 
 600   C->set_default_node_notes(caller_nn);
 601 
 602   // Check for bailouts during conversion to graph
 603   if (failing()) {
 604     if (log)  log->done("parse");
 605     return;
 606   }
 607 
 608   // Fix up all exiting control flow.
 609   set_map(entry_map);
 610   do_exits();
 611 
 612   if (log)  log->done("parse nodes='%d' live='%d' memory='%d'",
 613                       C->unique(), C->live_nodes(), C->node_arena()->used());
 614 }
 615 
 616 //---------------------------do_all_blocks-------------------------------------
 617 void Parse::do_all_blocks() {
 618   bool has_irreducible = flow()->has_irreducible_entry();
 619 
 620   // Walk over all blocks in Reverse Post-Order.
 621   while (true) {
 622     bool progress = false;
 623     for (int rpo = 0; rpo < block_count(); rpo++) {
 624       Block* block = rpo_at(rpo);
 625 
 626       if (block->is_parsed()) continue;
 627 
 628       if (!block->is_merged()) {
 629         // Dead block, no state reaches this block
 630         continue;
 631       }
 632 
 633       // Prepare to parse this block.
 634       load_state_from(block);
 635 
 636       if (stopped()) {
 637         // Block is dead.
 638         continue;
 639       }
 640 
 641       blocks_parsed++;
 642 
 643       progress = true;
 644       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 645         // Not all preds have been parsed.  We must build phis everywhere.
 646         // (Note that dead locals do not get phis built, ever.)
 647         ensure_phis_everywhere();
 648 
 649         if (block->is_SEL_head() &&
 650             (UseLoopPredicate || LoopLimitCheck)) {
 651           // Add predicate to single entry (not irreducible) loop head.
 652           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 653           // Need correct bci for predicate.
 654           // It is fine to set it here since do_one_block() will set it anyway.
 655           set_parse_bci(block->start());
 656           add_predicate();
 657           // Add new region for back branches.
 658           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 659           RegionNode *r = new (C) RegionNode(edges+1);
 660           _gvn.set_type(r, Type::CONTROL);
 661           record_for_igvn(r);
 662           r->init_req(edges, control());
 663           set_control(r);
 664           // Add new phis.
 665           ensure_phis_everywhere();
 666         }
 667 
 668         // Leave behind an undisturbed copy of the map, for future merges.
 669         set_map(clone_map());
 670       }
 671 
 672       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 673         // In the absence of irreducible loops, the Region and Phis
 674         // associated with a merge that doesn't involve a backedge can
 675         // be simplified now since the RPO parsing order guarantees
 676         // that any path which was supposed to reach here has already
 677         // been parsed or must be dead.
 678         Node* c = control();
 679         Node* result = _gvn.transform_no_reclaim(control());
 680         if (c != result && TraceOptoParse) {
 681           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 682         }
 683         if (result != top()) {
 684           record_for_igvn(result);
 685         }
 686       }
 687 
 688       // Parse the block.
 689       do_one_block();
 690 
 691       // Check for bailouts.
 692       if (failing())  return;
 693     }
 694 
 695     // with irreducible loops multiple passes might be necessary to parse everything
 696     if (!has_irreducible || !progress) {
 697       break;
 698     }
 699   }
 700 
 701   blocks_seen += block_count();
 702 
 703 #ifndef PRODUCT
 704   // Make sure there are no half-processed blocks remaining.
 705   // Every remaining unprocessed block is dead and may be ignored now.
 706   for (int rpo = 0; rpo < block_count(); rpo++) {
 707     Block* block = rpo_at(rpo);
 708     if (!block->is_parsed()) {
 709       if (TraceOptoParse) {
 710         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 711       }
 712       assert(!block->is_merged(), "no half-processed blocks");
 713     }
 714   }
 715 #endif
 716 }
 717 
 718 //-------------------------------build_exits----------------------------------
 719 // Build normal and exceptional exit merge points.
 720 void Parse::build_exits() {
 721   // make a clone of caller to prevent sharing of side-effects
 722   _exits.set_map(_exits.clone_map());
 723   _exits.clean_stack(_exits.sp());
 724   _exits.sync_jvms();
 725 
 726   RegionNode* region = new (C) RegionNode(1);
 727   record_for_igvn(region);
 728   gvn().set_type_bottom(region);
 729   _exits.set_control(region);
 730 
 731   // Note:  iophi and memphi are not transformed until do_exits.
 732   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
 733   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 734   gvn().set_type_bottom(iophi);
 735   gvn().set_type_bottom(memphi);
 736   _exits.set_i_o(iophi);
 737   _exits.set_all_memory(memphi);
 738 
 739   // Add a return value to the exit state.  (Do not push it yet.)
 740   if (tf()->range()->cnt() > TypeFunc::Parms) {
 741     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 742     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 743     // becomes loaded during the subsequent parsing, the loaded and unloaded
 744     // types will not join when we transform and push in do_exits().
 745     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 746     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 747       ret_type = TypeOopPtr::BOTTOM;
 748     }
 749     int         ret_size = type2size[ret_type->basic_type()];
 750     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
 751     gvn().set_type_bottom(ret_phi);
 752     _exits.ensure_stack(ret_size);
 753     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 754     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 755     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 756     // Note:  ret_phi is not yet pushed, until do_exits.
 757   }
 758 }
 759 
 760 
 761 //----------------------------build_start_state-------------------------------
 762 // Construct a state which contains only the incoming arguments from an
 763 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 764 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 765   int        arg_size = tf->domain()->cnt();
 766   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 767   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 768   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
 769   record_for_igvn(map);
 770   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 771   Node_Notes* old_nn = default_node_notes();
 772   if (old_nn != NULL && has_method()) {
 773     Node_Notes* entry_nn = old_nn->clone(this);
 774     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 775     entry_jvms->set_offsets(0);
 776     entry_jvms->set_bci(entry_bci());
 777     entry_nn->set_jvms(entry_jvms);
 778     set_default_node_notes(entry_nn);
 779   }
 780   uint i;
 781   for (i = 0; i < (uint)arg_size; i++) {
 782     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
 783     map->init_req(i, parm);
 784     // Record all these guys for later GVN.
 785     record_for_igvn(parm);
 786   }
 787   for (; i < map->req(); i++) {
 788     map->init_req(i, top());
 789   }
 790   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 791   set_default_node_notes(old_nn);
 792   map->set_jvms(jvms);
 793   jvms->set_map(map);
 794   return jvms;
 795 }
 796 
 797 //-----------------------------make_node_notes---------------------------------
 798 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 799   if (caller_nn == NULL)  return NULL;
 800   Node_Notes* nn = caller_nn->clone(C);
 801   JVMState* caller_jvms = nn->jvms();
 802   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 803   jvms->set_offsets(0);
 804   jvms->set_bci(_entry_bci);
 805   nn->set_jvms(jvms);
 806   return nn;
 807 }
 808 
 809 
 810 //--------------------------return_values--------------------------------------
 811 void Compile::return_values(JVMState* jvms) {
 812   GraphKit kit(jvms);
 813   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
 814                              kit.control(),
 815                              kit.i_o(),
 816                              kit.reset_memory(),
 817                              kit.frameptr(),
 818                              kit.returnadr());
 819   // Add zero or 1 return values
 820   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 821   if (ret_size > 0) {
 822     kit.inc_sp(-ret_size);  // pop the return value(s)
 823     kit.sync_jvms();
 824     ret->add_req(kit.argument(0));
 825     // Note:  The second dummy edge is not needed by a ReturnNode.
 826   }
 827   // bind it to root
 828   root()->add_req(ret);
 829   record_for_igvn(ret);
 830   initial_gvn()->transform_no_reclaim(ret);
 831 }
 832 
 833 //------------------------rethrow_exceptions-----------------------------------
 834 // Bind all exception states in the list into a single RethrowNode.
 835 void Compile::rethrow_exceptions(JVMState* jvms) {
 836   GraphKit kit(jvms);
 837   if (!kit.has_exceptions())  return;  // nothing to generate
 838   // Load my combined exception state into the kit, with all phis transformed:
 839   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 840   Node* ex_oop = kit.use_exception_state(ex_map);
 841   RethrowNode* exit = new (this) RethrowNode(kit.control(),
 842                                       kit.i_o(), kit.reset_memory(),
 843                                       kit.frameptr(), kit.returnadr(),
 844                                       // like a return but with exception input
 845                                       ex_oop);
 846   // bind to root
 847   root()->add_req(exit);
 848   record_for_igvn(exit);
 849   initial_gvn()->transform_no_reclaim(exit);
 850 }
 851 
 852 //---------------------------do_exceptions-------------------------------------
 853 // Process exceptions arising from the current bytecode.
 854 // Send caught exceptions to the proper handler within this method.
 855 // Unhandled exceptions feed into _exit.
 856 void Parse::do_exceptions() {
 857   if (!has_exceptions())  return;
 858 
 859   if (failing()) {
 860     // Pop them all off and throw them away.
 861     while (pop_exception_state() != NULL) ;
 862     return;
 863   }
 864 
 865   PreserveJVMState pjvms(this, false);
 866 
 867   SafePointNode* ex_map;
 868   while ((ex_map = pop_exception_state()) != NULL) {
 869     if (!method()->has_exception_handlers()) {
 870       // Common case:  Transfer control outward.
 871       // Doing it this early allows the exceptions to common up
 872       // even between adjacent method calls.
 873       throw_to_exit(ex_map);
 874     } else {
 875       // Have to look at the exception first.
 876       assert(stopped(), "catch_inline_exceptions trashes the map");
 877       catch_inline_exceptions(ex_map);
 878       stop_and_kill_map();      // we used up this exception state; kill it
 879     }
 880   }
 881 
 882   // We now return to our regularly scheduled program:
 883 }
 884 
 885 //---------------------------throw_to_exit-------------------------------------
 886 // Merge the given map into an exception exit from this method.
 887 // The exception exit will handle any unlocking of receiver.
 888 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 889 void Parse::throw_to_exit(SafePointNode* ex_map) {
 890   // Pop the JVMS to (a copy of) the caller.
 891   GraphKit caller;
 892   caller.set_map_clone(_caller->map());
 893   caller.set_bci(_caller->bci());
 894   caller.set_sp(_caller->sp());
 895   // Copy out the standard machine state:
 896   for (uint i = 0; i < TypeFunc::Parms; i++) {
 897     caller.map()->set_req(i, ex_map->in(i));
 898   }
 899   // ...and the exception:
 900   Node*          ex_oop        = saved_ex_oop(ex_map);
 901   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 902   // Finally, collect the new exception state in my exits:
 903   _exits.add_exception_state(caller_ex_map);
 904 }
 905 
 906 //------------------------------do_exits---------------------------------------
 907 void Parse::do_exits() {
 908   set_parse_bci(InvocationEntryBci);
 909 
 910   // Now peephole on the return bits
 911   Node* region = _exits.control();
 912   _exits.set_control(gvn().transform(region));
 913 
 914   Node* iophi = _exits.i_o();
 915   _exits.set_i_o(gvn().transform(iophi));
 916 
 917   // Figure out if we need to emit the trailing barrier. The barrier is only
 918   // needed in the constructors, and only in three cases:
 919   //
 920   // 1. The constructor wrote a final. The effects of all initializations
 921   //    must be committed to memory before any code after the constructor
 922   //    publishes the reference to the newly constructed object. Rather
 923   //    than wait for the publication, we simply block the writes here.
 924   //    Rather than put a barrier on only those writes which are required
 925   //    to complete, we force all writes to complete.
 926   //
 927   // 2. On PPC64, also add MemBarRelease for constructors which write
 928   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
 929   //    is set on PPC64, no sync instruction is issued after volatile
 930   //    stores. We want to guarantee the same behavior as on platforms
 931   //    with total store order, although this is not required by the Java
 932   //    memory model. So as with finals, we add a barrier here.
 933   //
 934   // 3. Experimental VM option is used to force the barrier if any field
 935   //    was written out in the constructor.
 936   //
 937   // "All bets are off" unless the first publication occurs after a
 938   // normal return from the constructor.  We do not attempt to detect
 939   // such unusual early publications.  But no barrier is needed on
 940   // exceptional returns, since they cannot publish normally.
 941   //
 942   if (method()->is_initializer() &&
 943         (wrote_final() ||
 944            PPC64_ONLY(wrote_volatile() ||)
 945            (AlwaysSafeConstructors && wrote_fields()))) {
 946     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 947 #ifndef PRODUCT
 948     if (PrintOpto && (Verbose || WizardMode)) {
 949       method()->print_name();
 950       tty->print_cr(" writes finals and needs a memory barrier");
 951     }
 952 #endif
 953   }
 954 
 955   // Any method can write a @Stable field; insert memory barriers after
 956   // those also. If there is a predecessor allocation node, bind the
 957   // barrier there.
 958   if (wrote_stable()) {
 959     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 960 #ifndef PRODUCT
 961     if (PrintOpto && (Verbose || WizardMode)) {
 962       method()->print_name();
 963       tty->print_cr(" writes @Stable and needs a memory barrier");
 964     }
 965 #endif
 966   }
 967 
 968   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 969     // transform each slice of the original memphi:
 970     mms.set_memory(_gvn.transform(mms.memory()));
 971   }
 972 
 973   if (tf()->range()->cnt() > TypeFunc::Parms) {
 974     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 975     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 976     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 977     _exits.push_node(ret_type->basic_type(), ret_phi);
 978   }
 979 
 980   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 981 
 982   // Unlock along the exceptional paths.
 983   // This is done late so that we can common up equivalent exceptions
 984   // (e.g., null checks) arising from multiple points within this method.
 985   // See GraphKit::add_exception_state, which performs the commoning.
 986   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 987 
 988   // record exit from a method if compiled while Dtrace is turned on.
 989   if (do_synch || C->env()->dtrace_method_probes()) {
 990     // First move the exception list out of _exits:
 991     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 992     SafePointNode* normal_map = kit.map();  // keep this guy safe
 993     // Now re-collect the exceptions into _exits:
 994     SafePointNode* ex_map;
 995     while ((ex_map = kit.pop_exception_state()) != NULL) {
 996       Node* ex_oop = kit.use_exception_state(ex_map);
 997       // Force the exiting JVM state to have this method at InvocationEntryBci.
 998       // The exiting JVM state is otherwise a copy of the calling JVMS.
 999       JVMState* caller = kit.jvms();
1000       JVMState* ex_jvms = caller->clone_shallow(C);
1001       ex_jvms->set_map(kit.clone_map());
1002       ex_jvms->map()->set_jvms(ex_jvms);
1003       ex_jvms->set_bci(   InvocationEntryBci);
1004       kit.set_jvms(ex_jvms);
1005       if (do_synch) {
1006         // Add on the synchronized-method box/object combo
1007         kit.map()->push_monitor(_synch_lock);
1008         // Unlock!
1009         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1010       }
1011       if (C->env()->dtrace_method_probes()) {
1012         kit.make_dtrace_method_exit(method());
1013       }
1014       // Done with exception-path processing.
1015       ex_map = kit.make_exception_state(ex_oop);
1016       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1017       // Pop the last vestige of this method:
1018       ex_map->set_jvms(caller->clone_shallow(C));
1019       ex_map->jvms()->set_map(ex_map);
1020       _exits.push_exception_state(ex_map);
1021     }
1022     assert(_exits.map() == normal_map, "keep the same return state");
1023   }
1024 
1025   {
1026     // Capture very early exceptions (receiver null checks) from caller JVMS
1027     GraphKit caller(_caller);
1028     SafePointNode* ex_map;
1029     while ((ex_map = caller.pop_exception_state()) != NULL) {
1030       _exits.add_exception_state(ex_map);
1031     }
1032   }
1033 }
1034 
1035 //-----------------------------create_entry_map-------------------------------
1036 // Initialize our parser map to contain the types at method entry.
1037 // For OSR, the map contains a single RawPtr parameter.
1038 // Initial monitor locking for sync. methods is performed by do_method_entry.
1039 SafePointNode* Parse::create_entry_map() {
1040   // Check for really stupid bail-out cases.
1041   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1042   if (len >= 32760) {
1043     C->record_method_not_compilable_all_tiers("too many local variables");
1044     return NULL;
1045   }
1046 
1047   // If this is an inlined method, we may have to do a receiver null check.
1048   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1049     GraphKit kit(_caller);
1050     kit.null_check_receiver_before_call(method());
1051     _caller = kit.transfer_exceptions_into_jvms();
1052     if (kit.stopped()) {
1053       _exits.add_exception_states_from(_caller);
1054       _exits.set_jvms(_caller);
1055       return NULL;
1056     }
1057   }
1058 
1059   assert(method() != NULL, "parser must have a method");
1060 
1061   // Create an initial safepoint to hold JVM state during parsing
1062   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1063   set_map(new (C) SafePointNode(len, jvms));
1064   jvms->set_map(map());
1065   record_for_igvn(map());
1066   assert(jvms->endoff() == len, "correct jvms sizing");
1067 
1068   SafePointNode* inmap = _caller->map();
1069   assert(inmap != NULL, "must have inmap");
1070 
1071   uint i;
1072 
1073   // Pass thru the predefined input parameters.
1074   for (i = 0; i < TypeFunc::Parms; i++) {
1075     map()->init_req(i, inmap->in(i));
1076   }
1077 
1078   if (depth() == 1) {
1079     assert(map()->memory()->Opcode() == Op_Parm, "");
1080     // Insert the memory aliasing node
1081     set_all_memory(reset_memory());
1082   }
1083   assert(merged_memory(), "");
1084 
1085   // Now add the locals which are initially bound to arguments:
1086   uint arg_size = tf()->domain()->cnt();
1087   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1088   for (i = TypeFunc::Parms; i < arg_size; i++) {
1089     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1090   }
1091 
1092   // Clear out the rest of the map (locals and stack)
1093   for (i = arg_size; i < len; i++) {
1094     map()->init_req(i, top());
1095   }
1096 
1097   SafePointNode* entry_map = stop();
1098   return entry_map;
1099 }
1100 
1101 //-----------------------------do_method_entry--------------------------------
1102 // Emit any code needed in the pseudo-block before BCI zero.
1103 // The main thing to do is lock the receiver of a synchronized method.
1104 void Parse::do_method_entry() {
1105   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1106   set_sp(0);                      // Java Stack Pointer
1107 
1108   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1109 
1110   if (C->env()->dtrace_method_probes()) {
1111     make_dtrace_method_entry(method());
1112   }
1113 
1114   // If the method is synchronized, we need to construct a lock node, attach
1115   // it to the Start node, and pin it there.
1116   if (method()->is_synchronized()) {
1117     // Insert a FastLockNode right after the Start which takes as arguments
1118     // the current thread pointer, the "this" pointer & the address of the
1119     // stack slot pair used for the lock.  The "this" pointer is a projection
1120     // off the start node, but the locking spot has to be constructed by
1121     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1122     // becomes the second argument to the FastLockNode call.  The
1123     // FastLockNode becomes the new control parent to pin it to the start.
1124 
1125     // Setup Object Pointer
1126     Node *lock_obj = NULL;
1127     if(method()->is_static()) {
1128       ciInstance* mirror = _method->holder()->java_mirror();
1129       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1130       lock_obj = makecon(t_lock);
1131     } else {                  // Else pass the "this" pointer,
1132       lock_obj = local(0);    // which is Parm0 from StartNode
1133     }
1134     // Clear out dead values from the debug info.
1135     kill_dead_locals();
1136     // Build the FastLockNode
1137     _synch_lock = shared_lock(lock_obj);
1138   }
1139 
1140   // Feed profiling data for parameters to the type system so it can
1141   // propagate it as speculative types
1142   record_profiled_parameters_for_speculation();
1143 
1144   if (depth() == 1) {
1145     increment_and_test_invocation_counter(Tier2CompileThreshold);
1146   }
1147 }
1148 
1149 //------------------------------init_blocks------------------------------------
1150 // Initialize our parser map to contain the types/monitors at method entry.
1151 void Parse::init_blocks() {
1152   // Create the blocks.
1153   _block_count = flow()->block_count();
1154   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1155   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1156 
1157   int rpo;
1158 
1159   // Initialize the structs.
1160   for (rpo = 0; rpo < block_count(); rpo++) {
1161     Block* block = rpo_at(rpo);
1162     block->init_node(this, rpo);
1163   }
1164 
1165   // Collect predecessor and successor information.
1166   for (rpo = 0; rpo < block_count(); rpo++) {
1167     Block* block = rpo_at(rpo);
1168     block->init_graph(this);
1169   }
1170 }
1171 
1172 //-------------------------------init_node-------------------------------------
1173 void Parse::Block::init_node(Parse* outer, int rpo) {
1174   _flow = outer->flow()->rpo_at(rpo);
1175   _pred_count = 0;
1176   _preds_parsed = 0;
1177   _count = 0;
1178   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1179   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1180   assert(_live_locals.size() == 0, "sanity");
1181 
1182   // entry point has additional predecessor
1183   if (flow()->is_start())  _pred_count++;
1184   assert(flow()->is_start() == (this == outer->start_block()), "");
1185 }
1186 
1187 //-------------------------------init_graph------------------------------------
1188 void Parse::Block::init_graph(Parse* outer) {
1189   // Create the successor list for this parser block.
1190   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1191   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1192   int ns = tfs->length();
1193   int ne = tfe->length();
1194   _num_successors = ns;
1195   _all_successors = ns+ne;
1196   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1197   int p = 0;
1198   for (int i = 0; i < ns+ne; i++) {
1199     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1200     Block* block2 = outer->rpo_at(tf2->rpo());
1201     _successors[i] = block2;
1202 
1203     // Accumulate pred info for the other block, too.
1204     if (i < ns) {
1205       block2->_pred_count++;
1206     } else {
1207       block2->_is_handler = true;
1208     }
1209 
1210     #ifdef ASSERT
1211     // A block's successors must be distinguishable by BCI.
1212     // That is, no bytecode is allowed to branch to two different
1213     // clones of the same code location.
1214     for (int j = 0; j < i; j++) {
1215       Block* block1 = _successors[j];
1216       if (block1 == block2)  continue;  // duplicates are OK
1217       assert(block1->start() != block2->start(), "successors have unique bcis");
1218     }
1219     #endif
1220   }
1221 
1222   // Note: We never call next_path_num along exception paths, so they
1223   // never get processed as "ready".  Also, the input phis of exception
1224   // handlers get specially processed, so that
1225 }
1226 
1227 //---------------------------successor_for_bci---------------------------------
1228 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1229   for (int i = 0; i < all_successors(); i++) {
1230     Block* block2 = successor_at(i);
1231     if (block2->start() == bci)  return block2;
1232   }
1233   // We can actually reach here if ciTypeFlow traps out a block
1234   // due to an unloaded class, and concurrently with compilation the
1235   // class is then loaded, so that a later phase of the parser is
1236   // able to see more of the bytecode CFG.  Or, the flow pass and
1237   // the parser can have a minor difference of opinion about executability
1238   // of bytecodes.  For example, "obj.field = null" is executable even
1239   // if the field's type is an unloaded class; the flow pass used to
1240   // make a trap for such code.
1241   return NULL;
1242 }
1243 
1244 
1245 //-----------------------------stack_type_at-----------------------------------
1246 const Type* Parse::Block::stack_type_at(int i) const {
1247   return get_type(flow()->stack_type_at(i));
1248 }
1249 
1250 
1251 //-----------------------------local_type_at-----------------------------------
1252 const Type* Parse::Block::local_type_at(int i) const {
1253   // Make dead locals fall to bottom.
1254   if (_live_locals.size() == 0) {
1255     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1256     // This bitmap can be zero length if we saw a breakpoint.
1257     // In such cases, pretend they are all live.
1258     ((Block*)this)->_live_locals = live_locals;
1259   }
1260   if (_live_locals.size() > 0 && !_live_locals.at(i))
1261     return Type::BOTTOM;
1262 
1263   return get_type(flow()->local_type_at(i));
1264 }
1265 
1266 
1267 #ifndef PRODUCT
1268 
1269 //----------------------------name_for_bc--------------------------------------
1270 // helper method for BytecodeParseHistogram
1271 static const char* name_for_bc(int i) {
1272   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1273 }
1274 
1275 //----------------------------BytecodeParseHistogram------------------------------------
1276 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1277   _parser   = p;
1278   _compiler = c;
1279   if( ! _initialized ) { _initialized = true; reset(); }
1280 }
1281 
1282 //----------------------------current_count------------------------------------
1283 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1284   switch( bph_type ) {
1285   case BPH_transforms: { return _parser->gvn().made_progress(); }
1286   case BPH_values:     { return _parser->gvn().made_new_values(); }
1287   default: { ShouldNotReachHere(); return 0; }
1288   }
1289 }
1290 
1291 //----------------------------initialized--------------------------------------
1292 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1293 
1294 //----------------------------reset--------------------------------------------
1295 void Parse::BytecodeParseHistogram::reset() {
1296   int i = Bytecodes::number_of_codes;
1297   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1298 }
1299 
1300 //----------------------------set_initial_state--------------------------------
1301 // Record info when starting to parse one bytecode
1302 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1303   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1304     _initial_bytecode    = bc;
1305     _initial_node_count  = _compiler->unique();
1306     _initial_transforms  = current_count(BPH_transforms);
1307     _initial_values      = current_count(BPH_values);
1308   }
1309 }
1310 
1311 //----------------------------record_change--------------------------------
1312 // Record results of parsing one bytecode
1313 void Parse::BytecodeParseHistogram::record_change() {
1314   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1315     ++_bytecodes_parsed[_initial_bytecode];
1316     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1317     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1318     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1319   }
1320 }
1321 
1322 
1323 //----------------------------print--------------------------------------------
1324 void Parse::BytecodeParseHistogram::print(float cutoff) {
1325   ResourceMark rm;
1326   // print profile
1327   int total  = 0;
1328   int i      = 0;
1329   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1330   int abs_sum = 0;
1331   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1332   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1333   if( total == 0 ) { return; }
1334   tty->cr();
1335   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1336   tty->print_cr("relative:  percentage contribution to compiled nodes");
1337   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1338   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1339   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1340   tty->print_cr("values  :  Average number of node values improved per bytecode");
1341   tty->print_cr("name    :  Bytecode name");
1342   tty->cr();
1343   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1344   tty->print_cr("----------------------------------------------------------------------");
1345   while (--i > 0) {
1346     int       abs = _bytecodes_parsed[i];
1347     float     rel = abs * 100.0F / total;
1348     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1349     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1350     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1351     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1352     if (cutoff <= rel) {
1353       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1354       abs_sum += abs;
1355     }
1356   }
1357   tty->print_cr("----------------------------------------------------------------------");
1358   float rel_sum = abs_sum * 100.0F / total;
1359   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1360   tty->print_cr("----------------------------------------------------------------------");
1361   tty->cr();
1362 }
1363 #endif
1364 
1365 //----------------------------load_state_from----------------------------------
1366 // Load block/map/sp.  But not do not touch iter/bci.
1367 void Parse::load_state_from(Block* block) {
1368   set_block(block);
1369   // load the block's JVM state:
1370   set_map(block->start_map());
1371   set_sp( block->start_sp());
1372 }
1373 
1374 
1375 //-----------------------------record_state------------------------------------
1376 void Parse::Block::record_state(Parse* p) {
1377   assert(!is_merged(), "can only record state once, on 1st inflow");
1378   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1379   set_start_map(p->stop());
1380 }
1381 
1382 
1383 //------------------------------do_one_block-----------------------------------
1384 void Parse::do_one_block() {
1385   if (TraceOptoParse) {
1386     Block *b = block();
1387     int ns = b->num_successors();
1388     int nt = b->all_successors();
1389 
1390     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1391                   block()->rpo(), block()->start(), block()->limit());
1392     for (int i = 0; i < nt; i++) {
1393       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1394     }
1395     if (b->is_loop_head()) tty->print("  lphd");
1396     tty->print_cr("");
1397   }
1398 
1399   assert(block()->is_merged(), "must be merged before being parsed");
1400   block()->mark_parsed();
1401   ++_blocks_parsed;
1402 
1403   // Set iterator to start of block.
1404   iter().reset_to_bci(block()->start());
1405 
1406   CompileLog* log = C->log();
1407 
1408   // Parse bytecodes
1409   while (!stopped() && !failing()) {
1410     iter().next();
1411 
1412     // Learn the current bci from the iterator:
1413     set_parse_bci(iter().cur_bci());
1414 
1415     if (bci() == block()->limit()) {
1416       // Do not walk into the next block until directed by do_all_blocks.
1417       merge(bci());
1418       break;
1419     }
1420     assert(bci() < block()->limit(), "bci still in block");
1421 
1422     if (log != NULL) {
1423       // Output an optional context marker, to help place actions
1424       // that occur during parsing of this BC.  If there is no log
1425       // output until the next context string, this context string
1426       // will be silently ignored.
1427       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1428     }
1429 
1430     if (block()->has_trap_at(bci())) {
1431       // We must respect the flow pass's traps, because it will refuse
1432       // to produce successors for trapping blocks.
1433       int trap_index = block()->flow()->trap_index();
1434       assert(trap_index != 0, "trap index must be valid");
1435       uncommon_trap(trap_index);
1436       break;
1437     }
1438 
1439     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1440 
1441 #ifdef ASSERT
1442     int pre_bc_sp = sp();
1443     int inputs, depth;
1444     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1445     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1446 #endif //ASSERT
1447 
1448     do_one_bytecode();
1449 
1450     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1451            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1452 
1453     do_exceptions();
1454 
1455     NOT_PRODUCT( parse_histogram()->record_change(); );
1456 
1457     if (log != NULL)
1458       log->clear_context();  // skip marker if nothing was printed
1459 
1460     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1461     // successor which is typically made ready by visiting this bytecode.
1462     // If the successor has several predecessors, then it is a merge
1463     // point, starts a new basic block, and is handled like other basic blocks.
1464   }
1465 }
1466 
1467 
1468 //------------------------------merge------------------------------------------
1469 void Parse::set_parse_bci(int bci) {
1470   set_bci(bci);
1471   Node_Notes* nn = C->default_node_notes();
1472   if (nn == NULL)  return;
1473 
1474   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1475   if (!DebugInlinedCalls && depth() > 1) {
1476     return;
1477   }
1478 
1479   // Update the JVMS annotation, if present.
1480   JVMState* jvms = nn->jvms();
1481   if (jvms != NULL && jvms->bci() != bci) {
1482     // Update the JVMS.
1483     jvms = jvms->clone_shallow(C);
1484     jvms->set_bci(bci);
1485     nn->set_jvms(jvms);
1486   }
1487 }
1488 
1489 //------------------------------merge------------------------------------------
1490 // Merge the current mapping into the basic block starting at bci
1491 void Parse::merge(int target_bci) {
1492   Block* target = successor_for_bci(target_bci);
1493   if (target == NULL) { handle_missing_successor(target_bci); return; }
1494   assert(!target->is_ready(), "our arrival must be expected");
1495   int pnum = target->next_path_num();
1496   merge_common(target, pnum);
1497 }
1498 
1499 //-------------------------merge_new_path--------------------------------------
1500 // Merge the current mapping into the basic block, using a new path
1501 void Parse::merge_new_path(int target_bci) {
1502   Block* target = successor_for_bci(target_bci);
1503   if (target == NULL) { handle_missing_successor(target_bci); return; }
1504   assert(!target->is_ready(), "new path into frozen graph");
1505   int pnum = target->add_new_path();
1506   merge_common(target, pnum);
1507 }
1508 
1509 //-------------------------merge_exception-------------------------------------
1510 // Merge the current mapping into the basic block starting at bci
1511 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1512 void Parse::merge_exception(int target_bci) {
1513   assert(sp() == 1, "must have only the throw exception on the stack");
1514   Block* target = successor_for_bci(target_bci);
1515   if (target == NULL) { handle_missing_successor(target_bci); return; }
1516   assert(target->is_handler(), "exceptions are handled by special blocks");
1517   int pnum = target->add_new_path();
1518   merge_common(target, pnum);
1519 }
1520 
1521 //--------------------handle_missing_successor---------------------------------
1522 void Parse::handle_missing_successor(int target_bci) {
1523 #ifndef PRODUCT
1524   Block* b = block();
1525   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1526   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1527 #endif
1528   ShouldNotReachHere();
1529 }
1530 
1531 //--------------------------merge_common---------------------------------------
1532 void Parse::merge_common(Parse::Block* target, int pnum) {
1533   if (TraceOptoParse) {
1534     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1535   }
1536 
1537   // Zap extra stack slots to top
1538   assert(sp() == target->start_sp(), "");
1539   clean_stack(sp());
1540 
1541   if (!target->is_merged()) {   // No prior mapping at this bci
1542     if (TraceOptoParse) { tty->print(" with empty state");  }
1543 
1544     // If this path is dead, do not bother capturing it as a merge.
1545     // It is "as if" we had 1 fewer predecessors from the beginning.
1546     if (stopped()) {
1547       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1548       return;
1549     }
1550 
1551     // Record that a new block has been merged.
1552     ++_blocks_merged;
1553 
1554     // Make a region if we know there are multiple or unpredictable inputs.
1555     // (Also, if this is a plain fall-through, we might see another region,
1556     // which must not be allowed into this block's map.)
1557     if (pnum > PhiNode::Input         // Known multiple inputs.
1558         || target->is_handler()       // These have unpredictable inputs.
1559         || target->is_loop_head()     // Known multiple inputs
1560         || control()->is_Region()) {  // We must hide this guy.
1561 
1562       int current_bci = bci();
1563       set_parse_bci(target->start()); // Set target bci
1564       if (target->is_SEL_head()) {
1565         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1566         if (target->start() == 0) {
1567           // Add loop predicate for the special case when
1568           // there are backbranches to the method entry.
1569           add_predicate();
1570         }
1571       }
1572       // Add a Region to start the new basic block.  Phis will be added
1573       // later lazily.
1574       int edges = target->pred_count();
1575       if (edges < pnum)  edges = pnum;  // might be a new path!
1576       RegionNode *r = new (C) RegionNode(edges+1);
1577       gvn().set_type(r, Type::CONTROL);
1578       record_for_igvn(r);
1579       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1580       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1581       r->init_req(pnum, control());
1582       set_control(r);
1583       set_parse_bci(current_bci); // Restore bci
1584     }
1585 
1586     // Convert the existing Parser mapping into a mapping at this bci.
1587     store_state_to(target);
1588     assert(target->is_merged(), "do not come here twice");
1589 
1590   } else {                      // Prior mapping at this bci
1591     if (TraceOptoParse) {  tty->print(" with previous state"); }
1592 #ifdef ASSERT
1593     if (target->is_SEL_head()) {
1594       target->mark_merged_backedge(block());
1595     }
1596 #endif
1597     // We must not manufacture more phis if the target is already parsed.
1598     bool nophi = target->is_parsed();
1599 
1600     SafePointNode* newin = map();// Hang on to incoming mapping
1601     Block* save_block = block(); // Hang on to incoming block;
1602     load_state_from(target);    // Get prior mapping
1603 
1604     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1605     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1606     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1607     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1608 
1609     // Iterate over my current mapping and the old mapping.
1610     // Where different, insert Phi functions.
1611     // Use any existing Phi functions.
1612     assert(control()->is_Region(), "must be merging to a region");
1613     RegionNode* r = control()->as_Region();
1614 
1615     // Compute where to merge into
1616     // Merge incoming control path
1617     r->init_req(pnum, newin->control());
1618 
1619     if (pnum == 1) {            // Last merge for this Region?
1620       if (!block()->flow()->is_irreducible_entry()) {
1621         Node* result = _gvn.transform_no_reclaim(r);
1622         if (r != result && TraceOptoParse) {
1623           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1624         }
1625       }
1626       record_for_igvn(r);
1627     }
1628 
1629     // Update all the non-control inputs to map:
1630     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1631     bool check_elide_phi = target->is_SEL_backedge(save_block);
1632     for (uint j = 1; j < newin->req(); j++) {
1633       Node* m = map()->in(j);   // Current state of target.
1634       Node* n = newin->in(j);   // Incoming change to target state.
1635       PhiNode* phi;
1636       if (m->is_Phi() && m->as_Phi()->region() == r)
1637         phi = m->as_Phi();
1638       else
1639         phi = NULL;
1640       if (m != n) {             // Different; must merge
1641         switch (j) {
1642         // Frame pointer and Return Address never changes
1643         case TypeFunc::FramePtr:// Drop m, use the original value
1644         case TypeFunc::ReturnAdr:
1645           break;
1646         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1647           assert(phi == NULL, "the merge contains phis, not vice versa");
1648           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1649           continue;
1650         default:                // All normal stuff
1651           if (phi == NULL) {
1652             const JVMState* jvms = map()->jvms();
1653             if (EliminateNestedLocks &&
1654                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1655               // BoxLock nodes are not commoning.
1656               // Use old BoxLock node as merged box.
1657               assert(newin->jvms()->is_monitor_box(j), "sanity");
1658               // This assert also tests that nodes are BoxLock.
1659               assert(BoxLockNode::same_slot(n, m), "sanity");
1660               C->gvn_replace_by(n, m);
1661             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1662               phi = ensure_phi(j, nophi);
1663             }
1664           }
1665           break;
1666         }
1667       }
1668       // At this point, n might be top if:
1669       //  - there is no phi (because TypeFlow detected a conflict), or
1670       //  - the corresponding control edges is top (a dead incoming path)
1671       // It is a bug if we create a phi which sees a garbage value on a live path.
1672 
1673       if (phi != NULL) {
1674         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1675         assert(phi->region() == r, "");
1676         phi->set_req(pnum, n);  // Then add 'n' to the merge
1677         if (pnum == PhiNode::Input) {
1678           // Last merge for this Phi.
1679           // So far, Phis have had a reasonable type from ciTypeFlow.
1680           // Now _gvn will join that with the meet of current inputs.
1681           // BOTTOM is never permissible here, 'cause pessimistically
1682           // Phis of pointers cannot lose the basic pointer type.
1683           debug_only(const Type* bt1 = phi->bottom_type());
1684           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1685           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1686           debug_only(const Type* bt2 = phi->bottom_type());
1687           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1688           record_for_igvn(phi);
1689         }
1690       }
1691     } // End of for all values to be merged
1692 
1693     if (pnum == PhiNode::Input &&
1694         !r->in(0)) {         // The occasional useless Region
1695       assert(control() == r, "");
1696       set_control(r->nonnull_req());
1697     }
1698 
1699     // newin has been subsumed into the lazy merge, and is now dead.
1700     set_block(save_block);
1701 
1702     stop();                     // done with this guy, for now
1703   }
1704 
1705   if (TraceOptoParse) {
1706     tty->print_cr(" on path %d", pnum);
1707   }
1708 
1709   // Done with this parser state.
1710   assert(stopped(), "");
1711 }
1712 
1713 
1714 //--------------------------merge_memory_edges---------------------------------
1715 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1716   // (nophi means we must not create phis, because we already parsed here)
1717   assert(n != NULL, "");
1718   // Merge the inputs to the MergeMems
1719   MergeMemNode* m = merged_memory();
1720 
1721   assert(control()->is_Region(), "must be merging to a region");
1722   RegionNode* r = control()->as_Region();
1723 
1724   PhiNode* base = NULL;
1725   MergeMemNode* remerge = NULL;
1726   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1727     Node *p = mms.force_memory();
1728     Node *q = mms.memory2();
1729     if (mms.is_empty() && nophi) {
1730       // Trouble:  No new splits allowed after a loop body is parsed.
1731       // Instead, wire the new split into a MergeMem on the backedge.
1732       // The optimizer will sort it out, slicing the phi.
1733       if (remerge == NULL) {
1734         assert(base != NULL, "");
1735         assert(base->in(0) != NULL, "should not be xformed away");
1736         remerge = MergeMemNode::make(C, base->in(pnum));
1737         gvn().set_type(remerge, Type::MEMORY);
1738         base->set_req(pnum, remerge);
1739       }
1740       remerge->set_memory_at(mms.alias_idx(), q);
1741       continue;
1742     }
1743     assert(!q->is_MergeMem(), "");
1744     PhiNode* phi;
1745     if (p != q) {
1746       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1747     } else {
1748       if (p->is_Phi() && p->as_Phi()->region() == r)
1749         phi = p->as_Phi();
1750       else
1751         phi = NULL;
1752     }
1753     // Insert q into local phi
1754     if (phi != NULL) {
1755       assert(phi->region() == r, "");
1756       p = phi;
1757       phi->set_req(pnum, q);
1758       if (mms.at_base_memory()) {
1759         base = phi;  // delay transforming it
1760       } else if (pnum == 1) {
1761         record_for_igvn(phi);
1762         p = _gvn.transform_no_reclaim(phi);
1763       }
1764       mms.set_memory(p);// store back through the iterator
1765     }
1766   }
1767   // Transform base last, in case we must fiddle with remerging.
1768   if (base != NULL && pnum == 1) {
1769     record_for_igvn(base);
1770     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1771   }
1772 }
1773 
1774 
1775 //------------------------ensure_phis_everywhere-------------------------------
1776 void Parse::ensure_phis_everywhere() {
1777   ensure_phi(TypeFunc::I_O);
1778 
1779   // Ensure a phi on all currently known memories.
1780   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1781     ensure_memory_phi(mms.alias_idx());
1782     debug_only(mms.set_memory());  // keep the iterator happy
1783   }
1784 
1785   // Note:  This is our only chance to create phis for memory slices.
1786   // If we miss a slice that crops up later, it will have to be
1787   // merged into the base-memory phi that we are building here.
1788   // Later, the optimizer will comb out the knot, and build separate
1789   // phi-loops for each memory slice that matters.
1790 
1791   // Monitors must nest nicely and not get confused amongst themselves.
1792   // Phi-ify everything up to the monitors, though.
1793   uint monoff = map()->jvms()->monoff();
1794   uint nof_monitors = map()->jvms()->nof_monitors();
1795 
1796   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1797   bool check_elide_phi = block()->is_SEL_head();
1798   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1799     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1800       ensure_phi(i);
1801     }
1802   }
1803 
1804   // Even monitors need Phis, though they are well-structured.
1805   // This is true for OSR methods, and also for the rare cases where
1806   // a monitor object is the subject of a replace_in_map operation.
1807   // See bugs 4426707 and 5043395.
1808   for (uint m = 0; m < nof_monitors; m++) {
1809     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1810   }
1811 }
1812 
1813 
1814 //-----------------------------add_new_path------------------------------------
1815 // Add a previously unaccounted predecessor to this block.
1816 int Parse::Block::add_new_path() {
1817   // If there is no map, return the lowest unused path number.
1818   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1819 
1820   SafePointNode* map = start_map();
1821   if (!map->control()->is_Region())
1822     return pred_count()+1;  // there may be a region some day
1823   RegionNode* r = map->control()->as_Region();
1824 
1825   // Add new path to the region.
1826   uint pnum = r->req();
1827   r->add_req(NULL);
1828 
1829   for (uint i = 1; i < map->req(); i++) {
1830     Node* n = map->in(i);
1831     if (i == TypeFunc::Memory) {
1832       // Ensure a phi on all currently known memories.
1833       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1834         Node* phi = mms.memory();
1835         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1836           assert(phi->req() == pnum, "must be same size as region");
1837           phi->add_req(NULL);
1838         }
1839       }
1840     } else {
1841       if (n->is_Phi() && n->as_Phi()->region() == r) {
1842         assert(n->req() == pnum, "must be same size as region");
1843         n->add_req(NULL);
1844       }
1845     }
1846   }
1847 
1848   return pnum;
1849 }
1850 
1851 //------------------------------ensure_phi-------------------------------------
1852 // Turn the idx'th entry of the current map into a Phi
1853 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1854   SafePointNode* map = this->map();
1855   Node* region = map->control();
1856   assert(region->is_Region(), "");
1857 
1858   Node* o = map->in(idx);
1859   assert(o != NULL, "");
1860 
1861   if (o == top())  return NULL; // TOP always merges into TOP
1862 
1863   if (o->is_Phi() && o->as_Phi()->region() == region) {
1864     return o->as_Phi();
1865   }
1866 
1867   // Now use a Phi here for merging
1868   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1869   const JVMState* jvms = map->jvms();
1870   const Type* t;
1871   if (jvms->is_loc(idx)) {
1872     t = block()->local_type_at(idx - jvms->locoff());
1873   } else if (jvms->is_stk(idx)) {
1874     t = block()->stack_type_at(idx - jvms->stkoff());
1875   } else if (jvms->is_mon(idx)) {
1876     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1877     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1878   } else if ((uint)idx < TypeFunc::Parms) {
1879     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1880   } else {
1881     assert(false, "no type information for this phi");
1882   }
1883 
1884   // If the type falls to bottom, then this must be a local that
1885   // is mixing ints and oops or some such.  Forcing it to top
1886   // makes it go dead.
1887   if (t == Type::BOTTOM) {
1888     map->set_req(idx, top());
1889     return NULL;
1890   }
1891 
1892   // Do not create phis for top either.
1893   // A top on a non-null control flow must be an unused even after the.phi.
1894   if (t == Type::TOP || t == Type::HALF) {
1895     map->set_req(idx, top());
1896     return NULL;
1897   }
1898 
1899   PhiNode* phi = PhiNode::make(region, o, t);
1900   gvn().set_type(phi, t);
1901   if (C->do_escape_analysis()) record_for_igvn(phi);
1902   map->set_req(idx, phi);
1903   return phi;
1904 }
1905 
1906 //--------------------------ensure_memory_phi----------------------------------
1907 // Turn the idx'th slice of the current memory into a Phi
1908 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1909   MergeMemNode* mem = merged_memory();
1910   Node* region = control();
1911   assert(region->is_Region(), "");
1912 
1913   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1914   assert(o != NULL && o != top(), "");
1915 
1916   PhiNode* phi;
1917   if (o->is_Phi() && o->as_Phi()->region() == region) {
1918     phi = o->as_Phi();
1919     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1920       // clone the shared base memory phi to make a new memory split
1921       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1922       const Type* t = phi->bottom_type();
1923       const TypePtr* adr_type = C->get_adr_type(idx);
1924       phi = phi->slice_memory(adr_type);
1925       gvn().set_type(phi, t);
1926     }
1927     return phi;
1928   }
1929 
1930   // Now use a Phi here for merging
1931   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1932   const Type* t = o->bottom_type();
1933   const TypePtr* adr_type = C->get_adr_type(idx);
1934   phi = PhiNode::make(region, o, t, adr_type);
1935   gvn().set_type(phi, t);
1936   if (idx == Compile::AliasIdxBot)
1937     mem->set_base_memory(phi);
1938   else
1939     mem->set_memory_at(idx, phi);
1940   return phi;
1941 }
1942 
1943 //------------------------------call_register_finalizer-----------------------
1944 // Check the klass of the receiver and call register_finalizer if the
1945 // class need finalization.
1946 void Parse::call_register_finalizer() {
1947   Node* receiver = local(0);
1948   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1949          "must have non-null instance type");
1950 
1951   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1952   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1953     // The type isn't known exactly so see if CHA tells us anything.
1954     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1955     if (!Dependencies::has_finalizable_subclass(ik)) {
1956       // No finalizable subclasses so skip the dynamic check.
1957       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1958       return;
1959     }
1960   }
1961 
1962   // Insert a dynamic test for whether the instance needs
1963   // finalization.  In general this will fold up since the concrete
1964   // class is often visible so the access flags are constant.
1965   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1966   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1967 
1968   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1969   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
1970 
1971   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1972   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
1973   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
1974 
1975   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1976 
1977   RegionNode* result_rgn = new (C) RegionNode(3);
1978   record_for_igvn(result_rgn);
1979 
1980   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
1981   result_rgn->init_req(1, skip_register);
1982 
1983   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
1984   set_control(needs_register);
1985   if (stopped()) {
1986     // There is no slow path.
1987     result_rgn->init_req(2, top());
1988   } else {
1989     Node *call = make_runtime_call(RC_NO_LEAF,
1990                                    OptoRuntime::register_finalizer_Type(),
1991                                    OptoRuntime::register_finalizer_Java(),
1992                                    NULL, TypePtr::BOTTOM,
1993                                    receiver);
1994     make_slow_call_ex(call, env()->Throwable_klass(), true);
1995 
1996     Node* fast_io  = call->in(TypeFunc::I_O);
1997     Node* fast_mem = call->in(TypeFunc::Memory);
1998     // These two phis are pre-filled with copies of of the fast IO and Memory
1999     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2000     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2001 
2002     result_rgn->init_req(2, control());
2003     io_phi    ->init_req(2, i_o());
2004     mem_phi   ->init_req(2, reset_memory());
2005 
2006     set_all_memory( _gvn.transform(mem_phi) );
2007     set_i_o(        _gvn.transform(io_phi) );
2008   }
2009 
2010   set_control( _gvn.transform(result_rgn) );
2011 }
2012 
2013 // Add check to deoptimize if RTM state is not ProfileRTM
2014 void Parse::rtm_deopt() {
2015 #if INCLUDE_RTM_OPT
2016   if (C->profile_rtm()) {
2017     assert(C->method() != NULL, "only for normal compilations");
2018     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2019     assert(depth() == 1, "generate check only for main compiled method");
2020 
2021     // Set starting bci for uncommon trap.
2022     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2023 
2024     // Load the rtm_state from the MethodData.
2025     address md_adr = (address)C->method()->method_data()->constant_encoding();
2026     const TypePtr* adr_type = TypeRawPtr::make(md_adr);
2027     Node* md_node = makecon(adr_type);
2028     int offset = MethodData::rtm_state_offset_in_bytes();
2029     Node* adr_node = basic_plus_adr(md_node, md_node, offset);
2030     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2031 
2032     // Separate Load from Cmp by Opaque.
2033     // In expand_macro_nodes() it will be replaced either
2034     // with this load when there are locks in the code
2035     // or with ProfileRTM (cmp->in(2)) otherwise so that
2036     // the check will fold.
2037     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2038     Node* opq   = _gvn.transform( new (C) Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2039     Node* chk   = _gvn.transform( new (C) CmpINode(opq, profile_state) );
2040     Node* tst   = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
2041     // Branch to failure if state was changed
2042     { BuildCutout unless(this, tst, PROB_ALWAYS);
2043       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2044                     Deoptimization::Action_make_not_entrant);
2045     }
2046   }
2047 #endif
2048 }
2049 
2050 //------------------------------return_current---------------------------------
2051 // Append current _map to _exit_return
2052 void Parse::return_current(Node* value) {
2053   if (RegisterFinalizersAtInit &&
2054       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2055     call_register_finalizer();
2056   }
2057 
2058   // Do not set_parse_bci, so that return goo is credited to the return insn.
2059   set_bci(InvocationEntryBci);
2060   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2061     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2062   }
2063   if (C->env()->dtrace_method_probes()) {
2064     make_dtrace_method_exit(method());
2065   }
2066   SafePointNode* exit_return = _exits.map();
2067   exit_return->in( TypeFunc::Control  )->add_req( control() );
2068   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2069   Node *mem = exit_return->in( TypeFunc::Memory   );
2070   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2071     if (mms.is_empty()) {
2072       // get a copy of the base memory, and patch just this one input
2073       const TypePtr* adr_type = mms.adr_type(C);
2074       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2075       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2076       gvn().set_type_bottom(phi);
2077       phi->del_req(phi->req()-1);  // prepare to re-patch
2078       mms.set_memory(phi);
2079     }
2080     mms.memory()->add_req(mms.memory2());
2081   }
2082 
2083   // frame pointer is always same, already captured
2084   if (value != NULL) {
2085     // If returning oops to an interface-return, there is a silent free
2086     // cast from oop to interface allowed by the Verifier.  Make it explicit
2087     // here.
2088     Node* phi = _exits.argument(0);
2089     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2090     if( tr && tr->klass()->is_loaded() &&
2091         tr->klass()->is_interface() ) {
2092       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2093       if (tp && tp->klass()->is_loaded() &&
2094           !tp->klass()->is_interface()) {
2095         // sharpen the type eagerly; this eases certain assert checking
2096         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2097           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2098         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
2099       }
2100     }
2101     phi->add_req(value);
2102   }
2103 
2104   stop_and_kill_map();          // This CFG path dies here
2105 }
2106 
2107 
2108 //------------------------------add_safepoint----------------------------------
2109 void Parse::add_safepoint() {
2110   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2111   // after a Call (except Leaf Call) or another SafePoint.
2112   Node *proj = control();
2113   bool add_poll_param = SafePointNode::needs_polling_address_input();
2114   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2115   if( proj->is_Proj() ) {
2116     Node *n0 = proj->in(0);
2117     if( n0->is_Catch() ) {
2118       n0 = n0->in(0)->in(0);
2119       assert( n0->is_Call(), "expect a call here" );
2120     }
2121     if( n0->is_Call() ) {
2122       if( n0->as_Call()->guaranteed_safepoint() )
2123         return;
2124     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2125       return;
2126     }
2127   }
2128 
2129   // Clear out dead values from the debug info.
2130   kill_dead_locals();
2131 
2132   // Clone the JVM State
2133   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
2134 
2135   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2136   // SafePoint we need our GC state to be safe; i.e. we need all our current
2137   // write barriers (card marks) to not float down after the SafePoint so we
2138   // must read raw memory.  Likewise we need all oop stores to match the card
2139   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2140   // state on a deopt).
2141 
2142   // We do not need to WRITE the memory state after a SafePoint.  The control
2143   // edge will keep card-marks and oop-stores from floating up from below a
2144   // SafePoint and our true dependency added here will keep them from floating
2145   // down below a SafePoint.
2146 
2147   // Clone the current memory state
2148   Node* mem = MergeMemNode::make(C, map()->memory());
2149 
2150   mem = _gvn.transform(mem);
2151 
2152   // Pass control through the safepoint
2153   sfpnt->init_req(TypeFunc::Control  , control());
2154   // Fix edges normally used by a call
2155   sfpnt->init_req(TypeFunc::I_O      , top() );
2156   sfpnt->init_req(TypeFunc::Memory   , mem   );
2157   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2158   sfpnt->init_req(TypeFunc::FramePtr , top() );
2159 
2160   // Create a node for the polling address
2161   if( add_poll_param ) {
2162     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2163     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2164   }
2165 
2166   // Fix up the JVM State edges
2167   add_safepoint_edges(sfpnt);
2168   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2169   set_control(transformed_sfpnt);
2170 
2171   // Provide an edge from root to safepoint.  This makes the safepoint
2172   // appear useful until the parse has completed.
2173   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2174     assert(C->root() != NULL, "Expect parse is still valid");
2175     C->root()->add_prec(transformed_sfpnt);
2176   }
2177 }
2178 
2179 #ifndef PRODUCT
2180 //------------------------show_parse_info--------------------------------------
2181 void Parse::show_parse_info() {
2182   InlineTree* ilt = NULL;
2183   if (C->ilt() != NULL) {
2184     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2185     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2186   }
2187   if (PrintCompilation && Verbose) {
2188     if (depth() == 1) {
2189       if( ilt->count_inlines() ) {
2190         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2191                      ilt->count_inline_bcs());
2192         tty->cr();
2193       }
2194     } else {
2195       if (method()->is_synchronized())         tty->print("s");
2196       if (method()->has_exception_handlers())  tty->print("!");
2197       // Check this is not the final compiled version
2198       if (C->trap_can_recompile()) {
2199         tty->print("-");
2200       } else {
2201         tty->print(" ");
2202       }
2203       method()->print_short_name();
2204       if (is_osr_parse()) {
2205         tty->print(" @ %d", osr_bci());
2206       }
2207       tty->print(" (%d bytes)",method()->code_size());
2208       if (ilt->count_inlines()) {
2209         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2210                    ilt->count_inline_bcs());
2211       }
2212       tty->cr();
2213     }
2214   }
2215   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2216     // Print that we succeeded; suppress this message on the first osr parse.
2217 
2218     if (method()->is_synchronized())         tty->print("s");
2219     if (method()->has_exception_handlers())  tty->print("!");
2220     // Check this is not the final compiled version
2221     if (C->trap_can_recompile() && depth() == 1) {
2222       tty->print("-");
2223     } else {
2224       tty->print(" ");
2225     }
2226     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2227     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2228     method()->print_short_name();
2229     if (is_osr_parse()) {
2230       tty->print(" @ %d", osr_bci());
2231     }
2232     if (ilt->caller_bci() != -1) {
2233       tty->print(" @ %d", ilt->caller_bci());
2234     }
2235     tty->print(" (%d bytes)",method()->code_size());
2236     if (ilt->count_inlines()) {
2237       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2238                  ilt->count_inline_bcs());
2239     }
2240     tty->cr();
2241   }
2242 }
2243 
2244 
2245 //------------------------------dump-------------------------------------------
2246 // Dump information associated with the bytecodes of current _method
2247 void Parse::dump() {
2248   if( method() != NULL ) {
2249     // Iterate over bytecodes
2250     ciBytecodeStream iter(method());
2251     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2252       dump_bci( iter.cur_bci() );
2253       tty->cr();
2254     }
2255   }
2256 }
2257 
2258 // Dump information associated with a byte code index, 'bci'
2259 void Parse::dump_bci(int bci) {
2260   // Output info on merge-points, cloning, and within _jsr..._ret
2261   // NYI
2262   tty->print(" bci:%d", bci);
2263 }
2264 
2265 #endif