1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 #ifdef CC_INTERP
  52   // c++ interpreter never wants to use interp_masm version of call_VM
  53   #define VIRTUAL
  54 #else
  55   #define VIRTUAL virtual
  56 #endif
  57 
  58   VIRTUAL void call_VM_leaf_base(
  59     address entry_point,               // the entry point
  60     int     number_of_arguments        // the number of arguments to pop after the call
  61   );
  62 
  63   // This is the base routine called by the different versions of call_VM. The interpreter
  64   // may customize this version by overriding it for its purposes (e.g., to save/restore
  65   // additional registers when doing a VM call).
  66   //
  67   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  68   // returns the register which contains the thread upon return. If a thread register has been
  69   // specified, the return value will correspond to that register. If no last_java_sp is specified
  70   // (noreg) than rsp will be used instead.
  71   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  72     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  73     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  74     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  75     address  entry_point,              // the entry point
  76     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  77     bool     check_exceptions          // whether to check for pending exceptions after return
  78   );
  79 
  80   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  81   // The implementation is only non-empty for the InterpreterMacroAssembler,
  82   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  83   virtual void check_and_handle_popframe(Register java_thread);
  84   virtual void check_and_handle_earlyret(Register java_thread);
  85 
  86   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  87 
  88   // helpers for FPU flag access
  89   // tmp is a temporary register, if none is available use noreg
  90   void save_rax   (Register tmp);
  91   void restore_rax(Register tmp);
  92 
  93  public:
  94   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  95 
  96   // Support for NULL-checks
  97   //
  98   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  99   // If the accessed location is M[reg + offset] and the offset is known, provide the
 100   // offset. No explicit code generation is needed if the offset is within a certain
 101   // range (0 <= offset <= page_size).
 102 
 103   void null_check(Register reg, int offset = -1);
 104   static bool needs_explicit_null_check(intptr_t offset);
 105 
 106   // Required platform-specific helpers for Label::patch_instructions.
 107   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 108   void pd_patch_instruction(address branch, address target) {
 109     unsigned char op = branch[0];
 110     assert(op == 0xE8 /* call */ ||
 111         op == 0xE9 /* jmp */ ||
 112         op == 0xEB /* short jmp */ ||
 113         (op & 0xF0) == 0x70 /* short jcc */ ||
 114         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */,
 115         "Invalid opcode at patch point");
 116 
 117     if (op == 0xEB || (op & 0xF0) == 0x70) {
 118       // short offset operators (jmp and jcc)
 119       char* disp = (char*) &branch[1];
 120       int imm8 = target - (address) &disp[1];
 121       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 122       *disp = imm8;
 123     } else {
 124       int* disp = (int*) &branch[(op == 0x0F)? 2: 1];
 125       int imm32 = target - (address) &disp[1];
 126       *disp = imm32;
 127     }
 128   }
 129 
 130   // The following 4 methods return the offset of the appropriate move instruction
 131 
 132   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 133   int load_unsigned_byte(Register dst, Address src);
 134   int load_unsigned_short(Register dst, Address src);
 135 
 136   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 137   int load_signed_byte(Register dst, Address src);
 138   int load_signed_short(Register dst, Address src);
 139 
 140   // Support for sign-extension (hi:lo = extend_sign(lo))
 141   void extend_sign(Register hi, Register lo);
 142 
 143   // Load and store values by size and signed-ness
 144   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 145   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 146 
 147   // Support for inc/dec with optimal instruction selection depending on value
 148 
 149   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 150   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 151 
 152   void decrementl(Address dst, int value = 1);
 153   void decrementl(Register reg, int value = 1);
 154 
 155   void decrementq(Register reg, int value = 1);
 156   void decrementq(Address dst, int value = 1);
 157 
 158   void incrementl(Address dst, int value = 1);
 159   void incrementl(Register reg, int value = 1);
 160 
 161   void incrementq(Register reg, int value = 1);
 162   void incrementq(Address dst, int value = 1);
 163 
 164 
 165   // Support optimal SSE move instructions.
 166   void movflt(XMMRegister dst, XMMRegister src) {
 167     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 168     else                       { movss (dst, src); return; }
 169   }
 170   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 171   void movflt(XMMRegister dst, AddressLiteral src);
 172   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 173 
 174   void movdbl(XMMRegister dst, XMMRegister src) {
 175     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 176     else                       { movsd (dst, src); return; }
 177   }
 178 
 179   void movdbl(XMMRegister dst, AddressLiteral src);
 180 
 181   void movdbl(XMMRegister dst, Address src) {
 182     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 183     else                         { movlpd(dst, src); return; }
 184   }
 185   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 186 
 187   void incrementl(AddressLiteral dst);
 188   void incrementl(ArrayAddress dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192 
 193   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 194   void fat_nop();
 195 
 196   // Stack frame creation/removal
 197   void enter();
 198   void leave();
 199 
 200   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 201   // The pointer will be loaded into the thread register.
 202   void get_thread(Register thread);
 203 
 204 
 205   // Support for VM calls
 206   //
 207   // It is imperative that all calls into the VM are handled via the call_VM macros.
 208   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 209   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 210 
 211 
 212   void call_VM(Register oop_result,
 213                address entry_point,
 214                bool check_exceptions = true);
 215   void call_VM(Register oop_result,
 216                address entry_point,
 217                Register arg_1,
 218                bool check_exceptions = true);
 219   void call_VM(Register oop_result,
 220                address entry_point,
 221                Register arg_1, Register arg_2,
 222                bool check_exceptions = true);
 223   void call_VM(Register oop_result,
 224                address entry_point,
 225                Register arg_1, Register arg_2, Register arg_3,
 226                bool check_exceptions = true);
 227 
 228   // Overloadings with last_Java_sp
 229   void call_VM(Register oop_result,
 230                Register last_java_sp,
 231                address entry_point,
 232                int number_of_arguments = 0,
 233                bool check_exceptions = true);
 234   void call_VM(Register oop_result,
 235                Register last_java_sp,
 236                address entry_point,
 237                Register arg_1, bool
 238                check_exceptions = true);
 239   void call_VM(Register oop_result,
 240                Register last_java_sp,
 241                address entry_point,
 242                Register arg_1, Register arg_2,
 243                bool check_exceptions = true);
 244   void call_VM(Register oop_result,
 245                Register last_java_sp,
 246                address entry_point,
 247                Register arg_1, Register arg_2, Register arg_3,
 248                bool check_exceptions = true);
 249 
 250   void get_vm_result  (Register oop_result, Register thread);
 251   void get_vm_result_2(Register metadata_result, Register thread);
 252 
 253   // These always tightly bind to MacroAssembler::call_VM_base
 254   // bypassing the virtual implementation
 255   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 260 
 261   void call_VM_leaf(address entry_point,
 262                     int number_of_arguments = 0);
 263   void call_VM_leaf(address entry_point,
 264                     Register arg_1);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1, Register arg_2);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2, Register arg_3);
 269 
 270   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 271   // bypassing the virtual implementation
 272   void super_call_VM_leaf(address entry_point);
 273   void super_call_VM_leaf(address entry_point, Register arg_1);
 274   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 275   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 277 
 278   // last Java Frame (fills frame anchor)
 279   void set_last_Java_frame(Register thread,
 280                            Register last_java_sp,
 281                            Register last_java_fp,
 282                            address last_java_pc);
 283 
 284   // thread in the default location (r15_thread on 64bit)
 285   void set_last_Java_frame(Register last_java_sp,
 286                            Register last_java_fp,
 287                            address last_java_pc);
 288 
 289   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
 290 
 291   // thread in the default location (r15_thread on 64bit)
 292   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 293 
 294   // Stores
 295   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 296   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 297 
 298 #if INCLUDE_ALL_GCS
 299 
 300   void g1_write_barrier_pre(Register obj,
 301                             Register pre_val,
 302                             Register thread,
 303                             Register tmp,
 304                             bool tosca_live,
 305                             bool expand_call);
 306 
 307   void g1_write_barrier_post(Register store_addr,
 308                              Register new_val,
 309                              Register thread,
 310                              Register tmp,
 311                              Register tmp2);
 312 
 313 #endif // INCLUDE_ALL_GCS
 314 
 315   // split store_check(Register obj) to enhance instruction interleaving
 316   void store_check_part_1(Register obj);
 317   void store_check_part_2(Register obj);
 318 
 319   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 320   void c2bool(Register x);
 321 
 322   // C++ bool manipulation
 323 
 324   void movbool(Register dst, Address src);
 325   void movbool(Address dst, bool boolconst);
 326   void movbool(Address dst, Register src);
 327   void testbool(Register dst);
 328 
 329   // oop manipulations
 330   void load_klass(Register dst, Register src);
 331   void store_klass(Register dst, Register src);
 332 
 333   void load_heap_oop(Register dst, Address src);
 334   void load_heap_oop_not_null(Register dst, Address src);
 335   void store_heap_oop(Address dst, Register src);
 336   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 337 
 338   // Used for storing NULL. All other oop constants should be
 339   // stored using routines that take a jobject.
 340   void store_heap_oop_null(Address dst);
 341 
 342   void load_prototype_header(Register dst, Register src);
 343 
 344 #ifdef _LP64
 345   void store_klass_gap(Register dst, Register src);
 346 
 347   // This dummy is to prevent a call to store_heap_oop from
 348   // converting a zero (like NULL) into a Register by giving
 349   // the compiler two choices it can't resolve
 350 
 351   void store_heap_oop(Address dst, void* dummy);
 352 
 353   void encode_heap_oop(Register r);
 354   void decode_heap_oop(Register r);
 355   void encode_heap_oop_not_null(Register r);
 356   void decode_heap_oop_not_null(Register r);
 357   void encode_heap_oop_not_null(Register dst, Register src);
 358   void decode_heap_oop_not_null(Register dst, Register src);
 359 
 360   void set_narrow_oop(Register dst, jobject obj);
 361   void set_narrow_oop(Address dst, jobject obj);
 362   void cmp_narrow_oop(Register dst, jobject obj);
 363   void cmp_narrow_oop(Address dst, jobject obj);
 364 
 365   void encode_klass_not_null(Register r);
 366   void decode_klass_not_null(Register r);
 367   void encode_klass_not_null(Register dst, Register src);
 368   void decode_klass_not_null(Register dst, Register src);
 369   void set_narrow_klass(Register dst, Klass* k);
 370   void set_narrow_klass(Address dst, Klass* k);
 371   void cmp_narrow_klass(Register dst, Klass* k);
 372   void cmp_narrow_klass(Address dst, Klass* k);
 373 
 374   // Returns the byte size of the instructions generated by decode_klass_not_null()
 375   // when compressed klass pointers are being used.
 376   static int instr_size_for_decode_klass_not_null();
 377 
 378   // if heap base register is used - reinit it with the correct value
 379   void reinit_heapbase();
 380 
 381   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 382 
 383 #endif // _LP64
 384 
 385   // Int division/remainder for Java
 386   // (as idivl, but checks for special case as described in JVM spec.)
 387   // returns idivl instruction offset for implicit exception handling
 388   int corrected_idivl(Register reg);
 389 
 390   // Long division/remainder for Java
 391   // (as idivq, but checks for special case as described in JVM spec.)
 392   // returns idivq instruction offset for implicit exception handling
 393   int corrected_idivq(Register reg);
 394 
 395   void int3();
 396 
 397   // Long operation macros for a 32bit cpu
 398   // Long negation for Java
 399   void lneg(Register hi, Register lo);
 400 
 401   // Long multiplication for Java
 402   // (destroys contents of eax, ebx, ecx and edx)
 403   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 404 
 405   // Long shifts for Java
 406   // (semantics as described in JVM spec.)
 407   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 408   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 409 
 410   // Long compare for Java
 411   // (semantics as described in JVM spec.)
 412   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 413 
 414 
 415   // misc
 416 
 417   // Sign extension
 418   void sign_extend_short(Register reg);
 419   void sign_extend_byte(Register reg);
 420 
 421   // Division by power of 2, rounding towards 0
 422   void division_with_shift(Register reg, int shift_value);
 423 
 424   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 425   //
 426   // CF (corresponds to C0) if x < y
 427   // PF (corresponds to C2) if unordered
 428   // ZF (corresponds to C3) if x = y
 429   //
 430   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 431   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 432   void fcmp(Register tmp);
 433   // Variant of the above which allows y to be further down the stack
 434   // and which only pops x and y if specified. If pop_right is
 435   // specified then pop_left must also be specified.
 436   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 437 
 438   // Floating-point comparison for Java
 439   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 440   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 441   // (semantics as described in JVM spec.)
 442   void fcmp2int(Register dst, bool unordered_is_less);
 443   // Variant of the above which allows y to be further down the stack
 444   // and which only pops x and y if specified. If pop_right is
 445   // specified then pop_left must also be specified.
 446   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 447 
 448   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 449   // tmp is a temporary register, if none is available use noreg
 450   void fremr(Register tmp);
 451 
 452 
 453   // same as fcmp2int, but using SSE2
 454   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 455   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 456 
 457   // Inlined sin/cos generator for Java; must not use CPU instruction
 458   // directly on Intel as it does not have high enough precision
 459   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
 460   // number of FPU stack slots in use; all but the topmost will
 461   // require saving if a slow case is necessary. Assumes argument is
 462   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
 463   // this code.
 464   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
 465 
 466   // branch to L if FPU flag C2 is set/not set
 467   // tmp is a temporary register, if none is available use noreg
 468   void jC2 (Register tmp, Label& L);
 469   void jnC2(Register tmp, Label& L);
 470 
 471   // Pop ST (ffree & fincstp combined)
 472   void fpop();
 473 
 474   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 475   void push_fTOS();
 476 
 477   // pops double TOS element from CPU stack and pushes on FPU stack
 478   void pop_fTOS();
 479 
 480   void empty_FPU_stack();
 481 
 482   void push_IU_state();
 483   void pop_IU_state();
 484 
 485   void push_FPU_state();
 486   void pop_FPU_state();
 487 
 488   void push_CPU_state();
 489   void pop_CPU_state();
 490 
 491   // Round up to a power of two
 492   void round_to(Register reg, int modulus);
 493 
 494   // Callee saved registers handling
 495   void push_callee_saved_registers();
 496   void pop_callee_saved_registers();
 497 
 498   // allocation
 499   void eden_allocate(
 500     Register obj,                      // result: pointer to object after successful allocation
 501     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 502     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 503     Register t1,                       // temp register
 504     Label&   slow_case                 // continuation point if fast allocation fails
 505   );
 506   void tlab_allocate(
 507     Register obj,                      // result: pointer to object after successful allocation
 508     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 509     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 510     Register t1,                       // temp register
 511     Register t2,                       // temp register
 512     Label&   slow_case                 // continuation point if fast allocation fails
 513   );
 514   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 515   void incr_allocated_bytes(Register thread,
 516                             Register var_size_in_bytes, int con_size_in_bytes,
 517                             Register t1 = noreg);
 518 
 519   // interface method calling
 520   void lookup_interface_method(Register recv_klass,
 521                                Register intf_klass,
 522                                RegisterOrConstant itable_index,
 523                                Register method_result,
 524                                Register scan_temp,
 525                                Label& no_such_interface);
 526 
 527   // virtual method calling
 528   void lookup_virtual_method(Register recv_klass,
 529                              RegisterOrConstant vtable_index,
 530                              Register method_result);
 531 
 532   // Test sub_klass against super_klass, with fast and slow paths.
 533 
 534   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 535   // One of the three labels can be NULL, meaning take the fall-through.
 536   // If super_check_offset is -1, the value is loaded up from super_klass.
 537   // No registers are killed, except temp_reg.
 538   void check_klass_subtype_fast_path(Register sub_klass,
 539                                      Register super_klass,
 540                                      Register temp_reg,
 541                                      Label* L_success,
 542                                      Label* L_failure,
 543                                      Label* L_slow_path,
 544                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 545 
 546   // The rest of the type check; must be wired to a corresponding fast path.
 547   // It does not repeat the fast path logic, so don't use it standalone.
 548   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 549   // Updates the sub's secondary super cache as necessary.
 550   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 551   void check_klass_subtype_slow_path(Register sub_klass,
 552                                      Register super_klass,
 553                                      Register temp_reg,
 554                                      Register temp2_reg,
 555                                      Label* L_success,
 556                                      Label* L_failure,
 557                                      bool set_cond_codes = false);
 558 
 559   // Simplified, combined version, good for typical uses.
 560   // Falls through on failure.
 561   void check_klass_subtype(Register sub_klass,
 562                            Register super_klass,
 563                            Register temp_reg,
 564                            Label& L_success);
 565 
 566   // method handles (JSR 292)
 567   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 568 
 569   //----
 570   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 571 
 572   // Debugging
 573 
 574   // only if +VerifyOops
 575   // TODO: Make these macros with file and line like sparc version!
 576   void verify_oop(Register reg, const char* s = "broken oop");
 577   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 578 
 579   // TODO: verify method and klass metadata (compare against vptr?)
 580   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 581   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 582 
 583 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 584 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 585 
 586   // only if +VerifyFPU
 587   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 588 
 589   // Verify or restore cpu control state after JNI call
 590   void restore_cpu_control_state_after_jni();
 591 
 592   // prints msg, dumps registers and stops execution
 593   void stop(const char* msg);
 594 
 595   // prints msg and continues
 596   void warn(const char* msg);
 597 
 598   // dumps registers and other state
 599   void print_state();
 600 
 601   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 602   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 603   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 604   static void print_state64(int64_t pc, int64_t regs[]);
 605 
 606   void os_breakpoint();
 607 
 608   void untested()                                { stop("untested"); }
 609 
 610   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 611 
 612   void should_not_reach_here()                   { stop("should not reach here"); }
 613 
 614   void print_CPU_state();
 615 
 616   // Stack overflow checking
 617   void bang_stack_with_offset(int offset) {
 618     // stack grows down, caller passes positive offset
 619     assert(offset > 0, "must bang with negative offset");
 620     movl(Address(rsp, (-offset)), rax);
 621   }
 622 
 623   // Writes to stack successive pages until offset reached to check for
 624   // stack overflow + shadow pages.  Also, clobbers tmp
 625   void bang_stack_size(Register size, Register tmp);
 626 
 627   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 628                                                 Register tmp,
 629                                                 int offset);
 630 
 631   // Support for serializing memory accesses between threads
 632   void serialize_memory(Register thread, Register tmp);
 633 
 634   void verify_tlab();
 635 
 636   // Biased locking support
 637   // lock_reg and obj_reg must be loaded up with the appropriate values.
 638   // swap_reg must be rax, and is killed.
 639   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 640   // be killed; if not supplied, push/pop will be used internally to
 641   // allocate a temporary (inefficient, avoid if possible).
 642   // Optional slow case is for implementations (interpreter and C1) which branch to
 643   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 644   // Returns offset of first potentially-faulting instruction for null
 645   // check info (currently consumed only by C1). If
 646   // swap_reg_contains_mark is true then returns -1 as it is assumed
 647   // the calling code has already passed any potential faults.
 648   int biased_locking_enter(Register lock_reg, Register obj_reg,
 649                            Register swap_reg, Register tmp_reg,
 650                            bool swap_reg_contains_mark,
 651                            Label& done, Label* slow_case = NULL,
 652                            BiasedLockingCounters* counters = NULL);
 653   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 654 
 655 
 656   Condition negate_condition(Condition cond);
 657 
 658   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 659   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 660   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 661   // here in MacroAssembler. The major exception to this rule is call
 662 
 663   // Arithmetics
 664 
 665 
 666   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 667   void addptr(Address dst, Register src);
 668 
 669   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 670   void addptr(Register dst, int32_t src);
 671   void addptr(Register dst, Register src);
 672   void addptr(Register dst, RegisterOrConstant src) {
 673     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 674     else                   addptr(dst,       src.as_register());
 675   }
 676 
 677   void andptr(Register dst, int32_t src);
 678   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 679 
 680   void cmp8(AddressLiteral src1, int imm);
 681 
 682   // renamed to drag out the casting of address to int32_t/intptr_t
 683   void cmp32(Register src1, int32_t imm);
 684 
 685   void cmp32(AddressLiteral src1, int32_t imm);
 686   // compare reg - mem, or reg - &mem
 687   void cmp32(Register src1, AddressLiteral src2);
 688 
 689   void cmp32(Register src1, Address src2);
 690 
 691 #ifndef _LP64
 692   void cmpklass(Address dst, Metadata* obj);
 693   void cmpklass(Register dst, Metadata* obj);
 694   void cmpoop(Address dst, jobject obj);
 695   void cmpoop(Register dst, jobject obj);
 696 #endif // _LP64
 697 
 698   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 699   void cmpptr(Address src1, AddressLiteral src2);
 700 
 701   void cmpptr(Register src1, AddressLiteral src2);
 702 
 703   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 704   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 705   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 706 
 707   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 708   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 709 
 710   // cmp64 to avoild hiding cmpq
 711   void cmp64(Register src1, AddressLiteral src);
 712 
 713   void cmpxchgptr(Register reg, Address adr);
 714 
 715   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 716 
 717 
 718   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 719 
 720 
 721   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 722 
 723   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 724 
 725   void shlptr(Register dst, int32_t shift);
 726   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 727 
 728   void shrptr(Register dst, int32_t shift);
 729   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 730 
 731   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 732   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 733 
 734   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 735 
 736   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 737   void subptr(Register dst, int32_t src);
 738   // Force generation of a 4 byte immediate value even if it fits into 8bit
 739   void subptr_imm32(Register dst, int32_t src);
 740   void subptr(Register dst, Register src);
 741   void subptr(Register dst, RegisterOrConstant src) {
 742     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 743     else                   subptr(dst,       src.as_register());
 744   }
 745 
 746   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 747   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 748 
 749   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 750   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 751 
 752   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 753 
 754 
 755 
 756   // Helper functions for statistics gathering.
 757   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 758   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 759   // Unconditional atomic increment.
 760   void atomic_incl(AddressLiteral counter_addr);
 761 
 762   void lea(Register dst, AddressLiteral adr);
 763   void lea(Address dst, AddressLiteral adr);
 764   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 765 
 766   void leal32(Register dst, Address src) { leal(dst, src); }
 767 
 768   // Import other testl() methods from the parent class or else
 769   // they will be hidden by the following overriding declaration.
 770   using Assembler::testl;
 771   void testl(Register dst, AddressLiteral src);
 772 
 773   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 774   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 775   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 776   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 777 
 778   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 779   void testptr(Register src1, Register src2);
 780 
 781   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 782   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 783 
 784   // Calls
 785 
 786   void call(Label& L, relocInfo::relocType rtype);
 787   void call(Register entry);
 788 
 789   // NOTE: this call tranfers to the effective address of entry NOT
 790   // the address contained by entry. This is because this is more natural
 791   // for jumps/calls.
 792   void call(AddressLiteral entry);
 793 
 794   // Emit the CompiledIC call idiom
 795   void ic_call(address entry);
 796 
 797   // Jumps
 798 
 799   // NOTE: these jumps tranfer to the effective address of dst NOT
 800   // the address contained by dst. This is because this is more natural
 801   // for jumps/calls.
 802   void jump(AddressLiteral dst);
 803   void jump_cc(Condition cc, AddressLiteral dst);
 804 
 805   // 32bit can do a case table jump in one instruction but we no longer allow the base
 806   // to be installed in the Address class. This jump will tranfers to the address
 807   // contained in the location described by entry (not the address of entry)
 808   void jump(ArrayAddress entry);
 809 
 810   // Floating
 811 
 812   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 813   void andpd(XMMRegister dst, AddressLiteral src);
 814 
 815   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 816   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 817   void andps(XMMRegister dst, AddressLiteral src);
 818 
 819   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 820   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 821   void comiss(XMMRegister dst, AddressLiteral src);
 822 
 823   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 824   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 825   void comisd(XMMRegister dst, AddressLiteral src);
 826 
 827   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 828   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 829 
 830   void fldcw(Address src) { Assembler::fldcw(src); }
 831   void fldcw(AddressLiteral src);
 832 
 833   void fld_s(int index)   { Assembler::fld_s(index); }
 834   void fld_s(Address src) { Assembler::fld_s(src); }
 835   void fld_s(AddressLiteral src);
 836 
 837   void fld_d(Address src) { Assembler::fld_d(src); }
 838   void fld_d(AddressLiteral src);
 839 
 840   void fld_x(Address src) { Assembler::fld_x(src); }
 841   void fld_x(AddressLiteral src);
 842 
 843   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 844   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 845 
 846   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 847   void ldmxcsr(AddressLiteral src);
 848 
 849   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
 850   // all corner cases and may result in NaN and require fallback to a
 851   // runtime call.
 852   void fast_pow();
 853   void fast_exp();
 854   void increase_precision();
 855   void restore_precision();
 856 
 857   // computes exp(x). Fallback to runtime call included.
 858   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
 859   // computes pow(x,y). Fallback to runtime call included.
 860   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
 861 
 862 private:
 863 
 864   // call runtime as a fallback for trig functions and pow/exp.
 865   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
 866 
 867   // computes 2^(Ylog2X); Ylog2X in ST(0)
 868   void pow_exp_core_encoding();
 869 
 870   // computes pow(x,y) or exp(x). Fallback to runtime call included.
 871   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
 872 
 873   // these are private because users should be doing movflt/movdbl
 874 
 875   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
 876   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
 877   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
 878   void movss(XMMRegister dst, AddressLiteral src);
 879 
 880   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
 881   void movlpd(XMMRegister dst, AddressLiteral src);
 882 
 883 public:
 884 
 885   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
 886   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
 887   void addsd(XMMRegister dst, AddressLiteral src);
 888 
 889   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
 890   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
 891   void addss(XMMRegister dst, AddressLiteral src);
 892 
 893   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
 894   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
 895   void divsd(XMMRegister dst, AddressLiteral src);
 896 
 897   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
 898   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
 899   void divss(XMMRegister dst, AddressLiteral src);
 900 
 901   // Move Unaligned Double Quadword
 902   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
 903   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
 904   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
 905   void movdqu(XMMRegister dst, AddressLiteral src);
 906 
 907   // Move Aligned Double Quadword
 908   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
 909   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
 910   void movdqa(XMMRegister dst, AddressLiteral src);
 911 
 912   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
 913   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
 914   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
 915   void movsd(XMMRegister dst, AddressLiteral src);
 916 
 917   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
 918   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
 919   void mulsd(XMMRegister dst, AddressLiteral src);
 920 
 921   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
 922   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
 923   void mulss(XMMRegister dst, AddressLiteral src);
 924 
 925   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
 926   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
 927   void sqrtsd(XMMRegister dst, AddressLiteral src);
 928 
 929   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
 930   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
 931   void sqrtss(XMMRegister dst, AddressLiteral src);
 932 
 933   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
 934   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
 935   void subsd(XMMRegister dst, AddressLiteral src);
 936 
 937   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
 938   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
 939   void subss(XMMRegister dst, AddressLiteral src);
 940 
 941   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
 942   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
 943   void ucomiss(XMMRegister dst, AddressLiteral src);
 944 
 945   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
 946   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
 947   void ucomisd(XMMRegister dst, AddressLiteral src);
 948 
 949   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
 950   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
 951   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
 952   void xorpd(XMMRegister dst, AddressLiteral src);
 953 
 954   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
 955   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
 956   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
 957   void xorps(XMMRegister dst, AddressLiteral src);
 958 
 959   // Shuffle Bytes
 960   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
 961   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
 962   void pshufb(XMMRegister dst, AddressLiteral src);
 963   // AVX 3-operands instructions
 964 
 965   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
 966   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
 967   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
 968 
 969   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
 970   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
 971   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
 972 
 973   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
 974   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
 975   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
 976 
 977   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
 978   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
 979   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
 980 
 981   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
 982   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
 983   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
 984 
 985   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
 986   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
 987   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
 988 
 989   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
 990   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
 991   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
 992 
 993   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
 994   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
 995   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
 996 
 997   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
 998   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
 999   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1000 
1001   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1002   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1003   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1004 
1005   // AVX Vector instructions
1006 
1007   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
1008   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
1009   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1010 
1011   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1012   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
1013   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
1014 
1015   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
1016     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1017       Assembler::vpxor(dst, nds, src, vector256);
1018     else
1019       Assembler::vxorpd(dst, nds, src, vector256);
1020   }
1021   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
1022     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
1023       Assembler::vpxor(dst, nds, src, vector256);
1024     else
1025       Assembler::vxorpd(dst, nds, src, vector256);
1026   }
1027 
1028   // Simple version for AVX2 256bit vectors
1029   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1030   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1031 
1032   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1033   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1034     if (UseAVX > 1) // vinserti128h is available only in AVX2
1035       Assembler::vinserti128h(dst, nds, src);
1036     else
1037       Assembler::vinsertf128h(dst, nds, src);
1038   }
1039 
1040   // Carry-Less Multiplication Quadword
1041   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1042     // 0x00 - multiply lower 64 bits [0:63]
1043     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1044   }
1045   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1046     // 0x11 - multiply upper 64 bits [64:127]
1047     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1048   }
1049 
1050   // Data
1051 
1052   void cmov32( Condition cc, Register dst, Address  src);
1053   void cmov32( Condition cc, Register dst, Register src);
1054 
1055   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1056 
1057   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1058   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1059 
1060   void movoop(Register dst, jobject obj);
1061   void movoop(Address dst, jobject obj);
1062 
1063   void mov_metadata(Register dst, Metadata* obj);
1064   void mov_metadata(Address dst, Metadata* obj);
1065 
1066   void movptr(ArrayAddress dst, Register src);
1067   // can this do an lea?
1068   void movptr(Register dst, ArrayAddress src);
1069 
1070   void movptr(Register dst, Address src);
1071 
1072   void movptr(Register dst, AddressLiteral src);
1073 
1074   void movptr(Register dst, intptr_t src);
1075   void movptr(Register dst, Register src);
1076   void movptr(Address dst, intptr_t src);
1077 
1078   void movptr(Address dst, Register src);
1079 
1080   void movptr(Register dst, RegisterOrConstant src) {
1081     if (src.is_constant()) movptr(dst, src.as_constant());
1082     else                   movptr(dst, src.as_register());
1083   }
1084 
1085 #ifdef _LP64
1086   // Generally the next two are only used for moving NULL
1087   // Although there are situations in initializing the mark word where
1088   // they could be used. They are dangerous.
1089 
1090   // They only exist on LP64 so that int32_t and intptr_t are not the same
1091   // and we have ambiguous declarations.
1092 
1093   void movptr(Address dst, int32_t imm32);
1094   void movptr(Register dst, int32_t imm32);
1095 #endif // _LP64
1096 
1097   // to avoid hiding movl
1098   void mov32(AddressLiteral dst, Register src);
1099   void mov32(Register dst, AddressLiteral src);
1100 
1101   // to avoid hiding movb
1102   void movbyte(ArrayAddress dst, int src);
1103 
1104   // Import other mov() methods from the parent class or else
1105   // they will be hidden by the following overriding declaration.
1106   using Assembler::movdl;
1107   using Assembler::movq;
1108   void movdl(XMMRegister dst, AddressLiteral src);
1109   void movq(XMMRegister dst, AddressLiteral src);
1110 
1111   // Can push value or effective address
1112   void pushptr(AddressLiteral src);
1113 
1114   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1115   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1116 
1117   void pushoop(jobject obj);
1118   void pushklass(Metadata* obj);
1119 
1120   // sign extend as need a l to ptr sized element
1121   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1122   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1123 
1124   // C2 compiled method's prolog code.
1125   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
1126 
1127   // clear memory of size 'cnt' qwords, starting at 'base'.
1128   void clear_mem(Register base, Register cnt, Register rtmp);
1129 
1130   // IndexOf strings.
1131   // Small strings are loaded through stack if they cross page boundary.
1132   void string_indexof(Register str1, Register str2,
1133                       Register cnt1, Register cnt2,
1134                       int int_cnt2,  Register result,
1135                       XMMRegister vec, Register tmp);
1136 
1137   // IndexOf for constant substrings with size >= 8 elements
1138   // which don't need to be loaded through stack.
1139   void string_indexofC8(Register str1, Register str2,
1140                       Register cnt1, Register cnt2,
1141                       int int_cnt2,  Register result,
1142                       XMMRegister vec, Register tmp);
1143 
1144     // Smallest code: we don't need to load through stack,
1145     // check string tail.
1146 
1147   // Compare strings.
1148   void string_compare(Register str1, Register str2,
1149                       Register cnt1, Register cnt2, Register result,
1150                       XMMRegister vec1);
1151 
1152   // Compare char[] arrays.
1153   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1154                           Register limit, Register result, Register chr,
1155                           XMMRegister vec1, XMMRegister vec2);
1156 
1157   // Fill primitive arrays
1158   void generate_fill(BasicType t, bool aligned,
1159                      Register to, Register value, Register count,
1160                      Register rtmp, XMMRegister xtmp);
1161 
1162   void encode_iso_array(Register src, Register dst, Register len,
1163                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1164                         XMMRegister tmp4, Register tmp5, Register result);
1165 
1166   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1167   void update_byte_crc32(Register crc, Register val, Register table);
1168   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1169   // Fold 128-bit data chunk
1170   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1171   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1172   // Fold 8-bit data
1173   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1174   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1175 
1176 #undef VIRTUAL
1177 
1178 };
1179 
1180 /**
1181  * class SkipIfEqual:
1182  *
1183  * Instantiating this class will result in assembly code being output that will
1184  * jump around any code emitted between the creation of the instance and it's
1185  * automatic destruction at the end of a scope block, depending on the value of
1186  * the flag passed to the constructor, which will be checked at run-time.
1187  */
1188 class SkipIfEqual {
1189  private:
1190   MacroAssembler* _masm;
1191   Label _label;
1192 
1193  public:
1194    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1195    ~SkipIfEqual();
1196 };
1197 
1198 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP