1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/countbitsnode.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/idealKit.hpp"
  39 #include "opto/mathexactnode.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "trace/traceMacros.hpp"
  49 
  50 class LibraryIntrinsic : public InlineCallGenerator {
  51   // Extend the set of intrinsics known to the runtime:
  52  public:
  53  private:
  54   bool             _is_virtual;
  55   bool             _does_virtual_dispatch;
  56   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  57   int8_t           _last_predicate; // Last generated predicate
  58   vmIntrinsics::ID _intrinsic_id;
  59 
  60  public:
  61   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  62     : InlineCallGenerator(m),
  63       _is_virtual(is_virtual),
  64       _does_virtual_dispatch(does_virtual_dispatch),
  65       _predicates_count((int8_t)predicates_count),
  66       _last_predicate((int8_t)-1),
  67       _intrinsic_id(id)
  68   {
  69   }
  70   virtual bool is_intrinsic() const { return true; }
  71   virtual bool is_virtual()   const { return _is_virtual; }
  72   virtual bool is_predicated() const { return _predicates_count > 0; }
  73   virtual int  predicates_count() const { return _predicates_count; }
  74   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  75   virtual JVMState* generate(JVMState* jvms);
  76   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  77   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  78 };
  79 
  80 
  81 // Local helper class for LibraryIntrinsic:
  82 class LibraryCallKit : public GraphKit {
  83  private:
  84   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  85   Node*             _result;        // the result node, if any
  86   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  87 
  88   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  89 
  90  public:
  91   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  92     : GraphKit(jvms),
  93       _intrinsic(intrinsic),
  94       _result(NULL)
  95   {
  96     // Check if this is a root compile.  In that case we don't have a caller.
  97     if (!jvms->has_method()) {
  98       _reexecute_sp = sp();
  99     } else {
 100       // Find out how many arguments the interpreter needs when deoptimizing
 101       // and save the stack pointer value so it can used by uncommon_trap.
 102       // We find the argument count by looking at the declared signature.
 103       bool ignored_will_link;
 104       ciSignature* declared_signature = NULL;
 105       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 106       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 107       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 108     }
 109   }
 110 
 111   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 112 
 113   ciMethod*         caller()    const    { return jvms()->method(); }
 114   int               bci()       const    { return jvms()->bci(); }
 115   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 116   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 117   ciMethod*         callee()    const    { return _intrinsic->method(); }
 118 
 119   bool  try_to_inline(int predicate);
 120   Node* try_to_predicate(int predicate);
 121 
 122   void push_result() {
 123     // Push the result onto the stack.
 124     if (!stopped() && result() != NULL) {
 125       BasicType bt = result()->bottom_type()->basic_type();
 126       push_node(bt, result());
 127     }
 128   }
 129 
 130  private:
 131   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 132     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 133   }
 134 
 135   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 136   void  set_result(RegionNode* region, PhiNode* value);
 137   Node*     result() { return _result; }
 138 
 139   virtual int reexecute_sp() { return _reexecute_sp; }
 140 
 141   // Helper functions to inline natives
 142   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 143   Node* generate_slow_guard(Node* test, RegionNode* region);
 144   Node* generate_fair_guard(Node* test, RegionNode* region);
 145   Node* generate_negative_guard(Node* index, RegionNode* region,
 146                                 // resulting CastII of index:
 147                                 Node* *pos_index = NULL);
 148   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 149                                    // resulting CastII of index:
 150                                    Node* *pos_index = NULL);
 151   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 152                              Node* array_length,
 153                              RegionNode* region);
 154   Node* generate_current_thread(Node* &tls_output);
 155   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 156                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 157   Node* load_mirror_from_klass(Node* klass);
 158   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 159                                       RegionNode* region, int null_path,
 160                                       int offset);
 161   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 162                                RegionNode* region, int null_path) {
 163     int offset = java_lang_Class::klass_offset_in_bytes();
 164     return load_klass_from_mirror_common(mirror, never_see_null,
 165                                          region, null_path,
 166                                          offset);
 167   }
 168   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 169                                      RegionNode* region, int null_path) {
 170     int offset = java_lang_Class::array_klass_offset_in_bytes();
 171     return load_klass_from_mirror_common(mirror, never_see_null,
 172                                          region, null_path,
 173                                          offset);
 174   }
 175   Node* generate_access_flags_guard(Node* kls,
 176                                     int modifier_mask, int modifier_bits,
 177                                     RegionNode* region);
 178   Node* generate_interface_guard(Node* kls, RegionNode* region);
 179   Node* generate_array_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, false, false);
 181   }
 182   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, false, true);
 184   }
 185   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, true, false);
 187   }
 188   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 189     return generate_array_guard_common(kls, region, true, true);
 190   }
 191   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 192                                     bool obj_array, bool not_array);
 193   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 194   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 195                                      bool is_virtual = false, bool is_static = false);
 196   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 197     return generate_method_call(method_id, false, true);
 198   }
 199   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 200     return generate_method_call(method_id, true, false);
 201   }
 202   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 203 
 204   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 205   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 206   bool inline_string_compareTo();
 207   bool inline_string_indexOf();
 208   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 209   bool inline_string_equals();
 210   Node* round_double_node(Node* n);
 211   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 212   bool inline_math_native(vmIntrinsics::ID id);
 213   bool inline_trig(vmIntrinsics::ID id);
 214   bool inline_math(vmIntrinsics::ID id);
 215   template <typename OverflowOp>
 216   bool inline_math_overflow(Node* arg1, Node* arg2);
 217   void inline_math_mathExact(Node* math, Node* test);
 218   bool inline_math_addExactI(bool is_increment);
 219   bool inline_math_addExactL(bool is_increment);
 220   bool inline_math_multiplyExactI();
 221   bool inline_math_multiplyExactL();
 222   bool inline_math_negateExactI();
 223   bool inline_math_negateExactL();
 224   bool inline_math_subtractExactI(bool is_decrement);
 225   bool inline_math_subtractExactL(bool is_decrement);
 226   bool inline_exp();
 227   bool inline_pow();
 228   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 229   bool inline_min_max(vmIntrinsics::ID id);
 230   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 231   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 232   int classify_unsafe_addr(Node* &base, Node* &offset);
 233   Node* make_unsafe_address(Node* base, Node* offset);
 234   // Helper for inline_unsafe_access.
 235   // Generates the guards that check whether the result of
 236   // Unsafe.getObject should be recorded in an SATB log buffer.
 237   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 238   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 239   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 240   static bool klass_needs_init_guard(Node* kls);
 241   bool inline_unsafe_allocate();
 242   bool inline_unsafe_copyMemory();
 243   bool inline_native_currentThread();
 244 #ifdef TRACE_HAVE_INTRINSICS
 245   bool inline_native_classID();
 246   bool inline_native_threadID();
 247 #endif
 248   bool inline_native_time_funcs(address method, const char* funcName);
 249   bool inline_native_isInterrupted();
 250   bool inline_native_Class_query(vmIntrinsics::ID id);
 251   bool inline_native_subtype_check();
 252 
 253   bool inline_native_newArray();
 254   bool inline_native_getLength();
 255   bool inline_array_copyOf(bool is_copyOfRange);
 256   bool inline_array_equals();
 257   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 258   bool inline_native_clone(bool is_virtual);
 259   bool inline_native_Reflection_getCallerClass();
 260   // Helper function for inlining native object hash method
 261   bool inline_native_hashcode(bool is_virtual, bool is_static);
 262   bool inline_native_getClass();
 263 
 264   // Helper functions for inlining arraycopy
 265   bool inline_arraycopy();
 266   void generate_arraycopy(const TypePtr* adr_type,
 267                           BasicType basic_elem_type,
 268                           Node* src,  Node* src_offset,
 269                           Node* dest, Node* dest_offset,
 270                           Node* copy_length,
 271                           bool disjoint_bases = false,
 272                           bool length_never_negative = false,
 273                           RegionNode* slow_region = NULL);
 274   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 275                                                 RegionNode* slow_region);
 276   void generate_clear_array(const TypePtr* adr_type,
 277                             Node* dest,
 278                             BasicType basic_elem_type,
 279                             Node* slice_off,
 280                             Node* slice_len,
 281                             Node* slice_end);
 282   bool generate_block_arraycopy(const TypePtr* adr_type,
 283                                 BasicType basic_elem_type,
 284                                 AllocateNode* alloc,
 285                                 Node* src,  Node* src_offset,
 286                                 Node* dest, Node* dest_offset,
 287                                 Node* dest_size, bool dest_uninitialized);
 288   void generate_slow_arraycopy(const TypePtr* adr_type,
 289                                Node* src,  Node* src_offset,
 290                                Node* dest, Node* dest_offset,
 291                                Node* copy_length, bool dest_uninitialized);
 292   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 293                                      Node* dest_elem_klass,
 294                                      Node* src,  Node* src_offset,
 295                                      Node* dest, Node* dest_offset,
 296                                      Node* copy_length, bool dest_uninitialized);
 297   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 298                                    Node* src,  Node* src_offset,
 299                                    Node* dest, Node* dest_offset,
 300                                    Node* copy_length, bool dest_uninitialized);
 301   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 302                                     BasicType basic_elem_type,
 303                                     bool disjoint_bases,
 304                                     Node* src,  Node* src_offset,
 305                                     Node* dest, Node* dest_offset,
 306                                     Node* copy_length, bool dest_uninitialized);
 307   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 308   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 309   bool inline_unsafe_ordered_store(BasicType type);
 310   bool inline_unsafe_fence(vmIntrinsics::ID id);
 311   bool inline_fp_conversions(vmIntrinsics::ID id);
 312   bool inline_number_methods(vmIntrinsics::ID id);
 313   bool inline_reference_get();
 314   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 315   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 316   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 317   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 318   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 319   bool inline_sha_implCompress(vmIntrinsics::ID id);
 320   bool inline_digestBase_implCompressMB(int predicate);
 321   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 322                                  bool long_state, address stubAddr, const char *stubName,
 323                                  Node* src_start, Node* ofs, Node* limit);
 324   Node* get_state_from_sha_object(Node *sha_object);
 325   Node* get_state_from_sha5_object(Node *sha_object);
 326   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 327   bool inline_encodeISOArray();
 328   bool inline_updateCRC32();
 329   bool inline_updateBytesCRC32();
 330   bool inline_updateByteBufferCRC32();
 331 };
 332 
 333 
 334 //---------------------------make_vm_intrinsic----------------------------
 335 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 336   vmIntrinsics::ID id = m->intrinsic_id();
 337   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 338 
 339   if (DisableIntrinsic[0] != '\0'
 340       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 341     // disabled by a user request on the command line:
 342     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 343     return NULL;
 344   }
 345 
 346   if (!m->is_loaded()) {
 347     // do not attempt to inline unloaded methods
 348     return NULL;
 349   }
 350 
 351   // Only a few intrinsics implement a virtual dispatch.
 352   // They are expensive calls which are also frequently overridden.
 353   if (is_virtual) {
 354     switch (id) {
 355     case vmIntrinsics::_hashCode:
 356     case vmIntrinsics::_clone:
 357       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 358       break;
 359     default:
 360       return NULL;
 361     }
 362   }
 363 
 364   // -XX:-InlineNatives disables nearly all intrinsics:
 365   if (!InlineNatives) {
 366     switch (id) {
 367     case vmIntrinsics::_indexOf:
 368     case vmIntrinsics::_compareTo:
 369     case vmIntrinsics::_equals:
 370     case vmIntrinsics::_equalsC:
 371     case vmIntrinsics::_getAndAddInt:
 372     case vmIntrinsics::_getAndAddLong:
 373     case vmIntrinsics::_getAndSetInt:
 374     case vmIntrinsics::_getAndSetLong:
 375     case vmIntrinsics::_getAndSetObject:
 376     case vmIntrinsics::_loadFence:
 377     case vmIntrinsics::_storeFence:
 378     case vmIntrinsics::_fullFence:
 379       break;  // InlineNatives does not control String.compareTo
 380     case vmIntrinsics::_Reference_get:
 381       break;  // InlineNatives does not control Reference.get
 382     default:
 383       return NULL;
 384     }
 385   }
 386 
 387   int predicates = 0;
 388   bool does_virtual_dispatch = false;
 389 
 390   switch (id) {
 391   case vmIntrinsics::_compareTo:
 392     if (!SpecialStringCompareTo)  return NULL;
 393     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 394     break;
 395   case vmIntrinsics::_indexOf:
 396     if (!SpecialStringIndexOf)  return NULL;
 397     break;
 398   case vmIntrinsics::_equals:
 399     if (!SpecialStringEquals)  return NULL;
 400     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 401     break;
 402   case vmIntrinsics::_equalsC:
 403     if (!SpecialArraysEquals)  return NULL;
 404     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 405     break;
 406   case vmIntrinsics::_arraycopy:
 407     if (!InlineArrayCopy)  return NULL;
 408     break;
 409   case vmIntrinsics::_copyMemory:
 410     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 411     if (!InlineArrayCopy)  return NULL;
 412     break;
 413   case vmIntrinsics::_hashCode:
 414     if (!InlineObjectHash)  return NULL;
 415     does_virtual_dispatch = true;
 416     break;
 417   case vmIntrinsics::_clone:
 418     does_virtual_dispatch = true;
 419   case vmIntrinsics::_copyOf:
 420   case vmIntrinsics::_copyOfRange:
 421     if (!InlineObjectCopy)  return NULL;
 422     // These also use the arraycopy intrinsic mechanism:
 423     if (!InlineArrayCopy)  return NULL;
 424     break;
 425   case vmIntrinsics::_encodeISOArray:
 426     if (!SpecialEncodeISOArray)  return NULL;
 427     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 428     break;
 429   case vmIntrinsics::_checkIndex:
 430     // We do not intrinsify this.  The optimizer does fine with it.
 431     return NULL;
 432 
 433   case vmIntrinsics::_getCallerClass:
 434     if (!InlineReflectionGetCallerClass)  return NULL;
 435     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 436     break;
 437 
 438   case vmIntrinsics::_bitCount_i:
 439     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 440     break;
 441 
 442   case vmIntrinsics::_bitCount_l:
 443     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 444     break;
 445 
 446   case vmIntrinsics::_numberOfLeadingZeros_i:
 447     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 448     break;
 449 
 450   case vmIntrinsics::_numberOfLeadingZeros_l:
 451     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 452     break;
 453 
 454   case vmIntrinsics::_numberOfTrailingZeros_i:
 455     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 456     break;
 457 
 458   case vmIntrinsics::_numberOfTrailingZeros_l:
 459     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 460     break;
 461 
 462   case vmIntrinsics::_reverseBytes_c:
 463     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 464     break;
 465   case vmIntrinsics::_reverseBytes_s:
 466     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 467     break;
 468   case vmIntrinsics::_reverseBytes_i:
 469     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 470     break;
 471   case vmIntrinsics::_reverseBytes_l:
 472     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 473     break;
 474 
 475   case vmIntrinsics::_Reference_get:
 476     // Use the intrinsic version of Reference.get() so that the value in
 477     // the referent field can be registered by the G1 pre-barrier code.
 478     // Also add memory barrier to prevent commoning reads from this field
 479     // across safepoint since GC can change it value.
 480     break;
 481 
 482   case vmIntrinsics::_compareAndSwapObject:
 483 #ifdef _LP64
 484     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 485 #endif
 486     break;
 487 
 488   case vmIntrinsics::_compareAndSwapLong:
 489     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 490     break;
 491 
 492   case vmIntrinsics::_getAndAddInt:
 493     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 494     break;
 495 
 496   case vmIntrinsics::_getAndAddLong:
 497     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 498     break;
 499 
 500   case vmIntrinsics::_getAndSetInt:
 501     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 502     break;
 503 
 504   case vmIntrinsics::_getAndSetLong:
 505     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 506     break;
 507 
 508   case vmIntrinsics::_getAndSetObject:
 509 #ifdef _LP64
 510     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 511     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 512     break;
 513 #else
 514     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 515     break;
 516 #endif
 517 
 518   case vmIntrinsics::_aescrypt_encryptBlock:
 519   case vmIntrinsics::_aescrypt_decryptBlock:
 520     if (!UseAESIntrinsics) return NULL;
 521     break;
 522 
 523   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 524   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 525     if (!UseAESIntrinsics) return NULL;
 526     // these two require the predicated logic
 527     predicates = 1;
 528     break;
 529 
 530   case vmIntrinsics::_sha_implCompress:
 531     if (!UseSHA1Intrinsics) return NULL;
 532     break;
 533 
 534   case vmIntrinsics::_sha2_implCompress:
 535     if (!UseSHA256Intrinsics) return NULL;
 536     break;
 537 
 538   case vmIntrinsics::_sha5_implCompress:
 539     if (!UseSHA512Intrinsics) return NULL;
 540     break;
 541 
 542   case vmIntrinsics::_digestBase_implCompressMB:
 543     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 544     predicates = 3;
 545     break;
 546 
 547   case vmIntrinsics::_updateCRC32:
 548   case vmIntrinsics::_updateBytesCRC32:
 549   case vmIntrinsics::_updateByteBufferCRC32:
 550     if (!UseCRC32Intrinsics) return NULL;
 551     break;
 552 
 553   case vmIntrinsics::_incrementExactI:
 554   case vmIntrinsics::_addExactI:
 555     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 556     break;
 557   case vmIntrinsics::_incrementExactL:
 558   case vmIntrinsics::_addExactL:
 559     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 560     break;
 561   case vmIntrinsics::_decrementExactI:
 562   case vmIntrinsics::_subtractExactI:
 563     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 564     break;
 565   case vmIntrinsics::_decrementExactL:
 566   case vmIntrinsics::_subtractExactL:
 567     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 568     break;
 569   case vmIntrinsics::_negateExactI:
 570     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 571     break;
 572   case vmIntrinsics::_negateExactL:
 573     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 574     break;
 575   case vmIntrinsics::_multiplyExactI:
 576     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 577     break;
 578   case vmIntrinsics::_multiplyExactL:
 579     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 580     break;
 581 
 582  default:
 583     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 584     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 585     break;
 586   }
 587 
 588   // -XX:-InlineClassNatives disables natives from the Class class.
 589   // The flag applies to all reflective calls, notably Array.newArray
 590   // (visible to Java programmers as Array.newInstance).
 591   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 592       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 593     if (!InlineClassNatives)  return NULL;
 594   }
 595 
 596   // -XX:-InlineThreadNatives disables natives from the Thread class.
 597   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 598     if (!InlineThreadNatives)  return NULL;
 599   }
 600 
 601   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 602   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 603       m->holder()->name() == ciSymbol::java_lang_Float() ||
 604       m->holder()->name() == ciSymbol::java_lang_Double()) {
 605     if (!InlineMathNatives)  return NULL;
 606   }
 607 
 608   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 609   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 610     if (!InlineUnsafeOps)  return NULL;
 611   }
 612 
 613   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 614 }
 615 
 616 //----------------------register_library_intrinsics-----------------------
 617 // Initialize this file's data structures, for each Compile instance.
 618 void Compile::register_library_intrinsics() {
 619   // Nothing to do here.
 620 }
 621 
 622 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 623   LibraryCallKit kit(jvms, this);
 624   Compile* C = kit.C;
 625   int nodes = C->unique();
 626 #ifndef PRODUCT
 627   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 628     char buf[1000];
 629     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 630     tty->print_cr("Intrinsic %s", str);
 631   }
 632 #endif
 633   ciMethod* callee = kit.callee();
 634   const int bci    = kit.bci();
 635 
 636   // Try to inline the intrinsic.
 637   if (kit.try_to_inline(_last_predicate)) {
 638     if (C->print_intrinsics() || C->print_inlining()) {
 639       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 640     }
 641     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 642     if (C->log()) {
 643       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 644                      vmIntrinsics::name_at(intrinsic_id()),
 645                      (is_virtual() ? " virtual='1'" : ""),
 646                      C->unique() - nodes);
 647     }
 648     // Push the result from the inlined method onto the stack.
 649     kit.push_result();
 650     C->print_inlining_update(this);
 651     return kit.transfer_exceptions_into_jvms();
 652   }
 653 
 654   // The intrinsic bailed out
 655   if (C->print_intrinsics() || C->print_inlining()) {
 656     if (jvms->has_method()) {
 657       // Not a root compile.
 658       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 659       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 660     } else {
 661       // Root compile
 662       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 663                vmIntrinsics::name_at(intrinsic_id()),
 664                (is_virtual() ? " (virtual)" : ""), bci);
 665     }
 666   }
 667   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 668   C->print_inlining_update(this);
 669   return NULL;
 670 }
 671 
 672 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 673   LibraryCallKit kit(jvms, this);
 674   Compile* C = kit.C;
 675   int nodes = C->unique();
 676   _last_predicate = predicate;
 677 #ifndef PRODUCT
 678   assert(is_predicated() && predicate < predicates_count(), "sanity");
 679   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 680     char buf[1000];
 681     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 682     tty->print_cr("Predicate for intrinsic %s", str);
 683   }
 684 #endif
 685   ciMethod* callee = kit.callee();
 686   const int bci    = kit.bci();
 687 
 688   Node* slow_ctl = kit.try_to_predicate(predicate);
 689   if (!kit.failing()) {
 690     if (C->print_intrinsics() || C->print_inlining()) {
 691       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 692     }
 693     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 694     if (C->log()) {
 695       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 696                      vmIntrinsics::name_at(intrinsic_id()),
 697                      (is_virtual() ? " virtual='1'" : ""),
 698                      C->unique() - nodes);
 699     }
 700     return slow_ctl; // Could be NULL if the check folds.
 701   }
 702 
 703   // The intrinsic bailed out
 704   if (C->print_intrinsics() || C->print_inlining()) {
 705     if (jvms->has_method()) {
 706       // Not a root compile.
 707       const char* msg = "failed to generate predicate for intrinsic";
 708       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 709     } else {
 710       // Root compile
 711       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 712                                         vmIntrinsics::name_at(intrinsic_id()),
 713                                         (is_virtual() ? " (virtual)" : ""), bci);
 714     }
 715   }
 716   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 717   return NULL;
 718 }
 719 
 720 bool LibraryCallKit::try_to_inline(int predicate) {
 721   // Handle symbolic names for otherwise undistinguished boolean switches:
 722   const bool is_store       = true;
 723   const bool is_native_ptr  = true;
 724   const bool is_static      = true;
 725   const bool is_volatile    = true;
 726 
 727   if (!jvms()->has_method()) {
 728     // Root JVMState has a null method.
 729     assert(map()->memory()->Opcode() == Op_Parm, "");
 730     // Insert the memory aliasing node
 731     set_all_memory(reset_memory());
 732   }
 733   assert(merged_memory(), "");
 734 
 735 
 736   switch (intrinsic_id()) {
 737   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 738   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 739   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 740 
 741   case vmIntrinsics::_dsin:
 742   case vmIntrinsics::_dcos:
 743   case vmIntrinsics::_dtan:
 744   case vmIntrinsics::_dabs:
 745   case vmIntrinsics::_datan2:
 746   case vmIntrinsics::_dsqrt:
 747   case vmIntrinsics::_dexp:
 748   case vmIntrinsics::_dlog:
 749   case vmIntrinsics::_dlog10:
 750   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 751 
 752   case vmIntrinsics::_min:
 753   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 754 
 755   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 756   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 757   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 758   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 759   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 760   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 761   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 762   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 763   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 764   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 765   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 766   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 767 
 768   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 769 
 770   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 771   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 772   case vmIntrinsics::_equals:                   return inline_string_equals();
 773 
 774   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 775   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 776   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 777   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 778   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 779   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 780   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 781   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 782   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 783 
 784   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 785   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 786   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 787   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 788   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 789   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 790   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 791   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 792   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 793 
 794   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 795   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 796   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 797   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 798   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 799   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 800   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 801   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 802 
 803   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 804   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 805   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 806   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 807   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 808   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 809   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 810   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 811 
 812   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 813   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 814   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 815   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 816   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 817   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 818   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 819   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 820   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 821 
 822   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 823   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 824   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 825   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 826   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 827   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 828   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 829   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 830   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 831 
 832   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 833   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 834   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 835   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 836 
 837   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 838   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 839   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 840 
 841   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 842   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 843   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 844 
 845   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 846   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 847   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 848   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 849   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 850 
 851   case vmIntrinsics::_loadFence:
 852   case vmIntrinsics::_storeFence:
 853   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 854 
 855   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 856   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 857 
 858 #ifdef TRACE_HAVE_INTRINSICS
 859   case vmIntrinsics::_classID:                  return inline_native_classID();
 860   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 861   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 862 #endif
 863   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 864   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 865   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 866   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 867   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 868   case vmIntrinsics::_getLength:                return inline_native_getLength();
 869   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 870   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 871   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 872   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 873 
 874   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 875 
 876   case vmIntrinsics::_isInstance:
 877   case vmIntrinsics::_getModifiers:
 878   case vmIntrinsics::_isInterface:
 879   case vmIntrinsics::_isArray:
 880   case vmIntrinsics::_isPrimitive:
 881   case vmIntrinsics::_getSuperclass:
 882   case vmIntrinsics::_getComponentType:
 883   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 884 
 885   case vmIntrinsics::_floatToRawIntBits:
 886   case vmIntrinsics::_floatToIntBits:
 887   case vmIntrinsics::_intBitsToFloat:
 888   case vmIntrinsics::_doubleToRawLongBits:
 889   case vmIntrinsics::_doubleToLongBits:
 890   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 891 
 892   case vmIntrinsics::_numberOfLeadingZeros_i:
 893   case vmIntrinsics::_numberOfLeadingZeros_l:
 894   case vmIntrinsics::_numberOfTrailingZeros_i:
 895   case vmIntrinsics::_numberOfTrailingZeros_l:
 896   case vmIntrinsics::_bitCount_i:
 897   case vmIntrinsics::_bitCount_l:
 898   case vmIntrinsics::_reverseBytes_i:
 899   case vmIntrinsics::_reverseBytes_l:
 900   case vmIntrinsics::_reverseBytes_s:
 901   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 902 
 903   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 904 
 905   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 906 
 907   case vmIntrinsics::_aescrypt_encryptBlock:
 908   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 909 
 910   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 911   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 912     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 913 
 914   case vmIntrinsics::_sha_implCompress:
 915   case vmIntrinsics::_sha2_implCompress:
 916   case vmIntrinsics::_sha5_implCompress:
 917     return inline_sha_implCompress(intrinsic_id());
 918 
 919   case vmIntrinsics::_digestBase_implCompressMB:
 920     return inline_digestBase_implCompressMB(predicate);
 921 
 922   case vmIntrinsics::_encodeISOArray:
 923     return inline_encodeISOArray();
 924 
 925   case vmIntrinsics::_updateCRC32:
 926     return inline_updateCRC32();
 927   case vmIntrinsics::_updateBytesCRC32:
 928     return inline_updateBytesCRC32();
 929   case vmIntrinsics::_updateByteBufferCRC32:
 930     return inline_updateByteBufferCRC32();
 931 
 932   default:
 933     // If you get here, it may be that someone has added a new intrinsic
 934     // to the list in vmSymbols.hpp without implementing it here.
 935 #ifndef PRODUCT
 936     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 937       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 938                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 939     }
 940 #endif
 941     return false;
 942   }
 943 }
 944 
 945 Node* LibraryCallKit::try_to_predicate(int predicate) {
 946   if (!jvms()->has_method()) {
 947     // Root JVMState has a null method.
 948     assert(map()->memory()->Opcode() == Op_Parm, "");
 949     // Insert the memory aliasing node
 950     set_all_memory(reset_memory());
 951   }
 952   assert(merged_memory(), "");
 953 
 954   switch (intrinsic_id()) {
 955   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 956     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 957   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 958     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 959   case vmIntrinsics::_digestBase_implCompressMB:
 960     return inline_digestBase_implCompressMB_predicate(predicate);
 961 
 962   default:
 963     // If you get here, it may be that someone has added a new intrinsic
 964     // to the list in vmSymbols.hpp without implementing it here.
 965 #ifndef PRODUCT
 966     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 967       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 968                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 969     }
 970 #endif
 971     Node* slow_ctl = control();
 972     set_control(top()); // No fast path instrinsic
 973     return slow_ctl;
 974   }
 975 }
 976 
 977 //------------------------------set_result-------------------------------
 978 // Helper function for finishing intrinsics.
 979 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 980   record_for_igvn(region);
 981   set_control(_gvn.transform(region));
 982   set_result( _gvn.transform(value));
 983   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 984 }
 985 
 986 //------------------------------generate_guard---------------------------
 987 // Helper function for generating guarded fast-slow graph structures.
 988 // The given 'test', if true, guards a slow path.  If the test fails
 989 // then a fast path can be taken.  (We generally hope it fails.)
 990 // In all cases, GraphKit::control() is updated to the fast path.
 991 // The returned value represents the control for the slow path.
 992 // The return value is never 'top'; it is either a valid control
 993 // or NULL if it is obvious that the slow path can never be taken.
 994 // Also, if region and the slow control are not NULL, the slow edge
 995 // is appended to the region.
 996 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 997   if (stopped()) {
 998     // Already short circuited.
 999     return NULL;
1000   }
1001 
1002   // Build an if node and its projections.
1003   // If test is true we take the slow path, which we assume is uncommon.
1004   if (_gvn.type(test) == TypeInt::ZERO) {
1005     // The slow branch is never taken.  No need to build this guard.
1006     return NULL;
1007   }
1008 
1009   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1010 
1011   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1012   if (if_slow == top()) {
1013     // The slow branch is never taken.  No need to build this guard.
1014     return NULL;
1015   }
1016 
1017   if (region != NULL)
1018     region->add_req(if_slow);
1019 
1020   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1021   set_control(if_fast);
1022 
1023   return if_slow;
1024 }
1025 
1026 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1027   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1028 }
1029 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1030   return generate_guard(test, region, PROB_FAIR);
1031 }
1032 
1033 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1034                                                      Node* *pos_index) {
1035   if (stopped())
1036     return NULL;                // already stopped
1037   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1038     return NULL;                // index is already adequately typed
1039   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1040   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1041   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1042   if (is_neg != NULL && pos_index != NULL) {
1043     // Emulate effect of Parse::adjust_map_after_if.
1044     Node* ccast = new CastIINode(index, TypeInt::POS);
1045     ccast->set_req(0, control());
1046     (*pos_index) = _gvn.transform(ccast);
1047   }
1048   return is_neg;
1049 }
1050 
1051 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1052                                                         Node* *pos_index) {
1053   if (stopped())
1054     return NULL;                // already stopped
1055   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1056     return NULL;                // index is already adequately typed
1057   Node* cmp_le = _gvn.transform(new CmpINode(index, intcon(0)));
1058   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1059   Node* bol_le = _gvn.transform(new BoolNode(cmp_le, le_or_eq));
1060   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1061   if (is_notp != NULL && pos_index != NULL) {
1062     // Emulate effect of Parse::adjust_map_after_if.
1063     Node* ccast = new CastIINode(index, TypeInt::POS1);
1064     ccast->set_req(0, control());
1065     (*pos_index) = _gvn.transform(ccast);
1066   }
1067   return is_notp;
1068 }
1069 
1070 // Make sure that 'position' is a valid limit index, in [0..length].
1071 // There are two equivalent plans for checking this:
1072 //   A. (offset + copyLength)  unsigned<=  arrayLength
1073 //   B. offset  <=  (arrayLength - copyLength)
1074 // We require that all of the values above, except for the sum and
1075 // difference, are already known to be non-negative.
1076 // Plan A is robust in the face of overflow, if offset and copyLength
1077 // are both hugely positive.
1078 //
1079 // Plan B is less direct and intuitive, but it does not overflow at
1080 // all, since the difference of two non-negatives is always
1081 // representable.  Whenever Java methods must perform the equivalent
1082 // check they generally use Plan B instead of Plan A.
1083 // For the moment we use Plan A.
1084 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1085                                                   Node* subseq_length,
1086                                                   Node* array_length,
1087                                                   RegionNode* region) {
1088   if (stopped())
1089     return NULL;                // already stopped
1090   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1091   if (zero_offset && subseq_length->eqv_uncast(array_length))
1092     return NULL;                // common case of whole-array copy
1093   Node* last = subseq_length;
1094   if (!zero_offset)             // last += offset
1095     last = _gvn.transform(new AddINode(last, offset));
1096   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1097   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1098   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1099   return is_over;
1100 }
1101 
1102 
1103 //--------------------------generate_current_thread--------------------
1104 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1105   ciKlass*    thread_klass = env()->Thread_klass();
1106   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1107   Node* thread = _gvn.transform(new ThreadLocalNode());
1108   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1109   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1110   tls_output = thread;
1111   return threadObj;
1112 }
1113 
1114 
1115 //------------------------------make_string_method_node------------------------
1116 // Helper method for String intrinsic functions. This version is called
1117 // with str1 and str2 pointing to String object nodes.
1118 //
1119 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1120   Node* no_ctrl = NULL;
1121 
1122   // Get start addr of string
1123   Node* str1_value   = load_String_value(no_ctrl, str1);
1124   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1125   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1126 
1127   // Get length of string 1
1128   Node* str1_len  = load_String_length(no_ctrl, str1);
1129 
1130   Node* str2_value   = load_String_value(no_ctrl, str2);
1131   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1132   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1133 
1134   Node* str2_len = NULL;
1135   Node* result = NULL;
1136 
1137   switch (opcode) {
1138   case Op_StrIndexOf:
1139     // Get length of string 2
1140     str2_len = load_String_length(no_ctrl, str2);
1141 
1142     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1143                                 str1_start, str1_len, str2_start, str2_len);
1144     break;
1145   case Op_StrComp:
1146     // Get length of string 2
1147     str2_len = load_String_length(no_ctrl, str2);
1148 
1149     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1150                              str1_start, str1_len, str2_start, str2_len);
1151     break;
1152   case Op_StrEquals:
1153     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1154                                str1_start, str2_start, str1_len);
1155     break;
1156   default:
1157     ShouldNotReachHere();
1158     return NULL;
1159   }
1160 
1161   // All these intrinsics have checks.
1162   C->set_has_split_ifs(true); // Has chance for split-if optimization
1163 
1164   return _gvn.transform(result);
1165 }
1166 
1167 // Helper method for String intrinsic functions. This version is called
1168 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1169 // to Int nodes containing the lenghts of str1 and str2.
1170 //
1171 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1172   Node* result = NULL;
1173   switch (opcode) {
1174   case Op_StrIndexOf:
1175     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1176                                 str1_start, cnt1, str2_start, cnt2);
1177     break;
1178   case Op_StrComp:
1179     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1180                              str1_start, cnt1, str2_start, cnt2);
1181     break;
1182   case Op_StrEquals:
1183     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1184                                str1_start, str2_start, cnt1);
1185     break;
1186   default:
1187     ShouldNotReachHere();
1188     return NULL;
1189   }
1190 
1191   // All these intrinsics have checks.
1192   C->set_has_split_ifs(true); // Has chance for split-if optimization
1193 
1194   return _gvn.transform(result);
1195 }
1196 
1197 //------------------------------inline_string_compareTo------------------------
1198 // public int java.lang.String.compareTo(String anotherString);
1199 bool LibraryCallKit::inline_string_compareTo() {
1200   Node* receiver = null_check(argument(0));
1201   Node* arg      = null_check(argument(1));
1202   if (stopped()) {
1203     return true;
1204   }
1205   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1206   return true;
1207 }
1208 
1209 //------------------------------inline_string_equals------------------------
1210 bool LibraryCallKit::inline_string_equals() {
1211   Node* receiver = null_check_receiver();
1212   // NOTE: Do not null check argument for String.equals() because spec
1213   // allows to specify NULL as argument.
1214   Node* argument = this->argument(1);
1215   if (stopped()) {
1216     return true;
1217   }
1218 
1219   // paths (plus control) merge
1220   RegionNode* region = new RegionNode(5);
1221   Node* phi = new PhiNode(region, TypeInt::BOOL);
1222 
1223   // does source == target string?
1224   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1225   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1226 
1227   Node* if_eq = generate_slow_guard(bol, NULL);
1228   if (if_eq != NULL) {
1229     // receiver == argument
1230     phi->init_req(2, intcon(1));
1231     region->init_req(2, if_eq);
1232   }
1233 
1234   // get String klass for instanceOf
1235   ciInstanceKlass* klass = env()->String_klass();
1236 
1237   if (!stopped()) {
1238     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1239     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1240     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1241 
1242     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1243     //instanceOf == true, fallthrough
1244 
1245     if (inst_false != NULL) {
1246       phi->init_req(3, intcon(0));
1247       region->init_req(3, inst_false);
1248     }
1249   }
1250 
1251   if (!stopped()) {
1252     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1253 
1254     // Properly cast the argument to String
1255     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1256     // This path is taken only when argument's type is String:NotNull.
1257     argument = cast_not_null(argument, false);
1258 
1259     Node* no_ctrl = NULL;
1260 
1261     // Get start addr of receiver
1262     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1263     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1264     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1265 
1266     // Get length of receiver
1267     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1268 
1269     // Get start addr of argument
1270     Node* argument_val    = load_String_value(no_ctrl, argument);
1271     Node* argument_offset = load_String_offset(no_ctrl, argument);
1272     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1273 
1274     // Get length of argument
1275     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1276 
1277     // Check for receiver count != argument count
1278     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1279     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1280     Node* if_ne = generate_slow_guard(bol, NULL);
1281     if (if_ne != NULL) {
1282       phi->init_req(4, intcon(0));
1283       region->init_req(4, if_ne);
1284     }
1285 
1286     // Check for count == 0 is done by assembler code for StrEquals.
1287 
1288     if (!stopped()) {
1289       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1290       phi->init_req(1, equals);
1291       region->init_req(1, control());
1292     }
1293   }
1294 
1295   // post merge
1296   set_control(_gvn.transform(region));
1297   record_for_igvn(region);
1298 
1299   set_result(_gvn.transform(phi));
1300   return true;
1301 }
1302 
1303 //------------------------------inline_array_equals----------------------------
1304 bool LibraryCallKit::inline_array_equals() {
1305   Node* arg1 = argument(0);
1306   Node* arg2 = argument(1);
1307   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1308   return true;
1309 }
1310 
1311 // Java version of String.indexOf(constant string)
1312 // class StringDecl {
1313 //   StringDecl(char[] ca) {
1314 //     offset = 0;
1315 //     count = ca.length;
1316 //     value = ca;
1317 //   }
1318 //   int offset;
1319 //   int count;
1320 //   char[] value;
1321 // }
1322 //
1323 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1324 //                             int targetOffset, int cache_i, int md2) {
1325 //   int cache = cache_i;
1326 //   int sourceOffset = string_object.offset;
1327 //   int sourceCount = string_object.count;
1328 //   int targetCount = target_object.length;
1329 //
1330 //   int targetCountLess1 = targetCount - 1;
1331 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1332 //
1333 //   char[] source = string_object.value;
1334 //   char[] target = target_object;
1335 //   int lastChar = target[targetCountLess1];
1336 //
1337 //  outer_loop:
1338 //   for (int i = sourceOffset; i < sourceEnd; ) {
1339 //     int src = source[i + targetCountLess1];
1340 //     if (src == lastChar) {
1341 //       // With random strings and a 4-character alphabet,
1342 //       // reverse matching at this point sets up 0.8% fewer
1343 //       // frames, but (paradoxically) makes 0.3% more probes.
1344 //       // Since those probes are nearer the lastChar probe,
1345 //       // there is may be a net D$ win with reverse matching.
1346 //       // But, reversing loop inhibits unroll of inner loop
1347 //       // for unknown reason.  So, does running outer loop from
1348 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1349 //       for (int j = 0; j < targetCountLess1; j++) {
1350 //         if (target[targetOffset + j] != source[i+j]) {
1351 //           if ((cache & (1 << source[i+j])) == 0) {
1352 //             if (md2 < j+1) {
1353 //               i += j+1;
1354 //               continue outer_loop;
1355 //             }
1356 //           }
1357 //           i += md2;
1358 //           continue outer_loop;
1359 //         }
1360 //       }
1361 //       return i - sourceOffset;
1362 //     }
1363 //     if ((cache & (1 << src)) == 0) {
1364 //       i += targetCountLess1;
1365 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1366 //     i++;
1367 //   }
1368 //   return -1;
1369 // }
1370 
1371 //------------------------------string_indexOf------------------------
1372 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1373                                      jint cache_i, jint md2_i) {
1374 
1375   Node* no_ctrl  = NULL;
1376   float likely   = PROB_LIKELY(0.9);
1377   float unlikely = PROB_UNLIKELY(0.9);
1378 
1379   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1380 
1381   Node* source        = load_String_value(no_ctrl, string_object);
1382   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1383   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1384 
1385   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1386   jint target_length = target_array->length();
1387   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1388   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1389 
1390   // String.value field is known to be @Stable.
1391   if (UseImplicitStableValues) {
1392     target = cast_array_to_stable(target, target_type);
1393   }
1394 
1395   IdealKit kit(this, false, true);
1396 #define __ kit.
1397   Node* zero             = __ ConI(0);
1398   Node* one              = __ ConI(1);
1399   Node* cache            = __ ConI(cache_i);
1400   Node* md2              = __ ConI(md2_i);
1401   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1402   Node* targetCount      = __ ConI(target_length);
1403   Node* targetCountLess1 = __ ConI(target_length - 1);
1404   Node* targetOffset     = __ ConI(targetOffset_i);
1405   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1406 
1407   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1408   Node* outer_loop = __ make_label(2 /* goto */);
1409   Node* return_    = __ make_label(1);
1410 
1411   __ set(rtn,__ ConI(-1));
1412   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1413        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1414        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1415        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1416        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1417          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1418               Node* tpj = __ AddI(targetOffset, __ value(j));
1419               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1420               Node* ipj  = __ AddI(__ value(i), __ value(j));
1421               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1422               __ if_then(targ, BoolTest::ne, src2); {
1423                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1424                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1425                     __ increment(i, __ AddI(__ value(j), one));
1426                     __ goto_(outer_loop);
1427                   } __ end_if(); __ dead(j);
1428                 }__ end_if(); __ dead(j);
1429                 __ increment(i, md2);
1430                 __ goto_(outer_loop);
1431               }__ end_if();
1432               __ increment(j, one);
1433          }__ end_loop(); __ dead(j);
1434          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1435          __ goto_(return_);
1436        }__ end_if();
1437        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1438          __ increment(i, targetCountLess1);
1439        }__ end_if();
1440        __ increment(i, one);
1441        __ bind(outer_loop);
1442   }__ end_loop(); __ dead(i);
1443   __ bind(return_);
1444 
1445   // Final sync IdealKit and GraphKit.
1446   final_sync(kit);
1447   Node* result = __ value(rtn);
1448 #undef __
1449   C->set_has_loops(true);
1450   return result;
1451 }
1452 
1453 //------------------------------inline_string_indexOf------------------------
1454 bool LibraryCallKit::inline_string_indexOf() {
1455   Node* receiver = argument(0);
1456   Node* arg      = argument(1);
1457 
1458   Node* result;
1459   // Disable the use of pcmpestri until it can be guaranteed that
1460   // the load doesn't cross into the uncommited space.
1461   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1462       UseSSE42Intrinsics) {
1463     // Generate SSE4.2 version of indexOf
1464     // We currently only have match rules that use SSE4.2
1465 
1466     receiver = null_check(receiver);
1467     arg      = null_check(arg);
1468     if (stopped()) {
1469       return true;
1470     }
1471 
1472     ciInstanceKlass* str_klass = env()->String_klass();
1473     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1474 
1475     // Make the merge point
1476     RegionNode* result_rgn = new RegionNode(4);
1477     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1478     Node* no_ctrl  = NULL;
1479 
1480     // Get start addr of source string
1481     Node* source = load_String_value(no_ctrl, receiver);
1482     Node* source_offset = load_String_offset(no_ctrl, receiver);
1483     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1484 
1485     // Get length of source string
1486     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1487 
1488     // Get start addr of substring
1489     Node* substr = load_String_value(no_ctrl, arg);
1490     Node* substr_offset = load_String_offset(no_ctrl, arg);
1491     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1492 
1493     // Get length of source string
1494     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1495 
1496     // Check for substr count > string count
1497     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1498     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1499     Node* if_gt = generate_slow_guard(bol, NULL);
1500     if (if_gt != NULL) {
1501       result_phi->init_req(2, intcon(-1));
1502       result_rgn->init_req(2, if_gt);
1503     }
1504 
1505     if (!stopped()) {
1506       // Check for substr count == 0
1507       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1508       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1509       Node* if_zero = generate_slow_guard(bol, NULL);
1510       if (if_zero != NULL) {
1511         result_phi->init_req(3, intcon(0));
1512         result_rgn->init_req(3, if_zero);
1513       }
1514     }
1515 
1516     if (!stopped()) {
1517       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1518       result_phi->init_req(1, result);
1519       result_rgn->init_req(1, control());
1520     }
1521     set_control(_gvn.transform(result_rgn));
1522     record_for_igvn(result_rgn);
1523     result = _gvn.transform(result_phi);
1524 
1525   } else { // Use LibraryCallKit::string_indexOf
1526     // don't intrinsify if argument isn't a constant string.
1527     if (!arg->is_Con()) {
1528      return false;
1529     }
1530     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1531     if (str_type == NULL) {
1532       return false;
1533     }
1534     ciInstanceKlass* klass = env()->String_klass();
1535     ciObject* str_const = str_type->const_oop();
1536     if (str_const == NULL || str_const->klass() != klass) {
1537       return false;
1538     }
1539     ciInstance* str = str_const->as_instance();
1540     assert(str != NULL, "must be instance");
1541 
1542     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1543     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1544 
1545     int o;
1546     int c;
1547     if (java_lang_String::has_offset_field()) {
1548       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1549       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1550     } else {
1551       o = 0;
1552       c = pat->length();
1553     }
1554 
1555     // constant strings have no offset and count == length which
1556     // simplifies the resulting code somewhat so lets optimize for that.
1557     if (o != 0 || c != pat->length()) {
1558      return false;
1559     }
1560 
1561     receiver = null_check(receiver, T_OBJECT);
1562     // NOTE: No null check on the argument is needed since it's a constant String oop.
1563     if (stopped()) {
1564       return true;
1565     }
1566 
1567     // The null string as a pattern always returns 0 (match at beginning of string)
1568     if (c == 0) {
1569       set_result(intcon(0));
1570       return true;
1571     }
1572 
1573     // Generate default indexOf
1574     jchar lastChar = pat->char_at(o + (c - 1));
1575     int cache = 0;
1576     int i;
1577     for (i = 0; i < c - 1; i++) {
1578       assert(i < pat->length(), "out of range");
1579       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1580     }
1581 
1582     int md2 = c;
1583     for (i = 0; i < c - 1; i++) {
1584       assert(i < pat->length(), "out of range");
1585       if (pat->char_at(o + i) == lastChar) {
1586         md2 = (c - 1) - i;
1587       }
1588     }
1589 
1590     result = string_indexOf(receiver, pat, o, cache, md2);
1591   }
1592   set_result(result);
1593   return true;
1594 }
1595 
1596 //--------------------------round_double_node--------------------------------
1597 // Round a double node if necessary.
1598 Node* LibraryCallKit::round_double_node(Node* n) {
1599   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1600     n = _gvn.transform(new RoundDoubleNode(0, n));
1601   return n;
1602 }
1603 
1604 //------------------------------inline_math-----------------------------------
1605 // public static double Math.abs(double)
1606 // public static double Math.sqrt(double)
1607 // public static double Math.log(double)
1608 // public static double Math.log10(double)
1609 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1610   Node* arg = round_double_node(argument(0));
1611   Node* n;
1612   switch (id) {
1613   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1614   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1615   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1616   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1617   default:  fatal_unexpected_iid(id);  break;
1618   }
1619   set_result(_gvn.transform(n));
1620   return true;
1621 }
1622 
1623 //------------------------------inline_trig----------------------------------
1624 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1625 // argument reduction which will turn into a fast/slow diamond.
1626 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1627   Node* arg = round_double_node(argument(0));
1628   Node* n = NULL;
1629 
1630   switch (id) {
1631   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1632   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1633   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1634   default:  fatal_unexpected_iid(id);  break;
1635   }
1636   n = _gvn.transform(n);
1637 
1638   // Rounding required?  Check for argument reduction!
1639   if (Matcher::strict_fp_requires_explicit_rounding) {
1640     static const double     pi_4 =  0.7853981633974483;
1641     static const double neg_pi_4 = -0.7853981633974483;
1642     // pi/2 in 80-bit extended precision
1643     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1644     // -pi/2 in 80-bit extended precision
1645     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1646     // Cutoff value for using this argument reduction technique
1647     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1648     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1649 
1650     // Pseudocode for sin:
1651     // if (x <= Math.PI / 4.0) {
1652     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1653     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1654     // } else {
1655     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1656     // }
1657     // return StrictMath.sin(x);
1658 
1659     // Pseudocode for cos:
1660     // if (x <= Math.PI / 4.0) {
1661     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1662     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1663     // } else {
1664     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1665     // }
1666     // return StrictMath.cos(x);
1667 
1668     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1669     // requires a special machine instruction to load it.  Instead we'll try
1670     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1671     // probably do the math inside the SIN encoding.
1672 
1673     // Make the merge point
1674     RegionNode* r = new RegionNode(3);
1675     Node* phi = new PhiNode(r, Type::DOUBLE);
1676 
1677     // Flatten arg so we need only 1 test
1678     Node *abs = _gvn.transform(new AbsDNode(arg));
1679     // Node for PI/4 constant
1680     Node *pi4 = makecon(TypeD::make(pi_4));
1681     // Check PI/4 : abs(arg)
1682     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1683     // Check: If PI/4 < abs(arg) then go slow
1684     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1685     // Branch either way
1686     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1687     set_control(opt_iff(r,iff));
1688 
1689     // Set fast path result
1690     phi->init_req(2, n);
1691 
1692     // Slow path - non-blocking leaf call
1693     Node* call = NULL;
1694     switch (id) {
1695     case vmIntrinsics::_dsin:
1696       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1697                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1698                                "Sin", NULL, arg, top());
1699       break;
1700     case vmIntrinsics::_dcos:
1701       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1702                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1703                                "Cos", NULL, arg, top());
1704       break;
1705     case vmIntrinsics::_dtan:
1706       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1707                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1708                                "Tan", NULL, arg, top());
1709       break;
1710     }
1711     assert(control()->in(0) == call, "");
1712     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1713     r->init_req(1, control());
1714     phi->init_req(1, slow_result);
1715 
1716     // Post-merge
1717     set_control(_gvn.transform(r));
1718     record_for_igvn(r);
1719     n = _gvn.transform(phi);
1720 
1721     C->set_has_split_ifs(true); // Has chance for split-if optimization
1722   }
1723   set_result(n);
1724   return true;
1725 }
1726 
1727 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1728   //-------------------
1729   //result=(result.isNaN())? funcAddr():result;
1730   // Check: If isNaN() by checking result!=result? then either trap
1731   // or go to runtime
1732   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1733   // Build the boolean node
1734   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1735 
1736   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1737     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1738       // The pow or exp intrinsic returned a NaN, which requires a call
1739       // to the runtime.  Recompile with the runtime call.
1740       uncommon_trap(Deoptimization::Reason_intrinsic,
1741                     Deoptimization::Action_make_not_entrant);
1742     }
1743     return result;
1744   } else {
1745     // If this inlining ever returned NaN in the past, we compile a call
1746     // to the runtime to properly handle corner cases
1747 
1748     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1749     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1750     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1751 
1752     if (!if_slow->is_top()) {
1753       RegionNode* result_region = new RegionNode(3);
1754       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1755 
1756       result_region->init_req(1, if_fast);
1757       result_val->init_req(1, result);
1758 
1759       set_control(if_slow);
1760 
1761       const TypePtr* no_memory_effects = NULL;
1762       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1763                                    no_memory_effects,
1764                                    x, top(), y, y ? top() : NULL);
1765       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1766 #ifdef ASSERT
1767       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1768       assert(value_top == top(), "second value must be top");
1769 #endif
1770 
1771       result_region->init_req(2, control());
1772       result_val->init_req(2, value);
1773       set_control(_gvn.transform(result_region));
1774       return _gvn.transform(result_val);
1775     } else {
1776       return result;
1777     }
1778   }
1779 }
1780 
1781 //------------------------------inline_exp-------------------------------------
1782 // Inline exp instructions, if possible.  The Intel hardware only misses
1783 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1784 bool LibraryCallKit::inline_exp() {
1785   Node* arg = round_double_node(argument(0));
1786   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1787 
1788   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1789   set_result(n);
1790 
1791   C->set_has_split_ifs(true); // Has chance for split-if optimization
1792   return true;
1793 }
1794 
1795 //------------------------------inline_pow-------------------------------------
1796 // Inline power instructions, if possible.
1797 bool LibraryCallKit::inline_pow() {
1798   // Pseudocode for pow
1799   // if (y == 2) {
1800   //   return x * x;
1801   // } else {
1802   //   if (x <= 0.0) {
1803   //     long longy = (long)y;
1804   //     if ((double)longy == y) { // if y is long
1805   //       if (y + 1 == y) longy = 0; // huge number: even
1806   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1807   //     } else {
1808   //       result = NaN;
1809   //     }
1810   //   } else {
1811   //     result = DPow(x,y);
1812   //   }
1813   //   if (result != result)?  {
1814   //     result = uncommon_trap() or runtime_call();
1815   //   }
1816   //   return result;
1817   // }
1818 
1819   Node* x = round_double_node(argument(0));
1820   Node* y = round_double_node(argument(2));
1821 
1822   Node* result = NULL;
1823 
1824   Node*   const_two_node = makecon(TypeD::make(2.0));
1825   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1826   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1827   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1828   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1829   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1830 
1831   RegionNode* region_node = new RegionNode(3);
1832   region_node->init_req(1, if_true);
1833 
1834   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1835   // special case for x^y where y == 2, we can convert it to x * x
1836   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1837 
1838   // set control to if_false since we will now process the false branch
1839   set_control(if_false);
1840 
1841   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1842     // Short form: skip the fancy tests and just check for NaN result.
1843     result = _gvn.transform(new PowDNode(C, control(), x, y));
1844   } else {
1845     // If this inlining ever returned NaN in the past, include all
1846     // checks + call to the runtime.
1847 
1848     // Set the merge point for If node with condition of (x <= 0.0)
1849     // There are four possible paths to region node and phi node
1850     RegionNode *r = new RegionNode(4);
1851     Node *phi = new PhiNode(r, Type::DOUBLE);
1852 
1853     // Build the first if node: if (x <= 0.0)
1854     // Node for 0 constant
1855     Node *zeronode = makecon(TypeD::ZERO);
1856     // Check x:0
1857     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1858     // Check: If (x<=0) then go complex path
1859     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1860     // Branch either way
1861     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1862     // Fast path taken; set region slot 3
1863     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1864     r->init_req(3,fast_taken); // Capture fast-control
1865 
1866     // Fast path not-taken, i.e. slow path
1867     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1868 
1869     // Set fast path result
1870     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1871     phi->init_req(3, fast_result);
1872 
1873     // Complex path
1874     // Build the second if node (if y is long)
1875     // Node for (long)y
1876     Node *longy = _gvn.transform(new ConvD2LNode(y));
1877     // Node for (double)((long) y)
1878     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1879     // Check (double)((long) y) : y
1880     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1881     // Check if (y isn't long) then go to slow path
1882 
1883     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1884     // Branch either way
1885     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1886     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1887 
1888     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1889 
1890     // Calculate DPow(abs(x), y)*(1 & (long)y)
1891     // Node for constant 1
1892     Node *conone = longcon(1);
1893     // 1& (long)y
1894     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1895 
1896     // A huge number is always even. Detect a huge number by checking
1897     // if y + 1 == y and set integer to be tested for parity to 0.
1898     // Required for corner case:
1899     // (long)9.223372036854776E18 = max_jlong
1900     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1901     // max_jlong is odd but 9.223372036854776E18 is even
1902     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1903     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1904     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1905     Node* correctedsign = NULL;
1906     if (ConditionalMoveLimit != 0) {
1907       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1908     } else {
1909       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1910       RegionNode *r = new RegionNode(3);
1911       Node *phi = new PhiNode(r, TypeLong::LONG);
1912       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1913       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1914       phi->init_req(1, signnode);
1915       phi->init_req(2, longcon(0));
1916       correctedsign = _gvn.transform(phi);
1917       ylong_path = _gvn.transform(r);
1918       record_for_igvn(r);
1919     }
1920 
1921     // zero node
1922     Node *conzero = longcon(0);
1923     // Check (1&(long)y)==0?
1924     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1925     // Check if (1&(long)y)!=0?, if so the result is negative
1926     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1927     // abs(x)
1928     Node *absx=_gvn.transform(new AbsDNode(x));
1929     // abs(x)^y
1930     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1931     // -abs(x)^y
1932     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1933     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1934     Node *signresult = NULL;
1935     if (ConditionalMoveLimit != 0) {
1936       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1937     } else {
1938       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1939       RegionNode *r = new RegionNode(3);
1940       Node *phi = new PhiNode(r, Type::DOUBLE);
1941       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1942       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1943       phi->init_req(1, absxpowy);
1944       phi->init_req(2, negabsxpowy);
1945       signresult = _gvn.transform(phi);
1946       ylong_path = _gvn.transform(r);
1947       record_for_igvn(r);
1948     }
1949     // Set complex path fast result
1950     r->init_req(2, ylong_path);
1951     phi->init_req(2, signresult);
1952 
1953     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1954     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1955     r->init_req(1,slow_path);
1956     phi->init_req(1,slow_result);
1957 
1958     // Post merge
1959     set_control(_gvn.transform(r));
1960     record_for_igvn(r);
1961     result = _gvn.transform(phi);
1962   }
1963 
1964   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1965 
1966   // control from finish_pow_exp is now input to the region node
1967   region_node->set_req(2, control());
1968   // the result from finish_pow_exp is now input to the phi node
1969   phi_node->init_req(2, result);
1970   set_control(_gvn.transform(region_node));
1971   record_for_igvn(region_node);
1972   set_result(_gvn.transform(phi_node));
1973 
1974   C->set_has_split_ifs(true); // Has chance for split-if optimization
1975   return true;
1976 }
1977 
1978 //------------------------------runtime_math-----------------------------
1979 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1980   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1981          "must be (DD)D or (D)D type");
1982 
1983   // Inputs
1984   Node* a = round_double_node(argument(0));
1985   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1986 
1987   const TypePtr* no_memory_effects = NULL;
1988   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1989                                  no_memory_effects,
1990                                  a, top(), b, b ? top() : NULL);
1991   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1992 #ifdef ASSERT
1993   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1994   assert(value_top == top(), "second value must be top");
1995 #endif
1996 
1997   set_result(value);
1998   return true;
1999 }
2000 
2001 //------------------------------inline_math_native-----------------------------
2002 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2003 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2004   switch (id) {
2005     // These intrinsics are not properly supported on all hardware
2006   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2007     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2008   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2009     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2010   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2011     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2012 
2013   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2014     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2015   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2016     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2017 
2018     // These intrinsics are supported on all hardware
2019   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2020   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2021 
2022   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2023     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2024   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2025     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2026 #undef FN_PTR
2027 
2028    // These intrinsics are not yet correctly implemented
2029   case vmIntrinsics::_datan2:
2030     return false;
2031 
2032   default:
2033     fatal_unexpected_iid(id);
2034     return false;
2035   }
2036 }
2037 
2038 static bool is_simple_name(Node* n) {
2039   return (n->req() == 1         // constant
2040           || (n->is_Type() && n->as_Type()->type()->singleton())
2041           || n->is_Proj()       // parameter or return value
2042           || n->is_Phi()        // local of some sort
2043           );
2044 }
2045 
2046 //----------------------------inline_min_max-----------------------------------
2047 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2048   set_result(generate_min_max(id, argument(0), argument(1)));
2049   return true;
2050 }
2051 
2052 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2053   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2054   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2055   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2056   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2057 
2058   {
2059     PreserveJVMState pjvms(this);
2060     PreserveReexecuteState preexecs(this);
2061     jvms()->set_should_reexecute(true);
2062 
2063     set_control(slow_path);
2064     set_i_o(i_o());
2065 
2066     uncommon_trap(Deoptimization::Reason_intrinsic,
2067                   Deoptimization::Action_none);
2068   }
2069 
2070   set_control(fast_path);
2071   set_result(math);
2072 }
2073 
2074 template <typename OverflowOp>
2075 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2076   typedef typename OverflowOp::MathOp MathOp;
2077 
2078   MathOp* mathOp = new MathOp(arg1, arg2);
2079   Node* operation = _gvn.transform( mathOp );
2080   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2081   inline_math_mathExact(operation, ofcheck);
2082   return true;
2083 }
2084 
2085 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2086   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2087 }
2088 
2089 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2090   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2091 }
2092 
2093 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2094   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2095 }
2096 
2097 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2098   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2099 }
2100 
2101 bool LibraryCallKit::inline_math_negateExactI() {
2102   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2103 }
2104 
2105 bool LibraryCallKit::inline_math_negateExactL() {
2106   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2107 }
2108 
2109 bool LibraryCallKit::inline_math_multiplyExactI() {
2110   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2111 }
2112 
2113 bool LibraryCallKit::inline_math_multiplyExactL() {
2114   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2115 }
2116 
2117 Node*
2118 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2119   // These are the candidate return value:
2120   Node* xvalue = x0;
2121   Node* yvalue = y0;
2122 
2123   if (xvalue == yvalue) {
2124     return xvalue;
2125   }
2126 
2127   bool want_max = (id == vmIntrinsics::_max);
2128 
2129   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2130   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2131   if (txvalue == NULL || tyvalue == NULL)  return top();
2132   // This is not really necessary, but it is consistent with a
2133   // hypothetical MaxINode::Value method:
2134   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2135 
2136   // %%% This folding logic should (ideally) be in a different place.
2137   // Some should be inside IfNode, and there to be a more reliable
2138   // transformation of ?: style patterns into cmoves.  We also want
2139   // more powerful optimizations around cmove and min/max.
2140 
2141   // Try to find a dominating comparison of these guys.
2142   // It can simplify the index computation for Arrays.copyOf
2143   // and similar uses of System.arraycopy.
2144   // First, compute the normalized version of CmpI(x, y).
2145   int   cmp_op = Op_CmpI;
2146   Node* xkey = xvalue;
2147   Node* ykey = yvalue;
2148   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2149   if (ideal_cmpxy->is_Cmp()) {
2150     // E.g., if we have CmpI(length - offset, count),
2151     // it might idealize to CmpI(length, count + offset)
2152     cmp_op = ideal_cmpxy->Opcode();
2153     xkey = ideal_cmpxy->in(1);
2154     ykey = ideal_cmpxy->in(2);
2155   }
2156 
2157   // Start by locating any relevant comparisons.
2158   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2159   Node* cmpxy = NULL;
2160   Node* cmpyx = NULL;
2161   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2162     Node* cmp = start_from->fast_out(k);
2163     if (cmp->outcnt() > 0 &&            // must have prior uses
2164         cmp->in(0) == NULL &&           // must be context-independent
2165         cmp->Opcode() == cmp_op) {      // right kind of compare
2166       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2167       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2168     }
2169   }
2170 
2171   const int NCMPS = 2;
2172   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2173   int cmpn;
2174   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2175     if (cmps[cmpn] != NULL)  break;     // find a result
2176   }
2177   if (cmpn < NCMPS) {
2178     // Look for a dominating test that tells us the min and max.
2179     int depth = 0;                // Limit search depth for speed
2180     Node* dom = control();
2181     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2182       if (++depth >= 100)  break;
2183       Node* ifproj = dom;
2184       if (!ifproj->is_Proj())  continue;
2185       Node* iff = ifproj->in(0);
2186       if (!iff->is_If())  continue;
2187       Node* bol = iff->in(1);
2188       if (!bol->is_Bool())  continue;
2189       Node* cmp = bol->in(1);
2190       if (cmp == NULL)  continue;
2191       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2192         if (cmps[cmpn] == cmp)  break;
2193       if (cmpn == NCMPS)  continue;
2194       BoolTest::mask btest = bol->as_Bool()->_test._test;
2195       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2196       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2197       // At this point, we know that 'x btest y' is true.
2198       switch (btest) {
2199       case BoolTest::eq:
2200         // They are proven equal, so we can collapse the min/max.
2201         // Either value is the answer.  Choose the simpler.
2202         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2203           return yvalue;
2204         return xvalue;
2205       case BoolTest::lt:          // x < y
2206       case BoolTest::le:          // x <= y
2207         return (want_max ? yvalue : xvalue);
2208       case BoolTest::gt:          // x > y
2209       case BoolTest::ge:          // x >= y
2210         return (want_max ? xvalue : yvalue);
2211       }
2212     }
2213   }
2214 
2215   // We failed to find a dominating test.
2216   // Let's pick a test that might GVN with prior tests.
2217   Node*          best_bol   = NULL;
2218   BoolTest::mask best_btest = BoolTest::illegal;
2219   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2220     Node* cmp = cmps[cmpn];
2221     if (cmp == NULL)  continue;
2222     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2223       Node* bol = cmp->fast_out(j);
2224       if (!bol->is_Bool())  continue;
2225       BoolTest::mask btest = bol->as_Bool()->_test._test;
2226       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2227       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2228       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2229         best_bol   = bol->as_Bool();
2230         best_btest = btest;
2231       }
2232     }
2233   }
2234 
2235   Node* answer_if_true  = NULL;
2236   Node* answer_if_false = NULL;
2237   switch (best_btest) {
2238   default:
2239     if (cmpxy == NULL)
2240       cmpxy = ideal_cmpxy;
2241     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2242     // and fall through:
2243   case BoolTest::lt:          // x < y
2244   case BoolTest::le:          // x <= y
2245     answer_if_true  = (want_max ? yvalue : xvalue);
2246     answer_if_false = (want_max ? xvalue : yvalue);
2247     break;
2248   case BoolTest::gt:          // x > y
2249   case BoolTest::ge:          // x >= y
2250     answer_if_true  = (want_max ? xvalue : yvalue);
2251     answer_if_false = (want_max ? yvalue : xvalue);
2252     break;
2253   }
2254 
2255   jint hi, lo;
2256   if (want_max) {
2257     // We can sharpen the minimum.
2258     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2259     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2260   } else {
2261     // We can sharpen the maximum.
2262     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2263     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2264   }
2265 
2266   // Use a flow-free graph structure, to avoid creating excess control edges
2267   // which could hinder other optimizations.
2268   // Since Math.min/max is often used with arraycopy, we want
2269   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2270   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2271                                answer_if_false, answer_if_true,
2272                                TypeInt::make(lo, hi, widen));
2273 
2274   return _gvn.transform(cmov);
2275 
2276   /*
2277   // This is not as desirable as it may seem, since Min and Max
2278   // nodes do not have a full set of optimizations.
2279   // And they would interfere, anyway, with 'if' optimizations
2280   // and with CMoveI canonical forms.
2281   switch (id) {
2282   case vmIntrinsics::_min:
2283     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2284   case vmIntrinsics::_max:
2285     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2286   default:
2287     ShouldNotReachHere();
2288   }
2289   */
2290 }
2291 
2292 inline int
2293 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2294   const TypePtr* base_type = TypePtr::NULL_PTR;
2295   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2296   if (base_type == NULL) {
2297     // Unknown type.
2298     return Type::AnyPtr;
2299   } else if (base_type == TypePtr::NULL_PTR) {
2300     // Since this is a NULL+long form, we have to switch to a rawptr.
2301     base   = _gvn.transform(new CastX2PNode(offset));
2302     offset = MakeConX(0);
2303     return Type::RawPtr;
2304   } else if (base_type->base() == Type::RawPtr) {
2305     return Type::RawPtr;
2306   } else if (base_type->isa_oopptr()) {
2307     // Base is never null => always a heap address.
2308     if (base_type->ptr() == TypePtr::NotNull) {
2309       return Type::OopPtr;
2310     }
2311     // Offset is small => always a heap address.
2312     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2313     if (offset_type != NULL &&
2314         base_type->offset() == 0 &&     // (should always be?)
2315         offset_type->_lo >= 0 &&
2316         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2317       return Type::OopPtr;
2318     }
2319     // Otherwise, it might either be oop+off or NULL+addr.
2320     return Type::AnyPtr;
2321   } else {
2322     // No information:
2323     return Type::AnyPtr;
2324   }
2325 }
2326 
2327 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2328   int kind = classify_unsafe_addr(base, offset);
2329   if (kind == Type::RawPtr) {
2330     return basic_plus_adr(top(), base, offset);
2331   } else {
2332     return basic_plus_adr(base, offset);
2333   }
2334 }
2335 
2336 //--------------------------inline_number_methods-----------------------------
2337 // inline int     Integer.numberOfLeadingZeros(int)
2338 // inline int        Long.numberOfLeadingZeros(long)
2339 //
2340 // inline int     Integer.numberOfTrailingZeros(int)
2341 // inline int        Long.numberOfTrailingZeros(long)
2342 //
2343 // inline int     Integer.bitCount(int)
2344 // inline int        Long.bitCount(long)
2345 //
2346 // inline char  Character.reverseBytes(char)
2347 // inline short     Short.reverseBytes(short)
2348 // inline int     Integer.reverseBytes(int)
2349 // inline long       Long.reverseBytes(long)
2350 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2351   Node* arg = argument(0);
2352   Node* n;
2353   switch (id) {
2354   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2355   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2356   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2357   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2358   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2359   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2360   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2361   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2362   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2363   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2364   default:  fatal_unexpected_iid(id);  break;
2365   }
2366   set_result(_gvn.transform(n));
2367   return true;
2368 }
2369 
2370 //----------------------------inline_unsafe_access----------------------------
2371 
2372 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2373 
2374 // Helper that guards and inserts a pre-barrier.
2375 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2376                                         Node* pre_val, bool need_mem_bar) {
2377   // We could be accessing the referent field of a reference object. If so, when G1
2378   // is enabled, we need to log the value in the referent field in an SATB buffer.
2379   // This routine performs some compile time filters and generates suitable
2380   // runtime filters that guard the pre-barrier code.
2381   // Also add memory barrier for non volatile load from the referent field
2382   // to prevent commoning of loads across safepoint.
2383   if (!UseG1GC && !need_mem_bar)
2384     return;
2385 
2386   // Some compile time checks.
2387 
2388   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2389   const TypeX* otype = offset->find_intptr_t_type();
2390   if (otype != NULL && otype->is_con() &&
2391       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2392     // Constant offset but not the reference_offset so just return
2393     return;
2394   }
2395 
2396   // We only need to generate the runtime guards for instances.
2397   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2398   if (btype != NULL) {
2399     if (btype->isa_aryptr()) {
2400       // Array type so nothing to do
2401       return;
2402     }
2403 
2404     const TypeInstPtr* itype = btype->isa_instptr();
2405     if (itype != NULL) {
2406       // Can the klass of base_oop be statically determined to be
2407       // _not_ a sub-class of Reference and _not_ Object?
2408       ciKlass* klass = itype->klass();
2409       if ( klass->is_loaded() &&
2410           !klass->is_subtype_of(env()->Reference_klass()) &&
2411           !env()->Object_klass()->is_subtype_of(klass)) {
2412         return;
2413       }
2414     }
2415   }
2416 
2417   // The compile time filters did not reject base_oop/offset so
2418   // we need to generate the following runtime filters
2419   //
2420   // if (offset == java_lang_ref_Reference::_reference_offset) {
2421   //   if (instance_of(base, java.lang.ref.Reference)) {
2422   //     pre_barrier(_, pre_val, ...);
2423   //   }
2424   // }
2425 
2426   float likely   = PROB_LIKELY(  0.999);
2427   float unlikely = PROB_UNLIKELY(0.999);
2428 
2429   IdealKit ideal(this);
2430 #define __ ideal.
2431 
2432   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2433 
2434   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2435       // Update graphKit memory and control from IdealKit.
2436       sync_kit(ideal);
2437 
2438       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2439       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2440 
2441       // Update IdealKit memory and control from graphKit.
2442       __ sync_kit(this);
2443 
2444       Node* one = __ ConI(1);
2445       // is_instof == 0 if base_oop == NULL
2446       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2447 
2448         // Update graphKit from IdeakKit.
2449         sync_kit(ideal);
2450 
2451         // Use the pre-barrier to record the value in the referent field
2452         pre_barrier(false /* do_load */,
2453                     __ ctrl(),
2454                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2455                     pre_val /* pre_val */,
2456                     T_OBJECT);
2457         if (need_mem_bar) {
2458           // Add memory barrier to prevent commoning reads from this field
2459           // across safepoint since GC can change its value.
2460           insert_mem_bar(Op_MemBarCPUOrder);
2461         }
2462         // Update IdealKit from graphKit.
2463         __ sync_kit(this);
2464 
2465       } __ end_if(); // _ref_type != ref_none
2466   } __ end_if(); // offset == referent_offset
2467 
2468   // Final sync IdealKit and GraphKit.
2469   final_sync(ideal);
2470 #undef __
2471 }
2472 
2473 
2474 // Interpret Unsafe.fieldOffset cookies correctly:
2475 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2476 
2477 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2478   // Attempt to infer a sharper value type from the offset and base type.
2479   ciKlass* sharpened_klass = NULL;
2480 
2481   // See if it is an instance field, with an object type.
2482   if (alias_type->field() != NULL) {
2483     assert(!is_native_ptr, "native pointer op cannot use a java address");
2484     if (alias_type->field()->type()->is_klass()) {
2485       sharpened_klass = alias_type->field()->type()->as_klass();
2486     }
2487   }
2488 
2489   // See if it is a narrow oop array.
2490   if (adr_type->isa_aryptr()) {
2491     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2492       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2493       if (elem_type != NULL) {
2494         sharpened_klass = elem_type->klass();
2495       }
2496     }
2497   }
2498 
2499   // The sharpened class might be unloaded if there is no class loader
2500   // contraint in place.
2501   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2502     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2503 
2504 #ifndef PRODUCT
2505     if (C->print_intrinsics() || C->print_inlining()) {
2506       tty->print("  from base type: ");  adr_type->dump();
2507       tty->print("  sharpened value: ");  tjp->dump();
2508     }
2509 #endif
2510     // Sharpen the value type.
2511     return tjp;
2512   }
2513   return NULL;
2514 }
2515 
2516 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2517   if (callee()->is_static())  return false;  // caller must have the capability!
2518 
2519 #ifndef PRODUCT
2520   {
2521     ResourceMark rm;
2522     // Check the signatures.
2523     ciSignature* sig = callee()->signature();
2524 #ifdef ASSERT
2525     if (!is_store) {
2526       // Object getObject(Object base, int/long offset), etc.
2527       BasicType rtype = sig->return_type()->basic_type();
2528       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2529           rtype = T_ADDRESS;  // it is really a C void*
2530       assert(rtype == type, "getter must return the expected value");
2531       if (!is_native_ptr) {
2532         assert(sig->count() == 2, "oop getter has 2 arguments");
2533         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2534         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2535       } else {
2536         assert(sig->count() == 1, "native getter has 1 argument");
2537         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2538       }
2539     } else {
2540       // void putObject(Object base, int/long offset, Object x), etc.
2541       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2542       if (!is_native_ptr) {
2543         assert(sig->count() == 3, "oop putter has 3 arguments");
2544         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2545         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2546       } else {
2547         assert(sig->count() == 2, "native putter has 2 arguments");
2548         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2549       }
2550       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2551       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2552         vtype = T_ADDRESS;  // it is really a C void*
2553       assert(vtype == type, "putter must accept the expected value");
2554     }
2555 #endif // ASSERT
2556  }
2557 #endif //PRODUCT
2558 
2559   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2560 
2561   Node* receiver = argument(0);  // type: oop
2562 
2563   // Build address expression.  See the code in inline_unsafe_prefetch.
2564   Node* adr;
2565   Node* heap_base_oop = top();
2566   Node* offset = top();
2567   Node* val;
2568 
2569   if (!is_native_ptr) {
2570     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2571     Node* base = argument(1);  // type: oop
2572     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2573     offset = argument(2);  // type: long
2574     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2575     // to be plain byte offsets, which are also the same as those accepted
2576     // by oopDesc::field_base.
2577     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2578            "fieldOffset must be byte-scaled");
2579     // 32-bit machines ignore the high half!
2580     offset = ConvL2X(offset);
2581     adr = make_unsafe_address(base, offset);
2582     heap_base_oop = base;
2583     val = is_store ? argument(4) : NULL;
2584   } else {
2585     Node* ptr = argument(1);  // type: long
2586     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2587     adr = make_unsafe_address(NULL, ptr);
2588     val = is_store ? argument(3) : NULL;
2589   }
2590 
2591   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2592 
2593   // First guess at the value type.
2594   const Type *value_type = Type::get_const_basic_type(type);
2595 
2596   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2597   // there was not enough information to nail it down.
2598   Compile::AliasType* alias_type = C->alias_type(adr_type);
2599   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2600 
2601   // We will need memory barriers unless we can determine a unique
2602   // alias category for this reference.  (Note:  If for some reason
2603   // the barriers get omitted and the unsafe reference begins to "pollute"
2604   // the alias analysis of the rest of the graph, either Compile::can_alias
2605   // or Compile::must_alias will throw a diagnostic assert.)
2606   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2607 
2608   // If we are reading the value of the referent field of a Reference
2609   // object (either by using Unsafe directly or through reflection)
2610   // then, if G1 is enabled, we need to record the referent in an
2611   // SATB log buffer using the pre-barrier mechanism.
2612   // Also we need to add memory barrier to prevent commoning reads
2613   // from this field across safepoint since GC can change its value.
2614   bool need_read_barrier = !is_native_ptr && !is_store &&
2615                            offset != top() && heap_base_oop != top();
2616 
2617   if (!is_store && type == T_OBJECT) {
2618     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2619     if (tjp != NULL) {
2620       value_type = tjp;
2621     }
2622   }
2623 
2624   receiver = null_check(receiver);
2625   if (stopped()) {
2626     return true;
2627   }
2628   // Heap pointers get a null-check from the interpreter,
2629   // as a courtesy.  However, this is not guaranteed by Unsafe,
2630   // and it is not possible to fully distinguish unintended nulls
2631   // from intended ones in this API.
2632 
2633   if (is_volatile) {
2634     // We need to emit leading and trailing CPU membars (see below) in
2635     // addition to memory membars when is_volatile. This is a little
2636     // too strong, but avoids the need to insert per-alias-type
2637     // volatile membars (for stores; compare Parse::do_put_xxx), which
2638     // we cannot do effectively here because we probably only have a
2639     // rough approximation of type.
2640     need_mem_bar = true;
2641     // For Stores, place a memory ordering barrier now.
2642     if (is_store) {
2643       insert_mem_bar(Op_MemBarRelease);
2644     } else {
2645       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2646         insert_mem_bar(Op_MemBarVolatile);
2647       }
2648     }
2649   }
2650 
2651   // Memory barrier to prevent normal and 'unsafe' accesses from
2652   // bypassing each other.  Happens after null checks, so the
2653   // exception paths do not take memory state from the memory barrier,
2654   // so there's no problems making a strong assert about mixing users
2655   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2656   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2657   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2658 
2659   if (!is_store) {
2660     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2661     // load value
2662     switch (type) {
2663     case T_BOOLEAN:
2664     case T_CHAR:
2665     case T_BYTE:
2666     case T_SHORT:
2667     case T_INT:
2668     case T_LONG:
2669     case T_FLOAT:
2670     case T_DOUBLE:
2671       break;
2672     case T_OBJECT:
2673       if (need_read_barrier) {
2674         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2675       }
2676       break;
2677     case T_ADDRESS:
2678       // Cast to an int type.
2679       p = _gvn.transform(new CastP2XNode(NULL, p));
2680       p = ConvX2UL(p);
2681       break;
2682     default:
2683       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2684       break;
2685     }
2686     // The load node has the control of the preceding MemBarCPUOrder.  All
2687     // following nodes will have the control of the MemBarCPUOrder inserted at
2688     // the end of this method.  So, pushing the load onto the stack at a later
2689     // point is fine.
2690     set_result(p);
2691   } else {
2692     // place effect of store into memory
2693     switch (type) {
2694     case T_DOUBLE:
2695       val = dstore_rounding(val);
2696       break;
2697     case T_ADDRESS:
2698       // Repackage the long as a pointer.
2699       val = ConvL2X(val);
2700       val = _gvn.transform(new CastX2PNode(val));
2701       break;
2702     }
2703 
2704     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2705     if (type != T_OBJECT ) {
2706       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2707     } else {
2708       // Possibly an oop being stored to Java heap or native memory
2709       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2710         // oop to Java heap.
2711         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2712       } else {
2713         // We can't tell at compile time if we are storing in the Java heap or outside
2714         // of it. So we need to emit code to conditionally do the proper type of
2715         // store.
2716 
2717         IdealKit ideal(this);
2718 #define __ ideal.
2719         // QQQ who knows what probability is here??
2720         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2721           // Sync IdealKit and graphKit.
2722           sync_kit(ideal);
2723           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2724           // Update IdealKit memory.
2725           __ sync_kit(this);
2726         } __ else_(); {
2727           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2728         } __ end_if();
2729         // Final sync IdealKit and GraphKit.
2730         final_sync(ideal);
2731 #undef __
2732       }
2733     }
2734   }
2735 
2736   if (is_volatile) {
2737     if (!is_store) {
2738       insert_mem_bar(Op_MemBarAcquire);
2739     } else {
2740       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2741         insert_mem_bar(Op_MemBarVolatile);
2742       }
2743     }
2744   }
2745 
2746   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2747 
2748   return true;
2749 }
2750 
2751 //----------------------------inline_unsafe_prefetch----------------------------
2752 
2753 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2754 #ifndef PRODUCT
2755   {
2756     ResourceMark rm;
2757     // Check the signatures.
2758     ciSignature* sig = callee()->signature();
2759 #ifdef ASSERT
2760     // Object getObject(Object base, int/long offset), etc.
2761     BasicType rtype = sig->return_type()->basic_type();
2762     if (!is_native_ptr) {
2763       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2764       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2765       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2766     } else {
2767       assert(sig->count() == 1, "native prefetch has 1 argument");
2768       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2769     }
2770 #endif // ASSERT
2771   }
2772 #endif // !PRODUCT
2773 
2774   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2775 
2776   const int idx = is_static ? 0 : 1;
2777   if (!is_static) {
2778     null_check_receiver();
2779     if (stopped()) {
2780       return true;
2781     }
2782   }
2783 
2784   // Build address expression.  See the code in inline_unsafe_access.
2785   Node *adr;
2786   if (!is_native_ptr) {
2787     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2788     Node* base   = argument(idx + 0);  // type: oop
2789     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2790     Node* offset = argument(idx + 1);  // type: long
2791     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2792     // to be plain byte offsets, which are also the same as those accepted
2793     // by oopDesc::field_base.
2794     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2795            "fieldOffset must be byte-scaled");
2796     // 32-bit machines ignore the high half!
2797     offset = ConvL2X(offset);
2798     adr = make_unsafe_address(base, offset);
2799   } else {
2800     Node* ptr = argument(idx + 0);  // type: long
2801     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2802     adr = make_unsafe_address(NULL, ptr);
2803   }
2804 
2805   // Generate the read or write prefetch
2806   Node *prefetch;
2807   if (is_store) {
2808     prefetch = new PrefetchWriteNode(i_o(), adr);
2809   } else {
2810     prefetch = new PrefetchReadNode(i_o(), adr);
2811   }
2812   prefetch->init_req(0, control());
2813   set_i_o(_gvn.transform(prefetch));
2814 
2815   return true;
2816 }
2817 
2818 //----------------------------inline_unsafe_load_store----------------------------
2819 // This method serves a couple of different customers (depending on LoadStoreKind):
2820 //
2821 // LS_cmpxchg:
2822 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2823 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2824 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2825 //
2826 // LS_xadd:
2827 //   public int  getAndAddInt( Object o, long offset, int  delta)
2828 //   public long getAndAddLong(Object o, long offset, long delta)
2829 //
2830 // LS_xchg:
2831 //   int    getAndSet(Object o, long offset, int    newValue)
2832 //   long   getAndSet(Object o, long offset, long   newValue)
2833 //   Object getAndSet(Object o, long offset, Object newValue)
2834 //
2835 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2836   // This basic scheme here is the same as inline_unsafe_access, but
2837   // differs in enough details that combining them would make the code
2838   // overly confusing.  (This is a true fact! I originally combined
2839   // them, but even I was confused by it!) As much code/comments as
2840   // possible are retained from inline_unsafe_access though to make
2841   // the correspondences clearer. - dl
2842 
2843   if (callee()->is_static())  return false;  // caller must have the capability!
2844 
2845 #ifndef PRODUCT
2846   BasicType rtype;
2847   {
2848     ResourceMark rm;
2849     // Check the signatures.
2850     ciSignature* sig = callee()->signature();
2851     rtype = sig->return_type()->basic_type();
2852     if (kind == LS_xadd || kind == LS_xchg) {
2853       // Check the signatures.
2854 #ifdef ASSERT
2855       assert(rtype == type, "get and set must return the expected type");
2856       assert(sig->count() == 3, "get and set has 3 arguments");
2857       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2858       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2859       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2860 #endif // ASSERT
2861     } else if (kind == LS_cmpxchg) {
2862       // Check the signatures.
2863 #ifdef ASSERT
2864       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2865       assert(sig->count() == 4, "CAS has 4 arguments");
2866       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2867       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2868 #endif // ASSERT
2869     } else {
2870       ShouldNotReachHere();
2871     }
2872   }
2873 #endif //PRODUCT
2874 
2875   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2876 
2877   // Get arguments:
2878   Node* receiver = NULL;
2879   Node* base     = NULL;
2880   Node* offset   = NULL;
2881   Node* oldval   = NULL;
2882   Node* newval   = NULL;
2883   if (kind == LS_cmpxchg) {
2884     const bool two_slot_type = type2size[type] == 2;
2885     receiver = argument(0);  // type: oop
2886     base     = argument(1);  // type: oop
2887     offset   = argument(2);  // type: long
2888     oldval   = argument(4);  // type: oop, int, or long
2889     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2890   } else if (kind == LS_xadd || kind == LS_xchg){
2891     receiver = argument(0);  // type: oop
2892     base     = argument(1);  // type: oop
2893     offset   = argument(2);  // type: long
2894     oldval   = NULL;
2895     newval   = argument(4);  // type: oop, int, or long
2896   }
2897 
2898   // Null check receiver.
2899   receiver = null_check(receiver);
2900   if (stopped()) {
2901     return true;
2902   }
2903 
2904   // Build field offset expression.
2905   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2906   // to be plain byte offsets, which are also the same as those accepted
2907   // by oopDesc::field_base.
2908   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2909   // 32-bit machines ignore the high half of long offsets
2910   offset = ConvL2X(offset);
2911   Node* adr = make_unsafe_address(base, offset);
2912   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2913 
2914   // For CAS, unlike inline_unsafe_access, there seems no point in
2915   // trying to refine types. Just use the coarse types here.
2916   const Type *value_type = Type::get_const_basic_type(type);
2917   Compile::AliasType* alias_type = C->alias_type(adr_type);
2918   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2919 
2920   if (kind == LS_xchg && type == T_OBJECT) {
2921     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2922     if (tjp != NULL) {
2923       value_type = tjp;
2924     }
2925   }
2926 
2927   int alias_idx = C->get_alias_index(adr_type);
2928 
2929   // Memory-model-wise, a LoadStore acts like a little synchronized
2930   // block, so needs barriers on each side.  These don't translate
2931   // into actual barriers on most machines, but we still need rest of
2932   // compiler to respect ordering.
2933 
2934   insert_mem_bar(Op_MemBarRelease);
2935   insert_mem_bar(Op_MemBarCPUOrder);
2936 
2937   // 4984716: MemBars must be inserted before this
2938   //          memory node in order to avoid a false
2939   //          dependency which will confuse the scheduler.
2940   Node *mem = memory(alias_idx);
2941 
2942   // For now, we handle only those cases that actually exist: ints,
2943   // longs, and Object. Adding others should be straightforward.
2944   Node* load_store;
2945   switch(type) {
2946   case T_INT:
2947     if (kind == LS_xadd) {
2948       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2949     } else if (kind == LS_xchg) {
2950       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2951     } else if (kind == LS_cmpxchg) {
2952       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2953     } else {
2954       ShouldNotReachHere();
2955     }
2956     break;
2957   case T_LONG:
2958     if (kind == LS_xadd) {
2959       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2960     } else if (kind == LS_xchg) {
2961       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2962     } else if (kind == LS_cmpxchg) {
2963       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2964     } else {
2965       ShouldNotReachHere();
2966     }
2967     break;
2968   case T_OBJECT:
2969     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2970     // could be delayed during Parse (for example, in adjust_map_after_if()).
2971     // Execute transformation here to avoid barrier generation in such case.
2972     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2973       newval = _gvn.makecon(TypePtr::NULL_PTR);
2974 
2975     // Reference stores need a store barrier.
2976     if (kind == LS_xchg) {
2977       // If pre-barrier must execute before the oop store, old value will require do_load here.
2978       if (!can_move_pre_barrier()) {
2979         pre_barrier(true /* do_load*/,
2980                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2981                     NULL /* pre_val*/,
2982                     T_OBJECT);
2983       } // Else move pre_barrier to use load_store value, see below.
2984     } else if (kind == LS_cmpxchg) {
2985       // Same as for newval above:
2986       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2987         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2988       }
2989       // The only known value which might get overwritten is oldval.
2990       pre_barrier(false /* do_load */,
2991                   control(), NULL, NULL, max_juint, NULL, NULL,
2992                   oldval /* pre_val */,
2993                   T_OBJECT);
2994     } else {
2995       ShouldNotReachHere();
2996     }
2997 
2998 #ifdef _LP64
2999     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3000       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3001       if (kind == LS_xchg) {
3002         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
3003                                                        newval_enc, adr_type, value_type->make_narrowoop()));
3004       } else {
3005         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3006         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3007         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
3008                                                                 newval_enc, oldval_enc));
3009       }
3010     } else
3011 #endif
3012     {
3013       if (kind == LS_xchg) {
3014         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3015       } else {
3016         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3017         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3018       }
3019     }
3020     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3021     break;
3022   default:
3023     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3024     break;
3025   }
3026 
3027   // SCMemProjNodes represent the memory state of a LoadStore. Their
3028   // main role is to prevent LoadStore nodes from being optimized away
3029   // when their results aren't used.
3030   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3031   set_memory(proj, alias_idx);
3032 
3033   if (type == T_OBJECT && kind == LS_xchg) {
3034 #ifdef _LP64
3035     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3036       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3037     }
3038 #endif
3039     if (can_move_pre_barrier()) {
3040       // Don't need to load pre_val. The old value is returned by load_store.
3041       // The pre_barrier can execute after the xchg as long as no safepoint
3042       // gets inserted between them.
3043       pre_barrier(false /* do_load */,
3044                   control(), NULL, NULL, max_juint, NULL, NULL,
3045                   load_store /* pre_val */,
3046                   T_OBJECT);
3047     }
3048   }
3049 
3050   // Add the trailing membar surrounding the access
3051   insert_mem_bar(Op_MemBarCPUOrder);
3052   insert_mem_bar(Op_MemBarAcquire);
3053 
3054   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3055   set_result(load_store);
3056   return true;
3057 }
3058 
3059 //----------------------------inline_unsafe_ordered_store----------------------
3060 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3061 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3062 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3063 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3064   // This is another variant of inline_unsafe_access, differing in
3065   // that it always issues store-store ("release") barrier and ensures
3066   // store-atomicity (which only matters for "long").
3067 
3068   if (callee()->is_static())  return false;  // caller must have the capability!
3069 
3070 #ifndef PRODUCT
3071   {
3072     ResourceMark rm;
3073     // Check the signatures.
3074     ciSignature* sig = callee()->signature();
3075 #ifdef ASSERT
3076     BasicType rtype = sig->return_type()->basic_type();
3077     assert(rtype == T_VOID, "must return void");
3078     assert(sig->count() == 3, "has 3 arguments");
3079     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3080     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3081 #endif // ASSERT
3082   }
3083 #endif //PRODUCT
3084 
3085   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3086 
3087   // Get arguments:
3088   Node* receiver = argument(0);  // type: oop
3089   Node* base     = argument(1);  // type: oop
3090   Node* offset   = argument(2);  // type: long
3091   Node* val      = argument(4);  // type: oop, int, or long
3092 
3093   // Null check receiver.
3094   receiver = null_check(receiver);
3095   if (stopped()) {
3096     return true;
3097   }
3098 
3099   // Build field offset expression.
3100   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3101   // 32-bit machines ignore the high half of long offsets
3102   offset = ConvL2X(offset);
3103   Node* adr = make_unsafe_address(base, offset);
3104   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3105   const Type *value_type = Type::get_const_basic_type(type);
3106   Compile::AliasType* alias_type = C->alias_type(adr_type);
3107 
3108   insert_mem_bar(Op_MemBarRelease);
3109   insert_mem_bar(Op_MemBarCPUOrder);
3110   // Ensure that the store is atomic for longs:
3111   const bool require_atomic_access = true;
3112   Node* store;
3113   if (type == T_OBJECT) // reference stores need a store barrier.
3114     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3115   else {
3116     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3117   }
3118   insert_mem_bar(Op_MemBarCPUOrder);
3119   return true;
3120 }
3121 
3122 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3123   // Regardless of form, don't allow previous ld/st to move down,
3124   // then issue acquire, release, or volatile mem_bar.
3125   insert_mem_bar(Op_MemBarCPUOrder);
3126   switch(id) {
3127     case vmIntrinsics::_loadFence:
3128       insert_mem_bar(Op_LoadFence);
3129       return true;
3130     case vmIntrinsics::_storeFence:
3131       insert_mem_bar(Op_StoreFence);
3132       return true;
3133     case vmIntrinsics::_fullFence:
3134       insert_mem_bar(Op_MemBarVolatile);
3135       return true;
3136     default:
3137       fatal_unexpected_iid(id);
3138       return false;
3139   }
3140 }
3141 
3142 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3143   if (!kls->is_Con()) {
3144     return true;
3145   }
3146   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3147   if (klsptr == NULL) {
3148     return true;
3149   }
3150   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3151   // don't need a guard for a klass that is already initialized
3152   return !ik->is_initialized();
3153 }
3154 
3155 //----------------------------inline_unsafe_allocate---------------------------
3156 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3157 bool LibraryCallKit::inline_unsafe_allocate() {
3158   if (callee()->is_static())  return false;  // caller must have the capability!
3159 
3160   null_check_receiver();  // null-check, then ignore
3161   Node* cls = null_check(argument(1));
3162   if (stopped())  return true;
3163 
3164   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3165   kls = null_check(kls);
3166   if (stopped())  return true;  // argument was like int.class
3167 
3168   Node* test = NULL;
3169   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3170     // Note:  The argument might still be an illegal value like
3171     // Serializable.class or Object[].class.   The runtime will handle it.
3172     // But we must make an explicit check for initialization.
3173     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3174     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3175     // can generate code to load it as unsigned byte.
3176     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3177     Node* bits = intcon(InstanceKlass::fully_initialized);
3178     test = _gvn.transform(new SubINode(inst, bits));
3179     // The 'test' is non-zero if we need to take a slow path.
3180   }
3181 
3182   Node* obj = new_instance(kls, test);
3183   set_result(obj);
3184   return true;
3185 }
3186 
3187 #ifdef TRACE_HAVE_INTRINSICS
3188 /*
3189  * oop -> myklass
3190  * myklass->trace_id |= USED
3191  * return myklass->trace_id & ~0x3
3192  */
3193 bool LibraryCallKit::inline_native_classID() {
3194   null_check_receiver();  // null-check, then ignore
3195   Node* cls = null_check(argument(1), T_OBJECT);
3196   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3197   kls = null_check(kls, T_OBJECT);
3198   ByteSize offset = TRACE_ID_OFFSET;
3199   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3200   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3201   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3202   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3203   Node* clsused = longcon(0x01l); // set the class bit
3204   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3205 
3206   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3207   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3208   set_result(andl);
3209   return true;
3210 }
3211 
3212 bool LibraryCallKit::inline_native_threadID() {
3213   Node* tls_ptr = NULL;
3214   Node* cur_thr = generate_current_thread(tls_ptr);
3215   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3216   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3217   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3218 
3219   Node* threadid = NULL;
3220   size_t thread_id_size = OSThread::thread_id_size();
3221   if (thread_id_size == (size_t) BytesPerLong) {
3222     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3223   } else if (thread_id_size == (size_t) BytesPerInt) {
3224     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3225   } else {
3226     ShouldNotReachHere();
3227   }
3228   set_result(threadid);
3229   return true;
3230 }
3231 #endif
3232 
3233 //------------------------inline_native_time_funcs--------------
3234 // inline code for System.currentTimeMillis() and System.nanoTime()
3235 // these have the same type and signature
3236 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3237   const TypeFunc* tf = OptoRuntime::void_long_Type();
3238   const TypePtr* no_memory_effects = NULL;
3239   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3240   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3241 #ifdef ASSERT
3242   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3243   assert(value_top == top(), "second value must be top");
3244 #endif
3245   set_result(value);
3246   return true;
3247 }
3248 
3249 //------------------------inline_native_currentThread------------------
3250 bool LibraryCallKit::inline_native_currentThread() {
3251   Node* junk = NULL;
3252   set_result(generate_current_thread(junk));
3253   return true;
3254 }
3255 
3256 //------------------------inline_native_isInterrupted------------------
3257 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3258 bool LibraryCallKit::inline_native_isInterrupted() {
3259   // Add a fast path to t.isInterrupted(clear_int):
3260   //   (t == Thread.current() &&
3261   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3262   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3263   // So, in the common case that the interrupt bit is false,
3264   // we avoid making a call into the VM.  Even if the interrupt bit
3265   // is true, if the clear_int argument is false, we avoid the VM call.
3266   // However, if the receiver is not currentThread, we must call the VM,
3267   // because there must be some locking done around the operation.
3268 
3269   // We only go to the fast case code if we pass two guards.
3270   // Paths which do not pass are accumulated in the slow_region.
3271 
3272   enum {
3273     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3274     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3275     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3276     PATH_LIMIT
3277   };
3278 
3279   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3280   // out of the function.
3281   insert_mem_bar(Op_MemBarCPUOrder);
3282 
3283   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3284   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3285 
3286   RegionNode* slow_region = new RegionNode(1);
3287   record_for_igvn(slow_region);
3288 
3289   // (a) Receiving thread must be the current thread.
3290   Node* rec_thr = argument(0);
3291   Node* tls_ptr = NULL;
3292   Node* cur_thr = generate_current_thread(tls_ptr);
3293   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3294   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3295 
3296   generate_slow_guard(bol_thr, slow_region);
3297 
3298   // (b) Interrupt bit on TLS must be false.
3299   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3300   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3301   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3302 
3303   // Set the control input on the field _interrupted read to prevent it floating up.
3304   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3305   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3306   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3307 
3308   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3309 
3310   // First fast path:  if (!TLS._interrupted) return false;
3311   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3312   result_rgn->init_req(no_int_result_path, false_bit);
3313   result_val->init_req(no_int_result_path, intcon(0));
3314 
3315   // drop through to next case
3316   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3317 
3318 #ifndef TARGET_OS_FAMILY_windows
3319   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3320   Node* clr_arg = argument(1);
3321   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3322   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3323   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3324 
3325   // Second fast path:  ... else if (!clear_int) return true;
3326   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3327   result_rgn->init_req(no_clear_result_path, false_arg);
3328   result_val->init_req(no_clear_result_path, intcon(1));
3329 
3330   // drop through to next case
3331   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3332 #else
3333   // To return true on Windows you must read the _interrupted field
3334   // and check the the event state i.e. take the slow path.
3335 #endif // TARGET_OS_FAMILY_windows
3336 
3337   // (d) Otherwise, go to the slow path.
3338   slow_region->add_req(control());
3339   set_control( _gvn.transform(slow_region));
3340 
3341   if (stopped()) {
3342     // There is no slow path.
3343     result_rgn->init_req(slow_result_path, top());
3344     result_val->init_req(slow_result_path, top());
3345   } else {
3346     // non-virtual because it is a private non-static
3347     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3348 
3349     Node* slow_val = set_results_for_java_call(slow_call);
3350     // this->control() comes from set_results_for_java_call
3351 
3352     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3353     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3354 
3355     // These two phis are pre-filled with copies of of the fast IO and Memory
3356     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3357     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3358 
3359     result_rgn->init_req(slow_result_path, control());
3360     result_io ->init_req(slow_result_path, i_o());
3361     result_mem->init_req(slow_result_path, reset_memory());
3362     result_val->init_req(slow_result_path, slow_val);
3363 
3364     set_all_memory(_gvn.transform(result_mem));
3365     set_i_o(       _gvn.transform(result_io));
3366   }
3367 
3368   C->set_has_split_ifs(true); // Has chance for split-if optimization
3369   set_result(result_rgn, result_val);
3370   return true;
3371 }
3372 
3373 //---------------------------load_mirror_from_klass----------------------------
3374 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3375 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3376   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3377   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3378 }
3379 
3380 //-----------------------load_klass_from_mirror_common-------------------------
3381 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3382 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3383 // and branch to the given path on the region.
3384 // If never_see_null, take an uncommon trap on null, so we can optimistically
3385 // compile for the non-null case.
3386 // If the region is NULL, force never_see_null = true.
3387 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3388                                                     bool never_see_null,
3389                                                     RegionNode* region,
3390                                                     int null_path,
3391                                                     int offset) {
3392   if (region == NULL)  never_see_null = true;
3393   Node* p = basic_plus_adr(mirror, offset);
3394   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3395   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3396   Node* null_ctl = top();
3397   kls = null_check_oop(kls, &null_ctl, never_see_null);
3398   if (region != NULL) {
3399     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3400     region->init_req(null_path, null_ctl);
3401   } else {
3402     assert(null_ctl == top(), "no loose ends");
3403   }
3404   return kls;
3405 }
3406 
3407 //--------------------(inline_native_Class_query helpers)---------------------
3408 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3409 // Fall through if (mods & mask) == bits, take the guard otherwise.
3410 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3411   // Branch around if the given klass has the given modifier bit set.
3412   // Like generate_guard, adds a new path onto the region.
3413   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3414   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3415   Node* mask = intcon(modifier_mask);
3416   Node* bits = intcon(modifier_bits);
3417   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3418   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3419   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3420   return generate_fair_guard(bol, region);
3421 }
3422 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3423   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3424 }
3425 
3426 //-------------------------inline_native_Class_query-------------------
3427 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3428   const Type* return_type = TypeInt::BOOL;
3429   Node* prim_return_value = top();  // what happens if it's a primitive class?
3430   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3431   bool expect_prim = false;     // most of these guys expect to work on refs
3432 
3433   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3434 
3435   Node* mirror = argument(0);
3436   Node* obj    = top();
3437 
3438   switch (id) {
3439   case vmIntrinsics::_isInstance:
3440     // nothing is an instance of a primitive type
3441     prim_return_value = intcon(0);
3442     obj = argument(1);
3443     break;
3444   case vmIntrinsics::_getModifiers:
3445     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3446     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3447     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3448     break;
3449   case vmIntrinsics::_isInterface:
3450     prim_return_value = intcon(0);
3451     break;
3452   case vmIntrinsics::_isArray:
3453     prim_return_value = intcon(0);
3454     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3455     break;
3456   case vmIntrinsics::_isPrimitive:
3457     prim_return_value = intcon(1);
3458     expect_prim = true;  // obviously
3459     break;
3460   case vmIntrinsics::_getSuperclass:
3461     prim_return_value = null();
3462     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3463     break;
3464   case vmIntrinsics::_getComponentType:
3465     prim_return_value = null();
3466     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3467     break;
3468   case vmIntrinsics::_getClassAccessFlags:
3469     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3470     return_type = TypeInt::INT;  // not bool!  6297094
3471     break;
3472   default:
3473     fatal_unexpected_iid(id);
3474     break;
3475   }
3476 
3477   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3478   if (mirror_con == NULL)  return false;  // cannot happen?
3479 
3480 #ifndef PRODUCT
3481   if (C->print_intrinsics() || C->print_inlining()) {
3482     ciType* k = mirror_con->java_mirror_type();
3483     if (k) {
3484       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3485       k->print_name();
3486       tty->cr();
3487     }
3488   }
3489 #endif
3490 
3491   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3492   RegionNode* region = new RegionNode(PATH_LIMIT);
3493   record_for_igvn(region);
3494   PhiNode* phi = new PhiNode(region, return_type);
3495 
3496   // The mirror will never be null of Reflection.getClassAccessFlags, however
3497   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3498   // if it is. See bug 4774291.
3499 
3500   // For Reflection.getClassAccessFlags(), the null check occurs in
3501   // the wrong place; see inline_unsafe_access(), above, for a similar
3502   // situation.
3503   mirror = null_check(mirror);
3504   // If mirror or obj is dead, only null-path is taken.
3505   if (stopped())  return true;
3506 
3507   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3508 
3509   // Now load the mirror's klass metaobject, and null-check it.
3510   // Side-effects region with the control path if the klass is null.
3511   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3512   // If kls is null, we have a primitive mirror.
3513   phi->init_req(_prim_path, prim_return_value);
3514   if (stopped()) { set_result(region, phi); return true; }
3515   bool safe_for_replace = (region->in(_prim_path) == top());
3516 
3517   Node* p;  // handy temp
3518   Node* null_ctl;
3519 
3520   // Now that we have the non-null klass, we can perform the real query.
3521   // For constant classes, the query will constant-fold in LoadNode::Value.
3522   Node* query_value = top();
3523   switch (id) {
3524   case vmIntrinsics::_isInstance:
3525     // nothing is an instance of a primitive type
3526     query_value = gen_instanceof(obj, kls, safe_for_replace);
3527     break;
3528 
3529   case vmIntrinsics::_getModifiers:
3530     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3531     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3532     break;
3533 
3534   case vmIntrinsics::_isInterface:
3535     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3536     if (generate_interface_guard(kls, region) != NULL)
3537       // A guard was added.  If the guard is taken, it was an interface.
3538       phi->add_req(intcon(1));
3539     // If we fall through, it's a plain class.
3540     query_value = intcon(0);
3541     break;
3542 
3543   case vmIntrinsics::_isArray:
3544     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3545     if (generate_array_guard(kls, region) != NULL)
3546       // A guard was added.  If the guard is taken, it was an array.
3547       phi->add_req(intcon(1));
3548     // If we fall through, it's a plain class.
3549     query_value = intcon(0);
3550     break;
3551 
3552   case vmIntrinsics::_isPrimitive:
3553     query_value = intcon(0); // "normal" path produces false
3554     break;
3555 
3556   case vmIntrinsics::_getSuperclass:
3557     // The rules here are somewhat unfortunate, but we can still do better
3558     // with random logic than with a JNI call.
3559     // Interfaces store null or Object as _super, but must report null.
3560     // Arrays store an intermediate super as _super, but must report Object.
3561     // Other types can report the actual _super.
3562     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3563     if (generate_interface_guard(kls, region) != NULL)
3564       // A guard was added.  If the guard is taken, it was an interface.
3565       phi->add_req(null());
3566     if (generate_array_guard(kls, region) != NULL)
3567       // A guard was added.  If the guard is taken, it was an array.
3568       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3569     // If we fall through, it's a plain class.  Get its _super.
3570     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3571     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3572     null_ctl = top();
3573     kls = null_check_oop(kls, &null_ctl);
3574     if (null_ctl != top()) {
3575       // If the guard is taken, Object.superClass is null (both klass and mirror).
3576       region->add_req(null_ctl);
3577       phi   ->add_req(null());
3578     }
3579     if (!stopped()) {
3580       query_value = load_mirror_from_klass(kls);
3581     }
3582     break;
3583 
3584   case vmIntrinsics::_getComponentType:
3585     if (generate_array_guard(kls, region) != NULL) {
3586       // Be sure to pin the oop load to the guard edge just created:
3587       Node* is_array_ctrl = region->in(region->req()-1);
3588       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3589       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3590       phi->add_req(cmo);
3591     }
3592     query_value = null();  // non-array case is null
3593     break;
3594 
3595   case vmIntrinsics::_getClassAccessFlags:
3596     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3597     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3598     break;
3599 
3600   default:
3601     fatal_unexpected_iid(id);
3602     break;
3603   }
3604 
3605   // Fall-through is the normal case of a query to a real class.
3606   phi->init_req(1, query_value);
3607   region->init_req(1, control());
3608 
3609   C->set_has_split_ifs(true); // Has chance for split-if optimization
3610   set_result(region, phi);
3611   return true;
3612 }
3613 
3614 //--------------------------inline_native_subtype_check------------------------
3615 // This intrinsic takes the JNI calls out of the heart of
3616 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3617 bool LibraryCallKit::inline_native_subtype_check() {
3618   // Pull both arguments off the stack.
3619   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3620   args[0] = argument(0);
3621   args[1] = argument(1);
3622   Node* klasses[2];             // corresponding Klasses: superk, subk
3623   klasses[0] = klasses[1] = top();
3624 
3625   enum {
3626     // A full decision tree on {superc is prim, subc is prim}:
3627     _prim_0_path = 1,           // {P,N} => false
3628                                 // {P,P} & superc!=subc => false
3629     _prim_same_path,            // {P,P} & superc==subc => true
3630     _prim_1_path,               // {N,P} => false
3631     _ref_subtype_path,          // {N,N} & subtype check wins => true
3632     _both_ref_path,             // {N,N} & subtype check loses => false
3633     PATH_LIMIT
3634   };
3635 
3636   RegionNode* region = new RegionNode(PATH_LIMIT);
3637   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3638   record_for_igvn(region);
3639 
3640   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3641   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3642   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3643 
3644   // First null-check both mirrors and load each mirror's klass metaobject.
3645   int which_arg;
3646   for (which_arg = 0; which_arg <= 1; which_arg++) {
3647     Node* arg = args[which_arg];
3648     arg = null_check(arg);
3649     if (stopped())  break;
3650     args[which_arg] = arg;
3651 
3652     Node* p = basic_plus_adr(arg, class_klass_offset);
3653     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3654     klasses[which_arg] = _gvn.transform(kls);
3655   }
3656 
3657   // Having loaded both klasses, test each for null.
3658   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3659   for (which_arg = 0; which_arg <= 1; which_arg++) {
3660     Node* kls = klasses[which_arg];
3661     Node* null_ctl = top();
3662     kls = null_check_oop(kls, &null_ctl, never_see_null);
3663     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3664     region->init_req(prim_path, null_ctl);
3665     if (stopped())  break;
3666     klasses[which_arg] = kls;
3667   }
3668 
3669   if (!stopped()) {
3670     // now we have two reference types, in klasses[0..1]
3671     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3672     Node* superk = klasses[0];  // the receiver
3673     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3674     // now we have a successful reference subtype check
3675     region->set_req(_ref_subtype_path, control());
3676   }
3677 
3678   // If both operands are primitive (both klasses null), then
3679   // we must return true when they are identical primitives.
3680   // It is convenient to test this after the first null klass check.
3681   set_control(region->in(_prim_0_path)); // go back to first null check
3682   if (!stopped()) {
3683     // Since superc is primitive, make a guard for the superc==subc case.
3684     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3685     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3686     generate_guard(bol_eq, region, PROB_FAIR);
3687     if (region->req() == PATH_LIMIT+1) {
3688       // A guard was added.  If the added guard is taken, superc==subc.
3689       region->swap_edges(PATH_LIMIT, _prim_same_path);
3690       region->del_req(PATH_LIMIT);
3691     }
3692     region->set_req(_prim_0_path, control()); // Not equal after all.
3693   }
3694 
3695   // these are the only paths that produce 'true':
3696   phi->set_req(_prim_same_path,   intcon(1));
3697   phi->set_req(_ref_subtype_path, intcon(1));
3698 
3699   // pull together the cases:
3700   assert(region->req() == PATH_LIMIT, "sane region");
3701   for (uint i = 1; i < region->req(); i++) {
3702     Node* ctl = region->in(i);
3703     if (ctl == NULL || ctl == top()) {
3704       region->set_req(i, top());
3705       phi   ->set_req(i, top());
3706     } else if (phi->in(i) == NULL) {
3707       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3708     }
3709   }
3710 
3711   set_control(_gvn.transform(region));
3712   set_result(_gvn.transform(phi));
3713   return true;
3714 }
3715 
3716 //---------------------generate_array_guard_common------------------------
3717 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3718                                                   bool obj_array, bool not_array) {
3719   // If obj_array/non_array==false/false:
3720   // Branch around if the given klass is in fact an array (either obj or prim).
3721   // If obj_array/non_array==false/true:
3722   // Branch around if the given klass is not an array klass of any kind.
3723   // If obj_array/non_array==true/true:
3724   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3725   // If obj_array/non_array==true/false:
3726   // Branch around if the kls is an oop array (Object[] or subtype)
3727   //
3728   // Like generate_guard, adds a new path onto the region.
3729   jint  layout_con = 0;
3730   Node* layout_val = get_layout_helper(kls, layout_con);
3731   if (layout_val == NULL) {
3732     bool query = (obj_array
3733                   ? Klass::layout_helper_is_objArray(layout_con)
3734                   : Klass::layout_helper_is_array(layout_con));
3735     if (query == not_array) {
3736       return NULL;                       // never a branch
3737     } else {                             // always a branch
3738       Node* always_branch = control();
3739       if (region != NULL)
3740         region->add_req(always_branch);
3741       set_control(top());
3742       return always_branch;
3743     }
3744   }
3745   // Now test the correct condition.
3746   jint  nval = (obj_array
3747                 ? ((jint)Klass::_lh_array_tag_type_value
3748                    <<    Klass::_lh_array_tag_shift)
3749                 : Klass::_lh_neutral_value);
3750   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3751   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3752   // invert the test if we are looking for a non-array
3753   if (not_array)  btest = BoolTest(btest).negate();
3754   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3755   return generate_fair_guard(bol, region);
3756 }
3757 
3758 
3759 //-----------------------inline_native_newArray--------------------------
3760 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3761 bool LibraryCallKit::inline_native_newArray() {
3762   Node* mirror    = argument(0);
3763   Node* count_val = argument(1);
3764 
3765   mirror = null_check(mirror);
3766   // If mirror or obj is dead, only null-path is taken.
3767   if (stopped())  return true;
3768 
3769   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3770   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3771   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3772   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3773   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3774 
3775   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3776   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3777                                                   result_reg, _slow_path);
3778   Node* normal_ctl   = control();
3779   Node* no_array_ctl = result_reg->in(_slow_path);
3780 
3781   // Generate code for the slow case.  We make a call to newArray().
3782   set_control(no_array_ctl);
3783   if (!stopped()) {
3784     // Either the input type is void.class, or else the
3785     // array klass has not yet been cached.  Either the
3786     // ensuing call will throw an exception, or else it
3787     // will cache the array klass for next time.
3788     PreserveJVMState pjvms(this);
3789     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3790     Node* slow_result = set_results_for_java_call(slow_call);
3791     // this->control() comes from set_results_for_java_call
3792     result_reg->set_req(_slow_path, control());
3793     result_val->set_req(_slow_path, slow_result);
3794     result_io ->set_req(_slow_path, i_o());
3795     result_mem->set_req(_slow_path, reset_memory());
3796   }
3797 
3798   set_control(normal_ctl);
3799   if (!stopped()) {
3800     // Normal case:  The array type has been cached in the java.lang.Class.
3801     // The following call works fine even if the array type is polymorphic.
3802     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3803     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3804     result_reg->init_req(_normal_path, control());
3805     result_val->init_req(_normal_path, obj);
3806     result_io ->init_req(_normal_path, i_o());
3807     result_mem->init_req(_normal_path, reset_memory());
3808   }
3809 
3810   // Return the combined state.
3811   set_i_o(        _gvn.transform(result_io)  );
3812   set_all_memory( _gvn.transform(result_mem));
3813 
3814   C->set_has_split_ifs(true); // Has chance for split-if optimization
3815   set_result(result_reg, result_val);
3816   return true;
3817 }
3818 
3819 //----------------------inline_native_getLength--------------------------
3820 // public static native int java.lang.reflect.Array.getLength(Object array);
3821 bool LibraryCallKit::inline_native_getLength() {
3822   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3823 
3824   Node* array = null_check(argument(0));
3825   // If array is dead, only null-path is taken.
3826   if (stopped())  return true;
3827 
3828   // Deoptimize if it is a non-array.
3829   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3830 
3831   if (non_array != NULL) {
3832     PreserveJVMState pjvms(this);
3833     set_control(non_array);
3834     uncommon_trap(Deoptimization::Reason_intrinsic,
3835                   Deoptimization::Action_maybe_recompile);
3836   }
3837 
3838   // If control is dead, only non-array-path is taken.
3839   if (stopped())  return true;
3840 
3841   // The works fine even if the array type is polymorphic.
3842   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3843   Node* result = load_array_length(array);
3844 
3845   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3846   set_result(result);
3847   return true;
3848 }
3849 
3850 //------------------------inline_array_copyOf----------------------------
3851 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3852 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3853 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3854   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3855 
3856   // Get the arguments.
3857   Node* original          = argument(0);
3858   Node* start             = is_copyOfRange? argument(1): intcon(0);
3859   Node* end               = is_copyOfRange? argument(2): argument(1);
3860   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3861 
3862   Node* newcopy;
3863 
3864   // Set the original stack and the reexecute bit for the interpreter to reexecute
3865   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3866   { PreserveReexecuteState preexecs(this);
3867     jvms()->set_should_reexecute(true);
3868 
3869     array_type_mirror = null_check(array_type_mirror);
3870     original          = null_check(original);
3871 
3872     // Check if a null path was taken unconditionally.
3873     if (stopped())  return true;
3874 
3875     Node* orig_length = load_array_length(original);
3876 
3877     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3878     klass_node = null_check(klass_node);
3879 
3880     RegionNode* bailout = new RegionNode(1);
3881     record_for_igvn(bailout);
3882 
3883     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3884     // Bail out if that is so.
3885     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3886     if (not_objArray != NULL) {
3887       // Improve the klass node's type from the new optimistic assumption:
3888       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3889       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3890       Node* cast = new CastPPNode(klass_node, akls);
3891       cast->init_req(0, control());
3892       klass_node = _gvn.transform(cast);
3893     }
3894 
3895     // Bail out if either start or end is negative.
3896     generate_negative_guard(start, bailout, &start);
3897     generate_negative_guard(end,   bailout, &end);
3898 
3899     Node* length = end;
3900     if (_gvn.type(start) != TypeInt::ZERO) {
3901       length = _gvn.transform(new SubINode(end, start));
3902     }
3903 
3904     // Bail out if length is negative.
3905     // Without this the new_array would throw
3906     // NegativeArraySizeException but IllegalArgumentException is what
3907     // should be thrown
3908     generate_negative_guard(length, bailout, &length);
3909 
3910     if (bailout->req() > 1) {
3911       PreserveJVMState pjvms(this);
3912       set_control(_gvn.transform(bailout));
3913       uncommon_trap(Deoptimization::Reason_intrinsic,
3914                     Deoptimization::Action_maybe_recompile);
3915     }
3916 
3917     if (!stopped()) {
3918       // How many elements will we copy from the original?
3919       // The answer is MinI(orig_length - start, length).
3920       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3921       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3922 
3923       newcopy = new_array(klass_node, length, 0);  // no argments to push
3924 
3925       // Generate a direct call to the right arraycopy function(s).
3926       // We know the copy is disjoint but we might not know if the
3927       // oop stores need checking.
3928       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3929       // This will fail a store-check if x contains any non-nulls.
3930       bool disjoint_bases = true;
3931       // if start > orig_length then the length of the copy may be
3932       // negative.
3933       bool length_never_negative = !is_copyOfRange;
3934       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3935                          original, start, newcopy, intcon(0), moved,
3936                          disjoint_bases, length_never_negative);
3937     }
3938   } // original reexecute is set back here
3939 
3940   C->set_has_split_ifs(true); // Has chance for split-if optimization
3941   if (!stopped()) {
3942     set_result(newcopy);
3943   }
3944   return true;
3945 }
3946 
3947 
3948 //----------------------generate_virtual_guard---------------------------
3949 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3950 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3951                                              RegionNode* slow_region) {
3952   ciMethod* method = callee();
3953   int vtable_index = method->vtable_index();
3954   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3955          err_msg_res("bad index %d", vtable_index));
3956   // Get the Method* out of the appropriate vtable entry.
3957   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3958                      vtable_index*vtableEntry::size()) * wordSize +
3959                      vtableEntry::method_offset_in_bytes();
3960   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3961   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3962 
3963   // Compare the target method with the expected method (e.g., Object.hashCode).
3964   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3965 
3966   Node* native_call = makecon(native_call_addr);
3967   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3968   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3969 
3970   return generate_slow_guard(test_native, slow_region);
3971 }
3972 
3973 //-----------------------generate_method_call----------------------------
3974 // Use generate_method_call to make a slow-call to the real
3975 // method if the fast path fails.  An alternative would be to
3976 // use a stub like OptoRuntime::slow_arraycopy_Java.
3977 // This only works for expanding the current library call,
3978 // not another intrinsic.  (E.g., don't use this for making an
3979 // arraycopy call inside of the copyOf intrinsic.)
3980 CallJavaNode*
3981 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3982   // When compiling the intrinsic method itself, do not use this technique.
3983   guarantee(callee() != C->method(), "cannot make slow-call to self");
3984 
3985   ciMethod* method = callee();
3986   // ensure the JVMS we have will be correct for this call
3987   guarantee(method_id == method->intrinsic_id(), "must match");
3988 
3989   const TypeFunc* tf = TypeFunc::make(method);
3990   CallJavaNode* slow_call;
3991   if (is_static) {
3992     assert(!is_virtual, "");
3993     slow_call = new CallStaticJavaNode(C, tf,
3994                            SharedRuntime::get_resolve_static_call_stub(),
3995                            method, bci());
3996   } else if (is_virtual) {
3997     null_check_receiver();
3998     int vtable_index = Method::invalid_vtable_index;
3999     if (UseInlineCaches) {
4000       // Suppress the vtable call
4001     } else {
4002       // hashCode and clone are not a miranda methods,
4003       // so the vtable index is fixed.
4004       // No need to use the linkResolver to get it.
4005        vtable_index = method->vtable_index();
4006        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4007               err_msg_res("bad index %d", vtable_index));
4008     }
4009     slow_call = new CallDynamicJavaNode(tf,
4010                           SharedRuntime::get_resolve_virtual_call_stub(),
4011                           method, vtable_index, bci());
4012   } else {  // neither virtual nor static:  opt_virtual
4013     null_check_receiver();
4014     slow_call = new CallStaticJavaNode(C, tf,
4015                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4016                                 method, bci());
4017     slow_call->set_optimized_virtual(true);
4018   }
4019   set_arguments_for_java_call(slow_call);
4020   set_edges_for_java_call(slow_call);
4021   return slow_call;
4022 }
4023 
4024 
4025 /**
4026  * Build special case code for calls to hashCode on an object. This call may
4027  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4028  * slightly different code.
4029  */
4030 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4031   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4032   assert(!(is_virtual && is_static), "either virtual, special, or static");
4033 
4034   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4035 
4036   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4037   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4038   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4039   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4040   Node* obj = NULL;
4041   if (!is_static) {
4042     // Check for hashing null object
4043     obj = null_check_receiver();
4044     if (stopped())  return true;        // unconditionally null
4045     result_reg->init_req(_null_path, top());
4046     result_val->init_req(_null_path, top());
4047   } else {
4048     // Do a null check, and return zero if null.
4049     // System.identityHashCode(null) == 0
4050     obj = argument(0);
4051     Node* null_ctl = top();
4052     obj = null_check_oop(obj, &null_ctl);
4053     result_reg->init_req(_null_path, null_ctl);
4054     result_val->init_req(_null_path, _gvn.intcon(0));
4055   }
4056 
4057   // Unconditionally null?  Then return right away.
4058   if (stopped()) {
4059     set_control( result_reg->in(_null_path));
4060     if (!stopped())
4061       set_result(result_val->in(_null_path));
4062     return true;
4063   }
4064 
4065   // We only go to the fast case code if we pass a number of guards.  The
4066   // paths which do not pass are accumulated in the slow_region.
4067   RegionNode* slow_region = new RegionNode(1);
4068   record_for_igvn(slow_region);
4069 
4070   // If this is a virtual call, we generate a funny guard.  We pull out
4071   // the vtable entry corresponding to hashCode() from the target object.
4072   // If the target method which we are calling happens to be the native
4073   // Object hashCode() method, we pass the guard.  We do not need this
4074   // guard for non-virtual calls -- the caller is known to be the native
4075   // Object hashCode().
4076   if (is_virtual) {
4077     // After null check, get the object's klass.
4078     Node* obj_klass = load_object_klass(obj);
4079     generate_virtual_guard(obj_klass, slow_region);
4080   }
4081 
4082   // Get the header out of the object, use LoadMarkNode when available
4083   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4084   // The control of the load must be NULL. Otherwise, the load can move before
4085   // the null check after castPP removal.
4086   Node* no_ctrl = NULL;
4087   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4088 
4089   // Test the header to see if it is unlocked.
4090   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4091   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4092   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4093   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4094   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4095 
4096   generate_slow_guard(test_unlocked, slow_region);
4097 
4098   // Get the hash value and check to see that it has been properly assigned.
4099   // We depend on hash_mask being at most 32 bits and avoid the use of
4100   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4101   // vm: see markOop.hpp.
4102   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4103   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4104   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4105   // This hack lets the hash bits live anywhere in the mark object now, as long
4106   // as the shift drops the relevant bits into the low 32 bits.  Note that
4107   // Java spec says that HashCode is an int so there's no point in capturing
4108   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4109   hshifted_header      = ConvX2I(hshifted_header);
4110   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4111 
4112   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4113   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4114   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4115 
4116   generate_slow_guard(test_assigned, slow_region);
4117 
4118   Node* init_mem = reset_memory();
4119   // fill in the rest of the null path:
4120   result_io ->init_req(_null_path, i_o());
4121   result_mem->init_req(_null_path, init_mem);
4122 
4123   result_val->init_req(_fast_path, hash_val);
4124   result_reg->init_req(_fast_path, control());
4125   result_io ->init_req(_fast_path, i_o());
4126   result_mem->init_req(_fast_path, init_mem);
4127 
4128   // Generate code for the slow case.  We make a call to hashCode().
4129   set_control(_gvn.transform(slow_region));
4130   if (!stopped()) {
4131     // No need for PreserveJVMState, because we're using up the present state.
4132     set_all_memory(init_mem);
4133     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4134     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4135     Node* slow_result = set_results_for_java_call(slow_call);
4136     // this->control() comes from set_results_for_java_call
4137     result_reg->init_req(_slow_path, control());
4138     result_val->init_req(_slow_path, slow_result);
4139     result_io  ->set_req(_slow_path, i_o());
4140     result_mem ->set_req(_slow_path, reset_memory());
4141   }
4142 
4143   // Return the combined state.
4144   set_i_o(        _gvn.transform(result_io)  );
4145   set_all_memory( _gvn.transform(result_mem));
4146 
4147   set_result(result_reg, result_val);
4148   return true;
4149 }
4150 
4151 //---------------------------inline_native_getClass----------------------------
4152 // public final native Class<?> java.lang.Object.getClass();
4153 //
4154 // Build special case code for calls to getClass on an object.
4155 bool LibraryCallKit::inline_native_getClass() {
4156   Node* obj = null_check_receiver();
4157   if (stopped())  return true;
4158   set_result(load_mirror_from_klass(load_object_klass(obj)));
4159   return true;
4160 }
4161 
4162 //-----------------inline_native_Reflection_getCallerClass---------------------
4163 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4164 //
4165 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4166 //
4167 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4168 // in that it must skip particular security frames and checks for
4169 // caller sensitive methods.
4170 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4171 #ifndef PRODUCT
4172   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4173     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4174   }
4175 #endif
4176 
4177   if (!jvms()->has_method()) {
4178 #ifndef PRODUCT
4179     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4180       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4181     }
4182 #endif
4183     return false;
4184   }
4185 
4186   // Walk back up the JVM state to find the caller at the required
4187   // depth.
4188   JVMState* caller_jvms = jvms();
4189 
4190   // Cf. JVM_GetCallerClass
4191   // NOTE: Start the loop at depth 1 because the current JVM state does
4192   // not include the Reflection.getCallerClass() frame.
4193   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4194     ciMethod* m = caller_jvms->method();
4195     switch (n) {
4196     case 0:
4197       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4198       break;
4199     case 1:
4200       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4201       if (!m->caller_sensitive()) {
4202 #ifndef PRODUCT
4203         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4204           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4205         }
4206 #endif
4207         return false;  // bail-out; let JVM_GetCallerClass do the work
4208       }
4209       break;
4210     default:
4211       if (!m->is_ignored_by_security_stack_walk()) {
4212         // We have reached the desired frame; return the holder class.
4213         // Acquire method holder as java.lang.Class and push as constant.
4214         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4215         ciInstance* caller_mirror = caller_klass->java_mirror();
4216         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4217 
4218 #ifndef PRODUCT
4219         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4220           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4221           tty->print_cr("  JVM state at this point:");
4222           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4223             ciMethod* m = jvms()->of_depth(i)->method();
4224             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4225           }
4226         }
4227 #endif
4228         return true;
4229       }
4230       break;
4231     }
4232   }
4233 
4234 #ifndef PRODUCT
4235   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4236     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4237     tty->print_cr("  JVM state at this point:");
4238     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4239       ciMethod* m = jvms()->of_depth(i)->method();
4240       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4241     }
4242   }
4243 #endif
4244 
4245   return false;  // bail-out; let JVM_GetCallerClass do the work
4246 }
4247 
4248 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4249   Node* arg = argument(0);
4250   Node* result;
4251 
4252   switch (id) {
4253   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4254   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4255   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4256   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4257 
4258   case vmIntrinsics::_doubleToLongBits: {
4259     // two paths (plus control) merge in a wood
4260     RegionNode *r = new RegionNode(3);
4261     Node *phi = new PhiNode(r, TypeLong::LONG);
4262 
4263     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4264     // Build the boolean node
4265     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4266 
4267     // Branch either way.
4268     // NaN case is less traveled, which makes all the difference.
4269     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4270     Node *opt_isnan = _gvn.transform(ifisnan);
4271     assert( opt_isnan->is_If(), "Expect an IfNode");
4272     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4273     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4274 
4275     set_control(iftrue);
4276 
4277     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4278     Node *slow_result = longcon(nan_bits); // return NaN
4279     phi->init_req(1, _gvn.transform( slow_result ));
4280     r->init_req(1, iftrue);
4281 
4282     // Else fall through
4283     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4284     set_control(iffalse);
4285 
4286     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4287     r->init_req(2, iffalse);
4288 
4289     // Post merge
4290     set_control(_gvn.transform(r));
4291     record_for_igvn(r);
4292 
4293     C->set_has_split_ifs(true); // Has chance for split-if optimization
4294     result = phi;
4295     assert(result->bottom_type()->isa_long(), "must be");
4296     break;
4297   }
4298 
4299   case vmIntrinsics::_floatToIntBits: {
4300     // two paths (plus control) merge in a wood
4301     RegionNode *r = new RegionNode(3);
4302     Node *phi = new PhiNode(r, TypeInt::INT);
4303 
4304     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4305     // Build the boolean node
4306     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4307 
4308     // Branch either way.
4309     // NaN case is less traveled, which makes all the difference.
4310     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4311     Node *opt_isnan = _gvn.transform(ifisnan);
4312     assert( opt_isnan->is_If(), "Expect an IfNode");
4313     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4314     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4315 
4316     set_control(iftrue);
4317 
4318     static const jint nan_bits = 0x7fc00000;
4319     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4320     phi->init_req(1, _gvn.transform( slow_result ));
4321     r->init_req(1, iftrue);
4322 
4323     // Else fall through
4324     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4325     set_control(iffalse);
4326 
4327     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4328     r->init_req(2, iffalse);
4329 
4330     // Post merge
4331     set_control(_gvn.transform(r));
4332     record_for_igvn(r);
4333 
4334     C->set_has_split_ifs(true); // Has chance for split-if optimization
4335     result = phi;
4336     assert(result->bottom_type()->isa_int(), "must be");
4337     break;
4338   }
4339 
4340   default:
4341     fatal_unexpected_iid(id);
4342     break;
4343   }
4344   set_result(_gvn.transform(result));
4345   return true;
4346 }
4347 
4348 #ifdef _LP64
4349 #define XTOP ,top() /*additional argument*/
4350 #else  //_LP64
4351 #define XTOP        /*no additional argument*/
4352 #endif //_LP64
4353 
4354 //----------------------inline_unsafe_copyMemory-------------------------
4355 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4356 bool LibraryCallKit::inline_unsafe_copyMemory() {
4357   if (callee()->is_static())  return false;  // caller must have the capability!
4358   null_check_receiver();  // null-check receiver
4359   if (stopped())  return true;
4360 
4361   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4362 
4363   Node* src_ptr =         argument(1);   // type: oop
4364   Node* src_off = ConvL2X(argument(2));  // type: long
4365   Node* dst_ptr =         argument(4);   // type: oop
4366   Node* dst_off = ConvL2X(argument(5));  // type: long
4367   Node* size    = ConvL2X(argument(7));  // type: long
4368 
4369   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4370          "fieldOffset must be byte-scaled");
4371 
4372   Node* src = make_unsafe_address(src_ptr, src_off);
4373   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4374 
4375   // Conservatively insert a memory barrier on all memory slices.
4376   // Do not let writes of the copy source or destination float below the copy.
4377   insert_mem_bar(Op_MemBarCPUOrder);
4378 
4379   // Call it.  Note that the length argument is not scaled.
4380   make_runtime_call(RC_LEAF|RC_NO_FP,
4381                     OptoRuntime::fast_arraycopy_Type(),
4382                     StubRoutines::unsafe_arraycopy(),
4383                     "unsafe_arraycopy",
4384                     TypeRawPtr::BOTTOM,
4385                     src, dst, size XTOP);
4386 
4387   // Do not let reads of the copy destination float above the copy.
4388   insert_mem_bar(Op_MemBarCPUOrder);
4389 
4390   return true;
4391 }
4392 
4393 //------------------------clone_coping-----------------------------------
4394 // Helper function for inline_native_clone.
4395 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4396   assert(obj_size != NULL, "");
4397   Node* raw_obj = alloc_obj->in(1);
4398   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4399 
4400   AllocateNode* alloc = NULL;
4401   if (ReduceBulkZeroing) {
4402     // We will be completely responsible for initializing this object -
4403     // mark Initialize node as complete.
4404     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4405     // The object was just allocated - there should be no any stores!
4406     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4407     // Mark as complete_with_arraycopy so that on AllocateNode
4408     // expansion, we know this AllocateNode is initialized by an array
4409     // copy and a StoreStore barrier exists after the array copy.
4410     alloc->initialization()->set_complete_with_arraycopy();
4411   }
4412 
4413   // Copy the fastest available way.
4414   // TODO: generate fields copies for small objects instead.
4415   Node* src  = obj;
4416   Node* dest = alloc_obj;
4417   Node* size = _gvn.transform(obj_size);
4418 
4419   // Exclude the header but include array length to copy by 8 bytes words.
4420   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4421   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4422                             instanceOopDesc::base_offset_in_bytes();
4423   // base_off:
4424   // 8  - 32-bit VM
4425   // 12 - 64-bit VM, compressed klass
4426   // 16 - 64-bit VM, normal klass
4427   if (base_off % BytesPerLong != 0) {
4428     assert(UseCompressedClassPointers, "");
4429     if (is_array) {
4430       // Exclude length to copy by 8 bytes words.
4431       base_off += sizeof(int);
4432     } else {
4433       // Include klass to copy by 8 bytes words.
4434       base_off = instanceOopDesc::klass_offset_in_bytes();
4435     }
4436     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4437   }
4438   src  = basic_plus_adr(src,  base_off);
4439   dest = basic_plus_adr(dest, base_off);
4440 
4441   // Compute the length also, if needed:
4442   Node* countx = size;
4443   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4444   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4445 
4446   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4447   bool disjoint_bases = true;
4448   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4449                                src, NULL, dest, NULL, countx,
4450                                /*dest_uninitialized*/true);
4451 
4452   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4453   if (card_mark) {
4454     assert(!is_array, "");
4455     // Put in store barrier for any and all oops we are sticking
4456     // into this object.  (We could avoid this if we could prove
4457     // that the object type contains no oop fields at all.)
4458     Node* no_particular_value = NULL;
4459     Node* no_particular_field = NULL;
4460     int raw_adr_idx = Compile::AliasIdxRaw;
4461     post_barrier(control(),
4462                  memory(raw_adr_type),
4463                  alloc_obj,
4464                  no_particular_field,
4465                  raw_adr_idx,
4466                  no_particular_value,
4467                  T_OBJECT,
4468                  false);
4469   }
4470 
4471   // Do not let reads from the cloned object float above the arraycopy.
4472   if (alloc != NULL) {
4473     // Do not let stores that initialize this object be reordered with
4474     // a subsequent store that would make this object accessible by
4475     // other threads.
4476     // Record what AllocateNode this StoreStore protects so that
4477     // escape analysis can go from the MemBarStoreStoreNode to the
4478     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4479     // based on the escape status of the AllocateNode.
4480     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4481   } else {
4482     insert_mem_bar(Op_MemBarCPUOrder);
4483   }
4484 }
4485 
4486 //------------------------inline_native_clone----------------------------
4487 // protected native Object java.lang.Object.clone();
4488 //
4489 // Here are the simple edge cases:
4490 //  null receiver => normal trap
4491 //  virtual and clone was overridden => slow path to out-of-line clone
4492 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4493 //
4494 // The general case has two steps, allocation and copying.
4495 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4496 //
4497 // Copying also has two cases, oop arrays and everything else.
4498 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4499 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4500 //
4501 // These steps fold up nicely if and when the cloned object's klass
4502 // can be sharply typed as an object array, a type array, or an instance.
4503 //
4504 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4505   PhiNode* result_val;
4506 
4507   // Set the reexecute bit for the interpreter to reexecute
4508   // the bytecode that invokes Object.clone if deoptimization happens.
4509   { PreserveReexecuteState preexecs(this);
4510     jvms()->set_should_reexecute(true);
4511 
4512     Node* obj = null_check_receiver();
4513     if (stopped())  return true;
4514 
4515     Node* obj_klass = load_object_klass(obj);
4516     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4517     const TypeOopPtr*   toop   = ((tklass != NULL)
4518                                 ? tklass->as_instance_type()
4519                                 : TypeInstPtr::NOTNULL);
4520 
4521     // Conservatively insert a memory barrier on all memory slices.
4522     // Do not let writes into the original float below the clone.
4523     insert_mem_bar(Op_MemBarCPUOrder);
4524 
4525     // paths into result_reg:
4526     enum {
4527       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4528       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4529       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4530       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4531       PATH_LIMIT
4532     };
4533     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4534     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4535     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4536     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4537     record_for_igvn(result_reg);
4538 
4539     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4540     int raw_adr_idx = Compile::AliasIdxRaw;
4541 
4542     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4543     if (array_ctl != NULL) {
4544       // It's an array.
4545       PreserveJVMState pjvms(this);
4546       set_control(array_ctl);
4547       Node* obj_length = load_array_length(obj);
4548       Node* obj_size  = NULL;
4549       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4550 
4551       if (!use_ReduceInitialCardMarks()) {
4552         // If it is an oop array, it requires very special treatment,
4553         // because card marking is required on each card of the array.
4554         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4555         if (is_obja != NULL) {
4556           PreserveJVMState pjvms2(this);
4557           set_control(is_obja);
4558           // Generate a direct call to the right arraycopy function(s).
4559           bool disjoint_bases = true;
4560           bool length_never_negative = true;
4561           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4562                              obj, intcon(0), alloc_obj, intcon(0),
4563                              obj_length,
4564                              disjoint_bases, length_never_negative);
4565           result_reg->init_req(_objArray_path, control());
4566           result_val->init_req(_objArray_path, alloc_obj);
4567           result_i_o ->set_req(_objArray_path, i_o());
4568           result_mem ->set_req(_objArray_path, reset_memory());
4569         }
4570       }
4571       // Otherwise, there are no card marks to worry about.
4572       // (We can dispense with card marks if we know the allocation
4573       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4574       //  causes the non-eden paths to take compensating steps to
4575       //  simulate a fresh allocation, so that no further
4576       //  card marks are required in compiled code to initialize
4577       //  the object.)
4578 
4579       if (!stopped()) {
4580         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4581 
4582         // Present the results of the copy.
4583         result_reg->init_req(_array_path, control());
4584         result_val->init_req(_array_path, alloc_obj);
4585         result_i_o ->set_req(_array_path, i_o());
4586         result_mem ->set_req(_array_path, reset_memory());
4587       }
4588     }
4589 
4590     // We only go to the instance fast case code if we pass a number of guards.
4591     // The paths which do not pass are accumulated in the slow_region.
4592     RegionNode* slow_region = new RegionNode(1);
4593     record_for_igvn(slow_region);
4594     if (!stopped()) {
4595       // It's an instance (we did array above).  Make the slow-path tests.
4596       // If this is a virtual call, we generate a funny guard.  We grab
4597       // the vtable entry corresponding to clone() from the target object.
4598       // If the target method which we are calling happens to be the
4599       // Object clone() method, we pass the guard.  We do not need this
4600       // guard for non-virtual calls; the caller is known to be the native
4601       // Object clone().
4602       if (is_virtual) {
4603         generate_virtual_guard(obj_klass, slow_region);
4604       }
4605 
4606       // The object must be cloneable and must not have a finalizer.
4607       // Both of these conditions may be checked in a single test.
4608       // We could optimize the cloneable test further, but we don't care.
4609       generate_access_flags_guard(obj_klass,
4610                                   // Test both conditions:
4611                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4612                                   // Must be cloneable but not finalizer:
4613                                   JVM_ACC_IS_CLONEABLE,
4614                                   slow_region);
4615     }
4616 
4617     if (!stopped()) {
4618       // It's an instance, and it passed the slow-path tests.
4619       PreserveJVMState pjvms(this);
4620       Node* obj_size  = NULL;
4621       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4622       // is reexecuted if deoptimization occurs and there could be problems when merging
4623       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4624       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4625 
4626       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4627 
4628       // Present the results of the slow call.
4629       result_reg->init_req(_instance_path, control());
4630       result_val->init_req(_instance_path, alloc_obj);
4631       result_i_o ->set_req(_instance_path, i_o());
4632       result_mem ->set_req(_instance_path, reset_memory());
4633     }
4634 
4635     // Generate code for the slow case.  We make a call to clone().
4636     set_control(_gvn.transform(slow_region));
4637     if (!stopped()) {
4638       PreserveJVMState pjvms(this);
4639       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4640       Node* slow_result = set_results_for_java_call(slow_call);
4641       // this->control() comes from set_results_for_java_call
4642       result_reg->init_req(_slow_path, control());
4643       result_val->init_req(_slow_path, slow_result);
4644       result_i_o ->set_req(_slow_path, i_o());
4645       result_mem ->set_req(_slow_path, reset_memory());
4646     }
4647 
4648     // Return the combined state.
4649     set_control(    _gvn.transform(result_reg));
4650     set_i_o(        _gvn.transform(result_i_o));
4651     set_all_memory( _gvn.transform(result_mem));
4652   } // original reexecute is set back here
4653 
4654   set_result(_gvn.transform(result_val));
4655   return true;
4656 }
4657 
4658 //------------------------------basictype2arraycopy----------------------------
4659 address LibraryCallKit::basictype2arraycopy(BasicType t,
4660                                             Node* src_offset,
4661                                             Node* dest_offset,
4662                                             bool disjoint_bases,
4663                                             const char* &name,
4664                                             bool dest_uninitialized) {
4665   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4666   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4667 
4668   bool aligned = false;
4669   bool disjoint = disjoint_bases;
4670 
4671   // if the offsets are the same, we can treat the memory regions as
4672   // disjoint, because either the memory regions are in different arrays,
4673   // or they are identical (which we can treat as disjoint.)  We can also
4674   // treat a copy with a destination index  less that the source index
4675   // as disjoint since a low->high copy will work correctly in this case.
4676   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4677       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4678     // both indices are constants
4679     int s_offs = src_offset_inttype->get_con();
4680     int d_offs = dest_offset_inttype->get_con();
4681     int element_size = type2aelembytes(t);
4682     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4683               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4684     if (s_offs >= d_offs)  disjoint = true;
4685   } else if (src_offset == dest_offset && src_offset != NULL) {
4686     // This can occur if the offsets are identical non-constants.
4687     disjoint = true;
4688   }
4689 
4690   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4691 }
4692 
4693 
4694 //------------------------------inline_arraycopy-----------------------
4695 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4696 //                                                      Object dest, int destPos,
4697 //                                                      int length);
4698 bool LibraryCallKit::inline_arraycopy() {
4699   // Get the arguments.
4700   Node* src         = argument(0);  // type: oop
4701   Node* src_offset  = argument(1);  // type: int
4702   Node* dest        = argument(2);  // type: oop
4703   Node* dest_offset = argument(3);  // type: int
4704   Node* length      = argument(4);  // type: int
4705 
4706   // Compile time checks.  If any of these checks cannot be verified at compile time,
4707   // we do not make a fast path for this call.  Instead, we let the call remain as it
4708   // is.  The checks we choose to mandate at compile time are:
4709   //
4710   // (1) src and dest are arrays.
4711   const Type* src_type  = src->Value(&_gvn);
4712   const Type* dest_type = dest->Value(&_gvn);
4713   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4714   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4715 
4716   // Do we have the type of src?
4717   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4718   // Do we have the type of dest?
4719   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4720   // Is the type for src from speculation?
4721   bool src_spec = false;
4722   // Is the type for dest from speculation?
4723   bool dest_spec = false;
4724 
4725   if (!has_src || !has_dest) {
4726     // We don't have sufficient type information, let's see if
4727     // speculative types can help. We need to have types for both src
4728     // and dest so that it pays off.
4729 
4730     // Do we already have or could we have type information for src
4731     bool could_have_src = has_src;
4732     // Do we already have or could we have type information for dest
4733     bool could_have_dest = has_dest;
4734 
4735     ciKlass* src_k = NULL;
4736     if (!has_src) {
4737       src_k = src_type->speculative_type_not_null();
4738       if (src_k != NULL && src_k->is_array_klass()) {
4739         could_have_src = true;
4740       }
4741     }
4742 
4743     ciKlass* dest_k = NULL;
4744     if (!has_dest) {
4745       dest_k = dest_type->speculative_type_not_null();
4746       if (dest_k != NULL && dest_k->is_array_klass()) {
4747         could_have_dest = true;
4748       }
4749     }
4750 
4751     if (could_have_src && could_have_dest) {
4752       // This is going to pay off so emit the required guards
4753       if (!has_src) {
4754         src = maybe_cast_profiled_obj(src, src_k);
4755         src_type  = _gvn.type(src);
4756         top_src  = src_type->isa_aryptr();
4757         has_src = (top_src != NULL && top_src->klass() != NULL);
4758         src_spec = true;
4759       }
4760       if (!has_dest) {
4761         dest = maybe_cast_profiled_obj(dest, dest_k);
4762         dest_type  = _gvn.type(dest);
4763         top_dest  = dest_type->isa_aryptr();
4764         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4765         dest_spec = true;
4766       }
4767     }
4768   }
4769 
4770   if (!has_src || !has_dest) {
4771     // Conservatively insert a memory barrier on all memory slices.
4772     // Do not let writes into the source float below the arraycopy.
4773     insert_mem_bar(Op_MemBarCPUOrder);
4774 
4775     // Call StubRoutines::generic_arraycopy stub.
4776     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4777                        src, src_offset, dest, dest_offset, length);
4778 
4779     // Do not let reads from the destination float above the arraycopy.
4780     // Since we cannot type the arrays, we don't know which slices
4781     // might be affected.  We could restrict this barrier only to those
4782     // memory slices which pertain to array elements--but don't bother.
4783     if (!InsertMemBarAfterArraycopy)
4784       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4785       insert_mem_bar(Op_MemBarCPUOrder);
4786     return true;
4787   }
4788 
4789   // (2) src and dest arrays must have elements of the same BasicType
4790   // Figure out the size and type of the elements we will be copying.
4791   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4792   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4793   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4794   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4795 
4796   if (src_elem != dest_elem || dest_elem == T_VOID) {
4797     // The component types are not the same or are not recognized.  Punt.
4798     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4799     generate_slow_arraycopy(TypePtr::BOTTOM,
4800                             src, src_offset, dest, dest_offset, length,
4801                             /*dest_uninitialized*/false);
4802     return true;
4803   }
4804 
4805   if (src_elem == T_OBJECT) {
4806     // If both arrays are object arrays then having the exact types
4807     // for both will remove the need for a subtype check at runtime
4808     // before the call and may make it possible to pick a faster copy
4809     // routine (without a subtype check on every element)
4810     // Do we have the exact type of src?
4811     bool could_have_src = src_spec;
4812     // Do we have the exact type of dest?
4813     bool could_have_dest = dest_spec;
4814     ciKlass* src_k = top_src->klass();
4815     ciKlass* dest_k = top_dest->klass();
4816     if (!src_spec) {
4817       src_k = src_type->speculative_type_not_null();
4818       if (src_k != NULL && src_k->is_array_klass()) {
4819           could_have_src = true;
4820       }
4821     }
4822     if (!dest_spec) {
4823       dest_k = dest_type->speculative_type_not_null();
4824       if (dest_k != NULL && dest_k->is_array_klass()) {
4825         could_have_dest = true;
4826       }
4827     }
4828     if (could_have_src && could_have_dest) {
4829       // If we can have both exact types, emit the missing guards
4830       if (could_have_src && !src_spec) {
4831         src = maybe_cast_profiled_obj(src, src_k);
4832       }
4833       if (could_have_dest && !dest_spec) {
4834         dest = maybe_cast_profiled_obj(dest, dest_k);
4835       }
4836     }
4837   }
4838 
4839   //---------------------------------------------------------------------------
4840   // We will make a fast path for this call to arraycopy.
4841 
4842   // We have the following tests left to perform:
4843   //
4844   // (3) src and dest must not be null.
4845   // (4) src_offset must not be negative.
4846   // (5) dest_offset must not be negative.
4847   // (6) length must not be negative.
4848   // (7) src_offset + length must not exceed length of src.
4849   // (8) dest_offset + length must not exceed length of dest.
4850   // (9) each element of an oop array must be assignable
4851 
4852   RegionNode* slow_region = new RegionNode(1);
4853   record_for_igvn(slow_region);
4854 
4855   // (3) operands must not be null
4856   // We currently perform our null checks with the null_check routine.
4857   // This means that the null exceptions will be reported in the caller
4858   // rather than (correctly) reported inside of the native arraycopy call.
4859   // This should be corrected, given time.  We do our null check with the
4860   // stack pointer restored.
4861   src  = null_check(src,  T_ARRAY);
4862   dest = null_check(dest, T_ARRAY);
4863 
4864   // (4) src_offset must not be negative.
4865   generate_negative_guard(src_offset, slow_region);
4866 
4867   // (5) dest_offset must not be negative.
4868   generate_negative_guard(dest_offset, slow_region);
4869 
4870   // (6) length must not be negative (moved to generate_arraycopy()).
4871   // generate_negative_guard(length, slow_region);
4872 
4873   // (7) src_offset + length must not exceed length of src.
4874   generate_limit_guard(src_offset, length,
4875                        load_array_length(src),
4876                        slow_region);
4877 
4878   // (8) dest_offset + length must not exceed length of dest.
4879   generate_limit_guard(dest_offset, length,
4880                        load_array_length(dest),
4881                        slow_region);
4882 
4883   // (9) each element of an oop array must be assignable
4884   // The generate_arraycopy subroutine checks this.
4885 
4886   // This is where the memory effects are placed:
4887   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4888   generate_arraycopy(adr_type, dest_elem,
4889                      src, src_offset, dest, dest_offset, length,
4890                      false, false, slow_region);
4891 
4892   return true;
4893 }
4894 
4895 //-----------------------------generate_arraycopy----------------------
4896 // Generate an optimized call to arraycopy.
4897 // Caller must guard against non-arrays.
4898 // Caller must determine a common array basic-type for both arrays.
4899 // Caller must validate offsets against array bounds.
4900 // The slow_region has already collected guard failure paths
4901 // (such as out of bounds length or non-conformable array types).
4902 // The generated code has this shape, in general:
4903 //
4904 //     if (length == 0)  return   // via zero_path
4905 //     slowval = -1
4906 //     if (types unknown) {
4907 //       slowval = call generic copy loop
4908 //       if (slowval == 0)  return  // via checked_path
4909 //     } else if (indexes in bounds) {
4910 //       if ((is object array) && !(array type check)) {
4911 //         slowval = call checked copy loop
4912 //         if (slowval == 0)  return  // via checked_path
4913 //       } else {
4914 //         call bulk copy loop
4915 //         return  // via fast_path
4916 //       }
4917 //     }
4918 //     // adjust params for remaining work:
4919 //     if (slowval != -1) {
4920 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4921 //     }
4922 //   slow_region:
4923 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4924 //     return  // via slow_call_path
4925 //
4926 // This routine is used from several intrinsics:  System.arraycopy,
4927 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4928 //
4929 void
4930 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4931                                    BasicType basic_elem_type,
4932                                    Node* src,  Node* src_offset,
4933                                    Node* dest, Node* dest_offset,
4934                                    Node* copy_length,
4935                                    bool disjoint_bases,
4936                                    bool length_never_negative,
4937                                    RegionNode* slow_region) {
4938 
4939   if (slow_region == NULL) {
4940     slow_region = new RegionNode(1);
4941     record_for_igvn(slow_region);
4942   }
4943 
4944   Node* original_dest      = dest;
4945   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4946   bool  dest_uninitialized = false;
4947 
4948   // See if this is the initialization of a newly-allocated array.
4949   // If so, we will take responsibility here for initializing it to zero.
4950   // (Note:  Because tightly_coupled_allocation performs checks on the
4951   // out-edges of the dest, we need to avoid making derived pointers
4952   // from it until we have checked its uses.)
4953   if (ReduceBulkZeroing
4954       && !ZeroTLAB              // pointless if already zeroed
4955       && basic_elem_type != T_CONFLICT // avoid corner case
4956       && !src->eqv_uncast(dest)
4957       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4958           != NULL)
4959       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4960       && alloc->maybe_set_complete(&_gvn)) {
4961     // "You break it, you buy it."
4962     InitializeNode* init = alloc->initialization();
4963     assert(init->is_complete(), "we just did this");
4964     init->set_complete_with_arraycopy();
4965     assert(dest->is_CheckCastPP(), "sanity");
4966     assert(dest->in(0)->in(0) == init, "dest pinned");
4967     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4968     // From this point on, every exit path is responsible for
4969     // initializing any non-copied parts of the object to zero.
4970     // Also, if this flag is set we make sure that arraycopy interacts properly
4971     // with G1, eliding pre-barriers. See CR 6627983.
4972     dest_uninitialized = true;
4973   } else {
4974     // No zeroing elimination here.
4975     alloc             = NULL;
4976     //original_dest   = dest;
4977     //dest_uninitialized = false;
4978   }
4979 
4980   // Results are placed here:
4981   enum { fast_path        = 1,  // normal void-returning assembly stub
4982          checked_path     = 2,  // special assembly stub with cleanup
4983          slow_call_path   = 3,  // something went wrong; call the VM
4984          zero_path        = 4,  // bypass when length of copy is zero
4985          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4986          PATH_LIMIT       = 6
4987   };
4988   RegionNode* result_region = new RegionNode(PATH_LIMIT);
4989   PhiNode*    result_i_o    = new PhiNode(result_region, Type::ABIO);
4990   PhiNode*    result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
4991   record_for_igvn(result_region);
4992   _gvn.set_type_bottom(result_i_o);
4993   _gvn.set_type_bottom(result_memory);
4994   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4995 
4996   // The slow_control path:
4997   Node* slow_control;
4998   Node* slow_i_o = i_o();
4999   Node* slow_mem = memory(adr_type);
5000   debug_only(slow_control = (Node*) badAddress);
5001 
5002   // Checked control path:
5003   Node* checked_control = top();
5004   Node* checked_mem     = NULL;
5005   Node* checked_i_o     = NULL;
5006   Node* checked_value   = NULL;
5007 
5008   if (basic_elem_type == T_CONFLICT) {
5009     assert(!dest_uninitialized, "");
5010     Node* cv = generate_generic_arraycopy(adr_type,
5011                                           src, src_offset, dest, dest_offset,
5012                                           copy_length, dest_uninitialized);
5013     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5014     checked_control = control();
5015     checked_i_o     = i_o();
5016     checked_mem     = memory(adr_type);
5017     checked_value   = cv;
5018     set_control(top());         // no fast path
5019   }
5020 
5021   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5022   if (not_pos != NULL) {
5023     PreserveJVMState pjvms(this);
5024     set_control(not_pos);
5025 
5026     // (6) length must not be negative.
5027     if (!length_never_negative) {
5028       generate_negative_guard(copy_length, slow_region);
5029     }
5030 
5031     // copy_length is 0.
5032     if (!stopped() && dest_uninitialized) {
5033       Node* dest_length = alloc->in(AllocateNode::ALength);
5034       if (copy_length->eqv_uncast(dest_length)
5035           || _gvn.find_int_con(dest_length, 1) <= 0) {
5036         // There is no zeroing to do. No need for a secondary raw memory barrier.
5037       } else {
5038         // Clear the whole thing since there are no source elements to copy.
5039         generate_clear_array(adr_type, dest, basic_elem_type,
5040                              intcon(0), NULL,
5041                              alloc->in(AllocateNode::AllocSize));
5042         // Use a secondary InitializeNode as raw memory barrier.
5043         // Currently it is needed only on this path since other
5044         // paths have stub or runtime calls as raw memory barriers.
5045         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5046                                                        Compile::AliasIdxRaw,
5047                                                        top())->as_Initialize();
5048         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5049       }
5050     }
5051 
5052     // Present the results of the fast call.
5053     result_region->init_req(zero_path, control());
5054     result_i_o   ->init_req(zero_path, i_o());
5055     result_memory->init_req(zero_path, memory(adr_type));
5056   }
5057 
5058   if (!stopped() && dest_uninitialized) {
5059     // We have to initialize the *uncopied* part of the array to zero.
5060     // The copy destination is the slice dest[off..off+len].  The other slices
5061     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5062     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5063     Node* dest_length = alloc->in(AllocateNode::ALength);
5064     Node* dest_tail   = _gvn.transform(new AddINode(dest_offset, copy_length));
5065 
5066     // If there is a head section that needs zeroing, do it now.
5067     if (find_int_con(dest_offset, -1) != 0) {
5068       generate_clear_array(adr_type, dest, basic_elem_type,
5069                            intcon(0), dest_offset,
5070                            NULL);
5071     }
5072 
5073     // Next, perform a dynamic check on the tail length.
5074     // It is often zero, and we can win big if we prove this.
5075     // There are two wins:  Avoid generating the ClearArray
5076     // with its attendant messy index arithmetic, and upgrade
5077     // the copy to a more hardware-friendly word size of 64 bits.
5078     Node* tail_ctl = NULL;
5079     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5080       Node* cmp_lt   = _gvn.transform(new CmpINode(dest_tail, dest_length));
5081       Node* bol_lt   = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
5082       tail_ctl = generate_slow_guard(bol_lt, NULL);
5083       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5084     }
5085 
5086     // At this point, let's assume there is no tail.
5087     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5088       // There is no tail.  Try an upgrade to a 64-bit copy.
5089       bool didit = false;
5090       { PreserveJVMState pjvms(this);
5091         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5092                                          src, src_offset, dest, dest_offset,
5093                                          dest_size, dest_uninitialized);
5094         if (didit) {
5095           // Present the results of the block-copying fast call.
5096           result_region->init_req(bcopy_path, control());
5097           result_i_o   ->init_req(bcopy_path, i_o());
5098           result_memory->init_req(bcopy_path, memory(adr_type));
5099         }
5100       }
5101       if (didit)
5102         set_control(top());     // no regular fast path
5103     }
5104 
5105     // Clear the tail, if any.
5106     if (tail_ctl != NULL) {
5107       Node* notail_ctl = stopped() ? NULL : control();
5108       set_control(tail_ctl);
5109       if (notail_ctl == NULL) {
5110         generate_clear_array(adr_type, dest, basic_elem_type,
5111                              dest_tail, NULL,
5112                              dest_size);
5113       } else {
5114         // Make a local merge.
5115         Node* done_ctl = new RegionNode(3);
5116         Node* done_mem = new PhiNode(done_ctl, Type::MEMORY, adr_type);
5117         done_ctl->init_req(1, notail_ctl);
5118         done_mem->init_req(1, memory(adr_type));
5119         generate_clear_array(adr_type, dest, basic_elem_type,
5120                              dest_tail, NULL,
5121                              dest_size);
5122         done_ctl->init_req(2, control());
5123         done_mem->init_req(2, memory(adr_type));
5124         set_control( _gvn.transform(done_ctl));
5125         set_memory(  _gvn.transform(done_mem), adr_type );
5126       }
5127     }
5128   }
5129 
5130   BasicType copy_type = basic_elem_type;
5131   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5132   if (!stopped() && copy_type == T_OBJECT) {
5133     // If src and dest have compatible element types, we can copy bits.
5134     // Types S[] and D[] are compatible if D is a supertype of S.
5135     //
5136     // If they are not, we will use checked_oop_disjoint_arraycopy,
5137     // which performs a fast optimistic per-oop check, and backs off
5138     // further to JVM_ArrayCopy on the first per-oop check that fails.
5139     // (Actually, we don't move raw bits only; the GC requires card marks.)
5140 
5141     // Get the Klass* for both src and dest
5142     Node* src_klass  = load_object_klass(src);
5143     Node* dest_klass = load_object_klass(dest);
5144 
5145     // Generate the subtype check.
5146     // This might fold up statically, or then again it might not.
5147     //
5148     // Non-static example:  Copying List<String>.elements to a new String[].
5149     // The backing store for a List<String> is always an Object[],
5150     // but its elements are always type String, if the generic types
5151     // are correct at the source level.
5152     //
5153     // Test S[] against D[], not S against D, because (probably)
5154     // the secondary supertype cache is less busy for S[] than S.
5155     // This usually only matters when D is an interface.
5156     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5157     // Plug failing path into checked_oop_disjoint_arraycopy
5158     if (not_subtype_ctrl != top()) {
5159       PreserveJVMState pjvms(this);
5160       set_control(not_subtype_ctrl);
5161       // (At this point we can assume disjoint_bases, since types differ.)
5162       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5163       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5164       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5165       Node* dest_elem_klass = _gvn.transform(n1);
5166       Node* cv = generate_checkcast_arraycopy(adr_type,
5167                                               dest_elem_klass,
5168                                               src, src_offset, dest, dest_offset,
5169                                               ConvI2X(copy_length), dest_uninitialized);
5170       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5171       checked_control = control();
5172       checked_i_o     = i_o();
5173       checked_mem     = memory(adr_type);
5174       checked_value   = cv;
5175     }
5176     // At this point we know we do not need type checks on oop stores.
5177 
5178     // Let's see if we need card marks:
5179     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5180       // If we do not need card marks, copy using the jint or jlong stub.
5181       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5182       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5183              "sizes agree");
5184     }
5185   }
5186 
5187   if (!stopped()) {
5188     // Generate the fast path, if possible.
5189     PreserveJVMState pjvms(this);
5190     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5191                                  src, src_offset, dest, dest_offset,
5192                                  ConvI2X(copy_length), dest_uninitialized);
5193 
5194     // Present the results of the fast call.
5195     result_region->init_req(fast_path, control());
5196     result_i_o   ->init_req(fast_path, i_o());
5197     result_memory->init_req(fast_path, memory(adr_type));
5198   }
5199 
5200   // Here are all the slow paths up to this point, in one bundle:
5201   slow_control = top();
5202   if (slow_region != NULL)
5203     slow_control = _gvn.transform(slow_region);
5204   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5205 
5206   set_control(checked_control);
5207   if (!stopped()) {
5208     // Clean up after the checked call.
5209     // The returned value is either 0 or -1^K,
5210     // where K = number of partially transferred array elements.
5211     Node* cmp = _gvn.transform(new CmpINode(checked_value, intcon(0)));
5212     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
5213     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5214 
5215     // If it is 0, we are done, so transfer to the end.
5216     Node* checks_done = _gvn.transform(new IfTrueNode(iff));
5217     result_region->init_req(checked_path, checks_done);
5218     result_i_o   ->init_req(checked_path, checked_i_o);
5219     result_memory->init_req(checked_path, checked_mem);
5220 
5221     // If it is not zero, merge into the slow call.
5222     set_control( _gvn.transform(new IfFalseNode(iff) ));
5223     RegionNode* slow_reg2 = new RegionNode(3);
5224     PhiNode*    slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
5225     PhiNode*    slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
5226     record_for_igvn(slow_reg2);
5227     slow_reg2  ->init_req(1, slow_control);
5228     slow_i_o2  ->init_req(1, slow_i_o);
5229     slow_mem2  ->init_req(1, slow_mem);
5230     slow_reg2  ->init_req(2, control());
5231     slow_i_o2  ->init_req(2, checked_i_o);
5232     slow_mem2  ->init_req(2, checked_mem);
5233 
5234     slow_control = _gvn.transform(slow_reg2);
5235     slow_i_o     = _gvn.transform(slow_i_o2);
5236     slow_mem     = _gvn.transform(slow_mem2);
5237 
5238     if (alloc != NULL) {
5239       // We'll restart from the very beginning, after zeroing the whole thing.
5240       // This can cause double writes, but that's OK since dest is brand new.
5241       // So we ignore the low 31 bits of the value returned from the stub.
5242     } else {
5243       // We must continue the copy exactly where it failed, or else
5244       // another thread might see the wrong number of writes to dest.
5245       Node* checked_offset = _gvn.transform(new XorINode(checked_value, intcon(-1)));
5246       Node* slow_offset    = new PhiNode(slow_reg2, TypeInt::INT);
5247       slow_offset->init_req(1, intcon(0));
5248       slow_offset->init_req(2, checked_offset);
5249       slow_offset  = _gvn.transform(slow_offset);
5250 
5251       // Adjust the arguments by the conditionally incoming offset.
5252       Node* src_off_plus  = _gvn.transform(new AddINode(src_offset,  slow_offset));
5253       Node* dest_off_plus = _gvn.transform(new AddINode(dest_offset, slow_offset));
5254       Node* length_minus  = _gvn.transform(new SubINode(copy_length, slow_offset));
5255 
5256       // Tweak the node variables to adjust the code produced below:
5257       src_offset  = src_off_plus;
5258       dest_offset = dest_off_plus;
5259       copy_length = length_minus;
5260     }
5261   }
5262 
5263   set_control(slow_control);
5264   if (!stopped()) {
5265     // Generate the slow path, if needed.
5266     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5267 
5268     set_memory(slow_mem, adr_type);
5269     set_i_o(slow_i_o);
5270 
5271     if (dest_uninitialized) {
5272       generate_clear_array(adr_type, dest, basic_elem_type,
5273                            intcon(0), NULL,
5274                            alloc->in(AllocateNode::AllocSize));
5275     }
5276 
5277     generate_slow_arraycopy(adr_type,
5278                             src, src_offset, dest, dest_offset,
5279                             copy_length, /*dest_uninitialized*/false);
5280 
5281     result_region->init_req(slow_call_path, control());
5282     result_i_o   ->init_req(slow_call_path, i_o());
5283     result_memory->init_req(slow_call_path, memory(adr_type));
5284   }
5285 
5286   // Remove unused edges.
5287   for (uint i = 1; i < result_region->req(); i++) {
5288     if (result_region->in(i) == NULL)
5289       result_region->init_req(i, top());
5290   }
5291 
5292   // Finished; return the combined state.
5293   set_control( _gvn.transform(result_region));
5294   set_i_o(     _gvn.transform(result_i_o)    );
5295   set_memory(  _gvn.transform(result_memory), adr_type );
5296 
5297   // The memory edges above are precise in order to model effects around
5298   // array copies accurately to allow value numbering of field loads around
5299   // arraycopy.  Such field loads, both before and after, are common in Java
5300   // collections and similar classes involving header/array data structures.
5301   //
5302   // But with low number of register or when some registers are used or killed
5303   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5304   // The next memory barrier is added to avoid it. If the arraycopy can be
5305   // optimized away (which it can, sometimes) then we can manually remove
5306   // the membar also.
5307   //
5308   // Do not let reads from the cloned object float above the arraycopy.
5309   if (alloc != NULL) {
5310     // Do not let stores that initialize this object be reordered with
5311     // a subsequent store that would make this object accessible by
5312     // other threads.
5313     // Record what AllocateNode this StoreStore protects so that
5314     // escape analysis can go from the MemBarStoreStoreNode to the
5315     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5316     // based on the escape status of the AllocateNode.
5317     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5318   } else if (InsertMemBarAfterArraycopy)
5319     insert_mem_bar(Op_MemBarCPUOrder);
5320 }
5321 
5322 
5323 // Helper function which determines if an arraycopy immediately follows
5324 // an allocation, with no intervening tests or other escapes for the object.
5325 AllocateArrayNode*
5326 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5327                                            RegionNode* slow_region) {
5328   if (stopped())             return NULL;  // no fast path
5329   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5330 
5331   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5332   if (alloc == NULL)  return NULL;
5333 
5334   Node* rawmem = memory(Compile::AliasIdxRaw);
5335   // Is the allocation's memory state untouched?
5336   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5337     // Bail out if there have been raw-memory effects since the allocation.
5338     // (Example:  There might have been a call or safepoint.)
5339     return NULL;
5340   }
5341   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5342   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5343     return NULL;
5344   }
5345 
5346   // There must be no unexpected observers of this allocation.
5347   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5348     Node* obs = ptr->fast_out(i);
5349     if (obs != this->map()) {
5350       return NULL;
5351     }
5352   }
5353 
5354   // This arraycopy must unconditionally follow the allocation of the ptr.
5355   Node* alloc_ctl = ptr->in(0);
5356   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5357 
5358   Node* ctl = control();
5359   while (ctl != alloc_ctl) {
5360     // There may be guards which feed into the slow_region.
5361     // Any other control flow means that we might not get a chance
5362     // to finish initializing the allocated object.
5363     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5364       IfNode* iff = ctl->in(0)->as_If();
5365       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5366       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5367       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5368         ctl = iff->in(0);       // This test feeds the known slow_region.
5369         continue;
5370       }
5371       // One more try:  Various low-level checks bottom out in
5372       // uncommon traps.  If the debug-info of the trap omits
5373       // any reference to the allocation, as we've already
5374       // observed, then there can be no objection to the trap.
5375       bool found_trap = false;
5376       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5377         Node* obs = not_ctl->fast_out(j);
5378         if (obs->in(0) == not_ctl && obs->is_Call() &&
5379             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5380           found_trap = true; break;
5381         }
5382       }
5383       if (found_trap) {
5384         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5385         continue;
5386       }
5387     }
5388     return NULL;
5389   }
5390 
5391   // If we get this far, we have an allocation which immediately
5392   // precedes the arraycopy, and we can take over zeroing the new object.
5393   // The arraycopy will finish the initialization, and provide
5394   // a new control state to which we will anchor the destination pointer.
5395 
5396   return alloc;
5397 }
5398 
5399 // Helper for initialization of arrays, creating a ClearArray.
5400 // It writes zero bits in [start..end), within the body of an array object.
5401 // The memory effects are all chained onto the 'adr_type' alias category.
5402 //
5403 // Since the object is otherwise uninitialized, we are free
5404 // to put a little "slop" around the edges of the cleared area,
5405 // as long as it does not go back into the array's header,
5406 // or beyond the array end within the heap.
5407 //
5408 // The lower edge can be rounded down to the nearest jint and the
5409 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5410 //
5411 // Arguments:
5412 //   adr_type           memory slice where writes are generated
5413 //   dest               oop of the destination array
5414 //   basic_elem_type    element type of the destination
5415 //   slice_idx          array index of first element to store
5416 //   slice_len          number of elements to store (or NULL)
5417 //   dest_size          total size in bytes of the array object
5418 //
5419 // Exactly one of slice_len or dest_size must be non-NULL.
5420 // If dest_size is non-NULL, zeroing extends to the end of the object.
5421 // If slice_len is non-NULL, the slice_idx value must be a constant.
5422 void
5423 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5424                                      Node* dest,
5425                                      BasicType basic_elem_type,
5426                                      Node* slice_idx,
5427                                      Node* slice_len,
5428                                      Node* dest_size) {
5429   // one or the other but not both of slice_len and dest_size:
5430   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5431   if (slice_len == NULL)  slice_len = top();
5432   if (dest_size == NULL)  dest_size = top();
5433 
5434   // operate on this memory slice:
5435   Node* mem = memory(adr_type); // memory slice to operate on
5436 
5437   // scaling and rounding of indexes:
5438   int scale = exact_log2(type2aelembytes(basic_elem_type));
5439   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5440   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5441   int bump_bit  = (-1 << scale) & BytesPerInt;
5442 
5443   // determine constant starts and ends
5444   const intptr_t BIG_NEG = -128;
5445   assert(BIG_NEG + 2*abase < 0, "neg enough");
5446   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5447   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5448   if (slice_len_con == 0) {
5449     return;                     // nothing to do here
5450   }
5451   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5452   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5453   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5454     assert(end_con < 0, "not two cons");
5455     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5456                        BytesPerLong);
5457   }
5458 
5459   if (start_con >= 0 && end_con >= 0) {
5460     // Constant start and end.  Simple.
5461     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5462                                        start_con, end_con, &_gvn);
5463   } else if (start_con >= 0 && dest_size != top()) {
5464     // Constant start, pre-rounded end after the tail of the array.
5465     Node* end = dest_size;
5466     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5467                                        start_con, end, &_gvn);
5468   } else if (start_con >= 0 && slice_len != top()) {
5469     // Constant start, non-constant end.  End needs rounding up.
5470     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5471     intptr_t end_base  = abase + (slice_idx_con << scale);
5472     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5473     Node*    end       = ConvI2X(slice_len);
5474     if (scale != 0)
5475       end = _gvn.transform(new LShiftXNode(end, intcon(scale) ));
5476     end_base += end_round;
5477     end = _gvn.transform(new AddXNode(end, MakeConX(end_base)));
5478     end = _gvn.transform(new AndXNode(end, MakeConX(~end_round)));
5479     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5480                                        start_con, end, &_gvn);
5481   } else if (start_con < 0 && dest_size != top()) {
5482     // Non-constant start, pre-rounded end after the tail of the array.
5483     // This is almost certainly a "round-to-end" operation.
5484     Node* start = slice_idx;
5485     start = ConvI2X(start);
5486     if (scale != 0)
5487       start = _gvn.transform(new LShiftXNode( start, intcon(scale) ));
5488     start = _gvn.transform(new AddXNode(start, MakeConX(abase)));
5489     if ((bump_bit | clear_low) != 0) {
5490       int to_clear = (bump_bit | clear_low);
5491       // Align up mod 8, then store a jint zero unconditionally
5492       // just before the mod-8 boundary.
5493       if (((abase + bump_bit) & ~to_clear) - bump_bit
5494           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5495         bump_bit = 0;
5496         assert((abase & to_clear) == 0, "array base must be long-aligned");
5497       } else {
5498         // Bump 'start' up to (or past) the next jint boundary:
5499         start = _gvn.transform(new AddXNode(start, MakeConX(bump_bit)));
5500         assert((abase & clear_low) == 0, "array base must be int-aligned");
5501       }
5502       // Round bumped 'start' down to jlong boundary in body of array.
5503       start = _gvn.transform(new AndXNode(start, MakeConX(~to_clear)));
5504       if (bump_bit != 0) {
5505         // Store a zero to the immediately preceding jint:
5506         Node* x1 = _gvn.transform(new AddXNode(start, MakeConX(-bump_bit)));
5507         Node* p1 = basic_plus_adr(dest, x1);
5508         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5509         mem = _gvn.transform(mem);
5510       }
5511     }
5512     Node* end = dest_size; // pre-rounded
5513     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5514                                        start, end, &_gvn);
5515   } else {
5516     // Non-constant start, unrounded non-constant end.
5517     // (Nobody zeroes a random midsection of an array using this routine.)
5518     ShouldNotReachHere();       // fix caller
5519   }
5520 
5521   // Done.
5522   set_memory(mem, adr_type);
5523 }
5524 
5525 
5526 bool
5527 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5528                                          BasicType basic_elem_type,
5529                                          AllocateNode* alloc,
5530                                          Node* src,  Node* src_offset,
5531                                          Node* dest, Node* dest_offset,
5532                                          Node* dest_size, bool dest_uninitialized) {
5533   // See if there is an advantage from block transfer.
5534   int scale = exact_log2(type2aelembytes(basic_elem_type));
5535   if (scale >= LogBytesPerLong)
5536     return false;               // it is already a block transfer
5537 
5538   // Look at the alignment of the starting offsets.
5539   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5540 
5541   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5542   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5543   if (src_off_con < 0 || dest_off_con < 0)
5544     // At present, we can only understand constants.
5545     return false;
5546 
5547   intptr_t src_off  = abase + (src_off_con  << scale);
5548   intptr_t dest_off = abase + (dest_off_con << scale);
5549 
5550   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5551     // Non-aligned; too bad.
5552     // One more chance:  Pick off an initial 32-bit word.
5553     // This is a common case, since abase can be odd mod 8.
5554     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5555         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5556       Node* sptr = basic_plus_adr(src,  src_off);
5557       Node* dptr = basic_plus_adr(dest, dest_off);
5558       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5559       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5560       src_off += BytesPerInt;
5561       dest_off += BytesPerInt;
5562     } else {
5563       return false;
5564     }
5565   }
5566   assert(src_off % BytesPerLong == 0, "");
5567   assert(dest_off % BytesPerLong == 0, "");
5568 
5569   // Do this copy by giant steps.
5570   Node* sptr  = basic_plus_adr(src,  src_off);
5571   Node* dptr  = basic_plus_adr(dest, dest_off);
5572   Node* countx = dest_size;
5573   countx = _gvn.transform(new SubXNode(countx, MakeConX(dest_off)));
5574   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong)));
5575 
5576   bool disjoint_bases = true;   // since alloc != NULL
5577   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5578                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5579 
5580   return true;
5581 }
5582 
5583 
5584 // Helper function; generates code for the slow case.
5585 // We make a call to a runtime method which emulates the native method,
5586 // but without the native wrapper overhead.
5587 void
5588 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5589                                         Node* src,  Node* src_offset,
5590                                         Node* dest, Node* dest_offset,
5591                                         Node* copy_length, bool dest_uninitialized) {
5592   assert(!dest_uninitialized, "Invariant");
5593   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5594                                  OptoRuntime::slow_arraycopy_Type(),
5595                                  OptoRuntime::slow_arraycopy_Java(),
5596                                  "slow_arraycopy", adr_type,
5597                                  src, src_offset, dest, dest_offset,
5598                                  copy_length);
5599 
5600   // Handle exceptions thrown by this fellow:
5601   make_slow_call_ex(call, env()->Throwable_klass(), false);
5602 }
5603 
5604 // Helper function; generates code for cases requiring runtime checks.
5605 Node*
5606 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5607                                              Node* dest_elem_klass,
5608                                              Node* src,  Node* src_offset,
5609                                              Node* dest, Node* dest_offset,
5610                                              Node* copy_length, bool dest_uninitialized) {
5611   if (stopped())  return NULL;
5612 
5613   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5614   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5615     return NULL;
5616   }
5617 
5618   // Pick out the parameters required to perform a store-check
5619   // for the target array.  This is an optimistic check.  It will
5620   // look in each non-null element's class, at the desired klass's
5621   // super_check_offset, for the desired klass.
5622   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5623   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5624   Node* n3 = new LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5625   Node* check_offset = ConvI2X(_gvn.transform(n3));
5626   Node* check_value  = dest_elem_klass;
5627 
5628   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5629   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5630 
5631   // (We know the arrays are never conjoint, because their types differ.)
5632   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5633                                  OptoRuntime::checkcast_arraycopy_Type(),
5634                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5635                                  // five arguments, of which two are
5636                                  // intptr_t (jlong in LP64)
5637                                  src_start, dest_start,
5638                                  copy_length XTOP,
5639                                  check_offset XTOP,
5640                                  check_value);
5641 
5642   return _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5643 }
5644 
5645 
5646 // Helper function; generates code for cases requiring runtime checks.
5647 Node*
5648 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5649                                            Node* src,  Node* src_offset,
5650                                            Node* dest, Node* dest_offset,
5651                                            Node* copy_length, bool dest_uninitialized) {
5652   assert(!dest_uninitialized, "Invariant");
5653   if (stopped())  return NULL;
5654   address copyfunc_addr = StubRoutines::generic_arraycopy();
5655   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5656     return NULL;
5657   }
5658 
5659   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5660                     OptoRuntime::generic_arraycopy_Type(),
5661                     copyfunc_addr, "generic_arraycopy", adr_type,
5662                     src, src_offset, dest, dest_offset, copy_length);
5663 
5664   return _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5665 }
5666 
5667 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5668 void
5669 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5670                                              BasicType basic_elem_type,
5671                                              bool disjoint_bases,
5672                                              Node* src,  Node* src_offset,
5673                                              Node* dest, Node* dest_offset,
5674                                              Node* copy_length, bool dest_uninitialized) {
5675   if (stopped())  return;               // nothing to do
5676 
5677   Node* src_start  = src;
5678   Node* dest_start = dest;
5679   if (src_offset != NULL || dest_offset != NULL) {
5680     assert(src_offset != NULL && dest_offset != NULL, "");
5681     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5682     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5683   }
5684 
5685   // Figure out which arraycopy runtime method to call.
5686   const char* copyfunc_name = "arraycopy";
5687   address     copyfunc_addr =
5688       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5689                           disjoint_bases, copyfunc_name, dest_uninitialized);
5690 
5691   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5692   make_runtime_call(RC_LEAF|RC_NO_FP,
5693                     OptoRuntime::fast_arraycopy_Type(),
5694                     copyfunc_addr, copyfunc_name, adr_type,
5695                     src_start, dest_start, copy_length XTOP);
5696 }
5697 
5698 //-------------inline_encodeISOArray-----------------------------------
5699 // encode char[] to byte[] in ISO_8859_1
5700 bool LibraryCallKit::inline_encodeISOArray() {
5701   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5702   // no receiver since it is static method
5703   Node *src         = argument(0);
5704   Node *src_offset  = argument(1);
5705   Node *dst         = argument(2);
5706   Node *dst_offset  = argument(3);
5707   Node *length      = argument(4);
5708 
5709   const Type* src_type = src->Value(&_gvn);
5710   const Type* dst_type = dst->Value(&_gvn);
5711   const TypeAryPtr* top_src = src_type->isa_aryptr();
5712   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5713   if (top_src  == NULL || top_src->klass()  == NULL ||
5714       top_dest == NULL || top_dest->klass() == NULL) {
5715     // failed array check
5716     return false;
5717   }
5718 
5719   // Figure out the size and type of the elements we will be copying.
5720   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5721   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5722   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5723     return false;
5724   }
5725   Node* src_start = array_element_address(src, src_offset, src_elem);
5726   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5727   // 'src_start' points to src array + scaled offset
5728   // 'dst_start' points to dst array + scaled offset
5729 
5730   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5731   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5732   enc = _gvn.transform(enc);
5733   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5734   set_memory(res_mem, mtype);
5735   set_result(enc);
5736   return true;
5737 }
5738 
5739 /**
5740  * Calculate CRC32 for byte.
5741  * int java.util.zip.CRC32.update(int crc, int b)
5742  */
5743 bool LibraryCallKit::inline_updateCRC32() {
5744   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5745   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5746   // no receiver since it is static method
5747   Node* crc  = argument(0); // type: int
5748   Node* b    = argument(1); // type: int
5749 
5750   /*
5751    *    int c = ~ crc;
5752    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5753    *    b = b ^ (c >>> 8);
5754    *    crc = ~b;
5755    */
5756 
5757   Node* M1 = intcon(-1);
5758   crc = _gvn.transform(new XorINode(crc, M1));
5759   Node* result = _gvn.transform(new XorINode(crc, b));
5760   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5761 
5762   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5763   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5764   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5765   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5766 
5767   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5768   result = _gvn.transform(new XorINode(crc, result));
5769   result = _gvn.transform(new XorINode(result, M1));
5770   set_result(result);
5771   return true;
5772 }
5773 
5774 /**
5775  * Calculate CRC32 for byte[] array.
5776  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5777  */
5778 bool LibraryCallKit::inline_updateBytesCRC32() {
5779   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5780   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5781   // no receiver since it is static method
5782   Node* crc     = argument(0); // type: int
5783   Node* src     = argument(1); // type: oop
5784   Node* offset  = argument(2); // type: int
5785   Node* length  = argument(3); // type: int
5786 
5787   const Type* src_type = src->Value(&_gvn);
5788   const TypeAryPtr* top_src = src_type->isa_aryptr();
5789   if (top_src  == NULL || top_src->klass()  == NULL) {
5790     // failed array check
5791     return false;
5792   }
5793 
5794   // Figure out the size and type of the elements we will be copying.
5795   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5796   if (src_elem != T_BYTE) {
5797     return false;
5798   }
5799 
5800   // 'src_start' points to src array + scaled offset
5801   Node* src_start = array_element_address(src, offset, src_elem);
5802 
5803   // We assume that range check is done by caller.
5804   // TODO: generate range check (offset+length < src.length) in debug VM.
5805 
5806   // Call the stub.
5807   address stubAddr = StubRoutines::updateBytesCRC32();
5808   const char *stubName = "updateBytesCRC32";
5809 
5810   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5811                                  stubAddr, stubName, TypePtr::BOTTOM,
5812                                  crc, src_start, length);
5813   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5814   set_result(result);
5815   return true;
5816 }
5817 
5818 /**
5819  * Calculate CRC32 for ByteBuffer.
5820  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5821  */
5822 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5823   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5824   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5825   // no receiver since it is static method
5826   Node* crc     = argument(0); // type: int
5827   Node* src     = argument(1); // type: long
5828   Node* offset  = argument(3); // type: int
5829   Node* length  = argument(4); // type: int
5830 
5831   src = ConvL2X(src);  // adjust Java long to machine word
5832   Node* base = _gvn.transform(new CastX2PNode(src));
5833   offset = ConvI2X(offset);
5834 
5835   // 'src_start' points to src array + scaled offset
5836   Node* src_start = basic_plus_adr(top(), base, offset);
5837 
5838   // Call the stub.
5839   address stubAddr = StubRoutines::updateBytesCRC32();
5840   const char *stubName = "updateBytesCRC32";
5841 
5842   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5843                                  stubAddr, stubName, TypePtr::BOTTOM,
5844                                  crc, src_start, length);
5845   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5846   set_result(result);
5847   return true;
5848 }
5849 
5850 //----------------------------inline_reference_get----------------------------
5851 // public T java.lang.ref.Reference.get();
5852 bool LibraryCallKit::inline_reference_get() {
5853   const int referent_offset = java_lang_ref_Reference::referent_offset;
5854   guarantee(referent_offset > 0, "should have already been set");
5855 
5856   // Get the argument:
5857   Node* reference_obj = null_check_receiver();
5858   if (stopped()) return true;
5859 
5860   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5861 
5862   ciInstanceKlass* klass = env()->Object_klass();
5863   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5864 
5865   Node* no_ctrl = NULL;
5866   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5867 
5868   // Use the pre-barrier to record the value in the referent field
5869   pre_barrier(false /* do_load */,
5870               control(),
5871               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5872               result /* pre_val */,
5873               T_OBJECT);
5874 
5875   // Add memory barrier to prevent commoning reads from this field
5876   // across safepoint since GC can change its value.
5877   insert_mem_bar(Op_MemBarCPUOrder);
5878 
5879   set_result(result);
5880   return true;
5881 }
5882 
5883 
5884 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5885                                               bool is_exact=true, bool is_static=false) {
5886 
5887   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5888   assert(tinst != NULL, "obj is null");
5889   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5890   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5891 
5892   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5893                                                                           ciSymbol::make(fieldTypeString),
5894                                                                           is_static);
5895   if (field == NULL) return (Node *) NULL;
5896   assert (field != NULL, "undefined field");
5897 
5898   // Next code  copied from Parse::do_get_xxx():
5899 
5900   // Compute address and memory type.
5901   int offset  = field->offset_in_bytes();
5902   bool is_vol = field->is_volatile();
5903   ciType* field_klass = field->type();
5904   assert(field_klass->is_loaded(), "should be loaded");
5905   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5906   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5907   BasicType bt = field->layout_type();
5908 
5909   // Build the resultant type of the load
5910   const Type *type;
5911   if (bt == T_OBJECT) {
5912     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5913   } else {
5914     type = Type::get_const_basic_type(bt);
5915   }
5916 
5917   // Build the load.
5918   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5919   return loadedField;
5920 }
5921 
5922 
5923 //------------------------------inline_aescrypt_Block-----------------------
5924 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5925   address stubAddr;
5926   const char *stubName;
5927   assert(UseAES, "need AES instruction support");
5928 
5929   switch(id) {
5930   case vmIntrinsics::_aescrypt_encryptBlock:
5931     stubAddr = StubRoutines::aescrypt_encryptBlock();
5932     stubName = "aescrypt_encryptBlock";
5933     break;
5934   case vmIntrinsics::_aescrypt_decryptBlock:
5935     stubAddr = StubRoutines::aescrypt_decryptBlock();
5936     stubName = "aescrypt_decryptBlock";
5937     break;
5938   }
5939   if (stubAddr == NULL) return false;
5940 
5941   Node* aescrypt_object = argument(0);
5942   Node* src             = argument(1);
5943   Node* src_offset      = argument(2);
5944   Node* dest            = argument(3);
5945   Node* dest_offset     = argument(4);
5946 
5947   // (1) src and dest are arrays.
5948   const Type* src_type = src->Value(&_gvn);
5949   const Type* dest_type = dest->Value(&_gvn);
5950   const TypeAryPtr* top_src = src_type->isa_aryptr();
5951   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5952   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5953 
5954   // for the quick and dirty code we will skip all the checks.
5955   // we are just trying to get the call to be generated.
5956   Node* src_start  = src;
5957   Node* dest_start = dest;
5958   if (src_offset != NULL || dest_offset != NULL) {
5959     assert(src_offset != NULL && dest_offset != NULL, "");
5960     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5961     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5962   }
5963 
5964   // now need to get the start of its expanded key array
5965   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5966   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5967   if (k_start == NULL) return false;
5968 
5969   if (Matcher::pass_original_key_for_aes()) {
5970     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5971     // compatibility issues between Java key expansion and SPARC crypto instructions
5972     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5973     if (original_k_start == NULL) return false;
5974 
5975     // Call the stub.
5976     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5977                       stubAddr, stubName, TypePtr::BOTTOM,
5978                       src_start, dest_start, k_start, original_k_start);
5979   } else {
5980     // Call the stub.
5981     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5982                       stubAddr, stubName, TypePtr::BOTTOM,
5983                       src_start, dest_start, k_start);
5984   }
5985 
5986   return true;
5987 }
5988 
5989 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5990 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5991   address stubAddr;
5992   const char *stubName;
5993 
5994   assert(UseAES, "need AES instruction support");
5995 
5996   switch(id) {
5997   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5998     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5999     stubName = "cipherBlockChaining_encryptAESCrypt";
6000     break;
6001   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6002     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6003     stubName = "cipherBlockChaining_decryptAESCrypt";
6004     break;
6005   }
6006   if (stubAddr == NULL) return false;
6007 
6008   Node* cipherBlockChaining_object = argument(0);
6009   Node* src                        = argument(1);
6010   Node* src_offset                 = argument(2);
6011   Node* len                        = argument(3);
6012   Node* dest                       = argument(4);
6013   Node* dest_offset                = argument(5);
6014 
6015   // (1) src and dest are arrays.
6016   const Type* src_type = src->Value(&_gvn);
6017   const Type* dest_type = dest->Value(&_gvn);
6018   const TypeAryPtr* top_src = src_type->isa_aryptr();
6019   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6020   assert (top_src  != NULL && top_src->klass()  != NULL
6021           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6022 
6023   // checks are the responsibility of the caller
6024   Node* src_start  = src;
6025   Node* dest_start = dest;
6026   if (src_offset != NULL || dest_offset != NULL) {
6027     assert(src_offset != NULL && dest_offset != NULL, "");
6028     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6029     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6030   }
6031 
6032   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6033   // (because of the predicated logic executed earlier).
6034   // so we cast it here safely.
6035   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6036 
6037   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6038   if (embeddedCipherObj == NULL) return false;
6039 
6040   // cast it to what we know it will be at runtime
6041   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6042   assert(tinst != NULL, "CBC obj is null");
6043   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6044   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6045   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6046 
6047   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6048   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6049   const TypeOopPtr* xtype = aklass->as_instance_type();
6050   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6051   aescrypt_object = _gvn.transform(aescrypt_object);
6052 
6053   // we need to get the start of the aescrypt_object's expanded key array
6054   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6055   if (k_start == NULL) return false;
6056 
6057   // similarly, get the start address of the r vector
6058   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6059   if (objRvec == NULL) return false;
6060   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6061 
6062   Node* cbcCrypt;
6063   if (Matcher::pass_original_key_for_aes()) {
6064     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6065     // compatibility issues between Java key expansion and SPARC crypto instructions
6066     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6067     if (original_k_start == NULL) return false;
6068 
6069     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6070     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6071                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6072                                  stubAddr, stubName, TypePtr::BOTTOM,
6073                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6074   } else {
6075     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6076     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6077                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6078                                  stubAddr, stubName, TypePtr::BOTTOM,
6079                                  src_start, dest_start, k_start, r_start, len);
6080   }
6081 
6082   // return cipher length (int)
6083   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6084   set_result(retvalue);
6085   return true;
6086 }
6087 
6088 //------------------------------get_key_start_from_aescrypt_object-----------------------
6089 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6090   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6091   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6092   if (objAESCryptKey == NULL) return (Node *) NULL;
6093 
6094   // now have the array, need to get the start address of the K array
6095   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6096   return k_start;
6097 }
6098 
6099 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6100 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6101   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6102   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6103   if (objAESCryptKey == NULL) return (Node *) NULL;
6104 
6105   // now have the array, need to get the start address of the lastKey array
6106   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6107   return original_k_start;
6108 }
6109 
6110 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6111 // Return node representing slow path of predicate check.
6112 // the pseudo code we want to emulate with this predicate is:
6113 // for encryption:
6114 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6115 // for decryption:
6116 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6117 //    note cipher==plain is more conservative than the original java code but that's OK
6118 //
6119 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6120   // The receiver was checked for NULL already.
6121   Node* objCBC = argument(0);
6122 
6123   // Load embeddedCipher field of CipherBlockChaining object.
6124   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6125 
6126   // get AESCrypt klass for instanceOf check
6127   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6128   // will have same classloader as CipherBlockChaining object
6129   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6130   assert(tinst != NULL, "CBCobj is null");
6131   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6132 
6133   // we want to do an instanceof comparison against the AESCrypt class
6134   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6135   if (!klass_AESCrypt->is_loaded()) {
6136     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6137     Node* ctrl = control();
6138     set_control(top()); // no regular fast path
6139     return ctrl;
6140   }
6141   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6142 
6143   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6144   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6145   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6146 
6147   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6148 
6149   // for encryption, we are done
6150   if (!decrypting)
6151     return instof_false;  // even if it is NULL
6152 
6153   // for decryption, we need to add a further check to avoid
6154   // taking the intrinsic path when cipher and plain are the same
6155   // see the original java code for why.
6156   RegionNode* region = new RegionNode(3);
6157   region->init_req(1, instof_false);
6158   Node* src = argument(1);
6159   Node* dest = argument(4);
6160   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6161   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6162   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6163   region->init_req(2, src_dest_conjoint);
6164 
6165   record_for_igvn(region);
6166   return _gvn.transform(region);
6167 }
6168 
6169 //------------------------------inline_sha_implCompress-----------------------
6170 //
6171 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6172 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6173 //
6174 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6175 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6176 //
6177 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6178 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6179 //
6180 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6181   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6182 
6183   Node* sha_obj = argument(0);
6184   Node* src     = argument(1); // type oop
6185   Node* ofs     = argument(2); // type int
6186 
6187   const Type* src_type = src->Value(&_gvn);
6188   const TypeAryPtr* top_src = src_type->isa_aryptr();
6189   if (top_src  == NULL || top_src->klass()  == NULL) {
6190     // failed array check
6191     return false;
6192   }
6193   // Figure out the size and type of the elements we will be copying.
6194   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6195   if (src_elem != T_BYTE) {
6196     return false;
6197   }
6198   // 'src_start' points to src array + offset
6199   Node* src_start = array_element_address(src, ofs, src_elem);
6200   Node* state = NULL;
6201   address stubAddr;
6202   const char *stubName;
6203 
6204   switch(id) {
6205   case vmIntrinsics::_sha_implCompress:
6206     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6207     state = get_state_from_sha_object(sha_obj);
6208     stubAddr = StubRoutines::sha1_implCompress();
6209     stubName = "sha1_implCompress";
6210     break;
6211   case vmIntrinsics::_sha2_implCompress:
6212     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6213     state = get_state_from_sha_object(sha_obj);
6214     stubAddr = StubRoutines::sha256_implCompress();
6215     stubName = "sha256_implCompress";
6216     break;
6217   case vmIntrinsics::_sha5_implCompress:
6218     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6219     state = get_state_from_sha5_object(sha_obj);
6220     stubAddr = StubRoutines::sha512_implCompress();
6221     stubName = "sha512_implCompress";
6222     break;
6223   default:
6224     fatal_unexpected_iid(id);
6225     return false;
6226   }
6227   if (state == NULL) return false;
6228 
6229   // Call the stub.
6230   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6231                                  stubAddr, stubName, TypePtr::BOTTOM,
6232                                  src_start, state);
6233 
6234   return true;
6235 }
6236 
6237 //------------------------------inline_digestBase_implCompressMB-----------------------
6238 //
6239 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6240 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6241 //
6242 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6243   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6244          "need SHA1/SHA256/SHA512 instruction support");
6245   assert((uint)predicate < 3, "sanity");
6246   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6247 
6248   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6249   Node* src            = argument(1); // byte[] array
6250   Node* ofs            = argument(2); // type int
6251   Node* limit          = argument(3); // type int
6252 
6253   const Type* src_type = src->Value(&_gvn);
6254   const TypeAryPtr* top_src = src_type->isa_aryptr();
6255   if (top_src  == NULL || top_src->klass()  == NULL) {
6256     // failed array check
6257     return false;
6258   }
6259   // Figure out the size and type of the elements we will be copying.
6260   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6261   if (src_elem != T_BYTE) {
6262     return false;
6263   }
6264   // 'src_start' points to src array + offset
6265   Node* src_start = array_element_address(src, ofs, src_elem);
6266 
6267   const char* klass_SHA_name = NULL;
6268   const char* stub_name = NULL;
6269   address     stub_addr = NULL;
6270   bool        long_state = false;
6271 
6272   switch (predicate) {
6273   case 0:
6274     if (UseSHA1Intrinsics) {
6275       klass_SHA_name = "sun/security/provider/SHA";
6276       stub_name = "sha1_implCompressMB";
6277       stub_addr = StubRoutines::sha1_implCompressMB();
6278     }
6279     break;
6280   case 1:
6281     if (UseSHA256Intrinsics) {
6282       klass_SHA_name = "sun/security/provider/SHA2";
6283       stub_name = "sha256_implCompressMB";
6284       stub_addr = StubRoutines::sha256_implCompressMB();
6285     }
6286     break;
6287   case 2:
6288     if (UseSHA512Intrinsics) {
6289       klass_SHA_name = "sun/security/provider/SHA5";
6290       stub_name = "sha512_implCompressMB";
6291       stub_addr = StubRoutines::sha512_implCompressMB();
6292       long_state = true;
6293     }
6294     break;
6295   default:
6296     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6297   }
6298   if (klass_SHA_name != NULL) {
6299     // get DigestBase klass to lookup for SHA klass
6300     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6301     assert(tinst != NULL, "digestBase_obj is not instance???");
6302     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6303 
6304     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6305     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6306     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6307     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6308   }
6309   return false;
6310 }
6311 //------------------------------inline_sha_implCompressMB-----------------------
6312 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6313                                                bool long_state, address stubAddr, const char *stubName,
6314                                                Node* src_start, Node* ofs, Node* limit) {
6315   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6316   const TypeOopPtr* xtype = aklass->as_instance_type();
6317   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6318   sha_obj = _gvn.transform(sha_obj);
6319 
6320   Node* state;
6321   if (long_state) {
6322     state = get_state_from_sha5_object(sha_obj);
6323   } else {
6324     state = get_state_from_sha_object(sha_obj);
6325   }
6326   if (state == NULL) return false;
6327 
6328   // Call the stub.
6329   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6330          OptoRuntime::digestBase_implCompressMB_Type(),
6331                                  stubAddr, stubName, TypePtr::BOTTOM,
6332                                  src_start, state, ofs, limit);
6333   // return ofs (int)
6334   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6335   set_result(result);
6336 
6337   return true;
6338 }
6339 
6340 //------------------------------get_state_from_sha_object-----------------------
6341 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6342   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6343   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6344   if (sha_state == NULL) return (Node *) NULL;
6345 
6346   // now have the array, need to get the start address of the state array
6347   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6348   return state;
6349 }
6350 
6351 //------------------------------get_state_from_sha5_object-----------------------
6352 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6353   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6354   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6355   if (sha_state == NULL) return (Node *) NULL;
6356 
6357   // now have the array, need to get the start address of the state array
6358   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6359   return state;
6360 }
6361 
6362 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6363 // Return node representing slow path of predicate check.
6364 // the pseudo code we want to emulate with this predicate is:
6365 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6366 //
6367 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6368   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6369          "need SHA1/SHA256/SHA512 instruction support");
6370   assert((uint)predicate < 3, "sanity");
6371 
6372   // The receiver was checked for NULL already.
6373   Node* digestBaseObj = argument(0);
6374 
6375   // get DigestBase klass for instanceOf check
6376   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6377   assert(tinst != NULL, "digestBaseObj is null");
6378   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6379 
6380   const char* klass_SHA_name = NULL;
6381   switch (predicate) {
6382   case 0:
6383     if (UseSHA1Intrinsics) {
6384       // we want to do an instanceof comparison against the SHA class
6385       klass_SHA_name = "sun/security/provider/SHA";
6386     }
6387     break;
6388   case 1:
6389     if (UseSHA256Intrinsics) {
6390       // we want to do an instanceof comparison against the SHA2 class
6391       klass_SHA_name = "sun/security/provider/SHA2";
6392     }
6393     break;
6394   case 2:
6395     if (UseSHA512Intrinsics) {
6396       // we want to do an instanceof comparison against the SHA5 class
6397       klass_SHA_name = "sun/security/provider/SHA5";
6398     }
6399     break;
6400   default:
6401     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6402   }
6403 
6404   ciKlass* klass_SHA = NULL;
6405   if (klass_SHA_name != NULL) {
6406     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6407   }
6408   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6409     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6410     Node* ctrl = control();
6411     set_control(top()); // no intrinsic path
6412     return ctrl;
6413   }
6414   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6415 
6416   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6417   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6418   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6419   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6420 
6421   return instof_false;  // even if it is NULL
6422 }