1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/graphKit.hpp"
  52 #include "opto/machnode.hpp"
  53 #include "opto/matcher.hpp"
  54 #include "opto/memnode.hpp"
  55 #include "opto/mulnode.hpp"
  56 #include "opto/runtime.hpp"
  57 #include "opto/subnode.hpp"
  58 #include "runtime/fprofiler.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/interfaceSupport.hpp"
  61 #include "runtime/javaCalls.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/signature.hpp"
  64 #include "runtime/threadCritical.hpp"
  65 #include "runtime/vframe.hpp"
  66 #include "runtime/vframeArray.hpp"
  67 #include "runtime/vframe_hp.hpp"
  68 #include "utilities/copy.hpp"
  69 #include "utilities/preserveException.hpp"
  70 #ifdef TARGET_ARCH_MODEL_x86_32
  71 # include "adfiles/ad_x86_32.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_MODEL_x86_64
  74 # include "adfiles/ad_x86_64.hpp"
  75 #endif
  76 #ifdef TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_MODEL_zero
  80 # include "adfiles/ad_zero.hpp"
  81 #endif
  82 #ifdef TARGET_ARCH_MODEL_arm
  83 # include "adfiles/ad_arm.hpp"
  84 #endif
  85 #ifdef TARGET_ARCH_MODEL_ppc_32
  86 # include "adfiles/ad_ppc_32.hpp"
  87 #endif
  88 #ifdef TARGET_ARCH_MODEL_ppc_64
  89 # include "adfiles/ad_ppc_64.hpp"
  90 #endif
  91 
  92 
  93 // For debugging purposes:
  94 //  To force FullGCALot inside a runtime function, add the following two lines
  95 //
  96 //  Universe::release_fullgc_alot_dummy();
  97 //  MarkSweep::invoke(0, "Debugging");
  98 //
  99 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
 100 
 101 
 102 
 103 
 104 // Compiled code entry points
 105 address OptoRuntime::_new_instance_Java                           = NULL;
 106 address OptoRuntime::_new_array_Java                              = NULL;
 107 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 108 address OptoRuntime::_multianewarray2_Java                        = NULL;
 109 address OptoRuntime::_multianewarray3_Java                        = NULL;
 110 address OptoRuntime::_multianewarray4_Java                        = NULL;
 111 address OptoRuntime::_multianewarray5_Java                        = NULL;
 112 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 113 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 114 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 115 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 116 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 117 address OptoRuntime::_rethrow_Java                                = NULL;
 118 
 119 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 120 address OptoRuntime::_register_finalizer_Java                     = NULL;
 121 
 122 # ifdef ENABLE_ZAP_DEAD_LOCALS
 123 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 124 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 125 # endif
 126 
 127 ExceptionBlob* OptoRuntime::_exception_blob;
 128 
 129 // This should be called in an assertion at the start of OptoRuntime routines
 130 // which are entered from compiled code (all of them)
 131 #ifdef ASSERT
 132 static bool check_compiled_frame(JavaThread* thread) {
 133   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 134   RegisterMap map(thread, false);
 135   frame caller = thread->last_frame().sender(&map);
 136   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 137   return true;
 138 }
 139 #endif // ASSERT
 140 
 141 
 142 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 143   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 144   if (var == NULL) { return false; }
 145 
 146 bool OptoRuntime::generate(ciEnv* env) {
 147 
 148   generate_exception_blob();
 149 
 150   // Note: tls: Means fetching the return oop out of the thread-local storage
 151   //
 152   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 153   // -------------------------------------------------------------------------------------------------------------------------------
 154   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 155   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 156   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 157   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 158   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 159   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 160   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 161   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 162   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 163   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 164   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 165   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 166 
 167   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 168   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 169 
 170 # ifdef ENABLE_ZAP_DEAD_LOCALS
 171   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 172   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 173 # endif
 174   return true;
 175 }
 176 
 177 #undef gen
 178 
 179 
 180 // Helper method to do generation of RunTimeStub's
 181 address OptoRuntime::generate_stub( ciEnv* env,
 182                                     TypeFunc_generator gen, address C_function,
 183                                     const char *name, int is_fancy_jump,
 184                                     bool pass_tls,
 185                                     bool save_argument_registers,
 186                                     bool return_pc ) {
 187   ResourceMark rm;
 188   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 189   return  C.stub_entry_point();
 190 }
 191 
 192 const char* OptoRuntime::stub_name(address entry) {
 193 #ifndef PRODUCT
 194   CodeBlob* cb = CodeCache::find_blob(entry);
 195   RuntimeStub* rs =(RuntimeStub *)cb;
 196   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 197   return rs->name();
 198 #else
 199   // Fast implementation for product mode (maybe it should be inlined too)
 200   return "runtime stub";
 201 #endif
 202 }
 203 
 204 
 205 //=============================================================================
 206 // Opto compiler runtime routines
 207 //=============================================================================
 208 
 209 
 210 //=============================allocation======================================
 211 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 212 // and try allocation again.
 213 
 214 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 215   // After any safepoint, just before going back to compiled code,
 216   // we inform the GC that we will be doing initializing writes to
 217   // this object in the future without emitting card-marks, so
 218   // GC may take any compensating steps.
 219   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 220 
 221   oop new_obj = thread->vm_result();
 222   if (new_obj == NULL)  return;
 223 
 224   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 225          "compiler must check this first");
 226   // GC may decide to give back a safer copy of new_obj.
 227   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 228   thread->set_vm_result(new_obj);
 229 }
 230 
 231 // object allocation
 232 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 233   JRT_BLOCK;
 234 #ifndef PRODUCT
 235   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 236 #endif
 237   assert(check_compiled_frame(thread), "incorrect caller");
 238 
 239   // These checks are cheap to make and support reflective allocation.
 240   int lh = klass->layout_helper();
 241   if (Klass::layout_helper_needs_slow_path(lh)
 242       || !InstanceKlass::cast(klass)->is_initialized()) {
 243     KlassHandle kh(THREAD, klass);
 244     kh->check_valid_for_instantiation(false, THREAD);
 245     if (!HAS_PENDING_EXCEPTION) {
 246       InstanceKlass::cast(kh())->initialize(THREAD);
 247     }
 248     if (!HAS_PENDING_EXCEPTION) {
 249       klass = kh();
 250     } else {
 251       klass = NULL;
 252     }
 253   }
 254 
 255   if (klass != NULL) {
 256     // Scavenge and allocate an instance.
 257     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 258     thread->set_vm_result(result);
 259 
 260     // Pass oops back through thread local storage.  Our apparent type to Java
 261     // is that we return an oop, but we can block on exit from this routine and
 262     // a GC can trash the oop in C's return register.  The generated stub will
 263     // fetch the oop from TLS after any possible GC.
 264   }
 265 
 266   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 267   JRT_BLOCK_END;
 268 
 269   if (GraphKit::use_ReduceInitialCardMarks()) {
 270     // inform GC that we won't do card marks for initializing writes.
 271     new_store_pre_barrier(thread);
 272   }
 273 JRT_END
 274 
 275 
 276 // array allocation
 277 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 278   JRT_BLOCK;
 279 #ifndef PRODUCT
 280   SharedRuntime::_new_array_ctr++;            // new array requires GC
 281 #endif
 282   assert(check_compiled_frame(thread), "incorrect caller");
 283 
 284   // Scavenge and allocate an instance.
 285   oop result;
 286 
 287   if (array_type->oop_is_typeArray()) {
 288     // The oopFactory likes to work with the element type.
 289     // (We could bypass the oopFactory, since it doesn't add much value.)
 290     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 291     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 292   } else {
 293     // Although the oopFactory likes to work with the elem_type,
 294     // the compiler prefers the array_type, since it must already have
 295     // that latter value in hand for the fast path.
 296     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 297     result = oopFactory::new_objArray(elem_type, len, THREAD);
 298   }
 299 
 300   // Pass oops back through thread local storage.  Our apparent type to Java
 301   // is that we return an oop, but we can block on exit from this routine and
 302   // a GC can trash the oop in C's return register.  The generated stub will
 303   // fetch the oop from TLS after any possible GC.
 304   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 305   thread->set_vm_result(result);
 306   JRT_BLOCK_END;
 307 
 308   if (GraphKit::use_ReduceInitialCardMarks()) {
 309     // inform GC that we won't do card marks for initializing writes.
 310     new_store_pre_barrier(thread);
 311   }
 312 JRT_END
 313 
 314 // array allocation without zeroing
 315 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 316   JRT_BLOCK;
 317 #ifndef PRODUCT
 318   SharedRuntime::_new_array_ctr++;            // new array requires GC
 319 #endif
 320   assert(check_compiled_frame(thread), "incorrect caller");
 321 
 322   // Scavenge and allocate an instance.
 323   oop result;
 324 
 325   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 326   // The oopFactory likes to work with the element type.
 327   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 328   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 329 
 330   // Pass oops back through thread local storage.  Our apparent type to Java
 331   // is that we return an oop, but we can block on exit from this routine and
 332   // a GC can trash the oop in C's return register.  The generated stub will
 333   // fetch the oop from TLS after any possible GC.
 334   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 335   thread->set_vm_result(result);
 336   JRT_BLOCK_END;
 337 
 338   if (GraphKit::use_ReduceInitialCardMarks()) {
 339     // inform GC that we won't do card marks for initializing writes.
 340     new_store_pre_barrier(thread);
 341   }
 342 
 343   oop result = thread->vm_result();
 344   if ((len > 0) && (result != NULL) &&
 345       is_deoptimized_caller_frame(thread)) {
 346     // Zero array here if the caller is deoptimized.
 347     int size = ((typeArrayOop)result)->object_size();
 348     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 349     const size_t hs = arrayOopDesc::header_size(elem_type);
 350     // Align to next 8 bytes to avoid trashing arrays's length.
 351     const size_t aligned_hs = align_object_offset(hs);
 352     HeapWord* obj = (HeapWord*)result;
 353     if (aligned_hs > hs) {
 354       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 355     }
 356     // Optimized zeroing.
 357     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 358   }
 359 
 360 JRT_END
 361 
 362 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 363 
 364 // multianewarray for 2 dimensions
 365 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 366 #ifndef PRODUCT
 367   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 368 #endif
 369   assert(check_compiled_frame(thread), "incorrect caller");
 370   assert(elem_type->is_klass(), "not a class");
 371   jint dims[2];
 372   dims[0] = len1;
 373   dims[1] = len2;
 374   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 375   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 376   thread->set_vm_result(obj);
 377 JRT_END
 378 
 379 // multianewarray for 3 dimensions
 380 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 381 #ifndef PRODUCT
 382   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 383 #endif
 384   assert(check_compiled_frame(thread), "incorrect caller");
 385   assert(elem_type->is_klass(), "not a class");
 386   jint dims[3];
 387   dims[0] = len1;
 388   dims[1] = len2;
 389   dims[2] = len3;
 390   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 391   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 392   thread->set_vm_result(obj);
 393 JRT_END
 394 
 395 // multianewarray for 4 dimensions
 396 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 397 #ifndef PRODUCT
 398   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 399 #endif
 400   assert(check_compiled_frame(thread), "incorrect caller");
 401   assert(elem_type->is_klass(), "not a class");
 402   jint dims[4];
 403   dims[0] = len1;
 404   dims[1] = len2;
 405   dims[2] = len3;
 406   dims[3] = len4;
 407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 409   thread->set_vm_result(obj);
 410 JRT_END
 411 
 412 // multianewarray for 5 dimensions
 413 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 414 #ifndef PRODUCT
 415   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 416 #endif
 417   assert(check_compiled_frame(thread), "incorrect caller");
 418   assert(elem_type->is_klass(), "not a class");
 419   jint dims[5];
 420   dims[0] = len1;
 421   dims[1] = len2;
 422   dims[2] = len3;
 423   dims[3] = len4;
 424   dims[4] = len5;
 425   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 426   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 427   thread->set_vm_result(obj);
 428 JRT_END
 429 
 430 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 431   assert(check_compiled_frame(thread), "incorrect caller");
 432   assert(elem_type->is_klass(), "not a class");
 433   assert(oop(dims)->is_typeArray(), "not an array");
 434 
 435   ResourceMark rm;
 436   jint len = dims->length();
 437   assert(len > 0, "Dimensions array should contain data");
 438   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 439   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 440   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 441 
 442   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 443   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 444   thread->set_vm_result(obj);
 445 JRT_END
 446 
 447 
 448 const TypeFunc *OptoRuntime::new_instance_Type() {
 449   // create input type (domain)
 450   const Type **fields = TypeTuple::fields(1);
 451   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 452   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 453 
 454   // create result type (range)
 455   fields = TypeTuple::fields(1);
 456   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 457 
 458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 459 
 460   return TypeFunc::make(domain, range);
 461 }
 462 
 463 
 464 const TypeFunc *OptoRuntime::athrow_Type() {
 465   // create input type (domain)
 466   const Type **fields = TypeTuple::fields(1);
 467   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 469 
 470   // create result type (range)
 471   fields = TypeTuple::fields(0);
 472 
 473   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 474 
 475   return TypeFunc::make(domain, range);
 476 }
 477 
 478 
 479 const TypeFunc *OptoRuntime::new_array_Type() {
 480   // create input type (domain)
 481   const Type **fields = TypeTuple::fields(2);
 482   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 483   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 484   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 485 
 486   // create result type (range)
 487   fields = TypeTuple::fields(1);
 488   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 489 
 490   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 491 
 492   return TypeFunc::make(domain, range);
 493 }
 494 
 495 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 496   // create input type (domain)
 497   const int nargs = ndim + 1;
 498   const Type **fields = TypeTuple::fields(nargs);
 499   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 500   for( int i = 1; i < nargs; i++ )
 501     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 502   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 503 
 504   // create result type (range)
 505   fields = TypeTuple::fields(1);
 506   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 508 
 509   return TypeFunc::make(domain, range);
 510 }
 511 
 512 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 513   return multianewarray_Type(2);
 514 }
 515 
 516 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 517   return multianewarray_Type(3);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 521   return multianewarray_Type(4);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 525   return multianewarray_Type(5);
 526 }
 527 
 528 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 529   // create input type (domain)
 530   const Type **fields = TypeTuple::fields(2);
 531   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 532   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 533   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 534 
 535   // create result type (range)
 536   fields = TypeTuple::fields(1);
 537   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 538   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 539 
 540   return TypeFunc::make(domain, range);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 544   const Type **fields = TypeTuple::fields(2);
 545   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 546   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 547   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 548 
 549   // create result type (range)
 550   fields = TypeTuple::fields(0);
 551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 552 
 553   return TypeFunc::make(domain, range);
 554 }
 555 
 556 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 557 
 558   const Type **fields = TypeTuple::fields(2);
 559   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 560   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 562 
 563   // create result type (range)
 564   fields = TypeTuple::fields(0);
 565   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 566 
 567   return TypeFunc::make(domain, range);
 568 }
 569 
 570 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 571   // create input type (domain)
 572   const Type **fields = TypeTuple::fields(1);
 573   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 574   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 575 
 576   // create result type (range)
 577   fields = TypeTuple::fields(0);
 578   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 579 
 580   return TypeFunc::make(domain, range);
 581 }
 582 
 583 # ifdef ENABLE_ZAP_DEAD_LOCALS
 584 // Type used for stub generation for zap_dead_locals.
 585 // No inputs or outputs
 586 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 587   // create input type (domain)
 588   const Type **fields = TypeTuple::fields(0);
 589   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 590 
 591   // create result type (range)
 592   fields = TypeTuple::fields(0);
 593   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 594 
 595   return TypeFunc::make(domain,range);
 596 }
 597 # endif
 598 
 599 
 600 //-----------------------------------------------------------------------------
 601 // Monitor Handling
 602 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 603   // create input type (domain)
 604   const Type **fields = TypeTuple::fields(2);
 605   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 606   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 607   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 608 
 609   // create result type (range)
 610   fields = TypeTuple::fields(0);
 611 
 612   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 613 
 614   return TypeFunc::make(domain,range);
 615 }
 616 
 617 
 618 //-----------------------------------------------------------------------------
 619 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 620   // create input type (domain)
 621   const Type **fields = TypeTuple::fields(2);
 622   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 623   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 624   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 625 
 626   // create result type (range)
 627   fields = TypeTuple::fields(0);
 628 
 629   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 630 
 631   return TypeFunc::make(domain,range);
 632 }
 633 
 634 const TypeFunc* OptoRuntime::flush_windows_Type() {
 635   // create input type (domain)
 636   const Type** fields = TypeTuple::fields(1);
 637   fields[TypeFunc::Parms+0] = NULL; // void
 638   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 639 
 640   // create result type
 641   fields = TypeTuple::fields(1);
 642   fields[TypeFunc::Parms+0] = NULL; // void
 643   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 644 
 645   return TypeFunc::make(domain, range);
 646 }
 647 
 648 const TypeFunc* OptoRuntime::l2f_Type() {
 649   // create input type (domain)
 650   const Type **fields = TypeTuple::fields(2);
 651   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 652   fields[TypeFunc::Parms+1] = Type::HALF;
 653   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 654 
 655   // create result type (range)
 656   fields = TypeTuple::fields(1);
 657   fields[TypeFunc::Parms+0] = Type::FLOAT;
 658   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 659 
 660   return TypeFunc::make(domain, range);
 661 }
 662 
 663 const TypeFunc* OptoRuntime::modf_Type() {
 664   const Type **fields = TypeTuple::fields(2);
 665   fields[TypeFunc::Parms+0] = Type::FLOAT;
 666   fields[TypeFunc::Parms+1] = Type::FLOAT;
 667   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 668 
 669   // create result type (range)
 670   fields = TypeTuple::fields(1);
 671   fields[TypeFunc::Parms+0] = Type::FLOAT;
 672 
 673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 674 
 675   return TypeFunc::make(domain, range);
 676 }
 677 
 678 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 679   // create input type (domain)
 680   const Type **fields = TypeTuple::fields(2);
 681   // Symbol* name of class to be loaded
 682   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 683   fields[TypeFunc::Parms+1] = Type::HALF;
 684   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 685 
 686   // create result type (range)
 687   fields = TypeTuple::fields(2);
 688   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 689   fields[TypeFunc::Parms+1] = Type::HALF;
 690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   return TypeFunc::make(domain, range);
 693 }
 694 
 695 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 696   const Type **fields = TypeTuple::fields(4);
 697   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 698   fields[TypeFunc::Parms+1] = Type::HALF;
 699   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 700   fields[TypeFunc::Parms+3] = Type::HALF;
 701   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 702 
 703   // create result type (range)
 704   fields = TypeTuple::fields(2);
 705   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 706   fields[TypeFunc::Parms+1] = Type::HALF;
 707   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 708 
 709   return TypeFunc::make(domain, range);
 710 }
 711 
 712 //-------------- currentTimeMillis, currentTimeNanos, etc
 713 
 714 const TypeFunc* OptoRuntime::void_long_Type() {
 715   // create input type (domain)
 716   const Type **fields = TypeTuple::fields(0);
 717   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 718 
 719   // create result type (range)
 720   fields = TypeTuple::fields(2);
 721   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 722   fields[TypeFunc::Parms+1] = Type::HALF;
 723   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 724 
 725   return TypeFunc::make(domain, range);
 726 }
 727 
 728 // arraycopy stub variations:
 729 enum ArrayCopyType {
 730   ac_fast,                      // void(ptr, ptr, size_t)
 731   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 732   ac_slow,                      // void(ptr, int, ptr, int, int)
 733   ac_generic                    //  int(ptr, int, ptr, int, int)
 734 };
 735 
 736 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 737   // create input type (domain)
 738   int num_args      = (act == ac_fast ? 3 : 5);
 739   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 740   int argcnt = num_args;
 741   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 742   const Type** fields = TypeTuple::fields(argcnt);
 743   int argp = TypeFunc::Parms;
 744   fields[argp++] = TypePtr::NOTNULL;    // src
 745   if (num_size_args == 0) {
 746     fields[argp++] = TypeInt::INT;      // src_pos
 747   }
 748   fields[argp++] = TypePtr::NOTNULL;    // dest
 749   if (num_size_args == 0) {
 750     fields[argp++] = TypeInt::INT;      // dest_pos
 751     fields[argp++] = TypeInt::INT;      // length
 752   }
 753   while (num_size_args-- > 0) {
 754     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 755     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 756   }
 757   if (act == ac_checkcast) {
 758     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 759   }
 760   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 761   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 762 
 763   // create result type if needed
 764   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 765   fields = TypeTuple::fields(1);
 766   if (retcnt == 0)
 767     fields[TypeFunc::Parms+0] = NULL; // void
 768   else
 769     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 770   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 771   return TypeFunc::make(domain, range);
 772 }
 773 
 774 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 775   // This signature is simple:  Two base pointers and a size_t.
 776   return make_arraycopy_Type(ac_fast);
 777 }
 778 
 779 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 780   // An extension of fast_arraycopy_Type which adds type checking.
 781   return make_arraycopy_Type(ac_checkcast);
 782 }
 783 
 784 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 785   // This signature is exactly the same as System.arraycopy.
 786   // There are no intptr_t (int/long) arguments.
 787   return make_arraycopy_Type(ac_slow);
 788 }
 789 
 790 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 791   // This signature is like System.arraycopy, except that it returns status.
 792   return make_arraycopy_Type(ac_generic);
 793 }
 794 
 795 
 796 const TypeFunc* OptoRuntime::array_fill_Type() {
 797   const Type** fields;
 798   int argp = TypeFunc::Parms;
 799   if (CCallingConventionRequiresIntsAsLongs) {
 800   // create input type (domain): pointer, int, size_t
 801     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 802     fields[argp++] = TypePtr::NOTNULL;
 803     fields[argp++] = TypeLong::LONG;
 804     fields[argp++] = Type::HALF;
 805   } else {
 806     // create input type (domain): pointer, int, size_t
 807     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 808     fields[argp++] = TypePtr::NOTNULL;
 809     fields[argp++] = TypeInt::INT;
 810   }
 811   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 812   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 813   const TypeTuple *domain = TypeTuple::make(argp, fields);
 814 
 815   // create result type
 816   fields = TypeTuple::fields(1);
 817   fields[TypeFunc::Parms+0] = NULL; // void
 818   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 819 
 820   return TypeFunc::make(domain, range);
 821 }
 822 
 823 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 824 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 825   // create input type (domain)
 826   int num_args      = 3;
 827   if (Matcher::pass_original_key_for_aes()) {
 828     num_args = 4;
 829   }
 830   int argcnt = num_args;
 831   const Type** fields = TypeTuple::fields(argcnt);
 832   int argp = TypeFunc::Parms;
 833   fields[argp++] = TypePtr::NOTNULL;    // src
 834   fields[argp++] = TypePtr::NOTNULL;    // dest
 835   fields[argp++] = TypePtr::NOTNULL;    // k array
 836   if (Matcher::pass_original_key_for_aes()) {
 837     fields[argp++] = TypePtr::NOTNULL;    // original k array
 838   }
 839   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 840   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 841 
 842   // no result type needed
 843   fields = TypeTuple::fields(1);
 844   fields[TypeFunc::Parms+0] = NULL; // void
 845   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 846   return TypeFunc::make(domain, range);
 847 }
 848 
 849 /**
 850  * int updateBytesCRC32(int crc, byte* b, int len)
 851  */
 852 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 853   // create input type (domain)
 854   int num_args      = 3;
 855   int argcnt = num_args;
 856   const Type** fields = TypeTuple::fields(argcnt);
 857   int argp = TypeFunc::Parms;
 858   fields[argp++] = TypeInt::INT;        // crc
 859   fields[argp++] = TypePtr::NOTNULL;    // src
 860   fields[argp++] = TypeInt::INT;        // len
 861   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 862   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 863 
 864   // result type needed
 865   fields = TypeTuple::fields(1);
 866   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 867   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 868   return TypeFunc::make(domain, range);
 869 }
 870 
 871 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 872 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 873   // create input type (domain)
 874   int num_args      = 5;
 875   if (Matcher::pass_original_key_for_aes()) {
 876     num_args = 6;
 877   }
 878   int argcnt = num_args;
 879   const Type** fields = TypeTuple::fields(argcnt);
 880   int argp = TypeFunc::Parms;
 881   fields[argp++] = TypePtr::NOTNULL;    // src
 882   fields[argp++] = TypePtr::NOTNULL;    // dest
 883   fields[argp++] = TypePtr::NOTNULL;    // k array
 884   fields[argp++] = TypePtr::NOTNULL;    // r array
 885   fields[argp++] = TypeInt::INT;        // src len
 886   if (Matcher::pass_original_key_for_aes()) {
 887     fields[argp++] = TypePtr::NOTNULL;    // original k array
 888   }
 889   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 890   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 891 
 892   // returning cipher len (int)
 893   fields = TypeTuple::fields(1);
 894   fields[TypeFunc::Parms+0] = TypeInt::INT;
 895   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 896   return TypeFunc::make(domain, range);
 897 }
 898 
 899 //------------- Interpreter state access for on stack replacement
 900 const TypeFunc* OptoRuntime::osr_end_Type() {
 901   // create input type (domain)
 902   const Type **fields = TypeTuple::fields(1);
 903   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 904   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 905 
 906   // create result type
 907   fields = TypeTuple::fields(1);
 908   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 909   fields[TypeFunc::Parms+0] = NULL; // void
 910   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 911   return TypeFunc::make(domain, range);
 912 }
 913 
 914 //-------------- methodData update helpers
 915 
 916 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 917   // create input type (domain)
 918   const Type **fields = TypeTuple::fields(2);
 919   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 920   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 921   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 922 
 923   // create result type
 924   fields = TypeTuple::fields(1);
 925   fields[TypeFunc::Parms+0] = NULL; // void
 926   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 927   return TypeFunc::make(domain,range);
 928 }
 929 
 930 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 931   if (receiver == NULL) return;
 932   Klass* receiver_klass = receiver->klass();
 933 
 934   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 935   int empty_row = -1;           // free row, if any is encountered
 936 
 937   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 938   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 939     // if (vc->receiver(row) == receiver_klass)
 940     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 941     intptr_t row_recv = *(mdp + receiver_off);
 942     if (row_recv == (intptr_t) receiver_klass) {
 943       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 944       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 945       *(mdp + count_off) += DataLayout::counter_increment;
 946       return;
 947     } else if (row_recv == 0) {
 948       // else if (vc->receiver(row) == NULL)
 949       empty_row = (int) row;
 950     }
 951   }
 952 
 953   if (empty_row != -1) {
 954     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
 955     // vc->set_receiver(empty_row, receiver_klass);
 956     *(mdp + receiver_off) = (intptr_t) receiver_klass;
 957     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
 958     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
 959     *(mdp + count_off) = DataLayout::counter_increment;
 960   } else {
 961     // Receiver did not match any saved receiver and there is no empty row for it.
 962     // Increment total counter to indicate polymorphic case.
 963     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
 964     *count_p += DataLayout::counter_increment;
 965   }
 966 JRT_END
 967 
 968 //-------------------------------------------------------------------------------------
 969 // register policy
 970 
 971 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
 972   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
 973   switch (register_save_policy[reg]) {
 974     case 'C': return false; //SOC
 975     case 'E': return true ; //SOE
 976     case 'N': return false; //NS
 977     case 'A': return false; //AS
 978   }
 979   ShouldNotReachHere();
 980   return false;
 981 }
 982 
 983 //-----------------------------------------------------------------------
 984 // Exceptions
 985 //
 986 
 987 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
 988 
 989 // The method is an entry that is always called by a C++ method not
 990 // directly from compiled code. Compiled code will call the C++ method following.
 991 // We can't allow async exception to be installed during  exception processing.
 992 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
 993 
 994   // Do not confuse exception_oop with pending_exception. The exception_oop
 995   // is only used to pass arguments into the method. Not for general
 996   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
 997   // the runtime stubs checks this on exit.
 998   assert(thread->exception_oop() != NULL, "exception oop is found");
 999   address handler_address = NULL;
1000 
1001   Handle exception(thread, thread->exception_oop());
1002   address pc = thread->exception_pc();
1003 
1004   // Clear out the exception oop and pc since looking up an
1005   // exception handler can cause class loading, which might throw an
1006   // exception and those fields are expected to be clear during
1007   // normal bytecode execution.
1008   thread->clear_exception_oop_and_pc();
1009 
1010   if (TraceExceptions) {
1011     trace_exception(exception(), pc, "");
1012   }
1013 
1014   // for AbortVMOnException flag
1015   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1016 
1017 #ifdef ASSERT
1018   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1019     // should throw an exception here
1020     ShouldNotReachHere();
1021   }
1022 #endif
1023 
1024   // new exception handling: this method is entered only from adapters
1025   // exceptions from compiled java methods are handled in compiled code
1026   // using rethrow node
1027 
1028   nm = CodeCache::find_nmethod(pc);
1029   assert(nm != NULL, "No NMethod found");
1030   if (nm->is_native_method()) {
1031     fatal("Native method should not have path to exception handling");
1032   } else {
1033     // we are switching to old paradigm: search for exception handler in caller_frame
1034     // instead in exception handler of caller_frame.sender()
1035 
1036     if (JvmtiExport::can_post_on_exceptions()) {
1037       // "Full-speed catching" is not necessary here,
1038       // since we're notifying the VM on every catch.
1039       // Force deoptimization and the rest of the lookup
1040       // will be fine.
1041       deoptimize_caller_frame(thread);
1042     }
1043 
1044     // Check the stack guard pages.  If enabled, look for handler in this frame;
1045     // otherwise, forcibly unwind the frame.
1046     //
1047     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1048     bool force_unwind = !thread->reguard_stack();
1049     bool deopting = false;
1050     if (nm->is_deopt_pc(pc)) {
1051       deopting = true;
1052       RegisterMap map(thread, false);
1053       frame deoptee = thread->last_frame().sender(&map);
1054       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1055       // Adjust the pc back to the original throwing pc
1056       pc = deoptee.pc();
1057     }
1058 
1059     // If we are forcing an unwind because of stack overflow then deopt is
1060     // irrelevant since we are throwing the frame away anyway.
1061 
1062     if (deopting && !force_unwind) {
1063       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1064     } else {
1065 
1066       handler_address =
1067         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1068 
1069       if (handler_address == NULL) {
1070         Handle original_exception(thread, exception());
1071         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1072         assert (handler_address != NULL, "must have compiled handler");
1073         // Update the exception cache only when the unwind was not forced
1074         // and there didn't happen another exception during the computation of the
1075         // compiled exception handler.
1076         if (!force_unwind && original_exception() == exception()) {
1077           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1078         }
1079       } else {
1080         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1081       }
1082     }
1083 
1084     thread->set_exception_pc(pc);
1085     thread->set_exception_handler_pc(handler_address);
1086 
1087     // Check if the exception PC is a MethodHandle call site.
1088     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1089   }
1090 
1091   // Restore correct return pc.  Was saved above.
1092   thread->set_exception_oop(exception());
1093   return handler_address;
1094 
1095 JRT_END
1096 
1097 // We are entering here from exception_blob
1098 // If there is a compiled exception handler in this method, we will continue there;
1099 // otherwise we will unwind the stack and continue at the caller of top frame method
1100 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1101 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1102 // we looked up the handler for has been deoptimized in the meantime. If it has been
1103 // we must not use the handler and instead return the deopt blob.
1104 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1105 //
1106 // We are in Java not VM and in debug mode we have a NoHandleMark
1107 //
1108 #ifndef PRODUCT
1109   SharedRuntime::_find_handler_ctr++;          // find exception handler
1110 #endif
1111   debug_only(NoHandleMark __hm;)
1112   nmethod* nm = NULL;
1113   address handler_address = NULL;
1114   {
1115     // Enter the VM
1116 
1117     ResetNoHandleMark rnhm;
1118     handler_address = handle_exception_C_helper(thread, nm);
1119   }
1120 
1121   // Back in java: Use no oops, DON'T safepoint
1122 
1123   // Now check to see if the handler we are returning is in a now
1124   // deoptimized frame
1125 
1126   if (nm != NULL) {
1127     RegisterMap map(thread, false);
1128     frame caller = thread->last_frame().sender(&map);
1129 #ifdef ASSERT
1130     assert(caller.is_compiled_frame(), "must be");
1131 #endif // ASSERT
1132     if (caller.is_deoptimized_frame()) {
1133       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1134     }
1135   }
1136   return handler_address;
1137 }
1138 
1139 //------------------------------rethrow----------------------------------------
1140 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1141 // is either throwing or rethrowing an exception.  The callee-save registers
1142 // have been restored, synchronized objects have been unlocked and the callee
1143 // stack frame has been removed.  The return address was passed in.
1144 // Exception oop is passed as the 1st argument.  This routine is then called
1145 // from the stub.  On exit, we know where to jump in the caller's code.
1146 // After this C code exits, the stub will pop his frame and end in a jump
1147 // (instead of a return).  We enter the caller's default handler.
1148 //
1149 // This must be JRT_LEAF:
1150 //     - caller will not change its state as we cannot block on exit,
1151 //       therefore raw_exception_handler_for_return_address is all it takes
1152 //       to handle deoptimized blobs
1153 //
1154 // However, there needs to be a safepoint check in the middle!  So compiled
1155 // safepoints are completely watertight.
1156 //
1157 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1158 //
1159 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1160 //
1161 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1162 #ifndef PRODUCT
1163   SharedRuntime::_rethrow_ctr++;               // count rethrows
1164 #endif
1165   assert (exception != NULL, "should have thrown a NULLPointerException");
1166 #ifdef ASSERT
1167   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1168     // should throw an exception here
1169     ShouldNotReachHere();
1170   }
1171 #endif
1172 
1173   thread->set_vm_result(exception);
1174   // Frame not compiled (handles deoptimization blob)
1175   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1176 }
1177 
1178 
1179 const TypeFunc *OptoRuntime::rethrow_Type() {
1180   // create input type (domain)
1181   const Type **fields = TypeTuple::fields(1);
1182   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1183   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1184 
1185   // create result type (range)
1186   fields = TypeTuple::fields(1);
1187   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1188   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1189 
1190   return TypeFunc::make(domain, range);
1191 }
1192 
1193 
1194 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1195   // Deoptimize the caller before continuing, as the compiled
1196   // exception handler table may not be valid.
1197   if (!StressCompiledExceptionHandlers && doit) {
1198     deoptimize_caller_frame(thread);
1199   }
1200 }
1201 
1202 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1203   // Called from within the owner thread, so no need for safepoint
1204   RegisterMap reg_map(thread);
1205   frame stub_frame = thread->last_frame();
1206   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1207   frame caller_frame = stub_frame.sender(&reg_map);
1208 
1209   // Deoptimize the caller frame.
1210   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1211 }
1212 
1213 
1214 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1215   // Called from within the owner thread, so no need for safepoint
1216   RegisterMap reg_map(thread);
1217   frame stub_frame = thread->last_frame();
1218   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1219   frame caller_frame = stub_frame.sender(&reg_map);
1220   return caller_frame.is_deoptimized_frame();
1221 }
1222 
1223 
1224 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1225   // create input type (domain)
1226   const Type **fields = TypeTuple::fields(1);
1227   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1228   // // The JavaThread* is passed to each routine as the last argument
1229   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1230   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1231 
1232   // create result type (range)
1233   fields = TypeTuple::fields(0);
1234 
1235   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1236 
1237   return TypeFunc::make(domain,range);
1238 }
1239 
1240 
1241 //-----------------------------------------------------------------------------
1242 // Dtrace support.  entry and exit probes have the same signature
1243 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1244   // create input type (domain)
1245   const Type **fields = TypeTuple::fields(2);
1246   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1247   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1248   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1249 
1250   // create result type (range)
1251   fields = TypeTuple::fields(0);
1252 
1253   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1254 
1255   return TypeFunc::make(domain,range);
1256 }
1257 
1258 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1259   // create input type (domain)
1260   const Type **fields = TypeTuple::fields(2);
1261   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1262   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1263 
1264   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1265 
1266   // create result type (range)
1267   fields = TypeTuple::fields(0);
1268 
1269   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1270 
1271   return TypeFunc::make(domain,range);
1272 }
1273 
1274 
1275 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1276   assert(obj->is_oop(), "must be a valid oop");
1277   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1278   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1279 JRT_END
1280 
1281 //-----------------------------------------------------------------------------
1282 
1283 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1284 
1285 //
1286 // dump the collected NamedCounters.
1287 //
1288 void OptoRuntime::print_named_counters() {
1289   int total_lock_count = 0;
1290   int eliminated_lock_count = 0;
1291 
1292   NamedCounter* c = _named_counters;
1293   while (c) {
1294     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1295       int count = c->count();
1296       if (count > 0) {
1297         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1298         if (Verbose) {
1299           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1300         }
1301         total_lock_count += count;
1302         if (eliminated) {
1303           eliminated_lock_count += count;
1304         }
1305       }
1306     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1307       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1308       if (blc->nonzero()) {
1309         tty->print_cr("%s", c->name());
1310         blc->print_on(tty);
1311       }
1312 #if INCLUDE_RTM_OPT
1313     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1314       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1315       if (rlc->nonzero()) {
1316         tty->print_cr("%s", c->name());
1317         rlc->print_on(tty);
1318       }
1319 #endif
1320     }
1321     c = c->next();
1322   }
1323   if (total_lock_count > 0) {
1324     tty->print_cr("dynamic locks: %d", total_lock_count);
1325     if (eliminated_lock_count) {
1326       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1327                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1328     }
1329   }
1330 }
1331 
1332 //
1333 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1334 //  name which consists of method@line for the inlining tree.
1335 //
1336 
1337 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1338   int max_depth = youngest_jvms->depth();
1339 
1340   // Visit scopes from youngest to oldest.
1341   bool first = true;
1342   stringStream st;
1343   for (int depth = max_depth; depth >= 1; depth--) {
1344     JVMState* jvms = youngest_jvms->of_depth(depth);
1345     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1346     if (!first) {
1347       st.print(" ");
1348     } else {
1349       first = false;
1350     }
1351     int bci = jvms->bci();
1352     if (bci < 0) bci = 0;
1353     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1354     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1355   }
1356   NamedCounter* c;
1357   if (tag == NamedCounter::BiasedLockingCounter) {
1358     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1359   } else if (tag == NamedCounter::RTMLockingCounter) {
1360     c = new RTMLockingNamedCounter(strdup(st.as_string()));
1361   } else {
1362     c = new NamedCounter(strdup(st.as_string()), tag);
1363   }
1364 
1365   // atomically add the new counter to the head of the list.  We only
1366   // add counters so this is safe.
1367   NamedCounter* head;
1368   do {
1369     c->set_next(NULL);
1370     head = _named_counters;
1371     c->set_next(head);
1372   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1373   return c;
1374 }
1375 
1376 //-----------------------------------------------------------------------------
1377 // Non-product code
1378 #ifndef PRODUCT
1379 
1380 int trace_exception_counter = 0;
1381 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1382   ttyLocker ttyl;
1383   trace_exception_counter++;
1384   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1385   exception_oop->print_value();
1386   tty->print(" in ");
1387   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1388   if (blob->is_nmethod()) {
1389     nmethod* nm = blob->as_nmethod_or_null();
1390     nm->method()->print_value();
1391   } else if (blob->is_runtime_stub()) {
1392     tty->print("<runtime-stub>");
1393   } else {
1394     tty->print("<unknown>");
1395   }
1396   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1397   tty->print_cr("]");
1398 }
1399 
1400 #endif  // PRODUCT
1401 
1402 
1403 # ifdef ENABLE_ZAP_DEAD_LOCALS
1404 // Called from call sites in compiled code with oop maps (actually safepoints)
1405 // Zaps dead locals in first java frame.
1406 // Is entry because may need to lock to generate oop maps
1407 // Currently, only used for compiler frames, but someday may be used
1408 // for interpreter frames, too.
1409 
1410 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1411 
1412 // avoid pointers to member funcs with these helpers
1413 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1414 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1415 
1416 
1417 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1418                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1419   assert(JavaThread::current() == thread, "is this needed?");
1420 
1421   if ( !ZapDeadCompiledLocals )  return;
1422 
1423   bool skip = false;
1424 
1425        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1426   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1427   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1428     warning("starting zapping after skipping");
1429 
1430        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1431   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1432   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1433     warning("about to zap last zap");
1434 
1435   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1436 
1437   if ( skip )  return;
1438 
1439   // find java frame and zap it
1440 
1441   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1442     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1443       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1444       return;
1445     }
1446   }
1447   warning("no frame found to zap in zap_dead_Java_locals_C");
1448 }
1449 
1450 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1451   zap_dead_java_or_native_locals(thread, is_java_frame);
1452 JRT_END
1453 
1454 // The following does not work because for one thing, the
1455 // thread state is wrong; it expects java, but it is native.
1456 // Also, the invariants in a native stub are different and
1457 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1458 // in there.
1459 // So for now, we do not zap in native stubs.
1460 
1461 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1462   zap_dead_java_or_native_locals(thread, is_native_frame);
1463 JRT_END
1464 
1465 # endif