1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_linux.inline.hpp"
  36 #include "os_share_linux.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "services/memTracker.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <errno.h>
  62 # include <dlfcn.h>
  63 # include <stdlib.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <pthread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/utsname.h>
  71 # include <sys/socket.h>
  72 # include <sys/wait.h>
  73 # include <pwd.h>
  74 # include <poll.h>
  75 # include <ucontext.h>
  76 # include <fpu_control.h>
  77 
  78 #ifdef AMD64
  79 #define REG_SP REG_RSP
  80 #define REG_PC REG_RIP
  81 #define REG_FP REG_RBP
  82 #define SPELL_REG_SP "rsp"
  83 #define SPELL_REG_FP "rbp"
  84 #else
  85 #define REG_SP REG_UESP
  86 #define REG_PC REG_EIP
  87 #define REG_FP REG_EBP
  88 #define SPELL_REG_SP "esp"
  89 #define SPELL_REG_FP "ebp"
  90 #endif // AMD64
  91 
  92 address os::current_stack_pointer() {
  93 #ifdef SPARC_WORKS
  94   register void *esp;
  95   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  96   return (address) ((char*)esp + sizeof(long)*2);
  97 #elif defined(__clang__)
  98   intptr_t* esp;
  99   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
 100   return (address) esp;
 101 #else
 102   register void *esp __asm__ (SPELL_REG_SP);
 103   return (address) esp;
 104 #endif
 105 }
 106 
 107 char* os::non_memory_address_word() {
 108   // Must never look like an address returned by reserve_memory,
 109   // even in its subfields (as defined by the CPU immediate fields,
 110   // if the CPU splits constants across multiple instructions).
 111 
 112   return (char*) -1;
 113 }
 114 
 115 void os::initialize_thread(Thread* thr) {
 116 // Nothing to do.
 117 }
 118 
 119 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
 120   return (address)uc->uc_mcontext.gregs[REG_PC];
 121 }
 122 
 123 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
 124   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 125 }
 126 
 127 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
 128   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 129 }
 130 
 131 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 132 // is currently interrupted by SIGPROF.
 133 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 134 // frames. Currently we don't do that on Linux, so it's the same as
 135 // os::fetch_frame_from_context().
 136 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 137   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 138 
 139   assert(thread != NULL, "just checking");
 140   assert(ret_sp != NULL, "just checking");
 141   assert(ret_fp != NULL, "just checking");
 142 
 143   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 144 }
 145 
 146 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 147                     intptr_t** ret_sp, intptr_t** ret_fp) {
 148 
 149   ExtendedPC  epc;
 150   ucontext_t* uc = (ucontext_t*)ucVoid;
 151 
 152   if (uc != NULL) {
 153     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 154     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 155     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 156   } else {
 157     // construct empty ExtendedPC for return value checking
 158     epc = ExtendedPC(NULL);
 159     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 160     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 161   }
 162 
 163   return epc;
 164 }
 165 
 166 frame os::fetch_frame_from_context(void* ucVoid) {
 167   intptr_t* sp;
 168   intptr_t* fp;
 169   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 170   return frame(sp, fp, epc.pc());
 171 }
 172 
 173 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 174 // turned off by -fomit-frame-pointer,
 175 frame os::get_sender_for_C_frame(frame* fr) {
 176   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 177 }
 178 
 179 intptr_t* _get_previous_fp() {
 180 #ifdef SPARC_WORKS
 181   register intptr_t **ebp;
 182   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 183 #elif defined(__clang__)
 184   intptr_t **ebp;
 185   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
 186 #else
 187   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 188 #endif
 189   return (intptr_t*) *ebp;   // we want what it points to.
 190 }
 191 
 192 
 193 frame os::current_frame() {
 194   intptr_t* fp = _get_previous_fp();
 195   frame myframe((intptr_t*)os::current_stack_pointer(),
 196                 (intptr_t*)fp,
 197                 CAST_FROM_FN_PTR(address, os::current_frame));
 198   if (os::is_first_C_frame(&myframe)) {
 199     // stack is not walkable
 200     return frame();
 201   } else {
 202     return os::get_sender_for_C_frame(&myframe);
 203   }
 204 }
 205 
 206 // Utility functions
 207 
 208 // From IA32 System Programming Guide
 209 enum {
 210   trap_page_fault = 0xE
 211 };
 212 
 213 extern "C" JNIEXPORT int
 214 JVM_handle_linux_signal(int sig,
 215                         siginfo_t* info,
 216                         void* ucVoid,
 217                         int abort_if_unrecognized) {
 218   ucontext_t* uc = (ucontext_t*) ucVoid;
 219 
 220   Thread* t = ThreadLocalStorage::get_thread_slow();
 221 
 222   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 223   // (no destructors can be run)
 224   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 225 
 226   SignalHandlerMark shm(t);
 227 
 228   // Note: it's not uncommon that JNI code uses signal/sigset to install
 229   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 230   // or have a SIGILL handler when detecting CPU type). When that happens,
 231   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 232   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 233   // that do not require siginfo/ucontext first.
 234 
 235   if (sig == SIGPIPE || sig == SIGXFSZ) {
 236     // allow chained handler to go first
 237     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 238       return true;
 239     } else {
 240       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 241         char buf[64];
 242         warning("Ignoring %s - see bugs 4229104 or 646499219",
 243                 os::exception_name(sig, buf, sizeof(buf)));
 244       }
 245       return true;
 246     }
 247   }
 248 
 249   JavaThread* thread = NULL;
 250   VMThread* vmthread = NULL;
 251   if (os::Linux::signal_handlers_are_installed) {
 252     if (t != NULL ){
 253       if(t->is_Java_thread()) {
 254         thread = (JavaThread*)t;
 255       }
 256       else if(t->is_VM_thread()){
 257         vmthread = (VMThread *)t;
 258       }
 259     }
 260   }
 261 /*
 262   NOTE: does not seem to work on linux.
 263   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 264     // can't decode this kind of signal
 265     info = NULL;
 266   } else {
 267     assert(sig == info->si_signo, "bad siginfo");
 268   }
 269 */
 270   // decide if this trap can be handled by a stub
 271   address stub = NULL;
 272 
 273   address pc          = NULL;
 274 
 275   //%note os_trap_1
 276   if (info != NULL && uc != NULL && thread != NULL) {
 277     pc = (address) os::Linux::ucontext_get_pc(uc);
 278 
 279     if (StubRoutines::is_safefetch_fault(pc)) {
 280       uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
 281       return 1;
 282     }
 283 
 284 #ifndef AMD64
 285     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 286     // This can happen in any running code (currently more frequently in
 287     // interpreter code but has been seen in compiled code)
 288     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 289       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 290             "to unstable signal handling in this distribution.");
 291     }
 292 #endif // AMD64
 293 
 294     // Handle ALL stack overflow variations here
 295     if (sig == SIGSEGV) {
 296       address addr = (address) info->si_addr;
 297 
 298       // check if fault address is within thread stack
 299       if (addr < thread->stack_base() &&
 300           addr >= thread->stack_base() - thread->stack_size()) {
 301         // stack overflow
 302         if (thread->in_stack_yellow_zone(addr)) {
 303           thread->disable_stack_yellow_zone();
 304           if (thread->thread_state() == _thread_in_Java) {
 305             // Throw a stack overflow exception.  Guard pages will be reenabled
 306             // while unwinding the stack.
 307             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 308           } else {
 309             // Thread was in the vm or native code.  Return and try to finish.
 310             return 1;
 311           }
 312         } else if (thread->in_stack_red_zone(addr)) {
 313           // Fatal red zone violation.  Disable the guard pages and fall through
 314           // to handle_unexpected_exception way down below.
 315           thread->disable_stack_red_zone();
 316           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 317 
 318           // This is a likely cause, but hard to verify. Let's just print
 319           // it as a hint.
 320           tty->print_raw_cr("Please check if any of your loaded .so files has "
 321                             "enabled executable stack (see man page execstack(8))");
 322         } else {
 323           // Accessing stack address below sp may cause SEGV if current
 324           // thread has MAP_GROWSDOWN stack. This should only happen when
 325           // current thread was created by user code with MAP_GROWSDOWN flag
 326           // and then attached to VM. See notes in os_linux.cpp.
 327           if (thread->osthread()->expanding_stack() == 0) {
 328              thread->osthread()->set_expanding_stack();
 329              if (os::Linux::manually_expand_stack(thread, addr)) {
 330                thread->osthread()->clear_expanding_stack();
 331                return 1;
 332              }
 333              thread->osthread()->clear_expanding_stack();
 334           } else {
 335              fatal("recursive segv. expanding stack.");
 336           }
 337         }
 338       }
 339     }
 340 
 341     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 342       // Verify that OS save/restore AVX registers.
 343       stub = VM_Version::cpuinfo_cont_addr();
 344     }
 345 
 346     if (thread->thread_state() == _thread_in_Java) {
 347       // Java thread running in Java code => find exception handler if any
 348       // a fault inside compiled code, the interpreter, or a stub
 349 
 350       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 351         stub = SharedRuntime::get_poll_stub(pc);
 352       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 353         // BugId 4454115: A read from a MappedByteBuffer can fault
 354         // here if the underlying file has been truncated.
 355         // Do not crash the VM in such a case.
 356         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 357         nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
 358         if (nm != NULL && nm->has_unsafe_access()) {
 359           stub = StubRoutines::handler_for_unsafe_access();
 360         }
 361       }
 362       else
 363 
 364 #ifdef AMD64
 365       if (sig == SIGFPE  &&
 366           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 367         stub =
 368           SharedRuntime::
 369           continuation_for_implicit_exception(thread,
 370                                               pc,
 371                                               SharedRuntime::
 372                                               IMPLICIT_DIVIDE_BY_ZERO);
 373 #else
 374       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 375         // HACK: si_code does not work on linux 2.2.12-20!!!
 376         int op = pc[0];
 377         if (op == 0xDB) {
 378           // FIST
 379           // TODO: The encoding of D2I in i486.ad can cause an exception
 380           // prior to the fist instruction if there was an invalid operation
 381           // pending. We want to dismiss that exception. From the win_32
 382           // side it also seems that if it really was the fist causing
 383           // the exception that we do the d2i by hand with different
 384           // rounding. Seems kind of weird.
 385           // NOTE: that we take the exception at the NEXT floating point instruction.
 386           assert(pc[0] == 0xDB, "not a FIST opcode");
 387           assert(pc[1] == 0x14, "not a FIST opcode");
 388           assert(pc[2] == 0x24, "not a FIST opcode");
 389           return true;
 390         } else if (op == 0xF7) {
 391           // IDIV
 392           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 393         } else {
 394           // TODO: handle more cases if we are using other x86 instructions
 395           //   that can generate SIGFPE signal on linux.
 396           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 397           fatal("please update this code.");
 398         }
 399 #endif // AMD64
 400       } else if (sig == SIGSEGV &&
 401                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 402           // Determination of interpreter/vtable stub/compiled code null exception
 403           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 404       }
 405     } else if (thread->thread_state() == _thread_in_vm &&
 406                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 407                thread->doing_unsafe_access()) {
 408         stub = StubRoutines::handler_for_unsafe_access();
 409     }
 410 
 411     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 412     // and the heap gets shrunk before the field access.
 413     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 414       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 415       if (addr != (address)-1) {
 416         stub = addr;
 417       }
 418     }
 419 
 420     // Check to see if we caught the safepoint code in the
 421     // process of write protecting the memory serialization page.
 422     // It write enables the page immediately after protecting it
 423     // so we can just return to retry the write.
 424     if ((sig == SIGSEGV) &&
 425         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 426       // Block current thread until the memory serialize page permission restored.
 427       os::block_on_serialize_page_trap();
 428       return true;
 429     }
 430   }
 431 
 432 #ifndef AMD64
 433   // Execution protection violation
 434   //
 435   // This should be kept as the last step in the triage.  We don't
 436   // have a dedicated trap number for a no-execute fault, so be
 437   // conservative and allow other handlers the first shot.
 438   //
 439   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 440   // this si_code is so generic that it is almost meaningless; and
 441   // the si_code for this condition may change in the future.
 442   // Furthermore, a false-positive should be harmless.
 443   if (UnguardOnExecutionViolation > 0 &&
 444       (sig == SIGSEGV || sig == SIGBUS) &&
 445       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 446     int page_size = os::vm_page_size();
 447     address addr = (address) info->si_addr;
 448     address pc = os::Linux::ucontext_get_pc(uc);
 449     // Make sure the pc and the faulting address are sane.
 450     //
 451     // If an instruction spans a page boundary, and the page containing
 452     // the beginning of the instruction is executable but the following
 453     // page is not, the pc and the faulting address might be slightly
 454     // different - we still want to unguard the 2nd page in this case.
 455     //
 456     // 15 bytes seems to be a (very) safe value for max instruction size.
 457     bool pc_is_near_addr =
 458       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 459     bool instr_spans_page_boundary =
 460       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 461                        (intptr_t) page_size) > 0);
 462 
 463     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 464       static volatile address last_addr =
 465         (address) os::non_memory_address_word();
 466 
 467       // In conservative mode, don't unguard unless the address is in the VM
 468       if (addr != last_addr &&
 469           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 470 
 471         // Set memory to RWX and retry
 472         address page_start =
 473           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 474         bool res = os::protect_memory((char*) page_start, page_size,
 475                                       os::MEM_PROT_RWX);
 476 
 477         if (PrintMiscellaneous && Verbose) {
 478           char buf[256];
 479           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 480                        "at " INTPTR_FORMAT
 481                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 482                        page_start, (res ? "success" : "failed"), errno);
 483           tty->print_raw_cr(buf);
 484         }
 485         stub = pc;
 486 
 487         // Set last_addr so if we fault again at the same address, we don't end
 488         // up in an endless loop.
 489         //
 490         // There are two potential complications here.  Two threads trapping at
 491         // the same address at the same time could cause one of the threads to
 492         // think it already unguarded, and abort the VM.  Likely very rare.
 493         //
 494         // The other race involves two threads alternately trapping at
 495         // different addresses and failing to unguard the page, resulting in
 496         // an endless loop.  This condition is probably even more unlikely than
 497         // the first.
 498         //
 499         // Although both cases could be avoided by using locks or thread local
 500         // last_addr, these solutions are unnecessary complication: this
 501         // handler is a best-effort safety net, not a complete solution.  It is
 502         // disabled by default and should only be used as a workaround in case
 503         // we missed any no-execute-unsafe VM code.
 504 
 505         last_addr = addr;
 506       }
 507     }
 508   }
 509 #endif // !AMD64
 510 
 511   if (stub != NULL) {
 512     // save all thread context in case we need to restore it
 513     if (thread != NULL) thread->set_saved_exception_pc(pc);
 514 
 515     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 516     return true;
 517   }
 518 
 519   // signal-chaining
 520   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 521      return true;
 522   }
 523 
 524   if (!abort_if_unrecognized) {
 525     // caller wants another chance, so give it to him
 526     return false;
 527   }
 528 
 529   if (pc == NULL && uc != NULL) {
 530     pc = os::Linux::ucontext_get_pc(uc);
 531   }
 532 
 533   // unmask current signal
 534   sigset_t newset;
 535   sigemptyset(&newset);
 536   sigaddset(&newset, sig);
 537   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 538 
 539   VMError err(t, sig, pc, info, ucVoid);
 540   err.report_and_die();
 541 
 542   ShouldNotReachHere();
 543 }
 544 
 545 void os::Linux::init_thread_fpu_state(void) {
 546 #ifndef AMD64
 547   // set fpu to 53 bit precision
 548   set_fpu_control_word(0x27f);
 549 #endif // !AMD64
 550 }
 551 
 552 int os::Linux::get_fpu_control_word(void) {
 553 #ifdef AMD64
 554   return 0;
 555 #else
 556   int fpu_control;
 557   _FPU_GETCW(fpu_control);
 558   return fpu_control & 0xffff;
 559 #endif // AMD64
 560 }
 561 
 562 void os::Linux::set_fpu_control_word(int fpu_control) {
 563 #ifndef AMD64
 564   _FPU_SETCW(fpu_control);
 565 #endif // !AMD64
 566 }
 567 
 568 // Check that the linux kernel version is 2.4 or higher since earlier
 569 // versions do not support SSE without patches.
 570 bool os::supports_sse() {
 571 #ifdef AMD64
 572   return true;
 573 #else
 574   struct utsname uts;
 575   if( uname(&uts) != 0 ) return false; // uname fails?
 576   char *minor_string;
 577   int major = strtol(uts.release,&minor_string,10);
 578   int minor = strtol(minor_string+1,NULL,10);
 579   bool result = (major > 2 || (major==2 && minor >= 4));
 580 #ifndef PRODUCT
 581   if (PrintMiscellaneous && Verbose) {
 582     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 583                major,minor, result ? "DOES" : "does NOT");
 584   }
 585 #endif
 586   return result;
 587 #endif // AMD64
 588 }
 589 
 590 bool os::is_allocatable(size_t bytes) {
 591 #ifdef AMD64
 592   // unused on amd64?
 593   return true;
 594 #else
 595 
 596   if (bytes < 2 * G) {
 597     return true;
 598   }
 599 
 600   char* addr = reserve_memory(bytes, NULL);
 601 
 602   if (addr != NULL) {
 603     release_memory(addr, bytes);
 604   }
 605 
 606   return addr != NULL;
 607 #endif // AMD64
 608 }
 609 
 610 ////////////////////////////////////////////////////////////////////////////////
 611 // thread stack
 612 
 613 #ifdef AMD64
 614 size_t os::Linux::min_stack_allowed  = 64 * K;
 615 
 616 // amd64: pthread on amd64 is always in floating stack mode
 617 bool os::Linux::supports_variable_stack_size() {  return true; }
 618 #else
 619 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 620 
 621 #ifdef __GNUC__
 622 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 623 #endif
 624 
 625 // Test if pthread library can support variable thread stack size. LinuxThreads
 626 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
 627 // in floating stack mode and NPTL support variable stack size.
 628 bool os::Linux::supports_variable_stack_size() {
 629   if (os::Linux::is_NPTL()) {
 630      // NPTL, yes
 631      return true;
 632 
 633   } else {
 634     // Note: We can't control default stack size when creating a thread.
 635     // If we use non-default stack size (pthread_attr_setstacksize), both
 636     // floating stack and non-floating stack LinuxThreads will return the
 637     // same value. This makes it impossible to implement this function by
 638     // detecting thread stack size directly.
 639     //
 640     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
 641     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
 642     // %gs (either as LDT selector or GDT selector, depending on kernel)
 643     // to access thread specific data.
 644     //
 645     // Note that %gs is a reserved glibc register since early 2001, so
 646     // applications are not allowed to change its value (Ulrich Drepper from
 647     // Redhat confirmed that all known offenders have been modified to use
 648     // either %fs or TSD). In the worst case scenario, when VM is embedded in
 649     // a native application that plays with %gs, we might see non-zero %gs
 650     // even LinuxThreads is running in fixed stack mode. As the result, we'll
 651     // return true and skip _thread_safety_check(), so we may not be able to
 652     // detect stack-heap collisions. But otherwise it's harmless.
 653     //
 654 #ifdef __GNUC__
 655     return (GET_GS() != 0);
 656 #else
 657     return false;
 658 #endif
 659   }
 660 }
 661 #endif // AMD64
 662 
 663 // return default stack size for thr_type
 664 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 665   // default stack size (compiler thread needs larger stack)
 666 #ifdef AMD64
 667   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 668 #else
 669   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 670 #endif // AMD64
 671   return s;
 672 }
 673 
 674 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 675   // Creating guard page is very expensive. Java thread has HotSpot
 676   // guard page, only enable glibc guard page for non-Java threads.
 677   return (thr_type == java_thread ? 0 : page_size());
 678 }
 679 
 680 // Java thread:
 681 //
 682 //   Low memory addresses
 683 //    +------------------------+
 684 //    |                        |\  JavaThread created by VM does not have glibc
 685 //    |    glibc guard page    | - guard, attached Java thread usually has
 686 //    |                        |/  1 page glibc guard.
 687 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 688 //    |                        |\
 689 //    |  HotSpot Guard Pages   | - red and yellow pages
 690 //    |                        |/
 691 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 692 //    |                        |\
 693 //    |      Normal Stack      | -
 694 //    |                        |/
 695 // P2 +------------------------+ Thread::stack_base()
 696 //
 697 // Non-Java thread:
 698 //
 699 //   Low memory addresses
 700 //    +------------------------+
 701 //    |                        |\
 702 //    |  glibc guard page      | - usually 1 page
 703 //    |                        |/
 704 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 705 //    |                        |\
 706 //    |      Normal Stack      | -
 707 //    |                        |/
 708 // P2 +------------------------+ Thread::stack_base()
 709 //
 710 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 711 //    pthread_attr_getstack()
 712 
 713 static void current_stack_region(address * bottom, size_t * size) {
 714   if (os::Linux::is_initial_thread()) {
 715      // initial thread needs special handling because pthread_getattr_np()
 716      // may return bogus value.
 717      *bottom = os::Linux::initial_thread_stack_bottom();
 718      *size   = os::Linux::initial_thread_stack_size();
 719   } else {
 720      pthread_attr_t attr;
 721 
 722      int rslt = pthread_getattr_np(pthread_self(), &attr);
 723 
 724      // JVM needs to know exact stack location, abort if it fails
 725      if (rslt != 0) {
 726        if (rslt == ENOMEM) {
 727          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
 728        } else {
 729          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
 730        }
 731      }
 732 
 733      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 734          fatal("Can not locate current stack attributes!");
 735      }
 736 
 737      pthread_attr_destroy(&attr);
 738 
 739   }
 740   assert(os::current_stack_pointer() >= *bottom &&
 741          os::current_stack_pointer() < *bottom + *size, "just checking");
 742 }
 743 
 744 address os::current_stack_base() {
 745   address bottom;
 746   size_t size;
 747   current_stack_region(&bottom, &size);
 748   return (bottom + size);
 749 }
 750 
 751 size_t os::current_stack_size() {
 752   // stack size includes normal stack and HotSpot guard pages
 753   address bottom;
 754   size_t size;
 755   current_stack_region(&bottom, &size);
 756   return size;
 757 }
 758 
 759 /////////////////////////////////////////////////////////////////////////////
 760 // helper functions for fatal error handler
 761 
 762 void os::print_context(outputStream *st, void *context) {
 763   if (context == NULL) return;
 764 
 765   ucontext_t *uc = (ucontext_t*)context;
 766   st->print_cr("Registers:");
 767 #ifdef AMD64
 768   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 769   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 770   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 771   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 772   st->cr();
 773   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 774   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 775   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 776   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 777   st->cr();
 778   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 779   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 780   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 781   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 782   st->cr();
 783   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 784   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 785   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 786   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 787   st->cr();
 788   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 789   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 790   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
 791   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
 792   st->cr();
 793   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
 794 #else
 795   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 796   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 797   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 798   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 799   st->cr();
 800   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 801   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 802   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 803   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 804   st->cr();
 805   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 806   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 807   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
 808 #endif // AMD64
 809   st->cr();
 810   st->cr();
 811 
 812   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 813   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 814   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 815   st->cr();
 816 
 817   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 818   // point to garbage if entry point in an nmethod is corrupted. Leave
 819   // this at the end, and hope for the best.
 820   address pc = os::Linux::ucontext_get_pc(uc);
 821   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 822   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 823 }
 824 
 825 void os::print_register_info(outputStream *st, void *context) {
 826   if (context == NULL) return;
 827 
 828   ucontext_t *uc = (ucontext_t*)context;
 829 
 830   st->print_cr("Register to memory mapping:");
 831   st->cr();
 832 
 833   // this is horrendously verbose but the layout of the registers in the
 834   // context does not match how we defined our abstract Register set, so
 835   // we can't just iterate through the gregs area
 836 
 837   // this is only for the "general purpose" registers
 838 
 839 #ifdef AMD64
 840   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 841   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 842   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 843   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 844   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 845   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 846   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 847   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 848   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 849   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 850   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 851   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 852   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 853   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 854   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 855   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 856 #else
 857   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 858   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 859   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 860   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 861   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 862   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 863   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 864   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 865 #endif // AMD64
 866 
 867   st->cr();
 868 }
 869 
 870 void os::setup_fpu() {
 871 #ifndef AMD64
 872   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 873   __asm__ volatile (  "fldcw (%0)" :
 874                       : "r" (fpu_cntrl) : "memory");
 875 #endif // !AMD64
 876 }
 877 
 878 #ifndef PRODUCT
 879 void os::verify_stack_alignment() {
 880 #ifdef AMD64
 881   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 882 #endif
 883 }
 884 #endif
 885 
 886 
 887 /*
 888  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 889  * updates (JDK-8023956).
 890  */
 891 void os::workaround_expand_exec_shield_cs_limit() {
 892 #if defined(IA32)
 893   size_t page_size = os::vm_page_size();
 894   /*
 895    * Take the highest VA the OS will give us and exec
 896    *
 897    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 898    * think, older variants affected by this work-around don't (search forward only).
 899    *
 900    * On the affected distributions, we understand the memory layout to be:
 901    *
 902    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 903    *
 904    * A few pages south main stack will do it.
 905    *
 906    * If we are embedded in an app other than launcher (initial != main stack),
 907    * we don't have much control or understanding of the address space, just let it slide.
 908    */
 909   char* hint = (char*) (Linux::initial_thread_stack_bottom() -
 910                         ((StackYellowPages + StackRedPages + 1) * page_size));
 911   char* codebuf = os::reserve_memory(page_size, hint);
 912   if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
 913     return; // No matter, we tried, best effort.
 914   }
 915 
 916   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
 917 
 918   if (PrintMiscellaneous && (Verbose || WizardMode)) {
 919      tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 920   }
 921 
 922   // Some code to exec: the 'ret' instruction
 923   codebuf[0] = 0xC3;
 924 
 925   // Call the code in the codebuf
 926   __asm__ volatile("call *%0" : : "r"(codebuf));
 927 
 928   // keep the page mapped so CS limit isn't reduced.
 929 #endif
 930 }