1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/narrowptrnode.hpp"
  55 #include "opto/node.hpp"
  56 #include "opto/opcodes.hpp"
  57 #include "opto/output.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/phaseX.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/stringopts.hpp"
  63 #include "opto/type.hpp"
  64 #include "opto/vectornode.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/timer.hpp"
  69 #include "trace/tracing.hpp"
  70 #include "utilities/copy.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc_32
  87 # include "adfiles/ad_ppc_32.hpp"
  88 #endif
  89 #ifdef TARGET_ARCH_MODEL_ppc_64
  90 # include "adfiles/ad_ppc_64.hpp"
  91 #endif
  92 
  93 
  94 // -------------------- Compile::mach_constant_base_node -----------------------
  95 // Constant table base node singleton.
  96 MachConstantBaseNode* Compile::mach_constant_base_node() {
  97   if (_mach_constant_base_node == NULL) {
  98     _mach_constant_base_node = new (C) MachConstantBaseNode();
  99     _mach_constant_base_node->add_req(C->root());
 100   }
 101   return _mach_constant_base_node;
 102 }
 103 
 104 
 105 /// Support for intrinsics.
 106 
 107 // Return the index at which m must be inserted (or already exists).
 108 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 109 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 110 #ifdef ASSERT
 111   for (int i = 1; i < _intrinsics->length(); i++) {
 112     CallGenerator* cg1 = _intrinsics->at(i-1);
 113     CallGenerator* cg2 = _intrinsics->at(i);
 114     assert(cg1->method() != cg2->method()
 115            ? cg1->method()     < cg2->method()
 116            : cg1->is_virtual() < cg2->is_virtual(),
 117            "compiler intrinsics list must stay sorted");
 118   }
 119 #endif
 120   // Binary search sorted list, in decreasing intervals [lo, hi].
 121   int lo = 0, hi = _intrinsics->length()-1;
 122   while (lo <= hi) {
 123     int mid = (uint)(hi + lo) / 2;
 124     ciMethod* mid_m = _intrinsics->at(mid)->method();
 125     if (m < mid_m) {
 126       hi = mid-1;
 127     } else if (m > mid_m) {
 128       lo = mid+1;
 129     } else {
 130       // look at minor sort key
 131       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 132       if (is_virtual < mid_virt) {
 133         hi = mid-1;
 134       } else if (is_virtual > mid_virt) {
 135         lo = mid+1;
 136       } else {
 137         return mid;  // exact match
 138       }
 139     }
 140   }
 141   return lo;  // inexact match
 142 }
 143 
 144 void Compile::register_intrinsic(CallGenerator* cg) {
 145   if (_intrinsics == NULL) {
 146     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 147   }
 148   // This code is stolen from ciObjectFactory::insert.
 149   // Really, GrowableArray should have methods for
 150   // insert_at, remove_at, and binary_search.
 151   int len = _intrinsics->length();
 152   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 153   if (index == len) {
 154     _intrinsics->append(cg);
 155   } else {
 156 #ifdef ASSERT
 157     CallGenerator* oldcg = _intrinsics->at(index);
 158     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 159 #endif
 160     _intrinsics->append(_intrinsics->at(len-1));
 161     int pos;
 162     for (pos = len-2; pos >= index; pos--) {
 163       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 164     }
 165     _intrinsics->at_put(index, cg);
 166   }
 167   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 168 }
 169 
 170 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 171   assert(m->is_loaded(), "don't try this on unloaded methods");
 172   if (_intrinsics != NULL) {
 173     int index = intrinsic_insertion_index(m, is_virtual);
 174     if (index < _intrinsics->length()
 175         && _intrinsics->at(index)->method() == m
 176         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 177       return _intrinsics->at(index);
 178     }
 179   }
 180   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 181   if (m->intrinsic_id() != vmIntrinsics::_none &&
 182       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 183     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 184     if (cg != NULL) {
 185       // Save it for next time:
 186       register_intrinsic(cg);
 187       return cg;
 188     } else {
 189       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 190     }
 191   }
 192   return NULL;
 193 }
 194 
 195 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 196 // in library_call.cpp.
 197 
 198 
 199 #ifndef PRODUCT
 200 // statistics gathering...
 201 
 202 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 203 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 204 
 205 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 206   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 207   int oflags = _intrinsic_hist_flags[id];
 208   assert(flags != 0, "what happened?");
 209   if (is_virtual) {
 210     flags |= _intrinsic_virtual;
 211   }
 212   bool changed = (flags != oflags);
 213   if ((flags & _intrinsic_worked) != 0) {
 214     juint count = (_intrinsic_hist_count[id] += 1);
 215     if (count == 1) {
 216       changed = true;           // first time
 217     }
 218     // increment the overall count also:
 219     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 220   }
 221   if (changed) {
 222     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 223       // Something changed about the intrinsic's virtuality.
 224       if ((flags & _intrinsic_virtual) != 0) {
 225         // This is the first use of this intrinsic as a virtual call.
 226         if (oflags != 0) {
 227           // We already saw it as a non-virtual, so note both cases.
 228           flags |= _intrinsic_both;
 229         }
 230       } else if ((oflags & _intrinsic_both) == 0) {
 231         // This is the first use of this intrinsic as a non-virtual
 232         flags |= _intrinsic_both;
 233       }
 234     }
 235     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 236   }
 237   // update the overall flags also:
 238   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 239   return changed;
 240 }
 241 
 242 static char* format_flags(int flags, char* buf) {
 243   buf[0] = 0;
 244   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 245   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 246   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 247   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 248   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 249   if (buf[0] == 0)  strcat(buf, ",");
 250   assert(buf[0] == ',', "must be");
 251   return &buf[1];
 252 }
 253 
 254 void Compile::print_intrinsic_statistics() {
 255   char flagsbuf[100];
 256   ttyLocker ttyl;
 257   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 258   tty->print_cr("Compiler intrinsic usage:");
 259   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 260   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 261   #define PRINT_STAT_LINE(name, c, f) \
 262     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 263   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 264     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 265     int   flags = _intrinsic_hist_flags[id];
 266     juint count = _intrinsic_hist_count[id];
 267     if ((flags | count) != 0) {
 268       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 269     }
 270   }
 271   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 272   if (xtty != NULL)  xtty->tail("statistics");
 273 }
 274 
 275 void Compile::print_statistics() {
 276   { ttyLocker ttyl;
 277     if (xtty != NULL)  xtty->head("statistics type='opto'");
 278     Parse::print_statistics();
 279     PhaseCCP::print_statistics();
 280     PhaseRegAlloc::print_statistics();
 281     Scheduling::print_statistics();
 282     PhasePeephole::print_statistics();
 283     PhaseIdealLoop::print_statistics();
 284     if (xtty != NULL)  xtty->tail("statistics");
 285   }
 286   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 287     // put this under its own <statistics> element.
 288     print_intrinsic_statistics();
 289   }
 290 }
 291 #endif //PRODUCT
 292 
 293 // Support for bundling info
 294 Bundle* Compile::node_bundling(const Node *n) {
 295   assert(valid_bundle_info(n), "oob");
 296   return &_node_bundling_base[n->_idx];
 297 }
 298 
 299 bool Compile::valid_bundle_info(const Node *n) {
 300   return (_node_bundling_limit > n->_idx);
 301 }
 302 
 303 
 304 void Compile::gvn_replace_by(Node* n, Node* nn) {
 305   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 306     Node* use = n->last_out(i);
 307     bool is_in_table = initial_gvn()->hash_delete(use);
 308     uint uses_found = 0;
 309     for (uint j = 0; j < use->len(); j++) {
 310       if (use->in(j) == n) {
 311         if (j < use->req())
 312           use->set_req(j, nn);
 313         else
 314           use->set_prec(j, nn);
 315         uses_found++;
 316       }
 317     }
 318     if (is_in_table) {
 319       // reinsert into table
 320       initial_gvn()->hash_find_insert(use);
 321     }
 322     record_for_igvn(use);
 323     i -= uses_found;    // we deleted 1 or more copies of this edge
 324   }
 325 }
 326 
 327 
 328 static inline bool not_a_node(const Node* n) {
 329   if (n == NULL)                   return true;
 330   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 331   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 332   return false;
 333 }
 334 
 335 // Identify all nodes that are reachable from below, useful.
 336 // Use breadth-first pass that records state in a Unique_Node_List,
 337 // recursive traversal is slower.
 338 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 339   int estimated_worklist_size = unique();
 340   useful.map( estimated_worklist_size, NULL );  // preallocate space
 341 
 342   // Initialize worklist
 343   if (root() != NULL)     { useful.push(root()); }
 344   // If 'top' is cached, declare it useful to preserve cached node
 345   if( cached_top_node() ) { useful.push(cached_top_node()); }
 346 
 347   // Push all useful nodes onto the list, breadthfirst
 348   for( uint next = 0; next < useful.size(); ++next ) {
 349     assert( next < unique(), "Unique useful nodes < total nodes");
 350     Node *n  = useful.at(next);
 351     uint max = n->len();
 352     for( uint i = 0; i < max; ++i ) {
 353       Node *m = n->in(i);
 354       if (not_a_node(m))  continue;
 355       useful.push(m);
 356     }
 357   }
 358 }
 359 
 360 // Update dead_node_list with any missing dead nodes using useful
 361 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 362 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 363   uint max_idx = unique();
 364   VectorSet& useful_node_set = useful.member_set();
 365 
 366   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 367     // If node with index node_idx is not in useful set,
 368     // mark it as dead in dead node list.
 369     if (! useful_node_set.test(node_idx) ) {
 370       record_dead_node(node_idx);
 371     }
 372   }
 373 }
 374 
 375 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 376   int shift = 0;
 377   for (int i = 0; i < inlines->length(); i++) {
 378     CallGenerator* cg = inlines->at(i);
 379     CallNode* call = cg->call_node();
 380     if (shift > 0) {
 381       inlines->at_put(i-shift, cg);
 382     }
 383     if (!useful.member(call)) {
 384       shift++;
 385     }
 386   }
 387   inlines->trunc_to(inlines->length()-shift);
 388 }
 389 
 390 // Disconnect all useless nodes by disconnecting those at the boundary.
 391 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 392   uint next = 0;
 393   while (next < useful.size()) {
 394     Node *n = useful.at(next++);
 395     // Use raw traversal of out edges since this code removes out edges
 396     int max = n->outcnt();
 397     for (int j = 0; j < max; ++j) {
 398       Node* child = n->raw_out(j);
 399       if (! useful.member(child)) {
 400         assert(!child->is_top() || child != top(),
 401                "If top is cached in Compile object it is in useful list");
 402         // Only need to remove this out-edge to the useless node
 403         n->raw_del_out(j);
 404         --j;
 405         --max;
 406       }
 407     }
 408     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 409       record_for_igvn(n->unique_out());
 410     }
 411   }
 412   // Remove useless macro and predicate opaq nodes
 413   for (int i = C->macro_count()-1; i >= 0; i--) {
 414     Node* n = C->macro_node(i);
 415     if (!useful.member(n)) {
 416       remove_macro_node(n);
 417     }
 418   }
 419   // Remove useless expensive node
 420   for (int i = C->expensive_count()-1; i >= 0; i--) {
 421     Node* n = C->expensive_node(i);
 422     if (!useful.member(n)) {
 423       remove_expensive_node(n);
 424     }
 425   }
 426   // clean up the late inline lists
 427   remove_useless_late_inlines(&_string_late_inlines, useful);
 428   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 429   remove_useless_late_inlines(&_late_inlines, useful);
 430   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 431 }
 432 
 433 //------------------------------frame_size_in_words-----------------------------
 434 // frame_slots in units of words
 435 int Compile::frame_size_in_words() const {
 436   // shift is 0 in LP32 and 1 in LP64
 437   const int shift = (LogBytesPerWord - LogBytesPerInt);
 438   int words = _frame_slots >> shift;
 439   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 440   return words;
 441 }
 442 
 443 // To bang the stack of this compiled method we use the stack size
 444 // that the interpreter would need in case of a deoptimization. This
 445 // removes the need to bang the stack in the deoptimization blob which
 446 // in turn simplifies stack overflow handling.
 447 int Compile::bang_size_in_bytes() const {
 448   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 449 }
 450 
 451 // ============================================================================
 452 //------------------------------CompileWrapper---------------------------------
 453 class CompileWrapper : public StackObj {
 454   Compile *const _compile;
 455  public:
 456   CompileWrapper(Compile* compile);
 457 
 458   ~CompileWrapper();
 459 };
 460 
 461 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 462   // the Compile* pointer is stored in the current ciEnv:
 463   ciEnv* env = compile->env();
 464   assert(env == ciEnv::current(), "must already be a ciEnv active");
 465   assert(env->compiler_data() == NULL, "compile already active?");
 466   env->set_compiler_data(compile);
 467   assert(compile == Compile::current(), "sanity");
 468 
 469   compile->set_type_dict(NULL);
 470   compile->set_type_hwm(NULL);
 471   compile->set_type_last_size(0);
 472   compile->set_last_tf(NULL, NULL);
 473   compile->set_indexSet_arena(NULL);
 474   compile->set_indexSet_free_block_list(NULL);
 475   compile->init_type_arena();
 476   Type::Initialize(compile);
 477   _compile->set_scratch_buffer_blob(NULL);
 478   _compile->begin_method();
 479 }
 480 CompileWrapper::~CompileWrapper() {
 481   _compile->end_method();
 482   if (_compile->scratch_buffer_blob() != NULL)
 483     BufferBlob::free(_compile->scratch_buffer_blob());
 484   _compile->env()->set_compiler_data(NULL);
 485 }
 486 
 487 
 488 //----------------------------print_compile_messages---------------------------
 489 void Compile::print_compile_messages() {
 490 #ifndef PRODUCT
 491   // Check if recompiling
 492   if (_subsume_loads == false && PrintOpto) {
 493     // Recompiling without allowing machine instructions to subsume loads
 494     tty->print_cr("*********************************************************");
 495     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 496     tty->print_cr("*********************************************************");
 497   }
 498   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 499     // Recompiling without escape analysis
 500     tty->print_cr("*********************************************************");
 501     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 502     tty->print_cr("*********************************************************");
 503   }
 504   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 505     // Recompiling without boxing elimination
 506     tty->print_cr("*********************************************************");
 507     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 508     tty->print_cr("*********************************************************");
 509   }
 510   if (env()->break_at_compile()) {
 511     // Open the debugger when compiling this method.
 512     tty->print("### Breaking when compiling: ");
 513     method()->print_short_name();
 514     tty->cr();
 515     BREAKPOINT;
 516   }
 517 
 518   if( PrintOpto ) {
 519     if (is_osr_compilation()) {
 520       tty->print("[OSR]%3d", _compile_id);
 521     } else {
 522       tty->print("%3d", _compile_id);
 523     }
 524   }
 525 #endif
 526 }
 527 
 528 
 529 //-----------------------init_scratch_buffer_blob------------------------------
 530 // Construct a temporary BufferBlob and cache it for this compile.
 531 void Compile::init_scratch_buffer_blob(int const_size) {
 532   // If there is already a scratch buffer blob allocated and the
 533   // constant section is big enough, use it.  Otherwise free the
 534   // current and allocate a new one.
 535   BufferBlob* blob = scratch_buffer_blob();
 536   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 537     // Use the current blob.
 538   } else {
 539     if (blob != NULL) {
 540       BufferBlob::free(blob);
 541     }
 542 
 543     ResourceMark rm;
 544     _scratch_const_size = const_size;
 545     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 546     blob = BufferBlob::create("Compile::scratch_buffer", size);
 547     // Record the buffer blob for next time.
 548     set_scratch_buffer_blob(blob);
 549     // Have we run out of code space?
 550     if (scratch_buffer_blob() == NULL) {
 551       // Let CompilerBroker disable further compilations.
 552       record_failure("Not enough space for scratch buffer in CodeCache");
 553       return;
 554     }
 555   }
 556 
 557   // Initialize the relocation buffers
 558   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 559   set_scratch_locs_memory(locs_buf);
 560 }
 561 
 562 
 563 //-----------------------scratch_emit_size-------------------------------------
 564 // Helper function that computes size by emitting code
 565 uint Compile::scratch_emit_size(const Node* n) {
 566   // Start scratch_emit_size section.
 567   set_in_scratch_emit_size(true);
 568 
 569   // Emit into a trash buffer and count bytes emitted.
 570   // This is a pretty expensive way to compute a size,
 571   // but it works well enough if seldom used.
 572   // All common fixed-size instructions are given a size
 573   // method by the AD file.
 574   // Note that the scratch buffer blob and locs memory are
 575   // allocated at the beginning of the compile task, and
 576   // may be shared by several calls to scratch_emit_size.
 577   // The allocation of the scratch buffer blob is particularly
 578   // expensive, since it has to grab the code cache lock.
 579   BufferBlob* blob = this->scratch_buffer_blob();
 580   assert(blob != NULL, "Initialize BufferBlob at start");
 581   assert(blob->size() > MAX_inst_size, "sanity");
 582   relocInfo* locs_buf = scratch_locs_memory();
 583   address blob_begin = blob->content_begin();
 584   address blob_end   = (address)locs_buf;
 585   assert(blob->content_contains(blob_end), "sanity");
 586   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 587   buf.initialize_consts_size(_scratch_const_size);
 588   buf.initialize_stubs_size(MAX_stubs_size);
 589   assert(locs_buf != NULL, "sanity");
 590   int lsize = MAX_locs_size / 3;
 591   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 592   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 593   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 594 
 595   // Do the emission.
 596 
 597   Label fakeL; // Fake label for branch instructions.
 598   Label*   saveL = NULL;
 599   uint save_bnum = 0;
 600   bool is_branch = n->is_MachBranch();
 601   if (is_branch) {
 602     MacroAssembler masm(&buf);
 603     masm.bind(fakeL);
 604     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 605     n->as_MachBranch()->label_set(&fakeL, 0);
 606   }
 607   n->emit(buf, this->regalloc());
 608   if (is_branch) // Restore label.
 609     n->as_MachBranch()->label_set(saveL, save_bnum);
 610 
 611   // End scratch_emit_size section.
 612   set_in_scratch_emit_size(false);
 613 
 614   return buf.insts_size();
 615 }
 616 
 617 
 618 // ============================================================================
 619 //------------------------------Compile standard-------------------------------
 620 debug_only( int Compile::_debug_idx = 100000; )
 621 
 622 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 623 // the continuation bci for on stack replacement.
 624 
 625 
 626 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 627                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 628                 : Phase(Compiler),
 629                   _env(ci_env),
 630                   _log(ci_env->log()),
 631                   _compile_id(ci_env->compile_id()),
 632                   _save_argument_registers(false),
 633                   _stub_name(NULL),
 634                   _stub_function(NULL),
 635                   _stub_entry_point(NULL),
 636                   _method(target),
 637                   _entry_bci(osr_bci),
 638                   _initial_gvn(NULL),
 639                   _for_igvn(NULL),
 640                   _warm_calls(NULL),
 641                   _subsume_loads(subsume_loads),
 642                   _do_escape_analysis(do_escape_analysis),
 643                   _eliminate_boxing(eliminate_boxing),
 644                   _failure_reason(NULL),
 645                   _code_buffer("Compile::Fill_buffer"),
 646                   _orig_pc_slot(0),
 647                   _orig_pc_slot_offset_in_bytes(0),
 648                   _has_method_handle_invokes(false),
 649                   _mach_constant_base_node(NULL),
 650                   _node_bundling_limit(0),
 651                   _node_bundling_base(NULL),
 652                   _java_calls(0),
 653                   _inner_loops(0),
 654                   _scratch_const_size(-1),
 655                   _in_scratch_emit_size(false),
 656                   _dead_node_list(comp_arena()),
 657                   _dead_node_count(0),
 658 #ifndef PRODUCT
 659                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 660                   _in_dump_cnt(0),
 661                   _printer(IdealGraphPrinter::printer()),
 662 #endif
 663                   _congraph(NULL),
 664                   _replay_inline_data(NULL),
 665                   _late_inlines(comp_arena(), 2, 0, NULL),
 666                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 667                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 668                   _late_inlines_pos(0),
 669                   _number_of_mh_late_inlines(0),
 670                   _inlining_progress(false),
 671                   _inlining_incrementally(false),
 672                   _print_inlining_list(NULL),
 673                   _print_inlining_stream(NULL),
 674                   _print_inlining_idx(0),
 675                   _preserve_jvm_state(0),
 676                   _interpreter_frame_size(0) {
 677   C = this;
 678 
 679   CompileWrapper cw(this);
 680 #ifndef PRODUCT
 681   if (TimeCompiler2) {
 682     tty->print(" ");
 683     target->holder()->name()->print();
 684     tty->print(".");
 685     target->print_short_name();
 686     tty->print("  ");
 687   }
 688   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 689   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 690   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 691   if (!print_opto_assembly) {
 692     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 693     if (print_assembly && !Disassembler::can_decode()) {
 694       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 695       print_opto_assembly = true;
 696     }
 697   }
 698   set_print_assembly(print_opto_assembly);
 699   set_parsed_irreducible_loop(false);
 700 
 701   if (method()->has_option("ReplayInline")) {
 702     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 703   }
 704 #endif
 705   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 706   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 707 
 708   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 709     // Make sure the method being compiled gets its own MDO,
 710     // so we can at least track the decompile_count().
 711     // Need MDO to record RTM code generation state.
 712     method()->ensure_method_data();
 713   }
 714 
 715   Init(::AliasLevel);
 716 
 717 
 718   print_compile_messages();
 719 
 720   _ilt = InlineTree::build_inline_tree_root();
 721 
 722   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 723   assert(num_alias_types() >= AliasIdxRaw, "");
 724 
 725 #define MINIMUM_NODE_HASH  1023
 726   // Node list that Iterative GVN will start with
 727   Unique_Node_List for_igvn(comp_arena());
 728   set_for_igvn(&for_igvn);
 729 
 730   // GVN that will be run immediately on new nodes
 731   uint estimated_size = method()->code_size()*4+64;
 732   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 733   PhaseGVN gvn(node_arena(), estimated_size);
 734   set_initial_gvn(&gvn);
 735 
 736   print_inlining_init();
 737   { // Scope for timing the parser
 738     TracePhase t3("parse", &_t_parser, true);
 739 
 740     // Put top into the hash table ASAP.
 741     initial_gvn()->transform_no_reclaim(top());
 742 
 743     // Set up tf(), start(), and find a CallGenerator.
 744     CallGenerator* cg = NULL;
 745     if (is_osr_compilation()) {
 746       const TypeTuple *domain = StartOSRNode::osr_domain();
 747       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 748       init_tf(TypeFunc::make(domain, range));
 749       StartNode* s = new (this) StartOSRNode(root(), domain);
 750       initial_gvn()->set_type_bottom(s);
 751       init_start(s);
 752       cg = CallGenerator::for_osr(method(), entry_bci());
 753     } else {
 754       // Normal case.
 755       init_tf(TypeFunc::make(method()));
 756       StartNode* s = new (this) StartNode(root(), tf()->domain());
 757       initial_gvn()->set_type_bottom(s);
 758       init_start(s);
 759       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 760         // With java.lang.ref.reference.get() we must go through the
 761         // intrinsic when G1 is enabled - even when get() is the root
 762         // method of the compile - so that, if necessary, the value in
 763         // the referent field of the reference object gets recorded by
 764         // the pre-barrier code.
 765         // Specifically, if G1 is enabled, the value in the referent
 766         // field is recorded by the G1 SATB pre barrier. This will
 767         // result in the referent being marked live and the reference
 768         // object removed from the list of discovered references during
 769         // reference processing.
 770         cg = find_intrinsic(method(), false);
 771       }
 772       if (cg == NULL) {
 773         float past_uses = method()->interpreter_invocation_count();
 774         float expected_uses = past_uses;
 775         cg = CallGenerator::for_inline(method(), expected_uses);
 776       }
 777     }
 778     if (failing())  return;
 779     if (cg == NULL) {
 780       record_method_not_compilable_all_tiers("cannot parse method");
 781       return;
 782     }
 783     JVMState* jvms = build_start_state(start(), tf());
 784     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 785       record_method_not_compilable("method parse failed");
 786       return;
 787     }
 788     GraphKit kit(jvms);
 789 
 790     if (!kit.stopped()) {
 791       // Accept return values, and transfer control we know not where.
 792       // This is done by a special, unique ReturnNode bound to root.
 793       return_values(kit.jvms());
 794     }
 795 
 796     if (kit.has_exceptions()) {
 797       // Any exceptions that escape from this call must be rethrown
 798       // to whatever caller is dynamically above us on the stack.
 799       // This is done by a special, unique RethrowNode bound to root.
 800       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 801     }
 802 
 803     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 804 
 805     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 806       inline_string_calls(true);
 807     }
 808 
 809     if (failing())  return;
 810 
 811     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 812 
 813     // Remove clutter produced by parsing.
 814     if (!failing()) {
 815       ResourceMark rm;
 816       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 817     }
 818   }
 819 
 820   // Note:  Large methods are capped off in do_one_bytecode().
 821   if (failing())  return;
 822 
 823   // After parsing, node notes are no longer automagic.
 824   // They must be propagated by register_new_node_with_optimizer(),
 825   // clone(), or the like.
 826   set_default_node_notes(NULL);
 827 
 828   for (;;) {
 829     int successes = Inline_Warm();
 830     if (failing())  return;
 831     if (successes == 0)  break;
 832   }
 833 
 834   // Drain the list.
 835   Finish_Warm();
 836 #ifndef PRODUCT
 837   if (_printer) {
 838     _printer->print_inlining(this);
 839   }
 840 #endif
 841 
 842   if (failing())  return;
 843   NOT_PRODUCT( verify_graph_edges(); )
 844 
 845   // Now optimize
 846   Optimize();
 847   if (failing())  return;
 848   NOT_PRODUCT( verify_graph_edges(); )
 849 
 850 #ifndef PRODUCT
 851   if (PrintIdeal) {
 852     ttyLocker ttyl;  // keep the following output all in one block
 853     // This output goes directly to the tty, not the compiler log.
 854     // To enable tools to match it up with the compilation activity,
 855     // be sure to tag this tty output with the compile ID.
 856     if (xtty != NULL) {
 857       xtty->head("ideal compile_id='%d'%s", compile_id(),
 858                  is_osr_compilation()    ? " compile_kind='osr'" :
 859                  "");
 860     }
 861     root()->dump(9999);
 862     if (xtty != NULL) {
 863       xtty->tail("ideal");
 864     }
 865   }
 866 #endif
 867 
 868   NOT_PRODUCT( verify_barriers(); )
 869 
 870   // Dump compilation data to replay it.
 871   if (method()->has_option("DumpReplay")) {
 872     env()->dump_replay_data(_compile_id);
 873   }
 874   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 875     env()->dump_inline_data(_compile_id);
 876   }
 877 
 878   // Now that we know the size of all the monitors we can add a fixed slot
 879   // for the original deopt pc.
 880 
 881   _orig_pc_slot =  fixed_slots();
 882   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 883   set_fixed_slots(next_slot);
 884 
 885   // Compute when to use implicit null checks. Used by matching trap based
 886   // nodes and NullCheck optimization.
 887   set_allowed_deopt_reasons();
 888 
 889   // Now generate code
 890   Code_Gen();
 891   if (failing())  return;
 892 
 893   // Check if we want to skip execution of all compiled code.
 894   {
 895 #ifndef PRODUCT
 896     if (OptoNoExecute) {
 897       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 898       return;
 899     }
 900     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 901 #endif
 902 
 903     if (is_osr_compilation()) {
 904       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 905       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 906     } else {
 907       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 908       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 909     }
 910 
 911     env()->register_method(_method, _entry_bci,
 912                            &_code_offsets,
 913                            _orig_pc_slot_offset_in_bytes,
 914                            code_buffer(),
 915                            frame_size_in_words(), _oop_map_set,
 916                            &_handler_table, &_inc_table,
 917                            compiler,
 918                            env()->comp_level(),
 919                            has_unsafe_access(),
 920                            SharedRuntime::is_wide_vector(max_vector_size()),
 921                            rtm_state()
 922                            );
 923 
 924     if (log() != NULL) // Print code cache state into compiler log
 925       log()->code_cache_state();
 926   }
 927 }
 928 
 929 //------------------------------Compile----------------------------------------
 930 // Compile a runtime stub
 931 Compile::Compile( ciEnv* ci_env,
 932                   TypeFunc_generator generator,
 933                   address stub_function,
 934                   const char *stub_name,
 935                   int is_fancy_jump,
 936                   bool pass_tls,
 937                   bool save_arg_registers,
 938                   bool return_pc )
 939   : Phase(Compiler),
 940     _env(ci_env),
 941     _log(ci_env->log()),
 942     _compile_id(0),
 943     _save_argument_registers(save_arg_registers),
 944     _method(NULL),
 945     _stub_name(stub_name),
 946     _stub_function(stub_function),
 947     _stub_entry_point(NULL),
 948     _entry_bci(InvocationEntryBci),
 949     _initial_gvn(NULL),
 950     _for_igvn(NULL),
 951     _warm_calls(NULL),
 952     _orig_pc_slot(0),
 953     _orig_pc_slot_offset_in_bytes(0),
 954     _subsume_loads(true),
 955     _do_escape_analysis(false),
 956     _eliminate_boxing(false),
 957     _failure_reason(NULL),
 958     _code_buffer("Compile::Fill_buffer"),
 959     _has_method_handle_invokes(false),
 960     _mach_constant_base_node(NULL),
 961     _node_bundling_limit(0),
 962     _node_bundling_base(NULL),
 963     _java_calls(0),
 964     _inner_loops(0),
 965 #ifndef PRODUCT
 966     _trace_opto_output(TraceOptoOutput),
 967     _in_dump_cnt(0),
 968     _printer(NULL),
 969 #endif
 970     _dead_node_list(comp_arena()),
 971     _dead_node_count(0),
 972     _congraph(NULL),
 973     _replay_inline_data(NULL),
 974     _number_of_mh_late_inlines(0),
 975     _inlining_progress(false),
 976     _inlining_incrementally(false),
 977     _print_inlining_list(NULL),
 978     _print_inlining_stream(NULL),
 979     _print_inlining_idx(0),
 980     _preserve_jvm_state(0),
 981     _allowed_reasons(0),
 982     _interpreter_frame_size(0) {
 983   C = this;
 984 
 985 #ifndef PRODUCT
 986   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 987   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 988   set_print_assembly(PrintFrameConverterAssembly);
 989   set_parsed_irreducible_loop(false);
 990 #endif
 991   CompileWrapper cw(this);
 992   Init(/*AliasLevel=*/ 0);
 993   init_tf((*generator)());
 994 
 995   {
 996     // The following is a dummy for the sake of GraphKit::gen_stub
 997     Unique_Node_List for_igvn(comp_arena());
 998     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 999     PhaseGVN gvn(Thread::current()->resource_area(),255);
1000     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1001     gvn.transform_no_reclaim(top());
1002 
1003     GraphKit kit;
1004     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1005   }
1006 
1007   NOT_PRODUCT( verify_graph_edges(); )
1008   Code_Gen();
1009   if (failing())  return;
1010 
1011 
1012   // Entry point will be accessed using compile->stub_entry_point();
1013   if (code_buffer() == NULL) {
1014     Matcher::soft_match_failure();
1015   } else {
1016     if (PrintAssembly && (WizardMode || Verbose))
1017       tty->print_cr("### Stub::%s", stub_name);
1018 
1019     if (!failing()) {
1020       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1021 
1022       // Make the NMethod
1023       // For now we mark the frame as never safe for profile stackwalking
1024       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1025                                                       code_buffer(),
1026                                                       CodeOffsets::frame_never_safe,
1027                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1028                                                       frame_size_in_words(),
1029                                                       _oop_map_set,
1030                                                       save_arg_registers);
1031       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1032 
1033       _stub_entry_point = rs->entry_point();
1034     }
1035   }
1036 }
1037 
1038 //------------------------------Init-------------------------------------------
1039 // Prepare for a single compilation
1040 void Compile::Init(int aliaslevel) {
1041   _unique  = 0;
1042   _regalloc = NULL;
1043 
1044   _tf      = NULL;  // filled in later
1045   _top     = NULL;  // cached later
1046   _matcher = NULL;  // filled in later
1047   _cfg     = NULL;  // filled in later
1048 
1049   set_24_bit_selection_and_mode(Use24BitFP, false);
1050 
1051   _node_note_array = NULL;
1052   _default_node_notes = NULL;
1053 
1054   _immutable_memory = NULL; // filled in at first inquiry
1055 
1056   // Globally visible Nodes
1057   // First set TOP to NULL to give safe behavior during creation of RootNode
1058   set_cached_top_node(NULL);
1059   set_root(new (this) RootNode());
1060   // Now that you have a Root to point to, create the real TOP
1061   set_cached_top_node( new (this) ConNode(Type::TOP) );
1062   set_recent_alloc(NULL, NULL);
1063 
1064   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1065   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1066   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1067   env()->set_dependencies(new Dependencies(env()));
1068 
1069   _fixed_slots = 0;
1070   set_has_split_ifs(false);
1071   set_has_loops(has_method() && method()->has_loops()); // first approximation
1072   set_has_stringbuilder(false);
1073   set_has_boxed_value(false);
1074   _trap_can_recompile = false;  // no traps emitted yet
1075   _major_progress = true; // start out assuming good things will happen
1076   set_has_unsafe_access(false);
1077   set_max_vector_size(0);
1078   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1079   set_decompile_count(0);
1080 
1081   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1082   set_num_loop_opts(LoopOptsCount);
1083   set_do_inlining(Inline);
1084   set_max_inline_size(MaxInlineSize);
1085   set_freq_inline_size(FreqInlineSize);
1086   set_do_scheduling(OptoScheduling);
1087   set_do_count_invocations(false);
1088   set_do_method_data_update(false);
1089   set_rtm_state(NoRTM); // No RTM lock eliding by default
1090 #if INCLUDE_RTM_OPT
1091   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1092     int rtm_state = method()->method_data()->rtm_state();
1093     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1094       // Don't generate RTM lock eliding code.
1095       set_rtm_state(NoRTM);
1096     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1097       // Generate RTM lock eliding code without abort ratio calculation code.
1098       set_rtm_state(UseRTM);
1099     } else if (UseRTMDeopt) {
1100       // Generate RTM lock eliding code and include abort ratio calculation
1101       // code if UseRTMDeopt is on.
1102       set_rtm_state(ProfileRTM);
1103     }
1104   }
1105 #endif
1106   if (debug_info()->recording_non_safepoints()) {
1107     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1108                         (comp_arena(), 8, 0, NULL));
1109     set_default_node_notes(Node_Notes::make(this));
1110   }
1111 
1112   // // -- Initialize types before each compile --
1113   // // Update cached type information
1114   // if( _method && _method->constants() )
1115   //   Type::update_loaded_types(_method, _method->constants());
1116 
1117   // Init alias_type map.
1118   if (!_do_escape_analysis && aliaslevel == 3)
1119     aliaslevel = 2;  // No unique types without escape analysis
1120   _AliasLevel = aliaslevel;
1121   const int grow_ats = 16;
1122   _max_alias_types = grow_ats;
1123   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1124   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1125   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1126   {
1127     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1128   }
1129   // Initialize the first few types.
1130   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1131   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1132   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1133   _num_alias_types = AliasIdxRaw+1;
1134   // Zero out the alias type cache.
1135   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1136   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1137   probe_alias_cache(NULL)->_index = AliasIdxTop;
1138 
1139   _intrinsics = NULL;
1140   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1141   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1142   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1143   register_library_intrinsics();
1144 }
1145 
1146 //---------------------------init_start----------------------------------------
1147 // Install the StartNode on this compile object.
1148 void Compile::init_start(StartNode* s) {
1149   if (failing())
1150     return; // already failing
1151   assert(s == start(), "");
1152 }
1153 
1154 StartNode* Compile::start() const {
1155   assert(!failing(), "");
1156   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1157     Node* start = root()->fast_out(i);
1158     if( start->is_Start() )
1159       return start->as_Start();
1160   }
1161   ShouldNotReachHere();
1162   return NULL;
1163 }
1164 
1165 //-------------------------------immutable_memory-------------------------------------
1166 // Access immutable memory
1167 Node* Compile::immutable_memory() {
1168   if (_immutable_memory != NULL) {
1169     return _immutable_memory;
1170   }
1171   StartNode* s = start();
1172   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1173     Node *p = s->fast_out(i);
1174     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1175       _immutable_memory = p;
1176       return _immutable_memory;
1177     }
1178   }
1179   ShouldNotReachHere();
1180   return NULL;
1181 }
1182 
1183 //----------------------set_cached_top_node------------------------------------
1184 // Install the cached top node, and make sure Node::is_top works correctly.
1185 void Compile::set_cached_top_node(Node* tn) {
1186   if (tn != NULL)  verify_top(tn);
1187   Node* old_top = _top;
1188   _top = tn;
1189   // Calling Node::setup_is_top allows the nodes the chance to adjust
1190   // their _out arrays.
1191   if (_top != NULL)     _top->setup_is_top();
1192   if (old_top != NULL)  old_top->setup_is_top();
1193   assert(_top == NULL || top()->is_top(), "");
1194 }
1195 
1196 #ifdef ASSERT
1197 uint Compile::count_live_nodes_by_graph_walk() {
1198   Unique_Node_List useful(comp_arena());
1199   // Get useful node list by walking the graph.
1200   identify_useful_nodes(useful);
1201   return useful.size();
1202 }
1203 
1204 void Compile::print_missing_nodes() {
1205 
1206   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1207   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1208     return;
1209   }
1210 
1211   // This is an expensive function. It is executed only when the user
1212   // specifies VerifyIdealNodeCount option or otherwise knows the
1213   // additional work that needs to be done to identify reachable nodes
1214   // by walking the flow graph and find the missing ones using
1215   // _dead_node_list.
1216 
1217   Unique_Node_List useful(comp_arena());
1218   // Get useful node list by walking the graph.
1219   identify_useful_nodes(useful);
1220 
1221   uint l_nodes = C->live_nodes();
1222   uint l_nodes_by_walk = useful.size();
1223 
1224   if (l_nodes != l_nodes_by_walk) {
1225     if (_log != NULL) {
1226       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1227       _log->stamp();
1228       _log->end_head();
1229     }
1230     VectorSet& useful_member_set = useful.member_set();
1231     int last_idx = l_nodes_by_walk;
1232     for (int i = 0; i < last_idx; i++) {
1233       if (useful_member_set.test(i)) {
1234         if (_dead_node_list.test(i)) {
1235           if (_log != NULL) {
1236             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1237           }
1238           if (PrintIdealNodeCount) {
1239             // Print the log message to tty
1240               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1241               useful.at(i)->dump();
1242           }
1243         }
1244       }
1245       else if (! _dead_node_list.test(i)) {
1246         if (_log != NULL) {
1247           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1248         }
1249         if (PrintIdealNodeCount) {
1250           // Print the log message to tty
1251           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1252         }
1253       }
1254     }
1255     if (_log != NULL) {
1256       _log->tail("mismatched_nodes");
1257     }
1258   }
1259 }
1260 #endif
1261 
1262 #ifndef PRODUCT
1263 void Compile::verify_top(Node* tn) const {
1264   if (tn != NULL) {
1265     assert(tn->is_Con(), "top node must be a constant");
1266     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1267     assert(tn->in(0) != NULL, "must have live top node");
1268   }
1269 }
1270 #endif
1271 
1272 
1273 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1274 
1275 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1276   guarantee(arr != NULL, "");
1277   int num_blocks = arr->length();
1278   if (grow_by < num_blocks)  grow_by = num_blocks;
1279   int num_notes = grow_by * _node_notes_block_size;
1280   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1281   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1282   while (num_notes > 0) {
1283     arr->append(notes);
1284     notes     += _node_notes_block_size;
1285     num_notes -= _node_notes_block_size;
1286   }
1287   assert(num_notes == 0, "exact multiple, please");
1288 }
1289 
1290 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1291   if (source == NULL || dest == NULL)  return false;
1292 
1293   if (dest->is_Con())
1294     return false;               // Do not push debug info onto constants.
1295 
1296 #ifdef ASSERT
1297   // Leave a bread crumb trail pointing to the original node:
1298   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1299     dest->set_debug_orig(source);
1300   }
1301 #endif
1302 
1303   if (node_note_array() == NULL)
1304     return false;               // Not collecting any notes now.
1305 
1306   // This is a copy onto a pre-existing node, which may already have notes.
1307   // If both nodes have notes, do not overwrite any pre-existing notes.
1308   Node_Notes* source_notes = node_notes_at(source->_idx);
1309   if (source_notes == NULL || source_notes->is_clear())  return false;
1310   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1311   if (dest_notes == NULL || dest_notes->is_clear()) {
1312     return set_node_notes_at(dest->_idx, source_notes);
1313   }
1314 
1315   Node_Notes merged_notes = (*source_notes);
1316   // The order of operations here ensures that dest notes will win...
1317   merged_notes.update_from(dest_notes);
1318   return set_node_notes_at(dest->_idx, &merged_notes);
1319 }
1320 
1321 
1322 //--------------------------allow_range_check_smearing-------------------------
1323 // Gating condition for coalescing similar range checks.
1324 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1325 // single covering check that is at least as strong as any of them.
1326 // If the optimization succeeds, the simplified (strengthened) range check
1327 // will always succeed.  If it fails, we will deopt, and then give up
1328 // on the optimization.
1329 bool Compile::allow_range_check_smearing() const {
1330   // If this method has already thrown a range-check,
1331   // assume it was because we already tried range smearing
1332   // and it failed.
1333   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1334   return !already_trapped;
1335 }
1336 
1337 
1338 //------------------------------flatten_alias_type-----------------------------
1339 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1340   int offset = tj->offset();
1341   TypePtr::PTR ptr = tj->ptr();
1342 
1343   // Known instance (scalarizable allocation) alias only with itself.
1344   bool is_known_inst = tj->isa_oopptr() != NULL &&
1345                        tj->is_oopptr()->is_known_instance();
1346 
1347   // Process weird unsafe references.
1348   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1349     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1350     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1351     tj = TypeOopPtr::BOTTOM;
1352     ptr = tj->ptr();
1353     offset = tj->offset();
1354   }
1355 
1356   // Array pointers need some flattening
1357   const TypeAryPtr *ta = tj->isa_aryptr();
1358   if (ta && ta->is_stable()) {
1359     // Erase stability property for alias analysis.
1360     tj = ta = ta->cast_to_stable(false);
1361   }
1362   if( ta && is_known_inst ) {
1363     if ( offset != Type::OffsetBot &&
1364          offset > arrayOopDesc::length_offset_in_bytes() ) {
1365       offset = Type::OffsetBot; // Flatten constant access into array body only
1366       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1367     }
1368   } else if( ta && _AliasLevel >= 2 ) {
1369     // For arrays indexed by constant indices, we flatten the alias
1370     // space to include all of the array body.  Only the header, klass
1371     // and array length can be accessed un-aliased.
1372     if( offset != Type::OffsetBot ) {
1373       if( ta->const_oop() ) { // MethodData* or Method*
1374         offset = Type::OffsetBot;   // Flatten constant access into array body
1375         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1376       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1377         // range is OK as-is.
1378         tj = ta = TypeAryPtr::RANGE;
1379       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1380         tj = TypeInstPtr::KLASS; // all klass loads look alike
1381         ta = TypeAryPtr::RANGE; // generic ignored junk
1382         ptr = TypePtr::BotPTR;
1383       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1384         tj = TypeInstPtr::MARK;
1385         ta = TypeAryPtr::RANGE; // generic ignored junk
1386         ptr = TypePtr::BotPTR;
1387       } else {                  // Random constant offset into array body
1388         offset = Type::OffsetBot;   // Flatten constant access into array body
1389         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1390       }
1391     }
1392     // Arrays of fixed size alias with arrays of unknown size.
1393     if (ta->size() != TypeInt::POS) {
1394       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1395       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1396     }
1397     // Arrays of known objects become arrays of unknown objects.
1398     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1399       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1400       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1401     }
1402     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1403       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1404       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1405     }
1406     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1407     // cannot be distinguished by bytecode alone.
1408     if (ta->elem() == TypeInt::BOOL) {
1409       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1410       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1411       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1412     }
1413     // During the 2nd round of IterGVN, NotNull castings are removed.
1414     // Make sure the Bottom and NotNull variants alias the same.
1415     // Also, make sure exact and non-exact variants alias the same.
1416     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1417       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1418     }
1419   }
1420 
1421   // Oop pointers need some flattening
1422   const TypeInstPtr *to = tj->isa_instptr();
1423   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1424     ciInstanceKlass *k = to->klass()->as_instance_klass();
1425     if( ptr == TypePtr::Constant ) {
1426       if (to->klass() != ciEnv::current()->Class_klass() ||
1427           offset < k->size_helper() * wordSize) {
1428         // No constant oop pointers (such as Strings); they alias with
1429         // unknown strings.
1430         assert(!is_known_inst, "not scalarizable allocation");
1431         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1432       }
1433     } else if( is_known_inst ) {
1434       tj = to; // Keep NotNull and klass_is_exact for instance type
1435     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1436       // During the 2nd round of IterGVN, NotNull castings are removed.
1437       // Make sure the Bottom and NotNull variants alias the same.
1438       // Also, make sure exact and non-exact variants alias the same.
1439       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1440     }
1441     if (to->speculative() != NULL) {
1442       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1443     }
1444     // Canonicalize the holder of this field
1445     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1446       // First handle header references such as a LoadKlassNode, even if the
1447       // object's klass is unloaded at compile time (4965979).
1448       if (!is_known_inst) { // Do it only for non-instance types
1449         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1450       }
1451     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1452       // Static fields are in the space above the normal instance
1453       // fields in the java.lang.Class instance.
1454       if (to->klass() != ciEnv::current()->Class_klass()) {
1455         to = NULL;
1456         tj = TypeOopPtr::BOTTOM;
1457         offset = tj->offset();
1458       }
1459     } else {
1460       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1461       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1462         if( is_known_inst ) {
1463           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1464         } else {
1465           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1466         }
1467       }
1468     }
1469   }
1470 
1471   // Klass pointers to object array klasses need some flattening
1472   const TypeKlassPtr *tk = tj->isa_klassptr();
1473   if( tk ) {
1474     // If we are referencing a field within a Klass, we need
1475     // to assume the worst case of an Object.  Both exact and
1476     // inexact types must flatten to the same alias class so
1477     // use NotNull as the PTR.
1478     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1479 
1480       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1481                                    TypeKlassPtr::OBJECT->klass(),
1482                                    offset);
1483     }
1484 
1485     ciKlass* klass = tk->klass();
1486     if( klass->is_obj_array_klass() ) {
1487       ciKlass* k = TypeAryPtr::OOPS->klass();
1488       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1489         k = TypeInstPtr::BOTTOM->klass();
1490       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1491     }
1492 
1493     // Check for precise loads from the primary supertype array and force them
1494     // to the supertype cache alias index.  Check for generic array loads from
1495     // the primary supertype array and also force them to the supertype cache
1496     // alias index.  Since the same load can reach both, we need to merge
1497     // these 2 disparate memories into the same alias class.  Since the
1498     // primary supertype array is read-only, there's no chance of confusion
1499     // where we bypass an array load and an array store.
1500     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1501     if (offset == Type::OffsetBot ||
1502         (offset >= primary_supers_offset &&
1503          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1504         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1505       offset = in_bytes(Klass::secondary_super_cache_offset());
1506       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1507     }
1508   }
1509 
1510   // Flatten all Raw pointers together.
1511   if (tj->base() == Type::RawPtr)
1512     tj = TypeRawPtr::BOTTOM;
1513 
1514   if (tj->base() == Type::AnyPtr)
1515     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1516 
1517   // Flatten all to bottom for now
1518   switch( _AliasLevel ) {
1519   case 0:
1520     tj = TypePtr::BOTTOM;
1521     break;
1522   case 1:                       // Flatten to: oop, static, field or array
1523     switch (tj->base()) {
1524     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1525     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1526     case Type::AryPtr:   // do not distinguish arrays at all
1527     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1528     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1529     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1530     default: ShouldNotReachHere();
1531     }
1532     break;
1533   case 2:                       // No collapsing at level 2; keep all splits
1534   case 3:                       // No collapsing at level 3; keep all splits
1535     break;
1536   default:
1537     Unimplemented();
1538   }
1539 
1540   offset = tj->offset();
1541   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1542 
1543   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1544           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1545           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1546           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1547           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1548           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1549           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1550           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1551   assert( tj->ptr() != TypePtr::TopPTR &&
1552           tj->ptr() != TypePtr::AnyNull &&
1553           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1554 //    assert( tj->ptr() != TypePtr::Constant ||
1555 //            tj->base() == Type::RawPtr ||
1556 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1557 
1558   return tj;
1559 }
1560 
1561 void Compile::AliasType::Init(int i, const TypePtr* at) {
1562   _index = i;
1563   _adr_type = at;
1564   _field = NULL;
1565   _element = NULL;
1566   _is_rewritable = true; // default
1567   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1568   if (atoop != NULL && atoop->is_known_instance()) {
1569     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1570     _general_index = Compile::current()->get_alias_index(gt);
1571   } else {
1572     _general_index = 0;
1573   }
1574 }
1575 
1576 //---------------------------------print_on------------------------------------
1577 #ifndef PRODUCT
1578 void Compile::AliasType::print_on(outputStream* st) {
1579   if (index() < 10)
1580         st->print("@ <%d> ", index());
1581   else  st->print("@ <%d>",  index());
1582   st->print(is_rewritable() ? "   " : " RO");
1583   int offset = adr_type()->offset();
1584   if (offset == Type::OffsetBot)
1585         st->print(" +any");
1586   else  st->print(" +%-3d", offset);
1587   st->print(" in ");
1588   adr_type()->dump_on(st);
1589   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1590   if (field() != NULL && tjp) {
1591     if (tjp->klass()  != field()->holder() ||
1592         tjp->offset() != field()->offset_in_bytes()) {
1593       st->print(" != ");
1594       field()->print();
1595       st->print(" ***");
1596     }
1597   }
1598 }
1599 
1600 void print_alias_types() {
1601   Compile* C = Compile::current();
1602   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1603   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1604     C->alias_type(idx)->print_on(tty);
1605     tty->cr();
1606   }
1607 }
1608 #endif
1609 
1610 
1611 //----------------------------probe_alias_cache--------------------------------
1612 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1613   intptr_t key = (intptr_t) adr_type;
1614   key ^= key >> logAliasCacheSize;
1615   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1616 }
1617 
1618 
1619 //-----------------------------grow_alias_types--------------------------------
1620 void Compile::grow_alias_types() {
1621   const int old_ats  = _max_alias_types; // how many before?
1622   const int new_ats  = old_ats;          // how many more?
1623   const int grow_ats = old_ats+new_ats;  // how many now?
1624   _max_alias_types = grow_ats;
1625   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1626   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1627   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1628   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1629 }
1630 
1631 
1632 //--------------------------------find_alias_type------------------------------
1633 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1634   if (_AliasLevel == 0)
1635     return alias_type(AliasIdxBot);
1636 
1637   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1638   if (ace->_adr_type == adr_type) {
1639     return alias_type(ace->_index);
1640   }
1641 
1642   // Handle special cases.
1643   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1644   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1645 
1646   // Do it the slow way.
1647   const TypePtr* flat = flatten_alias_type(adr_type);
1648 
1649 #ifdef ASSERT
1650   assert(flat == flatten_alias_type(flat), "idempotent");
1651   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1652   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1653     const TypeOopPtr* foop = flat->is_oopptr();
1654     // Scalarizable allocations have exact klass always.
1655     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1656     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1657     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1658   }
1659   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1660 #endif
1661 
1662   int idx = AliasIdxTop;
1663   for (int i = 0; i < num_alias_types(); i++) {
1664     if (alias_type(i)->adr_type() == flat) {
1665       idx = i;
1666       break;
1667     }
1668   }
1669 
1670   if (idx == AliasIdxTop) {
1671     if (no_create)  return NULL;
1672     // Grow the array if necessary.
1673     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1674     // Add a new alias type.
1675     idx = _num_alias_types++;
1676     _alias_types[idx]->Init(idx, flat);
1677     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1678     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1679     if (flat->isa_instptr()) {
1680       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1681           && flat->is_instptr()->klass() == env()->Class_klass())
1682         alias_type(idx)->set_rewritable(false);
1683     }
1684     if (flat->isa_aryptr()) {
1685 #ifdef ASSERT
1686       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1687       // (T_BYTE has the weakest alignment and size restrictions...)
1688       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1689 #endif
1690       if (flat->offset() == TypePtr::OffsetBot) {
1691         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1692       }
1693     }
1694     if (flat->isa_klassptr()) {
1695       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1696         alias_type(idx)->set_rewritable(false);
1697       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1698         alias_type(idx)->set_rewritable(false);
1699       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1700         alias_type(idx)->set_rewritable(false);
1701       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1702         alias_type(idx)->set_rewritable(false);
1703     }
1704     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1705     // but the base pointer type is not distinctive enough to identify
1706     // references into JavaThread.)
1707 
1708     // Check for final fields.
1709     const TypeInstPtr* tinst = flat->isa_instptr();
1710     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1711       ciField* field;
1712       if (tinst->const_oop() != NULL &&
1713           tinst->klass() == ciEnv::current()->Class_klass() &&
1714           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1715         // static field
1716         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1717         field = k->get_field_by_offset(tinst->offset(), true);
1718       } else {
1719         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1720         field = k->get_field_by_offset(tinst->offset(), false);
1721       }
1722       assert(field == NULL ||
1723              original_field == NULL ||
1724              (field->holder() == original_field->holder() &&
1725               field->offset() == original_field->offset() &&
1726               field->is_static() == original_field->is_static()), "wrong field?");
1727       // Set field() and is_rewritable() attributes.
1728       if (field != NULL)  alias_type(idx)->set_field(field);
1729     }
1730   }
1731 
1732   // Fill the cache for next time.
1733   ace->_adr_type = adr_type;
1734   ace->_index    = idx;
1735   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1736 
1737   // Might as well try to fill the cache for the flattened version, too.
1738   AliasCacheEntry* face = probe_alias_cache(flat);
1739   if (face->_adr_type == NULL) {
1740     face->_adr_type = flat;
1741     face->_index    = idx;
1742     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1743   }
1744 
1745   return alias_type(idx);
1746 }
1747 
1748 
1749 Compile::AliasType* Compile::alias_type(ciField* field) {
1750   const TypeOopPtr* t;
1751   if (field->is_static())
1752     t = TypeInstPtr::make(field->holder()->java_mirror());
1753   else
1754     t = TypeOopPtr::make_from_klass_raw(field->holder());
1755   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1756   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1757   return atp;
1758 }
1759 
1760 
1761 //------------------------------have_alias_type--------------------------------
1762 bool Compile::have_alias_type(const TypePtr* adr_type) {
1763   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1764   if (ace->_adr_type == adr_type) {
1765     return true;
1766   }
1767 
1768   // Handle special cases.
1769   if (adr_type == NULL)             return true;
1770   if (adr_type == TypePtr::BOTTOM)  return true;
1771 
1772   return find_alias_type(adr_type, true, NULL) != NULL;
1773 }
1774 
1775 //-----------------------------must_alias--------------------------------------
1776 // True if all values of the given address type are in the given alias category.
1777 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1778   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1779   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1780   if (alias_idx == AliasIdxTop)         return false; // the empty category
1781   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1782 
1783   // the only remaining possible overlap is identity
1784   int adr_idx = get_alias_index(adr_type);
1785   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1786   assert(adr_idx == alias_idx ||
1787          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1788           && adr_type                       != TypeOopPtr::BOTTOM),
1789          "should not be testing for overlap with an unsafe pointer");
1790   return adr_idx == alias_idx;
1791 }
1792 
1793 //------------------------------can_alias--------------------------------------
1794 // True if any values of the given address type are in the given alias category.
1795 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1796   if (alias_idx == AliasIdxTop)         return false; // the empty category
1797   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1798   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1799   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1800 
1801   // the only remaining possible overlap is identity
1802   int adr_idx = get_alias_index(adr_type);
1803   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1804   return adr_idx == alias_idx;
1805 }
1806 
1807 
1808 
1809 //---------------------------pop_warm_call-------------------------------------
1810 WarmCallInfo* Compile::pop_warm_call() {
1811   WarmCallInfo* wci = _warm_calls;
1812   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1813   return wci;
1814 }
1815 
1816 //----------------------------Inline_Warm--------------------------------------
1817 int Compile::Inline_Warm() {
1818   // If there is room, try to inline some more warm call sites.
1819   // %%% Do a graph index compaction pass when we think we're out of space?
1820   if (!InlineWarmCalls)  return 0;
1821 
1822   int calls_made_hot = 0;
1823   int room_to_grow   = NodeCountInliningCutoff - unique();
1824   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1825   int amount_grown   = 0;
1826   WarmCallInfo* call;
1827   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1828     int est_size = (int)call->size();
1829     if (est_size > (room_to_grow - amount_grown)) {
1830       // This one won't fit anyway.  Get rid of it.
1831       call->make_cold();
1832       continue;
1833     }
1834     call->make_hot();
1835     calls_made_hot++;
1836     amount_grown   += est_size;
1837     amount_to_grow -= est_size;
1838   }
1839 
1840   if (calls_made_hot > 0)  set_major_progress();
1841   return calls_made_hot;
1842 }
1843 
1844 
1845 //----------------------------Finish_Warm--------------------------------------
1846 void Compile::Finish_Warm() {
1847   if (!InlineWarmCalls)  return;
1848   if (failing())  return;
1849   if (warm_calls() == NULL)  return;
1850 
1851   // Clean up loose ends, if we are out of space for inlining.
1852   WarmCallInfo* call;
1853   while ((call = pop_warm_call()) != NULL) {
1854     call->make_cold();
1855   }
1856 }
1857 
1858 //---------------------cleanup_loop_predicates-----------------------
1859 // Remove the opaque nodes that protect the predicates so that all unused
1860 // checks and uncommon_traps will be eliminated from the ideal graph
1861 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1862   if (predicate_count()==0) return;
1863   for (int i = predicate_count(); i > 0; i--) {
1864     Node * n = predicate_opaque1_node(i-1);
1865     assert(n->Opcode() == Op_Opaque1, "must be");
1866     igvn.replace_node(n, n->in(1));
1867   }
1868   assert(predicate_count()==0, "should be clean!");
1869 }
1870 
1871 // StringOpts and late inlining of string methods
1872 void Compile::inline_string_calls(bool parse_time) {
1873   {
1874     // remove useless nodes to make the usage analysis simpler
1875     ResourceMark rm;
1876     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1877   }
1878 
1879   {
1880     ResourceMark rm;
1881     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1882     PhaseStringOpts pso(initial_gvn(), for_igvn());
1883     print_method(PHASE_AFTER_STRINGOPTS, 3);
1884   }
1885 
1886   // now inline anything that we skipped the first time around
1887   if (!parse_time) {
1888     _late_inlines_pos = _late_inlines.length();
1889   }
1890 
1891   while (_string_late_inlines.length() > 0) {
1892     CallGenerator* cg = _string_late_inlines.pop();
1893     cg->do_late_inline();
1894     if (failing())  return;
1895   }
1896   _string_late_inlines.trunc_to(0);
1897 }
1898 
1899 // Late inlining of boxing methods
1900 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1901   if (_boxing_late_inlines.length() > 0) {
1902     assert(has_boxed_value(), "inconsistent");
1903 
1904     PhaseGVN* gvn = initial_gvn();
1905     set_inlining_incrementally(true);
1906 
1907     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1908     for_igvn()->clear();
1909     gvn->replace_with(&igvn);
1910 
1911     while (_boxing_late_inlines.length() > 0) {
1912       CallGenerator* cg = _boxing_late_inlines.pop();
1913       cg->do_late_inline();
1914       if (failing())  return;
1915     }
1916     _boxing_late_inlines.trunc_to(0);
1917 
1918     {
1919       ResourceMark rm;
1920       PhaseRemoveUseless pru(gvn, for_igvn());
1921     }
1922 
1923     igvn = PhaseIterGVN(gvn);
1924     igvn.optimize();
1925 
1926     set_inlining_progress(false);
1927     set_inlining_incrementally(false);
1928   }
1929 }
1930 
1931 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1932   assert(IncrementalInline, "incremental inlining should be on");
1933   PhaseGVN* gvn = initial_gvn();
1934 
1935   set_inlining_progress(false);
1936   for_igvn()->clear();
1937   gvn->replace_with(&igvn);
1938 
1939   int i = 0;
1940 
1941   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1942     CallGenerator* cg = _late_inlines.at(i);
1943     _late_inlines_pos = i+1;
1944     cg->do_late_inline();
1945     if (failing())  return;
1946   }
1947   int j = 0;
1948   for (; i < _late_inlines.length(); i++, j++) {
1949     _late_inlines.at_put(j, _late_inlines.at(i));
1950   }
1951   _late_inlines.trunc_to(j);
1952 
1953   {
1954     ResourceMark rm;
1955     PhaseRemoveUseless pru(gvn, for_igvn());
1956   }
1957 
1958   igvn = PhaseIterGVN(gvn);
1959 }
1960 
1961 // Perform incremental inlining until bound on number of live nodes is reached
1962 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1963   PhaseGVN* gvn = initial_gvn();
1964 
1965   set_inlining_incrementally(true);
1966   set_inlining_progress(true);
1967   uint low_live_nodes = 0;
1968 
1969   while(inlining_progress() && _late_inlines.length() > 0) {
1970 
1971     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1972       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1973         // PhaseIdealLoop is expensive so we only try it once we are
1974         // out of loop and we only try it again if the previous helped
1975         // got the number of nodes down significantly
1976         PhaseIdealLoop ideal_loop( igvn, false, true );
1977         if (failing())  return;
1978         low_live_nodes = live_nodes();
1979         _major_progress = true;
1980       }
1981 
1982       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1983         break;
1984       }
1985     }
1986 
1987     inline_incrementally_one(igvn);
1988 
1989     if (failing())  return;
1990 
1991     igvn.optimize();
1992 
1993     if (failing())  return;
1994   }
1995 
1996   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1997 
1998   if (_string_late_inlines.length() > 0) {
1999     assert(has_stringbuilder(), "inconsistent");
2000     for_igvn()->clear();
2001     initial_gvn()->replace_with(&igvn);
2002 
2003     inline_string_calls(false);
2004 
2005     if (failing())  return;
2006 
2007     {
2008       ResourceMark rm;
2009       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2010     }
2011 
2012     igvn = PhaseIterGVN(gvn);
2013 
2014     igvn.optimize();
2015   }
2016 
2017   set_inlining_incrementally(false);
2018 }
2019 
2020 
2021 //------------------------------Optimize---------------------------------------
2022 // Given a graph, optimize it.
2023 void Compile::Optimize() {
2024   TracePhase t1("optimizer", &_t_optimizer, true);
2025 
2026 #ifndef PRODUCT
2027   if (env()->break_at_compile()) {
2028     BREAKPOINT;
2029   }
2030 
2031 #endif
2032 
2033   ResourceMark rm;
2034   int          loop_opts_cnt;
2035 
2036   print_inlining_reinit();
2037 
2038   NOT_PRODUCT( verify_graph_edges(); )
2039 
2040   print_method(PHASE_AFTER_PARSING);
2041 
2042  {
2043   // Iterative Global Value Numbering, including ideal transforms
2044   // Initialize IterGVN with types and values from parse-time GVN
2045   PhaseIterGVN igvn(initial_gvn());
2046   {
2047     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2048     igvn.optimize();
2049   }
2050 
2051   print_method(PHASE_ITER_GVN1, 2);
2052 
2053   if (failing())  return;
2054 
2055   {
2056     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2057     inline_incrementally(igvn);
2058   }
2059 
2060   print_method(PHASE_INCREMENTAL_INLINE, 2);
2061 
2062   if (failing())  return;
2063 
2064   if (eliminate_boxing()) {
2065     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2066     // Inline valueOf() methods now.
2067     inline_boxing_calls(igvn);
2068 
2069     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2070 
2071     if (failing())  return;
2072   }
2073 
2074   // Remove the speculative part of types and clean up the graph from
2075   // the extra CastPP nodes whose only purpose is to carry them. Do
2076   // that early so that optimizations are not disrupted by the extra
2077   // CastPP nodes.
2078   remove_speculative_types(igvn);
2079 
2080   // No more new expensive nodes will be added to the list from here
2081   // so keep only the actual candidates for optimizations.
2082   cleanup_expensive_nodes(igvn);
2083 
2084   // Perform escape analysis
2085   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2086     if (has_loops()) {
2087       // Cleanup graph (remove dead nodes).
2088       TracePhase t2("idealLoop", &_t_idealLoop, true);
2089       PhaseIdealLoop ideal_loop( igvn, false, true );
2090       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2091       if (failing())  return;
2092     }
2093     ConnectionGraph::do_analysis(this, &igvn);
2094 
2095     if (failing())  return;
2096 
2097     // Optimize out fields loads from scalar replaceable allocations.
2098     igvn.optimize();
2099     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2100 
2101     if (failing())  return;
2102 
2103     if (congraph() != NULL && macro_count() > 0) {
2104       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2105       PhaseMacroExpand mexp(igvn);
2106       mexp.eliminate_macro_nodes();
2107       igvn.set_delay_transform(false);
2108 
2109       igvn.optimize();
2110       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2111 
2112       if (failing())  return;
2113     }
2114   }
2115 
2116   // Loop transforms on the ideal graph.  Range Check Elimination,
2117   // peeling, unrolling, etc.
2118 
2119   // Set loop opts counter
2120   loop_opts_cnt = num_loop_opts();
2121   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2122     {
2123       TracePhase t2("idealLoop", &_t_idealLoop, true);
2124       PhaseIdealLoop ideal_loop( igvn, true );
2125       loop_opts_cnt--;
2126       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2127       if (failing())  return;
2128     }
2129     // Loop opts pass if partial peeling occurred in previous pass
2130     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2131       TracePhase t3("idealLoop", &_t_idealLoop, true);
2132       PhaseIdealLoop ideal_loop( igvn, false );
2133       loop_opts_cnt--;
2134       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2135       if (failing())  return;
2136     }
2137     // Loop opts pass for loop-unrolling before CCP
2138     if(major_progress() && (loop_opts_cnt > 0)) {
2139       TracePhase t4("idealLoop", &_t_idealLoop, true);
2140       PhaseIdealLoop ideal_loop( igvn, false );
2141       loop_opts_cnt--;
2142       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2143     }
2144     if (!failing()) {
2145       // Verify that last round of loop opts produced a valid graph
2146       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2147       PhaseIdealLoop::verify(igvn);
2148     }
2149   }
2150   if (failing())  return;
2151 
2152   // Conditional Constant Propagation;
2153   PhaseCCP ccp( &igvn );
2154   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2155   {
2156     TracePhase t2("ccp", &_t_ccp, true);
2157     ccp.do_transform();
2158   }
2159   print_method(PHASE_CPP1, 2);
2160 
2161   assert( true, "Break here to ccp.dump_old2new_map()");
2162 
2163   // Iterative Global Value Numbering, including ideal transforms
2164   {
2165     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2166     igvn = ccp;
2167     igvn.optimize();
2168   }
2169 
2170   print_method(PHASE_ITER_GVN2, 2);
2171 
2172   if (failing())  return;
2173 
2174   // Loop transforms on the ideal graph.  Range Check Elimination,
2175   // peeling, unrolling, etc.
2176   if(loop_opts_cnt > 0) {
2177     debug_only( int cnt = 0; );
2178     while(major_progress() && (loop_opts_cnt > 0)) {
2179       TracePhase t2("idealLoop", &_t_idealLoop, true);
2180       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2181       PhaseIdealLoop ideal_loop( igvn, true);
2182       loop_opts_cnt--;
2183       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2184       if (failing())  return;
2185     }
2186   }
2187 
2188   {
2189     // Verify that all previous optimizations produced a valid graph
2190     // at least to this point, even if no loop optimizations were done.
2191     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2192     PhaseIdealLoop::verify(igvn);
2193   }
2194 
2195   {
2196     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2197     PhaseMacroExpand  mex(igvn);
2198     if (mex.expand_macro_nodes()) {
2199       assert(failing(), "must bail out w/ explicit message");
2200       return;
2201     }
2202   }
2203 
2204  } // (End scope of igvn; run destructor if necessary for asserts.)
2205 
2206   dump_inlining();
2207   // A method with only infinite loops has no edges entering loops from root
2208   {
2209     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2210     if (final_graph_reshaping()) {
2211       assert(failing(), "must bail out w/ explicit message");
2212       return;
2213     }
2214   }
2215 
2216   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2217 }
2218 
2219 
2220 //------------------------------Code_Gen---------------------------------------
2221 // Given a graph, generate code for it
2222 void Compile::Code_Gen() {
2223   if (failing()) {
2224     return;
2225   }
2226 
2227   // Perform instruction selection.  You might think we could reclaim Matcher
2228   // memory PDQ, but actually the Matcher is used in generating spill code.
2229   // Internals of the Matcher (including some VectorSets) must remain live
2230   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2231   // set a bit in reclaimed memory.
2232 
2233   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2234   // nodes.  Mapping is only valid at the root of each matched subtree.
2235   NOT_PRODUCT( verify_graph_edges(); )
2236 
2237   Matcher matcher;
2238   _matcher = &matcher;
2239   {
2240     TracePhase t2("matcher", &_t_matcher, true);
2241     matcher.match();
2242   }
2243   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2244   // nodes.  Mapping is only valid at the root of each matched subtree.
2245   NOT_PRODUCT( verify_graph_edges(); )
2246 
2247   // If you have too many nodes, or if matching has failed, bail out
2248   check_node_count(0, "out of nodes matching instructions");
2249   if (failing()) {
2250     return;
2251   }
2252 
2253   // Build a proper-looking CFG
2254   PhaseCFG cfg(node_arena(), root(), matcher);
2255   _cfg = &cfg;
2256   {
2257     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2258     bool success = cfg.do_global_code_motion();
2259     if (!success) {
2260       return;
2261     }
2262 
2263     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2264     NOT_PRODUCT( verify_graph_edges(); )
2265     debug_only( cfg.verify(); )
2266   }
2267 
2268   PhaseChaitin regalloc(unique(), cfg, matcher);
2269   _regalloc = &regalloc;
2270   {
2271     TracePhase t2("regalloc", &_t_registerAllocation, true);
2272     // Perform register allocation.  After Chaitin, use-def chains are
2273     // no longer accurate (at spill code) and so must be ignored.
2274     // Node->LRG->reg mappings are still accurate.
2275     _regalloc->Register_Allocate();
2276 
2277     // Bail out if the allocator builds too many nodes
2278     if (failing()) {
2279       return;
2280     }
2281   }
2282 
2283   // Prior to register allocation we kept empty basic blocks in case the
2284   // the allocator needed a place to spill.  After register allocation we
2285   // are not adding any new instructions.  If any basic block is empty, we
2286   // can now safely remove it.
2287   {
2288     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2289     cfg.remove_empty_blocks();
2290     if (do_freq_based_layout()) {
2291       PhaseBlockLayout layout(cfg);
2292     } else {
2293       cfg.set_loop_alignment();
2294     }
2295     cfg.fixup_flow();
2296   }
2297 
2298   // Apply peephole optimizations
2299   if( OptoPeephole ) {
2300     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2301     PhasePeephole peep( _regalloc, cfg);
2302     peep.do_transform();
2303   }
2304 
2305   // Do late expand if CPU requires this.
2306   if (Matcher::require_postalloc_expand) {
2307     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2308     cfg.postalloc_expand(_regalloc);
2309   }
2310 
2311   // Convert Nodes to instruction bits in a buffer
2312   {
2313     // %%%% workspace merge brought two timers together for one job
2314     TracePhase t2a("output", &_t_output, true);
2315     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2316     Output();
2317   }
2318 
2319   print_method(PHASE_FINAL_CODE);
2320 
2321   // He's dead, Jim.
2322   _cfg     = (PhaseCFG*)0xdeadbeef;
2323   _regalloc = (PhaseChaitin*)0xdeadbeef;
2324 }
2325 
2326 
2327 //------------------------------dump_asm---------------------------------------
2328 // Dump formatted assembly
2329 #ifndef PRODUCT
2330 void Compile::dump_asm(int *pcs, uint pc_limit) {
2331   bool cut_short = false;
2332   tty->print_cr("#");
2333   tty->print("#  ");  _tf->dump();  tty->cr();
2334   tty->print_cr("#");
2335 
2336   // For all blocks
2337   int pc = 0x0;                 // Program counter
2338   char starts_bundle = ' ';
2339   _regalloc->dump_frame();
2340 
2341   Node *n = NULL;
2342   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2343     if (VMThread::should_terminate()) {
2344       cut_short = true;
2345       break;
2346     }
2347     Block* block = _cfg->get_block(i);
2348     if (block->is_connector() && !Verbose) {
2349       continue;
2350     }
2351     n = block->head();
2352     if (pcs && n->_idx < pc_limit) {
2353       tty->print("%3.3x   ", pcs[n->_idx]);
2354     } else {
2355       tty->print("      ");
2356     }
2357     block->dump_head(_cfg);
2358     if (block->is_connector()) {
2359       tty->print_cr("        # Empty connector block");
2360     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2361       tty->print_cr("        # Block is sole successor of call");
2362     }
2363 
2364     // For all instructions
2365     Node *delay = NULL;
2366     for (uint j = 0; j < block->number_of_nodes(); j++) {
2367       if (VMThread::should_terminate()) {
2368         cut_short = true;
2369         break;
2370       }
2371       n = block->get_node(j);
2372       if (valid_bundle_info(n)) {
2373         Bundle* bundle = node_bundling(n);
2374         if (bundle->used_in_unconditional_delay()) {
2375           delay = n;
2376           continue;
2377         }
2378         if (bundle->starts_bundle()) {
2379           starts_bundle = '+';
2380         }
2381       }
2382 
2383       if (WizardMode) {
2384         n->dump();
2385       }
2386 
2387       if( !n->is_Region() &&    // Dont print in the Assembly
2388           !n->is_Phi() &&       // a few noisely useless nodes
2389           !n->is_Proj() &&
2390           !n->is_MachTemp() &&
2391           !n->is_SafePointScalarObject() &&
2392           !n->is_Catch() &&     // Would be nice to print exception table targets
2393           !n->is_MergeMem() &&  // Not very interesting
2394           !n->is_top() &&       // Debug info table constants
2395           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2396           ) {
2397         if (pcs && n->_idx < pc_limit)
2398           tty->print("%3.3x", pcs[n->_idx]);
2399         else
2400           tty->print("   ");
2401         tty->print(" %c ", starts_bundle);
2402         starts_bundle = ' ';
2403         tty->print("\t");
2404         n->format(_regalloc, tty);
2405         tty->cr();
2406       }
2407 
2408       // If we have an instruction with a delay slot, and have seen a delay,
2409       // then back up and print it
2410       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2411         assert(delay != NULL, "no unconditional delay instruction");
2412         if (WizardMode) delay->dump();
2413 
2414         if (node_bundling(delay)->starts_bundle())
2415           starts_bundle = '+';
2416         if (pcs && n->_idx < pc_limit)
2417           tty->print("%3.3x", pcs[n->_idx]);
2418         else
2419           tty->print("   ");
2420         tty->print(" %c ", starts_bundle);
2421         starts_bundle = ' ';
2422         tty->print("\t");
2423         delay->format(_regalloc, tty);
2424         tty->print_cr("");
2425         delay = NULL;
2426       }
2427 
2428       // Dump the exception table as well
2429       if( n->is_Catch() && (Verbose || WizardMode) ) {
2430         // Print the exception table for this offset
2431         _handler_table.print_subtable_for(pc);
2432       }
2433     }
2434 
2435     if (pcs && n->_idx < pc_limit)
2436       tty->print_cr("%3.3x", pcs[n->_idx]);
2437     else
2438       tty->print_cr("");
2439 
2440     assert(cut_short || delay == NULL, "no unconditional delay branch");
2441 
2442   } // End of per-block dump
2443   tty->print_cr("");
2444 
2445   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2446 }
2447 #endif
2448 
2449 //------------------------------Final_Reshape_Counts---------------------------
2450 // This class defines counters to help identify when a method
2451 // may/must be executed using hardware with only 24-bit precision.
2452 struct Final_Reshape_Counts : public StackObj {
2453   int  _call_count;             // count non-inlined 'common' calls
2454   int  _float_count;            // count float ops requiring 24-bit precision
2455   int  _double_count;           // count double ops requiring more precision
2456   int  _java_call_count;        // count non-inlined 'java' calls
2457   int  _inner_loop_count;       // count loops which need alignment
2458   VectorSet _visited;           // Visitation flags
2459   Node_List _tests;             // Set of IfNodes & PCTableNodes
2460 
2461   Final_Reshape_Counts() :
2462     _call_count(0), _float_count(0), _double_count(0),
2463     _java_call_count(0), _inner_loop_count(0),
2464     _visited( Thread::current()->resource_area() ) { }
2465 
2466   void inc_call_count  () { _call_count  ++; }
2467   void inc_float_count () { _float_count ++; }
2468   void inc_double_count() { _double_count++; }
2469   void inc_java_call_count() { _java_call_count++; }
2470   void inc_inner_loop_count() { _inner_loop_count++; }
2471 
2472   int  get_call_count  () const { return _call_count  ; }
2473   int  get_float_count () const { return _float_count ; }
2474   int  get_double_count() const { return _double_count; }
2475   int  get_java_call_count() const { return _java_call_count; }
2476   int  get_inner_loop_count() const { return _inner_loop_count; }
2477 };
2478 
2479 #ifdef ASSERT
2480 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2481   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2482   // Make sure the offset goes inside the instance layout.
2483   return k->contains_field_offset(tp->offset());
2484   // Note that OffsetBot and OffsetTop are very negative.
2485 }
2486 #endif
2487 
2488 // Eliminate trivially redundant StoreCMs and accumulate their
2489 // precedence edges.
2490 void Compile::eliminate_redundant_card_marks(Node* n) {
2491   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2492   if (n->in(MemNode::Address)->outcnt() > 1) {
2493     // There are multiple users of the same address so it might be
2494     // possible to eliminate some of the StoreCMs
2495     Node* mem = n->in(MemNode::Memory);
2496     Node* adr = n->in(MemNode::Address);
2497     Node* val = n->in(MemNode::ValueIn);
2498     Node* prev = n;
2499     bool done = false;
2500     // Walk the chain of StoreCMs eliminating ones that match.  As
2501     // long as it's a chain of single users then the optimization is
2502     // safe.  Eliminating partially redundant StoreCMs would require
2503     // cloning copies down the other paths.
2504     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2505       if (adr == mem->in(MemNode::Address) &&
2506           val == mem->in(MemNode::ValueIn)) {
2507         // redundant StoreCM
2508         if (mem->req() > MemNode::OopStore) {
2509           // Hasn't been processed by this code yet.
2510           n->add_prec(mem->in(MemNode::OopStore));
2511         } else {
2512           // Already converted to precedence edge
2513           for (uint i = mem->req(); i < mem->len(); i++) {
2514             // Accumulate any precedence edges
2515             if (mem->in(i) != NULL) {
2516               n->add_prec(mem->in(i));
2517             }
2518           }
2519           // Everything above this point has been processed.
2520           done = true;
2521         }
2522         // Eliminate the previous StoreCM
2523         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2524         assert(mem->outcnt() == 0, "should be dead");
2525         mem->disconnect_inputs(NULL, this);
2526       } else {
2527         prev = mem;
2528       }
2529       mem = prev->in(MemNode::Memory);
2530     }
2531   }
2532 }
2533 
2534 //------------------------------final_graph_reshaping_impl----------------------
2535 // Implement items 1-5 from final_graph_reshaping below.
2536 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2537 
2538   if ( n->outcnt() == 0 ) return; // dead node
2539   uint nop = n->Opcode();
2540 
2541   // Check for 2-input instruction with "last use" on right input.
2542   // Swap to left input.  Implements item (2).
2543   if( n->req() == 3 &&          // two-input instruction
2544       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2545       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2546       n->in(2)->outcnt() == 1 &&// right use IS a last use
2547       !n->in(2)->is_Con() ) {   // right use is not a constant
2548     // Check for commutative opcode
2549     switch( nop ) {
2550     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2551     case Op_MaxI:  case Op_MinI:
2552     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2553     case Op_AndL:  case Op_XorL:  case Op_OrL:
2554     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2555       // Move "last use" input to left by swapping inputs
2556       n->swap_edges(1, 2);
2557       break;
2558     }
2559     default:
2560       break;
2561     }
2562   }
2563 
2564 #ifdef ASSERT
2565   if( n->is_Mem() ) {
2566     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2567     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2568             // oop will be recorded in oop map if load crosses safepoint
2569             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2570                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2571             "raw memory operations should have control edge");
2572   }
2573 #endif
2574   // Count FPU ops and common calls, implements item (3)
2575   switch( nop ) {
2576   // Count all float operations that may use FPU
2577   case Op_AddF:
2578   case Op_SubF:
2579   case Op_MulF:
2580   case Op_DivF:
2581   case Op_NegF:
2582   case Op_ModF:
2583   case Op_ConvI2F:
2584   case Op_ConF:
2585   case Op_CmpF:
2586   case Op_CmpF3:
2587   // case Op_ConvL2F: // longs are split into 32-bit halves
2588     frc.inc_float_count();
2589     break;
2590 
2591   case Op_ConvF2D:
2592   case Op_ConvD2F:
2593     frc.inc_float_count();
2594     frc.inc_double_count();
2595     break;
2596 
2597   // Count all double operations that may use FPU
2598   case Op_AddD:
2599   case Op_SubD:
2600   case Op_MulD:
2601   case Op_DivD:
2602   case Op_NegD:
2603   case Op_ModD:
2604   case Op_ConvI2D:
2605   case Op_ConvD2I:
2606   // case Op_ConvL2D: // handled by leaf call
2607   // case Op_ConvD2L: // handled by leaf call
2608   case Op_ConD:
2609   case Op_CmpD:
2610   case Op_CmpD3:
2611     frc.inc_double_count();
2612     break;
2613   case Op_Opaque1:              // Remove Opaque Nodes before matching
2614   case Op_Opaque2:              // Remove Opaque Nodes before matching
2615   case Op_Opaque3:
2616     n->subsume_by(n->in(1), this);
2617     break;
2618   case Op_CallStaticJava:
2619   case Op_CallJava:
2620   case Op_CallDynamicJava:
2621     frc.inc_java_call_count(); // Count java call site;
2622   case Op_CallRuntime:
2623   case Op_CallLeaf:
2624   case Op_CallLeafNoFP: {
2625     assert( n->is_Call(), "" );
2626     CallNode *call = n->as_Call();
2627     // Count call sites where the FP mode bit would have to be flipped.
2628     // Do not count uncommon runtime calls:
2629     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2630     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2631     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2632       frc.inc_call_count();   // Count the call site
2633     } else {                  // See if uncommon argument is shared
2634       Node *n = call->in(TypeFunc::Parms);
2635       int nop = n->Opcode();
2636       // Clone shared simple arguments to uncommon calls, item (1).
2637       if( n->outcnt() > 1 &&
2638           !n->is_Proj() &&
2639           nop != Op_CreateEx &&
2640           nop != Op_CheckCastPP &&
2641           nop != Op_DecodeN &&
2642           nop != Op_DecodeNKlass &&
2643           !n->is_Mem() ) {
2644         Node *x = n->clone();
2645         call->set_req( TypeFunc::Parms, x );
2646       }
2647     }
2648     break;
2649   }
2650 
2651   case Op_StoreD:
2652   case Op_LoadD:
2653   case Op_LoadD_unaligned:
2654     frc.inc_double_count();
2655     goto handle_mem;
2656   case Op_StoreF:
2657   case Op_LoadF:
2658     frc.inc_float_count();
2659     goto handle_mem;
2660 
2661   case Op_StoreCM:
2662     {
2663       // Convert OopStore dependence into precedence edge
2664       Node* prec = n->in(MemNode::OopStore);
2665       n->del_req(MemNode::OopStore);
2666       n->add_prec(prec);
2667       eliminate_redundant_card_marks(n);
2668     }
2669 
2670     // fall through
2671 
2672   case Op_StoreB:
2673   case Op_StoreC:
2674   case Op_StorePConditional:
2675   case Op_StoreI:
2676   case Op_StoreL:
2677   case Op_StoreIConditional:
2678   case Op_StoreLConditional:
2679   case Op_CompareAndSwapI:
2680   case Op_CompareAndSwapL:
2681   case Op_CompareAndSwapP:
2682   case Op_CompareAndSwapN:
2683   case Op_GetAndAddI:
2684   case Op_GetAndAddL:
2685   case Op_GetAndSetI:
2686   case Op_GetAndSetL:
2687   case Op_GetAndSetP:
2688   case Op_GetAndSetN:
2689   case Op_StoreP:
2690   case Op_StoreN:
2691   case Op_StoreNKlass:
2692   case Op_LoadB:
2693   case Op_LoadUB:
2694   case Op_LoadUS:
2695   case Op_LoadI:
2696   case Op_LoadKlass:
2697   case Op_LoadNKlass:
2698   case Op_LoadL:
2699   case Op_LoadL_unaligned:
2700   case Op_LoadPLocked:
2701   case Op_LoadP:
2702   case Op_LoadN:
2703   case Op_LoadRange:
2704   case Op_LoadS: {
2705   handle_mem:
2706 #ifdef ASSERT
2707     if( VerifyOptoOopOffsets ) {
2708       assert( n->is_Mem(), "" );
2709       MemNode *mem  = (MemNode*)n;
2710       // Check to see if address types have grounded out somehow.
2711       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2712       assert( !tp || oop_offset_is_sane(tp), "" );
2713     }
2714 #endif
2715     break;
2716   }
2717 
2718   case Op_AddP: {               // Assert sane base pointers
2719     Node *addp = n->in(AddPNode::Address);
2720     assert( !addp->is_AddP() ||
2721             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2722             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2723             "Base pointers must match" );
2724 #ifdef _LP64
2725     if ((UseCompressedOops || UseCompressedClassPointers) &&
2726         addp->Opcode() == Op_ConP &&
2727         addp == n->in(AddPNode::Base) &&
2728         n->in(AddPNode::Offset)->is_Con()) {
2729       // Use addressing with narrow klass to load with offset on x86.
2730       // On sparc loading 32-bits constant and decoding it have less
2731       // instructions (4) then load 64-bits constant (7).
2732       // Do this transformation here since IGVN will convert ConN back to ConP.
2733       const Type* t = addp->bottom_type();
2734       if (t->isa_oopptr() || t->isa_klassptr()) {
2735         Node* nn = NULL;
2736 
2737         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2738 
2739         // Look for existing ConN node of the same exact type.
2740         Node* r  = root();
2741         uint cnt = r->outcnt();
2742         for (uint i = 0; i < cnt; i++) {
2743           Node* m = r->raw_out(i);
2744           if (m!= NULL && m->Opcode() == op &&
2745               m->bottom_type()->make_ptr() == t) {
2746             nn = m;
2747             break;
2748           }
2749         }
2750         if (nn != NULL) {
2751           // Decode a narrow oop to match address
2752           // [R12 + narrow_oop_reg<<3 + offset]
2753           if (t->isa_oopptr()) {
2754             nn = new (this) DecodeNNode(nn, t);
2755           } else {
2756             nn = new (this) DecodeNKlassNode(nn, t);
2757           }
2758           n->set_req(AddPNode::Base, nn);
2759           n->set_req(AddPNode::Address, nn);
2760           if (addp->outcnt() == 0) {
2761             addp->disconnect_inputs(NULL, this);
2762           }
2763         }
2764       }
2765     }
2766 #endif
2767     break;
2768   }
2769 
2770 #ifdef _LP64
2771   case Op_CastPP:
2772     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2773       Node* in1 = n->in(1);
2774       const Type* t = n->bottom_type();
2775       Node* new_in1 = in1->clone();
2776       new_in1->as_DecodeN()->set_type(t);
2777 
2778       if (!Matcher::narrow_oop_use_complex_address()) {
2779         //
2780         // x86, ARM and friends can handle 2 adds in addressing mode
2781         // and Matcher can fold a DecodeN node into address by using
2782         // a narrow oop directly and do implicit NULL check in address:
2783         //
2784         // [R12 + narrow_oop_reg<<3 + offset]
2785         // NullCheck narrow_oop_reg
2786         //
2787         // On other platforms (Sparc) we have to keep new DecodeN node and
2788         // use it to do implicit NULL check in address:
2789         //
2790         // decode_not_null narrow_oop_reg, base_reg
2791         // [base_reg + offset]
2792         // NullCheck base_reg
2793         //
2794         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2795         // to keep the information to which NULL check the new DecodeN node
2796         // corresponds to use it as value in implicit_null_check().
2797         //
2798         new_in1->set_req(0, n->in(0));
2799       }
2800 
2801       n->subsume_by(new_in1, this);
2802       if (in1->outcnt() == 0) {
2803         in1->disconnect_inputs(NULL, this);
2804       }
2805     }
2806     break;
2807 
2808   case Op_CmpP:
2809     // Do this transformation here to preserve CmpPNode::sub() and
2810     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2811     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2812       Node* in1 = n->in(1);
2813       Node* in2 = n->in(2);
2814       if (!in1->is_DecodeNarrowPtr()) {
2815         in2 = in1;
2816         in1 = n->in(2);
2817       }
2818       assert(in1->is_DecodeNarrowPtr(), "sanity");
2819 
2820       Node* new_in2 = NULL;
2821       if (in2->is_DecodeNarrowPtr()) {
2822         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2823         new_in2 = in2->in(1);
2824       } else if (in2->Opcode() == Op_ConP) {
2825         const Type* t = in2->bottom_type();
2826         if (t == TypePtr::NULL_PTR) {
2827           assert(in1->is_DecodeN(), "compare klass to null?");
2828           // Don't convert CmpP null check into CmpN if compressed
2829           // oops implicit null check is not generated.
2830           // This will allow to generate normal oop implicit null check.
2831           if (Matcher::gen_narrow_oop_implicit_null_checks())
2832             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2833           //
2834           // This transformation together with CastPP transformation above
2835           // will generated code for implicit NULL checks for compressed oops.
2836           //
2837           // The original code after Optimize()
2838           //
2839           //    LoadN memory, narrow_oop_reg
2840           //    decode narrow_oop_reg, base_reg
2841           //    CmpP base_reg, NULL
2842           //    CastPP base_reg // NotNull
2843           //    Load [base_reg + offset], val_reg
2844           //
2845           // after these transformations will be
2846           //
2847           //    LoadN memory, narrow_oop_reg
2848           //    CmpN narrow_oop_reg, NULL
2849           //    decode_not_null narrow_oop_reg, base_reg
2850           //    Load [base_reg + offset], val_reg
2851           //
2852           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2853           // since narrow oops can be used in debug info now (see the code in
2854           // final_graph_reshaping_walk()).
2855           //
2856           // At the end the code will be matched to
2857           // on x86:
2858           //
2859           //    Load_narrow_oop memory, narrow_oop_reg
2860           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2861           //    NullCheck narrow_oop_reg
2862           //
2863           // and on sparc:
2864           //
2865           //    Load_narrow_oop memory, narrow_oop_reg
2866           //    decode_not_null narrow_oop_reg, base_reg
2867           //    Load [base_reg + offset], val_reg
2868           //    NullCheck base_reg
2869           //
2870         } else if (t->isa_oopptr()) {
2871           new_in2 = ConNode::make(this, t->make_narrowoop());
2872         } else if (t->isa_klassptr()) {
2873           new_in2 = ConNode::make(this, t->make_narrowklass());
2874         }
2875       }
2876       if (new_in2 != NULL) {
2877         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2878         n->subsume_by(cmpN, this);
2879         if (in1->outcnt() == 0) {
2880           in1->disconnect_inputs(NULL, this);
2881         }
2882         if (in2->outcnt() == 0) {
2883           in2->disconnect_inputs(NULL, this);
2884         }
2885       }
2886     }
2887     break;
2888 
2889   case Op_DecodeN:
2890   case Op_DecodeNKlass:
2891     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2892     // DecodeN could be pinned when it can't be fold into
2893     // an address expression, see the code for Op_CastPP above.
2894     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2895     break;
2896 
2897   case Op_EncodeP:
2898   case Op_EncodePKlass: {
2899     Node* in1 = n->in(1);
2900     if (in1->is_DecodeNarrowPtr()) {
2901       n->subsume_by(in1->in(1), this);
2902     } else if (in1->Opcode() == Op_ConP) {
2903       const Type* t = in1->bottom_type();
2904       if (t == TypePtr::NULL_PTR) {
2905         assert(t->isa_oopptr(), "null klass?");
2906         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2907       } else if (t->isa_oopptr()) {
2908         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2909       } else if (t->isa_klassptr()) {
2910         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2911       }
2912     }
2913     if (in1->outcnt() == 0) {
2914       in1->disconnect_inputs(NULL, this);
2915     }
2916     break;
2917   }
2918 
2919   case Op_Proj: {
2920     if (OptimizeStringConcat) {
2921       ProjNode* p = n->as_Proj();
2922       if (p->_is_io_use) {
2923         // Separate projections were used for the exception path which
2924         // are normally removed by a late inline.  If it wasn't inlined
2925         // then they will hang around and should just be replaced with
2926         // the original one.
2927         Node* proj = NULL;
2928         // Replace with just one
2929         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2930           Node *use = i.get();
2931           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2932             proj = use;
2933             break;
2934           }
2935         }
2936         assert(proj != NULL, "must be found");
2937         p->subsume_by(proj, this);
2938       }
2939     }
2940     break;
2941   }
2942 
2943   case Op_Phi:
2944     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2945       // The EncodeP optimization may create Phi with the same edges
2946       // for all paths. It is not handled well by Register Allocator.
2947       Node* unique_in = n->in(1);
2948       assert(unique_in != NULL, "");
2949       uint cnt = n->req();
2950       for (uint i = 2; i < cnt; i++) {
2951         Node* m = n->in(i);
2952         assert(m != NULL, "");
2953         if (unique_in != m)
2954           unique_in = NULL;
2955       }
2956       if (unique_in != NULL) {
2957         n->subsume_by(unique_in, this);
2958       }
2959     }
2960     break;
2961 
2962 #endif
2963 
2964   case Op_ModI:
2965     if (UseDivMod) {
2966       // Check if a%b and a/b both exist
2967       Node* d = n->find_similar(Op_DivI);
2968       if (d) {
2969         // Replace them with a fused divmod if supported
2970         if (Matcher::has_match_rule(Op_DivModI)) {
2971           DivModINode* divmod = DivModINode::make(this, n);
2972           d->subsume_by(divmod->div_proj(), this);
2973           n->subsume_by(divmod->mod_proj(), this);
2974         } else {
2975           // replace a%b with a-((a/b)*b)
2976           Node* mult = new (this) MulINode(d, d->in(2));
2977           Node* sub  = new (this) SubINode(d->in(1), mult);
2978           n->subsume_by(sub, this);
2979         }
2980       }
2981     }
2982     break;
2983 
2984   case Op_ModL:
2985     if (UseDivMod) {
2986       // Check if a%b and a/b both exist
2987       Node* d = n->find_similar(Op_DivL);
2988       if (d) {
2989         // Replace them with a fused divmod if supported
2990         if (Matcher::has_match_rule(Op_DivModL)) {
2991           DivModLNode* divmod = DivModLNode::make(this, n);
2992           d->subsume_by(divmod->div_proj(), this);
2993           n->subsume_by(divmod->mod_proj(), this);
2994         } else {
2995           // replace a%b with a-((a/b)*b)
2996           Node* mult = new (this) MulLNode(d, d->in(2));
2997           Node* sub  = new (this) SubLNode(d->in(1), mult);
2998           n->subsume_by(sub, this);
2999         }
3000       }
3001     }
3002     break;
3003 
3004   case Op_LoadVector:
3005   case Op_StoreVector:
3006     break;
3007 
3008   case Op_PackB:
3009   case Op_PackS:
3010   case Op_PackI:
3011   case Op_PackF:
3012   case Op_PackL:
3013   case Op_PackD:
3014     if (n->req()-1 > 2) {
3015       // Replace many operand PackNodes with a binary tree for matching
3016       PackNode* p = (PackNode*) n;
3017       Node* btp = p->binary_tree_pack(this, 1, n->req());
3018       n->subsume_by(btp, this);
3019     }
3020     break;
3021   case Op_Loop:
3022   case Op_CountedLoop:
3023     if (n->as_Loop()->is_inner_loop()) {
3024       frc.inc_inner_loop_count();
3025     }
3026     break;
3027   case Op_LShiftI:
3028   case Op_RShiftI:
3029   case Op_URShiftI:
3030   case Op_LShiftL:
3031   case Op_RShiftL:
3032   case Op_URShiftL:
3033     if (Matcher::need_masked_shift_count) {
3034       // The cpu's shift instructions don't restrict the count to the
3035       // lower 5/6 bits. We need to do the masking ourselves.
3036       Node* in2 = n->in(2);
3037       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3038       const TypeInt* t = in2->find_int_type();
3039       if (t != NULL && t->is_con()) {
3040         juint shift = t->get_con();
3041         if (shift > mask) { // Unsigned cmp
3042           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3043         }
3044       } else {
3045         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3046           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3047           n->set_req(2, shift);
3048         }
3049       }
3050       if (in2->outcnt() == 0) { // Remove dead node
3051         in2->disconnect_inputs(NULL, this);
3052       }
3053     }
3054     break;
3055   case Op_MemBarStoreStore:
3056   case Op_MemBarRelease:
3057     // Break the link with AllocateNode: it is no longer useful and
3058     // confuses register allocation.
3059     if (n->req() > MemBarNode::Precedent) {
3060       n->set_req(MemBarNode::Precedent, top());
3061     }
3062     break;
3063   default:
3064     assert( !n->is_Call(), "" );
3065     assert( !n->is_Mem(), "" );
3066     break;
3067   }
3068 
3069   // Collect CFG split points
3070   if (n->is_MultiBranch())
3071     frc._tests.push(n);
3072 }
3073 
3074 //------------------------------final_graph_reshaping_walk---------------------
3075 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3076 // requires that the walk visits a node's inputs before visiting the node.
3077 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3078   ResourceArea *area = Thread::current()->resource_area();
3079   Unique_Node_List sfpt(area);
3080 
3081   frc._visited.set(root->_idx); // first, mark node as visited
3082   uint cnt = root->req();
3083   Node *n = root;
3084   uint  i = 0;
3085   while (true) {
3086     if (i < cnt) {
3087       // Place all non-visited non-null inputs onto stack
3088       Node* m = n->in(i);
3089       ++i;
3090       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3091         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3092           // compute worst case interpreter size in case of a deoptimization
3093           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3094 
3095           sfpt.push(m);
3096         }
3097         cnt = m->req();
3098         nstack.push(n, i); // put on stack parent and next input's index
3099         n = m;
3100         i = 0;
3101       }
3102     } else {
3103       // Now do post-visit work
3104       final_graph_reshaping_impl( n, frc );
3105       if (nstack.is_empty())
3106         break;             // finished
3107       n = nstack.node();   // Get node from stack
3108       cnt = n->req();
3109       i = nstack.index();
3110       nstack.pop();        // Shift to the next node on stack
3111     }
3112   }
3113 
3114   // Skip next transformation if compressed oops are not used.
3115   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3116       (!UseCompressedOops && !UseCompressedClassPointers))
3117     return;
3118 
3119   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3120   // It could be done for an uncommon traps or any safepoints/calls
3121   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3122   while (sfpt.size() > 0) {
3123     n = sfpt.pop();
3124     JVMState *jvms = n->as_SafePoint()->jvms();
3125     assert(jvms != NULL, "sanity");
3126     int start = jvms->debug_start();
3127     int end   = n->req();
3128     bool is_uncommon = (n->is_CallStaticJava() &&
3129                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3130     for (int j = start; j < end; j++) {
3131       Node* in = n->in(j);
3132       if (in->is_DecodeNarrowPtr()) {
3133         bool safe_to_skip = true;
3134         if (!is_uncommon ) {
3135           // Is it safe to skip?
3136           for (uint i = 0; i < in->outcnt(); i++) {
3137             Node* u = in->raw_out(i);
3138             if (!u->is_SafePoint() ||
3139                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3140               safe_to_skip = false;
3141             }
3142           }
3143         }
3144         if (safe_to_skip) {
3145           n->set_req(j, in->in(1));
3146         }
3147         if (in->outcnt() == 0) {
3148           in->disconnect_inputs(NULL, this);
3149         }
3150       }
3151     }
3152   }
3153 }
3154 
3155 //------------------------------final_graph_reshaping--------------------------
3156 // Final Graph Reshaping.
3157 //
3158 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3159 //     and not commoned up and forced early.  Must come after regular
3160 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3161 //     inputs to Loop Phis; these will be split by the allocator anyways.
3162 //     Remove Opaque nodes.
3163 // (2) Move last-uses by commutative operations to the left input to encourage
3164 //     Intel update-in-place two-address operations and better register usage
3165 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3166 //     calls canonicalizing them back.
3167 // (3) Count the number of double-precision FP ops, single-precision FP ops
3168 //     and call sites.  On Intel, we can get correct rounding either by
3169 //     forcing singles to memory (requires extra stores and loads after each
3170 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3171 //     clearing the mode bit around call sites).  The mode bit is only used
3172 //     if the relative frequency of single FP ops to calls is low enough.
3173 //     This is a key transform for SPEC mpeg_audio.
3174 // (4) Detect infinite loops; blobs of code reachable from above but not
3175 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3176 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3177 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3178 //     Detection is by looking for IfNodes where only 1 projection is
3179 //     reachable from below or CatchNodes missing some targets.
3180 // (5) Assert for insane oop offsets in debug mode.
3181 
3182 bool Compile::final_graph_reshaping() {
3183   // an infinite loop may have been eliminated by the optimizer,
3184   // in which case the graph will be empty.
3185   if (root()->req() == 1) {
3186     record_method_not_compilable("trivial infinite loop");
3187     return true;
3188   }
3189 
3190   // Expensive nodes have their control input set to prevent the GVN
3191   // from freely commoning them. There's no GVN beyond this point so
3192   // no need to keep the control input. We want the expensive nodes to
3193   // be freely moved to the least frequent code path by gcm.
3194   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3195   for (int i = 0; i < expensive_count(); i++) {
3196     _expensive_nodes->at(i)->set_req(0, NULL);
3197   }
3198 
3199   Final_Reshape_Counts frc;
3200 
3201   // Visit everybody reachable!
3202   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3203   Node_Stack nstack(unique() >> 1);
3204   final_graph_reshaping_walk(nstack, root(), frc);
3205 
3206   // Check for unreachable (from below) code (i.e., infinite loops).
3207   for( uint i = 0; i < frc._tests.size(); i++ ) {
3208     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3209     // Get number of CFG targets.
3210     // Note that PCTables include exception targets after calls.
3211     uint required_outcnt = n->required_outcnt();
3212     if (n->outcnt() != required_outcnt) {
3213       // Check for a few special cases.  Rethrow Nodes never take the
3214       // 'fall-thru' path, so expected kids is 1 less.
3215       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3216         if (n->in(0)->in(0)->is_Call()) {
3217           CallNode *call = n->in(0)->in(0)->as_Call();
3218           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3219             required_outcnt--;      // Rethrow always has 1 less kid
3220           } else if (call->req() > TypeFunc::Parms &&
3221                      call->is_CallDynamicJava()) {
3222             // Check for null receiver. In such case, the optimizer has
3223             // detected that the virtual call will always result in a null
3224             // pointer exception. The fall-through projection of this CatchNode
3225             // will not be populated.
3226             Node *arg0 = call->in(TypeFunc::Parms);
3227             if (arg0->is_Type() &&
3228                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3229               required_outcnt--;
3230             }
3231           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3232                      call->req() > TypeFunc::Parms+1 &&
3233                      call->is_CallStaticJava()) {
3234             // Check for negative array length. In such case, the optimizer has
3235             // detected that the allocation attempt will always result in an
3236             // exception. There is no fall-through projection of this CatchNode .
3237             Node *arg1 = call->in(TypeFunc::Parms+1);
3238             if (arg1->is_Type() &&
3239                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3240               required_outcnt--;
3241             }
3242           }
3243         }
3244       }
3245       // Recheck with a better notion of 'required_outcnt'
3246       if (n->outcnt() != required_outcnt) {
3247         record_method_not_compilable("malformed control flow");
3248         return true;            // Not all targets reachable!
3249       }
3250     }
3251     // Check that I actually visited all kids.  Unreached kids
3252     // must be infinite loops.
3253     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3254       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3255         record_method_not_compilable("infinite loop");
3256         return true;            // Found unvisited kid; must be unreach
3257       }
3258   }
3259 
3260   // If original bytecodes contained a mixture of floats and doubles
3261   // check if the optimizer has made it homogenous, item (3).
3262   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3263       frc.get_float_count() > 32 &&
3264       frc.get_double_count() == 0 &&
3265       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3266     set_24_bit_selection_and_mode( false,  true );
3267   }
3268 
3269   set_java_calls(frc.get_java_call_count());
3270   set_inner_loops(frc.get_inner_loop_count());
3271 
3272   // No infinite loops, no reason to bail out.
3273   return false;
3274 }
3275 
3276 //-----------------------------too_many_traps----------------------------------
3277 // Report if there are too many traps at the current method and bci.
3278 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3279 bool Compile::too_many_traps(ciMethod* method,
3280                              int bci,
3281                              Deoptimization::DeoptReason reason) {
3282   ciMethodData* md = method->method_data();
3283   if (md->is_empty()) {
3284     // Assume the trap has not occurred, or that it occurred only
3285     // because of a transient condition during start-up in the interpreter.
3286     return false;
3287   }
3288   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3289   if (md->has_trap_at(bci, m, reason) != 0) {
3290     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3291     // Also, if there are multiple reasons, or if there is no per-BCI record,
3292     // assume the worst.
3293     if (log())
3294       log()->elem("observe trap='%s' count='%d'",
3295                   Deoptimization::trap_reason_name(reason),
3296                   md->trap_count(reason));
3297     return true;
3298   } else {
3299     // Ignore method/bci and see if there have been too many globally.
3300     return too_many_traps(reason, md);
3301   }
3302 }
3303 
3304 // Less-accurate variant which does not require a method and bci.
3305 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3306                              ciMethodData* logmd) {
3307   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3308     // Too many traps globally.
3309     // Note that we use cumulative trap_count, not just md->trap_count.
3310     if (log()) {
3311       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3312       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3313                   Deoptimization::trap_reason_name(reason),
3314                   mcount, trap_count(reason));
3315     }
3316     return true;
3317   } else {
3318     // The coast is clear.
3319     return false;
3320   }
3321 }
3322 
3323 //--------------------------too_many_recompiles--------------------------------
3324 // Report if there are too many recompiles at the current method and bci.
3325 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3326 // Is not eager to return true, since this will cause the compiler to use
3327 // Action_none for a trap point, to avoid too many recompilations.
3328 bool Compile::too_many_recompiles(ciMethod* method,
3329                                   int bci,
3330                                   Deoptimization::DeoptReason reason) {
3331   ciMethodData* md = method->method_data();
3332   if (md->is_empty()) {
3333     // Assume the trap has not occurred, or that it occurred only
3334     // because of a transient condition during start-up in the interpreter.
3335     return false;
3336   }
3337   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3338   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3339   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3340   Deoptimization::DeoptReason per_bc_reason
3341     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3342   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3343   if ((per_bc_reason == Deoptimization::Reason_none
3344        || md->has_trap_at(bci, m, reason) != 0)
3345       // The trap frequency measure we care about is the recompile count:
3346       && md->trap_recompiled_at(bci, m)
3347       && md->overflow_recompile_count() >= bc_cutoff) {
3348     // Do not emit a trap here if it has already caused recompilations.
3349     // Also, if there are multiple reasons, or if there is no per-BCI record,
3350     // assume the worst.
3351     if (log())
3352       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3353                   Deoptimization::trap_reason_name(reason),
3354                   md->trap_count(reason),
3355                   md->overflow_recompile_count());
3356     return true;
3357   } else if (trap_count(reason) != 0
3358              && decompile_count() >= m_cutoff) {
3359     // Too many recompiles globally, and we have seen this sort of trap.
3360     // Use cumulative decompile_count, not just md->decompile_count.
3361     if (log())
3362       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3363                   Deoptimization::trap_reason_name(reason),
3364                   md->trap_count(reason), trap_count(reason),
3365                   md->decompile_count(), decompile_count());
3366     return true;
3367   } else {
3368     // The coast is clear.
3369     return false;
3370   }
3371 }
3372 
3373 // Compute when not to trap. Used by matching trap based nodes and
3374 // NullCheck optimization.
3375 void Compile::set_allowed_deopt_reasons() {
3376   _allowed_reasons = 0;
3377   if (is_method_compilation()) {
3378     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3379       assert(rs < BitsPerInt, "recode bit map");
3380       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3381         _allowed_reasons |= nth_bit(rs);
3382       }
3383     }
3384   }
3385 }
3386 
3387 #ifndef PRODUCT
3388 //------------------------------verify_graph_edges---------------------------
3389 // Walk the Graph and verify that there is a one-to-one correspondence
3390 // between Use-Def edges and Def-Use edges in the graph.
3391 void Compile::verify_graph_edges(bool no_dead_code) {
3392   if (VerifyGraphEdges) {
3393     ResourceArea *area = Thread::current()->resource_area();
3394     Unique_Node_List visited(area);
3395     // Call recursive graph walk to check edges
3396     _root->verify_edges(visited);
3397     if (no_dead_code) {
3398       // Now make sure that no visited node is used by an unvisited node.
3399       bool dead_nodes = 0;
3400       Unique_Node_List checked(area);
3401       while (visited.size() > 0) {
3402         Node* n = visited.pop();
3403         checked.push(n);
3404         for (uint i = 0; i < n->outcnt(); i++) {
3405           Node* use = n->raw_out(i);
3406           if (checked.member(use))  continue;  // already checked
3407           if (visited.member(use))  continue;  // already in the graph
3408           if (use->is_Con())        continue;  // a dead ConNode is OK
3409           // At this point, we have found a dead node which is DU-reachable.
3410           if (dead_nodes++ == 0)
3411             tty->print_cr("*** Dead nodes reachable via DU edges:");
3412           use->dump(2);
3413           tty->print_cr("---");
3414           checked.push(use);  // No repeats; pretend it is now checked.
3415         }
3416       }
3417       assert(dead_nodes == 0, "using nodes must be reachable from root");
3418     }
3419   }
3420 }
3421 
3422 // Verify GC barriers consistency
3423 // Currently supported:
3424 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3425 void Compile::verify_barriers() {
3426   if (UseG1GC) {
3427     // Verify G1 pre-barriers
3428     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3429 
3430     ResourceArea *area = Thread::current()->resource_area();
3431     Unique_Node_List visited(area);
3432     Node_List worklist(area);
3433     // We're going to walk control flow backwards starting from the Root
3434     worklist.push(_root);
3435     while (worklist.size() > 0) {
3436       Node* x = worklist.pop();
3437       if (x == NULL || x == top()) continue;
3438       if (visited.member(x)) {
3439         continue;
3440       } else {
3441         visited.push(x);
3442       }
3443 
3444       if (x->is_Region()) {
3445         for (uint i = 1; i < x->req(); i++) {
3446           worklist.push(x->in(i));
3447         }
3448       } else {
3449         worklist.push(x->in(0));
3450         // We are looking for the pattern:
3451         //                            /->ThreadLocal
3452         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3453         //              \->ConI(0)
3454         // We want to verify that the If and the LoadB have the same control
3455         // See GraphKit::g1_write_barrier_pre()
3456         if (x->is_If()) {
3457           IfNode *iff = x->as_If();
3458           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3459             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3460             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3461                 && cmp->in(1)->is_Load()) {
3462               LoadNode* load = cmp->in(1)->as_Load();
3463               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3464                   && load->in(2)->in(3)->is_Con()
3465                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3466 
3467                 Node* if_ctrl = iff->in(0);
3468                 Node* load_ctrl = load->in(0);
3469 
3470                 if (if_ctrl != load_ctrl) {
3471                   // Skip possible CProj->NeverBranch in infinite loops
3472                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3473                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3474                     if_ctrl = if_ctrl->in(0)->in(0);
3475                   }
3476                 }
3477                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3478               }
3479             }
3480           }
3481         }
3482       }
3483     }
3484   }
3485 }
3486 
3487 #endif
3488 
3489 // The Compile object keeps track of failure reasons separately from the ciEnv.
3490 // This is required because there is not quite a 1-1 relation between the
3491 // ciEnv and its compilation task and the Compile object.  Note that one
3492 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3493 // to backtrack and retry without subsuming loads.  Other than this backtracking
3494 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3495 // by the logic in C2Compiler.
3496 void Compile::record_failure(const char* reason) {
3497   if (log() != NULL) {
3498     log()->elem("failure reason='%s' phase='compile'", reason);
3499   }
3500   if (_failure_reason == NULL) {
3501     // Record the first failure reason.
3502     _failure_reason = reason;
3503   }
3504 
3505   EventCompilerFailure event;
3506   if (event.should_commit()) {
3507     event.set_compileID(Compile::compile_id());
3508     event.set_failure(reason);
3509     event.commit();
3510   }
3511 
3512   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3513     C->print_method(PHASE_FAILURE);
3514   }
3515   _root = NULL;  // flush the graph, too
3516 }
3517 
3518 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3519   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3520     _phase_name(name), _dolog(dolog)
3521 {
3522   if (dolog) {
3523     C = Compile::current();
3524     _log = C->log();
3525   } else {
3526     C = NULL;
3527     _log = NULL;
3528   }
3529   if (_log != NULL) {
3530     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3531     _log->stamp();
3532     _log->end_head();
3533   }
3534 }
3535 
3536 Compile::TracePhase::~TracePhase() {
3537 
3538   C = Compile::current();
3539   if (_dolog) {
3540     _log = C->log();
3541   } else {
3542     _log = NULL;
3543   }
3544 
3545 #ifdef ASSERT
3546   if (PrintIdealNodeCount) {
3547     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3548                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3549   }
3550 
3551   if (VerifyIdealNodeCount) {
3552     Compile::current()->print_missing_nodes();
3553   }
3554 #endif
3555 
3556   if (_log != NULL) {
3557     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3558   }
3559 }
3560 
3561 //=============================================================================
3562 // Two Constant's are equal when the type and the value are equal.
3563 bool Compile::Constant::operator==(const Constant& other) {
3564   if (type()          != other.type()         )  return false;
3565   if (can_be_reused() != other.can_be_reused())  return false;
3566   // For floating point values we compare the bit pattern.
3567   switch (type()) {
3568   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3569   case T_LONG:
3570   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3571   case T_OBJECT:
3572   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3573   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3574   case T_METADATA: return (_v._metadata == other._v._metadata);
3575   default: ShouldNotReachHere();
3576   }
3577   return false;
3578 }
3579 
3580 static int type_to_size_in_bytes(BasicType t) {
3581   switch (t) {
3582   case T_LONG:    return sizeof(jlong  );
3583   case T_FLOAT:   return sizeof(jfloat );
3584   case T_DOUBLE:  return sizeof(jdouble);
3585   case T_METADATA: return sizeof(Metadata*);
3586     // We use T_VOID as marker for jump-table entries (labels) which
3587     // need an internal word relocation.
3588   case T_VOID:
3589   case T_ADDRESS:
3590   case T_OBJECT:  return sizeof(jobject);
3591   }
3592 
3593   ShouldNotReachHere();
3594   return -1;
3595 }
3596 
3597 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3598   // sort descending
3599   if (a->freq() > b->freq())  return -1;
3600   if (a->freq() < b->freq())  return  1;
3601   return 0;
3602 }
3603 
3604 void Compile::ConstantTable::calculate_offsets_and_size() {
3605   // First, sort the array by frequencies.
3606   _constants.sort(qsort_comparator);
3607 
3608 #ifdef ASSERT
3609   // Make sure all jump-table entries were sorted to the end of the
3610   // array (they have a negative frequency).
3611   bool found_void = false;
3612   for (int i = 0; i < _constants.length(); i++) {
3613     Constant con = _constants.at(i);
3614     if (con.type() == T_VOID)
3615       found_void = true;  // jump-tables
3616     else
3617       assert(!found_void, "wrong sorting");
3618   }
3619 #endif
3620 
3621   int offset = 0;
3622   for (int i = 0; i < _constants.length(); i++) {
3623     Constant* con = _constants.adr_at(i);
3624 
3625     // Align offset for type.
3626     int typesize = type_to_size_in_bytes(con->type());
3627     offset = align_size_up(offset, typesize);
3628     con->set_offset(offset);   // set constant's offset
3629 
3630     if (con->type() == T_VOID) {
3631       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3632       offset = offset + typesize * n->outcnt();  // expand jump-table
3633     } else {
3634       offset = offset + typesize;
3635     }
3636   }
3637 
3638   // Align size up to the next section start (which is insts; see
3639   // CodeBuffer::align_at_start).
3640   assert(_size == -1, "already set?");
3641   _size = align_size_up(offset, CodeEntryAlignment);
3642 }
3643 
3644 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3645   MacroAssembler _masm(&cb);
3646   for (int i = 0; i < _constants.length(); i++) {
3647     Constant con = _constants.at(i);
3648     address constant_addr;
3649     switch (con.type()) {
3650     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3651     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3652     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3653     case T_OBJECT: {
3654       jobject obj = con.get_jobject();
3655       int oop_index = _masm.oop_recorder()->find_index(obj);
3656       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3657       break;
3658     }
3659     case T_ADDRESS: {
3660       address addr = (address) con.get_jobject();
3661       constant_addr = _masm.address_constant(addr);
3662       break;
3663     }
3664     // We use T_VOID as marker for jump-table entries (labels) which
3665     // need an internal word relocation.
3666     case T_VOID: {
3667       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3668       // Fill the jump-table with a dummy word.  The real value is
3669       // filled in later in fill_jump_table.
3670       address dummy = (address) n;
3671       constant_addr = _masm.address_constant(dummy);
3672       // Expand jump-table
3673       for (uint i = 1; i < n->outcnt(); i++) {
3674         address temp_addr = _masm.address_constant(dummy + i);
3675         assert(temp_addr, "consts section too small");
3676       }
3677       break;
3678     }
3679     case T_METADATA: {
3680       Metadata* obj = con.get_metadata();
3681       int metadata_index = _masm.oop_recorder()->find_index(obj);
3682       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3683       break;
3684     }
3685     default: ShouldNotReachHere();
3686     }
3687     assert(constant_addr, "consts section too small");
3688     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3689   }
3690 }
3691 
3692 int Compile::ConstantTable::find_offset(Constant& con) const {
3693   int idx = _constants.find(con);
3694   assert(idx != -1, "constant must be in constant table");
3695   int offset = _constants.at(idx).offset();
3696   assert(offset != -1, "constant table not emitted yet?");
3697   return offset;
3698 }
3699 
3700 void Compile::ConstantTable::add(Constant& con) {
3701   if (con.can_be_reused()) {
3702     int idx = _constants.find(con);
3703     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3704       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3705       return;
3706     }
3707   }
3708   (void) _constants.append(con);
3709 }
3710 
3711 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3712   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3713   Constant con(type, value, b->_freq);
3714   add(con);
3715   return con;
3716 }
3717 
3718 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3719   Constant con(metadata);
3720   add(con);
3721   return con;
3722 }
3723 
3724 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3725   jvalue value;
3726   BasicType type = oper->type()->basic_type();
3727   switch (type) {
3728   case T_LONG:    value.j = oper->constantL(); break;
3729   case T_FLOAT:   value.f = oper->constantF(); break;
3730   case T_DOUBLE:  value.d = oper->constantD(); break;
3731   case T_OBJECT:
3732   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3733   case T_METADATA: return add((Metadata*)oper->constant()); break;
3734   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3735   }
3736   return add(n, type, value);
3737 }
3738 
3739 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3740   jvalue value;
3741   // We can use the node pointer here to identify the right jump-table
3742   // as this method is called from Compile::Fill_buffer right before
3743   // the MachNodes are emitted and the jump-table is filled (means the
3744   // MachNode pointers do not change anymore).
3745   value.l = (jobject) n;
3746   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3747   add(con);
3748   return con;
3749 }
3750 
3751 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3752   // If called from Compile::scratch_emit_size do nothing.
3753   if (Compile::current()->in_scratch_emit_size())  return;
3754 
3755   assert(labels.is_nonempty(), "must be");
3756   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3757 
3758   // Since MachConstantNode::constant_offset() also contains
3759   // table_base_offset() we need to subtract the table_base_offset()
3760   // to get the plain offset into the constant table.
3761   int offset = n->constant_offset() - table_base_offset();
3762 
3763   MacroAssembler _masm(&cb);
3764   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3765 
3766   for (uint i = 0; i < n->outcnt(); i++) {
3767     address* constant_addr = &jump_table_base[i];
3768     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3769     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3770     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3771   }
3772 }
3773 
3774 // The message about the current inlining is accumulated in
3775 // _print_inlining_stream and transfered into the _print_inlining_list
3776 // once we know whether inlining succeeds or not. For regular
3777 // inlining, messages are appended to the buffer pointed by
3778 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3779 // a new buffer is added after _print_inlining_idx in the list. This
3780 // way we can update the inlining message for late inlining call site
3781 // when the inlining is attempted again.
3782 void Compile::print_inlining_init() {
3783   if (print_inlining() || print_intrinsics()) {
3784     _print_inlining_stream = new stringStream();
3785     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3786   }
3787 }
3788 
3789 void Compile::print_inlining_reinit() {
3790   if (print_inlining() || print_intrinsics()) {
3791     // Re allocate buffer when we change ResourceMark
3792     _print_inlining_stream = new stringStream();
3793   }
3794 }
3795 
3796 void Compile::print_inlining_reset() {
3797   _print_inlining_stream->reset();
3798 }
3799 
3800 void Compile::print_inlining_commit() {
3801   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3802   // Transfer the message from _print_inlining_stream to the current
3803   // _print_inlining_list buffer and clear _print_inlining_stream.
3804   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3805   print_inlining_reset();
3806 }
3807 
3808 void Compile::print_inlining_push() {
3809   // Add new buffer to the _print_inlining_list at current position
3810   _print_inlining_idx++;
3811   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3812 }
3813 
3814 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3815   return _print_inlining_list->at(_print_inlining_idx);
3816 }
3817 
3818 void Compile::print_inlining_update(CallGenerator* cg) {
3819   if (print_inlining() || print_intrinsics()) {
3820     if (!cg->is_late_inline()) {
3821       if (print_inlining_current().cg() != NULL) {
3822         print_inlining_push();
3823       }
3824       print_inlining_commit();
3825     } else {
3826       if (print_inlining_current().cg() != cg &&
3827           (print_inlining_current().cg() != NULL ||
3828            print_inlining_current().ss()->size() != 0)) {
3829         print_inlining_push();
3830       }
3831       print_inlining_commit();
3832       print_inlining_current().set_cg(cg);
3833     }
3834   }
3835 }
3836 
3837 void Compile::print_inlining_move_to(CallGenerator* cg) {
3838   // We resume inlining at a late inlining call site. Locate the
3839   // corresponding inlining buffer so that we can update it.
3840   if (print_inlining()) {
3841     for (int i = 0; i < _print_inlining_list->length(); i++) {
3842       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3843         _print_inlining_idx = i;
3844         return;
3845       }
3846     }
3847     ShouldNotReachHere();
3848   }
3849 }
3850 
3851 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3852   if (print_inlining()) {
3853     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3854     assert(print_inlining_current().cg() == cg, "wrong entry");
3855     // replace message with new message
3856     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3857     print_inlining_commit();
3858     print_inlining_current().set_cg(cg);
3859   }
3860 }
3861 
3862 void Compile::print_inlining_assert_ready() {
3863   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3864 }
3865 
3866 void Compile::dump_inlining() {
3867   bool do_print_inlining = print_inlining() || print_intrinsics();
3868   if (do_print_inlining || log() != NULL) {
3869     // Print inlining message for candidates that we couldn't inline
3870     // for lack of space
3871     for (int i = 0; i < _late_inlines.length(); i++) {
3872       CallGenerator* cg = _late_inlines.at(i);
3873       if (!cg->is_mh_late_inline()) {
3874         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3875         if (do_print_inlining) {
3876           cg->print_inlining_late(msg);
3877         }
3878         log_late_inline_failure(cg, msg);
3879       }
3880     }
3881   }
3882   if (do_print_inlining) {
3883     for (int i = 0; i < _print_inlining_list->length(); i++) {
3884       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3885     }
3886   }
3887 }
3888 
3889 void Compile::log_late_inline(CallGenerator* cg) {
3890   if (log() != NULL) {
3891     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3892                 cg->unique_id());
3893     JVMState* p = cg->call_node()->jvms();
3894     while (p != NULL) {
3895       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3896       p = p->caller();
3897     }
3898     log()->tail("late_inline");
3899   }
3900 }
3901 
3902 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
3903   log_late_inline(cg);
3904   if (log() != NULL) {
3905     log()->inline_fail(msg);
3906   }
3907 }
3908 
3909 void Compile::log_inline_id(CallGenerator* cg) {
3910   if (log() != NULL) {
3911     // The LogCompilation tool needs a unique way to identify late
3912     // inline call sites. This id must be unique for this call site in
3913     // this compilation. Try to have it unique across compilations as
3914     // well because it can be convenient when grepping through the log
3915     // file.
3916     // Distinguish OSR compilations from others in case CICountOSR is
3917     // on.
3918     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
3919     cg->set_unique_id(id);
3920     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
3921   }
3922 }
3923 
3924 void Compile::log_inline_failure(const char* msg) {
3925   if (C->log() != NULL) {
3926     C->log()->inline_fail(msg);
3927   }
3928 }
3929 
3930 
3931 // Dump inlining replay data to the stream.
3932 // Don't change thread state and acquire any locks.
3933 void Compile::dump_inline_data(outputStream* out) {
3934   InlineTree* inl_tree = ilt();
3935   if (inl_tree != NULL) {
3936     out->print(" inline %d", inl_tree->count());
3937     inl_tree->dump_replay_data(out);
3938   }
3939 }
3940 
3941 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3942   if (n1->Opcode() < n2->Opcode())      return -1;
3943   else if (n1->Opcode() > n2->Opcode()) return 1;
3944 
3945   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3946   for (uint i = 1; i < n1->req(); i++) {
3947     if (n1->in(i) < n2->in(i))      return -1;
3948     else if (n1->in(i) > n2->in(i)) return 1;
3949   }
3950 
3951   return 0;
3952 }
3953 
3954 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3955   Node* n1 = *n1p;
3956   Node* n2 = *n2p;
3957 
3958   return cmp_expensive_nodes(n1, n2);
3959 }
3960 
3961 void Compile::sort_expensive_nodes() {
3962   if (!expensive_nodes_sorted()) {
3963     _expensive_nodes->sort(cmp_expensive_nodes);
3964   }
3965 }
3966 
3967 bool Compile::expensive_nodes_sorted() const {
3968   for (int i = 1; i < _expensive_nodes->length(); i++) {
3969     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3970       return false;
3971     }
3972   }
3973   return true;
3974 }
3975 
3976 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3977   if (_expensive_nodes->length() == 0) {
3978     return false;
3979   }
3980 
3981   assert(OptimizeExpensiveOps, "optimization off?");
3982 
3983   // Take this opportunity to remove dead nodes from the list
3984   int j = 0;
3985   for (int i = 0; i < _expensive_nodes->length(); i++) {
3986     Node* n = _expensive_nodes->at(i);
3987     if (!n->is_unreachable(igvn)) {
3988       assert(n->is_expensive(), "should be expensive");
3989       _expensive_nodes->at_put(j, n);
3990       j++;
3991     }
3992   }
3993   _expensive_nodes->trunc_to(j);
3994 
3995   // Then sort the list so that similar nodes are next to each other
3996   // and check for at least two nodes of identical kind with same data
3997   // inputs.
3998   sort_expensive_nodes();
3999 
4000   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4001     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4002       return true;
4003     }
4004   }
4005 
4006   return false;
4007 }
4008 
4009 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4010   if (_expensive_nodes->length() == 0) {
4011     return;
4012   }
4013 
4014   assert(OptimizeExpensiveOps, "optimization off?");
4015 
4016   // Sort to bring similar nodes next to each other and clear the
4017   // control input of nodes for which there's only a single copy.
4018   sort_expensive_nodes();
4019 
4020   int j = 0;
4021   int identical = 0;
4022   int i = 0;
4023   for (; i < _expensive_nodes->length()-1; i++) {
4024     assert(j <= i, "can't write beyond current index");
4025     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4026       identical++;
4027       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4028       continue;
4029     }
4030     if (identical > 0) {
4031       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4032       identical = 0;
4033     } else {
4034       Node* n = _expensive_nodes->at(i);
4035       igvn.hash_delete(n);
4036       n->set_req(0, NULL);
4037       igvn.hash_insert(n);
4038     }
4039   }
4040   if (identical > 0) {
4041     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4042   } else if (_expensive_nodes->length() >= 1) {
4043     Node* n = _expensive_nodes->at(i);
4044     igvn.hash_delete(n);
4045     n->set_req(0, NULL);
4046     igvn.hash_insert(n);
4047   }
4048   _expensive_nodes->trunc_to(j);
4049 }
4050 
4051 void Compile::add_expensive_node(Node * n) {
4052   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4053   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4054   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4055   if (OptimizeExpensiveOps) {
4056     _expensive_nodes->append(n);
4057   } else {
4058     // Clear control input and let IGVN optimize expensive nodes if
4059     // OptimizeExpensiveOps is off.
4060     n->set_req(0, NULL);
4061   }
4062 }
4063 
4064 /**
4065  * Remove the speculative part of types and clean up the graph
4066  */
4067 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4068   if (UseTypeSpeculation) {
4069     Unique_Node_List worklist;
4070     worklist.push(root());
4071     int modified = 0;
4072     // Go over all type nodes that carry a speculative type, drop the
4073     // speculative part of the type and enqueue the node for an igvn
4074     // which may optimize it out.
4075     for (uint next = 0; next < worklist.size(); ++next) {
4076       Node *n  = worklist.at(next);
4077       if (n->is_Type()) {
4078         TypeNode* tn = n->as_Type();
4079         const Type* t = tn->type();
4080         const Type* t_no_spec = t->remove_speculative();
4081         if (t_no_spec != t) {
4082           bool in_hash = igvn.hash_delete(n);
4083           assert(in_hash, "node should be in igvn hash table");
4084           tn->set_type(t_no_spec);
4085           igvn.hash_insert(n);
4086           igvn._worklist.push(n); // give it a chance to go away
4087           modified++;
4088         }
4089       }
4090       uint max = n->len();
4091       for( uint i = 0; i < max; ++i ) {
4092         Node *m = n->in(i);
4093         if (not_a_node(m))  continue;
4094         worklist.push(m);
4095       }
4096     }
4097     // Drop the speculative part of all types in the igvn's type table
4098     igvn.remove_speculative_types();
4099     if (modified > 0) {
4100       igvn.optimize();
4101     }
4102 #ifdef ASSERT
4103     // Verify that after the IGVN is over no speculative type has resurfaced
4104     worklist.clear();
4105     worklist.push(root());
4106     for (uint next = 0; next < worklist.size(); ++next) {
4107       Node *n  = worklist.at(next);
4108       const Type* t = igvn.type_or_null(n);
4109       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4110       if (n->is_Type()) {
4111         t = n->as_Type()->type();
4112         assert(t == t->remove_speculative(), "no more speculative types");
4113       }
4114       uint max = n->len();
4115       for( uint i = 0; i < max; ++i ) {
4116         Node *m = n->in(i);
4117         if (not_a_node(m))  continue;
4118         worklist.push(m);
4119       }
4120     }
4121     igvn.check_no_speculative_types();
4122 #endif
4123   }
4124 }
4125 
4126 // Auxiliary method to support randomized stressing/fuzzing.
4127 //
4128 // This method can be called the arbitrary number of times, with current count
4129 // as the argument. The logic allows selecting a single candidate from the
4130 // running list of candidates as follows:
4131 //    int count = 0;
4132 //    Cand* selected = null;
4133 //    while(cand = cand->next()) {
4134 //      if (randomized_select(++count)) {
4135 //        selected = cand;
4136 //      }
4137 //    }
4138 //
4139 // Including count equalizes the chances any candidate is "selected".
4140 // This is useful when we don't have the complete list of candidates to choose
4141 // from uniformly. In this case, we need to adjust the randomicity of the
4142 // selection, or else we will end up biasing the selection towards the latter
4143 // candidates.
4144 //
4145 // Quick back-envelope calculation shows that for the list of n candidates
4146 // the equal probability for the candidate to persist as "best" can be
4147 // achieved by replacing it with "next" k-th candidate with the probability
4148 // of 1/k. It can be easily shown that by the end of the run, the
4149 // probability for any candidate is converged to 1/n, thus giving the
4150 // uniform distribution among all the candidates.
4151 //
4152 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4153 #define RANDOMIZED_DOMAIN_POW 29
4154 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4155 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4156 bool Compile::randomized_select(int count) {
4157   assert(count > 0, "only positive");
4158   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4159 }