1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/narrowptrnode.hpp"
  55 #include "opto/node.hpp"
  56 #include "opto/opcodes.hpp"
  57 #include "opto/output.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/phaseX.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/stringopts.hpp"
  63 #include "opto/type.hpp"
  64 #include "opto/vectornode.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/timer.hpp"
  69 #include "trace/tracing.hpp"
  70 #include "utilities/copy.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc_32
  87 # include "adfiles/ad_ppc_32.hpp"
  88 #endif
  89 #ifdef TARGET_ARCH_MODEL_ppc_64
  90 # include "adfiles/ad_ppc_64.hpp"
  91 #endif
  92 
  93 
  94 // -------------------- Compile::mach_constant_base_node -----------------------
  95 // Constant table base node singleton.
  96 MachConstantBaseNode* Compile::mach_constant_base_node() {
  97   if (_mach_constant_base_node == NULL) {
  98     _mach_constant_base_node = new (C) MachConstantBaseNode();
  99     _mach_constant_base_node->add_req(C->root());
 100   }
 101   return _mach_constant_base_node;
 102 }
 103 
 104 
 105 /// Support for intrinsics.
 106 
 107 // Return the index at which m must be inserted (or already exists).
 108 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 109 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 110 #ifdef ASSERT
 111   for (int i = 1; i < _intrinsics->length(); i++) {
 112     CallGenerator* cg1 = _intrinsics->at(i-1);
 113     CallGenerator* cg2 = _intrinsics->at(i);
 114     assert(cg1->method() != cg2->method()
 115            ? cg1->method()     < cg2->method()
 116            : cg1->is_virtual() < cg2->is_virtual(),
 117            "compiler intrinsics list must stay sorted");
 118   }
 119 #endif
 120   // Binary search sorted list, in decreasing intervals [lo, hi].
 121   int lo = 0, hi = _intrinsics->length()-1;
 122   while (lo <= hi) {
 123     int mid = (uint)(hi + lo) / 2;
 124     ciMethod* mid_m = _intrinsics->at(mid)->method();
 125     if (m < mid_m) {
 126       hi = mid-1;
 127     } else if (m > mid_m) {
 128       lo = mid+1;
 129     } else {
 130       // look at minor sort key
 131       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 132       if (is_virtual < mid_virt) {
 133         hi = mid-1;
 134       } else if (is_virtual > mid_virt) {
 135         lo = mid+1;
 136       } else {
 137         return mid;  // exact match
 138       }
 139     }
 140   }
 141   return lo;  // inexact match
 142 }
 143 
 144 void Compile::register_intrinsic(CallGenerator* cg) {
 145   if (_intrinsics == NULL) {
 146     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 147   }
 148   // This code is stolen from ciObjectFactory::insert.
 149   // Really, GrowableArray should have methods for
 150   // insert_at, remove_at, and binary_search.
 151   int len = _intrinsics->length();
 152   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 153   if (index == len) {
 154     _intrinsics->append(cg);
 155   } else {
 156 #ifdef ASSERT
 157     CallGenerator* oldcg = _intrinsics->at(index);
 158     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 159 #endif
 160     _intrinsics->append(_intrinsics->at(len-1));
 161     int pos;
 162     for (pos = len-2; pos >= index; pos--) {
 163       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 164     }
 165     _intrinsics->at_put(index, cg);
 166   }
 167   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 168 }
 169 
 170 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 171   assert(m->is_loaded(), "don't try this on unloaded methods");
 172   if (_intrinsics != NULL) {
 173     int index = intrinsic_insertion_index(m, is_virtual);
 174     if (index < _intrinsics->length()
 175         && _intrinsics->at(index)->method() == m
 176         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 177       return _intrinsics->at(index);
 178     }
 179   }
 180   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 181   if (m->intrinsic_id() != vmIntrinsics::_none &&
 182       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 183     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 184     if (cg != NULL) {
 185       // Save it for next time:
 186       register_intrinsic(cg);
 187       return cg;
 188     } else {
 189       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 190     }
 191   }
 192   return NULL;
 193 }
 194 
 195 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 196 // in library_call.cpp.
 197 
 198 
 199 #ifndef PRODUCT
 200 // statistics gathering...
 201 
 202 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 203 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 204 
 205 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 206   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 207   int oflags = _intrinsic_hist_flags[id];
 208   assert(flags != 0, "what happened?");
 209   if (is_virtual) {
 210     flags |= _intrinsic_virtual;
 211   }
 212   bool changed = (flags != oflags);
 213   if ((flags & _intrinsic_worked) != 0) {
 214     juint count = (_intrinsic_hist_count[id] += 1);
 215     if (count == 1) {
 216       changed = true;           // first time
 217     }
 218     // increment the overall count also:
 219     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 220   }
 221   if (changed) {
 222     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 223       // Something changed about the intrinsic's virtuality.
 224       if ((flags & _intrinsic_virtual) != 0) {
 225         // This is the first use of this intrinsic as a virtual call.
 226         if (oflags != 0) {
 227           // We already saw it as a non-virtual, so note both cases.
 228           flags |= _intrinsic_both;
 229         }
 230       } else if ((oflags & _intrinsic_both) == 0) {
 231         // This is the first use of this intrinsic as a non-virtual
 232         flags |= _intrinsic_both;
 233       }
 234     }
 235     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 236   }
 237   // update the overall flags also:
 238   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 239   return changed;
 240 }
 241 
 242 static char* format_flags(int flags, char* buf) {
 243   buf[0] = 0;
 244   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 245   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 246   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 247   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 248   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 249   if (buf[0] == 0)  strcat(buf, ",");
 250   assert(buf[0] == ',', "must be");
 251   return &buf[1];
 252 }
 253 
 254 void Compile::print_intrinsic_statistics() {
 255   char flagsbuf[100];
 256   ttyLocker ttyl;
 257   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 258   tty->print_cr("Compiler intrinsic usage:");
 259   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 260   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 261   #define PRINT_STAT_LINE(name, c, f) \
 262     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 263   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 264     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 265     int   flags = _intrinsic_hist_flags[id];
 266     juint count = _intrinsic_hist_count[id];
 267     if ((flags | count) != 0) {
 268       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 269     }
 270   }
 271   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 272   if (xtty != NULL)  xtty->tail("statistics");
 273 }
 274 
 275 void Compile::print_statistics() {
 276   { ttyLocker ttyl;
 277     if (xtty != NULL)  xtty->head("statistics type='opto'");
 278     Parse::print_statistics();
 279     PhaseCCP::print_statistics();
 280     PhaseRegAlloc::print_statistics();
 281     Scheduling::print_statistics();
 282     PhasePeephole::print_statistics();
 283     PhaseIdealLoop::print_statistics();
 284     if (xtty != NULL)  xtty->tail("statistics");
 285   }
 286   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 287     // put this under its own <statistics> element.
 288     print_intrinsic_statistics();
 289   }
 290 }
 291 #endif //PRODUCT
 292 
 293 // Support for bundling info
 294 Bundle* Compile::node_bundling(const Node *n) {
 295   assert(valid_bundle_info(n), "oob");
 296   return &_node_bundling_base[n->_idx];
 297 }
 298 
 299 bool Compile::valid_bundle_info(const Node *n) {
 300   return (_node_bundling_limit > n->_idx);
 301 }
 302 
 303 
 304 void Compile::gvn_replace_by(Node* n, Node* nn) {
 305   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 306     Node* use = n->last_out(i);
 307     bool is_in_table = initial_gvn()->hash_delete(use);
 308     uint uses_found = 0;
 309     for (uint j = 0; j < use->len(); j++) {
 310       if (use->in(j) == n) {
 311         if (j < use->req())
 312           use->set_req(j, nn);
 313         else
 314           use->set_prec(j, nn);
 315         uses_found++;
 316       }
 317     }
 318     if (is_in_table) {
 319       // reinsert into table
 320       initial_gvn()->hash_find_insert(use);
 321     }
 322     record_for_igvn(use);
 323     i -= uses_found;    // we deleted 1 or more copies of this edge
 324   }
 325 }
 326 
 327 
 328 static inline bool not_a_node(const Node* n) {
 329   if (n == NULL)                   return true;
 330   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 331   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 332   return false;
 333 }
 334 
 335 // Identify all nodes that are reachable from below, useful.
 336 // Use breadth-first pass that records state in a Unique_Node_List,
 337 // recursive traversal is slower.
 338 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 339   int estimated_worklist_size = unique();
 340   useful.map( estimated_worklist_size, NULL );  // preallocate space
 341 
 342   // Initialize worklist
 343   if (root() != NULL)     { useful.push(root()); }
 344   // If 'top' is cached, declare it useful to preserve cached node
 345   if( cached_top_node() ) { useful.push(cached_top_node()); }
 346 
 347   // Push all useful nodes onto the list, breadthfirst
 348   for( uint next = 0; next < useful.size(); ++next ) {
 349     assert( next < unique(), "Unique useful nodes < total nodes");
 350     Node *n  = useful.at(next);
 351     uint max = n->len();
 352     for( uint i = 0; i < max; ++i ) {
 353       Node *m = n->in(i);
 354       if (not_a_node(m))  continue;
 355       useful.push(m);
 356     }
 357   }
 358 }
 359 
 360 // Update dead_node_list with any missing dead nodes using useful
 361 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 362 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 363   uint max_idx = unique();
 364   VectorSet& useful_node_set = useful.member_set();
 365 
 366   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 367     // If node with index node_idx is not in useful set,
 368     // mark it as dead in dead node list.
 369     if (! useful_node_set.test(node_idx) ) {
 370       record_dead_node(node_idx);
 371     }
 372   }
 373 }
 374 
 375 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 376   int shift = 0;
 377   for (int i = 0; i < inlines->length(); i++) {
 378     CallGenerator* cg = inlines->at(i);
 379     CallNode* call = cg->call_node();
 380     if (shift > 0) {
 381       inlines->at_put(i-shift, cg);
 382     }
 383     if (!useful.member(call)) {
 384       shift++;
 385     }
 386   }
 387   inlines->trunc_to(inlines->length()-shift);
 388 }
 389 
 390 // Disconnect all useless nodes by disconnecting those at the boundary.
 391 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 392   uint next = 0;
 393   while (next < useful.size()) {
 394     Node *n = useful.at(next++);
 395     // Use raw traversal of out edges since this code removes out edges
 396     int max = n->outcnt();
 397     for (int j = 0; j < max; ++j) {
 398       Node* child = n->raw_out(j);
 399       if (! useful.member(child)) {
 400         assert(!child->is_top() || child != top(),
 401                "If top is cached in Compile object it is in useful list");
 402         // Only need to remove this out-edge to the useless node
 403         n->raw_del_out(j);
 404         --j;
 405         --max;
 406       }
 407     }
 408     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 409       record_for_igvn(n->unique_out());
 410     }
 411   }
 412   // Remove useless macro and predicate opaq nodes
 413   for (int i = C->macro_count()-1; i >= 0; i--) {
 414     Node* n = C->macro_node(i);
 415     if (!useful.member(n)) {
 416       remove_macro_node(n);
 417     }
 418   }
 419   // Remove useless expensive node
 420   for (int i = C->expensive_count()-1; i >= 0; i--) {
 421     Node* n = C->expensive_node(i);
 422     if (!useful.member(n)) {
 423       remove_expensive_node(n);
 424     }
 425   }
 426   // clean up the late inline lists
 427   remove_useless_late_inlines(&_string_late_inlines, useful);
 428   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 429   remove_useless_late_inlines(&_late_inlines, useful);
 430   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 431 }
 432 
 433 //------------------------------frame_size_in_words-----------------------------
 434 // frame_slots in units of words
 435 int Compile::frame_size_in_words() const {
 436   // shift is 0 in LP32 and 1 in LP64
 437   const int shift = (LogBytesPerWord - LogBytesPerInt);
 438   int words = _frame_slots >> shift;
 439   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 440   return words;
 441 }
 442 
 443 // To bang the stack of this compiled method we use the stack size
 444 // that the interpreter would need in case of a deoptimization. This
 445 // removes the need to bang the stack in the deoptimization blob which
 446 // in turn simplifies stack overflow handling.
 447 int Compile::bang_size_in_bytes() const {
 448   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 449 }
 450 
 451 // ============================================================================
 452 //------------------------------CompileWrapper---------------------------------
 453 class CompileWrapper : public StackObj {
 454   Compile *const _compile;
 455  public:
 456   CompileWrapper(Compile* compile);
 457 
 458   ~CompileWrapper();
 459 };
 460 
 461 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 462   // the Compile* pointer is stored in the current ciEnv:
 463   ciEnv* env = compile->env();
 464   assert(env == ciEnv::current(), "must already be a ciEnv active");
 465   assert(env->compiler_data() == NULL, "compile already active?");
 466   env->set_compiler_data(compile);
 467   assert(compile == Compile::current(), "sanity");
 468 
 469   compile->set_type_dict(NULL);
 470   compile->set_type_hwm(NULL);
 471   compile->set_type_last_size(0);
 472   compile->set_last_tf(NULL, NULL);
 473   compile->set_indexSet_arena(NULL);
 474   compile->set_indexSet_free_block_list(NULL);
 475   compile->init_type_arena();
 476   Type::Initialize(compile);
 477   _compile->set_scratch_buffer_blob(NULL);
 478   _compile->begin_method();
 479 }
 480 CompileWrapper::~CompileWrapper() {
 481   _compile->end_method();
 482   if (_compile->scratch_buffer_blob() != NULL)
 483     BufferBlob::free(_compile->scratch_buffer_blob());
 484   _compile->env()->set_compiler_data(NULL);
 485 }
 486 
 487 
 488 //----------------------------print_compile_messages---------------------------
 489 void Compile::print_compile_messages() {
 490 #ifndef PRODUCT
 491   // Check if recompiling
 492   if (_subsume_loads == false && PrintOpto) {
 493     // Recompiling without allowing machine instructions to subsume loads
 494     tty->print_cr("*********************************************************");
 495     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 496     tty->print_cr("*********************************************************");
 497   }
 498   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 499     // Recompiling without escape analysis
 500     tty->print_cr("*********************************************************");
 501     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 502     tty->print_cr("*********************************************************");
 503   }
 504   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 505     // Recompiling without boxing elimination
 506     tty->print_cr("*********************************************************");
 507     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 508     tty->print_cr("*********************************************************");
 509   }
 510   if (env()->break_at_compile()) {
 511     // Open the debugger when compiling this method.
 512     tty->print("### Breaking when compiling: ");
 513     method()->print_short_name();
 514     tty->cr();
 515     BREAKPOINT;
 516   }
 517 
 518   if( PrintOpto ) {
 519     if (is_osr_compilation()) {
 520       tty->print("[OSR]%3d", _compile_id);
 521     } else {
 522       tty->print("%3d", _compile_id);
 523     }
 524   }
 525 #endif
 526 }
 527 
 528 
 529 //-----------------------init_scratch_buffer_blob------------------------------
 530 // Construct a temporary BufferBlob and cache it for this compile.
 531 void Compile::init_scratch_buffer_blob(int const_size) {
 532   // If there is already a scratch buffer blob allocated and the
 533   // constant section is big enough, use it.  Otherwise free the
 534   // current and allocate a new one.
 535   BufferBlob* blob = scratch_buffer_blob();
 536   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 537     // Use the current blob.
 538   } else {
 539     if (blob != NULL) {
 540       BufferBlob::free(blob);
 541     }
 542 
 543     ResourceMark rm;
 544     _scratch_const_size = const_size;
 545     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 546     blob = BufferBlob::create("Compile::scratch_buffer", size);
 547     // Record the buffer blob for next time.
 548     set_scratch_buffer_blob(blob);
 549     // Have we run out of code space?
 550     if (scratch_buffer_blob() == NULL) {
 551       // Let CompilerBroker disable further compilations.
 552       record_failure("Not enough space for scratch buffer in CodeCache");
 553       return;
 554     }
 555   }
 556 
 557   // Initialize the relocation buffers
 558   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 559   set_scratch_locs_memory(locs_buf);
 560 }
 561 
 562 
 563 //-----------------------scratch_emit_size-------------------------------------
 564 // Helper function that computes size by emitting code
 565 uint Compile::scratch_emit_size(const Node* n) {
 566   // Start scratch_emit_size section.
 567   set_in_scratch_emit_size(true);
 568 
 569   // Emit into a trash buffer and count bytes emitted.
 570   // This is a pretty expensive way to compute a size,
 571   // but it works well enough if seldom used.
 572   // All common fixed-size instructions are given a size
 573   // method by the AD file.
 574   // Note that the scratch buffer blob and locs memory are
 575   // allocated at the beginning of the compile task, and
 576   // may be shared by several calls to scratch_emit_size.
 577   // The allocation of the scratch buffer blob is particularly
 578   // expensive, since it has to grab the code cache lock.
 579   BufferBlob* blob = this->scratch_buffer_blob();
 580   assert(blob != NULL, "Initialize BufferBlob at start");
 581   assert(blob->size() > MAX_inst_size, "sanity");
 582   relocInfo* locs_buf = scratch_locs_memory();
 583   address blob_begin = blob->content_begin();
 584   address blob_end   = (address)locs_buf;
 585   assert(blob->content_contains(blob_end), "sanity");
 586   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 587   buf.initialize_consts_size(_scratch_const_size);
 588   buf.initialize_stubs_size(MAX_stubs_size);
 589   assert(locs_buf != NULL, "sanity");
 590   int lsize = MAX_locs_size / 3;
 591   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 592   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 593   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 594 
 595   // Do the emission.
 596 
 597   Label fakeL; // Fake label for branch instructions.
 598   Label*   saveL = NULL;
 599   uint save_bnum = 0;
 600   bool is_branch = n->is_MachBranch();
 601   if (is_branch) {
 602     MacroAssembler masm(&buf);
 603     masm.bind(fakeL);
 604     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 605     n->as_MachBranch()->label_set(&fakeL, 0);
 606   }
 607   n->emit(buf, this->regalloc());
 608   if (is_branch) // Restore label.
 609     n->as_MachBranch()->label_set(saveL, save_bnum);
 610 
 611   // End scratch_emit_size section.
 612   set_in_scratch_emit_size(false);
 613 
 614   return buf.insts_size();
 615 }
 616 
 617 
 618 // ============================================================================
 619 //------------------------------Compile standard-------------------------------
 620 debug_only( int Compile::_debug_idx = 100000; )
 621 
 622 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 623 // the continuation bci for on stack replacement.
 624 
 625 
 626 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 627                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 628                 : Phase(Compiler),
 629                   _env(ci_env),
 630                   _log(ci_env->log()),
 631                   _compile_id(ci_env->compile_id()),
 632                   _save_argument_registers(false),
 633                   _stub_name(NULL),
 634                   _stub_function(NULL),
 635                   _stub_entry_point(NULL),
 636                   _method(target),
 637                   _entry_bci(osr_bci),
 638                   _initial_gvn(NULL),
 639                   _for_igvn(NULL),
 640                   _warm_calls(NULL),
 641                   _subsume_loads(subsume_loads),
 642                   _do_escape_analysis(do_escape_analysis),
 643                   _eliminate_boxing(eliminate_boxing),
 644                   _failure_reason(NULL),
 645                   _code_buffer("Compile::Fill_buffer"),
 646                   _orig_pc_slot(0),
 647                   _orig_pc_slot_offset_in_bytes(0),
 648                   _has_method_handle_invokes(false),
 649                   _mach_constant_base_node(NULL),
 650                   _node_bundling_limit(0),
 651                   _node_bundling_base(NULL),
 652                   _java_calls(0),
 653                   _inner_loops(0),
 654                   _scratch_const_size(-1),
 655                   _in_scratch_emit_size(false),
 656                   _dead_node_list(comp_arena()),
 657                   _dead_node_count(0),
 658 #ifndef PRODUCT
 659                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 660                   _in_dump_cnt(0),
 661                   _printer(IdealGraphPrinter::printer()),
 662 #endif
 663                   _congraph(NULL),
 664                   _replay_inline_data(NULL),
 665                   _late_inlines(comp_arena(), 2, 0, NULL),
 666                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 667                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 668                   _late_inlines_pos(0),
 669                   _number_of_mh_late_inlines(0),
 670                   _inlining_progress(false),
 671                   _inlining_incrementally(false),
 672                   _print_inlining_list(NULL),
 673                   _print_inlining_stream(NULL),
 674                   _print_inlining_idx(0),
 675                   _preserve_jvm_state(0),
 676                   _interpreter_frame_size(0) {
 677   C = this;
 678 
 679   CompileWrapper cw(this);
 680 #ifndef PRODUCT
 681   if (TimeCompiler2) {
 682     tty->print(" ");
 683     target->holder()->name()->print();
 684     tty->print(".");
 685     target->print_short_name();
 686     tty->print("  ");
 687   }
 688   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 689   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 690   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 691   if (!print_opto_assembly) {
 692     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 693     if (print_assembly && !Disassembler::can_decode()) {
 694       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 695       print_opto_assembly = true;
 696     }
 697   }
 698   set_print_assembly(print_opto_assembly);
 699   set_parsed_irreducible_loop(false);
 700 
 701   if (method()->has_option("ReplayInline")) {
 702     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 703   }
 704 #endif
 705   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 706   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 707   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 708 
 709   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 710     // Make sure the method being compiled gets its own MDO,
 711     // so we can at least track the decompile_count().
 712     // Need MDO to record RTM code generation state.
 713     method()->ensure_method_data();
 714   }
 715 
 716   Init(::AliasLevel);
 717 
 718 
 719   print_compile_messages();
 720 
 721   _ilt = InlineTree::build_inline_tree_root();
 722 
 723   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 724   assert(num_alias_types() >= AliasIdxRaw, "");
 725 
 726 #define MINIMUM_NODE_HASH  1023
 727   // Node list that Iterative GVN will start with
 728   Unique_Node_List for_igvn(comp_arena());
 729   set_for_igvn(&for_igvn);
 730 
 731   // GVN that will be run immediately on new nodes
 732   uint estimated_size = method()->code_size()*4+64;
 733   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 734   PhaseGVN gvn(node_arena(), estimated_size);
 735   set_initial_gvn(&gvn);
 736 
 737   print_inlining_init();
 738   { // Scope for timing the parser
 739     TracePhase t3("parse", &_t_parser, true);
 740 
 741     // Put top into the hash table ASAP.
 742     initial_gvn()->transform_no_reclaim(top());
 743 
 744     // Set up tf(), start(), and find a CallGenerator.
 745     CallGenerator* cg = NULL;
 746     if (is_osr_compilation()) {
 747       const TypeTuple *domain = StartOSRNode::osr_domain();
 748       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 749       init_tf(TypeFunc::make(domain, range));
 750       StartNode* s = new (this) StartOSRNode(root(), domain);
 751       initial_gvn()->set_type_bottom(s);
 752       init_start(s);
 753       cg = CallGenerator::for_osr(method(), entry_bci());
 754     } else {
 755       // Normal case.
 756       init_tf(TypeFunc::make(method()));
 757       StartNode* s = new (this) StartNode(root(), tf()->domain());
 758       initial_gvn()->set_type_bottom(s);
 759       init_start(s);
 760       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 761         // With java.lang.ref.reference.get() we must go through the
 762         // intrinsic when G1 is enabled - even when get() is the root
 763         // method of the compile - so that, if necessary, the value in
 764         // the referent field of the reference object gets recorded by
 765         // the pre-barrier code.
 766         // Specifically, if G1 is enabled, the value in the referent
 767         // field is recorded by the G1 SATB pre barrier. This will
 768         // result in the referent being marked live and the reference
 769         // object removed from the list of discovered references during
 770         // reference processing.
 771         cg = find_intrinsic(method(), false);
 772       }
 773       if (cg == NULL) {
 774         float past_uses = method()->interpreter_invocation_count();
 775         float expected_uses = past_uses;
 776         cg = CallGenerator::for_inline(method(), expected_uses);
 777       }
 778     }
 779     if (failing())  return;
 780     if (cg == NULL) {
 781       record_method_not_compilable_all_tiers("cannot parse method");
 782       return;
 783     }
 784     JVMState* jvms = build_start_state(start(), tf());
 785     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 786       record_method_not_compilable("method parse failed");
 787       return;
 788     }
 789     GraphKit kit(jvms);
 790 
 791     if (!kit.stopped()) {
 792       // Accept return values, and transfer control we know not where.
 793       // This is done by a special, unique ReturnNode bound to root.
 794       return_values(kit.jvms());
 795     }
 796 
 797     if (kit.has_exceptions()) {
 798       // Any exceptions that escape from this call must be rethrown
 799       // to whatever caller is dynamically above us on the stack.
 800       // This is done by a special, unique RethrowNode bound to root.
 801       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 802     }
 803 
 804     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 805 
 806     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 807       inline_string_calls(true);
 808     }
 809 
 810     if (failing())  return;
 811 
 812     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 813 
 814     // Remove clutter produced by parsing.
 815     if (!failing()) {
 816       ResourceMark rm;
 817       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 818     }
 819   }
 820 
 821   // Note:  Large methods are capped off in do_one_bytecode().
 822   if (failing())  return;
 823 
 824   // After parsing, node notes are no longer automagic.
 825   // They must be propagated by register_new_node_with_optimizer(),
 826   // clone(), or the like.
 827   set_default_node_notes(NULL);
 828 
 829   for (;;) {
 830     int successes = Inline_Warm();
 831     if (failing())  return;
 832     if (successes == 0)  break;
 833   }
 834 
 835   // Drain the list.
 836   Finish_Warm();
 837 #ifndef PRODUCT
 838   if (_printer) {
 839     _printer->print_inlining(this);
 840   }
 841 #endif
 842 
 843   if (failing())  return;
 844   NOT_PRODUCT( verify_graph_edges(); )
 845 
 846   // Now optimize
 847   Optimize();
 848   if (failing())  return;
 849   NOT_PRODUCT( verify_graph_edges(); )
 850 
 851 #ifndef PRODUCT
 852   if (PrintIdeal) {
 853     ttyLocker ttyl;  // keep the following output all in one block
 854     // This output goes directly to the tty, not the compiler log.
 855     // To enable tools to match it up with the compilation activity,
 856     // be sure to tag this tty output with the compile ID.
 857     if (xtty != NULL) {
 858       xtty->head("ideal compile_id='%d'%s", compile_id(),
 859                  is_osr_compilation()    ? " compile_kind='osr'" :
 860                  "");
 861     }
 862     root()->dump(9999);
 863     if (xtty != NULL) {
 864       xtty->tail("ideal");
 865     }
 866   }
 867 #endif
 868 
 869   NOT_PRODUCT( verify_barriers(); )
 870 
 871   // Dump compilation data to replay it.
 872   if (method()->has_option("DumpReplay")) {
 873     env()->dump_replay_data(_compile_id);
 874   }
 875   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 876     env()->dump_inline_data(_compile_id);
 877   }
 878 
 879   // Now that we know the size of all the monitors we can add a fixed slot
 880   // for the original deopt pc.
 881 
 882   _orig_pc_slot =  fixed_slots();
 883   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 884   set_fixed_slots(next_slot);
 885 
 886   // Compute when to use implicit null checks. Used by matching trap based
 887   // nodes and NullCheck optimization.
 888   set_allowed_deopt_reasons();
 889 
 890   // Now generate code
 891   Code_Gen();
 892   if (failing())  return;
 893 
 894   // Check if we want to skip execution of all compiled code.
 895   {
 896 #ifndef PRODUCT
 897     if (OptoNoExecute) {
 898       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 899       return;
 900     }
 901     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 902 #endif
 903 
 904     if (is_osr_compilation()) {
 905       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 906       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 907     } else {
 908       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 909       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 910     }
 911 
 912     env()->register_method(_method, _entry_bci,
 913                            &_code_offsets,
 914                            _orig_pc_slot_offset_in_bytes,
 915                            code_buffer(),
 916                            frame_size_in_words(), _oop_map_set,
 917                            &_handler_table, &_inc_table,
 918                            compiler,
 919                            env()->comp_level(),
 920                            has_unsafe_access(),
 921                            SharedRuntime::is_wide_vector(max_vector_size()),
 922                            rtm_state()
 923                            );
 924 
 925     if (log() != NULL) // Print code cache state into compiler log
 926       log()->code_cache_state();
 927   }
 928 }
 929 
 930 //------------------------------Compile----------------------------------------
 931 // Compile a runtime stub
 932 Compile::Compile( ciEnv* ci_env,
 933                   TypeFunc_generator generator,
 934                   address stub_function,
 935                   const char *stub_name,
 936                   int is_fancy_jump,
 937                   bool pass_tls,
 938                   bool save_arg_registers,
 939                   bool return_pc )
 940   : Phase(Compiler),
 941     _env(ci_env),
 942     _log(ci_env->log()),
 943     _compile_id(0),
 944     _save_argument_registers(save_arg_registers),
 945     _method(NULL),
 946     _stub_name(stub_name),
 947     _stub_function(stub_function),
 948     _stub_entry_point(NULL),
 949     _entry_bci(InvocationEntryBci),
 950     _initial_gvn(NULL),
 951     _for_igvn(NULL),
 952     _warm_calls(NULL),
 953     _orig_pc_slot(0),
 954     _orig_pc_slot_offset_in_bytes(0),
 955     _subsume_loads(true),
 956     _do_escape_analysis(false),
 957     _eliminate_boxing(false),
 958     _failure_reason(NULL),
 959     _code_buffer("Compile::Fill_buffer"),
 960     _has_method_handle_invokes(false),
 961     _mach_constant_base_node(NULL),
 962     _node_bundling_limit(0),
 963     _node_bundling_base(NULL),
 964     _java_calls(0),
 965     _inner_loops(0),
 966 #ifndef PRODUCT
 967     _trace_opto_output(TraceOptoOutput),
 968     _in_dump_cnt(0),
 969     _printer(NULL),
 970 #endif
 971     _dead_node_list(comp_arena()),
 972     _dead_node_count(0),
 973     _congraph(NULL),
 974     _replay_inline_data(NULL),
 975     _number_of_mh_late_inlines(0),
 976     _inlining_progress(false),
 977     _inlining_incrementally(false),
 978     _print_inlining_list(NULL),
 979     _print_inlining_stream(NULL),
 980     _print_inlining_idx(0),
 981     _preserve_jvm_state(0),
 982     _allowed_reasons(0),
 983     _interpreter_frame_size(0) {
 984   C = this;
 985 
 986 #ifndef PRODUCT
 987   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 988   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 989   set_print_assembly(PrintFrameConverterAssembly);
 990   set_parsed_irreducible_loop(false);
 991 #endif
 992   set_has_irreducible_loop(false); // no loops
 993 
 994   CompileWrapper cw(this);
 995   Init(/*AliasLevel=*/ 0);
 996   init_tf((*generator)());
 997 
 998   {
 999     // The following is a dummy for the sake of GraphKit::gen_stub
1000     Unique_Node_List for_igvn(comp_arena());
1001     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1002     PhaseGVN gvn(Thread::current()->resource_area(),255);
1003     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1004     gvn.transform_no_reclaim(top());
1005 
1006     GraphKit kit;
1007     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1008   }
1009 
1010   NOT_PRODUCT( verify_graph_edges(); )
1011   Code_Gen();
1012   if (failing())  return;
1013 
1014 
1015   // Entry point will be accessed using compile->stub_entry_point();
1016   if (code_buffer() == NULL) {
1017     Matcher::soft_match_failure();
1018   } else {
1019     if (PrintAssembly && (WizardMode || Verbose))
1020       tty->print_cr("### Stub::%s", stub_name);
1021 
1022     if (!failing()) {
1023       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1024 
1025       // Make the NMethod
1026       // For now we mark the frame as never safe for profile stackwalking
1027       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1028                                                       code_buffer(),
1029                                                       CodeOffsets::frame_never_safe,
1030                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1031                                                       frame_size_in_words(),
1032                                                       _oop_map_set,
1033                                                       save_arg_registers);
1034       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1035 
1036       _stub_entry_point = rs->entry_point();
1037     }
1038   }
1039 }
1040 
1041 //------------------------------Init-------------------------------------------
1042 // Prepare for a single compilation
1043 void Compile::Init(int aliaslevel) {
1044   _unique  = 0;
1045   _regalloc = NULL;
1046 
1047   _tf      = NULL;  // filled in later
1048   _top     = NULL;  // cached later
1049   _matcher = NULL;  // filled in later
1050   _cfg     = NULL;  // filled in later
1051 
1052   set_24_bit_selection_and_mode(Use24BitFP, false);
1053 
1054   _node_note_array = NULL;
1055   _default_node_notes = NULL;
1056 
1057   _immutable_memory = NULL; // filled in at first inquiry
1058 
1059   // Globally visible Nodes
1060   // First set TOP to NULL to give safe behavior during creation of RootNode
1061   set_cached_top_node(NULL);
1062   set_root(new (this) RootNode());
1063   // Now that you have a Root to point to, create the real TOP
1064   set_cached_top_node( new (this) ConNode(Type::TOP) );
1065   set_recent_alloc(NULL, NULL);
1066 
1067   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1068   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1069   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1070   env()->set_dependencies(new Dependencies(env()));
1071 
1072   _fixed_slots = 0;
1073   set_has_split_ifs(false);
1074   set_has_loops(has_method() && method()->has_loops()); // first approximation
1075   set_has_stringbuilder(false);
1076   set_has_boxed_value(false);
1077   _trap_can_recompile = false;  // no traps emitted yet
1078   _major_progress = true; // start out assuming good things will happen
1079   set_has_unsafe_access(false);
1080   set_max_vector_size(0);
1081   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1082   set_decompile_count(0);
1083 
1084   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1085   set_num_loop_opts(LoopOptsCount);
1086   set_do_inlining(Inline);
1087   set_max_inline_size(MaxInlineSize);
1088   set_freq_inline_size(FreqInlineSize);
1089   set_do_scheduling(OptoScheduling);
1090   set_do_count_invocations(false);
1091   set_do_method_data_update(false);
1092   set_rtm_state(NoRTM); // No RTM lock eliding by default
1093 #if INCLUDE_RTM_OPT
1094   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1095     int rtm_state = method()->method_data()->rtm_state();
1096     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1097       // Don't generate RTM lock eliding code.
1098       set_rtm_state(NoRTM);
1099     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1100       // Generate RTM lock eliding code without abort ratio calculation code.
1101       set_rtm_state(UseRTM);
1102     } else if (UseRTMDeopt) {
1103       // Generate RTM lock eliding code and include abort ratio calculation
1104       // code if UseRTMDeopt is on.
1105       set_rtm_state(ProfileRTM);
1106     }
1107   }
1108 #endif
1109   if (debug_info()->recording_non_safepoints()) {
1110     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1111                         (comp_arena(), 8, 0, NULL));
1112     set_default_node_notes(Node_Notes::make(this));
1113   }
1114 
1115   // // -- Initialize types before each compile --
1116   // // Update cached type information
1117   // if( _method && _method->constants() )
1118   //   Type::update_loaded_types(_method, _method->constants());
1119 
1120   // Init alias_type map.
1121   if (!_do_escape_analysis && aliaslevel == 3)
1122     aliaslevel = 2;  // No unique types without escape analysis
1123   _AliasLevel = aliaslevel;
1124   const int grow_ats = 16;
1125   _max_alias_types = grow_ats;
1126   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1127   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1128   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1129   {
1130     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1131   }
1132   // Initialize the first few types.
1133   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1134   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1135   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1136   _num_alias_types = AliasIdxRaw+1;
1137   // Zero out the alias type cache.
1138   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1139   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1140   probe_alias_cache(NULL)->_index = AliasIdxTop;
1141 
1142   _intrinsics = NULL;
1143   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1144   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1145   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1146   register_library_intrinsics();
1147 }
1148 
1149 //---------------------------init_start----------------------------------------
1150 // Install the StartNode on this compile object.
1151 void Compile::init_start(StartNode* s) {
1152   if (failing())
1153     return; // already failing
1154   assert(s == start(), "");
1155 }
1156 
1157 StartNode* Compile::start() const {
1158   assert(!failing(), "");
1159   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1160     Node* start = root()->fast_out(i);
1161     if( start->is_Start() )
1162       return start->as_Start();
1163   }
1164   fatal("Did not find Start node!");
1165   return NULL;
1166 }
1167 
1168 //-------------------------------immutable_memory-------------------------------------
1169 // Access immutable memory
1170 Node* Compile::immutable_memory() {
1171   if (_immutable_memory != NULL) {
1172     return _immutable_memory;
1173   }
1174   StartNode* s = start();
1175   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1176     Node *p = s->fast_out(i);
1177     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1178       _immutable_memory = p;
1179       return _immutable_memory;
1180     }
1181   }
1182   ShouldNotReachHere();
1183   return NULL;
1184 }
1185 
1186 //----------------------set_cached_top_node------------------------------------
1187 // Install the cached top node, and make sure Node::is_top works correctly.
1188 void Compile::set_cached_top_node(Node* tn) {
1189   if (tn != NULL)  verify_top(tn);
1190   Node* old_top = _top;
1191   _top = tn;
1192   // Calling Node::setup_is_top allows the nodes the chance to adjust
1193   // their _out arrays.
1194   if (_top != NULL)     _top->setup_is_top();
1195   if (old_top != NULL)  old_top->setup_is_top();
1196   assert(_top == NULL || top()->is_top(), "");
1197 }
1198 
1199 #ifdef ASSERT
1200 uint Compile::count_live_nodes_by_graph_walk() {
1201   Unique_Node_List useful(comp_arena());
1202   // Get useful node list by walking the graph.
1203   identify_useful_nodes(useful);
1204   return useful.size();
1205 }
1206 
1207 void Compile::print_missing_nodes() {
1208 
1209   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1210   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1211     return;
1212   }
1213 
1214   // This is an expensive function. It is executed only when the user
1215   // specifies VerifyIdealNodeCount option or otherwise knows the
1216   // additional work that needs to be done to identify reachable nodes
1217   // by walking the flow graph and find the missing ones using
1218   // _dead_node_list.
1219 
1220   Unique_Node_List useful(comp_arena());
1221   // Get useful node list by walking the graph.
1222   identify_useful_nodes(useful);
1223 
1224   uint l_nodes = C->live_nodes();
1225   uint l_nodes_by_walk = useful.size();
1226 
1227   if (l_nodes != l_nodes_by_walk) {
1228     if (_log != NULL) {
1229       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1230       _log->stamp();
1231       _log->end_head();
1232     }
1233     VectorSet& useful_member_set = useful.member_set();
1234     int last_idx = l_nodes_by_walk;
1235     for (int i = 0; i < last_idx; i++) {
1236       if (useful_member_set.test(i)) {
1237         if (_dead_node_list.test(i)) {
1238           if (_log != NULL) {
1239             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1240           }
1241           if (PrintIdealNodeCount) {
1242             // Print the log message to tty
1243               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1244               useful.at(i)->dump();
1245           }
1246         }
1247       }
1248       else if (! _dead_node_list.test(i)) {
1249         if (_log != NULL) {
1250           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1251         }
1252         if (PrintIdealNodeCount) {
1253           // Print the log message to tty
1254           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1255         }
1256       }
1257     }
1258     if (_log != NULL) {
1259       _log->tail("mismatched_nodes");
1260     }
1261   }
1262 }
1263 #endif
1264 
1265 #ifndef PRODUCT
1266 void Compile::verify_top(Node* tn) const {
1267   if (tn != NULL) {
1268     assert(tn->is_Con(), "top node must be a constant");
1269     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1270     assert(tn->in(0) != NULL, "must have live top node");
1271   }
1272 }
1273 #endif
1274 
1275 
1276 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1277 
1278 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1279   guarantee(arr != NULL, "");
1280   int num_blocks = arr->length();
1281   if (grow_by < num_blocks)  grow_by = num_blocks;
1282   int num_notes = grow_by * _node_notes_block_size;
1283   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1284   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1285   while (num_notes > 0) {
1286     arr->append(notes);
1287     notes     += _node_notes_block_size;
1288     num_notes -= _node_notes_block_size;
1289   }
1290   assert(num_notes == 0, "exact multiple, please");
1291 }
1292 
1293 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1294   if (source == NULL || dest == NULL)  return false;
1295 
1296   if (dest->is_Con())
1297     return false;               // Do not push debug info onto constants.
1298 
1299 #ifdef ASSERT
1300   // Leave a bread crumb trail pointing to the original node:
1301   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1302     dest->set_debug_orig(source);
1303   }
1304 #endif
1305 
1306   if (node_note_array() == NULL)
1307     return false;               // Not collecting any notes now.
1308 
1309   // This is a copy onto a pre-existing node, which may already have notes.
1310   // If both nodes have notes, do not overwrite any pre-existing notes.
1311   Node_Notes* source_notes = node_notes_at(source->_idx);
1312   if (source_notes == NULL || source_notes->is_clear())  return false;
1313   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1314   if (dest_notes == NULL || dest_notes->is_clear()) {
1315     return set_node_notes_at(dest->_idx, source_notes);
1316   }
1317 
1318   Node_Notes merged_notes = (*source_notes);
1319   // The order of operations here ensures that dest notes will win...
1320   merged_notes.update_from(dest_notes);
1321   return set_node_notes_at(dest->_idx, &merged_notes);
1322 }
1323 
1324 
1325 //--------------------------allow_range_check_smearing-------------------------
1326 // Gating condition for coalescing similar range checks.
1327 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1328 // single covering check that is at least as strong as any of them.
1329 // If the optimization succeeds, the simplified (strengthened) range check
1330 // will always succeed.  If it fails, we will deopt, and then give up
1331 // on the optimization.
1332 bool Compile::allow_range_check_smearing() const {
1333   // If this method has already thrown a range-check,
1334   // assume it was because we already tried range smearing
1335   // and it failed.
1336   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1337   return !already_trapped;
1338 }
1339 
1340 
1341 //------------------------------flatten_alias_type-----------------------------
1342 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1343   int offset = tj->offset();
1344   TypePtr::PTR ptr = tj->ptr();
1345 
1346   // Known instance (scalarizable allocation) alias only with itself.
1347   bool is_known_inst = tj->isa_oopptr() != NULL &&
1348                        tj->is_oopptr()->is_known_instance();
1349 
1350   // Process weird unsafe references.
1351   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1352     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1353     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1354     tj = TypeOopPtr::BOTTOM;
1355     ptr = tj->ptr();
1356     offset = tj->offset();
1357   }
1358 
1359   // Array pointers need some flattening
1360   const TypeAryPtr *ta = tj->isa_aryptr();
1361   if (ta && ta->is_stable()) {
1362     // Erase stability property for alias analysis.
1363     tj = ta = ta->cast_to_stable(false);
1364   }
1365   if( ta && is_known_inst ) {
1366     if ( offset != Type::OffsetBot &&
1367          offset > arrayOopDesc::length_offset_in_bytes() ) {
1368       offset = Type::OffsetBot; // Flatten constant access into array body only
1369       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1370     }
1371   } else if( ta && _AliasLevel >= 2 ) {
1372     // For arrays indexed by constant indices, we flatten the alias
1373     // space to include all of the array body.  Only the header, klass
1374     // and array length can be accessed un-aliased.
1375     if( offset != Type::OffsetBot ) {
1376       if( ta->const_oop() ) { // MethodData* or Method*
1377         offset = Type::OffsetBot;   // Flatten constant access into array body
1378         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1379       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1380         // range is OK as-is.
1381         tj = ta = TypeAryPtr::RANGE;
1382       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1383         tj = TypeInstPtr::KLASS; // all klass loads look alike
1384         ta = TypeAryPtr::RANGE; // generic ignored junk
1385         ptr = TypePtr::BotPTR;
1386       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1387         tj = TypeInstPtr::MARK;
1388         ta = TypeAryPtr::RANGE; // generic ignored junk
1389         ptr = TypePtr::BotPTR;
1390       } else {                  // Random constant offset into array body
1391         offset = Type::OffsetBot;   // Flatten constant access into array body
1392         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1393       }
1394     }
1395     // Arrays of fixed size alias with arrays of unknown size.
1396     if (ta->size() != TypeInt::POS) {
1397       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1398       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1399     }
1400     // Arrays of known objects become arrays of unknown objects.
1401     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1402       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1403       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1404     }
1405     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1406       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1407       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1408     }
1409     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1410     // cannot be distinguished by bytecode alone.
1411     if (ta->elem() == TypeInt::BOOL) {
1412       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1413       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1414       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1415     }
1416     // During the 2nd round of IterGVN, NotNull castings are removed.
1417     // Make sure the Bottom and NotNull variants alias the same.
1418     // Also, make sure exact and non-exact variants alias the same.
1419     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1420       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1421     }
1422   }
1423 
1424   // Oop pointers need some flattening
1425   const TypeInstPtr *to = tj->isa_instptr();
1426   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1427     ciInstanceKlass *k = to->klass()->as_instance_klass();
1428     if( ptr == TypePtr::Constant ) {
1429       if (to->klass() != ciEnv::current()->Class_klass() ||
1430           offset < k->size_helper() * wordSize) {
1431         // No constant oop pointers (such as Strings); they alias with
1432         // unknown strings.
1433         assert(!is_known_inst, "not scalarizable allocation");
1434         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1435       }
1436     } else if( is_known_inst ) {
1437       tj = to; // Keep NotNull and klass_is_exact for instance type
1438     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1439       // During the 2nd round of IterGVN, NotNull castings are removed.
1440       // Make sure the Bottom and NotNull variants alias the same.
1441       // Also, make sure exact and non-exact variants alias the same.
1442       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1443     }
1444     if (to->speculative() != NULL) {
1445       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1446     }
1447     // Canonicalize the holder of this field
1448     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1449       // First handle header references such as a LoadKlassNode, even if the
1450       // object's klass is unloaded at compile time (4965979).
1451       if (!is_known_inst) { // Do it only for non-instance types
1452         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1453       }
1454     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1455       // Static fields are in the space above the normal instance
1456       // fields in the java.lang.Class instance.
1457       if (to->klass() != ciEnv::current()->Class_klass()) {
1458         to = NULL;
1459         tj = TypeOopPtr::BOTTOM;
1460         offset = tj->offset();
1461       }
1462     } else {
1463       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1464       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1465         if( is_known_inst ) {
1466           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1467         } else {
1468           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1469         }
1470       }
1471     }
1472   }
1473 
1474   // Klass pointers to object array klasses need some flattening
1475   const TypeKlassPtr *tk = tj->isa_klassptr();
1476   if( tk ) {
1477     // If we are referencing a field within a Klass, we need
1478     // to assume the worst case of an Object.  Both exact and
1479     // inexact types must flatten to the same alias class so
1480     // use NotNull as the PTR.
1481     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1482 
1483       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1484                                    TypeKlassPtr::OBJECT->klass(),
1485                                    offset);
1486     }
1487 
1488     ciKlass* klass = tk->klass();
1489     if( klass->is_obj_array_klass() ) {
1490       ciKlass* k = TypeAryPtr::OOPS->klass();
1491       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1492         k = TypeInstPtr::BOTTOM->klass();
1493       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1494     }
1495 
1496     // Check for precise loads from the primary supertype array and force them
1497     // to the supertype cache alias index.  Check for generic array loads from
1498     // the primary supertype array and also force them to the supertype cache
1499     // alias index.  Since the same load can reach both, we need to merge
1500     // these 2 disparate memories into the same alias class.  Since the
1501     // primary supertype array is read-only, there's no chance of confusion
1502     // where we bypass an array load and an array store.
1503     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1504     if (offset == Type::OffsetBot ||
1505         (offset >= primary_supers_offset &&
1506          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1507         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1508       offset = in_bytes(Klass::secondary_super_cache_offset());
1509       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1510     }
1511   }
1512 
1513   // Flatten all Raw pointers together.
1514   if (tj->base() == Type::RawPtr)
1515     tj = TypeRawPtr::BOTTOM;
1516 
1517   if (tj->base() == Type::AnyPtr)
1518     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1519 
1520   // Flatten all to bottom for now
1521   switch( _AliasLevel ) {
1522   case 0:
1523     tj = TypePtr::BOTTOM;
1524     break;
1525   case 1:                       // Flatten to: oop, static, field or array
1526     switch (tj->base()) {
1527     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1528     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1529     case Type::AryPtr:   // do not distinguish arrays at all
1530     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1531     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1532     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1533     default: ShouldNotReachHere();
1534     }
1535     break;
1536   case 2:                       // No collapsing at level 2; keep all splits
1537   case 3:                       // No collapsing at level 3; keep all splits
1538     break;
1539   default:
1540     Unimplemented();
1541   }
1542 
1543   offset = tj->offset();
1544   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1545 
1546   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1547           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1548           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1549           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1550           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1551           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1552           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1553           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1554   assert( tj->ptr() != TypePtr::TopPTR &&
1555           tj->ptr() != TypePtr::AnyNull &&
1556           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1557 //    assert( tj->ptr() != TypePtr::Constant ||
1558 //            tj->base() == Type::RawPtr ||
1559 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1560 
1561   return tj;
1562 }
1563 
1564 void Compile::AliasType::Init(int i, const TypePtr* at) {
1565   _index = i;
1566   _adr_type = at;
1567   _field = NULL;
1568   _element = NULL;
1569   _is_rewritable = true; // default
1570   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1571   if (atoop != NULL && atoop->is_known_instance()) {
1572     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1573     _general_index = Compile::current()->get_alias_index(gt);
1574   } else {
1575     _general_index = 0;
1576   }
1577 }
1578 
1579 //---------------------------------print_on------------------------------------
1580 #ifndef PRODUCT
1581 void Compile::AliasType::print_on(outputStream* st) {
1582   if (index() < 10)
1583         st->print("@ <%d> ", index());
1584   else  st->print("@ <%d>",  index());
1585   st->print(is_rewritable() ? "   " : " RO");
1586   int offset = adr_type()->offset();
1587   if (offset == Type::OffsetBot)
1588         st->print(" +any");
1589   else  st->print(" +%-3d", offset);
1590   st->print(" in ");
1591   adr_type()->dump_on(st);
1592   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1593   if (field() != NULL && tjp) {
1594     if (tjp->klass()  != field()->holder() ||
1595         tjp->offset() != field()->offset_in_bytes()) {
1596       st->print(" != ");
1597       field()->print();
1598       st->print(" ***");
1599     }
1600   }
1601 }
1602 
1603 void print_alias_types() {
1604   Compile* C = Compile::current();
1605   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1606   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1607     C->alias_type(idx)->print_on(tty);
1608     tty->cr();
1609   }
1610 }
1611 #endif
1612 
1613 
1614 //----------------------------probe_alias_cache--------------------------------
1615 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1616   intptr_t key = (intptr_t) adr_type;
1617   key ^= key >> logAliasCacheSize;
1618   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1619 }
1620 
1621 
1622 //-----------------------------grow_alias_types--------------------------------
1623 void Compile::grow_alias_types() {
1624   const int old_ats  = _max_alias_types; // how many before?
1625   const int new_ats  = old_ats;          // how many more?
1626   const int grow_ats = old_ats+new_ats;  // how many now?
1627   _max_alias_types = grow_ats;
1628   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1629   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1630   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1631   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1632 }
1633 
1634 
1635 //--------------------------------find_alias_type------------------------------
1636 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1637   if (_AliasLevel == 0)
1638     return alias_type(AliasIdxBot);
1639 
1640   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1641   if (ace->_adr_type == adr_type) {
1642     return alias_type(ace->_index);
1643   }
1644 
1645   // Handle special cases.
1646   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1647   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1648 
1649   // Do it the slow way.
1650   const TypePtr* flat = flatten_alias_type(adr_type);
1651 
1652 #ifdef ASSERT
1653   assert(flat == flatten_alias_type(flat), "idempotent");
1654   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1655   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1656     const TypeOopPtr* foop = flat->is_oopptr();
1657     // Scalarizable allocations have exact klass always.
1658     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1659     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1660     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1661   }
1662   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1663 #endif
1664 
1665   int idx = AliasIdxTop;
1666   for (int i = 0; i < num_alias_types(); i++) {
1667     if (alias_type(i)->adr_type() == flat) {
1668       idx = i;
1669       break;
1670     }
1671   }
1672 
1673   if (idx == AliasIdxTop) {
1674     if (no_create)  return NULL;
1675     // Grow the array if necessary.
1676     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1677     // Add a new alias type.
1678     idx = _num_alias_types++;
1679     _alias_types[idx]->Init(idx, flat);
1680     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1681     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1682     if (flat->isa_instptr()) {
1683       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1684           && flat->is_instptr()->klass() == env()->Class_klass())
1685         alias_type(idx)->set_rewritable(false);
1686     }
1687     if (flat->isa_aryptr()) {
1688 #ifdef ASSERT
1689       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1690       // (T_BYTE has the weakest alignment and size restrictions...)
1691       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1692 #endif
1693       if (flat->offset() == TypePtr::OffsetBot) {
1694         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1695       }
1696     }
1697     if (flat->isa_klassptr()) {
1698       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1699         alias_type(idx)->set_rewritable(false);
1700       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1701         alias_type(idx)->set_rewritable(false);
1702       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1703         alias_type(idx)->set_rewritable(false);
1704       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1705         alias_type(idx)->set_rewritable(false);
1706     }
1707     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1708     // but the base pointer type is not distinctive enough to identify
1709     // references into JavaThread.)
1710 
1711     // Check for final fields.
1712     const TypeInstPtr* tinst = flat->isa_instptr();
1713     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1714       ciField* field;
1715       if (tinst->const_oop() != NULL &&
1716           tinst->klass() == ciEnv::current()->Class_klass() &&
1717           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1718         // static field
1719         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1720         field = k->get_field_by_offset(tinst->offset(), true);
1721       } else {
1722         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1723         field = k->get_field_by_offset(tinst->offset(), false);
1724       }
1725       assert(field == NULL ||
1726              original_field == NULL ||
1727              (field->holder() == original_field->holder() &&
1728               field->offset() == original_field->offset() &&
1729               field->is_static() == original_field->is_static()), "wrong field?");
1730       // Set field() and is_rewritable() attributes.
1731       if (field != NULL)  alias_type(idx)->set_field(field);
1732     }
1733   }
1734 
1735   // Fill the cache for next time.
1736   ace->_adr_type = adr_type;
1737   ace->_index    = idx;
1738   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1739 
1740   // Might as well try to fill the cache for the flattened version, too.
1741   AliasCacheEntry* face = probe_alias_cache(flat);
1742   if (face->_adr_type == NULL) {
1743     face->_adr_type = flat;
1744     face->_index    = idx;
1745     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1746   }
1747 
1748   return alias_type(idx);
1749 }
1750 
1751 
1752 Compile::AliasType* Compile::alias_type(ciField* field) {
1753   const TypeOopPtr* t;
1754   if (field->is_static())
1755     t = TypeInstPtr::make(field->holder()->java_mirror());
1756   else
1757     t = TypeOopPtr::make_from_klass_raw(field->holder());
1758   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1759   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1760   return atp;
1761 }
1762 
1763 
1764 //------------------------------have_alias_type--------------------------------
1765 bool Compile::have_alias_type(const TypePtr* adr_type) {
1766   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1767   if (ace->_adr_type == adr_type) {
1768     return true;
1769   }
1770 
1771   // Handle special cases.
1772   if (adr_type == NULL)             return true;
1773   if (adr_type == TypePtr::BOTTOM)  return true;
1774 
1775   return find_alias_type(adr_type, true, NULL) != NULL;
1776 }
1777 
1778 //-----------------------------must_alias--------------------------------------
1779 // True if all values of the given address type are in the given alias category.
1780 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1781   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1782   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1783   if (alias_idx == AliasIdxTop)         return false; // the empty category
1784   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1785 
1786   // the only remaining possible overlap is identity
1787   int adr_idx = get_alias_index(adr_type);
1788   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1789   assert(adr_idx == alias_idx ||
1790          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1791           && adr_type                       != TypeOopPtr::BOTTOM),
1792          "should not be testing for overlap with an unsafe pointer");
1793   return adr_idx == alias_idx;
1794 }
1795 
1796 //------------------------------can_alias--------------------------------------
1797 // True if any values of the given address type are in the given alias category.
1798 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1799   if (alias_idx == AliasIdxTop)         return false; // the empty category
1800   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1801   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1802   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1803 
1804   // the only remaining possible overlap is identity
1805   int adr_idx = get_alias_index(adr_type);
1806   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1807   return adr_idx == alias_idx;
1808 }
1809 
1810 
1811 
1812 //---------------------------pop_warm_call-------------------------------------
1813 WarmCallInfo* Compile::pop_warm_call() {
1814   WarmCallInfo* wci = _warm_calls;
1815   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1816   return wci;
1817 }
1818 
1819 //----------------------------Inline_Warm--------------------------------------
1820 int Compile::Inline_Warm() {
1821   // If there is room, try to inline some more warm call sites.
1822   // %%% Do a graph index compaction pass when we think we're out of space?
1823   if (!InlineWarmCalls)  return 0;
1824 
1825   int calls_made_hot = 0;
1826   int room_to_grow   = NodeCountInliningCutoff - unique();
1827   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1828   int amount_grown   = 0;
1829   WarmCallInfo* call;
1830   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1831     int est_size = (int)call->size();
1832     if (est_size > (room_to_grow - amount_grown)) {
1833       // This one won't fit anyway.  Get rid of it.
1834       call->make_cold();
1835       continue;
1836     }
1837     call->make_hot();
1838     calls_made_hot++;
1839     amount_grown   += est_size;
1840     amount_to_grow -= est_size;
1841   }
1842 
1843   if (calls_made_hot > 0)  set_major_progress();
1844   return calls_made_hot;
1845 }
1846 
1847 
1848 //----------------------------Finish_Warm--------------------------------------
1849 void Compile::Finish_Warm() {
1850   if (!InlineWarmCalls)  return;
1851   if (failing())  return;
1852   if (warm_calls() == NULL)  return;
1853 
1854   // Clean up loose ends, if we are out of space for inlining.
1855   WarmCallInfo* call;
1856   while ((call = pop_warm_call()) != NULL) {
1857     call->make_cold();
1858   }
1859 }
1860 
1861 //---------------------cleanup_loop_predicates-----------------------
1862 // Remove the opaque nodes that protect the predicates so that all unused
1863 // checks and uncommon_traps will be eliminated from the ideal graph
1864 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1865   if (predicate_count()==0) return;
1866   for (int i = predicate_count(); i > 0; i--) {
1867     Node * n = predicate_opaque1_node(i-1);
1868     assert(n->Opcode() == Op_Opaque1, "must be");
1869     igvn.replace_node(n, n->in(1));
1870   }
1871   assert(predicate_count()==0, "should be clean!");
1872 }
1873 
1874 // StringOpts and late inlining of string methods
1875 void Compile::inline_string_calls(bool parse_time) {
1876   {
1877     // remove useless nodes to make the usage analysis simpler
1878     ResourceMark rm;
1879     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1880   }
1881 
1882   {
1883     ResourceMark rm;
1884     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1885     PhaseStringOpts pso(initial_gvn(), for_igvn());
1886     print_method(PHASE_AFTER_STRINGOPTS, 3);
1887   }
1888 
1889   // now inline anything that we skipped the first time around
1890   if (!parse_time) {
1891     _late_inlines_pos = _late_inlines.length();
1892   }
1893 
1894   while (_string_late_inlines.length() > 0) {
1895     CallGenerator* cg = _string_late_inlines.pop();
1896     cg->do_late_inline();
1897     if (failing())  return;
1898   }
1899   _string_late_inlines.trunc_to(0);
1900 }
1901 
1902 // Late inlining of boxing methods
1903 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1904   if (_boxing_late_inlines.length() > 0) {
1905     assert(has_boxed_value(), "inconsistent");
1906 
1907     PhaseGVN* gvn = initial_gvn();
1908     set_inlining_incrementally(true);
1909 
1910     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1911     for_igvn()->clear();
1912     gvn->replace_with(&igvn);
1913 
1914     while (_boxing_late_inlines.length() > 0) {
1915       CallGenerator* cg = _boxing_late_inlines.pop();
1916       cg->do_late_inline();
1917       if (failing())  return;
1918     }
1919     _boxing_late_inlines.trunc_to(0);
1920 
1921     {
1922       ResourceMark rm;
1923       PhaseRemoveUseless pru(gvn, for_igvn());
1924     }
1925 
1926     igvn = PhaseIterGVN(gvn);
1927     igvn.optimize();
1928 
1929     set_inlining_progress(false);
1930     set_inlining_incrementally(false);
1931   }
1932 }
1933 
1934 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1935   assert(IncrementalInline, "incremental inlining should be on");
1936   PhaseGVN* gvn = initial_gvn();
1937 
1938   set_inlining_progress(false);
1939   for_igvn()->clear();
1940   gvn->replace_with(&igvn);
1941 
1942   int i = 0;
1943 
1944   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1945     CallGenerator* cg = _late_inlines.at(i);
1946     _late_inlines_pos = i+1;
1947     cg->do_late_inline();
1948     if (failing())  return;
1949   }
1950   int j = 0;
1951   for (; i < _late_inlines.length(); i++, j++) {
1952     _late_inlines.at_put(j, _late_inlines.at(i));
1953   }
1954   _late_inlines.trunc_to(j);
1955 
1956   {
1957     ResourceMark rm;
1958     PhaseRemoveUseless pru(gvn, for_igvn());
1959   }
1960 
1961   igvn = PhaseIterGVN(gvn);
1962 }
1963 
1964 // Perform incremental inlining until bound on number of live nodes is reached
1965 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1966   PhaseGVN* gvn = initial_gvn();
1967 
1968   set_inlining_incrementally(true);
1969   set_inlining_progress(true);
1970   uint low_live_nodes = 0;
1971 
1972   while(inlining_progress() && _late_inlines.length() > 0) {
1973 
1974     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1975       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1976         // PhaseIdealLoop is expensive so we only try it once we are
1977         // out of loop and we only try it again if the previous helped
1978         // got the number of nodes down significantly
1979         PhaseIdealLoop ideal_loop( igvn, false, true );
1980         if (failing())  return;
1981         low_live_nodes = live_nodes();
1982         _major_progress = true;
1983       }
1984 
1985       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1986         break;
1987       }
1988     }
1989 
1990     inline_incrementally_one(igvn);
1991 
1992     if (failing())  return;
1993 
1994     igvn.optimize();
1995 
1996     if (failing())  return;
1997   }
1998 
1999   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2000 
2001   if (_string_late_inlines.length() > 0) {
2002     assert(has_stringbuilder(), "inconsistent");
2003     for_igvn()->clear();
2004     initial_gvn()->replace_with(&igvn);
2005 
2006     inline_string_calls(false);
2007 
2008     if (failing())  return;
2009 
2010     {
2011       ResourceMark rm;
2012       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2013     }
2014 
2015     igvn = PhaseIterGVN(gvn);
2016 
2017     igvn.optimize();
2018   }
2019 
2020   set_inlining_incrementally(false);
2021 }
2022 
2023 
2024 //------------------------------Optimize---------------------------------------
2025 // Given a graph, optimize it.
2026 void Compile::Optimize() {
2027   TracePhase t1("optimizer", &_t_optimizer, true);
2028 
2029 #ifndef PRODUCT
2030   if (env()->break_at_compile()) {
2031     BREAKPOINT;
2032   }
2033 
2034 #endif
2035 
2036   ResourceMark rm;
2037   int          loop_opts_cnt;
2038 
2039   print_inlining_reinit();
2040 
2041   NOT_PRODUCT( verify_graph_edges(); )
2042 
2043   print_method(PHASE_AFTER_PARSING);
2044 
2045  {
2046   // Iterative Global Value Numbering, including ideal transforms
2047   // Initialize IterGVN with types and values from parse-time GVN
2048   PhaseIterGVN igvn(initial_gvn());
2049   {
2050     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2051     igvn.optimize();
2052   }
2053 
2054   print_method(PHASE_ITER_GVN1, 2);
2055 
2056   if (failing())  return;
2057 
2058   {
2059     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2060     inline_incrementally(igvn);
2061   }
2062 
2063   print_method(PHASE_INCREMENTAL_INLINE, 2);
2064 
2065   if (failing())  return;
2066 
2067   if (eliminate_boxing()) {
2068     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2069     // Inline valueOf() methods now.
2070     inline_boxing_calls(igvn);
2071 
2072     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2073 
2074     if (failing())  return;
2075   }
2076 
2077   // Remove the speculative part of types and clean up the graph from
2078   // the extra CastPP nodes whose only purpose is to carry them. Do
2079   // that early so that optimizations are not disrupted by the extra
2080   // CastPP nodes.
2081   remove_speculative_types(igvn);
2082 
2083   // No more new expensive nodes will be added to the list from here
2084   // so keep only the actual candidates for optimizations.
2085   cleanup_expensive_nodes(igvn);
2086 
2087   // Perform escape analysis
2088   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2089     if (has_loops()) {
2090       // Cleanup graph (remove dead nodes).
2091       TracePhase t2("idealLoop", &_t_idealLoop, true);
2092       PhaseIdealLoop ideal_loop( igvn, false, true );
2093       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2094       if (failing())  return;
2095     }
2096     ConnectionGraph::do_analysis(this, &igvn);
2097 
2098     if (failing())  return;
2099 
2100     // Optimize out fields loads from scalar replaceable allocations.
2101     igvn.optimize();
2102     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2103 
2104     if (failing())  return;
2105 
2106     if (congraph() != NULL && macro_count() > 0) {
2107       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2108       PhaseMacroExpand mexp(igvn);
2109       mexp.eliminate_macro_nodes();
2110       igvn.set_delay_transform(false);
2111 
2112       igvn.optimize();
2113       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2114 
2115       if (failing())  return;
2116     }
2117   }
2118 
2119   // Loop transforms on the ideal graph.  Range Check Elimination,
2120   // peeling, unrolling, etc.
2121 
2122   // Set loop opts counter
2123   loop_opts_cnt = num_loop_opts();
2124   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2125     {
2126       TracePhase t2("idealLoop", &_t_idealLoop, true);
2127       PhaseIdealLoop ideal_loop( igvn, true );
2128       loop_opts_cnt--;
2129       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2130       if (failing())  return;
2131     }
2132     // Loop opts pass if partial peeling occurred in previous pass
2133     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2134       TracePhase t3("idealLoop", &_t_idealLoop, true);
2135       PhaseIdealLoop ideal_loop( igvn, false );
2136       loop_opts_cnt--;
2137       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2138       if (failing())  return;
2139     }
2140     // Loop opts pass for loop-unrolling before CCP
2141     if(major_progress() && (loop_opts_cnt > 0)) {
2142       TracePhase t4("idealLoop", &_t_idealLoop, true);
2143       PhaseIdealLoop ideal_loop( igvn, false );
2144       loop_opts_cnt--;
2145       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2146     }
2147     if (!failing()) {
2148       // Verify that last round of loop opts produced a valid graph
2149       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2150       PhaseIdealLoop::verify(igvn);
2151     }
2152   }
2153   if (failing())  return;
2154 
2155   // Conditional Constant Propagation;
2156   PhaseCCP ccp( &igvn );
2157   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2158   {
2159     TracePhase t2("ccp", &_t_ccp, true);
2160     ccp.do_transform();
2161   }
2162   print_method(PHASE_CPP1, 2);
2163 
2164   assert( true, "Break here to ccp.dump_old2new_map()");
2165 
2166   // Iterative Global Value Numbering, including ideal transforms
2167   {
2168     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2169     igvn = ccp;
2170     igvn.optimize();
2171   }
2172 
2173   print_method(PHASE_ITER_GVN2, 2);
2174 
2175   if (failing())  return;
2176 
2177   // Loop transforms on the ideal graph.  Range Check Elimination,
2178   // peeling, unrolling, etc.
2179   if(loop_opts_cnt > 0) {
2180     debug_only( int cnt = 0; );
2181     while(major_progress() && (loop_opts_cnt > 0)) {
2182       TracePhase t2("idealLoop", &_t_idealLoop, true);
2183       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2184       PhaseIdealLoop ideal_loop( igvn, true);
2185       loop_opts_cnt--;
2186       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2187       if (failing())  return;
2188     }
2189   }
2190 
2191   {
2192     // Verify that all previous optimizations produced a valid graph
2193     // at least to this point, even if no loop optimizations were done.
2194     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2195     PhaseIdealLoop::verify(igvn);
2196   }
2197 
2198   {
2199     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2200     PhaseMacroExpand  mex(igvn);
2201     if (mex.expand_macro_nodes()) {
2202       assert(failing(), "must bail out w/ explicit message");
2203       return;
2204     }
2205   }
2206 
2207  } // (End scope of igvn; run destructor if necessary for asserts.)
2208 
2209   dump_inlining();
2210   // A method with only infinite loops has no edges entering loops from root
2211   {
2212     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2213     if (final_graph_reshaping()) {
2214       assert(failing(), "must bail out w/ explicit message");
2215       return;
2216     }
2217   }
2218 
2219   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2220 }
2221 
2222 
2223 //------------------------------Code_Gen---------------------------------------
2224 // Given a graph, generate code for it
2225 void Compile::Code_Gen() {
2226   if (failing()) {
2227     return;
2228   }
2229 
2230   // Perform instruction selection.  You might think we could reclaim Matcher
2231   // memory PDQ, but actually the Matcher is used in generating spill code.
2232   // Internals of the Matcher (including some VectorSets) must remain live
2233   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2234   // set a bit in reclaimed memory.
2235 
2236   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2237   // nodes.  Mapping is only valid at the root of each matched subtree.
2238   NOT_PRODUCT( verify_graph_edges(); )
2239 
2240   Matcher matcher;
2241   _matcher = &matcher;
2242   {
2243     TracePhase t2("matcher", &_t_matcher, true);
2244     matcher.match();
2245   }
2246   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2247   // nodes.  Mapping is only valid at the root of each matched subtree.
2248   NOT_PRODUCT( verify_graph_edges(); )
2249 
2250   // If you have too many nodes, or if matching has failed, bail out
2251   check_node_count(0, "out of nodes matching instructions");
2252   if (failing()) {
2253     return;
2254   }
2255 
2256   // Build a proper-looking CFG
2257   PhaseCFG cfg(node_arena(), root(), matcher);
2258   _cfg = &cfg;
2259   {
2260     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2261     bool success = cfg.do_global_code_motion();
2262     if (!success) {
2263       return;
2264     }
2265 
2266     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2267     NOT_PRODUCT( verify_graph_edges(); )
2268     debug_only( cfg.verify(); )
2269   }
2270 
2271   PhaseChaitin regalloc(unique(), cfg, matcher);
2272   _regalloc = &regalloc;
2273   {
2274     TracePhase t2("regalloc", &_t_registerAllocation, true);
2275     // Perform register allocation.  After Chaitin, use-def chains are
2276     // no longer accurate (at spill code) and so must be ignored.
2277     // Node->LRG->reg mappings are still accurate.
2278     _regalloc->Register_Allocate();
2279 
2280     // Bail out if the allocator builds too many nodes
2281     if (failing()) {
2282       return;
2283     }
2284   }
2285 
2286   // Prior to register allocation we kept empty basic blocks in case the
2287   // the allocator needed a place to spill.  After register allocation we
2288   // are not adding any new instructions.  If any basic block is empty, we
2289   // can now safely remove it.
2290   {
2291     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2292     cfg.remove_empty_blocks();
2293     if (do_freq_based_layout()) {
2294       PhaseBlockLayout layout(cfg);
2295     } else {
2296       cfg.set_loop_alignment();
2297     }
2298     cfg.fixup_flow();
2299   }
2300 
2301   // Apply peephole optimizations
2302   if( OptoPeephole ) {
2303     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2304     PhasePeephole peep( _regalloc, cfg);
2305     peep.do_transform();
2306   }
2307 
2308   // Do late expand if CPU requires this.
2309   if (Matcher::require_postalloc_expand) {
2310     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2311     cfg.postalloc_expand(_regalloc);
2312   }
2313 
2314   // Convert Nodes to instruction bits in a buffer
2315   {
2316     // %%%% workspace merge brought two timers together for one job
2317     TracePhase t2a("output", &_t_output, true);
2318     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2319     Output();
2320   }
2321 
2322   print_method(PHASE_FINAL_CODE);
2323 
2324   // He's dead, Jim.
2325   _cfg     = (PhaseCFG*)0xdeadbeef;
2326   _regalloc = (PhaseChaitin*)0xdeadbeef;
2327 }
2328 
2329 
2330 //------------------------------dump_asm---------------------------------------
2331 // Dump formatted assembly
2332 #ifndef PRODUCT
2333 void Compile::dump_asm(int *pcs, uint pc_limit) {
2334   bool cut_short = false;
2335   tty->print_cr("#");
2336   tty->print("#  ");  _tf->dump();  tty->cr();
2337   tty->print_cr("#");
2338 
2339   // For all blocks
2340   int pc = 0x0;                 // Program counter
2341   char starts_bundle = ' ';
2342   _regalloc->dump_frame();
2343 
2344   Node *n = NULL;
2345   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2346     if (VMThread::should_terminate()) {
2347       cut_short = true;
2348       break;
2349     }
2350     Block* block = _cfg->get_block(i);
2351     if (block->is_connector() && !Verbose) {
2352       continue;
2353     }
2354     n = block->head();
2355     if (pcs && n->_idx < pc_limit) {
2356       tty->print("%3.3x   ", pcs[n->_idx]);
2357     } else {
2358       tty->print("      ");
2359     }
2360     block->dump_head(_cfg);
2361     if (block->is_connector()) {
2362       tty->print_cr("        # Empty connector block");
2363     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2364       tty->print_cr("        # Block is sole successor of call");
2365     }
2366 
2367     // For all instructions
2368     Node *delay = NULL;
2369     for (uint j = 0; j < block->number_of_nodes(); j++) {
2370       if (VMThread::should_terminate()) {
2371         cut_short = true;
2372         break;
2373       }
2374       n = block->get_node(j);
2375       if (valid_bundle_info(n)) {
2376         Bundle* bundle = node_bundling(n);
2377         if (bundle->used_in_unconditional_delay()) {
2378           delay = n;
2379           continue;
2380         }
2381         if (bundle->starts_bundle()) {
2382           starts_bundle = '+';
2383         }
2384       }
2385 
2386       if (WizardMode) {
2387         n->dump();
2388       }
2389 
2390       if( !n->is_Region() &&    // Dont print in the Assembly
2391           !n->is_Phi() &&       // a few noisely useless nodes
2392           !n->is_Proj() &&
2393           !n->is_MachTemp() &&
2394           !n->is_SafePointScalarObject() &&
2395           !n->is_Catch() &&     // Would be nice to print exception table targets
2396           !n->is_MergeMem() &&  // Not very interesting
2397           !n->is_top() &&       // Debug info table constants
2398           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2399           ) {
2400         if (pcs && n->_idx < pc_limit)
2401           tty->print("%3.3x", pcs[n->_idx]);
2402         else
2403           tty->print("   ");
2404         tty->print(" %c ", starts_bundle);
2405         starts_bundle = ' ';
2406         tty->print("\t");
2407         n->format(_regalloc, tty);
2408         tty->cr();
2409       }
2410 
2411       // If we have an instruction with a delay slot, and have seen a delay,
2412       // then back up and print it
2413       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2414         assert(delay != NULL, "no unconditional delay instruction");
2415         if (WizardMode) delay->dump();
2416 
2417         if (node_bundling(delay)->starts_bundle())
2418           starts_bundle = '+';
2419         if (pcs && n->_idx < pc_limit)
2420           tty->print("%3.3x", pcs[n->_idx]);
2421         else
2422           tty->print("   ");
2423         tty->print(" %c ", starts_bundle);
2424         starts_bundle = ' ';
2425         tty->print("\t");
2426         delay->format(_regalloc, tty);
2427         tty->print_cr("");
2428         delay = NULL;
2429       }
2430 
2431       // Dump the exception table as well
2432       if( n->is_Catch() && (Verbose || WizardMode) ) {
2433         // Print the exception table for this offset
2434         _handler_table.print_subtable_for(pc);
2435       }
2436     }
2437 
2438     if (pcs && n->_idx < pc_limit)
2439       tty->print_cr("%3.3x", pcs[n->_idx]);
2440     else
2441       tty->print_cr("");
2442 
2443     assert(cut_short || delay == NULL, "no unconditional delay branch");
2444 
2445   } // End of per-block dump
2446   tty->print_cr("");
2447 
2448   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2449 }
2450 #endif
2451 
2452 //------------------------------Final_Reshape_Counts---------------------------
2453 // This class defines counters to help identify when a method
2454 // may/must be executed using hardware with only 24-bit precision.
2455 struct Final_Reshape_Counts : public StackObj {
2456   int  _call_count;             // count non-inlined 'common' calls
2457   int  _float_count;            // count float ops requiring 24-bit precision
2458   int  _double_count;           // count double ops requiring more precision
2459   int  _java_call_count;        // count non-inlined 'java' calls
2460   int  _inner_loop_count;       // count loops which need alignment
2461   VectorSet _visited;           // Visitation flags
2462   Node_List _tests;             // Set of IfNodes & PCTableNodes
2463 
2464   Final_Reshape_Counts() :
2465     _call_count(0), _float_count(0), _double_count(0),
2466     _java_call_count(0), _inner_loop_count(0),
2467     _visited( Thread::current()->resource_area() ) { }
2468 
2469   void inc_call_count  () { _call_count  ++; }
2470   void inc_float_count () { _float_count ++; }
2471   void inc_double_count() { _double_count++; }
2472   void inc_java_call_count() { _java_call_count++; }
2473   void inc_inner_loop_count() { _inner_loop_count++; }
2474 
2475   int  get_call_count  () const { return _call_count  ; }
2476   int  get_float_count () const { return _float_count ; }
2477   int  get_double_count() const { return _double_count; }
2478   int  get_java_call_count() const { return _java_call_count; }
2479   int  get_inner_loop_count() const { return _inner_loop_count; }
2480 };
2481 
2482 #ifdef ASSERT
2483 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2484   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2485   // Make sure the offset goes inside the instance layout.
2486   return k->contains_field_offset(tp->offset());
2487   // Note that OffsetBot and OffsetTop are very negative.
2488 }
2489 #endif
2490 
2491 // Eliminate trivially redundant StoreCMs and accumulate their
2492 // precedence edges.
2493 void Compile::eliminate_redundant_card_marks(Node* n) {
2494   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2495   if (n->in(MemNode::Address)->outcnt() > 1) {
2496     // There are multiple users of the same address so it might be
2497     // possible to eliminate some of the StoreCMs
2498     Node* mem = n->in(MemNode::Memory);
2499     Node* adr = n->in(MemNode::Address);
2500     Node* val = n->in(MemNode::ValueIn);
2501     Node* prev = n;
2502     bool done = false;
2503     // Walk the chain of StoreCMs eliminating ones that match.  As
2504     // long as it's a chain of single users then the optimization is
2505     // safe.  Eliminating partially redundant StoreCMs would require
2506     // cloning copies down the other paths.
2507     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2508       if (adr == mem->in(MemNode::Address) &&
2509           val == mem->in(MemNode::ValueIn)) {
2510         // redundant StoreCM
2511         if (mem->req() > MemNode::OopStore) {
2512           // Hasn't been processed by this code yet.
2513           n->add_prec(mem->in(MemNode::OopStore));
2514         } else {
2515           // Already converted to precedence edge
2516           for (uint i = mem->req(); i < mem->len(); i++) {
2517             // Accumulate any precedence edges
2518             if (mem->in(i) != NULL) {
2519               n->add_prec(mem->in(i));
2520             }
2521           }
2522           // Everything above this point has been processed.
2523           done = true;
2524         }
2525         // Eliminate the previous StoreCM
2526         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2527         assert(mem->outcnt() == 0, "should be dead");
2528         mem->disconnect_inputs(NULL, this);
2529       } else {
2530         prev = mem;
2531       }
2532       mem = prev->in(MemNode::Memory);
2533     }
2534   }
2535 }
2536 
2537 //------------------------------final_graph_reshaping_impl----------------------
2538 // Implement items 1-5 from final_graph_reshaping below.
2539 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2540 
2541   if ( n->outcnt() == 0 ) return; // dead node
2542   uint nop = n->Opcode();
2543 
2544   // Check for 2-input instruction with "last use" on right input.
2545   // Swap to left input.  Implements item (2).
2546   if( n->req() == 3 &&          // two-input instruction
2547       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2548       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2549       n->in(2)->outcnt() == 1 &&// right use IS a last use
2550       !n->in(2)->is_Con() ) {   // right use is not a constant
2551     // Check for commutative opcode
2552     switch( nop ) {
2553     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2554     case Op_MaxI:  case Op_MinI:
2555     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2556     case Op_AndL:  case Op_XorL:  case Op_OrL:
2557     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2558       // Move "last use" input to left by swapping inputs
2559       n->swap_edges(1, 2);
2560       break;
2561     }
2562     default:
2563       break;
2564     }
2565   }
2566 
2567 #ifdef ASSERT
2568   if( n->is_Mem() ) {
2569     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2570     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2571             // oop will be recorded in oop map if load crosses safepoint
2572             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2573                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2574             "raw memory operations should have control edge");
2575   }
2576 #endif
2577   // Count FPU ops and common calls, implements item (3)
2578   switch( nop ) {
2579   // Count all float operations that may use FPU
2580   case Op_AddF:
2581   case Op_SubF:
2582   case Op_MulF:
2583   case Op_DivF:
2584   case Op_NegF:
2585   case Op_ModF:
2586   case Op_ConvI2F:
2587   case Op_ConF:
2588   case Op_CmpF:
2589   case Op_CmpF3:
2590   // case Op_ConvL2F: // longs are split into 32-bit halves
2591     frc.inc_float_count();
2592     break;
2593 
2594   case Op_ConvF2D:
2595   case Op_ConvD2F:
2596     frc.inc_float_count();
2597     frc.inc_double_count();
2598     break;
2599 
2600   // Count all double operations that may use FPU
2601   case Op_AddD:
2602   case Op_SubD:
2603   case Op_MulD:
2604   case Op_DivD:
2605   case Op_NegD:
2606   case Op_ModD:
2607   case Op_ConvI2D:
2608   case Op_ConvD2I:
2609   // case Op_ConvL2D: // handled by leaf call
2610   // case Op_ConvD2L: // handled by leaf call
2611   case Op_ConD:
2612   case Op_CmpD:
2613   case Op_CmpD3:
2614     frc.inc_double_count();
2615     break;
2616   case Op_Opaque1:              // Remove Opaque Nodes before matching
2617   case Op_Opaque2:              // Remove Opaque Nodes before matching
2618   case Op_Opaque3:
2619     n->subsume_by(n->in(1), this);
2620     break;
2621   case Op_CallStaticJava:
2622   case Op_CallJava:
2623   case Op_CallDynamicJava:
2624     frc.inc_java_call_count(); // Count java call site;
2625   case Op_CallRuntime:
2626   case Op_CallLeaf:
2627   case Op_CallLeafNoFP: {
2628     assert( n->is_Call(), "" );
2629     CallNode *call = n->as_Call();
2630     // Count call sites where the FP mode bit would have to be flipped.
2631     // Do not count uncommon runtime calls:
2632     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2633     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2634     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2635       frc.inc_call_count();   // Count the call site
2636     } else {                  // See if uncommon argument is shared
2637       Node *n = call->in(TypeFunc::Parms);
2638       int nop = n->Opcode();
2639       // Clone shared simple arguments to uncommon calls, item (1).
2640       if( n->outcnt() > 1 &&
2641           !n->is_Proj() &&
2642           nop != Op_CreateEx &&
2643           nop != Op_CheckCastPP &&
2644           nop != Op_DecodeN &&
2645           nop != Op_DecodeNKlass &&
2646           !n->is_Mem() ) {
2647         Node *x = n->clone();
2648         call->set_req( TypeFunc::Parms, x );
2649       }
2650     }
2651     break;
2652   }
2653 
2654   case Op_StoreD:
2655   case Op_LoadD:
2656   case Op_LoadD_unaligned:
2657     frc.inc_double_count();
2658     goto handle_mem;
2659   case Op_StoreF:
2660   case Op_LoadF:
2661     frc.inc_float_count();
2662     goto handle_mem;
2663 
2664   case Op_StoreCM:
2665     {
2666       // Convert OopStore dependence into precedence edge
2667       Node* prec = n->in(MemNode::OopStore);
2668       n->del_req(MemNode::OopStore);
2669       n->add_prec(prec);
2670       eliminate_redundant_card_marks(n);
2671     }
2672 
2673     // fall through
2674 
2675   case Op_StoreB:
2676   case Op_StoreC:
2677   case Op_StorePConditional:
2678   case Op_StoreI:
2679   case Op_StoreL:
2680   case Op_StoreIConditional:
2681   case Op_StoreLConditional:
2682   case Op_CompareAndSwapI:
2683   case Op_CompareAndSwapL:
2684   case Op_CompareAndSwapP:
2685   case Op_CompareAndSwapN:
2686   case Op_GetAndAddI:
2687   case Op_GetAndAddL:
2688   case Op_GetAndSetI:
2689   case Op_GetAndSetL:
2690   case Op_GetAndSetP:
2691   case Op_GetAndSetN:
2692   case Op_StoreP:
2693   case Op_StoreN:
2694   case Op_StoreNKlass:
2695   case Op_LoadB:
2696   case Op_LoadUB:
2697   case Op_LoadUS:
2698   case Op_LoadI:
2699   case Op_LoadKlass:
2700   case Op_LoadNKlass:
2701   case Op_LoadL:
2702   case Op_LoadL_unaligned:
2703   case Op_LoadPLocked:
2704   case Op_LoadP:
2705   case Op_LoadN:
2706   case Op_LoadRange:
2707   case Op_LoadS: {
2708   handle_mem:
2709 #ifdef ASSERT
2710     if( VerifyOptoOopOffsets ) {
2711       assert( n->is_Mem(), "" );
2712       MemNode *mem  = (MemNode*)n;
2713       // Check to see if address types have grounded out somehow.
2714       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2715       assert( !tp || oop_offset_is_sane(tp), "" );
2716     }
2717 #endif
2718     break;
2719   }
2720 
2721   case Op_AddP: {               // Assert sane base pointers
2722     Node *addp = n->in(AddPNode::Address);
2723     assert( !addp->is_AddP() ||
2724             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2725             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2726             "Base pointers must match" );
2727 #ifdef _LP64
2728     if ((UseCompressedOops || UseCompressedClassPointers) &&
2729         addp->Opcode() == Op_ConP &&
2730         addp == n->in(AddPNode::Base) &&
2731         n->in(AddPNode::Offset)->is_Con()) {
2732       // Use addressing with narrow klass to load with offset on x86.
2733       // On sparc loading 32-bits constant and decoding it have less
2734       // instructions (4) then load 64-bits constant (7).
2735       // Do this transformation here since IGVN will convert ConN back to ConP.
2736       const Type* t = addp->bottom_type();
2737       if (t->isa_oopptr() || t->isa_klassptr()) {
2738         Node* nn = NULL;
2739 
2740         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2741 
2742         // Look for existing ConN node of the same exact type.
2743         Node* r  = root();
2744         uint cnt = r->outcnt();
2745         for (uint i = 0; i < cnt; i++) {
2746           Node* m = r->raw_out(i);
2747           if (m!= NULL && m->Opcode() == op &&
2748               m->bottom_type()->make_ptr() == t) {
2749             nn = m;
2750             break;
2751           }
2752         }
2753         if (nn != NULL) {
2754           // Decode a narrow oop to match address
2755           // [R12 + narrow_oop_reg<<3 + offset]
2756           if (t->isa_oopptr()) {
2757             nn = new (this) DecodeNNode(nn, t);
2758           } else {
2759             nn = new (this) DecodeNKlassNode(nn, t);
2760           }
2761           n->set_req(AddPNode::Base, nn);
2762           n->set_req(AddPNode::Address, nn);
2763           if (addp->outcnt() == 0) {
2764             addp->disconnect_inputs(NULL, this);
2765           }
2766         }
2767       }
2768     }
2769 #endif
2770     break;
2771   }
2772 
2773 #ifdef _LP64
2774   case Op_CastPP:
2775     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2776       Node* in1 = n->in(1);
2777       const Type* t = n->bottom_type();
2778       Node* new_in1 = in1->clone();
2779       new_in1->as_DecodeN()->set_type(t);
2780 
2781       if (!Matcher::narrow_oop_use_complex_address()) {
2782         //
2783         // x86, ARM and friends can handle 2 adds in addressing mode
2784         // and Matcher can fold a DecodeN node into address by using
2785         // a narrow oop directly and do implicit NULL check in address:
2786         //
2787         // [R12 + narrow_oop_reg<<3 + offset]
2788         // NullCheck narrow_oop_reg
2789         //
2790         // On other platforms (Sparc) we have to keep new DecodeN node and
2791         // use it to do implicit NULL check in address:
2792         //
2793         // decode_not_null narrow_oop_reg, base_reg
2794         // [base_reg + offset]
2795         // NullCheck base_reg
2796         //
2797         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2798         // to keep the information to which NULL check the new DecodeN node
2799         // corresponds to use it as value in implicit_null_check().
2800         //
2801         new_in1->set_req(0, n->in(0));
2802       }
2803 
2804       n->subsume_by(new_in1, this);
2805       if (in1->outcnt() == 0) {
2806         in1->disconnect_inputs(NULL, this);
2807       }
2808     }
2809     break;
2810 
2811   case Op_CmpP:
2812     // Do this transformation here to preserve CmpPNode::sub() and
2813     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2814     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2815       Node* in1 = n->in(1);
2816       Node* in2 = n->in(2);
2817       if (!in1->is_DecodeNarrowPtr()) {
2818         in2 = in1;
2819         in1 = n->in(2);
2820       }
2821       assert(in1->is_DecodeNarrowPtr(), "sanity");
2822 
2823       Node* new_in2 = NULL;
2824       if (in2->is_DecodeNarrowPtr()) {
2825         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2826         new_in2 = in2->in(1);
2827       } else if (in2->Opcode() == Op_ConP) {
2828         const Type* t = in2->bottom_type();
2829         if (t == TypePtr::NULL_PTR) {
2830           assert(in1->is_DecodeN(), "compare klass to null?");
2831           // Don't convert CmpP null check into CmpN if compressed
2832           // oops implicit null check is not generated.
2833           // This will allow to generate normal oop implicit null check.
2834           if (Matcher::gen_narrow_oop_implicit_null_checks())
2835             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2836           //
2837           // This transformation together with CastPP transformation above
2838           // will generated code for implicit NULL checks for compressed oops.
2839           //
2840           // The original code after Optimize()
2841           //
2842           //    LoadN memory, narrow_oop_reg
2843           //    decode narrow_oop_reg, base_reg
2844           //    CmpP base_reg, NULL
2845           //    CastPP base_reg // NotNull
2846           //    Load [base_reg + offset], val_reg
2847           //
2848           // after these transformations will be
2849           //
2850           //    LoadN memory, narrow_oop_reg
2851           //    CmpN narrow_oop_reg, NULL
2852           //    decode_not_null narrow_oop_reg, base_reg
2853           //    Load [base_reg + offset], val_reg
2854           //
2855           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2856           // since narrow oops can be used in debug info now (see the code in
2857           // final_graph_reshaping_walk()).
2858           //
2859           // At the end the code will be matched to
2860           // on x86:
2861           //
2862           //    Load_narrow_oop memory, narrow_oop_reg
2863           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2864           //    NullCheck narrow_oop_reg
2865           //
2866           // and on sparc:
2867           //
2868           //    Load_narrow_oop memory, narrow_oop_reg
2869           //    decode_not_null narrow_oop_reg, base_reg
2870           //    Load [base_reg + offset], val_reg
2871           //    NullCheck base_reg
2872           //
2873         } else if (t->isa_oopptr()) {
2874           new_in2 = ConNode::make(this, t->make_narrowoop());
2875         } else if (t->isa_klassptr()) {
2876           new_in2 = ConNode::make(this, t->make_narrowklass());
2877         }
2878       }
2879       if (new_in2 != NULL) {
2880         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2881         n->subsume_by(cmpN, this);
2882         if (in1->outcnt() == 0) {
2883           in1->disconnect_inputs(NULL, this);
2884         }
2885         if (in2->outcnt() == 0) {
2886           in2->disconnect_inputs(NULL, this);
2887         }
2888       }
2889     }
2890     break;
2891 
2892   case Op_DecodeN:
2893   case Op_DecodeNKlass:
2894     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2895     // DecodeN could be pinned when it can't be fold into
2896     // an address expression, see the code for Op_CastPP above.
2897     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2898     break;
2899 
2900   case Op_EncodeP:
2901   case Op_EncodePKlass: {
2902     Node* in1 = n->in(1);
2903     if (in1->is_DecodeNarrowPtr()) {
2904       n->subsume_by(in1->in(1), this);
2905     } else if (in1->Opcode() == Op_ConP) {
2906       const Type* t = in1->bottom_type();
2907       if (t == TypePtr::NULL_PTR) {
2908         assert(t->isa_oopptr(), "null klass?");
2909         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2910       } else if (t->isa_oopptr()) {
2911         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2912       } else if (t->isa_klassptr()) {
2913         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2914       }
2915     }
2916     if (in1->outcnt() == 0) {
2917       in1->disconnect_inputs(NULL, this);
2918     }
2919     break;
2920   }
2921 
2922   case Op_Proj: {
2923     if (OptimizeStringConcat) {
2924       ProjNode* p = n->as_Proj();
2925       if (p->_is_io_use) {
2926         // Separate projections were used for the exception path which
2927         // are normally removed by a late inline.  If it wasn't inlined
2928         // then they will hang around and should just be replaced with
2929         // the original one.
2930         Node* proj = NULL;
2931         // Replace with just one
2932         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2933           Node *use = i.get();
2934           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2935             proj = use;
2936             break;
2937           }
2938         }
2939         assert(proj != NULL, "must be found");
2940         p->subsume_by(proj, this);
2941       }
2942     }
2943     break;
2944   }
2945 
2946   case Op_Phi:
2947     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2948       // The EncodeP optimization may create Phi with the same edges
2949       // for all paths. It is not handled well by Register Allocator.
2950       Node* unique_in = n->in(1);
2951       assert(unique_in != NULL, "");
2952       uint cnt = n->req();
2953       for (uint i = 2; i < cnt; i++) {
2954         Node* m = n->in(i);
2955         assert(m != NULL, "");
2956         if (unique_in != m)
2957           unique_in = NULL;
2958       }
2959       if (unique_in != NULL) {
2960         n->subsume_by(unique_in, this);
2961       }
2962     }
2963     break;
2964 
2965 #endif
2966 
2967   case Op_ModI:
2968     if (UseDivMod) {
2969       // Check if a%b and a/b both exist
2970       Node* d = n->find_similar(Op_DivI);
2971       if (d) {
2972         // Replace them with a fused divmod if supported
2973         if (Matcher::has_match_rule(Op_DivModI)) {
2974           DivModINode* divmod = DivModINode::make(this, n);
2975           d->subsume_by(divmod->div_proj(), this);
2976           n->subsume_by(divmod->mod_proj(), this);
2977         } else {
2978           // replace a%b with a-((a/b)*b)
2979           Node* mult = new (this) MulINode(d, d->in(2));
2980           Node* sub  = new (this) SubINode(d->in(1), mult);
2981           n->subsume_by(sub, this);
2982         }
2983       }
2984     }
2985     break;
2986 
2987   case Op_ModL:
2988     if (UseDivMod) {
2989       // Check if a%b and a/b both exist
2990       Node* d = n->find_similar(Op_DivL);
2991       if (d) {
2992         // Replace them with a fused divmod if supported
2993         if (Matcher::has_match_rule(Op_DivModL)) {
2994           DivModLNode* divmod = DivModLNode::make(this, n);
2995           d->subsume_by(divmod->div_proj(), this);
2996           n->subsume_by(divmod->mod_proj(), this);
2997         } else {
2998           // replace a%b with a-((a/b)*b)
2999           Node* mult = new (this) MulLNode(d, d->in(2));
3000           Node* sub  = new (this) SubLNode(d->in(1), mult);
3001           n->subsume_by(sub, this);
3002         }
3003       }
3004     }
3005     break;
3006 
3007   case Op_LoadVector:
3008   case Op_StoreVector:
3009     break;
3010 
3011   case Op_PackB:
3012   case Op_PackS:
3013   case Op_PackI:
3014   case Op_PackF:
3015   case Op_PackL:
3016   case Op_PackD:
3017     if (n->req()-1 > 2) {
3018       // Replace many operand PackNodes with a binary tree for matching
3019       PackNode* p = (PackNode*) n;
3020       Node* btp = p->binary_tree_pack(this, 1, n->req());
3021       n->subsume_by(btp, this);
3022     }
3023     break;
3024   case Op_Loop:
3025   case Op_CountedLoop:
3026     if (n->as_Loop()->is_inner_loop()) {
3027       frc.inc_inner_loop_count();
3028     }
3029     break;
3030   case Op_LShiftI:
3031   case Op_RShiftI:
3032   case Op_URShiftI:
3033   case Op_LShiftL:
3034   case Op_RShiftL:
3035   case Op_URShiftL:
3036     if (Matcher::need_masked_shift_count) {
3037       // The cpu's shift instructions don't restrict the count to the
3038       // lower 5/6 bits. We need to do the masking ourselves.
3039       Node* in2 = n->in(2);
3040       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3041       const TypeInt* t = in2->find_int_type();
3042       if (t != NULL && t->is_con()) {
3043         juint shift = t->get_con();
3044         if (shift > mask) { // Unsigned cmp
3045           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3046         }
3047       } else {
3048         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3049           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3050           n->set_req(2, shift);
3051         }
3052       }
3053       if (in2->outcnt() == 0) { // Remove dead node
3054         in2->disconnect_inputs(NULL, this);
3055       }
3056     }
3057     break;
3058   case Op_MemBarStoreStore:
3059   case Op_MemBarRelease:
3060     // Break the link with AllocateNode: it is no longer useful and
3061     // confuses register allocation.
3062     if (n->req() > MemBarNode::Precedent) {
3063       n->set_req(MemBarNode::Precedent, top());
3064     }
3065     break;
3066   default:
3067     assert( !n->is_Call(), "" );
3068     assert( !n->is_Mem(), "" );
3069     break;
3070   }
3071 
3072   // Collect CFG split points
3073   if (n->is_MultiBranch())
3074     frc._tests.push(n);
3075 }
3076 
3077 //------------------------------final_graph_reshaping_walk---------------------
3078 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3079 // requires that the walk visits a node's inputs before visiting the node.
3080 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3081   ResourceArea *area = Thread::current()->resource_area();
3082   Unique_Node_List sfpt(area);
3083 
3084   frc._visited.set(root->_idx); // first, mark node as visited
3085   uint cnt = root->req();
3086   Node *n = root;
3087   uint  i = 0;
3088   while (true) {
3089     if (i < cnt) {
3090       // Place all non-visited non-null inputs onto stack
3091       Node* m = n->in(i);
3092       ++i;
3093       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3094         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3095           // compute worst case interpreter size in case of a deoptimization
3096           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3097 
3098           sfpt.push(m);
3099         }
3100         cnt = m->req();
3101         nstack.push(n, i); // put on stack parent and next input's index
3102         n = m;
3103         i = 0;
3104       }
3105     } else {
3106       // Now do post-visit work
3107       final_graph_reshaping_impl( n, frc );
3108       if (nstack.is_empty())
3109         break;             // finished
3110       n = nstack.node();   // Get node from stack
3111       cnt = n->req();
3112       i = nstack.index();
3113       nstack.pop();        // Shift to the next node on stack
3114     }
3115   }
3116 
3117   // Skip next transformation if compressed oops are not used.
3118   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3119       (!UseCompressedOops && !UseCompressedClassPointers))
3120     return;
3121 
3122   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3123   // It could be done for an uncommon traps or any safepoints/calls
3124   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3125   while (sfpt.size() > 0) {
3126     n = sfpt.pop();
3127     JVMState *jvms = n->as_SafePoint()->jvms();
3128     assert(jvms != NULL, "sanity");
3129     int start = jvms->debug_start();
3130     int end   = n->req();
3131     bool is_uncommon = (n->is_CallStaticJava() &&
3132                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3133     for (int j = start; j < end; j++) {
3134       Node* in = n->in(j);
3135       if (in->is_DecodeNarrowPtr()) {
3136         bool safe_to_skip = true;
3137         if (!is_uncommon ) {
3138           // Is it safe to skip?
3139           for (uint i = 0; i < in->outcnt(); i++) {
3140             Node* u = in->raw_out(i);
3141             if (!u->is_SafePoint() ||
3142                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3143               safe_to_skip = false;
3144             }
3145           }
3146         }
3147         if (safe_to_skip) {
3148           n->set_req(j, in->in(1));
3149         }
3150         if (in->outcnt() == 0) {
3151           in->disconnect_inputs(NULL, this);
3152         }
3153       }
3154     }
3155   }
3156 }
3157 
3158 //------------------------------final_graph_reshaping--------------------------
3159 // Final Graph Reshaping.
3160 //
3161 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3162 //     and not commoned up and forced early.  Must come after regular
3163 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3164 //     inputs to Loop Phis; these will be split by the allocator anyways.
3165 //     Remove Opaque nodes.
3166 // (2) Move last-uses by commutative operations to the left input to encourage
3167 //     Intel update-in-place two-address operations and better register usage
3168 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3169 //     calls canonicalizing them back.
3170 // (3) Count the number of double-precision FP ops, single-precision FP ops
3171 //     and call sites.  On Intel, we can get correct rounding either by
3172 //     forcing singles to memory (requires extra stores and loads after each
3173 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3174 //     clearing the mode bit around call sites).  The mode bit is only used
3175 //     if the relative frequency of single FP ops to calls is low enough.
3176 //     This is a key transform for SPEC mpeg_audio.
3177 // (4) Detect infinite loops; blobs of code reachable from above but not
3178 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3179 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3180 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3181 //     Detection is by looking for IfNodes where only 1 projection is
3182 //     reachable from below or CatchNodes missing some targets.
3183 // (5) Assert for insane oop offsets in debug mode.
3184 
3185 bool Compile::final_graph_reshaping() {
3186   // an infinite loop may have been eliminated by the optimizer,
3187   // in which case the graph will be empty.
3188   if (root()->req() == 1) {
3189     record_method_not_compilable("trivial infinite loop");
3190     return true;
3191   }
3192 
3193   // Expensive nodes have their control input set to prevent the GVN
3194   // from freely commoning them. There's no GVN beyond this point so
3195   // no need to keep the control input. We want the expensive nodes to
3196   // be freely moved to the least frequent code path by gcm.
3197   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3198   for (int i = 0; i < expensive_count(); i++) {
3199     _expensive_nodes->at(i)->set_req(0, NULL);
3200   }
3201 
3202   Final_Reshape_Counts frc;
3203 
3204   // Visit everybody reachable!
3205   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3206   Node_Stack nstack(unique() >> 1);
3207   final_graph_reshaping_walk(nstack, root(), frc);
3208 
3209   // Check for unreachable (from below) code (i.e., infinite loops).
3210   for( uint i = 0; i < frc._tests.size(); i++ ) {
3211     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3212     // Get number of CFG targets.
3213     // Note that PCTables include exception targets after calls.
3214     uint required_outcnt = n->required_outcnt();
3215     if (n->outcnt() != required_outcnt) {
3216       // Check for a few special cases.  Rethrow Nodes never take the
3217       // 'fall-thru' path, so expected kids is 1 less.
3218       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3219         if (n->in(0)->in(0)->is_Call()) {
3220           CallNode *call = n->in(0)->in(0)->as_Call();
3221           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3222             required_outcnt--;      // Rethrow always has 1 less kid
3223           } else if (call->req() > TypeFunc::Parms &&
3224                      call->is_CallDynamicJava()) {
3225             // Check for null receiver. In such case, the optimizer has
3226             // detected that the virtual call will always result in a null
3227             // pointer exception. The fall-through projection of this CatchNode
3228             // will not be populated.
3229             Node *arg0 = call->in(TypeFunc::Parms);
3230             if (arg0->is_Type() &&
3231                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3232               required_outcnt--;
3233             }
3234           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3235                      call->req() > TypeFunc::Parms+1 &&
3236                      call->is_CallStaticJava()) {
3237             // Check for negative array length. In such case, the optimizer has
3238             // detected that the allocation attempt will always result in an
3239             // exception. There is no fall-through projection of this CatchNode .
3240             Node *arg1 = call->in(TypeFunc::Parms+1);
3241             if (arg1->is_Type() &&
3242                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3243               required_outcnt--;
3244             }
3245           }
3246         }
3247       }
3248       // Recheck with a better notion of 'required_outcnt'
3249       if (n->outcnt() != required_outcnt) {
3250         record_method_not_compilable("malformed control flow");
3251         return true;            // Not all targets reachable!
3252       }
3253     }
3254     // Check that I actually visited all kids.  Unreached kids
3255     // must be infinite loops.
3256     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3257       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3258         record_method_not_compilable("infinite loop");
3259         return true;            // Found unvisited kid; must be unreach
3260       }
3261   }
3262 
3263   // If original bytecodes contained a mixture of floats and doubles
3264   // check if the optimizer has made it homogenous, item (3).
3265   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3266       frc.get_float_count() > 32 &&
3267       frc.get_double_count() == 0 &&
3268       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3269     set_24_bit_selection_and_mode( false,  true );
3270   }
3271 
3272   set_java_calls(frc.get_java_call_count());
3273   set_inner_loops(frc.get_inner_loop_count());
3274 
3275   // No infinite loops, no reason to bail out.
3276   return false;
3277 }
3278 
3279 //-----------------------------too_many_traps----------------------------------
3280 // Report if there are too many traps at the current method and bci.
3281 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3282 bool Compile::too_many_traps(ciMethod* method,
3283                              int bci,
3284                              Deoptimization::DeoptReason reason) {
3285   ciMethodData* md = method->method_data();
3286   if (md->is_empty()) {
3287     // Assume the trap has not occurred, or that it occurred only
3288     // because of a transient condition during start-up in the interpreter.
3289     return false;
3290   }
3291   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3292   if (md->has_trap_at(bci, m, reason) != 0) {
3293     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3294     // Also, if there are multiple reasons, or if there is no per-BCI record,
3295     // assume the worst.
3296     if (log())
3297       log()->elem("observe trap='%s' count='%d'",
3298                   Deoptimization::trap_reason_name(reason),
3299                   md->trap_count(reason));
3300     return true;
3301   } else {
3302     // Ignore method/bci and see if there have been too many globally.
3303     return too_many_traps(reason, md);
3304   }
3305 }
3306 
3307 // Less-accurate variant which does not require a method and bci.
3308 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3309                              ciMethodData* logmd) {
3310   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3311     // Too many traps globally.
3312     // Note that we use cumulative trap_count, not just md->trap_count.
3313     if (log()) {
3314       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3315       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3316                   Deoptimization::trap_reason_name(reason),
3317                   mcount, trap_count(reason));
3318     }
3319     return true;
3320   } else {
3321     // The coast is clear.
3322     return false;
3323   }
3324 }
3325 
3326 //--------------------------too_many_recompiles--------------------------------
3327 // Report if there are too many recompiles at the current method and bci.
3328 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3329 // Is not eager to return true, since this will cause the compiler to use
3330 // Action_none for a trap point, to avoid too many recompilations.
3331 bool Compile::too_many_recompiles(ciMethod* method,
3332                                   int bci,
3333                                   Deoptimization::DeoptReason reason) {
3334   ciMethodData* md = method->method_data();
3335   if (md->is_empty()) {
3336     // Assume the trap has not occurred, or that it occurred only
3337     // because of a transient condition during start-up in the interpreter.
3338     return false;
3339   }
3340   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3341   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3342   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3343   Deoptimization::DeoptReason per_bc_reason
3344     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3345   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3346   if ((per_bc_reason == Deoptimization::Reason_none
3347        || md->has_trap_at(bci, m, reason) != 0)
3348       // The trap frequency measure we care about is the recompile count:
3349       && md->trap_recompiled_at(bci, m)
3350       && md->overflow_recompile_count() >= bc_cutoff) {
3351     // Do not emit a trap here if it has already caused recompilations.
3352     // Also, if there are multiple reasons, or if there is no per-BCI record,
3353     // assume the worst.
3354     if (log())
3355       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3356                   Deoptimization::trap_reason_name(reason),
3357                   md->trap_count(reason),
3358                   md->overflow_recompile_count());
3359     return true;
3360   } else if (trap_count(reason) != 0
3361              && decompile_count() >= m_cutoff) {
3362     // Too many recompiles globally, and we have seen this sort of trap.
3363     // Use cumulative decompile_count, not just md->decompile_count.
3364     if (log())
3365       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3366                   Deoptimization::trap_reason_name(reason),
3367                   md->trap_count(reason), trap_count(reason),
3368                   md->decompile_count(), decompile_count());
3369     return true;
3370   } else {
3371     // The coast is clear.
3372     return false;
3373   }
3374 }
3375 
3376 // Compute when not to trap. Used by matching trap based nodes and
3377 // NullCheck optimization.
3378 void Compile::set_allowed_deopt_reasons() {
3379   _allowed_reasons = 0;
3380   if (is_method_compilation()) {
3381     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3382       assert(rs < BitsPerInt, "recode bit map");
3383       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3384         _allowed_reasons |= nth_bit(rs);
3385       }
3386     }
3387   }
3388 }
3389 
3390 #ifndef PRODUCT
3391 //------------------------------verify_graph_edges---------------------------
3392 // Walk the Graph and verify that there is a one-to-one correspondence
3393 // between Use-Def edges and Def-Use edges in the graph.
3394 void Compile::verify_graph_edges(bool no_dead_code) {
3395   if (VerifyGraphEdges) {
3396     ResourceArea *area = Thread::current()->resource_area();
3397     Unique_Node_List visited(area);
3398     // Call recursive graph walk to check edges
3399     _root->verify_edges(visited);
3400     if (no_dead_code) {
3401       // Now make sure that no visited node is used by an unvisited node.
3402       bool dead_nodes = 0;
3403       Unique_Node_List checked(area);
3404       while (visited.size() > 0) {
3405         Node* n = visited.pop();
3406         checked.push(n);
3407         for (uint i = 0; i < n->outcnt(); i++) {
3408           Node* use = n->raw_out(i);
3409           if (checked.member(use))  continue;  // already checked
3410           if (visited.member(use))  continue;  // already in the graph
3411           if (use->is_Con())        continue;  // a dead ConNode is OK
3412           // At this point, we have found a dead node which is DU-reachable.
3413           if (dead_nodes++ == 0)
3414             tty->print_cr("*** Dead nodes reachable via DU edges:");
3415           use->dump(2);
3416           tty->print_cr("---");
3417           checked.push(use);  // No repeats; pretend it is now checked.
3418         }
3419       }
3420       assert(dead_nodes == 0, "using nodes must be reachable from root");
3421     }
3422   }
3423 }
3424 
3425 // Verify GC barriers consistency
3426 // Currently supported:
3427 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3428 void Compile::verify_barriers() {
3429   if (UseG1GC) {
3430     // Verify G1 pre-barriers
3431     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3432 
3433     ResourceArea *area = Thread::current()->resource_area();
3434     Unique_Node_List visited(area);
3435     Node_List worklist(area);
3436     // We're going to walk control flow backwards starting from the Root
3437     worklist.push(_root);
3438     while (worklist.size() > 0) {
3439       Node* x = worklist.pop();
3440       if (x == NULL || x == top()) continue;
3441       if (visited.member(x)) {
3442         continue;
3443       } else {
3444         visited.push(x);
3445       }
3446 
3447       if (x->is_Region()) {
3448         for (uint i = 1; i < x->req(); i++) {
3449           worklist.push(x->in(i));
3450         }
3451       } else {
3452         worklist.push(x->in(0));
3453         // We are looking for the pattern:
3454         //                            /->ThreadLocal
3455         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3456         //              \->ConI(0)
3457         // We want to verify that the If and the LoadB have the same control
3458         // See GraphKit::g1_write_barrier_pre()
3459         if (x->is_If()) {
3460           IfNode *iff = x->as_If();
3461           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3462             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3463             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3464                 && cmp->in(1)->is_Load()) {
3465               LoadNode* load = cmp->in(1)->as_Load();
3466               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3467                   && load->in(2)->in(3)->is_Con()
3468                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3469 
3470                 Node* if_ctrl = iff->in(0);
3471                 Node* load_ctrl = load->in(0);
3472 
3473                 if (if_ctrl != load_ctrl) {
3474                   // Skip possible CProj->NeverBranch in infinite loops
3475                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3476                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3477                     if_ctrl = if_ctrl->in(0)->in(0);
3478                   }
3479                 }
3480                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3481               }
3482             }
3483           }
3484         }
3485       }
3486     }
3487   }
3488 }
3489 
3490 #endif
3491 
3492 // The Compile object keeps track of failure reasons separately from the ciEnv.
3493 // This is required because there is not quite a 1-1 relation between the
3494 // ciEnv and its compilation task and the Compile object.  Note that one
3495 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3496 // to backtrack and retry without subsuming loads.  Other than this backtracking
3497 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3498 // by the logic in C2Compiler.
3499 void Compile::record_failure(const char* reason) {
3500   if (log() != NULL) {
3501     log()->elem("failure reason='%s' phase='compile'", reason);
3502   }
3503   if (_failure_reason == NULL) {
3504     // Record the first failure reason.
3505     _failure_reason = reason;
3506   }
3507 
3508   EventCompilerFailure event;
3509   if (event.should_commit()) {
3510     event.set_compileID(Compile::compile_id());
3511     event.set_failure(reason);
3512     event.commit();
3513   }
3514 
3515   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3516     C->print_method(PHASE_FAILURE);
3517   }
3518   _root = NULL;  // flush the graph, too
3519 }
3520 
3521 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3522   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3523     _phase_name(name), _dolog(dolog)
3524 {
3525   if (dolog) {
3526     C = Compile::current();
3527     _log = C->log();
3528   } else {
3529     C = NULL;
3530     _log = NULL;
3531   }
3532   if (_log != NULL) {
3533     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3534     _log->stamp();
3535     _log->end_head();
3536   }
3537 }
3538 
3539 Compile::TracePhase::~TracePhase() {
3540 
3541   C = Compile::current();
3542   if (_dolog) {
3543     _log = C->log();
3544   } else {
3545     _log = NULL;
3546   }
3547 
3548 #ifdef ASSERT
3549   if (PrintIdealNodeCount) {
3550     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3551                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3552   }
3553 
3554   if (VerifyIdealNodeCount) {
3555     Compile::current()->print_missing_nodes();
3556   }
3557 #endif
3558 
3559   if (_log != NULL) {
3560     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3561   }
3562 }
3563 
3564 //=============================================================================
3565 // Two Constant's are equal when the type and the value are equal.
3566 bool Compile::Constant::operator==(const Constant& other) {
3567   if (type()          != other.type()         )  return false;
3568   if (can_be_reused() != other.can_be_reused())  return false;
3569   // For floating point values we compare the bit pattern.
3570   switch (type()) {
3571   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3572   case T_LONG:
3573   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3574   case T_OBJECT:
3575   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3576   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3577   case T_METADATA: return (_v._metadata == other._v._metadata);
3578   default: ShouldNotReachHere();
3579   }
3580   return false;
3581 }
3582 
3583 static int type_to_size_in_bytes(BasicType t) {
3584   switch (t) {
3585   case T_LONG:    return sizeof(jlong  );
3586   case T_FLOAT:   return sizeof(jfloat );
3587   case T_DOUBLE:  return sizeof(jdouble);
3588   case T_METADATA: return sizeof(Metadata*);
3589     // We use T_VOID as marker for jump-table entries (labels) which
3590     // need an internal word relocation.
3591   case T_VOID:
3592   case T_ADDRESS:
3593   case T_OBJECT:  return sizeof(jobject);
3594   }
3595 
3596   ShouldNotReachHere();
3597   return -1;
3598 }
3599 
3600 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3601   // sort descending
3602   if (a->freq() > b->freq())  return -1;
3603   if (a->freq() < b->freq())  return  1;
3604   return 0;
3605 }
3606 
3607 void Compile::ConstantTable::calculate_offsets_and_size() {
3608   // First, sort the array by frequencies.
3609   _constants.sort(qsort_comparator);
3610 
3611 #ifdef ASSERT
3612   // Make sure all jump-table entries were sorted to the end of the
3613   // array (they have a negative frequency).
3614   bool found_void = false;
3615   for (int i = 0; i < _constants.length(); i++) {
3616     Constant con = _constants.at(i);
3617     if (con.type() == T_VOID)
3618       found_void = true;  // jump-tables
3619     else
3620       assert(!found_void, "wrong sorting");
3621   }
3622 #endif
3623 
3624   int offset = 0;
3625   for (int i = 0; i < _constants.length(); i++) {
3626     Constant* con = _constants.adr_at(i);
3627 
3628     // Align offset for type.
3629     int typesize = type_to_size_in_bytes(con->type());
3630     offset = align_size_up(offset, typesize);
3631     con->set_offset(offset);   // set constant's offset
3632 
3633     if (con->type() == T_VOID) {
3634       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3635       offset = offset + typesize * n->outcnt();  // expand jump-table
3636     } else {
3637       offset = offset + typesize;
3638     }
3639   }
3640 
3641   // Align size up to the next section start (which is insts; see
3642   // CodeBuffer::align_at_start).
3643   assert(_size == -1, "already set?");
3644   _size = align_size_up(offset, CodeEntryAlignment);
3645 }
3646 
3647 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3648   MacroAssembler _masm(&cb);
3649   for (int i = 0; i < _constants.length(); i++) {
3650     Constant con = _constants.at(i);
3651     address constant_addr;
3652     switch (con.type()) {
3653     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3654     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3655     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3656     case T_OBJECT: {
3657       jobject obj = con.get_jobject();
3658       int oop_index = _masm.oop_recorder()->find_index(obj);
3659       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3660       break;
3661     }
3662     case T_ADDRESS: {
3663       address addr = (address) con.get_jobject();
3664       constant_addr = _masm.address_constant(addr);
3665       break;
3666     }
3667     // We use T_VOID as marker for jump-table entries (labels) which
3668     // need an internal word relocation.
3669     case T_VOID: {
3670       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3671       // Fill the jump-table with a dummy word.  The real value is
3672       // filled in later in fill_jump_table.
3673       address dummy = (address) n;
3674       constant_addr = _masm.address_constant(dummy);
3675       // Expand jump-table
3676       for (uint i = 1; i < n->outcnt(); i++) {
3677         address temp_addr = _masm.address_constant(dummy + i);
3678         assert(temp_addr, "consts section too small");
3679       }
3680       break;
3681     }
3682     case T_METADATA: {
3683       Metadata* obj = con.get_metadata();
3684       int metadata_index = _masm.oop_recorder()->find_index(obj);
3685       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3686       break;
3687     }
3688     default: ShouldNotReachHere();
3689     }
3690     assert(constant_addr, "consts section too small");
3691     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3692   }
3693 }
3694 
3695 int Compile::ConstantTable::find_offset(Constant& con) const {
3696   int idx = _constants.find(con);
3697   assert(idx != -1, "constant must be in constant table");
3698   int offset = _constants.at(idx).offset();
3699   assert(offset != -1, "constant table not emitted yet?");
3700   return offset;
3701 }
3702 
3703 void Compile::ConstantTable::add(Constant& con) {
3704   if (con.can_be_reused()) {
3705     int idx = _constants.find(con);
3706     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3707       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3708       return;
3709     }
3710   }
3711   (void) _constants.append(con);
3712 }
3713 
3714 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3715   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3716   Constant con(type, value, b->_freq);
3717   add(con);
3718   return con;
3719 }
3720 
3721 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3722   Constant con(metadata);
3723   add(con);
3724   return con;
3725 }
3726 
3727 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3728   jvalue value;
3729   BasicType type = oper->type()->basic_type();
3730   switch (type) {
3731   case T_LONG:    value.j = oper->constantL(); break;
3732   case T_FLOAT:   value.f = oper->constantF(); break;
3733   case T_DOUBLE:  value.d = oper->constantD(); break;
3734   case T_OBJECT:
3735   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3736   case T_METADATA: return add((Metadata*)oper->constant()); break;
3737   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3738   }
3739   return add(n, type, value);
3740 }
3741 
3742 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3743   jvalue value;
3744   // We can use the node pointer here to identify the right jump-table
3745   // as this method is called from Compile::Fill_buffer right before
3746   // the MachNodes are emitted and the jump-table is filled (means the
3747   // MachNode pointers do not change anymore).
3748   value.l = (jobject) n;
3749   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3750   add(con);
3751   return con;
3752 }
3753 
3754 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3755   // If called from Compile::scratch_emit_size do nothing.
3756   if (Compile::current()->in_scratch_emit_size())  return;
3757 
3758   assert(labels.is_nonempty(), "must be");
3759   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3760 
3761   // Since MachConstantNode::constant_offset() also contains
3762   // table_base_offset() we need to subtract the table_base_offset()
3763   // to get the plain offset into the constant table.
3764   int offset = n->constant_offset() - table_base_offset();
3765 
3766   MacroAssembler _masm(&cb);
3767   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3768 
3769   for (uint i = 0; i < n->outcnt(); i++) {
3770     address* constant_addr = &jump_table_base[i];
3771     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3772     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3773     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3774   }
3775 }
3776 
3777 // The message about the current inlining is accumulated in
3778 // _print_inlining_stream and transfered into the _print_inlining_list
3779 // once we know whether inlining succeeds or not. For regular
3780 // inlining, messages are appended to the buffer pointed by
3781 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3782 // a new buffer is added after _print_inlining_idx in the list. This
3783 // way we can update the inlining message for late inlining call site
3784 // when the inlining is attempted again.
3785 void Compile::print_inlining_init() {
3786   if (print_inlining() || print_intrinsics()) {
3787     _print_inlining_stream = new stringStream();
3788     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3789   }
3790 }
3791 
3792 void Compile::print_inlining_reinit() {
3793   if (print_inlining() || print_intrinsics()) {
3794     // Re allocate buffer when we change ResourceMark
3795     _print_inlining_stream = new stringStream();
3796   }
3797 }
3798 
3799 void Compile::print_inlining_reset() {
3800   _print_inlining_stream->reset();
3801 }
3802 
3803 void Compile::print_inlining_commit() {
3804   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3805   // Transfer the message from _print_inlining_stream to the current
3806   // _print_inlining_list buffer and clear _print_inlining_stream.
3807   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3808   print_inlining_reset();
3809 }
3810 
3811 void Compile::print_inlining_push() {
3812   // Add new buffer to the _print_inlining_list at current position
3813   _print_inlining_idx++;
3814   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3815 }
3816 
3817 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3818   return _print_inlining_list->at(_print_inlining_idx);
3819 }
3820 
3821 void Compile::print_inlining_update(CallGenerator* cg) {
3822   if (print_inlining() || print_intrinsics()) {
3823     if (!cg->is_late_inline()) {
3824       if (print_inlining_current().cg() != NULL) {
3825         print_inlining_push();
3826       }
3827       print_inlining_commit();
3828     } else {
3829       if (print_inlining_current().cg() != cg &&
3830           (print_inlining_current().cg() != NULL ||
3831            print_inlining_current().ss()->size() != 0)) {
3832         print_inlining_push();
3833       }
3834       print_inlining_commit();
3835       print_inlining_current().set_cg(cg);
3836     }
3837   }
3838 }
3839 
3840 void Compile::print_inlining_move_to(CallGenerator* cg) {
3841   // We resume inlining at a late inlining call site. Locate the
3842   // corresponding inlining buffer so that we can update it.
3843   if (print_inlining()) {
3844     for (int i = 0; i < _print_inlining_list->length(); i++) {
3845       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3846         _print_inlining_idx = i;
3847         return;
3848       }
3849     }
3850     ShouldNotReachHere();
3851   }
3852 }
3853 
3854 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3855   if (print_inlining()) {
3856     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3857     assert(print_inlining_current().cg() == cg, "wrong entry");
3858     // replace message with new message
3859     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3860     print_inlining_commit();
3861     print_inlining_current().set_cg(cg);
3862   }
3863 }
3864 
3865 void Compile::print_inlining_assert_ready() {
3866   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3867 }
3868 
3869 void Compile::dump_inlining() {
3870   bool do_print_inlining = print_inlining() || print_intrinsics();
3871   if (do_print_inlining || log() != NULL) {
3872     // Print inlining message for candidates that we couldn't inline
3873     // for lack of space
3874     for (int i = 0; i < _late_inlines.length(); i++) {
3875       CallGenerator* cg = _late_inlines.at(i);
3876       if (!cg->is_mh_late_inline()) {
3877         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3878         if (do_print_inlining) {
3879           cg->print_inlining_late(msg);
3880         }
3881         log_late_inline_failure(cg, msg);
3882       }
3883     }
3884   }
3885   if (do_print_inlining) {
3886     for (int i = 0; i < _print_inlining_list->length(); i++) {
3887       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3888     }
3889   }
3890 }
3891 
3892 void Compile::log_late_inline(CallGenerator* cg) {
3893   if (log() != NULL) {
3894     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3895                 cg->unique_id());
3896     JVMState* p = cg->call_node()->jvms();
3897     while (p != NULL) {
3898       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3899       p = p->caller();
3900     }
3901     log()->tail("late_inline");
3902   }
3903 }
3904 
3905 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
3906   log_late_inline(cg);
3907   if (log() != NULL) {
3908     log()->inline_fail(msg);
3909   }
3910 }
3911 
3912 void Compile::log_inline_id(CallGenerator* cg) {
3913   if (log() != NULL) {
3914     // The LogCompilation tool needs a unique way to identify late
3915     // inline call sites. This id must be unique for this call site in
3916     // this compilation. Try to have it unique across compilations as
3917     // well because it can be convenient when grepping through the log
3918     // file.
3919     // Distinguish OSR compilations from others in case CICountOSR is
3920     // on.
3921     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
3922     cg->set_unique_id(id);
3923     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
3924   }
3925 }
3926 
3927 void Compile::log_inline_failure(const char* msg) {
3928   if (C->log() != NULL) {
3929     C->log()->inline_fail(msg);
3930   }
3931 }
3932 
3933 
3934 // Dump inlining replay data to the stream.
3935 // Don't change thread state and acquire any locks.
3936 void Compile::dump_inline_data(outputStream* out) {
3937   InlineTree* inl_tree = ilt();
3938   if (inl_tree != NULL) {
3939     out->print(" inline %d", inl_tree->count());
3940     inl_tree->dump_replay_data(out);
3941   }
3942 }
3943 
3944 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3945   if (n1->Opcode() < n2->Opcode())      return -1;
3946   else if (n1->Opcode() > n2->Opcode()) return 1;
3947 
3948   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3949   for (uint i = 1; i < n1->req(); i++) {
3950     if (n1->in(i) < n2->in(i))      return -1;
3951     else if (n1->in(i) > n2->in(i)) return 1;
3952   }
3953 
3954   return 0;
3955 }
3956 
3957 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3958   Node* n1 = *n1p;
3959   Node* n2 = *n2p;
3960 
3961   return cmp_expensive_nodes(n1, n2);
3962 }
3963 
3964 void Compile::sort_expensive_nodes() {
3965   if (!expensive_nodes_sorted()) {
3966     _expensive_nodes->sort(cmp_expensive_nodes);
3967   }
3968 }
3969 
3970 bool Compile::expensive_nodes_sorted() const {
3971   for (int i = 1; i < _expensive_nodes->length(); i++) {
3972     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3973       return false;
3974     }
3975   }
3976   return true;
3977 }
3978 
3979 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3980   if (_expensive_nodes->length() == 0) {
3981     return false;
3982   }
3983 
3984   assert(OptimizeExpensiveOps, "optimization off?");
3985 
3986   // Take this opportunity to remove dead nodes from the list
3987   int j = 0;
3988   for (int i = 0; i < _expensive_nodes->length(); i++) {
3989     Node* n = _expensive_nodes->at(i);
3990     if (!n->is_unreachable(igvn)) {
3991       assert(n->is_expensive(), "should be expensive");
3992       _expensive_nodes->at_put(j, n);
3993       j++;
3994     }
3995   }
3996   _expensive_nodes->trunc_to(j);
3997 
3998   // Then sort the list so that similar nodes are next to each other
3999   // and check for at least two nodes of identical kind with same data
4000   // inputs.
4001   sort_expensive_nodes();
4002 
4003   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4004     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4005       return true;
4006     }
4007   }
4008 
4009   return false;
4010 }
4011 
4012 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4013   if (_expensive_nodes->length() == 0) {
4014     return;
4015   }
4016 
4017   assert(OptimizeExpensiveOps, "optimization off?");
4018 
4019   // Sort to bring similar nodes next to each other and clear the
4020   // control input of nodes for which there's only a single copy.
4021   sort_expensive_nodes();
4022 
4023   int j = 0;
4024   int identical = 0;
4025   int i = 0;
4026   for (; i < _expensive_nodes->length()-1; i++) {
4027     assert(j <= i, "can't write beyond current index");
4028     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4029       identical++;
4030       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4031       continue;
4032     }
4033     if (identical > 0) {
4034       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4035       identical = 0;
4036     } else {
4037       Node* n = _expensive_nodes->at(i);
4038       igvn.hash_delete(n);
4039       n->set_req(0, NULL);
4040       igvn.hash_insert(n);
4041     }
4042   }
4043   if (identical > 0) {
4044     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4045   } else if (_expensive_nodes->length() >= 1) {
4046     Node* n = _expensive_nodes->at(i);
4047     igvn.hash_delete(n);
4048     n->set_req(0, NULL);
4049     igvn.hash_insert(n);
4050   }
4051   _expensive_nodes->trunc_to(j);
4052 }
4053 
4054 void Compile::add_expensive_node(Node * n) {
4055   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4056   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4057   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4058   if (OptimizeExpensiveOps) {
4059     _expensive_nodes->append(n);
4060   } else {
4061     // Clear control input and let IGVN optimize expensive nodes if
4062     // OptimizeExpensiveOps is off.
4063     n->set_req(0, NULL);
4064   }
4065 }
4066 
4067 /**
4068  * Remove the speculative part of types and clean up the graph
4069  */
4070 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4071   if (UseTypeSpeculation) {
4072     Unique_Node_List worklist;
4073     worklist.push(root());
4074     int modified = 0;
4075     // Go over all type nodes that carry a speculative type, drop the
4076     // speculative part of the type and enqueue the node for an igvn
4077     // which may optimize it out.
4078     for (uint next = 0; next < worklist.size(); ++next) {
4079       Node *n  = worklist.at(next);
4080       if (n->is_Type()) {
4081         TypeNode* tn = n->as_Type();
4082         const Type* t = tn->type();
4083         const Type* t_no_spec = t->remove_speculative();
4084         if (t_no_spec != t) {
4085           bool in_hash = igvn.hash_delete(n);
4086           assert(in_hash, "node should be in igvn hash table");
4087           tn->set_type(t_no_spec);
4088           igvn.hash_insert(n);
4089           igvn._worklist.push(n); // give it a chance to go away
4090           modified++;
4091         }
4092       }
4093       uint max = n->len();
4094       for( uint i = 0; i < max; ++i ) {
4095         Node *m = n->in(i);
4096         if (not_a_node(m))  continue;
4097         worklist.push(m);
4098       }
4099     }
4100     // Drop the speculative part of all types in the igvn's type table
4101     igvn.remove_speculative_types();
4102     if (modified > 0) {
4103       igvn.optimize();
4104     }
4105 #ifdef ASSERT
4106     // Verify that after the IGVN is over no speculative type has resurfaced
4107     worklist.clear();
4108     worklist.push(root());
4109     for (uint next = 0; next < worklist.size(); ++next) {
4110       Node *n  = worklist.at(next);
4111       const Type* t = igvn.type_or_null(n);
4112       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4113       if (n->is_Type()) {
4114         t = n->as_Type()->type();
4115         assert(t == t->remove_speculative(), "no more speculative types");
4116       }
4117       uint max = n->len();
4118       for( uint i = 0; i < max; ++i ) {
4119         Node *m = n->in(i);
4120         if (not_a_node(m))  continue;
4121         worklist.push(m);
4122       }
4123     }
4124     igvn.check_no_speculative_types();
4125 #endif
4126   }
4127 }
4128 
4129 // Auxiliary method to support randomized stressing/fuzzing.
4130 //
4131 // This method can be called the arbitrary number of times, with current count
4132 // as the argument. The logic allows selecting a single candidate from the
4133 // running list of candidates as follows:
4134 //    int count = 0;
4135 //    Cand* selected = null;
4136 //    while(cand = cand->next()) {
4137 //      if (randomized_select(++count)) {
4138 //        selected = cand;
4139 //      }
4140 //    }
4141 //
4142 // Including count equalizes the chances any candidate is "selected".
4143 // This is useful when we don't have the complete list of candidates to choose
4144 // from uniformly. In this case, we need to adjust the randomicity of the
4145 // selection, or else we will end up biasing the selection towards the latter
4146 // candidates.
4147 //
4148 // Quick back-envelope calculation shows that for the list of n candidates
4149 // the equal probability for the candidate to persist as "best" can be
4150 // achieved by replacing it with "next" k-th candidate with the probability
4151 // of 1/k. It can be easily shown that by the end of the run, the
4152 // probability for any candidate is converged to 1/n, thus giving the
4153 // uniform distribution among all the candidates.
4154 //
4155 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4156 #define RANDOMIZED_DOMAIN_POW 29
4157 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4158 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4159 bool Compile::randomized_select(int count) {
4160   assert(count > 0, "only positive");
4161   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4162 }