1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  58   _is_lval = false;
  59   _target = target;
  60   switch (rtype) {
  61   case relocInfo::oop_type:
  62   case relocInfo::metadata_type:
  63     // Oops are a special case. Normally they would be their own section
  64     // but in cases like icBuffer they are literals in the code stream that
  65     // we don't have a section for. We use none so that we get a literal address
  66     // which is always patchable.
  67     break;
  68   case relocInfo::external_word_type:
  69     _rspec = external_word_Relocation::spec(target);
  70     break;
  71   case relocInfo::internal_word_type:
  72     _rspec = internal_word_Relocation::spec(target);
  73     break;
  74   case relocInfo::opt_virtual_call_type:
  75     _rspec = opt_virtual_call_Relocation::spec();
  76     break;
  77   case relocInfo::static_call_type:
  78     _rspec = static_call_Relocation::spec();
  79     break;
  80   case relocInfo::runtime_call_type:
  81     _rspec = runtime_call_Relocation::spec();
  82     break;
  83   case relocInfo::poll_type:
  84   case relocInfo::poll_return_type:
  85     _rspec = Relocation::spec_simple(rtype);
  86     break;
  87   case relocInfo::none:
  88     break;
  89   default:
  90     ShouldNotReachHere();
  91     break;
  92   }
  93 }
  94 
  95 // Implementation of Address
  96 
  97 #ifdef _LP64
  98 
  99 Address Address::make_array(ArrayAddress adr) {
 100   // Not implementable on 64bit machines
 101   // Should have been handled higher up the call chain.
 102   ShouldNotReachHere();
 103   return Address();
 104 }
 105 
 106 // exceedingly dangerous constructor
 107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 108   _base  = noreg;
 109   _index = noreg;
 110   _scale = no_scale;
 111   _disp  = disp;
 112   switch (rtype) {
 113     case relocInfo::external_word_type:
 114       _rspec = external_word_Relocation::spec(loc);
 115       break;
 116     case relocInfo::internal_word_type:
 117       _rspec = internal_word_Relocation::spec(loc);
 118       break;
 119     case relocInfo::runtime_call_type:
 120       // HMM
 121       _rspec = runtime_call_Relocation::spec();
 122       break;
 123     case relocInfo::poll_type:
 124     case relocInfo::poll_return_type:
 125       _rspec = Relocation::spec_simple(rtype);
 126       break;
 127     case relocInfo::none:
 128       break;
 129     default:
 130       ShouldNotReachHere();
 131   }
 132 }
 133 #else // LP64
 134 
 135 Address Address::make_array(ArrayAddress adr) {
 136   AddressLiteral base = adr.base();
 137   Address index = adr.index();
 138   assert(index._disp == 0, "must not have disp"); // maybe it can?
 139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 140   array._rspec = base._rspec;
 141   return array;
 142 }
 143 
 144 // exceedingly dangerous constructor
 145 Address::Address(address loc, RelocationHolder spec) {
 146   _base  = noreg;
 147   _index = noreg;
 148   _scale = no_scale;
 149   _disp  = (intptr_t) loc;
 150   _rspec = spec;
 151 }
 152 
 153 #endif // _LP64
 154 
 155 
 156 
 157 // Convert the raw encoding form into the form expected by the constructor for
 158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 159 // that to noreg for the Address constructor.
 160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 161   RelocationHolder rspec;
 162   if (disp_reloc != relocInfo::none) {
 163     rspec = Relocation::spec_simple(disp_reloc);
 164   }
 165   bool valid_index = index != rsp->encoding();
 166   if (valid_index) {
 167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 168     madr._rspec = rspec;
 169     return madr;
 170   } else {
 171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 172     madr._rspec = rspec;
 173     return madr;
 174   }
 175 }
 176 
 177 // Implementation of Assembler
 178 
 179 int AbstractAssembler::code_fill_byte() {
 180   return (u_char)'\xF4'; // hlt
 181 }
 182 
 183 // make this go away someday
 184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 185   if (rtype == relocInfo::none)
 186         emit_int32(data);
 187   else  emit_data(data, Relocation::spec_simple(rtype), format);
 188 }
 189 
 190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 191   assert(imm_operand == 0, "default format must be immediate in this file");
 192   assert(inst_mark() != NULL, "must be inside InstructionMark");
 193   if (rspec.type() !=  relocInfo::none) {
 194     #ifdef ASSERT
 195       check_relocation(rspec, format);
 196     #endif
 197     // Do not use AbstractAssembler::relocate, which is not intended for
 198     // embedded words.  Instead, relocate to the enclosing instruction.
 199 
 200     // hack. call32 is too wide for mask so use disp32
 201     if (format == call32_operand)
 202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 203     else
 204       code_section()->relocate(inst_mark(), rspec, format);
 205   }
 206   emit_int32(data);
 207 }
 208 
 209 static int encode(Register r) {
 210   int enc = r->encoding();
 211   if (enc >= 8) {
 212     enc -= 8;
 213   }
 214   return enc;
 215 }
 216 
 217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 218   assert(dst->has_byte_register(), "must have byte register");
 219   assert(isByte(op1) && isByte(op2), "wrong opcode");
 220   assert(isByte(imm8), "not a byte");
 221   assert((op1 & 0x01) == 0, "should be 8bit operation");
 222   emit_int8(op1);
 223   emit_int8(op2 | encode(dst));
 224   emit_int8(imm8);
 225 }
 226 
 227 
 228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 229   assert(isByte(op1) && isByte(op2), "wrong opcode");
 230   assert((op1 & 0x01) == 1, "should be 32bit operation");
 231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 232   if (is8bit(imm32)) {
 233     emit_int8(op1 | 0x02); // set sign bit
 234     emit_int8(op2 | encode(dst));
 235     emit_int8(imm32 & 0xFF);
 236   } else {
 237     emit_int8(op1);
 238     emit_int8(op2 | encode(dst));
 239     emit_int32(imm32);
 240   }
 241 }
 242 
 243 // Force generation of a 4 byte immediate value even if it fits into 8bit
 244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 245   assert(isByte(op1) && isByte(op2), "wrong opcode");
 246   assert((op1 & 0x01) == 1, "should be 32bit operation");
 247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 248   emit_int8(op1);
 249   emit_int8(op2 | encode(dst));
 250   emit_int32(imm32);
 251 }
 252 
 253 // immediate-to-memory forms
 254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 255   assert((op1 & 0x01) == 1, "should be 32bit operation");
 256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 257   if (is8bit(imm32)) {
 258     emit_int8(op1 | 0x02); // set sign bit
 259     emit_operand(rm, adr, 1);
 260     emit_int8(imm32 & 0xFF);
 261   } else {
 262     emit_int8(op1);
 263     emit_operand(rm, adr, 4);
 264     emit_int32(imm32);
 265   }
 266 }
 267 
 268 
 269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 270   assert(isByte(op1) && isByte(op2), "wrong opcode");
 271   emit_int8(op1);
 272   emit_int8(op2 | encode(dst) << 3 | encode(src));
 273 }
 274 
 275 
 276 void Assembler::emit_operand(Register reg, Register base, Register index,
 277                              Address::ScaleFactor scale, int disp,
 278                              RelocationHolder const& rspec,
 279                              int rip_relative_correction) {
 280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 281 
 282   // Encode the registers as needed in the fields they are used in
 283 
 284   int regenc = encode(reg) << 3;
 285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 286   int baseenc = base->is_valid() ? encode(base) : 0;
 287 
 288   if (base->is_valid()) {
 289     if (index->is_valid()) {
 290       assert(scale != Address::no_scale, "inconsistent address");
 291       // [base + index*scale + disp]
 292       if (disp == 0 && rtype == relocInfo::none  &&
 293           base != rbp LP64_ONLY(&& base != r13)) {
 294         // [base + index*scale]
 295         // [00 reg 100][ss index base]
 296         assert(index != rsp, "illegal addressing mode");
 297         emit_int8(0x04 | regenc);
 298         emit_int8(scale << 6 | indexenc | baseenc);
 299       } else if (is8bit(disp) && rtype == relocInfo::none) {
 300         // [base + index*scale + imm8]
 301         // [01 reg 100][ss index base] imm8
 302         assert(index != rsp, "illegal addressing mode");
 303         emit_int8(0x44 | regenc);
 304         emit_int8(scale << 6 | indexenc | baseenc);
 305         emit_int8(disp & 0xFF);
 306       } else {
 307         // [base + index*scale + disp32]
 308         // [10 reg 100][ss index base] disp32
 309         assert(index != rsp, "illegal addressing mode");
 310         emit_int8(0x84 | regenc);
 311         emit_int8(scale << 6 | indexenc | baseenc);
 312         emit_data(disp, rspec, disp32_operand);
 313       }
 314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 315       // [rsp + disp]
 316       if (disp == 0 && rtype == relocInfo::none) {
 317         // [rsp]
 318         // [00 reg 100][00 100 100]
 319         emit_int8(0x04 | regenc);
 320         emit_int8(0x24);
 321       } else if (is8bit(disp) && rtype == relocInfo::none) {
 322         // [rsp + imm8]
 323         // [01 reg 100][00 100 100] disp8
 324         emit_int8(0x44 | regenc);
 325         emit_int8(0x24);
 326         emit_int8(disp & 0xFF);
 327       } else {
 328         // [rsp + imm32]
 329         // [10 reg 100][00 100 100] disp32
 330         emit_int8(0x84 | regenc);
 331         emit_int8(0x24);
 332         emit_data(disp, rspec, disp32_operand);
 333       }
 334     } else {
 335       // [base + disp]
 336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 337       if (disp == 0 && rtype == relocInfo::none &&
 338           base != rbp LP64_ONLY(&& base != r13)) {
 339         // [base]
 340         // [00 reg base]
 341         emit_int8(0x00 | regenc | baseenc);
 342       } else if (is8bit(disp) && rtype == relocInfo::none) {
 343         // [base + disp8]
 344         // [01 reg base] disp8
 345         emit_int8(0x40 | regenc | baseenc);
 346         emit_int8(disp & 0xFF);
 347       } else {
 348         // [base + disp32]
 349         // [10 reg base] disp32
 350         emit_int8(0x80 | regenc | baseenc);
 351         emit_data(disp, rspec, disp32_operand);
 352       }
 353     }
 354   } else {
 355     if (index->is_valid()) {
 356       assert(scale != Address::no_scale, "inconsistent address");
 357       // [index*scale + disp]
 358       // [00 reg 100][ss index 101] disp32
 359       assert(index != rsp, "illegal addressing mode");
 360       emit_int8(0x04 | regenc);
 361       emit_int8(scale << 6 | indexenc | 0x05);
 362       emit_data(disp, rspec, disp32_operand);
 363     } else if (rtype != relocInfo::none ) {
 364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 365       // [00 000 101] disp32
 366 
 367       emit_int8(0x05 | regenc);
 368       // Note that the RIP-rel. correction applies to the generated
 369       // disp field, but _not_ to the target address in the rspec.
 370 
 371       // disp was created by converting the target address minus the pc
 372       // at the start of the instruction. That needs more correction here.
 373       // intptr_t disp = target - next_ip;
 374       assert(inst_mark() != NULL, "must be inside InstructionMark");
 375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 376       int64_t adjusted = disp;
 377       // Do rip-rel adjustment for 64bit
 378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 379       assert(is_simm32(adjusted),
 380              "must be 32bit offset (RIP relative address)");
 381       emit_data((int32_t) adjusted, rspec, disp32_operand);
 382 
 383     } else {
 384       // 32bit never did this, did everything as the rip-rel/disp code above
 385       // [disp] ABSOLUTE
 386       // [00 reg 100][00 100 101] disp32
 387       emit_int8(0x04 | regenc);
 388       emit_int8(0x25);
 389       emit_data(disp, rspec, disp32_operand);
 390     }
 391   }
 392 }
 393 
 394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 395                              Address::ScaleFactor scale, int disp,
 396                              RelocationHolder const& rspec) {
 397   emit_operand((Register)reg, base, index, scale, disp, rspec);
 398 }
 399 
 400 // Secret local extension to Assembler::WhichOperand:
 401 #define end_pc_operand (_WhichOperand_limit)
 402 
 403 address Assembler::locate_operand(address inst, WhichOperand which) {
 404   // Decode the given instruction, and return the address of
 405   // an embedded 32-bit operand word.
 406 
 407   // If "which" is disp32_operand, selects the displacement portion
 408   // of an effective address specifier.
 409   // If "which" is imm64_operand, selects the trailing immediate constant.
 410   // If "which" is call32_operand, selects the displacement of a call or jump.
 411   // Caller is responsible for ensuring that there is such an operand,
 412   // and that it is 32/64 bits wide.
 413 
 414   // If "which" is end_pc_operand, find the end of the instruction.
 415 
 416   address ip = inst;
 417   bool is_64bit = false;
 418 
 419   debug_only(bool has_disp32 = false);
 420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 421 
 422   again_after_prefix:
 423   switch (0xFF & *ip++) {
 424 
 425   // These convenience macros generate groups of "case" labels for the switch.
 426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 429 #define REP16(x) REP8((x)+0): \
 430               case REP8((x)+8)
 431 
 432   case CS_segment:
 433   case SS_segment:
 434   case DS_segment:
 435   case ES_segment:
 436   case FS_segment:
 437   case GS_segment:
 438     // Seems dubious
 439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 440     assert(ip == inst+1, "only one prefix allowed");
 441     goto again_after_prefix;
 442 
 443   case 0x67:
 444   case REX:
 445   case REX_B:
 446   case REX_X:
 447   case REX_XB:
 448   case REX_R:
 449   case REX_RB:
 450   case REX_RX:
 451   case REX_RXB:
 452     NOT_LP64(assert(false, "64bit prefixes"));
 453     goto again_after_prefix;
 454 
 455   case REX_W:
 456   case REX_WB:
 457   case REX_WX:
 458   case REX_WXB:
 459   case REX_WR:
 460   case REX_WRB:
 461   case REX_WRX:
 462   case REX_WRXB:
 463     NOT_LP64(assert(false, "64bit prefixes"));
 464     is_64bit = true;
 465     goto again_after_prefix;
 466 
 467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 468   case 0x88: // movb a, r
 469   case 0x89: // movl a, r
 470   case 0x8A: // movb r, a
 471   case 0x8B: // movl r, a
 472   case 0x8F: // popl a
 473     debug_only(has_disp32 = true);
 474     break;
 475 
 476   case 0x68: // pushq #32
 477     if (which == end_pc_operand) {
 478       return ip + 4;
 479     }
 480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 481     return ip;                  // not produced by emit_operand
 482 
 483   case 0x66: // movw ... (size prefix)
 484     again_after_size_prefix2:
 485     switch (0xFF & *ip++) {
 486     case REX:
 487     case REX_B:
 488     case REX_X:
 489     case REX_XB:
 490     case REX_R:
 491     case REX_RB:
 492     case REX_RX:
 493     case REX_RXB:
 494     case REX_W:
 495     case REX_WB:
 496     case REX_WX:
 497     case REX_WXB:
 498     case REX_WR:
 499     case REX_WRB:
 500     case REX_WRX:
 501     case REX_WRXB:
 502       NOT_LP64(assert(false, "64bit prefix found"));
 503       goto again_after_size_prefix2;
 504     case 0x8B: // movw r, a
 505     case 0x89: // movw a, r
 506       debug_only(has_disp32 = true);
 507       break;
 508     case 0xC7: // movw a, #16
 509       debug_only(has_disp32 = true);
 510       tail_size = 2;  // the imm16
 511       break;
 512     case 0x0F: // several SSE/SSE2 variants
 513       ip--;    // reparse the 0x0F
 514       goto again_after_prefix;
 515     default:
 516       ShouldNotReachHere();
 517     }
 518     break;
 519 
 520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 522     // these asserts are somewhat nonsensical
 523 #ifndef _LP64
 524     assert(which == imm_operand || which == disp32_operand,
 525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 526 #else
 527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 528            which == narrow_oop_operand && !is_64bit,
 529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 530 #endif // _LP64
 531     return ip;
 532 
 533   case 0x69: // imul r, a, #32
 534   case 0xC7: // movl a, #32(oop?)
 535     tail_size = 4;
 536     debug_only(has_disp32 = true); // has both kinds of operands!
 537     break;
 538 
 539   case 0x0F: // movx..., etc.
 540     switch (0xFF & *ip++) {
 541     case 0x3A: // pcmpestri
 542       tail_size = 1;
 543     case 0x38: // ptest, pmovzxbw
 544       ip++; // skip opcode
 545       debug_only(has_disp32 = true); // has both kinds of operands!
 546       break;
 547 
 548     case 0x70: // pshufd r, r/a, #8
 549       debug_only(has_disp32 = true); // has both kinds of operands!
 550     case 0x73: // psrldq r, #8
 551       tail_size = 1;
 552       break;
 553 
 554     case 0x12: // movlps
 555     case 0x28: // movaps
 556     case 0x2E: // ucomiss
 557     case 0x2F: // comiss
 558     case 0x54: // andps
 559     case 0x55: // andnps
 560     case 0x56: // orps
 561     case 0x57: // xorps
 562     case 0x6E: // movd
 563     case 0x7E: // movd
 564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 565       debug_only(has_disp32 = true);
 566       break;
 567 
 568     case 0xAD: // shrd r, a, %cl
 569     case 0xAF: // imul r, a
 570     case 0xBE: // movsbl r, a (movsxb)
 571     case 0xBF: // movswl r, a (movsxw)
 572     case 0xB6: // movzbl r, a (movzxb)
 573     case 0xB7: // movzwl r, a (movzxw)
 574     case REP16(0x40): // cmovl cc, r, a
 575     case 0xB0: // cmpxchgb
 576     case 0xB1: // cmpxchg
 577     case 0xC1: // xaddl
 578     case 0xC7: // cmpxchg8
 579     case REP16(0x90): // setcc a
 580       debug_only(has_disp32 = true);
 581       // fall out of the switch to decode the address
 582       break;
 583 
 584     case 0xC4: // pinsrw r, a, #8
 585       debug_only(has_disp32 = true);
 586     case 0xC5: // pextrw r, r, #8
 587       tail_size = 1;  // the imm8
 588       break;
 589 
 590     case 0xAC: // shrd r, a, #8
 591       debug_only(has_disp32 = true);
 592       tail_size = 1;  // the imm8
 593       break;
 594 
 595     case REP16(0x80): // jcc rdisp32
 596       if (which == end_pc_operand)  return ip + 4;
 597       assert(which == call32_operand, "jcc has no disp32 or imm");
 598       return ip;
 599     default:
 600       ShouldNotReachHere();
 601     }
 602     break;
 603 
 604   case 0x81: // addl a, #32; addl r, #32
 605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 606     // on 32bit in the case of cmpl, the imm might be an oop
 607     tail_size = 4;
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     break;
 610 
 611   case 0x83: // addl a, #8; addl r, #8
 612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 613     debug_only(has_disp32 = true); // has both kinds of operands!
 614     tail_size = 1;
 615     break;
 616 
 617   case 0x9B:
 618     switch (0xFF & *ip++) {
 619     case 0xD9: // fnstcw a
 620       debug_only(has_disp32 = true);
 621       break;
 622     default:
 623       ShouldNotReachHere();
 624     }
 625     break;
 626 
 627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 628   case REP4(0x10): // adc...
 629   case REP4(0x20): // and...
 630   case REP4(0x30): // xor...
 631   case REP4(0x08): // or...
 632   case REP4(0x18): // sbb...
 633   case REP4(0x28): // sub...
 634   case 0xF7: // mull a
 635   case 0x8D: // lea r, a
 636   case 0x87: // xchg r, a
 637   case REP4(0x38): // cmp...
 638   case 0x85: // test r, a
 639     debug_only(has_disp32 = true); // has both kinds of operands!
 640     break;
 641 
 642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 643   case 0xC6: // movb a, #8
 644   case 0x80: // cmpb a, #8
 645   case 0x6B: // imul r, a, #8
 646     debug_only(has_disp32 = true); // has both kinds of operands!
 647     tail_size = 1; // the imm8
 648     break;
 649 
 650   case 0xC4: // VEX_3bytes
 651   case 0xC5: // VEX_2bytes
 652     assert((UseAVX > 0), "shouldn't have VEX prefix");
 653     assert(ip == inst+1, "no prefixes allowed");
 654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 655     // but they have prefix 0x0F and processed when 0x0F processed above.
 656     //
 657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 658     // instructions (these instructions are not supported in 64-bit mode).
 659     // To distinguish them bits [7:6] are set in the VEX second byte since
 660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 661     // those VEX bits REX and vvvv bits are inverted.
 662     //
 663     // Fortunately C2 doesn't generate these instructions so we don't need
 664     // to check for them in product version.
 665 
 666     // Check second byte
 667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 668 
 669     // First byte
 670     if ((0xFF & *inst) == VEX_3bytes) {
 671       ip++; // third byte
 672       is_64bit = ((VEX_W & *ip) == VEX_W);
 673     }
 674     ip++; // opcode
 675     // To find the end of instruction (which == end_pc_operand).
 676     switch (0xFF & *ip) {
 677     case 0x61: // pcmpestri r, r/a, #8
 678     case 0x70: // pshufd r, r/a, #8
 679     case 0x73: // psrldq r, #8
 680       tail_size = 1;  // the imm8
 681       break;
 682     default:
 683       break;
 684     }
 685     ip++; // skip opcode
 686     debug_only(has_disp32 = true); // has both kinds of operands!
 687     break;
 688 
 689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 692   case 0xDD: // fld_d a; fst_d a; fstp_d a
 693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 694   case 0xDF: // fild_d a; fistp_d a
 695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 698     debug_only(has_disp32 = true);
 699     break;
 700 
 701   case 0xE8: // call rdisp32
 702   case 0xE9: // jmp  rdisp32
 703     if (which == end_pc_operand)  return ip + 4;
 704     assert(which == call32_operand, "call has no disp32 or imm");
 705     return ip;
 706 
 707   case 0xF0:                    // Lock
 708     assert(os::is_MP(), "only on MP");
 709     goto again_after_prefix;
 710 
 711   case 0xF3:                    // For SSE
 712   case 0xF2:                    // For SSE2
 713     switch (0xFF & *ip++) {
 714     case REX:
 715     case REX_B:
 716     case REX_X:
 717     case REX_XB:
 718     case REX_R:
 719     case REX_RB:
 720     case REX_RX:
 721     case REX_RXB:
 722     case REX_W:
 723     case REX_WB:
 724     case REX_WX:
 725     case REX_WXB:
 726     case REX_WR:
 727     case REX_WRB:
 728     case REX_WRX:
 729     case REX_WRXB:
 730       NOT_LP64(assert(false, "found 64bit prefix"));
 731       ip++;
 732     default:
 733       ip++;
 734     }
 735     debug_only(has_disp32 = true); // has both kinds of operands!
 736     break;
 737 
 738   default:
 739     ShouldNotReachHere();
 740 
 741 #undef REP8
 742 #undef REP16
 743   }
 744 
 745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 746 #ifdef _LP64
 747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 748 #else
 749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 751 #endif // LP64
 752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 753 
 754   // parse the output of emit_operand
 755   int op2 = 0xFF & *ip++;
 756   int base = op2 & 0x07;
 757   int op3 = -1;
 758   const int b100 = 4;
 759   const int b101 = 5;
 760   if (base == b100 && (op2 >> 6) != 3) {
 761     op3 = 0xFF & *ip++;
 762     base = op3 & 0x07;   // refetch the base
 763   }
 764   // now ip points at the disp (if any)
 765 
 766   switch (op2 >> 6) {
 767   case 0:
 768     // [00 reg  100][ss index base]
 769     // [00 reg  100][00   100  esp]
 770     // [00 reg base]
 771     // [00 reg  100][ss index  101][disp32]
 772     // [00 reg  101]               [disp32]
 773 
 774     if (base == b101) {
 775       if (which == disp32_operand)
 776         return ip;              // caller wants the disp32
 777       ip += 4;                  // skip the disp32
 778     }
 779     break;
 780 
 781   case 1:
 782     // [01 reg  100][ss index base][disp8]
 783     // [01 reg  100][00   100  esp][disp8]
 784     // [01 reg base]               [disp8]
 785     ip += 1;                    // skip the disp8
 786     break;
 787 
 788   case 2:
 789     // [10 reg  100][ss index base][disp32]
 790     // [10 reg  100][00   100  esp][disp32]
 791     // [10 reg base]               [disp32]
 792     if (which == disp32_operand)
 793       return ip;                // caller wants the disp32
 794     ip += 4;                    // skip the disp32
 795     break;
 796 
 797   case 3:
 798     // [11 reg base]  (not a memory addressing mode)
 799     break;
 800   }
 801 
 802   if (which == end_pc_operand) {
 803     return ip + tail_size;
 804   }
 805 
 806 #ifdef _LP64
 807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 808 #else
 809   assert(which == imm_operand, "instruction has only an imm field");
 810 #endif // LP64
 811   return ip;
 812 }
 813 
 814 address Assembler::locate_next_instruction(address inst) {
 815   // Secretly share code with locate_operand:
 816   return locate_operand(inst, end_pc_operand);
 817 }
 818 
 819 
 820 #ifdef ASSERT
 821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 822   address inst = inst_mark();
 823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 824   address opnd;
 825 
 826   Relocation* r = rspec.reloc();
 827   if (r->type() == relocInfo::none) {
 828     return;
 829   } else if (r->is_call() || format == call32_operand) {
 830     // assert(format == imm32_operand, "cannot specify a nonzero format");
 831     opnd = locate_operand(inst, call32_operand);
 832   } else if (r->is_data()) {
 833     assert(format == imm_operand || format == disp32_operand
 834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 835     opnd = locate_operand(inst, (WhichOperand)format);
 836   } else {
 837     assert(format == imm_operand, "cannot specify a format");
 838     return;
 839   }
 840   assert(opnd == pc(), "must put operand where relocs can find it");
 841 }
 842 #endif // ASSERT
 843 
 844 void Assembler::emit_operand32(Register reg, Address adr) {
 845   assert(reg->encoding() < 8, "no extended registers");
 846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 848                adr._rspec);
 849 }
 850 
 851 void Assembler::emit_operand(Register reg, Address adr,
 852                              int rip_relative_correction) {
 853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 854                adr._rspec,
 855                rip_relative_correction);
 856 }
 857 
 858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 860                adr._rspec);
 861 }
 862 
 863 // MMX operations
 864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 867 }
 868 
 869 // work around gcc (3.2.1-7a) bug
 870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 873 }
 874 
 875 
 876 void Assembler::emit_farith(int b1, int b2, int i) {
 877   assert(isByte(b1) && isByte(b2), "wrong opcode");
 878   assert(0 <= i &&  i < 8, "illegal stack offset");
 879   emit_int8(b1);
 880   emit_int8(b2 + i);
 881 }
 882 
 883 
 884 // Now the Assembler instructions (identical for 32/64 bits)
 885 
 886 void Assembler::adcl(Address dst, int32_t imm32) {
 887   InstructionMark im(this);
 888   prefix(dst);
 889   emit_arith_operand(0x81, rdx, dst, imm32);
 890 }
 891 
 892 void Assembler::adcl(Address dst, Register src) {
 893   InstructionMark im(this);
 894   prefix(dst, src);
 895   emit_int8(0x11);
 896   emit_operand(src, dst);
 897 }
 898 
 899 void Assembler::adcl(Register dst, int32_t imm32) {
 900   prefix(dst);
 901   emit_arith(0x81, 0xD0, dst, imm32);
 902 }
 903 
 904 void Assembler::adcl(Register dst, Address src) {
 905   InstructionMark im(this);
 906   prefix(src, dst);
 907   emit_int8(0x13);
 908   emit_operand(dst, src);
 909 }
 910 
 911 void Assembler::adcl(Register dst, Register src) {
 912   (void) prefix_and_encode(dst->encoding(), src->encoding());
 913   emit_arith(0x13, 0xC0, dst, src);
 914 }
 915 
 916 void Assembler::addl(Address dst, int32_t imm32) {
 917   InstructionMark im(this);
 918   prefix(dst);
 919   emit_arith_operand(0x81, rax, dst, imm32);
 920 }
 921 
 922 void Assembler::addl(Address dst, Register src) {
 923   InstructionMark im(this);
 924   prefix(dst, src);
 925   emit_int8(0x01);
 926   emit_operand(src, dst);
 927 }
 928 
 929 void Assembler::addl(Register dst, int32_t imm32) {
 930   prefix(dst);
 931   emit_arith(0x81, 0xC0, dst, imm32);
 932 }
 933 
 934 void Assembler::addl(Register dst, Address src) {
 935   InstructionMark im(this);
 936   prefix(src, dst);
 937   emit_int8(0x03);
 938   emit_operand(dst, src);
 939 }
 940 
 941 void Assembler::addl(Register dst, Register src) {
 942   (void) prefix_and_encode(dst->encoding(), src->encoding());
 943   emit_arith(0x03, 0xC0, dst, src);
 944 }
 945 
 946 void Assembler::addr_nop_4() {
 947   assert(UseAddressNop, "no CPU support");
 948   // 4 bytes: NOP DWORD PTR [EAX+0]
 949   emit_int8(0x0F);
 950   emit_int8(0x1F);
 951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 952   emit_int8(0);    // 8-bits offset (1 byte)
 953 }
 954 
 955 void Assembler::addr_nop_5() {
 956   assert(UseAddressNop, "no CPU support");
 957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 958   emit_int8(0x0F);
 959   emit_int8(0x1F);
 960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 962   emit_int8(0);    // 8-bits offset (1 byte)
 963 }
 964 
 965 void Assembler::addr_nop_7() {
 966   assert(UseAddressNop, "no CPU support");
 967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 968   emit_int8(0x0F);
 969   emit_int8(0x1F);
 970   emit_int8((unsigned char)0x80);
 971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 972   emit_int32(0);   // 32-bits offset (4 bytes)
 973 }
 974 
 975 void Assembler::addr_nop_8() {
 976   assert(UseAddressNop, "no CPU support");
 977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 978   emit_int8(0x0F);
 979   emit_int8(0x1F);
 980   emit_int8((unsigned char)0x84);
 981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 983   emit_int32(0);   // 32-bits offset (4 bytes)
 984 }
 985 
 986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 989 }
 990 
 991 void Assembler::addsd(XMMRegister dst, Address src) {
 992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 994 }
 995 
 996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
 999 }
1000 
1001 void Assembler::addss(XMMRegister dst, Address src) {
1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 }
1005 
1006 void Assembler::aesdec(XMMRegister dst, Address src) {
1007   assert(VM_Version::supports_aes(), "");
1008   InstructionMark im(this);
1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1010   emit_int8((unsigned char)0xDE);
1011   emit_operand(dst, src);
1012 }
1013 
1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1015   assert(VM_Version::supports_aes(), "");
1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1017   emit_int8((unsigned char)0xDE);
1018   emit_int8(0xC0 | encode);
1019 }
1020 
1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1022   assert(VM_Version::supports_aes(), "");
1023   InstructionMark im(this);
1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025   emit_int8((unsigned char)0xDF);
1026   emit_operand(dst, src);
1027 }
1028 
1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1030   assert(VM_Version::supports_aes(), "");
1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1032   emit_int8((unsigned char)0xDF);
1033   emit_int8((unsigned char)(0xC0 | encode));
1034 }
1035 
1036 void Assembler::aesenc(XMMRegister dst, Address src) {
1037   assert(VM_Version::supports_aes(), "");
1038   InstructionMark im(this);
1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040   emit_int8((unsigned char)0xDC);
1041   emit_operand(dst, src);
1042 }
1043 
1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1045   assert(VM_Version::supports_aes(), "");
1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1047   emit_int8((unsigned char)0xDC);
1048   emit_int8(0xC0 | encode);
1049 }
1050 
1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
1052   assert(VM_Version::supports_aes(), "");
1053   InstructionMark im(this);
1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055   emit_int8((unsigned char)0xDD);
1056   emit_operand(dst, src);
1057 }
1058 
1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1060   assert(VM_Version::supports_aes(), "");
1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1062   emit_int8((unsigned char)0xDD);
1063   emit_int8((unsigned char)(0xC0 | encode));
1064 }
1065 
1066 
1067 void Assembler::andl(Address dst, int32_t imm32) {
1068   InstructionMark im(this);
1069   prefix(dst);
1070   emit_int8((unsigned char)0x81);
1071   emit_operand(rsp, dst, 4);
1072   emit_int32(imm32);
1073 }
1074 
1075 void Assembler::andl(Register dst, int32_t imm32) {
1076   prefix(dst);
1077   emit_arith(0x81, 0xE0, dst, imm32);
1078 }
1079 
1080 void Assembler::andl(Register dst, Address src) {
1081   InstructionMark im(this);
1082   prefix(src, dst);
1083   emit_int8(0x23);
1084   emit_operand(dst, src);
1085 }
1086 
1087 void Assembler::andl(Register dst, Register src) {
1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
1089   emit_arith(0x23, 0xC0, dst, src);
1090 }
1091 
1092 void Assembler::andnl(Register dst, Register src1, Register src2) {
1093   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1094   int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
1095   emit_int8((unsigned char)0xF2);
1096   emit_int8((unsigned char)(0xC0 | encode));
1097 }
1098 
1099 void Assembler::andnl(Register dst, Register src1, Address src2) {
1100   InstructionMark im(this);
1101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1102   vex_prefix_0F38(dst, src1, src2);
1103   emit_int8((unsigned char)0xF2);
1104   emit_operand(dst, src2);
1105 }
1106 
1107 void Assembler::bsfl(Register dst, Register src) {
1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1109   emit_int8(0x0F);
1110   emit_int8((unsigned char)0xBC);
1111   emit_int8((unsigned char)(0xC0 | encode));
1112 }
1113 
1114 void Assembler::bsrl(Register dst, Register src) {
1115   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1116   emit_int8(0x0F);
1117   emit_int8((unsigned char)0xBD);
1118   emit_int8((unsigned char)(0xC0 | encode));
1119 }
1120 
1121 void Assembler::bswapl(Register reg) { // bswap
1122   int encode = prefix_and_encode(reg->encoding());
1123   emit_int8(0x0F);
1124   emit_int8((unsigned char)(0xC8 | encode));
1125 }
1126 
1127 void Assembler::blsil(Register dst, Register src) {
1128   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1129   int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
1130   emit_int8((unsigned char)0xF3);
1131   emit_int8((unsigned char)(0xC0 | encode));
1132 }
1133 
1134 void Assembler::blsil(Register dst, Address src) {
1135   InstructionMark im(this);
1136   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1137   vex_prefix_0F38(rbx, dst, src);
1138   emit_int8((unsigned char)0xF3);
1139   emit_operand(rbx, src);
1140 }
1141 
1142 void Assembler::blsmskl(Register dst, Register src) {
1143   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1144   int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
1145   emit_int8((unsigned char)0xF3);
1146   emit_int8((unsigned char)(0xC0 | encode));
1147 }
1148 
1149 void Assembler::blsmskl(Register dst, Address src) {
1150   InstructionMark im(this);
1151   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1152   vex_prefix_0F38(rdx, dst, src);
1153   emit_int8((unsigned char)0xF3);
1154   emit_operand(rdx, src);
1155 }
1156 
1157 void Assembler::blsrl(Register dst, Register src) {
1158   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1159   int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
1160   emit_int8((unsigned char)0xF3);
1161   emit_int8((unsigned char)(0xC0 | encode));
1162 }
1163 
1164 void Assembler::blsrl(Register dst, Address src) {
1165   InstructionMark im(this);
1166   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1167   vex_prefix_0F38(rcx, dst, src);
1168   emit_int8((unsigned char)0xF3);
1169   emit_operand(rcx, src);
1170 }
1171 
1172 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1173   // suspect disp32 is always good
1174   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1175 
1176   if (L.is_bound()) {
1177     const int long_size = 5;
1178     int offs = (int)( target(L) - pc() );
1179     assert(offs <= 0, "assembler error");
1180     InstructionMark im(this);
1181     // 1110 1000 #32-bit disp
1182     emit_int8((unsigned char)0xE8);
1183     emit_data(offs - long_size, rtype, operand);
1184   } else {
1185     InstructionMark im(this);
1186     // 1110 1000 #32-bit disp
1187     L.add_patch_at(code(), locator());
1188 
1189     emit_int8((unsigned char)0xE8);
1190     emit_data(int(0), rtype, operand);
1191   }
1192 }
1193 
1194 void Assembler::call(Register dst) {
1195   int encode = prefix_and_encode(dst->encoding());
1196   emit_int8((unsigned char)0xFF);
1197   emit_int8((unsigned char)(0xD0 | encode));
1198 }
1199 
1200 
1201 void Assembler::call(Address adr) {
1202   InstructionMark im(this);
1203   prefix(adr);
1204   emit_int8((unsigned char)0xFF);
1205   emit_operand(rdx, adr);
1206 }
1207 
1208 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1209   assert(entry != NULL, "call most probably wrong");
1210   InstructionMark im(this);
1211   emit_int8((unsigned char)0xE8);
1212   intptr_t disp = entry - (pc() + sizeof(int32_t));
1213   assert(is_simm32(disp), "must be 32bit offset (call2)");
1214   // Technically, should use call32_operand, but this format is
1215   // implied by the fact that we're emitting a call instruction.
1216 
1217   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1218   emit_data((int) disp, rspec, operand);
1219 }
1220 
1221 void Assembler::cdql() {
1222   emit_int8((unsigned char)0x99);
1223 }
1224 
1225 void Assembler::cld() {
1226   emit_int8((unsigned char)0xFC);
1227 }
1228 
1229 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1230   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1231   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1232   emit_int8(0x0F);
1233   emit_int8(0x40 | cc);
1234   emit_int8((unsigned char)(0xC0 | encode));
1235 }
1236 
1237 
1238 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1239   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1240   prefix(src, dst);
1241   emit_int8(0x0F);
1242   emit_int8(0x40 | cc);
1243   emit_operand(dst, src);
1244 }
1245 
1246 void Assembler::cmpb(Address dst, int imm8) {
1247   InstructionMark im(this);
1248   prefix(dst);
1249   emit_int8((unsigned char)0x80);
1250   emit_operand(rdi, dst, 1);
1251   emit_int8(imm8);
1252 }
1253 
1254 void Assembler::cmpl(Address dst, int32_t imm32) {
1255   InstructionMark im(this);
1256   prefix(dst);
1257   emit_int8((unsigned char)0x81);
1258   emit_operand(rdi, dst, 4);
1259   emit_int32(imm32);
1260 }
1261 
1262 void Assembler::cmpl(Register dst, int32_t imm32) {
1263   prefix(dst);
1264   emit_arith(0x81, 0xF8, dst, imm32);
1265 }
1266 
1267 void Assembler::cmpl(Register dst, Register src) {
1268   (void) prefix_and_encode(dst->encoding(), src->encoding());
1269   emit_arith(0x3B, 0xC0, dst, src);
1270 }
1271 
1272 
1273 void Assembler::cmpl(Register dst, Address  src) {
1274   InstructionMark im(this);
1275   prefix(src, dst);
1276   emit_int8((unsigned char)0x3B);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::cmpw(Address dst, int imm16) {
1281   InstructionMark im(this);
1282   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1283   emit_int8(0x66);
1284   emit_int8((unsigned char)0x81);
1285   emit_operand(rdi, dst, 2);
1286   emit_int16(imm16);
1287 }
1288 
1289 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1290 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1291 // The ZF is set if the compared values were equal, and cleared otherwise.
1292 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1293   InstructionMark im(this);
1294   prefix(adr, reg);
1295   emit_int8(0x0F);
1296   emit_int8((unsigned char)0xB1);
1297   emit_operand(reg, adr);
1298 }
1299 
1300 void Assembler::comisd(XMMRegister dst, Address src) {
1301   // NOTE: dbx seems to decode this as comiss even though the
1302   // 0x66 is there. Strangly ucomisd comes out correct
1303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1304   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1305 }
1306 
1307 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1309   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1310 }
1311 
1312 void Assembler::comiss(XMMRegister dst, Address src) {
1313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1314   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1315 }
1316 
1317 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1318   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1319   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1320 }
1321 
1322 void Assembler::cpuid() {
1323   emit_int8(0x0F);
1324   emit_int8((unsigned char)0xA2);
1325 }
1326 
1327 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1329   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1330 }
1331 
1332 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1333   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1334   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1335 }
1336 
1337 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1338   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1339   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1340 }
1341 
1342 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1343   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1344   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1345 }
1346 
1347 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1348   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1349   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1350   emit_int8(0x2A);
1351   emit_int8((unsigned char)(0xC0 | encode));
1352 }
1353 
1354 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1355   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1356   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1357 }
1358 
1359 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1360   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1361   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1362   emit_int8(0x2A);
1363   emit_int8((unsigned char)(0xC0 | encode));
1364 }
1365 
1366 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1367   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1368   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
1369 }
1370 
1371 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1372   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1373   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1374 }
1375 
1376 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1377   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1378   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1379 }
1380 
1381 
1382 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1384   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1385   emit_int8(0x2C);
1386   emit_int8((unsigned char)(0xC0 | encode));
1387 }
1388 
1389 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1390   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1391   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1392   emit_int8(0x2C);
1393   emit_int8((unsigned char)(0xC0 | encode));
1394 }
1395 
1396 void Assembler::decl(Address dst) {
1397   // Don't use it directly. Use MacroAssembler::decrement() instead.
1398   InstructionMark im(this);
1399   prefix(dst);
1400   emit_int8((unsigned char)0xFF);
1401   emit_operand(rcx, dst);
1402 }
1403 
1404 void Assembler::divsd(XMMRegister dst, Address src) {
1405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1406   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1407 }
1408 
1409 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1410   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1411   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1412 }
1413 
1414 void Assembler::divss(XMMRegister dst, Address src) {
1415   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1416   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1417 }
1418 
1419 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1420   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1421   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1422 }
1423 
1424 void Assembler::emms() {
1425   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1426   emit_int8(0x0F);
1427   emit_int8(0x77);
1428 }
1429 
1430 void Assembler::hlt() {
1431   emit_int8((unsigned char)0xF4);
1432 }
1433 
1434 void Assembler::idivl(Register src) {
1435   int encode = prefix_and_encode(src->encoding());
1436   emit_int8((unsigned char)0xF7);
1437   emit_int8((unsigned char)(0xF8 | encode));
1438 }
1439 
1440 void Assembler::divl(Register src) { // Unsigned
1441   int encode = prefix_and_encode(src->encoding());
1442   emit_int8((unsigned char)0xF7);
1443   emit_int8((unsigned char)(0xF0 | encode));
1444 }
1445 
1446 void Assembler::imull(Register dst, Register src) {
1447   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1448   emit_int8(0x0F);
1449   emit_int8((unsigned char)0xAF);
1450   emit_int8((unsigned char)(0xC0 | encode));
1451 }
1452 
1453 
1454 void Assembler::imull(Register dst, Register src, int value) {
1455   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1456   if (is8bit(value)) {
1457     emit_int8(0x6B);
1458     emit_int8((unsigned char)(0xC0 | encode));
1459     emit_int8(value & 0xFF);
1460   } else {
1461     emit_int8(0x69);
1462     emit_int8((unsigned char)(0xC0 | encode));
1463     emit_int32(value);
1464   }
1465 }
1466 
1467 void Assembler::imull(Register dst, Address src) {
1468   InstructionMark im(this);
1469   prefix(src, dst);
1470   emit_int8(0x0F);
1471   emit_int8((unsigned char) 0xAF);
1472   emit_operand(dst, src);
1473 }
1474 
1475 
1476 void Assembler::incl(Address dst) {
1477   // Don't use it directly. Use MacroAssembler::increment() instead.
1478   InstructionMark im(this);
1479   prefix(dst);
1480   emit_int8((unsigned char)0xFF);
1481   emit_operand(rax, dst);
1482 }
1483 
1484 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1485   InstructionMark im(this);
1486   assert((0 <= cc) && (cc < 16), "illegal cc");
1487   if (L.is_bound()) {
1488     address dst = target(L);
1489     assert(dst != NULL, "jcc most probably wrong");
1490 
1491     const int short_size = 2;
1492     const int long_size = 6;
1493     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1494     if (maybe_short && is8bit(offs - short_size)) {
1495       // 0111 tttn #8-bit disp
1496       emit_int8(0x70 | cc);
1497       emit_int8((offs - short_size) & 0xFF);
1498     } else {
1499       // 0000 1111 1000 tttn #32-bit disp
1500       assert(is_simm32(offs - long_size),
1501              "must be 32bit offset (call4)");
1502       emit_int8(0x0F);
1503       emit_int8((unsigned char)(0x80 | cc));
1504       emit_int32(offs - long_size);
1505     }
1506   } else {
1507     // Note: could eliminate cond. jumps to this jump if condition
1508     //       is the same however, seems to be rather unlikely case.
1509     // Note: use jccb() if label to be bound is very close to get
1510     //       an 8-bit displacement
1511     L.add_patch_at(code(), locator());
1512     emit_int8(0x0F);
1513     emit_int8((unsigned char)(0x80 | cc));
1514     emit_int32(0);
1515   }
1516 }
1517 
1518 void Assembler::jccb(Condition cc, Label& L) {
1519   if (L.is_bound()) {
1520     const int short_size = 2;
1521     address entry = target(L);
1522 #ifdef ASSERT
1523     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1524     intptr_t delta = short_branch_delta();
1525     if (delta != 0) {
1526       dist += (dist < 0 ? (-delta) :delta);
1527     }
1528     assert(is8bit(dist), "Dispacement too large for a short jmp");
1529 #endif
1530     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1531     // 0111 tttn #8-bit disp
1532     emit_int8(0x70 | cc);
1533     emit_int8((offs - short_size) & 0xFF);
1534   } else {
1535     InstructionMark im(this);
1536     L.add_patch_at(code(), locator());
1537     emit_int8(0x70 | cc);
1538     emit_int8(0);
1539   }
1540 }
1541 
1542 void Assembler::jmp(Address adr) {
1543   InstructionMark im(this);
1544   prefix(adr);
1545   emit_int8((unsigned char)0xFF);
1546   emit_operand(rsp, adr);
1547 }
1548 
1549 void Assembler::jmp(Label& L, bool maybe_short) {
1550   if (L.is_bound()) {
1551     address entry = target(L);
1552     assert(entry != NULL, "jmp most probably wrong");
1553     InstructionMark im(this);
1554     const int short_size = 2;
1555     const int long_size = 5;
1556     intptr_t offs = entry - pc();
1557     if (maybe_short && is8bit(offs - short_size)) {
1558       emit_int8((unsigned char)0xEB);
1559       emit_int8((offs - short_size) & 0xFF);
1560     } else {
1561       emit_int8((unsigned char)0xE9);
1562       emit_int32(offs - long_size);
1563     }
1564   } else {
1565     // By default, forward jumps are always 32-bit displacements, since
1566     // we can't yet know where the label will be bound.  If you're sure that
1567     // the forward jump will not run beyond 256 bytes, use jmpb to
1568     // force an 8-bit displacement.
1569     InstructionMark im(this);
1570     L.add_patch_at(code(), locator());
1571     emit_int8((unsigned char)0xE9);
1572     emit_int32(0);
1573   }
1574 }
1575 
1576 void Assembler::jmp(Register entry) {
1577   int encode = prefix_and_encode(entry->encoding());
1578   emit_int8((unsigned char)0xFF);
1579   emit_int8((unsigned char)(0xE0 | encode));
1580 }
1581 
1582 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1583   InstructionMark im(this);
1584   emit_int8((unsigned char)0xE9);
1585   assert(dest != NULL, "must have a target");
1586   intptr_t disp = dest - (pc() + sizeof(int32_t));
1587   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1588   emit_data(disp, rspec.reloc(), call32_operand);
1589 }
1590 
1591 void Assembler::jmpb(Label& L) {
1592   if (L.is_bound()) {
1593     const int short_size = 2;
1594     address entry = target(L);
1595     assert(entry != NULL, "jmp most probably wrong");
1596 #ifdef ASSERT
1597     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1598     intptr_t delta = short_branch_delta();
1599     if (delta != 0) {
1600       dist += (dist < 0 ? (-delta) :delta);
1601     }
1602     assert(is8bit(dist), "Dispacement too large for a short jmp");
1603 #endif
1604     intptr_t offs = entry - pc();
1605     emit_int8((unsigned char)0xEB);
1606     emit_int8((offs - short_size) & 0xFF);
1607   } else {
1608     InstructionMark im(this);
1609     L.add_patch_at(code(), locator());
1610     emit_int8((unsigned char)0xEB);
1611     emit_int8(0);
1612   }
1613 }
1614 
1615 void Assembler::ldmxcsr( Address src) {
1616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1617   InstructionMark im(this);
1618   prefix(src);
1619   emit_int8(0x0F);
1620   emit_int8((unsigned char)0xAE);
1621   emit_operand(as_Register(2), src);
1622 }
1623 
1624 void Assembler::leal(Register dst, Address src) {
1625   InstructionMark im(this);
1626 #ifdef _LP64
1627   emit_int8(0x67); // addr32
1628   prefix(src, dst);
1629 #endif // LP64
1630   emit_int8((unsigned char)0x8D);
1631   emit_operand(dst, src);
1632 }
1633 
1634 void Assembler::lfence() {
1635   emit_int8(0x0F);
1636   emit_int8((unsigned char)0xAE);
1637   emit_int8((unsigned char)0xE8);
1638 }
1639 
1640 void Assembler::lock() {
1641   emit_int8((unsigned char)0xF0);
1642 }
1643 
1644 void Assembler::lzcntl(Register dst, Register src) {
1645   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1646   emit_int8((unsigned char)0xF3);
1647   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1648   emit_int8(0x0F);
1649   emit_int8((unsigned char)0xBD);
1650   emit_int8((unsigned char)(0xC0 | encode));
1651 }
1652 
1653 // Emit mfence instruction
1654 void Assembler::mfence() {
1655   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1656   emit_int8(0x0F);
1657   emit_int8((unsigned char)0xAE);
1658   emit_int8((unsigned char)0xF0);
1659 }
1660 
1661 void Assembler::mov(Register dst, Register src) {
1662   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1663 }
1664 
1665 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1666   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1667   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1668 }
1669 
1670 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1671   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1672   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1673 }
1674 
1675 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
1676   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1677   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1678   emit_int8(0x16);
1679   emit_int8((unsigned char)(0xC0 | encode));
1680 }
1681 
1682 void Assembler::movb(Register dst, Address src) {
1683   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1684   InstructionMark im(this);
1685   prefix(src, dst, true);
1686   emit_int8((unsigned char)0x8A);
1687   emit_operand(dst, src);
1688 }
1689 
1690 
1691 void Assembler::movb(Address dst, int imm8) {
1692   InstructionMark im(this);
1693    prefix(dst);
1694   emit_int8((unsigned char)0xC6);
1695   emit_operand(rax, dst, 1);
1696   emit_int8(imm8);
1697 }
1698 
1699 
1700 void Assembler::movb(Address dst, Register src) {
1701   assert(src->has_byte_register(), "must have byte register");
1702   InstructionMark im(this);
1703   prefix(dst, src, true);
1704   emit_int8((unsigned char)0x88);
1705   emit_operand(src, dst);
1706 }
1707 
1708 void Assembler::movdl(XMMRegister dst, Register src) {
1709   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1710   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1711   emit_int8(0x6E);
1712   emit_int8((unsigned char)(0xC0 | encode));
1713 }
1714 
1715 void Assembler::movdl(Register dst, XMMRegister src) {
1716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1717   // swap src/dst to get correct prefix
1718   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1719   emit_int8(0x7E);
1720   emit_int8((unsigned char)(0xC0 | encode));
1721 }
1722 
1723 void Assembler::movdl(XMMRegister dst, Address src) {
1724   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1725   InstructionMark im(this);
1726   simd_prefix(dst, src, VEX_SIMD_66);
1727   emit_int8(0x6E);
1728   emit_operand(dst, src);
1729 }
1730 
1731 void Assembler::movdl(Address dst, XMMRegister src) {
1732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1733   InstructionMark im(this);
1734   simd_prefix(dst, src, VEX_SIMD_66);
1735   emit_int8(0x7E);
1736   emit_operand(src, dst);
1737 }
1738 
1739 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1740   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1741   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1742 }
1743 
1744 void Assembler::movdqa(XMMRegister dst, Address src) {
1745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1746   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1747 }
1748 
1749 void Assembler::movdqu(XMMRegister dst, Address src) {
1750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1751   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1752 }
1753 
1754 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1756   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1757 }
1758 
1759 void Assembler::movdqu(Address dst, XMMRegister src) {
1760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1761   InstructionMark im(this);
1762   simd_prefix(dst, src, VEX_SIMD_F3);
1763   emit_int8(0x7F);
1764   emit_operand(src, dst);
1765 }
1766 
1767 // Move Unaligned 256bit Vector
1768 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
1769   assert(UseAVX > 0, "");
1770   bool vector256 = true;
1771   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1772   emit_int8(0x6F);
1773   emit_int8((unsigned char)(0xC0 | encode));
1774 }
1775 
1776 void Assembler::vmovdqu(XMMRegister dst, Address src) {
1777   assert(UseAVX > 0, "");
1778   InstructionMark im(this);
1779   bool vector256 = true;
1780   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1781   emit_int8(0x6F);
1782   emit_operand(dst, src);
1783 }
1784 
1785 void Assembler::vmovdqu(Address dst, XMMRegister src) {
1786   assert(UseAVX > 0, "");
1787   InstructionMark im(this);
1788   bool vector256 = true;
1789   // swap src<->dst for encoding
1790   assert(src != xnoreg, "sanity");
1791   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1792   emit_int8(0x7F);
1793   emit_operand(src, dst);
1794 }
1795 
1796 // Uses zero extension on 64bit
1797 
1798 void Assembler::movl(Register dst, int32_t imm32) {
1799   int encode = prefix_and_encode(dst->encoding());
1800   emit_int8((unsigned char)(0xB8 | encode));
1801   emit_int32(imm32);
1802 }
1803 
1804 void Assembler::movl(Register dst, Register src) {
1805   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1806   emit_int8((unsigned char)0x8B);
1807   emit_int8((unsigned char)(0xC0 | encode));
1808 }
1809 
1810 void Assembler::movl(Register dst, Address src) {
1811   InstructionMark im(this);
1812   prefix(src, dst);
1813   emit_int8((unsigned char)0x8B);
1814   emit_operand(dst, src);
1815 }
1816 
1817 void Assembler::movl(Address dst, int32_t imm32) {
1818   InstructionMark im(this);
1819   prefix(dst);
1820   emit_int8((unsigned char)0xC7);
1821   emit_operand(rax, dst, 4);
1822   emit_int32(imm32);
1823 }
1824 
1825 void Assembler::movl(Address dst, Register src) {
1826   InstructionMark im(this);
1827   prefix(dst, src);
1828   emit_int8((unsigned char)0x89);
1829   emit_operand(src, dst);
1830 }
1831 
1832 // New cpus require to use movsd and movss to avoid partial register stall
1833 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1834 // The selection is done in MacroAssembler::movdbl() and movflt().
1835 void Assembler::movlpd(XMMRegister dst, Address src) {
1836   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1837   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
1838 }
1839 
1840 void Assembler::movq( MMXRegister dst, Address src ) {
1841   assert( VM_Version::supports_mmx(), "" );
1842   emit_int8(0x0F);
1843   emit_int8(0x6F);
1844   emit_operand(dst, src);
1845 }
1846 
1847 void Assembler::movq( Address dst, MMXRegister src ) {
1848   assert( VM_Version::supports_mmx(), "" );
1849   emit_int8(0x0F);
1850   emit_int8(0x7F);
1851   // workaround gcc (3.2.1-7a) bug
1852   // In that version of gcc with only an emit_operand(MMX, Address)
1853   // gcc will tail jump and try and reverse the parameters completely
1854   // obliterating dst in the process. By having a version available
1855   // that doesn't need to swap the args at the tail jump the bug is
1856   // avoided.
1857   emit_operand(dst, src);
1858 }
1859 
1860 void Assembler::movq(XMMRegister dst, Address src) {
1861   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1862   InstructionMark im(this);
1863   simd_prefix(dst, src, VEX_SIMD_F3);
1864   emit_int8(0x7E);
1865   emit_operand(dst, src);
1866 }
1867 
1868 void Assembler::movq(Address dst, XMMRegister src) {
1869   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1870   InstructionMark im(this);
1871   simd_prefix(dst, src, VEX_SIMD_66);
1872   emit_int8((unsigned char)0xD6);
1873   emit_operand(src, dst);
1874 }
1875 
1876 void Assembler::movsbl(Register dst, Address src) { // movsxb
1877   InstructionMark im(this);
1878   prefix(src, dst);
1879   emit_int8(0x0F);
1880   emit_int8((unsigned char)0xBE);
1881   emit_operand(dst, src);
1882 }
1883 
1884 void Assembler::movsbl(Register dst, Register src) { // movsxb
1885   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1886   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1887   emit_int8(0x0F);
1888   emit_int8((unsigned char)0xBE);
1889   emit_int8((unsigned char)(0xC0 | encode));
1890 }
1891 
1892 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1894   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
1895 }
1896 
1897 void Assembler::movsd(XMMRegister dst, Address src) {
1898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1899   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
1900 }
1901 
1902 void Assembler::movsd(Address dst, XMMRegister src) {
1903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1904   InstructionMark im(this);
1905   simd_prefix(dst, src, VEX_SIMD_F2);
1906   emit_int8(0x11);
1907   emit_operand(src, dst);
1908 }
1909 
1910 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1911   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1912   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
1913 }
1914 
1915 void Assembler::movss(XMMRegister dst, Address src) {
1916   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1917   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
1918 }
1919 
1920 void Assembler::movss(Address dst, XMMRegister src) {
1921   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1922   InstructionMark im(this);
1923   simd_prefix(dst, src, VEX_SIMD_F3);
1924   emit_int8(0x11);
1925   emit_operand(src, dst);
1926 }
1927 
1928 void Assembler::movswl(Register dst, Address src) { // movsxw
1929   InstructionMark im(this);
1930   prefix(src, dst);
1931   emit_int8(0x0F);
1932   emit_int8((unsigned char)0xBF);
1933   emit_operand(dst, src);
1934 }
1935 
1936 void Assembler::movswl(Register dst, Register src) { // movsxw
1937   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1938   emit_int8(0x0F);
1939   emit_int8((unsigned char)0xBF);
1940   emit_int8((unsigned char)(0xC0 | encode));
1941 }
1942 
1943 void Assembler::movw(Address dst, int imm16) {
1944   InstructionMark im(this);
1945 
1946   emit_int8(0x66); // switch to 16-bit mode
1947   prefix(dst);
1948   emit_int8((unsigned char)0xC7);
1949   emit_operand(rax, dst, 2);
1950   emit_int16(imm16);
1951 }
1952 
1953 void Assembler::movw(Register dst, Address src) {
1954   InstructionMark im(this);
1955   emit_int8(0x66);
1956   prefix(src, dst);
1957   emit_int8((unsigned char)0x8B);
1958   emit_operand(dst, src);
1959 }
1960 
1961 void Assembler::movw(Address dst, Register src) {
1962   InstructionMark im(this);
1963   emit_int8(0x66);
1964   prefix(dst, src);
1965   emit_int8((unsigned char)0x89);
1966   emit_operand(src, dst);
1967 }
1968 
1969 void Assembler::movzbl(Register dst, Address src) { // movzxb
1970   InstructionMark im(this);
1971   prefix(src, dst);
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xB6);
1974   emit_operand(dst, src);
1975 }
1976 
1977 void Assembler::movzbl(Register dst, Register src) { // movzxb
1978   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1979   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xB6);
1982   emit_int8(0xC0 | encode);
1983 }
1984 
1985 void Assembler::movzwl(Register dst, Address src) { // movzxw
1986   InstructionMark im(this);
1987   prefix(src, dst);
1988   emit_int8(0x0F);
1989   emit_int8((unsigned char)0xB7);
1990   emit_operand(dst, src);
1991 }
1992 
1993 void Assembler::movzwl(Register dst, Register src) { // movzxw
1994   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1995   emit_int8(0x0F);
1996   emit_int8((unsigned char)0xB7);
1997   emit_int8(0xC0 | encode);
1998 }
1999 
2000 void Assembler::mull(Address src) {
2001   InstructionMark im(this);
2002   prefix(src);
2003   emit_int8((unsigned char)0xF7);
2004   emit_operand(rsp, src);
2005 }
2006 
2007 void Assembler::mull(Register src) {
2008   int encode = prefix_and_encode(src->encoding());
2009   emit_int8((unsigned char)0xF7);
2010   emit_int8((unsigned char)(0xE0 | encode));
2011 }
2012 
2013 void Assembler::mulsd(XMMRegister dst, Address src) {
2014   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2015   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2016 }
2017 
2018 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2019   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2020   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2021 }
2022 
2023 void Assembler::mulss(XMMRegister dst, Address src) {
2024   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2025   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2026 }
2027 
2028 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2029   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2030   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2031 }
2032 
2033 void Assembler::negl(Register dst) {
2034   int encode = prefix_and_encode(dst->encoding());
2035   emit_int8((unsigned char)0xF7);
2036   emit_int8((unsigned char)(0xD8 | encode));
2037 }
2038 
2039 void Assembler::nop(int i) {
2040 #ifdef ASSERT
2041   assert(i > 0, " ");
2042   // The fancy nops aren't currently recognized by debuggers making it a
2043   // pain to disassemble code while debugging. If asserts are on clearly
2044   // speed is not an issue so simply use the single byte traditional nop
2045   // to do alignment.
2046 
2047   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2048   return;
2049 
2050 #endif // ASSERT
2051 
2052   if (UseAddressNop && VM_Version::is_intel()) {
2053     //
2054     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2055     //  1: 0x90
2056     //  2: 0x66 0x90
2057     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2058     //  4: 0x0F 0x1F 0x40 0x00
2059     //  5: 0x0F 0x1F 0x44 0x00 0x00
2060     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2061     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2062     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2063     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2064     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2065     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2066 
2067     // The rest coding is Intel specific - don't use consecutive address nops
2068 
2069     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2070     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2071     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2072     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2073 
2074     while(i >= 15) {
2075       // For Intel don't generate consecutive addess nops (mix with regular nops)
2076       i -= 15;
2077       emit_int8(0x66);   // size prefix
2078       emit_int8(0x66);   // size prefix
2079       emit_int8(0x66);   // size prefix
2080       addr_nop_8();
2081       emit_int8(0x66);   // size prefix
2082       emit_int8(0x66);   // size prefix
2083       emit_int8(0x66);   // size prefix
2084       emit_int8((unsigned char)0x90);
2085                          // nop
2086     }
2087     switch (i) {
2088       case 14:
2089         emit_int8(0x66); // size prefix
2090       case 13:
2091         emit_int8(0x66); // size prefix
2092       case 12:
2093         addr_nop_8();
2094         emit_int8(0x66); // size prefix
2095         emit_int8(0x66); // size prefix
2096         emit_int8(0x66); // size prefix
2097         emit_int8((unsigned char)0x90);
2098                          // nop
2099         break;
2100       case 11:
2101         emit_int8(0x66); // size prefix
2102       case 10:
2103         emit_int8(0x66); // size prefix
2104       case 9:
2105         emit_int8(0x66); // size prefix
2106       case 8:
2107         addr_nop_8();
2108         break;
2109       case 7:
2110         addr_nop_7();
2111         break;
2112       case 6:
2113         emit_int8(0x66); // size prefix
2114       case 5:
2115         addr_nop_5();
2116         break;
2117       case 4:
2118         addr_nop_4();
2119         break;
2120       case 3:
2121         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2122         emit_int8(0x66); // size prefix
2123       case 2:
2124         emit_int8(0x66); // size prefix
2125       case 1:
2126         emit_int8((unsigned char)0x90);
2127                          // nop
2128         break;
2129       default:
2130         assert(i == 0, " ");
2131     }
2132     return;
2133   }
2134   if (UseAddressNop && VM_Version::is_amd()) {
2135     //
2136     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2137     //  1: 0x90
2138     //  2: 0x66 0x90
2139     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2140     //  4: 0x0F 0x1F 0x40 0x00
2141     //  5: 0x0F 0x1F 0x44 0x00 0x00
2142     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2143     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2144     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2145     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2146     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2147     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2148 
2149     // The rest coding is AMD specific - use consecutive address nops
2150 
2151     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2152     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2153     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2154     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2155     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2156     //     Size prefixes (0x66) are added for larger sizes
2157 
2158     while(i >= 22) {
2159       i -= 11;
2160       emit_int8(0x66); // size prefix
2161       emit_int8(0x66); // size prefix
2162       emit_int8(0x66); // size prefix
2163       addr_nop_8();
2164     }
2165     // Generate first nop for size between 21-12
2166     switch (i) {
2167       case 21:
2168         i -= 1;
2169         emit_int8(0x66); // size prefix
2170       case 20:
2171       case 19:
2172         i -= 1;
2173         emit_int8(0x66); // size prefix
2174       case 18:
2175       case 17:
2176         i -= 1;
2177         emit_int8(0x66); // size prefix
2178       case 16:
2179       case 15:
2180         i -= 8;
2181         addr_nop_8();
2182         break;
2183       case 14:
2184       case 13:
2185         i -= 7;
2186         addr_nop_7();
2187         break;
2188       case 12:
2189         i -= 6;
2190         emit_int8(0x66); // size prefix
2191         addr_nop_5();
2192         break;
2193       default:
2194         assert(i < 12, " ");
2195     }
2196 
2197     // Generate second nop for size between 11-1
2198     switch (i) {
2199       case 11:
2200         emit_int8(0x66); // size prefix
2201       case 10:
2202         emit_int8(0x66); // size prefix
2203       case 9:
2204         emit_int8(0x66); // size prefix
2205       case 8:
2206         addr_nop_8();
2207         break;
2208       case 7:
2209         addr_nop_7();
2210         break;
2211       case 6:
2212         emit_int8(0x66); // size prefix
2213       case 5:
2214         addr_nop_5();
2215         break;
2216       case 4:
2217         addr_nop_4();
2218         break;
2219       case 3:
2220         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2221         emit_int8(0x66); // size prefix
2222       case 2:
2223         emit_int8(0x66); // size prefix
2224       case 1:
2225         emit_int8((unsigned char)0x90);
2226                          // nop
2227         break;
2228       default:
2229         assert(i == 0, " ");
2230     }
2231     return;
2232   }
2233 
2234   // Using nops with size prefixes "0x66 0x90".
2235   // From AMD Optimization Guide:
2236   //  1: 0x90
2237   //  2: 0x66 0x90
2238   //  3: 0x66 0x66 0x90
2239   //  4: 0x66 0x66 0x66 0x90
2240   //  5: 0x66 0x66 0x90 0x66 0x90
2241   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2242   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2243   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2244   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2245   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2246   //
2247   while(i > 12) {
2248     i -= 4;
2249     emit_int8(0x66); // size prefix
2250     emit_int8(0x66);
2251     emit_int8(0x66);
2252     emit_int8((unsigned char)0x90);
2253                      // nop
2254   }
2255   // 1 - 12 nops
2256   if(i > 8) {
2257     if(i > 9) {
2258       i -= 1;
2259       emit_int8(0x66);
2260     }
2261     i -= 3;
2262     emit_int8(0x66);
2263     emit_int8(0x66);
2264     emit_int8((unsigned char)0x90);
2265   }
2266   // 1 - 8 nops
2267   if(i > 4) {
2268     if(i > 6) {
2269       i -= 1;
2270       emit_int8(0x66);
2271     }
2272     i -= 3;
2273     emit_int8(0x66);
2274     emit_int8(0x66);
2275     emit_int8((unsigned char)0x90);
2276   }
2277   switch (i) {
2278     case 4:
2279       emit_int8(0x66);
2280     case 3:
2281       emit_int8(0x66);
2282     case 2:
2283       emit_int8(0x66);
2284     case 1:
2285       emit_int8((unsigned char)0x90);
2286       break;
2287     default:
2288       assert(i == 0, " ");
2289   }
2290 }
2291 
2292 void Assembler::notl(Register dst) {
2293   int encode = prefix_and_encode(dst->encoding());
2294   emit_int8((unsigned char)0xF7);
2295   emit_int8((unsigned char)(0xD0 | encode));
2296 }
2297 
2298 void Assembler::orl(Address dst, int32_t imm32) {
2299   InstructionMark im(this);
2300   prefix(dst);
2301   emit_arith_operand(0x81, rcx, dst, imm32);
2302 }
2303 
2304 void Assembler::orl(Register dst, int32_t imm32) {
2305   prefix(dst);
2306   emit_arith(0x81, 0xC8, dst, imm32);
2307 }
2308 
2309 void Assembler::orl(Register dst, Address src) {
2310   InstructionMark im(this);
2311   prefix(src, dst);
2312   emit_int8(0x0B);
2313   emit_operand(dst, src);
2314 }
2315 
2316 void Assembler::orl(Register dst, Register src) {
2317   (void) prefix_and_encode(dst->encoding(), src->encoding());
2318   emit_arith(0x0B, 0xC0, dst, src);
2319 }
2320 
2321 void Assembler::packuswb(XMMRegister dst, Address src) {
2322   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2323   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2324   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2325 }
2326 
2327 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2329   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2330 }
2331 
2332 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2333   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
2334   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
2335 }
2336 
2337 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2338   assert(VM_Version::supports_avx2(), "");
2339   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
2340   emit_int8(0x00);
2341   emit_int8(0xC0 | encode);
2342   emit_int8(imm8);
2343 }
2344 
2345 void Assembler::pause() {
2346   emit_int8((unsigned char)0xF3);
2347   emit_int8((unsigned char)0x90);
2348 }
2349 
2350 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2351   assert(VM_Version::supports_sse4_2(), "");
2352   InstructionMark im(this);
2353   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2354   emit_int8(0x61);
2355   emit_operand(dst, src);
2356   emit_int8(imm8);
2357 }
2358 
2359 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2360   assert(VM_Version::supports_sse4_2(), "");
2361   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2362   emit_int8(0x61);
2363   emit_int8((unsigned char)(0xC0 | encode));
2364   emit_int8(imm8);
2365 }
2366 
2367 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2368   assert(VM_Version::supports_sse4_1(), "");
2369   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2370   emit_int8(0x16);
2371   emit_int8((unsigned char)(0xC0 | encode));
2372   emit_int8(imm8);
2373 }
2374 
2375 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2376   assert(VM_Version::supports_sse4_1(), "");
2377   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2378   emit_int8(0x16);
2379   emit_int8((unsigned char)(0xC0 | encode));
2380   emit_int8(imm8);
2381 }
2382 
2383 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2384   assert(VM_Version::supports_sse4_1(), "");
2385   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2386   emit_int8(0x22);
2387   emit_int8((unsigned char)(0xC0 | encode));
2388   emit_int8(imm8);
2389 }
2390 
2391 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2392   assert(VM_Version::supports_sse4_1(), "");
2393   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2394   emit_int8(0x22);
2395   emit_int8((unsigned char)(0xC0 | encode));
2396   emit_int8(imm8);
2397 }
2398 
2399 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2400   assert(VM_Version::supports_sse4_1(), "");
2401   InstructionMark im(this);
2402   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2403   emit_int8(0x30);
2404   emit_operand(dst, src);
2405 }
2406 
2407 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2408   assert(VM_Version::supports_sse4_1(), "");
2409   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2410   emit_int8(0x30);
2411   emit_int8((unsigned char)(0xC0 | encode));
2412 }
2413 
2414 // generic
2415 void Assembler::pop(Register dst) {
2416   int encode = prefix_and_encode(dst->encoding());
2417   emit_int8(0x58 | encode);
2418 }
2419 
2420 void Assembler::popcntl(Register dst, Address src) {
2421   assert(VM_Version::supports_popcnt(), "must support");
2422   InstructionMark im(this);
2423   emit_int8((unsigned char)0xF3);
2424   prefix(src, dst);
2425   emit_int8(0x0F);
2426   emit_int8((unsigned char)0xB8);
2427   emit_operand(dst, src);
2428 }
2429 
2430 void Assembler::popcntl(Register dst, Register src) {
2431   assert(VM_Version::supports_popcnt(), "must support");
2432   emit_int8((unsigned char)0xF3);
2433   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2434   emit_int8(0x0F);
2435   emit_int8((unsigned char)0xB8);
2436   emit_int8((unsigned char)(0xC0 | encode));
2437 }
2438 
2439 void Assembler::popf() {
2440   emit_int8((unsigned char)0x9D);
2441 }
2442 
2443 #ifndef _LP64 // no 32bit push/pop on amd64
2444 void Assembler::popl(Address dst) {
2445   // NOTE: this will adjust stack by 8byte on 64bits
2446   InstructionMark im(this);
2447   prefix(dst);
2448   emit_int8((unsigned char)0x8F);
2449   emit_operand(rax, dst);
2450 }
2451 #endif
2452 
2453 void Assembler::prefetch_prefix(Address src) {
2454   prefix(src);
2455   emit_int8(0x0F);
2456 }
2457 
2458 void Assembler::prefetchnta(Address src) {
2459   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2460   InstructionMark im(this);
2461   prefetch_prefix(src);
2462   emit_int8(0x18);
2463   emit_operand(rax, src); // 0, src
2464 }
2465 
2466 void Assembler::prefetchr(Address src) {
2467   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2468   InstructionMark im(this);
2469   prefetch_prefix(src);
2470   emit_int8(0x0D);
2471   emit_operand(rax, src); // 0, src
2472 }
2473 
2474 void Assembler::prefetcht0(Address src) {
2475   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2476   InstructionMark im(this);
2477   prefetch_prefix(src);
2478   emit_int8(0x18);
2479   emit_operand(rcx, src); // 1, src
2480 }
2481 
2482 void Assembler::prefetcht1(Address src) {
2483   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2484   InstructionMark im(this);
2485   prefetch_prefix(src);
2486   emit_int8(0x18);
2487   emit_operand(rdx, src); // 2, src
2488 }
2489 
2490 void Assembler::prefetcht2(Address src) {
2491   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2492   InstructionMark im(this);
2493   prefetch_prefix(src);
2494   emit_int8(0x18);
2495   emit_operand(rbx, src); // 3, src
2496 }
2497 
2498 void Assembler::prefetchw(Address src) {
2499   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2500   InstructionMark im(this);
2501   prefetch_prefix(src);
2502   emit_int8(0x0D);
2503   emit_operand(rcx, src); // 1, src
2504 }
2505 
2506 void Assembler::prefix(Prefix p) {
2507   emit_int8(p);
2508 }
2509 
2510 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
2511   assert(VM_Version::supports_ssse3(), "");
2512   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2513   emit_int8(0x00);
2514   emit_int8((unsigned char)(0xC0 | encode));
2515 }
2516 
2517 void Assembler::pshufb(XMMRegister dst, Address src) {
2518   assert(VM_Version::supports_ssse3(), "");
2519   InstructionMark im(this);
2520   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2521   emit_int8(0x00);
2522   emit_operand(dst, src);
2523 }
2524 
2525 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2526   assert(isByte(mode), "invalid value");
2527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2528   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2529   emit_int8(mode & 0xFF);
2530 
2531 }
2532 
2533 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2534   assert(isByte(mode), "invalid value");
2535   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2536   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2537   InstructionMark im(this);
2538   simd_prefix(dst, src, VEX_SIMD_66);
2539   emit_int8(0x70);
2540   emit_operand(dst, src);
2541   emit_int8(mode & 0xFF);
2542 }
2543 
2544 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2545   assert(isByte(mode), "invalid value");
2546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2547   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2548   emit_int8(mode & 0xFF);
2549 }
2550 
2551 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2552   assert(isByte(mode), "invalid value");
2553   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2554   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2555   InstructionMark im(this);
2556   simd_prefix(dst, src, VEX_SIMD_F2);
2557   emit_int8(0x70);
2558   emit_operand(dst, src);
2559   emit_int8(mode & 0xFF);
2560 }
2561 
2562 void Assembler::psrldq(XMMRegister dst, int shift) {
2563   // Shift 128 bit value in xmm register by number of bytes.
2564   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2565   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2566   emit_int8(0x73);
2567   emit_int8((unsigned char)(0xC0 | encode));
2568   emit_int8(shift);
2569 }
2570 
2571 void Assembler::ptest(XMMRegister dst, Address src) {
2572   assert(VM_Version::supports_sse4_1(), "");
2573   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2574   InstructionMark im(this);
2575   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2576   emit_int8(0x17);
2577   emit_operand(dst, src);
2578 }
2579 
2580 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2581   assert(VM_Version::supports_sse4_1(), "");
2582   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2583   emit_int8(0x17);
2584   emit_int8((unsigned char)(0xC0 | encode));
2585 }
2586 
2587 void Assembler::vptest(XMMRegister dst, Address src) {
2588   assert(VM_Version::supports_avx(), "");
2589   InstructionMark im(this);
2590   bool vector256 = true;
2591   assert(dst != xnoreg, "sanity");
2592   int dst_enc = dst->encoding();
2593   // swap src<->dst for encoding
2594   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2595   emit_int8(0x17);
2596   emit_operand(dst, src);
2597 }
2598 
2599 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
2600   assert(VM_Version::supports_avx(), "");
2601   bool vector256 = true;
2602   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
2603   emit_int8(0x17);
2604   emit_int8((unsigned char)(0xC0 | encode));
2605 }
2606 
2607 void Assembler::punpcklbw(XMMRegister dst, Address src) {
2608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2609   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2610   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2611 }
2612 
2613 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2615   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2616 }
2617 
2618 void Assembler::punpckldq(XMMRegister dst, Address src) {
2619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2620   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2621   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2622 }
2623 
2624 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2626   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2627 }
2628 
2629 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
2630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2631   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
2632 }
2633 
2634 void Assembler::push(int32_t imm32) {
2635   // in 64bits we push 64bits onto the stack but only
2636   // take a 32bit immediate
2637   emit_int8(0x68);
2638   emit_int32(imm32);
2639 }
2640 
2641 void Assembler::push(Register src) {
2642   int encode = prefix_and_encode(src->encoding());
2643 
2644   emit_int8(0x50 | encode);
2645 }
2646 
2647 void Assembler::pushf() {
2648   emit_int8((unsigned char)0x9C);
2649 }
2650 
2651 #ifndef _LP64 // no 32bit push/pop on amd64
2652 void Assembler::pushl(Address src) {
2653   // Note this will push 64bit on 64bit
2654   InstructionMark im(this);
2655   prefix(src);
2656   emit_int8((unsigned char)0xFF);
2657   emit_operand(rsi, src);
2658 }
2659 #endif
2660 
2661 void Assembler::rcll(Register dst, int imm8) {
2662   assert(isShiftCount(imm8), "illegal shift count");
2663   int encode = prefix_and_encode(dst->encoding());
2664   if (imm8 == 1) {
2665     emit_int8((unsigned char)0xD1);
2666     emit_int8((unsigned char)(0xD0 | encode));
2667   } else {
2668     emit_int8((unsigned char)0xC1);
2669     emit_int8((unsigned char)0xD0 | encode);
2670     emit_int8(imm8);
2671   }
2672 }
2673 
2674 void Assembler::rdtsc() {
2675   emit_int8((unsigned char)0x0F);
2676   emit_int8((unsigned char)0x31);
2677 }
2678 
2679 // copies data from [esi] to [edi] using rcx pointer sized words
2680 // generic
2681 void Assembler::rep_mov() {
2682   emit_int8((unsigned char)0xF3);
2683   // MOVSQ
2684   LP64_ONLY(prefix(REX_W));
2685   emit_int8((unsigned char)0xA5);
2686 }
2687 
2688 // sets rcx bytes with rax, value at [edi]
2689 void Assembler::rep_stosb() {
2690   emit_int8((unsigned char)0xF3); // REP
2691   LP64_ONLY(prefix(REX_W));
2692   emit_int8((unsigned char)0xAA); // STOSB
2693 }
2694 
2695 // sets rcx pointer sized words with rax, value at [edi]
2696 // generic
2697 void Assembler::rep_stos() {
2698   emit_int8((unsigned char)0xF3); // REP
2699   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2700   emit_int8((unsigned char)0xAB);
2701 }
2702 
2703 // scans rcx pointer sized words at [edi] for occurance of rax,
2704 // generic
2705 void Assembler::repne_scan() { // repne_scan
2706   emit_int8((unsigned char)0xF2);
2707   // SCASQ
2708   LP64_ONLY(prefix(REX_W));
2709   emit_int8((unsigned char)0xAF);
2710 }
2711 
2712 #ifdef _LP64
2713 // scans rcx 4 byte words at [edi] for occurance of rax,
2714 // generic
2715 void Assembler::repne_scanl() { // repne_scan
2716   emit_int8((unsigned char)0xF2);
2717   // SCASL
2718   emit_int8((unsigned char)0xAF);
2719 }
2720 #endif
2721 
2722 void Assembler::ret(int imm16) {
2723   if (imm16 == 0) {
2724     emit_int8((unsigned char)0xC3);
2725   } else {
2726     emit_int8((unsigned char)0xC2);
2727     emit_int16(imm16);
2728   }
2729 }
2730 
2731 void Assembler::sahf() {
2732 #ifdef _LP64
2733   // Not supported in 64bit mode
2734   ShouldNotReachHere();
2735 #endif
2736   emit_int8((unsigned char)0x9E);
2737 }
2738 
2739 void Assembler::sarl(Register dst, int imm8) {
2740   int encode = prefix_and_encode(dst->encoding());
2741   assert(isShiftCount(imm8), "illegal shift count");
2742   if (imm8 == 1) {
2743     emit_int8((unsigned char)0xD1);
2744     emit_int8((unsigned char)(0xF8 | encode));
2745   } else {
2746     emit_int8((unsigned char)0xC1);
2747     emit_int8((unsigned char)(0xF8 | encode));
2748     emit_int8(imm8);
2749   }
2750 }
2751 
2752 void Assembler::sarl(Register dst) {
2753   int encode = prefix_and_encode(dst->encoding());
2754   emit_int8((unsigned char)0xD3);
2755   emit_int8((unsigned char)(0xF8 | encode));
2756 }
2757 
2758 void Assembler::sbbl(Address dst, int32_t imm32) {
2759   InstructionMark im(this);
2760   prefix(dst);
2761   emit_arith_operand(0x81, rbx, dst, imm32);
2762 }
2763 
2764 void Assembler::sbbl(Register dst, int32_t imm32) {
2765   prefix(dst);
2766   emit_arith(0x81, 0xD8, dst, imm32);
2767 }
2768 
2769 
2770 void Assembler::sbbl(Register dst, Address src) {
2771   InstructionMark im(this);
2772   prefix(src, dst);
2773   emit_int8(0x1B);
2774   emit_operand(dst, src);
2775 }
2776 
2777 void Assembler::sbbl(Register dst, Register src) {
2778   (void) prefix_and_encode(dst->encoding(), src->encoding());
2779   emit_arith(0x1B, 0xC0, dst, src);
2780 }
2781 
2782 void Assembler::setb(Condition cc, Register dst) {
2783   assert(0 <= cc && cc < 16, "illegal cc");
2784   int encode = prefix_and_encode(dst->encoding(), true);
2785   emit_int8(0x0F);
2786   emit_int8((unsigned char)0x90 | cc);
2787   emit_int8((unsigned char)(0xC0 | encode));
2788 }
2789 
2790 void Assembler::shll(Register dst, int imm8) {
2791   assert(isShiftCount(imm8), "illegal shift count");
2792   int encode = prefix_and_encode(dst->encoding());
2793   if (imm8 == 1 ) {
2794     emit_int8((unsigned char)0xD1);
2795     emit_int8((unsigned char)(0xE0 | encode));
2796   } else {
2797     emit_int8((unsigned char)0xC1);
2798     emit_int8((unsigned char)(0xE0 | encode));
2799     emit_int8(imm8);
2800   }
2801 }
2802 
2803 void Assembler::shll(Register dst) {
2804   int encode = prefix_and_encode(dst->encoding());
2805   emit_int8((unsigned char)0xD3);
2806   emit_int8((unsigned char)(0xE0 | encode));
2807 }
2808 
2809 void Assembler::shrl(Register dst, int imm8) {
2810   assert(isShiftCount(imm8), "illegal shift count");
2811   int encode = prefix_and_encode(dst->encoding());
2812   emit_int8((unsigned char)0xC1);
2813   emit_int8((unsigned char)(0xE8 | encode));
2814   emit_int8(imm8);
2815 }
2816 
2817 void Assembler::shrl(Register dst) {
2818   int encode = prefix_and_encode(dst->encoding());
2819   emit_int8((unsigned char)0xD3);
2820   emit_int8((unsigned char)(0xE8 | encode));
2821 }
2822 
2823 // copies a single word from [esi] to [edi]
2824 void Assembler::smovl() {
2825   emit_int8((unsigned char)0xA5);
2826 }
2827 
2828 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2829   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2830   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2831 }
2832 
2833 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2834   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2835   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2836 }
2837 
2838 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2839   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2840   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2841 }
2842 
2843 void Assembler::std() {
2844   emit_int8((unsigned char)0xFD);
2845 }
2846 
2847 void Assembler::sqrtss(XMMRegister dst, Address src) {
2848   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2849   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2850 }
2851 
2852 void Assembler::stmxcsr( Address dst) {
2853   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2854   InstructionMark im(this);
2855   prefix(dst);
2856   emit_int8(0x0F);
2857   emit_int8((unsigned char)0xAE);
2858   emit_operand(as_Register(3), dst);
2859 }
2860 
2861 void Assembler::subl(Address dst, int32_t imm32) {
2862   InstructionMark im(this);
2863   prefix(dst);
2864   emit_arith_operand(0x81, rbp, dst, imm32);
2865 }
2866 
2867 void Assembler::subl(Address dst, Register src) {
2868   InstructionMark im(this);
2869   prefix(dst, src);
2870   emit_int8(0x29);
2871   emit_operand(src, dst);
2872 }
2873 
2874 void Assembler::subl(Register dst, int32_t imm32) {
2875   prefix(dst);
2876   emit_arith(0x81, 0xE8, dst, imm32);
2877 }
2878 
2879 // Force generation of a 4 byte immediate value even if it fits into 8bit
2880 void Assembler::subl_imm32(Register dst, int32_t imm32) {
2881   prefix(dst);
2882   emit_arith_imm32(0x81, 0xE8, dst, imm32);
2883 }
2884 
2885 void Assembler::subl(Register dst, Address src) {
2886   InstructionMark im(this);
2887   prefix(src, dst);
2888   emit_int8(0x2B);
2889   emit_operand(dst, src);
2890 }
2891 
2892 void Assembler::subl(Register dst, Register src) {
2893   (void) prefix_and_encode(dst->encoding(), src->encoding());
2894   emit_arith(0x2B, 0xC0, dst, src);
2895 }
2896 
2897 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2898   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2899   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2900 }
2901 
2902 void Assembler::subsd(XMMRegister dst, Address src) {
2903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2904   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2905 }
2906 
2907 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2908   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2909   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2910 }
2911 
2912 void Assembler::subss(XMMRegister dst, Address src) {
2913   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2914   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2915 }
2916 
2917 void Assembler::testb(Register dst, int imm8) {
2918   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2919   (void) prefix_and_encode(dst->encoding(), true);
2920   emit_arith_b(0xF6, 0xC0, dst, imm8);
2921 }
2922 
2923 void Assembler::testl(Register dst, int32_t imm32) {
2924   // not using emit_arith because test
2925   // doesn't support sign-extension of
2926   // 8bit operands
2927   int encode = dst->encoding();
2928   if (encode == 0) {
2929     emit_int8((unsigned char)0xA9);
2930   } else {
2931     encode = prefix_and_encode(encode);
2932     emit_int8((unsigned char)0xF7);
2933     emit_int8((unsigned char)(0xC0 | encode));
2934   }
2935   emit_int32(imm32);
2936 }
2937 
2938 void Assembler::testl(Register dst, Register src) {
2939   (void) prefix_and_encode(dst->encoding(), src->encoding());
2940   emit_arith(0x85, 0xC0, dst, src);
2941 }
2942 
2943 void Assembler::testl(Register dst, Address  src) {
2944   InstructionMark im(this);
2945   prefix(src, dst);
2946   emit_int8((unsigned char)0x85);
2947   emit_operand(dst, src);
2948 }
2949 
2950 void Assembler::tzcntl(Register dst, Register src) {
2951   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2952   emit_int8((unsigned char)0xF3);
2953   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2954   emit_int8(0x0F);
2955   emit_int8((unsigned char)0xBC);
2956   emit_int8((unsigned char)0xC0 | encode);
2957 }
2958 
2959 void Assembler::tzcntq(Register dst, Register src) {
2960   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2961   emit_int8((unsigned char)0xF3);
2962   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2963   emit_int8(0x0F);
2964   emit_int8((unsigned char)0xBC);
2965   emit_int8((unsigned char)(0xC0 | encode));
2966 }
2967 
2968 void Assembler::ucomisd(XMMRegister dst, Address src) {
2969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2970   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2971 }
2972 
2973 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2974   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2975   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2976 }
2977 
2978 void Assembler::ucomiss(XMMRegister dst, Address src) {
2979   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2980   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2981 }
2982 
2983 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2984   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2985   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2986 }
2987 
2988 void Assembler::xabort(int8_t imm8) {
2989   emit_int8((unsigned char)0xC6);
2990   emit_int8((unsigned char)0xF8);
2991   emit_int8((unsigned char)(imm8 & 0xFF));
2992 }
2993 
2994 void Assembler::xaddl(Address dst, Register src) {
2995   InstructionMark im(this);
2996   prefix(dst, src);
2997   emit_int8(0x0F);
2998   emit_int8((unsigned char)0xC1);
2999   emit_operand(src, dst);
3000 }
3001 
3002 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3003   InstructionMark im(this);
3004   relocate(rtype);
3005   if (abort.is_bound()) {
3006     address entry = target(abort);
3007     assert(entry != NULL, "abort entry NULL");
3008     intptr_t offset = entry - pc();
3009     emit_int8((unsigned char)0xC7);
3010     emit_int8((unsigned char)0xF8);
3011     emit_int32(offset - 6); // 2 opcode + 4 address
3012   } else {
3013     abort.add_patch_at(code(), locator());
3014     emit_int8((unsigned char)0xC7);
3015     emit_int8((unsigned char)0xF8);
3016     emit_int32(0);
3017   }
3018 }
3019 
3020 void Assembler::xchgl(Register dst, Address src) { // xchg
3021   InstructionMark im(this);
3022   prefix(src, dst);
3023   emit_int8((unsigned char)0x87);
3024   emit_operand(dst, src);
3025 }
3026 
3027 void Assembler::xchgl(Register dst, Register src) {
3028   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3029   emit_int8((unsigned char)0x87);
3030   emit_int8((unsigned char)(0xC0 | encode));
3031 }
3032 
3033 void Assembler::xend() {
3034   emit_int8((unsigned char)0x0F);
3035   emit_int8((unsigned char)0x01);
3036   emit_int8((unsigned char)0xD5);
3037 }
3038 
3039 void Assembler::xgetbv() {
3040   emit_int8(0x0F);
3041   emit_int8(0x01);
3042   emit_int8((unsigned char)0xD0);
3043 }
3044 
3045 void Assembler::xorl(Register dst, int32_t imm32) {
3046   prefix(dst);
3047   emit_arith(0x81, 0xF0, dst, imm32);
3048 }
3049 
3050 void Assembler::xorl(Register dst, Address src) {
3051   InstructionMark im(this);
3052   prefix(src, dst);
3053   emit_int8(0x33);
3054   emit_operand(dst, src);
3055 }
3056 
3057 void Assembler::xorl(Register dst, Register src) {
3058   (void) prefix_and_encode(dst->encoding(), src->encoding());
3059   emit_arith(0x33, 0xC0, dst, src);
3060 }
3061 
3062 
3063 // AVX 3-operands scalar float-point arithmetic instructions
3064 
3065 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3066   assert(VM_Version::supports_avx(), "");
3067   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3068 }
3069 
3070 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3071   assert(VM_Version::supports_avx(), "");
3072   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3073 }
3074 
3075 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3076   assert(VM_Version::supports_avx(), "");
3077   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3078 }
3079 
3080 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3081   assert(VM_Version::supports_avx(), "");
3082   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3083 }
3084 
3085 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3086   assert(VM_Version::supports_avx(), "");
3087   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3088 }
3089 
3090 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3091   assert(VM_Version::supports_avx(), "");
3092   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3093 }
3094 
3095 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3096   assert(VM_Version::supports_avx(), "");
3097   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3098 }
3099 
3100 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3101   assert(VM_Version::supports_avx(), "");
3102   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3103 }
3104 
3105 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3106   assert(VM_Version::supports_avx(), "");
3107   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3108 }
3109 
3110 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3111   assert(VM_Version::supports_avx(), "");
3112   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3113 }
3114 
3115 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3116   assert(VM_Version::supports_avx(), "");
3117   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3118 }
3119 
3120 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3121   assert(VM_Version::supports_avx(), "");
3122   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3123 }
3124 
3125 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3126   assert(VM_Version::supports_avx(), "");
3127   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3128 }
3129 
3130 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3131   assert(VM_Version::supports_avx(), "");
3132   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3133 }
3134 
3135 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3136   assert(VM_Version::supports_avx(), "");
3137   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3138 }
3139 
3140 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3141   assert(VM_Version::supports_avx(), "");
3142   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3143 }
3144 
3145 //====================VECTOR ARITHMETIC=====================================
3146 
3147 // Float-point vector arithmetic
3148 
3149 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3150   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3151   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3152 }
3153 
3154 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3156   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3157 }
3158 
3159 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3160   assert(VM_Version::supports_avx(), "");
3161   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3162 }
3163 
3164 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3165   assert(VM_Version::supports_avx(), "");
3166   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3167 }
3168 
3169 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3170   assert(VM_Version::supports_avx(), "");
3171   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3172 }
3173 
3174 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3175   assert(VM_Version::supports_avx(), "");
3176   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3177 }
3178 
3179 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3180   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3181   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3182 }
3183 
3184 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3185   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3186   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3187 }
3188 
3189 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3190   assert(VM_Version::supports_avx(), "");
3191   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3192 }
3193 
3194 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3195   assert(VM_Version::supports_avx(), "");
3196   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3197 }
3198 
3199 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3200   assert(VM_Version::supports_avx(), "");
3201   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3202 }
3203 
3204 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3205   assert(VM_Version::supports_avx(), "");
3206   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3207 }
3208 
3209 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3210   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3211   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3212 }
3213 
3214 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3215   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3216   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3217 }
3218 
3219 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3220   assert(VM_Version::supports_avx(), "");
3221   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3222 }
3223 
3224 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3225   assert(VM_Version::supports_avx(), "");
3226   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3227 }
3228 
3229 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3230   assert(VM_Version::supports_avx(), "");
3231   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3232 }
3233 
3234 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3235   assert(VM_Version::supports_avx(), "");
3236   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3237 }
3238 
3239 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3240   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3241   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3242 }
3243 
3244 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3245   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3246   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3247 }
3248 
3249 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3250   assert(VM_Version::supports_avx(), "");
3251   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3252 }
3253 
3254 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3255   assert(VM_Version::supports_avx(), "");
3256   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3257 }
3258 
3259 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3260   assert(VM_Version::supports_avx(), "");
3261   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3262 }
3263 
3264 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3265   assert(VM_Version::supports_avx(), "");
3266   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3267 }
3268 
3269 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3270   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3271   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3272 }
3273 
3274 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3275   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3276   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3277 }
3278 
3279 void Assembler::andps(XMMRegister dst, Address src) {
3280   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3281   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3282 }
3283 
3284 void Assembler::andpd(XMMRegister dst, Address src) {
3285   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3286   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3287 }
3288 
3289 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3290   assert(VM_Version::supports_avx(), "");
3291   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3292 }
3293 
3294 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3295   assert(VM_Version::supports_avx(), "");
3296   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3297 }
3298 
3299 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3300   assert(VM_Version::supports_avx(), "");
3301   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3302 }
3303 
3304 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3305   assert(VM_Version::supports_avx(), "");
3306   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3307 }
3308 
3309 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
3310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3311   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3312 }
3313 
3314 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
3315   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3316   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3317 }
3318 
3319 void Assembler::xorpd(XMMRegister dst, Address src) {
3320   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3321   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3322 }
3323 
3324 void Assembler::xorps(XMMRegister dst, Address src) {
3325   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3326   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3327 }
3328 
3329 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3330   assert(VM_Version::supports_avx(), "");
3331   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3332 }
3333 
3334 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3335   assert(VM_Version::supports_avx(), "");
3336   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3337 }
3338 
3339 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3340   assert(VM_Version::supports_avx(), "");
3341   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3342 }
3343 
3344 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3345   assert(VM_Version::supports_avx(), "");
3346   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3347 }
3348 
3349 
3350 // Integer vector arithmetic
3351 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
3352   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3353   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
3354 }
3355 
3356 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
3357   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3358   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
3359 }
3360 
3361 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
3362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3363   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
3364 }
3365 
3366 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
3367   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3368   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
3369 }
3370 
3371 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3372   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3373   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3374 }
3375 
3376 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3377   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3378   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3379 }
3380 
3381 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3382   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3383   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3384 }
3385 
3386 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3387   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3388   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3389 }
3390 
3391 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3392   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3393   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3394 }
3395 
3396 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3397   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3398   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3399 }
3400 
3401 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3402   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3403   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3404 }
3405 
3406 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3407   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3408   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3409 }
3410 
3411 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
3412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3413   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
3414 }
3415 
3416 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
3417   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3418   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
3419 }
3420 
3421 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
3422   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3423   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
3424 }
3425 
3426 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
3427   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3428   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
3429 }
3430 
3431 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3432   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3433   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3434 }
3435 
3436 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3437   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3438   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3439 }
3440 
3441 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3442   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3443   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3444 }
3445 
3446 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3447   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3448   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3449 }
3450 
3451 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3452   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3453   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3454 }
3455 
3456 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3457   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3458   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3459 }
3460 
3461 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3462   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3463   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3464 }
3465 
3466 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3467   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3468   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3469 }
3470 
3471 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
3472   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3473   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
3474 }
3475 
3476 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
3477   assert(VM_Version::supports_sse4_1(), "");
3478   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3479   emit_int8(0x40);
3480   emit_int8((unsigned char)(0xC0 | encode));
3481 }
3482 
3483 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3484   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3485   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3486 }
3487 
3488 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3489   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3490   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3491   emit_int8(0x40);
3492   emit_int8((unsigned char)(0xC0 | encode));
3493 }
3494 
3495 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3496   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3497   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3498 }
3499 
3500 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3501   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3502   InstructionMark im(this);
3503   int dst_enc = dst->encoding();
3504   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3505   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3506   emit_int8(0x40);
3507   emit_operand(dst, src);
3508 }
3509 
3510 // Shift packed integers left by specified number of bits.
3511 void Assembler::psllw(XMMRegister dst, int shift) {
3512   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3513   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3514   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3515   emit_int8(0x71);
3516   emit_int8((unsigned char)(0xC0 | encode));
3517   emit_int8(shift & 0xFF);
3518 }
3519 
3520 void Assembler::pslld(XMMRegister dst, int shift) {
3521   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3522   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3523   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3524   emit_int8(0x72);
3525   emit_int8((unsigned char)(0xC0 | encode));
3526   emit_int8(shift & 0xFF);
3527 }
3528 
3529 void Assembler::psllq(XMMRegister dst, int shift) {
3530   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3531   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3532   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3533   emit_int8(0x73);
3534   emit_int8((unsigned char)(0xC0 | encode));
3535   emit_int8(shift & 0xFF);
3536 }
3537 
3538 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
3539   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3540   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
3541 }
3542 
3543 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
3544   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3545   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
3546 }
3547 
3548 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
3549   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3550   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
3551 }
3552 
3553 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3554   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3555   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3556   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3557   emit_int8(shift & 0xFF);
3558 }
3559 
3560 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3561   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3562   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3563   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3564   emit_int8(shift & 0xFF);
3565 }
3566 
3567 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3568   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3569   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3570   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3571   emit_int8(shift & 0xFF);
3572 }
3573 
3574 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3575   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3576   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
3577 }
3578 
3579 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3580   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3581   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
3582 }
3583 
3584 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3585   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3586   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
3587 }
3588 
3589 // Shift packed integers logically right by specified number of bits.
3590 void Assembler::psrlw(XMMRegister dst, int shift) {
3591   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3592   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
3593   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3594   emit_int8(0x71);
3595   emit_int8((unsigned char)(0xC0 | encode));
3596   emit_int8(shift & 0xFF);
3597 }
3598 
3599 void Assembler::psrld(XMMRegister dst, int shift) {
3600   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3601   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
3602   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3603   emit_int8(0x72);
3604   emit_int8((unsigned char)(0xC0 | encode));
3605   emit_int8(shift & 0xFF);
3606 }
3607 
3608 void Assembler::psrlq(XMMRegister dst, int shift) {
3609   // Do not confuse it with psrldq SSE2 instruction which
3610   // shifts 128 bit value in xmm register by number of bytes.
3611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3612   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3613   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3614   emit_int8(0x73);
3615   emit_int8((unsigned char)(0xC0 | encode));
3616   emit_int8(shift & 0xFF);
3617 }
3618 
3619 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
3620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3621   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
3622 }
3623 
3624 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
3625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3626   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
3627 }
3628 
3629 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
3630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3631   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
3632 }
3633 
3634 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3635   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3636   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3637   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3638   emit_int8(shift & 0xFF);
3639 }
3640 
3641 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3642   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3643   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3644   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3645   emit_int8(shift & 0xFF);
3646 }
3647 
3648 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3649   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3650   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3651   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3652   emit_int8(shift & 0xFF);
3653 }
3654 
3655 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3656   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3657   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
3658 }
3659 
3660 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3661   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3662   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
3663 }
3664 
3665 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3666   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3667   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
3668 }
3669 
3670 // Shift packed integers arithmetically right by specified number of bits.
3671 void Assembler::psraw(XMMRegister dst, int shift) {
3672   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3673   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3674   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3675   emit_int8(0x71);
3676   emit_int8((unsigned char)(0xC0 | encode));
3677   emit_int8(shift & 0xFF);
3678 }
3679 
3680 void Assembler::psrad(XMMRegister dst, int shift) {
3681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3682   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
3683   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3684   emit_int8(0x72);
3685   emit_int8((unsigned char)(0xC0 | encode));
3686   emit_int8(shift & 0xFF);
3687 }
3688 
3689 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
3690   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3691   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
3692 }
3693 
3694 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
3695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3696   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
3697 }
3698 
3699 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3700   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3701   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3702   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3703   emit_int8(shift & 0xFF);
3704 }
3705 
3706 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3707   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3708   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3709   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3710   emit_int8(shift & 0xFF);
3711 }
3712 
3713 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3714   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3715   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
3716 }
3717 
3718 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3719   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3720   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
3721 }
3722 
3723 
3724 // AND packed integers
3725 void Assembler::pand(XMMRegister dst, XMMRegister src) {
3726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3727   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
3728 }
3729 
3730 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3731   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3732   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3733 }
3734 
3735 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3736   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3737   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3738 }
3739 
3740 void Assembler::por(XMMRegister dst, XMMRegister src) {
3741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3742   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
3743 }
3744 
3745 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3746   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3747   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3748 }
3749 
3750 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3751   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3752   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3753 }
3754 
3755 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
3756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3757   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
3758 }
3759 
3760 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3761   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3762   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3763 }
3764 
3765 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3766   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3767   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3768 }
3769 
3770 
3771 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3772   assert(VM_Version::supports_avx(), "");
3773   bool vector256 = true;
3774   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3775   emit_int8(0x18);
3776   emit_int8((unsigned char)(0xC0 | encode));
3777   // 0x00 - insert into lower 128 bits
3778   // 0x01 - insert into upper 128 bits
3779   emit_int8(0x01);
3780 }
3781 
3782 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
3783   assert(VM_Version::supports_avx(), "");
3784   InstructionMark im(this);
3785   bool vector256 = true;
3786   assert(dst != xnoreg, "sanity");
3787   int dst_enc = dst->encoding();
3788   // swap src<->dst for encoding
3789   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3790   emit_int8(0x18);
3791   emit_operand(dst, src);
3792   // 0x01 - insert into upper 128 bits
3793   emit_int8(0x01);
3794 }
3795 
3796 void Assembler::vextractf128h(Address dst, XMMRegister src) {
3797   assert(VM_Version::supports_avx(), "");
3798   InstructionMark im(this);
3799   bool vector256 = true;
3800   assert(src != xnoreg, "sanity");
3801   int src_enc = src->encoding();
3802   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3803   emit_int8(0x19);
3804   emit_operand(src, dst);
3805   // 0x01 - extract from upper 128 bits
3806   emit_int8(0x01);
3807 }
3808 
3809 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3810   assert(VM_Version::supports_avx2(), "");
3811   bool vector256 = true;
3812   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3813   emit_int8(0x38);
3814   emit_int8((unsigned char)(0xC0 | encode));
3815   // 0x00 - insert into lower 128 bits
3816   // 0x01 - insert into upper 128 bits
3817   emit_int8(0x01);
3818 }
3819 
3820 void Assembler::vinserti128h(XMMRegister dst, Address src) {
3821   assert(VM_Version::supports_avx2(), "");
3822   InstructionMark im(this);
3823   bool vector256 = true;
3824   assert(dst != xnoreg, "sanity");
3825   int dst_enc = dst->encoding();
3826   // swap src<->dst for encoding
3827   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3828   emit_int8(0x38);
3829   emit_operand(dst, src);
3830   // 0x01 - insert into upper 128 bits
3831   emit_int8(0x01);
3832 }
3833 
3834 void Assembler::vextracti128h(Address dst, XMMRegister src) {
3835   assert(VM_Version::supports_avx2(), "");
3836   InstructionMark im(this);
3837   bool vector256 = true;
3838   assert(src != xnoreg, "sanity");
3839   int src_enc = src->encoding();
3840   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3841   emit_int8(0x39);
3842   emit_operand(src, dst);
3843   // 0x01 - extract from upper 128 bits
3844   emit_int8(0x01);
3845 }
3846 
3847 // duplicate 4-bytes integer data from src into 8 locations in dest
3848 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
3849   assert(VM_Version::supports_avx2(), "");
3850   bool vector256 = true;
3851   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3852   emit_int8(0x58);
3853   emit_int8((unsigned char)(0xC0 | encode));
3854 }
3855 
3856 // Carry-Less Multiplication Quadword
3857 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
3858   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
3859   bool vector256 = false;
3860   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3861   emit_int8(0x44);
3862   emit_int8((unsigned char)(0xC0 | encode));
3863   emit_int8((unsigned char)mask);
3864 }
3865 
3866 void Assembler::vzeroupper() {
3867   assert(VM_Version::supports_avx(), "");
3868   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3869   emit_int8(0x77);
3870 }
3871 
3872 
3873 #ifndef _LP64
3874 // 32bit only pieces of the assembler
3875 
3876 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3877   // NO PREFIX AS NEVER 64BIT
3878   InstructionMark im(this);
3879   emit_int8((unsigned char)0x81);
3880   emit_int8((unsigned char)(0xF8 | src1->encoding()));
3881   emit_data(imm32, rspec, 0);
3882 }
3883 
3884 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3885   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
3886   InstructionMark im(this);
3887   emit_int8((unsigned char)0x81);
3888   emit_operand(rdi, src1);
3889   emit_data(imm32, rspec, 0);
3890 }
3891 
3892 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
3893 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
3894 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
3895 void Assembler::cmpxchg8(Address adr) {
3896   InstructionMark im(this);
3897   emit_int8(0x0F);
3898   emit_int8((unsigned char)0xC7);
3899   emit_operand(rcx, adr);
3900 }
3901 
3902 void Assembler::decl(Register dst) {
3903   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3904  emit_int8(0x48 | dst->encoding());
3905 }
3906 
3907 #endif // _LP64
3908 
3909 // 64bit typically doesn't use the x87 but needs to for the trig funcs
3910 
3911 void Assembler::fabs() {
3912   emit_int8((unsigned char)0xD9);
3913   emit_int8((unsigned char)0xE1);
3914 }
3915 
3916 void Assembler::fadd(int i) {
3917   emit_farith(0xD8, 0xC0, i);
3918 }
3919 
3920 void Assembler::fadd_d(Address src) {
3921   InstructionMark im(this);
3922   emit_int8((unsigned char)0xDC);
3923   emit_operand32(rax, src);
3924 }
3925 
3926 void Assembler::fadd_s(Address src) {
3927   InstructionMark im(this);
3928   emit_int8((unsigned char)0xD8);
3929   emit_operand32(rax, src);
3930 }
3931 
3932 void Assembler::fadda(int i) {
3933   emit_farith(0xDC, 0xC0, i);
3934 }
3935 
3936 void Assembler::faddp(int i) {
3937   emit_farith(0xDE, 0xC0, i);
3938 }
3939 
3940 void Assembler::fchs() {
3941   emit_int8((unsigned char)0xD9);
3942   emit_int8((unsigned char)0xE0);
3943 }
3944 
3945 void Assembler::fcom(int i) {
3946   emit_farith(0xD8, 0xD0, i);
3947 }
3948 
3949 void Assembler::fcomp(int i) {
3950   emit_farith(0xD8, 0xD8, i);
3951 }
3952 
3953 void Assembler::fcomp_d(Address src) {
3954   InstructionMark im(this);
3955   emit_int8((unsigned char)0xDC);
3956   emit_operand32(rbx, src);
3957 }
3958 
3959 void Assembler::fcomp_s(Address src) {
3960   InstructionMark im(this);
3961   emit_int8((unsigned char)0xD8);
3962   emit_operand32(rbx, src);
3963 }
3964 
3965 void Assembler::fcompp() {
3966   emit_int8((unsigned char)0xDE);
3967   emit_int8((unsigned char)0xD9);
3968 }
3969 
3970 void Assembler::fcos() {
3971   emit_int8((unsigned char)0xD9);
3972   emit_int8((unsigned char)0xFF);
3973 }
3974 
3975 void Assembler::fdecstp() {
3976   emit_int8((unsigned char)0xD9);
3977   emit_int8((unsigned char)0xF6);
3978 }
3979 
3980 void Assembler::fdiv(int i) {
3981   emit_farith(0xD8, 0xF0, i);
3982 }
3983 
3984 void Assembler::fdiv_d(Address src) {
3985   InstructionMark im(this);
3986   emit_int8((unsigned char)0xDC);
3987   emit_operand32(rsi, src);
3988 }
3989 
3990 void Assembler::fdiv_s(Address src) {
3991   InstructionMark im(this);
3992   emit_int8((unsigned char)0xD8);
3993   emit_operand32(rsi, src);
3994 }
3995 
3996 void Assembler::fdiva(int i) {
3997   emit_farith(0xDC, 0xF8, i);
3998 }
3999 
4000 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
4001 //       is erroneous for some of the floating-point instructions below.
4002 
4003 void Assembler::fdivp(int i) {
4004   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
4005 }
4006 
4007 void Assembler::fdivr(int i) {
4008   emit_farith(0xD8, 0xF8, i);
4009 }
4010 
4011 void Assembler::fdivr_d(Address src) {
4012   InstructionMark im(this);
4013   emit_int8((unsigned char)0xDC);
4014   emit_operand32(rdi, src);
4015 }
4016 
4017 void Assembler::fdivr_s(Address src) {
4018   InstructionMark im(this);
4019   emit_int8((unsigned char)0xD8);
4020   emit_operand32(rdi, src);
4021 }
4022 
4023 void Assembler::fdivra(int i) {
4024   emit_farith(0xDC, 0xF0, i);
4025 }
4026 
4027 void Assembler::fdivrp(int i) {
4028   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
4029 }
4030 
4031 void Assembler::ffree(int i) {
4032   emit_farith(0xDD, 0xC0, i);
4033 }
4034 
4035 void Assembler::fild_d(Address adr) {
4036   InstructionMark im(this);
4037   emit_int8((unsigned char)0xDF);
4038   emit_operand32(rbp, adr);
4039 }
4040 
4041 void Assembler::fild_s(Address adr) {
4042   InstructionMark im(this);
4043   emit_int8((unsigned char)0xDB);
4044   emit_operand32(rax, adr);
4045 }
4046 
4047 void Assembler::fincstp() {
4048   emit_int8((unsigned char)0xD9);
4049   emit_int8((unsigned char)0xF7);
4050 }
4051 
4052 void Assembler::finit() {
4053   emit_int8((unsigned char)0x9B);
4054   emit_int8((unsigned char)0xDB);
4055   emit_int8((unsigned char)0xE3);
4056 }
4057 
4058 void Assembler::fist_s(Address adr) {
4059   InstructionMark im(this);
4060   emit_int8((unsigned char)0xDB);
4061   emit_operand32(rdx, adr);
4062 }
4063 
4064 void Assembler::fistp_d(Address adr) {
4065   InstructionMark im(this);
4066   emit_int8((unsigned char)0xDF);
4067   emit_operand32(rdi, adr);
4068 }
4069 
4070 void Assembler::fistp_s(Address adr) {
4071   InstructionMark im(this);
4072   emit_int8((unsigned char)0xDB);
4073   emit_operand32(rbx, adr);
4074 }
4075 
4076 void Assembler::fld1() {
4077   emit_int8((unsigned char)0xD9);
4078   emit_int8((unsigned char)0xE8);
4079 }
4080 
4081 void Assembler::fld_d(Address adr) {
4082   InstructionMark im(this);
4083   emit_int8((unsigned char)0xDD);
4084   emit_operand32(rax, adr);
4085 }
4086 
4087 void Assembler::fld_s(Address adr) {
4088   InstructionMark im(this);
4089   emit_int8((unsigned char)0xD9);
4090   emit_operand32(rax, adr);
4091 }
4092 
4093 
4094 void Assembler::fld_s(int index) {
4095   emit_farith(0xD9, 0xC0, index);
4096 }
4097 
4098 void Assembler::fld_x(Address adr) {
4099   InstructionMark im(this);
4100   emit_int8((unsigned char)0xDB);
4101   emit_operand32(rbp, adr);
4102 }
4103 
4104 void Assembler::fldcw(Address src) {
4105   InstructionMark im(this);
4106   emit_int8((unsigned char)0xD9);
4107   emit_operand32(rbp, src);
4108 }
4109 
4110 void Assembler::fldenv(Address src) {
4111   InstructionMark im(this);
4112   emit_int8((unsigned char)0xD9);
4113   emit_operand32(rsp, src);
4114 }
4115 
4116 void Assembler::fldlg2() {
4117   emit_int8((unsigned char)0xD9);
4118   emit_int8((unsigned char)0xEC);
4119 }
4120 
4121 void Assembler::fldln2() {
4122   emit_int8((unsigned char)0xD9);
4123   emit_int8((unsigned char)0xED);
4124 }
4125 
4126 void Assembler::fldz() {
4127   emit_int8((unsigned char)0xD9);
4128   emit_int8((unsigned char)0xEE);
4129 }
4130 
4131 void Assembler::flog() {
4132   fldln2();
4133   fxch();
4134   fyl2x();
4135 }
4136 
4137 void Assembler::flog10() {
4138   fldlg2();
4139   fxch();
4140   fyl2x();
4141 }
4142 
4143 void Assembler::fmul(int i) {
4144   emit_farith(0xD8, 0xC8, i);
4145 }
4146 
4147 void Assembler::fmul_d(Address src) {
4148   InstructionMark im(this);
4149   emit_int8((unsigned char)0xDC);
4150   emit_operand32(rcx, src);
4151 }
4152 
4153 void Assembler::fmul_s(Address src) {
4154   InstructionMark im(this);
4155   emit_int8((unsigned char)0xD8);
4156   emit_operand32(rcx, src);
4157 }
4158 
4159 void Assembler::fmula(int i) {
4160   emit_farith(0xDC, 0xC8, i);
4161 }
4162 
4163 void Assembler::fmulp(int i) {
4164   emit_farith(0xDE, 0xC8, i);
4165 }
4166 
4167 void Assembler::fnsave(Address dst) {
4168   InstructionMark im(this);
4169   emit_int8((unsigned char)0xDD);
4170   emit_operand32(rsi, dst);
4171 }
4172 
4173 void Assembler::fnstcw(Address src) {
4174   InstructionMark im(this);
4175   emit_int8((unsigned char)0x9B);
4176   emit_int8((unsigned char)0xD9);
4177   emit_operand32(rdi, src);
4178 }
4179 
4180 void Assembler::fnstsw_ax() {
4181   emit_int8((unsigned char)0xDF);
4182   emit_int8((unsigned char)0xE0);
4183 }
4184 
4185 void Assembler::fprem() {
4186   emit_int8((unsigned char)0xD9);
4187   emit_int8((unsigned char)0xF8);
4188 }
4189 
4190 void Assembler::fprem1() {
4191   emit_int8((unsigned char)0xD9);
4192   emit_int8((unsigned char)0xF5);
4193 }
4194 
4195 void Assembler::frstor(Address src) {
4196   InstructionMark im(this);
4197   emit_int8((unsigned char)0xDD);
4198   emit_operand32(rsp, src);
4199 }
4200 
4201 void Assembler::fsin() {
4202   emit_int8((unsigned char)0xD9);
4203   emit_int8((unsigned char)0xFE);
4204 }
4205 
4206 void Assembler::fsqrt() {
4207   emit_int8((unsigned char)0xD9);
4208   emit_int8((unsigned char)0xFA);
4209 }
4210 
4211 void Assembler::fst_d(Address adr) {
4212   InstructionMark im(this);
4213   emit_int8((unsigned char)0xDD);
4214   emit_operand32(rdx, adr);
4215 }
4216 
4217 void Assembler::fst_s(Address adr) {
4218   InstructionMark im(this);
4219   emit_int8((unsigned char)0xD9);
4220   emit_operand32(rdx, adr);
4221 }
4222 
4223 void Assembler::fstp_d(Address adr) {
4224   InstructionMark im(this);
4225   emit_int8((unsigned char)0xDD);
4226   emit_operand32(rbx, adr);
4227 }
4228 
4229 void Assembler::fstp_d(int index) {
4230   emit_farith(0xDD, 0xD8, index);
4231 }
4232 
4233 void Assembler::fstp_s(Address adr) {
4234   InstructionMark im(this);
4235   emit_int8((unsigned char)0xD9);
4236   emit_operand32(rbx, adr);
4237 }
4238 
4239 void Assembler::fstp_x(Address adr) {
4240   InstructionMark im(this);
4241   emit_int8((unsigned char)0xDB);
4242   emit_operand32(rdi, adr);
4243 }
4244 
4245 void Assembler::fsub(int i) {
4246   emit_farith(0xD8, 0xE0, i);
4247 }
4248 
4249 void Assembler::fsub_d(Address src) {
4250   InstructionMark im(this);
4251   emit_int8((unsigned char)0xDC);
4252   emit_operand32(rsp, src);
4253 }
4254 
4255 void Assembler::fsub_s(Address src) {
4256   InstructionMark im(this);
4257   emit_int8((unsigned char)0xD8);
4258   emit_operand32(rsp, src);
4259 }
4260 
4261 void Assembler::fsuba(int i) {
4262   emit_farith(0xDC, 0xE8, i);
4263 }
4264 
4265 void Assembler::fsubp(int i) {
4266   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
4267 }
4268 
4269 void Assembler::fsubr(int i) {
4270   emit_farith(0xD8, 0xE8, i);
4271 }
4272 
4273 void Assembler::fsubr_d(Address src) {
4274   InstructionMark im(this);
4275   emit_int8((unsigned char)0xDC);
4276   emit_operand32(rbp, src);
4277 }
4278 
4279 void Assembler::fsubr_s(Address src) {
4280   InstructionMark im(this);
4281   emit_int8((unsigned char)0xD8);
4282   emit_operand32(rbp, src);
4283 }
4284 
4285 void Assembler::fsubra(int i) {
4286   emit_farith(0xDC, 0xE0, i);
4287 }
4288 
4289 void Assembler::fsubrp(int i) {
4290   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
4291 }
4292 
4293 void Assembler::ftan() {
4294   emit_int8((unsigned char)0xD9);
4295   emit_int8((unsigned char)0xF2);
4296   emit_int8((unsigned char)0xDD);
4297   emit_int8((unsigned char)0xD8);
4298 }
4299 
4300 void Assembler::ftst() {
4301   emit_int8((unsigned char)0xD9);
4302   emit_int8((unsigned char)0xE4);
4303 }
4304 
4305 void Assembler::fucomi(int i) {
4306   // make sure the instruction is supported (introduced for P6, together with cmov)
4307   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4308   emit_farith(0xDB, 0xE8, i);
4309 }
4310 
4311 void Assembler::fucomip(int i) {
4312   // make sure the instruction is supported (introduced for P6, together with cmov)
4313   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4314   emit_farith(0xDF, 0xE8, i);
4315 }
4316 
4317 void Assembler::fwait() {
4318   emit_int8((unsigned char)0x9B);
4319 }
4320 
4321 void Assembler::fxch(int i) {
4322   emit_farith(0xD9, 0xC8, i);
4323 }
4324 
4325 void Assembler::fyl2x() {
4326   emit_int8((unsigned char)0xD9);
4327   emit_int8((unsigned char)0xF1);
4328 }
4329 
4330 void Assembler::frndint() {
4331   emit_int8((unsigned char)0xD9);
4332   emit_int8((unsigned char)0xFC);
4333 }
4334 
4335 void Assembler::f2xm1() {
4336   emit_int8((unsigned char)0xD9);
4337   emit_int8((unsigned char)0xF0);
4338 }
4339 
4340 void Assembler::fldl2e() {
4341   emit_int8((unsigned char)0xD9);
4342   emit_int8((unsigned char)0xEA);
4343 }
4344 
4345 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
4346 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
4347 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
4348 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
4349 
4350 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
4351 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4352   if (pre > 0) {
4353     emit_int8(simd_pre[pre]);
4354   }
4355   if (rex_w) {
4356     prefixq(adr, xreg);
4357   } else {
4358     prefix(adr, xreg);
4359   }
4360   if (opc > 0) {
4361     emit_int8(0x0F);
4362     int opc2 = simd_opc[opc];
4363     if (opc2 > 0) {
4364       emit_int8(opc2);
4365     }
4366   }
4367 }
4368 
4369 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4370   if (pre > 0) {
4371     emit_int8(simd_pre[pre]);
4372   }
4373   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
4374                           prefix_and_encode(dst_enc, src_enc);
4375   if (opc > 0) {
4376     emit_int8(0x0F);
4377     int opc2 = simd_opc[opc];
4378     if (opc2 > 0) {
4379       emit_int8(opc2);
4380     }
4381   }
4382   return encode;
4383 }
4384 
4385 
4386 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
4387   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
4388     prefix(VEX_3bytes);
4389 
4390     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
4391     byte1 = (~byte1) & 0xE0;
4392     byte1 |= opc;
4393     emit_int8(byte1);
4394 
4395     int byte2 = ((~nds_enc) & 0xf) << 3;
4396     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4397     emit_int8(byte2);
4398   } else {
4399     prefix(VEX_2bytes);
4400 
4401     int byte1 = vex_r ? VEX_R : 0;
4402     byte1 = (~byte1) & 0x80;
4403     byte1 |= ((~nds_enc) & 0xf) << 3;
4404     byte1 |= (vector256 ? 4 : 0) | pre;
4405     emit_int8(byte1);
4406   }
4407 }
4408 
4409 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
4410   bool vex_r = (xreg_enc >= 8);
4411   bool vex_b = adr.base_needs_rex();
4412   bool vex_x = adr.index_needs_rex();
4413   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4414 }
4415 
4416 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
4417   bool vex_r = (dst_enc >= 8);
4418   bool vex_b = (src_enc >= 8);
4419   bool vex_x = false;
4420   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4421   return (((dst_enc & 7) << 3) | (src_enc & 7));
4422 }
4423 
4424 
4425 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4426   if (UseAVX > 0) {
4427     int xreg_enc = xreg->encoding();
4428     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
4429     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
4430   } else {
4431     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
4432     rex_prefix(adr, xreg, pre, opc, rex_w);
4433   }
4434 }
4435 
4436 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4437   int dst_enc = dst->encoding();
4438   int src_enc = src->encoding();
4439   if (UseAVX > 0) {
4440     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4441     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
4442   } else {
4443     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
4444     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
4445   }
4446 }
4447 
4448 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4449   InstructionMark im(this);
4450   simd_prefix(dst, dst, src, pre);
4451   emit_int8(opcode);
4452   emit_operand(dst, src);
4453 }
4454 
4455 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4456   int encode = simd_prefix_and_encode(dst, dst, src, pre);
4457   emit_int8(opcode);
4458   emit_int8((unsigned char)(0xC0 | encode));
4459 }
4460 
4461 // Versions with no second source register (non-destructive source).
4462 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4463   InstructionMark im(this);
4464   simd_prefix(dst, xnoreg, src, pre);
4465   emit_int8(opcode);
4466   emit_operand(dst, src);
4467 }
4468 
4469 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4470   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4471   emit_int8(opcode);
4472   emit_int8((unsigned char)(0xC0 | encode));
4473 }
4474 
4475 // 3-operands AVX instructions
4476 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4477                                Address src, VexSimdPrefix pre, bool vector256) {
4478   InstructionMark im(this);
4479   vex_prefix(dst, nds, src, pre, vector256);
4480   emit_int8(opcode);
4481   emit_operand(dst, src);
4482 }
4483 
4484 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4485                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
4486   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4487   emit_int8(opcode);
4488   emit_int8((unsigned char)(0xC0 | encode));
4489 }
4490 
4491 #ifndef _LP64
4492 
4493 void Assembler::incl(Register dst) {
4494   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4495   emit_int8(0x40 | dst->encoding());
4496 }
4497 
4498 void Assembler::lea(Register dst, Address src) {
4499   leal(dst, src);
4500 }
4501 
4502 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4503   InstructionMark im(this);
4504   emit_int8((unsigned char)0xC7);
4505   emit_operand(rax, dst);
4506   emit_data((int)imm32, rspec, 0);
4507 }
4508 
4509 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4510   InstructionMark im(this);
4511   int encode = prefix_and_encode(dst->encoding());
4512   emit_int8((unsigned char)(0xB8 | encode));
4513   emit_data((int)imm32, rspec, 0);
4514 }
4515 
4516 void Assembler::popa() { // 32bit
4517   emit_int8(0x61);
4518 }
4519 
4520 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
4521   InstructionMark im(this);
4522   emit_int8(0x68);
4523   emit_data(imm32, rspec, 0);
4524 }
4525 
4526 void Assembler::pusha() { // 32bit
4527   emit_int8(0x60);
4528 }
4529 
4530 void Assembler::set_byte_if_not_zero(Register dst) {
4531   emit_int8(0x0F);
4532   emit_int8((unsigned char)0x95);
4533   emit_int8((unsigned char)(0xE0 | dst->encoding()));
4534 }
4535 
4536 void Assembler::shldl(Register dst, Register src) {
4537   emit_int8(0x0F);
4538   emit_int8((unsigned char)0xA5);
4539   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4540 }
4541 
4542 void Assembler::shrdl(Register dst, Register src) {
4543   emit_int8(0x0F);
4544   emit_int8((unsigned char)0xAD);
4545   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4546 }
4547 
4548 #else // LP64
4549 
4550 void Assembler::set_byte_if_not_zero(Register dst) {
4551   int enc = prefix_and_encode(dst->encoding(), true);
4552   emit_int8(0x0F);
4553   emit_int8((unsigned char)0x95);
4554   emit_int8((unsigned char)(0xE0 | enc));
4555 }
4556 
4557 // 64bit only pieces of the assembler
4558 // This should only be used by 64bit instructions that can use rip-relative
4559 // it cannot be used by instructions that want an immediate value.
4560 
4561 bool Assembler::reachable(AddressLiteral adr) {
4562   int64_t disp;
4563   // None will force a 64bit literal to the code stream. Likely a placeholder
4564   // for something that will be patched later and we need to certain it will
4565   // always be reachable.
4566   if (adr.reloc() == relocInfo::none) {
4567     return false;
4568   }
4569   if (adr.reloc() == relocInfo::internal_word_type) {
4570     // This should be rip relative and easily reachable.
4571     return true;
4572   }
4573   if (adr.reloc() == relocInfo::virtual_call_type ||
4574       adr.reloc() == relocInfo::opt_virtual_call_type ||
4575       adr.reloc() == relocInfo::static_call_type ||
4576       adr.reloc() == relocInfo::static_stub_type ) {
4577     // This should be rip relative within the code cache and easily
4578     // reachable until we get huge code caches. (At which point
4579     // ic code is going to have issues).
4580     return true;
4581   }
4582   if (adr.reloc() != relocInfo::external_word_type &&
4583       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
4584       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
4585       adr.reloc() != relocInfo::runtime_call_type ) {
4586     return false;
4587   }
4588 
4589   // Stress the correction code
4590   if (ForceUnreachable) {
4591     // Must be runtimecall reloc, see if it is in the codecache
4592     // Flipping stuff in the codecache to be unreachable causes issues
4593     // with things like inline caches where the additional instructions
4594     // are not handled.
4595     if (CodeCache::find_blob(adr._target) == NULL) {
4596       return false;
4597     }
4598   }
4599   // For external_word_type/runtime_call_type if it is reachable from where we
4600   // are now (possibly a temp buffer) and where we might end up
4601   // anywhere in the codeCache then we are always reachable.
4602   // This would have to change if we ever save/restore shared code
4603   // to be more pessimistic.
4604   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
4605   if (!is_simm32(disp)) return false;
4606   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
4607   if (!is_simm32(disp)) return false;
4608 
4609   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4610 
4611   // Because rip relative is a disp + address_of_next_instruction and we
4612   // don't know the value of address_of_next_instruction we apply a fudge factor
4613   // to make sure we will be ok no matter the size of the instruction we get placed into.
4614   // We don't have to fudge the checks above here because they are already worst case.
4615 
4616   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
4617   // + 4 because better safe than sorry.
4618   const int fudge = 12 + 4;
4619   if (disp < 0) {
4620     disp -= fudge;
4621   } else {
4622     disp += fudge;
4623   }
4624   return is_simm32(disp);
4625 }
4626 
4627 // Check if the polling page is not reachable from the code cache using rip-relative
4628 // addressing.
4629 bool Assembler::is_polling_page_far() {
4630   intptr_t addr = (intptr_t)os::get_polling_page();
4631   return ForceUnreachable ||
4632          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4633          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
4634 }
4635 
4636 void Assembler::emit_data64(jlong data,
4637                             relocInfo::relocType rtype,
4638                             int format) {
4639   if (rtype == relocInfo::none) {
4640     emit_int64(data);
4641   } else {
4642     emit_data64(data, Relocation::spec_simple(rtype), format);
4643   }
4644 }
4645 
4646 void Assembler::emit_data64(jlong data,
4647                             RelocationHolder const& rspec,
4648                             int format) {
4649   assert(imm_operand == 0, "default format must be immediate in this file");
4650   assert(imm_operand == format, "must be immediate");
4651   assert(inst_mark() != NULL, "must be inside InstructionMark");
4652   // Do not use AbstractAssembler::relocate, which is not intended for
4653   // embedded words.  Instead, relocate to the enclosing instruction.
4654   code_section()->relocate(inst_mark(), rspec, format);
4655 #ifdef ASSERT
4656   check_relocation(rspec, format);
4657 #endif
4658   emit_int64(data);
4659 }
4660 
4661 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
4662   if (reg_enc >= 8) {
4663     prefix(REX_B);
4664     reg_enc -= 8;
4665   } else if (byteinst && reg_enc >= 4) {
4666     prefix(REX);
4667   }
4668   return reg_enc;
4669 }
4670 
4671 int Assembler::prefixq_and_encode(int reg_enc) {
4672   if (reg_enc < 8) {
4673     prefix(REX_W);
4674   } else {
4675     prefix(REX_WB);
4676     reg_enc -= 8;
4677   }
4678   return reg_enc;
4679 }
4680 
4681 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
4682   if (dst_enc < 8) {
4683     if (src_enc >= 8) {
4684       prefix(REX_B);
4685       src_enc -= 8;
4686     } else if (byteinst && src_enc >= 4) {
4687       prefix(REX);
4688     }
4689   } else {
4690     if (src_enc < 8) {
4691       prefix(REX_R);
4692     } else {
4693       prefix(REX_RB);
4694       src_enc -= 8;
4695     }
4696     dst_enc -= 8;
4697   }
4698   return dst_enc << 3 | src_enc;
4699 }
4700 
4701 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
4702   if (dst_enc < 8) {
4703     if (src_enc < 8) {
4704       prefix(REX_W);
4705     } else {
4706       prefix(REX_WB);
4707       src_enc -= 8;
4708     }
4709   } else {
4710     if (src_enc < 8) {
4711       prefix(REX_WR);
4712     } else {
4713       prefix(REX_WRB);
4714       src_enc -= 8;
4715     }
4716     dst_enc -= 8;
4717   }
4718   return dst_enc << 3 | src_enc;
4719 }
4720 
4721 void Assembler::prefix(Register reg) {
4722   if (reg->encoding() >= 8) {
4723     prefix(REX_B);
4724   }
4725 }
4726 
4727 void Assembler::prefix(Address adr) {
4728   if (adr.base_needs_rex()) {
4729     if (adr.index_needs_rex()) {
4730       prefix(REX_XB);
4731     } else {
4732       prefix(REX_B);
4733     }
4734   } else {
4735     if (adr.index_needs_rex()) {
4736       prefix(REX_X);
4737     }
4738   }
4739 }
4740 
4741 void Assembler::prefixq(Address adr) {
4742   if (adr.base_needs_rex()) {
4743     if (adr.index_needs_rex()) {
4744       prefix(REX_WXB);
4745     } else {
4746       prefix(REX_WB);
4747     }
4748   } else {
4749     if (adr.index_needs_rex()) {
4750       prefix(REX_WX);
4751     } else {
4752       prefix(REX_W);
4753     }
4754   }
4755 }
4756 
4757 
4758 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
4759   if (reg->encoding() < 8) {
4760     if (adr.base_needs_rex()) {
4761       if (adr.index_needs_rex()) {
4762         prefix(REX_XB);
4763       } else {
4764         prefix(REX_B);
4765       }
4766     } else {
4767       if (adr.index_needs_rex()) {
4768         prefix(REX_X);
4769       } else if (byteinst && reg->encoding() >= 4 ) {
4770         prefix(REX);
4771       }
4772     }
4773   } else {
4774     if (adr.base_needs_rex()) {
4775       if (adr.index_needs_rex()) {
4776         prefix(REX_RXB);
4777       } else {
4778         prefix(REX_RB);
4779       }
4780     } else {
4781       if (adr.index_needs_rex()) {
4782         prefix(REX_RX);
4783       } else {
4784         prefix(REX_R);
4785       }
4786     }
4787   }
4788 }
4789 
4790 void Assembler::prefixq(Address adr, Register src) {
4791   if (src->encoding() < 8) {
4792     if (adr.base_needs_rex()) {
4793       if (adr.index_needs_rex()) {
4794         prefix(REX_WXB);
4795       } else {
4796         prefix(REX_WB);
4797       }
4798     } else {
4799       if (adr.index_needs_rex()) {
4800         prefix(REX_WX);
4801       } else {
4802         prefix(REX_W);
4803       }
4804     }
4805   } else {
4806     if (adr.base_needs_rex()) {
4807       if (adr.index_needs_rex()) {
4808         prefix(REX_WRXB);
4809       } else {
4810         prefix(REX_WRB);
4811       }
4812     } else {
4813       if (adr.index_needs_rex()) {
4814         prefix(REX_WRX);
4815       } else {
4816         prefix(REX_WR);
4817       }
4818     }
4819   }
4820 }
4821 
4822 void Assembler::prefix(Address adr, XMMRegister reg) {
4823   if (reg->encoding() < 8) {
4824     if (adr.base_needs_rex()) {
4825       if (adr.index_needs_rex()) {
4826         prefix(REX_XB);
4827       } else {
4828         prefix(REX_B);
4829       }
4830     } else {
4831       if (adr.index_needs_rex()) {
4832         prefix(REX_X);
4833       }
4834     }
4835   } else {
4836     if (adr.base_needs_rex()) {
4837       if (adr.index_needs_rex()) {
4838         prefix(REX_RXB);
4839       } else {
4840         prefix(REX_RB);
4841       }
4842     } else {
4843       if (adr.index_needs_rex()) {
4844         prefix(REX_RX);
4845       } else {
4846         prefix(REX_R);
4847       }
4848     }
4849   }
4850 }
4851 
4852 void Assembler::prefixq(Address adr, XMMRegister src) {
4853   if (src->encoding() < 8) {
4854     if (adr.base_needs_rex()) {
4855       if (adr.index_needs_rex()) {
4856         prefix(REX_WXB);
4857       } else {
4858         prefix(REX_WB);
4859       }
4860     } else {
4861       if (adr.index_needs_rex()) {
4862         prefix(REX_WX);
4863       } else {
4864         prefix(REX_W);
4865       }
4866     }
4867   } else {
4868     if (adr.base_needs_rex()) {
4869       if (adr.index_needs_rex()) {
4870         prefix(REX_WRXB);
4871       } else {
4872         prefix(REX_WRB);
4873       }
4874     } else {
4875       if (adr.index_needs_rex()) {
4876         prefix(REX_WRX);
4877       } else {
4878         prefix(REX_WR);
4879       }
4880     }
4881   }
4882 }
4883 
4884 void Assembler::adcq(Register dst, int32_t imm32) {
4885   (void) prefixq_and_encode(dst->encoding());
4886   emit_arith(0x81, 0xD0, dst, imm32);
4887 }
4888 
4889 void Assembler::adcq(Register dst, Address src) {
4890   InstructionMark im(this);
4891   prefixq(src, dst);
4892   emit_int8(0x13);
4893   emit_operand(dst, src);
4894 }
4895 
4896 void Assembler::adcq(Register dst, Register src) {
4897   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4898   emit_arith(0x13, 0xC0, dst, src);
4899 }
4900 
4901 void Assembler::addq(Address dst, int32_t imm32) {
4902   InstructionMark im(this);
4903   prefixq(dst);
4904   emit_arith_operand(0x81, rax, dst,imm32);
4905 }
4906 
4907 void Assembler::addq(Address dst, Register src) {
4908   InstructionMark im(this);
4909   prefixq(dst, src);
4910   emit_int8(0x01);
4911   emit_operand(src, dst);
4912 }
4913 
4914 void Assembler::addq(Register dst, int32_t imm32) {
4915   (void) prefixq_and_encode(dst->encoding());
4916   emit_arith(0x81, 0xC0, dst, imm32);
4917 }
4918 
4919 void Assembler::addq(Register dst, Address src) {
4920   InstructionMark im(this);
4921   prefixq(src, dst);
4922   emit_int8(0x03);
4923   emit_operand(dst, src);
4924 }
4925 
4926 void Assembler::addq(Register dst, Register src) {
4927   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4928   emit_arith(0x03, 0xC0, dst, src);
4929 }
4930 
4931 void Assembler::andq(Address dst, int32_t imm32) {
4932   InstructionMark im(this);
4933   prefixq(dst);
4934   emit_int8((unsigned char)0x81);
4935   emit_operand(rsp, dst, 4);
4936   emit_int32(imm32);
4937 }
4938 
4939 void Assembler::andq(Register dst, int32_t imm32) {
4940   (void) prefixq_and_encode(dst->encoding());
4941   emit_arith(0x81, 0xE0, dst, imm32);
4942 }
4943 
4944 void Assembler::andq(Register dst, Address src) {
4945   InstructionMark im(this);
4946   prefixq(src, dst);
4947   emit_int8(0x23);
4948   emit_operand(dst, src);
4949 }
4950 
4951 void Assembler::andq(Register dst, Register src) {
4952   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4953   emit_arith(0x23, 0xC0, dst, src);
4954 }
4955 
4956 void Assembler::andnq(Register dst, Register src1, Register src2) {
4957   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4958   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
4959   emit_int8((unsigned char)0xF2);
4960   emit_int8((unsigned char)(0xC0 | encode));
4961 }
4962 
4963 void Assembler::andnq(Register dst, Register src1, Address src2) {
4964   InstructionMark im(this);
4965   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4966   vex_prefix_0F38_q(dst, src1, src2);
4967   emit_int8((unsigned char)0xF2);
4968   emit_operand(dst, src2);
4969 }
4970 
4971 void Assembler::bsfq(Register dst, Register src) {
4972   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4973   emit_int8(0x0F);
4974   emit_int8((unsigned char)0xBC);
4975   emit_int8((unsigned char)(0xC0 | encode));
4976 }
4977 
4978 void Assembler::bsrq(Register dst, Register src) {
4979   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4980   emit_int8(0x0F);
4981   emit_int8((unsigned char)0xBD);
4982   emit_int8((unsigned char)(0xC0 | encode));
4983 }
4984 
4985 void Assembler::bswapq(Register reg) {
4986   int encode = prefixq_and_encode(reg->encoding());
4987   emit_int8(0x0F);
4988   emit_int8((unsigned char)(0xC8 | encode));
4989 }
4990 
4991 void Assembler::blsiq(Register dst, Register src) {
4992   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
4993   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
4994   emit_int8((unsigned char)0xF3);
4995   emit_int8((unsigned char)(0xC0 | encode));
4996 }
4997 
4998 void Assembler::blsiq(Register dst, Address src) {
4999   InstructionMark im(this);
5000   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5001   vex_prefix_0F38_q(rbx, dst, src);
5002   emit_int8((unsigned char)0xF3);
5003   emit_operand(rbx, src);
5004 }
5005 
5006 void Assembler::blsmskq(Register dst, Register src) {
5007   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5008   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
5009   emit_int8((unsigned char)0xF3);
5010   emit_int8((unsigned char)(0xC0 | encode));
5011 }
5012 
5013 void Assembler::blsmskq(Register dst, Address src) {
5014   InstructionMark im(this);
5015   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5016   vex_prefix_0F38_q(rdx, dst, src);
5017   emit_int8((unsigned char)0xF3);
5018   emit_operand(rdx, src);
5019 }
5020 
5021 void Assembler::blsrq(Register dst, Register src) {
5022   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5023   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
5024   emit_int8((unsigned char)0xF3);
5025   emit_int8((unsigned char)(0xC0 | encode));
5026 }
5027 
5028 void Assembler::blsrq(Register dst, Address src) {
5029   InstructionMark im(this);
5030   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5031   vex_prefix_0F38_q(rcx, dst, src);
5032   emit_int8((unsigned char)0xF3);
5033   emit_operand(rcx, src);
5034 }
5035 
5036 void Assembler::cdqq() {
5037   prefix(REX_W);
5038   emit_int8((unsigned char)0x99);
5039 }
5040 
5041 void Assembler::clflush(Address adr) {
5042   prefix(adr);
5043   emit_int8(0x0F);
5044   emit_int8((unsigned char)0xAE);
5045   emit_operand(rdi, adr);
5046 }
5047 
5048 void Assembler::cmovq(Condition cc, Register dst, Register src) {
5049   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5050   emit_int8(0x0F);
5051   emit_int8(0x40 | cc);
5052   emit_int8((unsigned char)(0xC0 | encode));
5053 }
5054 
5055 void Assembler::cmovq(Condition cc, Register dst, Address src) {
5056   InstructionMark im(this);
5057   prefixq(src, dst);
5058   emit_int8(0x0F);
5059   emit_int8(0x40 | cc);
5060   emit_operand(dst, src);
5061 }
5062 
5063 void Assembler::cmpq(Address dst, int32_t imm32) {
5064   InstructionMark im(this);
5065   prefixq(dst);
5066   emit_int8((unsigned char)0x81);
5067   emit_operand(rdi, dst, 4);
5068   emit_int32(imm32);
5069 }
5070 
5071 void Assembler::cmpq(Register dst, int32_t imm32) {
5072   (void) prefixq_and_encode(dst->encoding());
5073   emit_arith(0x81, 0xF8, dst, imm32);
5074 }
5075 
5076 void Assembler::cmpq(Address dst, Register src) {
5077   InstructionMark im(this);
5078   prefixq(dst, src);
5079   emit_int8(0x3B);
5080   emit_operand(src, dst);
5081 }
5082 
5083 void Assembler::cmpq(Register dst, Register src) {
5084   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5085   emit_arith(0x3B, 0xC0, dst, src);
5086 }
5087 
5088 void Assembler::cmpq(Register dst, Address  src) {
5089   InstructionMark im(this);
5090   prefixq(src, dst);
5091   emit_int8(0x3B);
5092   emit_operand(dst, src);
5093 }
5094 
5095 void Assembler::cmpxchgq(Register reg, Address adr) {
5096   InstructionMark im(this);
5097   prefixq(adr, reg);
5098   emit_int8(0x0F);
5099   emit_int8((unsigned char)0xB1);
5100   emit_operand(reg, adr);
5101 }
5102 
5103 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
5104   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5105   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
5106   emit_int8(0x2A);
5107   emit_int8((unsigned char)(0xC0 | encode));
5108 }
5109 
5110 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
5111   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5112   InstructionMark im(this);
5113   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
5114   emit_int8(0x2A);
5115   emit_operand(dst, src);
5116 }
5117 
5118 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
5119   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5120   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
5121   emit_int8(0x2A);
5122   emit_int8((unsigned char)(0xC0 | encode));
5123 }
5124 
5125 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
5126   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5127   InstructionMark im(this);
5128   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
5129   emit_int8(0x2A);
5130   emit_operand(dst, src);
5131 }
5132 
5133 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
5134   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5135   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
5136   emit_int8(0x2C);
5137   emit_int8((unsigned char)(0xC0 | encode));
5138 }
5139 
5140 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
5141   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5142   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
5143   emit_int8(0x2C);
5144   emit_int8((unsigned char)(0xC0 | encode));
5145 }
5146 
5147 void Assembler::decl(Register dst) {
5148   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5149   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
5150   int encode = prefix_and_encode(dst->encoding());
5151   emit_int8((unsigned char)0xFF);
5152   emit_int8((unsigned char)(0xC8 | encode));
5153 }
5154 
5155 void Assembler::decq(Register dst) {
5156   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5157   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5158   int encode = prefixq_and_encode(dst->encoding());
5159   emit_int8((unsigned char)0xFF);
5160   emit_int8(0xC8 | encode);
5161 }
5162 
5163 void Assembler::decq(Address dst) {
5164   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5165   InstructionMark im(this);
5166   prefixq(dst);
5167   emit_int8((unsigned char)0xFF);
5168   emit_operand(rcx, dst);
5169 }
5170 
5171 void Assembler::fxrstor(Address src) {
5172   prefixq(src);
5173   emit_int8(0x0F);
5174   emit_int8((unsigned char)0xAE);
5175   emit_operand(as_Register(1), src);
5176 }
5177 
5178 void Assembler::fxsave(Address dst) {
5179   prefixq(dst);
5180   emit_int8(0x0F);
5181   emit_int8((unsigned char)0xAE);
5182   emit_operand(as_Register(0), dst);
5183 }
5184 
5185 void Assembler::idivq(Register src) {
5186   int encode = prefixq_and_encode(src->encoding());
5187   emit_int8((unsigned char)0xF7);
5188   emit_int8((unsigned char)(0xF8 | encode));
5189 }
5190 
5191 void Assembler::imulq(Register dst, Register src) {
5192   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5193   emit_int8(0x0F);
5194   emit_int8((unsigned char)0xAF);
5195   emit_int8((unsigned char)(0xC0 | encode));
5196 }
5197 
5198 void Assembler::imulq(Register dst, Register src, int value) {
5199   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5200   if (is8bit(value)) {
5201     emit_int8(0x6B);
5202     emit_int8((unsigned char)(0xC0 | encode));
5203     emit_int8(value & 0xFF);
5204   } else {
5205     emit_int8(0x69);
5206     emit_int8((unsigned char)(0xC0 | encode));
5207     emit_int32(value);
5208   }
5209 }
5210 
5211 void Assembler::imulq(Register dst, Address src) {
5212   InstructionMark im(this);
5213   prefixq(src, dst);
5214   emit_int8(0x0F);
5215   emit_int8((unsigned char) 0xAF);
5216   emit_operand(dst, src);
5217 }
5218 
5219 void Assembler::incl(Register dst) {
5220   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5221   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5222   int encode = prefix_and_encode(dst->encoding());
5223   emit_int8((unsigned char)0xFF);
5224   emit_int8((unsigned char)(0xC0 | encode));
5225 }
5226 
5227 void Assembler::incq(Register dst) {
5228   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5229   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5230   int encode = prefixq_and_encode(dst->encoding());
5231   emit_int8((unsigned char)0xFF);
5232   emit_int8((unsigned char)(0xC0 | encode));
5233 }
5234 
5235 void Assembler::incq(Address dst) {
5236   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5237   InstructionMark im(this);
5238   prefixq(dst);
5239   emit_int8((unsigned char)0xFF);
5240   emit_operand(rax, dst);
5241 }
5242 
5243 void Assembler::lea(Register dst, Address src) {
5244   leaq(dst, src);
5245 }
5246 
5247 void Assembler::leaq(Register dst, Address src) {
5248   InstructionMark im(this);
5249   prefixq(src, dst);
5250   emit_int8((unsigned char)0x8D);
5251   emit_operand(dst, src);
5252 }
5253 
5254 void Assembler::mov64(Register dst, int64_t imm64) {
5255   InstructionMark im(this);
5256   int encode = prefixq_and_encode(dst->encoding());
5257   emit_int8((unsigned char)(0xB8 | encode));
5258   emit_int64(imm64);
5259 }
5260 
5261 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
5262   InstructionMark im(this);
5263   int encode = prefixq_and_encode(dst->encoding());
5264   emit_int8(0xB8 | encode);
5265   emit_data64(imm64, rspec);
5266 }
5267 
5268 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5269   InstructionMark im(this);
5270   int encode = prefix_and_encode(dst->encoding());
5271   emit_int8((unsigned char)(0xB8 | encode));
5272   emit_data((int)imm32, rspec, narrow_oop_operand);
5273 }
5274 
5275 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5276   InstructionMark im(this);
5277   prefix(dst);
5278   emit_int8((unsigned char)0xC7);
5279   emit_operand(rax, dst, 4);
5280   emit_data((int)imm32, rspec, narrow_oop_operand);
5281 }
5282 
5283 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5284   InstructionMark im(this);
5285   int encode = prefix_and_encode(src1->encoding());
5286   emit_int8((unsigned char)0x81);
5287   emit_int8((unsigned char)(0xF8 | encode));
5288   emit_data((int)imm32, rspec, narrow_oop_operand);
5289 }
5290 
5291 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5292   InstructionMark im(this);
5293   prefix(src1);
5294   emit_int8((unsigned char)0x81);
5295   emit_operand(rax, src1, 4);
5296   emit_data((int)imm32, rspec, narrow_oop_operand);
5297 }
5298 
5299 void Assembler::lzcntq(Register dst, Register src) {
5300   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5301   emit_int8((unsigned char)0xF3);
5302   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5303   emit_int8(0x0F);
5304   emit_int8((unsigned char)0xBD);
5305   emit_int8((unsigned char)(0xC0 | encode));
5306 }
5307 
5308 void Assembler::movdq(XMMRegister dst, Register src) {
5309   // table D-1 says MMX/SSE2
5310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5311   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5312   emit_int8(0x6E);
5313   emit_int8((unsigned char)(0xC0 | encode));
5314 }
5315 
5316 void Assembler::movdq(Register dst, XMMRegister src) {
5317   // table D-1 says MMX/SSE2
5318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5319   // swap src/dst to get correct prefix
5320   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5321   emit_int8(0x7E);
5322   emit_int8((unsigned char)(0xC0 | encode));
5323 }
5324 
5325 void Assembler::movq(Register dst, Register src) {
5326   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5327   emit_int8((unsigned char)0x8B);
5328   emit_int8((unsigned char)(0xC0 | encode));
5329 }
5330 
5331 void Assembler::movq(Register dst, Address src) {
5332   InstructionMark im(this);
5333   prefixq(src, dst);
5334   emit_int8((unsigned char)0x8B);
5335   emit_operand(dst, src);
5336 }
5337 
5338 void Assembler::movq(Address dst, Register src) {
5339   InstructionMark im(this);
5340   prefixq(dst, src);
5341   emit_int8((unsigned char)0x89);
5342   emit_operand(src, dst);
5343 }
5344 
5345 void Assembler::movsbq(Register dst, Address src) {
5346   InstructionMark im(this);
5347   prefixq(src, dst);
5348   emit_int8(0x0F);
5349   emit_int8((unsigned char)0xBE);
5350   emit_operand(dst, src);
5351 }
5352 
5353 void Assembler::movsbq(Register dst, Register src) {
5354   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5355   emit_int8(0x0F);
5356   emit_int8((unsigned char)0xBE);
5357   emit_int8((unsigned char)(0xC0 | encode));
5358 }
5359 
5360 void Assembler::movslq(Register dst, int32_t imm32) {
5361   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
5362   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
5363   // as a result we shouldn't use until tested at runtime...
5364   ShouldNotReachHere();
5365   InstructionMark im(this);
5366   int encode = prefixq_and_encode(dst->encoding());
5367   emit_int8((unsigned char)(0xC7 | encode));
5368   emit_int32(imm32);
5369 }
5370 
5371 void Assembler::movslq(Address dst, int32_t imm32) {
5372   assert(is_simm32(imm32), "lost bits");
5373   InstructionMark im(this);
5374   prefixq(dst);
5375   emit_int8((unsigned char)0xC7);
5376   emit_operand(rax, dst, 4);
5377   emit_int32(imm32);
5378 }
5379 
5380 void Assembler::movslq(Register dst, Address src) {
5381   InstructionMark im(this);
5382   prefixq(src, dst);
5383   emit_int8(0x63);
5384   emit_operand(dst, src);
5385 }
5386 
5387 void Assembler::movslq(Register dst, Register src) {
5388   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5389   emit_int8(0x63);
5390   emit_int8((unsigned char)(0xC0 | encode));
5391 }
5392 
5393 void Assembler::movswq(Register dst, Address src) {
5394   InstructionMark im(this);
5395   prefixq(src, dst);
5396   emit_int8(0x0F);
5397   emit_int8((unsigned char)0xBF);
5398   emit_operand(dst, src);
5399 }
5400 
5401 void Assembler::movswq(Register dst, Register src) {
5402   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5403   emit_int8((unsigned char)0x0F);
5404   emit_int8((unsigned char)0xBF);
5405   emit_int8((unsigned char)(0xC0 | encode));
5406 }
5407 
5408 void Assembler::movzbq(Register dst, Address src) {
5409   InstructionMark im(this);
5410   prefixq(src, dst);
5411   emit_int8((unsigned char)0x0F);
5412   emit_int8((unsigned char)0xB6);
5413   emit_operand(dst, src);
5414 }
5415 
5416 void Assembler::movzbq(Register dst, Register src) {
5417   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5418   emit_int8(0x0F);
5419   emit_int8((unsigned char)0xB6);
5420   emit_int8(0xC0 | encode);
5421 }
5422 
5423 void Assembler::movzwq(Register dst, Address src) {
5424   InstructionMark im(this);
5425   prefixq(src, dst);
5426   emit_int8((unsigned char)0x0F);
5427   emit_int8((unsigned char)0xB7);
5428   emit_operand(dst, src);
5429 }
5430 
5431 void Assembler::movzwq(Register dst, Register src) {
5432   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5433   emit_int8((unsigned char)0x0F);
5434   emit_int8((unsigned char)0xB7);
5435   emit_int8((unsigned char)(0xC0 | encode));
5436 }
5437 
5438 void Assembler::negq(Register dst) {
5439   int encode = prefixq_and_encode(dst->encoding());
5440   emit_int8((unsigned char)0xF7);
5441   emit_int8((unsigned char)(0xD8 | encode));
5442 }
5443 
5444 void Assembler::notq(Register dst) {
5445   int encode = prefixq_and_encode(dst->encoding());
5446   emit_int8((unsigned char)0xF7);
5447   emit_int8((unsigned char)(0xD0 | encode));
5448 }
5449 
5450 void Assembler::orq(Address dst, int32_t imm32) {
5451   InstructionMark im(this);
5452   prefixq(dst);
5453   emit_int8((unsigned char)0x81);
5454   emit_operand(rcx, dst, 4);
5455   emit_int32(imm32);
5456 }
5457 
5458 void Assembler::orq(Register dst, int32_t imm32) {
5459   (void) prefixq_and_encode(dst->encoding());
5460   emit_arith(0x81, 0xC8, dst, imm32);
5461 }
5462 
5463 void Assembler::orq(Register dst, Address src) {
5464   InstructionMark im(this);
5465   prefixq(src, dst);
5466   emit_int8(0x0B);
5467   emit_operand(dst, src);
5468 }
5469 
5470 void Assembler::orq(Register dst, Register src) {
5471   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5472   emit_arith(0x0B, 0xC0, dst, src);
5473 }
5474 
5475 void Assembler::popa() { // 64bit
5476   movq(r15, Address(rsp, 0));
5477   movq(r14, Address(rsp, wordSize));
5478   movq(r13, Address(rsp, 2 * wordSize));
5479   movq(r12, Address(rsp, 3 * wordSize));
5480   movq(r11, Address(rsp, 4 * wordSize));
5481   movq(r10, Address(rsp, 5 * wordSize));
5482   movq(r9,  Address(rsp, 6 * wordSize));
5483   movq(r8,  Address(rsp, 7 * wordSize));
5484   movq(rdi, Address(rsp, 8 * wordSize));
5485   movq(rsi, Address(rsp, 9 * wordSize));
5486   movq(rbp, Address(rsp, 10 * wordSize));
5487   // skip rsp
5488   movq(rbx, Address(rsp, 12 * wordSize));
5489   movq(rdx, Address(rsp, 13 * wordSize));
5490   movq(rcx, Address(rsp, 14 * wordSize));
5491   movq(rax, Address(rsp, 15 * wordSize));
5492 
5493   addq(rsp, 16 * wordSize);
5494 }
5495 
5496 void Assembler::popcntq(Register dst, Address src) {
5497   assert(VM_Version::supports_popcnt(), "must support");
5498   InstructionMark im(this);
5499   emit_int8((unsigned char)0xF3);
5500   prefixq(src, dst);
5501   emit_int8((unsigned char)0x0F);
5502   emit_int8((unsigned char)0xB8);
5503   emit_operand(dst, src);
5504 }
5505 
5506 void Assembler::popcntq(Register dst, Register src) {
5507   assert(VM_Version::supports_popcnt(), "must support");
5508   emit_int8((unsigned char)0xF3);
5509   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5510   emit_int8((unsigned char)0x0F);
5511   emit_int8((unsigned char)0xB8);
5512   emit_int8((unsigned char)(0xC0 | encode));
5513 }
5514 
5515 void Assembler::popq(Address dst) {
5516   InstructionMark im(this);
5517   prefixq(dst);
5518   emit_int8((unsigned char)0x8F);
5519   emit_operand(rax, dst);
5520 }
5521 
5522 void Assembler::pusha() { // 64bit
5523   // we have to store original rsp.  ABI says that 128 bytes
5524   // below rsp are local scratch.
5525   movq(Address(rsp, -5 * wordSize), rsp);
5526 
5527   subq(rsp, 16 * wordSize);
5528 
5529   movq(Address(rsp, 15 * wordSize), rax);
5530   movq(Address(rsp, 14 * wordSize), rcx);
5531   movq(Address(rsp, 13 * wordSize), rdx);
5532   movq(Address(rsp, 12 * wordSize), rbx);
5533   // skip rsp
5534   movq(Address(rsp, 10 * wordSize), rbp);
5535   movq(Address(rsp, 9 * wordSize), rsi);
5536   movq(Address(rsp, 8 * wordSize), rdi);
5537   movq(Address(rsp, 7 * wordSize), r8);
5538   movq(Address(rsp, 6 * wordSize), r9);
5539   movq(Address(rsp, 5 * wordSize), r10);
5540   movq(Address(rsp, 4 * wordSize), r11);
5541   movq(Address(rsp, 3 * wordSize), r12);
5542   movq(Address(rsp, 2 * wordSize), r13);
5543   movq(Address(rsp, wordSize), r14);
5544   movq(Address(rsp, 0), r15);
5545 }
5546 
5547 void Assembler::pushq(Address src) {
5548   InstructionMark im(this);
5549   prefixq(src);
5550   emit_int8((unsigned char)0xFF);
5551   emit_operand(rsi, src);
5552 }
5553 
5554 void Assembler::rclq(Register dst, int imm8) {
5555   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5556   int encode = prefixq_and_encode(dst->encoding());
5557   if (imm8 == 1) {
5558     emit_int8((unsigned char)0xD1);
5559     emit_int8((unsigned char)(0xD0 | encode));
5560   } else {
5561     emit_int8((unsigned char)0xC1);
5562     emit_int8((unsigned char)(0xD0 | encode));
5563     emit_int8(imm8);
5564   }
5565 }
5566 void Assembler::sarq(Register dst, int imm8) {
5567   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5568   int encode = prefixq_and_encode(dst->encoding());
5569   if (imm8 == 1) {
5570     emit_int8((unsigned char)0xD1);
5571     emit_int8((unsigned char)(0xF8 | encode));
5572   } else {
5573     emit_int8((unsigned char)0xC1);
5574     emit_int8((unsigned char)(0xF8 | encode));
5575     emit_int8(imm8);
5576   }
5577 }
5578 
5579 void Assembler::sarq(Register dst) {
5580   int encode = prefixq_and_encode(dst->encoding());
5581   emit_int8((unsigned char)0xD3);
5582   emit_int8((unsigned char)(0xF8 | encode));
5583 }
5584 
5585 void Assembler::sbbq(Address dst, int32_t imm32) {
5586   InstructionMark im(this);
5587   prefixq(dst);
5588   emit_arith_operand(0x81, rbx, dst, imm32);
5589 }
5590 
5591 void Assembler::sbbq(Register dst, int32_t imm32) {
5592   (void) prefixq_and_encode(dst->encoding());
5593   emit_arith(0x81, 0xD8, dst, imm32);
5594 }
5595 
5596 void Assembler::sbbq(Register dst, Address src) {
5597   InstructionMark im(this);
5598   prefixq(src, dst);
5599   emit_int8(0x1B);
5600   emit_operand(dst, src);
5601 }
5602 
5603 void Assembler::sbbq(Register dst, Register src) {
5604   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5605   emit_arith(0x1B, 0xC0, dst, src);
5606 }
5607 
5608 void Assembler::shlq(Register dst, int imm8) {
5609   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5610   int encode = prefixq_and_encode(dst->encoding());
5611   if (imm8 == 1) {
5612     emit_int8((unsigned char)0xD1);
5613     emit_int8((unsigned char)(0xE0 | encode));
5614   } else {
5615     emit_int8((unsigned char)0xC1);
5616     emit_int8((unsigned char)(0xE0 | encode));
5617     emit_int8(imm8);
5618   }
5619 }
5620 
5621 void Assembler::shlq(Register dst) {
5622   int encode = prefixq_and_encode(dst->encoding());
5623   emit_int8((unsigned char)0xD3);
5624   emit_int8((unsigned char)(0xE0 | encode));
5625 }
5626 
5627 void Assembler::shrq(Register dst, int imm8) {
5628   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5629   int encode = prefixq_and_encode(dst->encoding());
5630   emit_int8((unsigned char)0xC1);
5631   emit_int8((unsigned char)(0xE8 | encode));
5632   emit_int8(imm8);
5633 }
5634 
5635 void Assembler::shrq(Register dst) {
5636   int encode = prefixq_and_encode(dst->encoding());
5637   emit_int8((unsigned char)0xD3);
5638   emit_int8(0xE8 | encode);
5639 }
5640 
5641 void Assembler::subq(Address dst, int32_t imm32) {
5642   InstructionMark im(this);
5643   prefixq(dst);
5644   emit_arith_operand(0x81, rbp, dst, imm32);
5645 }
5646 
5647 void Assembler::subq(Address dst, Register src) {
5648   InstructionMark im(this);
5649   prefixq(dst, src);
5650   emit_int8(0x29);
5651   emit_operand(src, dst);
5652 }
5653 
5654 void Assembler::subq(Register dst, int32_t imm32) {
5655   (void) prefixq_and_encode(dst->encoding());
5656   emit_arith(0x81, 0xE8, dst, imm32);
5657 }
5658 
5659 // Force generation of a 4 byte immediate value even if it fits into 8bit
5660 void Assembler::subq_imm32(Register dst, int32_t imm32) {
5661   (void) prefixq_and_encode(dst->encoding());
5662   emit_arith_imm32(0x81, 0xE8, dst, imm32);
5663 }
5664 
5665 void Assembler::subq(Register dst, Address src) {
5666   InstructionMark im(this);
5667   prefixq(src, dst);
5668   emit_int8(0x2B);
5669   emit_operand(dst, src);
5670 }
5671 
5672 void Assembler::subq(Register dst, Register src) {
5673   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5674   emit_arith(0x2B, 0xC0, dst, src);
5675 }
5676 
5677 void Assembler::testq(Register dst, int32_t imm32) {
5678   // not using emit_arith because test
5679   // doesn't support sign-extension of
5680   // 8bit operands
5681   int encode = dst->encoding();
5682   if (encode == 0) {
5683     prefix(REX_W);
5684     emit_int8((unsigned char)0xA9);
5685   } else {
5686     encode = prefixq_and_encode(encode);
5687     emit_int8((unsigned char)0xF7);
5688     emit_int8((unsigned char)(0xC0 | encode));
5689   }
5690   emit_int32(imm32);
5691 }
5692 
5693 void Assembler::testq(Register dst, Register src) {
5694   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5695   emit_arith(0x85, 0xC0, dst, src);
5696 }
5697 
5698 void Assembler::xaddq(Address dst, Register src) {
5699   InstructionMark im(this);
5700   prefixq(dst, src);
5701   emit_int8(0x0F);
5702   emit_int8((unsigned char)0xC1);
5703   emit_operand(src, dst);
5704 }
5705 
5706 void Assembler::xchgq(Register dst, Address src) {
5707   InstructionMark im(this);
5708   prefixq(src, dst);
5709   emit_int8((unsigned char)0x87);
5710   emit_operand(dst, src);
5711 }
5712 
5713 void Assembler::xchgq(Register dst, Register src) {
5714   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5715   emit_int8((unsigned char)0x87);
5716   emit_int8((unsigned char)(0xc0 | encode));
5717 }
5718 
5719 void Assembler::xorq(Register dst, Register src) {
5720   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5721   emit_arith(0x33, 0xC0, dst, src);
5722 }
5723 
5724 void Assembler::xorq(Register dst, Address src) {
5725   InstructionMark im(this);
5726   prefixq(src, dst);
5727   emit_int8(0x33);
5728   emit_operand(dst, src);
5729 }
5730 
5731 #endif // !LP64