1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/runtime.hpp"
  34 
  35 // Optimization - Graph Style
  36 
  37 // Check whether val is not-null-decoded compressed oop,
  38 // i.e. will grab into the base of the heap if it represents NULL.
  39 static bool accesses_heap_base_zone(Node *val) {
  40   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
  41     if (val && val->is_Mach()) {
  42       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  43         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  44         // decode NULL to point to the heap base (Decode_NN).
  45         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  46           return true;
  47         }
  48       }
  49       // Must recognize load operation with Decode matched in memory operand.
  50       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  51       // returns true everywhere else. On PPC, no such memory operands
  52       // exist, therefore we did not yet implement a check for such operands.
  53       NOT_AIX(Unimplemented());
  54     }
  55   }
  56   return false;
  57 }
  58 
  59 static bool needs_explicit_null_check_for_read(Node *val) {
  60   // On some OSes (AIX) the page at address 0 is only write protected.
  61   // If so, only Store operations will trap.
  62   if (os::zero_page_read_protected()) {
  63     return false;  // Implicit null check will work.
  64   }
  65   // Also a read accessing the base of a heap-based compressed heap will trap.
  66   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  67       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  68     return false;
  69   }
  70 
  71   return true;
  72 }
  73 
  74 //------------------------------implicit_null_check----------------------------
  75 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  76 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  77 // I can generate a memory op if there is not one nearby.
  78 // The proj is the control projection for the not-null case.
  79 // The val is the pointer being checked for nullness or
  80 // decodeHeapOop_not_null node if it did not fold into address.
  81 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  82   // Assume if null check need for 0 offset then always needed
  83   // Intel solaris doesn't support any null checks yet and no
  84   // mechanism exists (yet) to set the switches at an os_cpu level
  85   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  86 
  87   // Make sure the ptr-is-null path appears to be uncommon!
  88   float f = block->end()->as_MachIf()->_prob;
  89   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  90   if( f > PROB_UNLIKELY_MAG(4) ) return;
  91 
  92   uint bidx = 0;                // Capture index of value into memop
  93   bool was_store;               // Memory op is a store op
  94 
  95   // Get the successor block for if the test ptr is non-null
  96   Block* not_null_block;  // this one goes with the proj
  97   Block* null_block;
  98   if (block->get_node(block->number_of_nodes()-1) == proj) {
  99     null_block     = block->_succs[0];
 100     not_null_block = block->_succs[1];
 101   } else {
 102     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 103     not_null_block = block->_succs[0];
 104     null_block     = block->_succs[1];
 105   }
 106   while (null_block->is_Empty() == Block::empty_with_goto) {
 107     null_block     = null_block->_succs[0];
 108   }
 109 
 110   // Search the exception block for an uncommon trap.
 111   // (See Parse::do_if and Parse::do_ifnull for the reason
 112   // we need an uncommon trap.  Briefly, we need a way to
 113   // detect failure of this optimization, as in 6366351.)
 114   {
 115     bool found_trap = false;
 116     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 117       Node* nn = null_block->get_node(i1);
 118       if (nn->is_MachCall() &&
 119           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 120         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 121         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 122           jint tr_con = trtype->is_int()->get_con();
 123           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 124           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 125           assert((int)reason < (int)BitsPerInt, "recode bit map");
 126           if (is_set_nth_bit(allowed_reasons, (int) reason)
 127               && action != Deoptimization::Action_none) {
 128             // This uncommon trap is sure to recompile, eventually.
 129             // When that happens, C->too_many_traps will prevent
 130             // this transformation from happening again.
 131             found_trap = true;
 132           }
 133         }
 134         break;
 135       }
 136     }
 137     if (!found_trap) {
 138       // We did not find an uncommon trap.
 139       return;
 140     }
 141   }
 142 
 143   // Check for decodeHeapOop_not_null node which did not fold into address
 144   bool is_decoden = ((intptr_t)val) & 1;
 145   val = (Node*)(((intptr_t)val) & ~1);
 146 
 147   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 148          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 149 
 150   // Search the successor block for a load or store who's base value is also
 151   // the tested value.  There may be several.
 152   Node_List *out = new Node_List(Thread::current()->resource_area());
 153   MachNode *best = NULL;        // Best found so far
 154   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 155     Node *m = val->out(i);
 156     if( !m->is_Mach() ) continue;
 157     MachNode *mach = m->as_Mach();
 158     was_store = false;
 159     int iop = mach->ideal_Opcode();
 160     switch( iop ) {
 161     case Op_LoadB:
 162     case Op_LoadUB:
 163     case Op_LoadUS:
 164     case Op_LoadD:
 165     case Op_LoadF:
 166     case Op_LoadI:
 167     case Op_LoadL:
 168     case Op_LoadP:
 169     case Op_LoadN:
 170     case Op_LoadS:
 171     case Op_LoadKlass:
 172     case Op_LoadNKlass:
 173     case Op_LoadRange:
 174     case Op_LoadD_unaligned:
 175     case Op_LoadL_unaligned:
 176       assert(mach->in(2) == val, "should be address");
 177       break;
 178     case Op_StoreB:
 179     case Op_StoreC:
 180     case Op_StoreCM:
 181     case Op_StoreD:
 182     case Op_StoreF:
 183     case Op_StoreI:
 184     case Op_StoreL:
 185     case Op_StoreP:
 186     case Op_StoreN:
 187     case Op_StoreNKlass:
 188       was_store = true;         // Memory op is a store op
 189       // Stores will have their address in slot 2 (memory in slot 1).
 190       // If the value being nul-checked is in another slot, it means we
 191       // are storing the checked value, which does NOT check the value!
 192       if( mach->in(2) != val ) continue;
 193       break;                    // Found a memory op?
 194     case Op_StrComp:
 195     case Op_StrEquals:
 196     case Op_StrIndexOf:
 197     case Op_AryEq:
 198     case Op_EncodeISOArray:
 199       // Not a legit memory op for implicit null check regardless of
 200       // embedded loads
 201       continue;
 202     default:                    // Also check for embedded loads
 203       if( !mach->needs_anti_dependence_check() )
 204         continue;               // Not an memory op; skip it
 205       if( must_clone[iop] ) {
 206         // Do not move nodes which produce flags because
 207         // RA will try to clone it to place near branch and
 208         // it will cause recompilation, see clone_node().
 209         continue;
 210       }
 211       {
 212         // Check that value is used in memory address in
 213         // instructions with embedded load (CmpP val1,(val2+off)).
 214         Node* base;
 215         Node* index;
 216         const MachOper* oper = mach->memory_inputs(base, index);
 217         if (oper == NULL || oper == (MachOper*)-1) {
 218           continue;             // Not an memory op; skip it
 219         }
 220         if (val == base ||
 221             val == index && val->bottom_type()->isa_narrowoop()) {
 222           break;                // Found it
 223         } else {
 224           continue;             // Skip it
 225         }
 226       }
 227       break;
 228     }
 229 
 230     // On some OSes (AIX) the page at address 0 is only write protected.
 231     // If so, only Store operations will trap.
 232     // But a read accessing the base of a heap-based compressed heap will trap.
 233     if (!was_store && needs_explicit_null_check_for_read(val)) {
 234       continue;
 235     }
 236 
 237     // check if the offset is not too high for implicit exception
 238     {
 239       intptr_t offset = 0;
 240       const TypePtr *adr_type = NULL;  // Do not need this return value here
 241       const Node* base = mach->get_base_and_disp(offset, adr_type);
 242       if (base == NULL || base == NodeSentinel) {
 243         // Narrow oop address doesn't have base, only index
 244         if( val->bottom_type()->isa_narrowoop() &&
 245             MacroAssembler::needs_explicit_null_check(offset) )
 246           continue;             // Give up if offset is beyond page size
 247         // cannot reason about it; is probably not implicit null exception
 248       } else {
 249         const TypePtr* tptr;
 250         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 251                                   Universe::narrow_klass_shift() == 0)) {
 252           // 32-bits narrow oop can be the base of address expressions
 253           tptr = base->get_ptr_type();
 254         } else {
 255           // only regular oops are expected here
 256           tptr = base->bottom_type()->is_ptr();
 257         }
 258         // Give up if offset is not a compile-time constant
 259         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 260           continue;
 261         offset += tptr->_offset; // correct if base is offseted
 262         if( MacroAssembler::needs_explicit_null_check(offset) )
 263           continue;             // Give up is reference is beyond 4K page size
 264       }
 265     }
 266 
 267     // Check ctrl input to see if the null-check dominates the memory op
 268     Block *cb = get_block_for_node(mach);
 269     cb = cb->_idom;             // Always hoist at least 1 block
 270     if( !was_store ) {          // Stores can be hoisted only one block
 271       while( cb->_dom_depth > (block->_dom_depth + 1))
 272         cb = cb->_idom;         // Hoist loads as far as we want
 273       // The non-null-block should dominate the memory op, too. Live
 274       // range spilling will insert a spill in the non-null-block if it is
 275       // needs to spill the memory op for an implicit null check.
 276       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 277         if (cb != not_null_block) continue;
 278         cb = cb->_idom;
 279       }
 280     }
 281     if( cb != block ) continue;
 282 
 283     // Found a memory user; see if it can be hoisted to check-block
 284     uint vidx = 0;              // Capture index of value into memop
 285     uint j;
 286     for( j = mach->req()-1; j > 0; j-- ) {
 287       if( mach->in(j) == val ) {
 288         vidx = j;
 289         // Ignore DecodeN val which could be hoisted to where needed.
 290         if( is_decoden ) continue;
 291       }
 292       // Block of memory-op input
 293       Block *inb = get_block_for_node(mach->in(j));
 294       Block *b = block;          // Start from nul check
 295       while( b != inb && b->_dom_depth > inb->_dom_depth )
 296         b = b->_idom;           // search upwards for input
 297       // See if input dominates null check
 298       if( b != inb )
 299         break;
 300     }
 301     if( j > 0 )
 302       continue;
 303     Block *mb = get_block_for_node(mach);
 304     // Hoisting stores requires more checks for the anti-dependence case.
 305     // Give up hoisting if we have to move the store past any load.
 306     if( was_store ) {
 307       Block *b = mb;            // Start searching here for a local load
 308       // mach use (faulting) trying to hoist
 309       // n might be blocker to hoisting
 310       while( b != block ) {
 311         uint k;
 312         for( k = 1; k < b->number_of_nodes(); k++ ) {
 313           Node *n = b->get_node(k);
 314           if( n->needs_anti_dependence_check() &&
 315               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 316             break;              // Found anti-dependent load
 317         }
 318         if( k < b->number_of_nodes() )
 319           break;                // Found anti-dependent load
 320         // Make sure control does not do a merge (would have to check allpaths)
 321         if( b->num_preds() != 2 ) break;
 322         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 323       }
 324       if( b != block ) continue;
 325     }
 326 
 327     // Make sure this memory op is not already being used for a NullCheck
 328     Node *e = mb->end();
 329     if( e->is_MachNullCheck() && e->in(1) == mach )
 330       continue;                 // Already being used as a NULL check
 331 
 332     // Found a candidate!  Pick one with least dom depth - the highest
 333     // in the dom tree should be closest to the null check.
 334     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 335       best = mach;
 336       bidx = vidx;
 337     }
 338   }
 339   // No candidate!
 340   if (best == NULL) {
 341     return;
 342   }
 343 
 344   // ---- Found an implicit null check
 345   extern int implicit_null_checks;
 346   implicit_null_checks++;
 347 
 348   if( is_decoden ) {
 349     // Check if we need to hoist decodeHeapOop_not_null first.
 350     Block *valb = get_block_for_node(val);
 351     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 352       // Hoist it up to the end of the test block.
 353       valb->find_remove(val);
 354       block->add_inst(val);
 355       map_node_to_block(val, block);
 356       // DecodeN on x86 may kill flags. Check for flag-killing projections
 357       // that also need to be hoisted.
 358       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 359         Node* n = val->fast_out(j);
 360         if( n->is_MachProj() ) {
 361           get_block_for_node(n)->find_remove(n);
 362           block->add_inst(n);
 363           map_node_to_block(n, block);
 364         }
 365       }
 366     }
 367   }
 368   // Hoist the memory candidate up to the end of the test block.
 369   Block *old_block = get_block_for_node(best);
 370   old_block->find_remove(best);
 371   block->add_inst(best);
 372   map_node_to_block(best, block);
 373 
 374   // Move the control dependence
 375   if (best->in(0) && best->in(0) == old_block->head())
 376     best->set_req(0, block->head());
 377 
 378   // Check for flag-killing projections that also need to be hoisted
 379   // Should be DU safe because no edge updates.
 380   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 381     Node* n = best->fast_out(j);
 382     if( n->is_MachProj() ) {
 383       get_block_for_node(n)->find_remove(n);
 384       block->add_inst(n);
 385       map_node_to_block(n, block);
 386     }
 387   }
 388 
 389   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 390   // One of two graph shapes got matched:
 391   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 392   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 393   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 394   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 395   // We need to flip the projections to keep the same semantics.
 396   if( proj->Opcode() == Op_IfTrue ) {
 397     // Swap order of projections in basic block to swap branch targets
 398     Node *tmp1 = block->get_node(block->end_idx()+1);
 399     Node *tmp2 = block->get_node(block->end_idx()+2);
 400     block->map_node(tmp2, block->end_idx()+1);
 401     block->map_node(tmp1, block->end_idx()+2);
 402     Node *tmp = new Node(C->top()); // Use not NULL input
 403     tmp1->replace_by(tmp);
 404     tmp2->replace_by(tmp1);
 405     tmp->replace_by(tmp2);
 406     tmp->destruct();
 407   }
 408 
 409   // Remove the existing null check; use a new implicit null check instead.
 410   // Since schedule-local needs precise def-use info, we need to correct
 411   // it as well.
 412   Node *old_tst = proj->in(0);
 413   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 414   block->map_node(nul_chk, block->end_idx());
 415   map_node_to_block(nul_chk, block);
 416   // Redirect users of old_test to nul_chk
 417   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 418     old_tst->last_out(i2)->set_req(0, nul_chk);
 419   // Clean-up any dead code
 420   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 421     old_tst->set_req(i3, NULL);
 422 
 423   latency_from_uses(nul_chk);
 424   latency_from_uses(best);
 425 }
 426 
 427 
 428 //------------------------------select-----------------------------------------
 429 // Select a nice fellow from the worklist to schedule next. If there is only
 430 // one choice, then use it. Projections take top priority for correctness
 431 // reasons - if I see a projection, then it is next.  There are a number of
 432 // other special cases, for instructions that consume condition codes, et al.
 433 // These are chosen immediately. Some instructions are required to immediately
 434 // precede the last instruction in the block, and these are taken last. Of the
 435 // remaining cases (most), choose the instruction with the greatest latency
 436 // (that is, the most number of pseudo-cycles required to the end of the
 437 // routine). If there is a tie, choose the instruction with the most inputs.
 438 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
 439 
 440   // If only a single entry on the stack, use it
 441   uint cnt = worklist.size();
 442   if (cnt == 1) {
 443     Node *n = worklist[0];
 444     worklist.map(0,worklist.pop());
 445     return n;
 446   }
 447 
 448   uint choice  = 0; // Bigger is most important
 449   uint latency = 0; // Bigger is scheduled first
 450   uint score   = 0; // Bigger is better
 451   int idx = -1;     // Index in worklist
 452   int cand_cnt = 0; // Candidate count
 453 
 454   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 455     // Order in worklist is used to break ties.
 456     // See caller for how this is used to delay scheduling
 457     // of induction variable increments to after the other
 458     // uses of the phi are scheduled.
 459     Node *n = worklist[i];      // Get Node on worklist
 460 
 461     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 462     if( n->is_Proj() ||         // Projections always win
 463         n->Opcode()== Op_Con || // So does constant 'Top'
 464         iop == Op_CreateEx ||   // Create-exception must start block
 465         iop == Op_CheckCastPP
 466         ) {
 467       // select the node n
 468       // remove n from worklist and retain the order of remaining nodes
 469       worklist.remove((uint)i);
 470       return n;
 471     }
 472 
 473     // Final call in a block must be adjacent to 'catch'
 474     Node *e = block->end();
 475     if( e->is_Catch() && e->in(0)->in(0) == n )
 476       continue;
 477 
 478     // Memory op for an implicit null check has to be at the end of the block
 479     if( e->is_MachNullCheck() && e->in(1) == n )
 480       continue;
 481 
 482     // Schedule IV increment last.
 483     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 484         e->in(1)->in(1) == n && n->is_iteratively_computed())
 485       continue;
 486 
 487     uint n_choice  = 2;
 488 
 489     // See if this instruction is consumed by a branch. If so, then (as the
 490     // branch is the last instruction in the basic block) force it to the
 491     // end of the basic block
 492     if ( must_clone[iop] ) {
 493       // See if any use is a branch
 494       bool found_machif = false;
 495 
 496       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 497         Node* use = n->fast_out(j);
 498 
 499         // The use is a conditional branch, make them adjacent
 500         if (use->is_MachIf() && get_block_for_node(use) == block) {
 501           found_machif = true;
 502           break;
 503         }
 504 
 505         // More than this instruction pending for successor to be ready,
 506         // don't choose this if other opportunities are ready
 507         if (ready_cnt.at(use->_idx) > 1)
 508           n_choice = 1;
 509       }
 510 
 511       // loop terminated, prefer not to use this instruction
 512       if (found_machif)
 513         continue;
 514     }
 515 
 516     // See if this has a predecessor that is "must_clone", i.e. sets the
 517     // condition code. If so, choose this first
 518     for (uint j = 0; j < n->req() ; j++) {
 519       Node *inn = n->in(j);
 520       if (inn) {
 521         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 522           n_choice = 3;
 523           break;
 524         }
 525       }
 526     }
 527 
 528     // MachTemps should be scheduled last so they are near their uses
 529     if (n->is_MachTemp()) {
 530       n_choice = 1;
 531     }
 532 
 533     uint n_latency = get_latency_for_node(n);
 534     uint n_score   = n->req();   // Many inputs get high score to break ties
 535 
 536     // Keep best latency found
 537     cand_cnt++;
 538     if (choice < n_choice ||
 539         (choice == n_choice &&
 540          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 541           (!StressLCM &&
 542            (latency < n_latency ||
 543             (latency == n_latency &&
 544              (score < n_score))))))) {
 545       choice  = n_choice;
 546       latency = n_latency;
 547       score   = n_score;
 548       idx     = i;               // Also keep index in worklist
 549     }
 550   } // End of for all ready nodes in worklist
 551 
 552   assert(idx >= 0, "index should be set");
 553   Node *n = worklist[(uint)idx];      // Get the winner
 554 
 555   // select the node n
 556   // remove n from worklist and retain the order of remaining nodes
 557   worklist.remove((uint)idx);
 558   return n;
 559 }
 560 
 561 
 562 //------------------------------set_next_call----------------------------------
 563 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 564   if( next_call.test_set(n->_idx) ) return;
 565   for( uint i=0; i<n->len(); i++ ) {
 566     Node *m = n->in(i);
 567     if( !m ) continue;  // must see all nodes in block that precede call
 568     if (get_block_for_node(m) == block) {
 569       set_next_call(block, m, next_call);
 570     }
 571   }
 572 }
 573 
 574 //------------------------------needed_for_next_call---------------------------
 575 // Set the flag 'next_call' for each Node that is needed for the next call to
 576 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 577 // next subroutine call get priority - basically it moves things NOT needed
 578 // for the next call till after the call.  This prevents me from trying to
 579 // carry lots of stuff live across a call.
 580 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 581   // Find the next control-defining Node in this block
 582   Node* call = NULL;
 583   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 584     Node* m = this_call->fast_out(i);
 585     if (get_block_for_node(m) == block && // Local-block user
 586         m != this_call &&       // Not self-start node
 587         m->is_MachCall()) {
 588       call = m;
 589       break;
 590     }
 591   }
 592   if (call == NULL)  return;    // No next call (e.g., block end is near)
 593   // Set next-call for all inputs to this call
 594   set_next_call(block, call, next_call);
 595 }
 596 
 597 //------------------------------add_call_kills-------------------------------------
 598 // helper function that adds caller save registers to MachProjNode
 599 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 600   // Fill in the kill mask for the call
 601   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 602     if( !regs.Member(r) ) {     // Not already defined by the call
 603       // Save-on-call register?
 604       if ((save_policy[r] == 'C') ||
 605           (save_policy[r] == 'A') ||
 606           ((save_policy[r] == 'E') && exclude_soe)) {
 607         proj->_rout.Insert(r);
 608       }
 609     }
 610   }
 611 }
 612 
 613 
 614 //------------------------------sched_call-------------------------------------
 615 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 616   RegMask regs;
 617 
 618   // Schedule all the users of the call right now.  All the users are
 619   // projection Nodes, so they must be scheduled next to the call.
 620   // Collect all the defined registers.
 621   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 622     Node* n = mcall->fast_out(i);
 623     assert( n->is_MachProj(), "" );
 624     int n_cnt = ready_cnt.at(n->_idx)-1;
 625     ready_cnt.at_put(n->_idx, n_cnt);
 626     assert( n_cnt == 0, "" );
 627     // Schedule next to call
 628     block->map_node(n, node_cnt++);
 629     // Collect defined registers
 630     regs.OR(n->out_RegMask());
 631     // Check for scheduling the next control-definer
 632     if( n->bottom_type() == Type::CONTROL )
 633       // Warm up next pile of heuristic bits
 634       needed_for_next_call(block, n, next_call);
 635 
 636     // Children of projections are now all ready
 637     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 638       Node* m = n->fast_out(j); // Get user
 639       if(get_block_for_node(m) != block) {
 640         continue;
 641       }
 642       if( m->is_Phi() ) continue;
 643       int m_cnt = ready_cnt.at(m->_idx)-1;
 644       ready_cnt.at_put(m->_idx, m_cnt);
 645       if( m_cnt == 0 )
 646         worklist.push(m);
 647     }
 648 
 649   }
 650 
 651   // Act as if the call defines the Frame Pointer.
 652   // Certainly the FP is alive and well after the call.
 653   regs.Insert(_matcher.c_frame_pointer());
 654 
 655   // Set all registers killed and not already defined by the call.
 656   uint r_cnt = mcall->tf()->range()->cnt();
 657   int op = mcall->ideal_Opcode();
 658   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 659   map_node_to_block(proj, block);
 660   block->insert_node(proj, node_cnt++);
 661 
 662   // Select the right register save policy.
 663   const char * save_policy;
 664   switch (op) {
 665     case Op_CallRuntime:
 666     case Op_CallLeaf:
 667     case Op_CallLeafNoFP:
 668       // Calling C code so use C calling convention
 669       save_policy = _matcher._c_reg_save_policy;
 670       break;
 671 
 672     case Op_CallStaticJava:
 673     case Op_CallDynamicJava:
 674       // Calling Java code so use Java calling convention
 675       save_policy = _matcher._register_save_policy;
 676       break;
 677 
 678     default:
 679       ShouldNotReachHere();
 680   }
 681 
 682   // When using CallRuntime mark SOE registers as killed by the call
 683   // so values that could show up in the RegisterMap aren't live in a
 684   // callee saved register since the register wouldn't know where to
 685   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 686   // have debug info on them.  Strictly speaking this only needs to be
 687   // done for oops since idealreg2debugmask takes care of debug info
 688   // references but there no way to handle oops differently than other
 689   // pointers as far as the kill mask goes.
 690   bool exclude_soe = op == Op_CallRuntime;
 691 
 692   // If the call is a MethodHandle invoke, we need to exclude the
 693   // register which is used to save the SP value over MH invokes from
 694   // the mask.  Otherwise this register could be used for
 695   // deoptimization information.
 696   if (op == Op_CallStaticJava) {
 697     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 698     if (mcallstaticjava->_method_handle_invoke)
 699       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 700   }
 701 
 702   add_call_kills(proj, regs, save_policy, exclude_soe);
 703 
 704   return node_cnt;
 705 }
 706 
 707 
 708 //------------------------------schedule_local---------------------------------
 709 // Topological sort within a block.  Someday become a real scheduler.
 710 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
 711   // Already "sorted" are the block start Node (as the first entry), and
 712   // the block-ending Node and any trailing control projections.  We leave
 713   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 714   // Node.  Everything else gets topo-sorted.
 715 
 716 #ifndef PRODUCT
 717     if (trace_opto_pipelining()) {
 718       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 719       for (uint i = 0;i < block->number_of_nodes(); i++) {
 720         tty->print("# ");
 721         block->get_node(i)->fast_dump();
 722       }
 723       tty->print_cr("#");
 724     }
 725 #endif
 726 
 727   // RootNode is already sorted
 728   if (block->number_of_nodes() == 1) {
 729     return true;
 730   }
 731 
 732   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 733   uint node_cnt = block->end_idx();
 734   uint phi_cnt = 1;
 735   uint i;
 736   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 737     Node *n = block->get_node(i);
 738     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 739         (n->is_Proj()  && n->in(0) == block->head()) ) {
 740       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 741       block->map_node(block->get_node(phi_cnt), i);
 742       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 743     } else {                    // All others
 744       // Count block-local inputs to 'n'
 745       uint cnt = n->len();      // Input count
 746       uint local = 0;
 747       for( uint j=0; j<cnt; j++ ) {
 748         Node *m = n->in(j);
 749         if( m && get_block_for_node(m) == block && !m->is_top() )
 750           local++;              // One more block-local input
 751       }
 752       ready_cnt.at_put(n->_idx, local); // Count em up
 753 
 754 #ifdef ASSERT
 755       if( UseConcMarkSweepGC || UseG1GC ) {
 756         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 757           // Check the precedence edges
 758           for (uint prec = n->req(); prec < n->len(); prec++) {
 759             Node* oop_store = n->in(prec);
 760             if (oop_store != NULL) {
 761               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 762             }
 763           }
 764         }
 765       }
 766 #endif
 767 
 768       // A few node types require changing a required edge to a precedence edge
 769       // before allocation.
 770       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 771           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 772            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 773         // MemBarAcquire could be created without Precedent edge.
 774         // del_req() replaces the specified edge with the last input edge
 775         // and then removes the last edge. If the specified edge > number of
 776         // edges the last edge will be moved outside of the input edges array
 777         // and the edge will be lost. This is why this code should be
 778         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 779         Node *x = n->in(TypeFunc::Parms);
 780         n->del_req(TypeFunc::Parms);
 781         n->add_prec(x);
 782       }
 783     }
 784   }
 785   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 786     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 787 
 788   // All the prescheduled guys do not hold back internal nodes
 789   uint i3;
 790   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 791     Node *n = block->get_node(i3);       // Get pre-scheduled
 792     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 793       Node* m = n->fast_out(j);
 794       if (get_block_for_node(m) == block) { // Local-block user
 795         int m_cnt = ready_cnt.at(m->_idx)-1;
 796         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 797       }
 798     }
 799   }
 800 
 801   Node_List delay;
 802   // Make a worklist
 803   Node_List worklist;
 804   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 805     Node *m = block->get_node(i4);
 806     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 807       if (m->is_iteratively_computed()) {
 808         // Push induction variable increments last to allow other uses
 809         // of the phi to be scheduled first. The select() method breaks
 810         // ties in scheduling by worklist order.
 811         delay.push(m);
 812       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 813         // Force the CreateEx to the top of the list so it's processed
 814         // first and ends up at the start of the block.
 815         worklist.insert(0, m);
 816       } else {
 817         worklist.push(m);         // Then on to worklist!
 818       }
 819     }
 820   }
 821   while (delay.size()) {
 822     Node* d = delay.pop();
 823     worklist.push(d);
 824   }
 825 
 826   // Warm up the 'next_call' heuristic bits
 827   needed_for_next_call(block, block->head(), next_call);
 828 
 829 #ifndef PRODUCT
 830     if (trace_opto_pipelining()) {
 831       for (uint j=0; j< block->number_of_nodes(); j++) {
 832         Node     *n = block->get_node(j);
 833         int     idx = n->_idx;
 834         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 835         tty->print("latency:%3d  ", get_latency_for_node(n));
 836         tty->print("%4d: %s\n", idx, n->Name());
 837       }
 838     }
 839 #endif
 840 
 841   uint max_idx = (uint)ready_cnt.length();
 842   // Pull from worklist and schedule
 843   while( worklist.size() ) {    // Worklist is not ready
 844 
 845 #ifndef PRODUCT
 846     if (trace_opto_pipelining()) {
 847       tty->print("#   ready list:");
 848       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 849         Node *n = worklist[i];      // Get Node on worklist
 850         tty->print(" %d", n->_idx);
 851       }
 852       tty->cr();
 853     }
 854 #endif
 855 
 856     // Select and pop a ready guy from worklist
 857     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
 858     block->map_node(n, phi_cnt++);    // Schedule him next
 859 
 860 #ifndef PRODUCT
 861     if (trace_opto_pipelining()) {
 862       tty->print("#    select %d: %s", n->_idx, n->Name());
 863       tty->print(", latency:%d", get_latency_for_node(n));
 864       n->dump();
 865       if (Verbose) {
 866         tty->print("#   ready list:");
 867         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 868           Node *n = worklist[i];      // Get Node on worklist
 869           tty->print(" %d", n->_idx);
 870         }
 871         tty->cr();
 872       }
 873     }
 874 
 875 #endif
 876     if( n->is_MachCall() ) {
 877       MachCallNode *mcall = n->as_MachCall();
 878       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
 879       continue;
 880     }
 881 
 882     if (n->is_Mach() && n->as_Mach()->has_call()) {
 883       RegMask regs;
 884       regs.Insert(_matcher.c_frame_pointer());
 885       regs.OR(n->out_RegMask());
 886 
 887       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 888       map_node_to_block(proj, block);
 889       block->insert_node(proj, phi_cnt++);
 890 
 891       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
 892     }
 893 
 894     // Children are now all ready
 895     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 896       Node* m = n->fast_out(i5); // Get user
 897       if (get_block_for_node(m) != block) {
 898         continue;
 899       }
 900       if( m->is_Phi() ) continue;
 901       if (m->_idx >= max_idx) { // new node, skip it
 902         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 903         continue;
 904       }
 905       int m_cnt = ready_cnt.at(m->_idx)-1;
 906       ready_cnt.at_put(m->_idx, m_cnt);
 907       if( m_cnt == 0 )
 908         worklist.push(m);
 909     }
 910   }
 911 
 912   if( phi_cnt != block->end_idx() ) {
 913     // did not schedule all.  Retry, Bailout, or Die
 914     if (C->subsume_loads() == true && !C->failing()) {
 915       // Retry with subsume_loads == false
 916       // If this is the first failure, the sentinel string will "stick"
 917       // to the Compile object, and the C2Compiler will see it and retry.
 918       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 919     }
 920     // assert( phi_cnt == end_idx(), "did not schedule all" );
 921     return false;
 922   }
 923 
 924 #ifndef PRODUCT
 925   if (trace_opto_pipelining()) {
 926     tty->print_cr("#");
 927     tty->print_cr("# after schedule_local");
 928     for (uint i = 0;i < block->number_of_nodes();i++) {
 929       tty->print("# ");
 930       block->get_node(i)->fast_dump();
 931     }
 932     tty->cr();
 933   }
 934 #endif
 935 
 936 
 937   return true;
 938 }
 939 
 940 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 941 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 942   for (uint l = 0; l < use->len(); l++) {
 943     if (use->in(l) == old_def) {
 944       if (l < use->req()) {
 945         use->set_req(l, new_def);
 946       } else {
 947         use->rm_prec(l);
 948         use->add_prec(new_def);
 949         l--;
 950       }
 951     }
 952   }
 953 }
 954 
 955 //------------------------------catch_cleanup_find_cloned_def------------------
 956 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
 957   assert( use_blk != def_blk, "Inter-block cleanup only");
 958 
 959   // The use is some block below the Catch.  Find and return the clone of the def
 960   // that dominates the use. If there is no clone in a dominating block, then
 961   // create a phi for the def in a dominating block.
 962 
 963   // Find which successor block dominates this use.  The successor
 964   // blocks must all be single-entry (from the Catch only; I will have
 965   // split blocks to make this so), hence they all dominate.
 966   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 967     use_blk = use_blk->_idom;
 968 
 969   // Find the successor
 970   Node *fixup = NULL;
 971 
 972   uint j;
 973   for( j = 0; j < def_blk->_num_succs; j++ )
 974     if( use_blk == def_blk->_succs[j] )
 975       break;
 976 
 977   if( j == def_blk->_num_succs ) {
 978     // Block at same level in dom-tree is not a successor.  It needs a
 979     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 980     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 981     for(uint k = 1; k < use_blk->num_preds(); k++) {
 982       Block* block = get_block_for_node(use_blk->pred(k));
 983       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
 984     }
 985 
 986     // Check to see if the use_blk already has an identical phi inserted.
 987     // If it exists, it will be at the first position since all uses of a
 988     // def are processed together.
 989     Node *phi = use_blk->get_node(1);
 990     if( phi->is_Phi() ) {
 991       fixup = phi;
 992       for (uint k = 1; k < use_blk->num_preds(); k++) {
 993         if (phi->in(k) != inputs[k]) {
 994           // Not a match
 995           fixup = NULL;
 996           break;
 997         }
 998       }
 999     }
1000 
1001     // If an existing PhiNode was not found, make a new one.
1002     if (fixup == NULL) {
1003       Node *new_phi = PhiNode::make(use_blk->head(), def);
1004       use_blk->insert_node(new_phi, 1);
1005       map_node_to_block(new_phi, use_blk);
1006       for (uint k = 1; k < use_blk->num_preds(); k++) {
1007         new_phi->set_req(k, inputs[k]);
1008       }
1009       fixup = new_phi;
1010     }
1011 
1012   } else {
1013     // Found the use just below the Catch.  Make it use the clone.
1014     fixup = use_blk->get_node(n_clone_idx);
1015   }
1016 
1017   return fixup;
1018 }
1019 
1020 //--------------------------catch_cleanup_intra_block--------------------------
1021 // Fix all input edges in use that reference "def".  The use is in the same
1022 // block as the def and both have been cloned in each successor block.
1023 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1024 
1025   // Both the use and def have been cloned. For each successor block,
1026   // get the clone of the use, and make its input the clone of the def
1027   // found in that block.
1028 
1029   uint use_idx = blk->find_node(use);
1030   uint offset_idx = use_idx - beg;
1031   for( uint k = 0; k < blk->_num_succs; k++ ) {
1032     // Get clone in each successor block
1033     Block *sb = blk->_succs[k];
1034     Node *clone = sb->get_node(offset_idx+1);
1035     assert( clone->Opcode() == use->Opcode(), "" );
1036 
1037     // Make use-clone reference the def-clone
1038     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1039   }
1040 }
1041 
1042 //------------------------------catch_cleanup_inter_block---------------------
1043 // Fix all input edges in use that reference "def".  The use is in a different
1044 // block than the def.
1045 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1046   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1047 
1048   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1049   catch_cleanup_fix_all_inputs(use, def, new_def);
1050 }
1051 
1052 //------------------------------call_catch_cleanup-----------------------------
1053 // If we inserted any instructions between a Call and his CatchNode,
1054 // clone the instructions on all paths below the Catch.
1055 void PhaseCFG::call_catch_cleanup(Block* block) {
1056 
1057   // End of region to clone
1058   uint end = block->end_idx();
1059   if( !block->get_node(end)->is_Catch() ) return;
1060   // Start of region to clone
1061   uint beg = end;
1062   while(!block->get_node(beg-1)->is_MachProj() ||
1063         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1064     beg--;
1065     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1066   }
1067   // Range of inserted instructions is [beg, end)
1068   if( beg == end ) return;
1069 
1070   // Clone along all Catch output paths.  Clone area between the 'beg' and
1071   // 'end' indices.
1072   for( uint i = 0; i < block->_num_succs; i++ ) {
1073     Block *sb = block->_succs[i];
1074     // Clone the entire area; ignoring the edge fixup for now.
1075     for( uint j = end; j > beg; j-- ) {
1076       // It is safe here to clone a node with anti_dependence
1077       // since clones dominate on each path.
1078       Node *clone = block->get_node(j-1)->clone();
1079       sb->insert_node(clone, 1);
1080       map_node_to_block(clone, sb);
1081     }
1082   }
1083 
1084 
1085   // Fixup edges.  Check the def-use info per cloned Node
1086   for(uint i2 = beg; i2 < end; i2++ ) {
1087     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1088     Node *n = block->get_node(i2);        // Node that got cloned
1089     // Need DU safe iterator because of edge manipulation in calls.
1090     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1091     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1092       out->push(n->fast_out(j1));
1093     }
1094     uint max = out->size();
1095     for (uint j = 0; j < max; j++) {// For all users
1096       Node *use = out->pop();
1097       Block *buse = get_block_for_node(use);
1098       if( use->is_Phi() ) {
1099         for( uint k = 1; k < use->req(); k++ )
1100           if( use->in(k) == n ) {
1101             Block* b = get_block_for_node(buse->pred(k));
1102             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1103             use->set_req(k, fixup);
1104           }
1105       } else {
1106         if (block == buse) {
1107           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1108         } else {
1109           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1110         }
1111       }
1112     } // End for all users
1113 
1114   } // End of for all Nodes in cloned area
1115 
1116   // Remove the now-dead cloned ops
1117   for(uint i3 = beg; i3 < end; i3++ ) {
1118     block->get_node(beg)->disconnect_inputs(NULL, C);
1119     block->remove_node(beg);
1120   }
1121 
1122   // If the successor blocks have a CreateEx node, move it back to the top
1123   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1124     Block *sb = block->_succs[i4];
1125     uint new_cnt = end - beg;
1126     // Remove any newly created, but dead, nodes.
1127     for( uint j = new_cnt; j > 0; j-- ) {
1128       Node *n = sb->get_node(j);
1129       if (n->outcnt() == 0 &&
1130           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1131         n->disconnect_inputs(NULL, C);
1132         sb->remove_node(j);
1133         new_cnt--;
1134       }
1135     }
1136     // If any newly created nodes remain, move the CreateEx node to the top
1137     if (new_cnt > 0) {
1138       Node *cex = sb->get_node(1+new_cnt);
1139       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1140         sb->remove_node(1+new_cnt);
1141         sb->insert_node(cex, 1);
1142       }
1143     }
1144   }
1145 }