/* * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "compiler/oopMap.hpp" #include "memory/allocation.inline.hpp" #include "opto/addnode.hpp" #include "opto/block.hpp" #include "opto/callnode.hpp" #include "opto/cfgnode.hpp" #include "opto/chaitin.hpp" #include "opto/coalesce.hpp" #include "opto/connode.hpp" #include "opto/indexSet.hpp" #include "opto/machnode.hpp" #include "opto/memnode.hpp" #include "opto/opcodes.hpp" PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) { } void PhaseIFG::init( uint maxlrg ) { _maxlrg = maxlrg; _yanked = new (_arena) VectorSet(_arena); _is_square = false; // Make uninitialized adjacency lists _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg); // Also make empty live range structures _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) ); memset(_lrgs,0,sizeof(LRG)*maxlrg); // Init all to empty for( uint i = 0; i < maxlrg; i++ ) { _adjs[i].initialize(maxlrg); _lrgs[i].Set_All(); } } // Add edge between vertices a & b. These are sorted (triangular matrix), // then the smaller number is inserted in the larger numbered array. int PhaseIFG::add_edge( uint a, uint b ) { lrgs(a).invalid_degree(); lrgs(b).invalid_degree(); // Sort a and b, so that a is bigger assert( !_is_square, "only on triangular" ); if( a < b ) { uint tmp = a; a = b; b = tmp; } return _adjs[a].insert( b ); } // Add an edge between 'a' and everything in the vector. void PhaseIFG::add_vector( uint a, IndexSet *vec ) { // IFG is triangular, so do the inserts where 'a' < 'b'. assert( !_is_square, "only on triangular" ); IndexSet *adjs_a = &_adjs[a]; if( !vec->count() ) return; IndexSetIterator elements(vec); uint neighbor; while ((neighbor = elements.next()) != 0) { add_edge( a, neighbor ); } } // Is there an edge between a and b? int PhaseIFG::test_edge( uint a, uint b ) const { // Sort a and b, so that a is larger assert( !_is_square, "only on triangular" ); if( a < b ) { uint tmp = a; a = b; b = tmp; } return _adjs[a].member(b); } // Convert triangular matrix to square matrix void PhaseIFG::SquareUp() { assert( !_is_square, "only on triangular" ); // Simple transpose for( uint i = 0; i < _maxlrg; i++ ) { IndexSetIterator elements(&_adjs[i]); uint datum; while ((datum = elements.next()) != 0) { _adjs[datum].insert( i ); } } _is_square = true; } // Compute effective degree in bulk void PhaseIFG::Compute_Effective_Degree() { assert( _is_square, "only on square" ); for( uint i = 0; i < _maxlrg; i++ ) lrgs(i).set_degree(effective_degree(i)); } int PhaseIFG::test_edge_sq( uint a, uint b ) const { assert( _is_square, "only on square" ); // Swap, so that 'a' has the lesser count. Then binary search is on // the smaller of a's list and b's list. if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; } //return _adjs[a].unordered_member(b); return _adjs[a].member(b); } // Union edges of B into A void PhaseIFG::Union( uint a, uint b ) { assert( _is_square, "only on square" ); IndexSet *A = &_adjs[a]; IndexSetIterator b_elements(&_adjs[b]); uint datum; while ((datum = b_elements.next()) != 0) { if(A->insert(datum)) { _adjs[datum].insert(a); lrgs(a).invalid_degree(); lrgs(datum).invalid_degree(); } } } // Yank a Node and all connected edges from the IFG. Return a // list of neighbors (edges) yanked. IndexSet *PhaseIFG::remove_node( uint a ) { assert( _is_square, "only on square" ); assert( !_yanked->test(a), "" ); _yanked->set(a); // I remove the LRG from all neighbors. IndexSetIterator elements(&_adjs[a]); LRG &lrg_a = lrgs(a); uint datum; while ((datum = elements.next()) != 0) { _adjs[datum].remove(a); lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) ); } return neighbors(a); } // Re-insert a yanked Node. void PhaseIFG::re_insert( uint a ) { assert( _is_square, "only on square" ); assert( _yanked->test(a), "" ); (*_yanked) >>= a; IndexSetIterator elements(&_adjs[a]); uint datum; while ((datum = elements.next()) != 0) { _adjs[datum].insert(a); lrgs(datum).invalid_degree(); } } // Compute the degree between 2 live ranges. If both live ranges are // aligned-adjacent powers-of-2 then we use the MAX size. If either is // mis-aligned (or for Fat-Projections, not-adjacent) then we have to // MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why // this is so. int LRG::compute_degree( LRG &l ) const { int tmp; int num_regs = _num_regs; int nregs = l.num_regs(); tmp = (_fat_proj || l._fat_proj) // either is a fat-proj? ? (num_regs * nregs) // then use product : MAX2(num_regs,nregs); // else use max return tmp; } // Compute effective degree for this live range. If both live ranges are // aligned-adjacent powers-of-2 then we use the MAX size. If either is // mis-aligned (or for Fat-Projections, not-adjacent) then we have to // MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why // this is so. int PhaseIFG::effective_degree( uint lidx ) const { int eff = 0; int num_regs = lrgs(lidx).num_regs(); int fat_proj = lrgs(lidx)._fat_proj; IndexSet *s = neighbors(lidx); IndexSetIterator elements(s); uint nidx; while((nidx = elements.next()) != 0) { LRG &lrgn = lrgs(nidx); int nregs = lrgn.num_regs(); eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj? ? (num_regs * nregs) // then use product : MAX2(num_regs,nregs); // else use max } return eff; } #ifndef PRODUCT void PhaseIFG::dump() const { tty->print_cr("-- Interference Graph --%s--", _is_square ? "square" : "triangular" ); if( _is_square ) { for( uint i = 0; i < _maxlrg; i++ ) { tty->print( (*_yanked)[i] ? "XX " : " "); tty->print("L%d: { ",i); IndexSetIterator elements(&_adjs[i]); uint datum; while ((datum = elements.next()) != 0) { tty->print("L%d ", datum); } tty->print_cr("}"); } return; } // Triangular for( uint i = 0; i < _maxlrg; i++ ) { uint j; tty->print( (*_yanked)[i] ? "XX " : " "); tty->print("L%d: { ",i); for( j = _maxlrg; j > i; j-- ) if( test_edge(j - 1,i) ) { tty->print("L%d ",j - 1); } tty->print("| "); IndexSetIterator elements(&_adjs[i]); uint datum; while ((datum = elements.next()) != 0) { tty->print("L%d ", datum); } tty->print("}\n"); } tty->print("\n"); } void PhaseIFG::stats() const { ResourceMark rm; int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2); memset( h_cnt, 0, sizeof(int)*_maxlrg*2 ); uint i; for( i = 0; i < _maxlrg; i++ ) { h_cnt[neighbor_cnt(i)]++; } tty->print_cr("--Histogram of counts--"); for( i = 0; i < _maxlrg*2; i++ ) if( h_cnt[i] ) tty->print("%d/%d ",i,h_cnt[i]); tty->cr(); } void PhaseIFG::verify( const PhaseChaitin *pc ) const { // IFG is square, sorted and no need for Find for( uint i = 0; i < _maxlrg; i++ ) { assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" ); IndexSet *set = &_adjs[i]; IndexSetIterator elements(set); uint idx; uint last = 0; while ((idx = elements.next()) != 0) { assert(idx != i, "Must have empty diagonal"); assert(pc->_lrg_map.find_const(idx) == idx, "Must not need Find"); assert(_adjs[idx].member(i), "IFG not square"); assert(!(*_yanked)[idx], "No yanked neighbors"); assert(last < idx, "not sorted increasing"); last = idx; } assert(!lrgs(i)._degree_valid || effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong"); } } #endif // Interfere this register with everything currently live. Use the RegMasks // to trim the set of possible interferences. Return a count of register-only // interferences as an estimate of register pressure. void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) { uint retval = 0; // Interfere with everything live. const RegMask &rm = lrgs(r).mask(); // Check for interference by checking overlap of regmasks. // Only interfere if acceptable register masks overlap. IndexSetIterator elements(liveout); uint l; while( (l = elements.next()) != 0 ) if( rm.overlap( lrgs(l).mask() ) ) _ifg->add_edge( r, l ); } // Actually build the interference graph. Uses virtual registers only, no // physical register masks. This allows me to be very aggressive when // coalescing copies. Some of this aggressiveness will have to be undone // later, but I'd rather get all the copies I can now (since unremoved copies // at this point can end up in bad places). Copies I re-insert later I have // more opportunity to insert them in low-frequency locations. void PhaseChaitin::build_ifg_virtual( ) { // For all blocks (in any order) do... for (uint i = 0; i < _cfg.number_of_blocks(); i++) { Block* block = _cfg.get_block(i); IndexSet* liveout = _live->live(block); // The IFG is built by a single reverse pass over each basic block. // Starting with the known live-out set, we remove things that get // defined and add things that become live (essentially executing one // pass of a standard LIVE analysis). Just before a Node defines a value // (and removes it from the live-ness set) that value is certainly live. // The defined value interferes with everything currently live. The // value is then removed from the live-ness set and it's inputs are // added to the live-ness set. for (uint j = block->end_idx() + 1; j > 1; j--) { Node* n = block->get_node(j - 1); // Get value being defined uint r = _lrg_map.live_range_id(n); // Some special values do not allocate if (r) { // Remove from live-out set liveout->remove(r); // Copies do not define a new value and so do not interfere. // Remove the copies source from the liveout set before interfering. uint idx = n->is_Copy(); if (idx) { liveout->remove(_lrg_map.live_range_id(n->in(idx))); } // Interfere with everything live interfere_with_live(r, liveout); } // Make all inputs live if (!n->is_Phi()) { // Phi function uses come from prior block for(uint k = 1; k < n->req(); k++) { liveout->insert(_lrg_map.live_range_id(n->in(k))); } } // 2-address instructions always have the defined value live // on entry to the instruction, even though it is being defined // by the instruction. We pretend a virtual copy sits just prior // to the instruction and kills the src-def'd register. // In other words, for 2-address instructions the defined value // interferes with all inputs. uint idx; if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) { const MachNode *mach = n->as_Mach(); // Sometimes my 2-address ADDs are commuted in a bad way. // We generally want the USE-DEF register to refer to the // loop-varying quantity, to avoid a copy. uint op = mach->ideal_Opcode(); // Check that mach->num_opnds() == 3 to ensure instruction is // not subsuming constants, effectively excludes addI_cin_imm // Can NOT swap for instructions like addI_cin_imm since it // is adding zero to yhi + carry and the second ideal-input // points to the result of adding low-halves. // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) && n->in(1)->bottom_type()->base() == Type::Int && // See if the ADD is involved in a tight data loop the wrong way n->in(2)->is_Phi() && n->in(2)->in(2) == n ) { Node *tmp = n->in(1); n->set_req( 1, n->in(2) ); n->set_req( 2, tmp ); } // Defined value interferes with all inputs uint lidx = _lrg_map.live_range_id(n->in(idx)); for (uint k = 1; k < n->req(); k++) { uint kidx = _lrg_map.live_range_id(n->in(k)); if (kidx != lidx) { _ifg->add_edge(r, kidx); } } } } // End of forall instructions in block } // End of forall blocks } uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) { IndexSetIterator elements(liveout); uint lidx; uint cnt = 0; while ((lidx = elements.next()) != 0) { if( lrgs(lidx).mask().is_UP() && lrgs(lidx).mask_size() && !lrgs(lidx)._is_float && !lrgs(lidx)._is_vector && lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) cnt += lrgs(lidx).reg_pressure(); } return cnt; } uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) { IndexSetIterator elements(liveout); uint lidx; uint cnt = 0; while ((lidx = elements.next()) != 0) { if( lrgs(lidx).mask().is_UP() && lrgs(lidx).mask_size() && (lrgs(lidx)._is_float || lrgs(lidx)._is_vector)) cnt += lrgs(lidx).reg_pressure(); } return cnt; } // Adjust register pressure down by 1. Capture last hi-to-low transition, static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) { if (lrg->mask().is_UP() && lrg->mask_size()) { if (lrg->_is_float || lrg->_is_vector) { pressure[1] -= lrg->reg_pressure(); if( pressure[1] == (uint)FLOATPRESSURE ) { hrp_index[1] = where; if( pressure[1] > b->_freg_pressure ) b->_freg_pressure = pressure[1]+1; } } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) { pressure[0] -= lrg->reg_pressure(); if( pressure[0] == (uint)INTPRESSURE ) { hrp_index[0] = where; if( pressure[0] > b->_reg_pressure ) b->_reg_pressure = pressure[0]+1; } } } } // Build the interference graph using physical registers when available. // That is, if 2 live ranges are simultaneously alive but in their acceptable // register sets do not overlap, then they do not interfere. uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) { NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); ) uint must_spill = 0; // For all blocks (in any order) do... for (uint i = 0; i < _cfg.number_of_blocks(); i++) { Block* block = _cfg.get_block(i); // Clone (rather than smash in place) the liveout info, so it is alive // for the "collect_gc_info" phase later. IndexSet liveout(_live->live(block)); uint last_inst = block->end_idx(); // Compute first nonphi node index uint first_inst; for (first_inst = 1; first_inst < last_inst; first_inst++) { if (!block->get_node(first_inst)->is_Phi()) { break; } } // Spills could be inserted before CreateEx node which should be // first instruction in block after Phis. Move CreateEx up. for (uint insidx = first_inst; insidx < last_inst; insidx++) { Node *ex = block->get_node(insidx); if (ex->is_SpillCopy()) { continue; } if (insidx > first_inst && ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) { // If the CreateEx isn't above all the MachSpillCopies // then move it to the top. block->remove_node(insidx); block->insert_node(ex, first_inst); } // Stop once a CreateEx or any other node is found break; } // Reset block's register pressure values for each ifg construction uint pressure[2], hrp_index[2]; pressure[0] = pressure[1] = 0; hrp_index[0] = hrp_index[1] = last_inst+1; block->_reg_pressure = block->_freg_pressure = 0; // Liveout things are presumed live for the whole block. We accumulate // 'area' accordingly. If they get killed in the block, we'll subtract // the unused part of the block from the area. int inst_count = last_inst - first_inst; double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count); assert(!(cost < 0.0), "negative spill cost" ); IndexSetIterator elements(&liveout); uint lidx; while ((lidx = elements.next()) != 0) { LRG &lrg = lrgs(lidx); lrg._area += cost; // Compute initial register pressure if (lrg.mask().is_UP() && lrg.mask_size()) { if (lrg._is_float || lrg._is_vector) { // Count float pressure pressure[1] += lrg.reg_pressure(); if (pressure[1] > block->_freg_pressure) { block->_freg_pressure = pressure[1]; } // Count int pressure, but do not count the SP, flags } else if(lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) { pressure[0] += lrg.reg_pressure(); if (pressure[0] > block->_reg_pressure) { block->_reg_pressure = pressure[0]; } } } } assert( pressure[0] == count_int_pressure (&liveout), "" ); assert( pressure[1] == count_float_pressure(&liveout), "" ); // The IFG is built by a single reverse pass over each basic block. // Starting with the known live-out set, we remove things that get // defined and add things that become live (essentially executing one // pass of a standard LIVE analysis). Just before a Node defines a value // (and removes it from the live-ness set) that value is certainly live. // The defined value interferes with everything currently live. The // value is then removed from the live-ness set and it's inputs are added // to the live-ness set. uint j; for (j = last_inst + 1; j > 1; j--) { Node* n = block->get_node(j - 1); // Get value being defined uint r = _lrg_map.live_range_id(n); // Some special values do not allocate if(r) { // A DEF normally costs block frequency; rematerialized values are // removed from the DEF sight, so LOWER costs here. lrgs(r)._cost += n->rematerialize() ? 0 : block->_freq; // If it is not live, then this instruction is dead. Probably caused // by spilling and rematerialization. Who cares why, yank this baby. if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) { Node *def = n->in(0); if( !n->is_Proj() || // Could also be a flags-projection of a dead ADD or such. (_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) { if (n->is_MachProj()) { // Don't remove KILL projections if their "defining" nodes have // memory effects (have SCMemProj projection node) - // they are not dead even when their result is not used. // For example, compareAndSwapL (and other CAS) and EncodeISOArray nodes. // The method add_input_to_liveout() keeps such nodes alive (put them on liveout list) // when it sees SCMemProj node in a block. Unfortunately SCMemProj node could be placed // in block in such order that KILL MachProj nodes are processed first. uint cnt = def->outcnt(); for (uint i = 0; i < cnt; i++) { Node* proj = def->raw_out(i); if (proj->Opcode() == Op_SCMemProj) { return false; } } } block->remove_node(j - 1); if (lrgs(r)._def == n) { lrgs(r)._def = 0; } n->disconnect_inputs(NULL, C); _cfg.unmap_node_from_block(n); n->replace_by(C->top()); // Since yanking a Node from block, high pressure moves up one hrp_index[0]--; hrp_index[1]--; continue; } // Fat-projections kill many registers which cannot be used to // hold live ranges. if (lrgs(r)._fat_proj) { // Count the int-only registers RegMask itmp = lrgs(r).mask(); itmp.AND(*Matcher::idealreg2regmask[Op_RegI]); int iregs = itmp.Size(); if (pressure[0]+iregs > block->_reg_pressure) { block->_reg_pressure = pressure[0] + iregs; } if (pressure[0] <= (uint)INTPRESSURE && pressure[0] + iregs > (uint)INTPRESSURE) { hrp_index[0] = j - 1; } // Count the float-only registers RegMask ftmp = lrgs(r).mask(); ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]); int fregs = ftmp.Size(); if (pressure[1] + fregs > block->_freg_pressure) { block->_freg_pressure = pressure[1] + fregs; } if(pressure[1] <= (uint)FLOATPRESSURE && pressure[1]+fregs > (uint)FLOATPRESSURE) { hrp_index[1] = j - 1; } } } else { // Else it is live // A DEF also ends 'area' partway through the block. lrgs(r)._area -= cost; assert(!(lrgs(r)._area < 0.0), "negative spill area" ); // Insure high score for immediate-use spill copies so they get a color if( n->is_SpillCopy() && lrgs(r).is_singledef() // MultiDef live range can still split && n->outcnt() == 1 // and use must be in this block && _cfg.get_block_for_node(n->unique_out()) == block) { // All single-use MachSpillCopy(s) that immediately precede their // use must color early. If a longer live range steals their // color, the spill copy will split and may push another spill copy // further away resulting in an infinite spill-split-retry cycle. // Assigning a zero area results in a high score() and a good // location in the simplify list. // Node *single_use = n->unique_out(); assert(block->find_node(single_use) >= j, "Use must be later in block"); // Use can be earlier in block if it is a Phi, but then I should be a MultiDef // Find first non SpillCopy 'm' that follows the current instruction // (j - 1) is index for current instruction 'n' Node *m = n; for (uint i = j; i <= last_inst && m->is_SpillCopy(); ++i) { m = block->get_node(i); } if (m == single_use) { lrgs(r)._area = 0.0; } } // Remove from live-out set if( liveout.remove(r) ) { // Adjust register pressure. // Capture last hi-to-lo pressure transition lower_pressure(&lrgs(r), j - 1, block, pressure, hrp_index); assert( pressure[0] == count_int_pressure (&liveout), "" ); assert( pressure[1] == count_float_pressure(&liveout), "" ); } // Copies do not define a new value and so do not interfere. // Remove the copies source from the liveout set before interfering. uint idx = n->is_Copy(); if (idx) { uint x = _lrg_map.live_range_id(n->in(idx)); if (liveout.remove(x)) { lrgs(x)._area -= cost; // Adjust register pressure. lower_pressure(&lrgs(x), j - 1, block, pressure, hrp_index); assert( pressure[0] == count_int_pressure (&liveout), "" ); assert( pressure[1] == count_float_pressure(&liveout), "" ); } } } // End of if live or not // Interfere with everything live. If the defined value must // go in a particular register, just remove that register from // all conflicting parties and avoid the interference. // Make exclusions for rematerializable defs. Since rematerializable // DEFs are not bound but the live range is, some uses must be bound. // If we spill live range 'r', it can rematerialize at each use site // according to its bindings. const RegMask &rmask = lrgs(r).mask(); if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) { // Check for common case int r_size = lrgs(r).num_regs(); OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical; // Smear odd bits IndexSetIterator elements(&liveout); uint l; while ((l = elements.next()) != 0) { LRG &lrg = lrgs(l); // If 'l' must spill already, do not further hack his bits. // He'll get some interferences and be forced to spill later. if( lrg._must_spill ) continue; // Remove bound register(s) from 'l's choices RegMask old = lrg.mask(); uint old_size = lrg.mask_size(); // Remove the bits from LRG 'r' from LRG 'l' so 'l' no // longer interferes with 'r'. If 'l' requires aligned // adjacent pairs, subtract out bit pairs. assert(!lrg._is_vector || !lrg._fat_proj, "sanity"); if (lrg.num_regs() > 1 && !lrg._fat_proj) { RegMask r2mask = rmask; // Leave only aligned set of bits. r2mask.smear_to_sets(lrg.num_regs()); // It includes vector case. lrg.SUBTRACT( r2mask ); lrg.compute_set_mask_size(); } else if( r_size != 1 ) { // fat proj lrg.SUBTRACT( rmask ); lrg.compute_set_mask_size(); } else { // Common case: size 1 bound removal if( lrg.mask().Member(r_reg) ) { lrg.Remove(r_reg); lrg.set_mask_size(lrg.mask().is_AllStack() ? LRG::AllStack_size : old_size - 1); } } // If 'l' goes completely dry, it must spill. if( lrg.not_free() ) { // Give 'l' some kind of reasonable mask, so he picks up // interferences (and will spill later). lrg.set_mask( old ); lrg.set_mask_size(old_size); must_spill++; lrg._must_spill = 1; lrg.set_reg(OptoReg::Name(LRG::SPILL_REG)); } } } // End of if bound // Now interference with everything that is live and has // compatible register sets. interfere_with_live(r,&liveout); } // End of if normal register-allocated value // Area remaining in the block inst_count--; cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count); // Make all inputs live if( !n->is_Phi() ) { // Phi function uses come from prior block JVMState* jvms = n->jvms(); uint debug_start = jvms ? jvms->debug_start() : 999999; // Start loop at 1 (skip control edge) for most Nodes. // SCMemProj's might be the sole use of a StoreLConditional. // While StoreLConditionals set memory (the SCMemProj use) // they also def flags; if that flag def is unused the // allocator sees a flag-setting instruction with no use of // the flags and assumes it's dead. This keeps the (useless) // flag-setting behavior alive while also keeping the (useful) // memory update effect. for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) { Node *def = n->in(k); uint x = _lrg_map.live_range_id(def); if (!x) { continue; } LRG &lrg = lrgs(x); // No use-side cost for spilling debug info if (k < debug_start) { // A USE costs twice block frequency (once for the Load, once // for a Load-delay). Rematerialized uses only cost once. lrg._cost += (def->rematerialize() ? block->_freq : (block->_freq + block->_freq)); } // It is live now if (liveout.insert(x)) { // Newly live things assumed live from here to top of block lrg._area += cost; // Adjust register pressure if (lrg.mask().is_UP() && lrg.mask_size()) { if (lrg._is_float || lrg._is_vector) { pressure[1] += lrg.reg_pressure(); if (pressure[1] > block->_freg_pressure) { block->_freg_pressure = pressure[1]; } } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) { pressure[0] += lrg.reg_pressure(); if (pressure[0] > block->_reg_pressure) { block->_reg_pressure = pressure[0]; } } } assert( pressure[0] == count_int_pressure (&liveout), "" ); assert( pressure[1] == count_float_pressure(&liveout), "" ); } assert(!(lrg._area < 0.0), "negative spill area" ); } } } // End of reverse pass over all instructions in block // If we run off the top of the block with high pressure and // never see a hi-to-low pressure transition, just record that // the whole block is high pressure. if (pressure[0] > (uint)INTPRESSURE) { hrp_index[0] = 0; if (pressure[0] > block->_reg_pressure) { block->_reg_pressure = pressure[0]; } } if (pressure[1] > (uint)FLOATPRESSURE) { hrp_index[1] = 0; if (pressure[1] > block->_freg_pressure) { block->_freg_pressure = pressure[1]; } } // Compute high pressure indice; avoid landing in the middle of projnodes j = hrp_index[0]; if (j < block->number_of_nodes() && j < block->end_idx() + 1) { Node* cur = block->get_node(j); while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) { j--; cur = block->get_node(j); } } block->_ihrp_index = j; j = hrp_index[1]; if (j < block->number_of_nodes() && j < block->end_idx() + 1) { Node* cur = block->get_node(j); while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) { j--; cur = block->get_node(j); } } block->_fhrp_index = j; #ifndef PRODUCT // Gather Register Pressure Statistics if( PrintOptoStatistics ) { if (block->_reg_pressure > (uint)INTPRESSURE || block->_freg_pressure > (uint)FLOATPRESSURE) { _high_pressure++; } else { _low_pressure++; } } #endif } // End of for all blocks return must_spill; }