1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/rootnode.hpp"
  38 
  39 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  40   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  41   _in_worklist(C->comp_arena()),
  42   _next_pidx(0),
  43   _collecting(true),
  44   _verify(false),
  45   _compile(C),
  46   _igvn(igvn),
  47   _node_map(C->comp_arena()) {
  48   // Add unknown java object.
  49   add_java_object(C->top(), PointsToNode::GlobalEscape);
  50   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  51   // Add ConP(#NULL) and ConN(#NULL) nodes.
  52   Node* oop_null = igvn->zerocon(T_OBJECT);
  53   assert(oop_null->_idx < nodes_size(), "should be created already");
  54   add_java_object(oop_null, PointsToNode::NoEscape);
  55   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  56   if (UseCompressedOops) {
  57     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  58     assert(noop_null->_idx < nodes_size(), "should be created already");
  59     map_ideal_node(noop_null, null_obj);
  60   }
  61   _pcmp_neq = NULL; // Should be initialized
  62   _pcmp_eq  = NULL;
  63 }
  64 
  65 bool ConnectionGraph::has_candidates(Compile *C) {
  66   // EA brings benefits only when the code has allocations and/or locks which
  67   // are represented by ideal Macro nodes.
  68   int cnt = C->macro_count();
  69   for (int i = 0; i < cnt; i++) {
  70     Node *n = C->macro_node(i);
  71     if (n->is_Allocate())
  72       return true;
  73     if (n->is_Lock()) {
  74       Node* obj = n->as_Lock()->obj_node()->uncast();
  75       if (!(obj->is_Parm() || obj->is_Con()))
  76         return true;
  77     }
  78     if (n->is_CallStaticJava() &&
  79         n->as_CallStaticJava()->is_boxing_method()) {
  80       return true;
  81     }
  82   }
  83   return false;
  84 }
  85 
  86 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  87   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  88   ResourceMark rm;
  89 
  90   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  91   // to create space for them in ConnectionGraph::_nodes[].
  92   Node* oop_null = igvn->zerocon(T_OBJECT);
  93   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  94   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  95   // Perform escape analysis
  96   if (congraph->compute_escape()) {
  97     // There are non escaping objects.
  98     C->set_congraph(congraph);
  99   }
 100   // Cleanup.
 101   if (oop_null->outcnt() == 0)
 102     igvn->hash_delete(oop_null);
 103   if (noop_null->outcnt() == 0)
 104     igvn->hash_delete(noop_null);
 105 }
 106 
 107 bool ConnectionGraph::compute_escape() {
 108   Compile* C = _compile;
 109   PhaseGVN* igvn = _igvn;
 110 
 111   // Worklists used by EA.
 112   Unique_Node_List delayed_worklist;
 113   GrowableArray<Node*> alloc_worklist;
 114   GrowableArray<Node*> ptr_cmp_worklist;
 115   GrowableArray<Node*> storestore_worklist;
 116   GrowableArray<PointsToNode*>   ptnodes_worklist;
 117   GrowableArray<JavaObjectNode*> java_objects_worklist;
 118   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 119   GrowableArray<FieldNode*>      oop_fields_worklist;
 120   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 121 
 122   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 123 
 124   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 125   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 126   // Initialize worklist
 127   if (C->root() != NULL) {
 128     ideal_nodes.push(C->root());
 129   }
 130   // Processed ideal nodes are unique on ideal_nodes list
 131   // but several ideal nodes are mapped to the phantom_obj.
 132   // To avoid duplicated entries on the following worklists
 133   // add the phantom_obj only once to them.
 134   ptnodes_worklist.append(phantom_obj);
 135   java_objects_worklist.append(phantom_obj);
 136   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 137     Node* n = ideal_nodes.at(next);
 138     // Create PointsTo nodes and add them to Connection Graph. Called
 139     // only once per ideal node since ideal_nodes is Unique_Node list.
 140     add_node_to_connection_graph(n, &delayed_worklist);
 141     PointsToNode* ptn = ptnode_adr(n->_idx);
 142     if (ptn != NULL && ptn != phantom_obj) {
 143       ptnodes_worklist.append(ptn);
 144       if (ptn->is_JavaObject()) {
 145         java_objects_worklist.append(ptn->as_JavaObject());
 146         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 147             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 148           // Only allocations and java static calls results are interesting.
 149           non_escaped_worklist.append(ptn->as_JavaObject());
 150         }
 151       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 152         oop_fields_worklist.append(ptn->as_Field());
 153       }
 154     }
 155     if (n->is_MergeMem()) {
 156       // Collect all MergeMem nodes to add memory slices for
 157       // scalar replaceable objects in split_unique_types().
 158       _mergemem_worklist.append(n->as_MergeMem());
 159     } else if (OptimizePtrCompare && n->is_Cmp() &&
 160                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 161       // Collect compare pointers nodes.
 162       ptr_cmp_worklist.append(n);
 163     } else if (n->is_MemBarStoreStore()) {
 164       // Collect all MemBarStoreStore nodes so that depending on the
 165       // escape status of the associated Allocate node some of them
 166       // may be eliminated.
 167       storestore_worklist.append(n);
 168     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 169                (n->req() > MemBarNode::Precedent)) {
 170       record_for_optimizer(n);
 171 #ifdef ASSERT
 172     } else if (n->is_AddP()) {
 173       // Collect address nodes for graph verification.
 174       addp_worklist.append(n);
 175 #endif
 176     }
 177     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 178       Node* m = n->fast_out(i);   // Get user
 179       ideal_nodes.push(m);
 180     }
 181   }
 182   if (non_escaped_worklist.length() == 0) {
 183     _collecting = false;
 184     return false; // Nothing to do.
 185   }
 186   // Add final simple edges to graph.
 187   while(delayed_worklist.size() > 0) {
 188     Node* n = delayed_worklist.pop();
 189     add_final_edges(n);
 190   }
 191   int ptnodes_length = ptnodes_worklist.length();
 192 
 193 #ifdef ASSERT
 194   if (VerifyConnectionGraph) {
 195     // Verify that no new simple edges could be created and all
 196     // local vars has edges.
 197     _verify = true;
 198     for (int next = 0; next < ptnodes_length; ++next) {
 199       PointsToNode* ptn = ptnodes_worklist.at(next);
 200       add_final_edges(ptn->ideal_node());
 201       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 202         ptn->dump();
 203         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 204       }
 205     }
 206     _verify = false;
 207   }
 208 #endif
 209   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 210   // processing, calls to CI to resolve symbols (types, fields, methods)
 211   // referenced in bytecode. During symbol resolution VM may throw
 212   // an exception which CI cleans and converts to compilation failure.
 213   if (C->failing())  return false;
 214 
 215   // 2. Finish Graph construction by propagating references to all
 216   //    java objects through graph.
 217   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 218                                  java_objects_worklist, oop_fields_worklist)) {
 219     // All objects escaped or hit time or iterations limits.
 220     _collecting = false;
 221     return false;
 222   }
 223 
 224   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 225   //    scalar replaceable allocations on alloc_worklist for processing
 226   //    in split_unique_types().
 227   int non_escaped_length = non_escaped_worklist.length();
 228   for (int next = 0; next < non_escaped_length; next++) {
 229     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 230     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 231     Node* n = ptn->ideal_node();
 232     if (n->is_Allocate()) {
 233       n->as_Allocate()->_is_non_escaping = noescape;
 234     }
 235     if (n->is_CallStaticJava()) {
 236       n->as_CallStaticJava()->_is_non_escaping = noescape;
 237     }
 238     if (noescape && ptn->scalar_replaceable()) {
 239       adjust_scalar_replaceable_state(ptn);
 240       if (ptn->scalar_replaceable()) {
 241         alloc_worklist.append(ptn->ideal_node());
 242       }
 243     }
 244   }
 245 
 246 #ifdef ASSERT
 247   if (VerifyConnectionGraph) {
 248     // Verify that graph is complete - no new edges could be added or needed.
 249     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 250                             java_objects_worklist, addp_worklist);
 251   }
 252   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 253   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 254          null_obj->edge_count() == 0 &&
 255          !null_obj->arraycopy_src() &&
 256          !null_obj->arraycopy_dst(), "sanity");
 257 #endif
 258 
 259   _collecting = false;
 260 
 261   } // TracePhase t3("connectionGraph")
 262 
 263   // 4. Optimize ideal graph based on EA information.
 264   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 265   if (has_non_escaping_obj) {
 266     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 267   }
 268 
 269 #ifndef PRODUCT
 270   if (PrintEscapeAnalysis) {
 271     dump(ptnodes_worklist); // Dump ConnectionGraph
 272   }
 273 #endif
 274 
 275   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 276 #ifdef ASSERT
 277   if (VerifyConnectionGraph) {
 278     int alloc_length = alloc_worklist.length();
 279     for (int next = 0; next < alloc_length; ++next) {
 280       Node* n = alloc_worklist.at(next);
 281       PointsToNode* ptn = ptnode_adr(n->_idx);
 282       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 283     }
 284   }
 285 #endif
 286 
 287   // 5. Separate memory graph for scalar replaceable allcations.
 288   if (has_scalar_replaceable_candidates &&
 289       C->AliasLevel() >= 3 && EliminateAllocations) {
 290     // Now use the escape information to create unique types for
 291     // scalar replaceable objects.
 292     split_unique_types(alloc_worklist);
 293     if (C->failing())  return false;
 294     C->print_method(PHASE_AFTER_EA, 2);
 295 
 296 #ifdef ASSERT
 297   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 298     tty->print("=== No allocations eliminated for ");
 299     C->method()->print_short_name();
 300     if(!EliminateAllocations) {
 301       tty->print(" since EliminateAllocations is off ===");
 302     } else if(!has_scalar_replaceable_candidates) {
 303       tty->print(" since there are no scalar replaceable candidates ===");
 304     } else if(C->AliasLevel() < 3) {
 305       tty->print(" since AliasLevel < 3 ===");
 306     }
 307     tty->cr();
 308 #endif
 309   }
 310   return has_non_escaping_obj;
 311 }
 312 
 313 // Utility function for nodes that load an object
 314 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 315   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 316   // ThreadLocal has RawPtr type.
 317   const Type* t = _igvn->type(n);
 318   if (t->make_ptr() != NULL) {
 319     Node* adr = n->in(MemNode::Address);
 320 #ifdef ASSERT
 321     if (!adr->is_AddP()) {
 322       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 323     } else {
 324       assert((ptnode_adr(adr->_idx) == NULL ||
 325               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 326     }
 327 #endif
 328     add_local_var_and_edge(n, PointsToNode::NoEscape,
 329                            adr, delayed_worklist);
 330   }
 331 }
 332 
 333 // Populate Connection Graph with PointsTo nodes and create simple
 334 // connection graph edges.
 335 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 336   assert(!_verify, "this method sould not be called for verification");
 337   PhaseGVN* igvn = _igvn;
 338   uint n_idx = n->_idx;
 339   PointsToNode* n_ptn = ptnode_adr(n_idx);
 340   if (n_ptn != NULL)
 341     return; // No need to redefine PointsTo node during first iteration.
 342 
 343   if (n->is_Call()) {
 344     // Arguments to allocation and locking don't escape.
 345     if (n->is_AbstractLock()) {
 346       // Put Lock and Unlock nodes on IGVN worklist to process them during
 347       // first IGVN optimization when escape information is still available.
 348       record_for_optimizer(n);
 349     } else if (n->is_Allocate()) {
 350       add_call_node(n->as_Call());
 351       record_for_optimizer(n);
 352     } else {
 353       if (n->is_CallStaticJava()) {
 354         const char* name = n->as_CallStaticJava()->_name;
 355         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 356           return; // Skip uncommon traps
 357       }
 358       // Don't mark as processed since call's arguments have to be processed.
 359       delayed_worklist->push(n);
 360       // Check if a call returns an object.
 361       if ((n->as_Call()->returns_pointer() &&
 362            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 363           (n->is_CallStaticJava() &&
 364            n->as_CallStaticJava()->is_boxing_method())) {
 365         add_call_node(n->as_Call());
 366       }
 367     }
 368     return;
 369   }
 370   // Put this check here to process call arguments since some call nodes
 371   // point to phantom_obj.
 372   if (n_ptn == phantom_obj || n_ptn == null_obj)
 373     return; // Skip predefined nodes.
 374 
 375   int opcode = n->Opcode();
 376   switch (opcode) {
 377     case Op_AddP: {
 378       Node* base = get_addp_base(n);
 379       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 380       // Field nodes are created for all field types. They are used in
 381       // adjust_scalar_replaceable_state() and split_unique_types().
 382       // Note, non-oop fields will have only base edges in Connection
 383       // Graph because such fields are not used for oop loads and stores.
 384       int offset = address_offset(n, igvn);
 385       add_field(n, PointsToNode::NoEscape, offset);
 386       if (ptn_base == NULL) {
 387         delayed_worklist->push(n); // Process it later.
 388       } else {
 389         n_ptn = ptnode_adr(n_idx);
 390         add_base(n_ptn->as_Field(), ptn_base);
 391       }
 392       break;
 393     }
 394     case Op_CastX2P: {
 395       map_ideal_node(n, phantom_obj);
 396       break;
 397     }
 398     case Op_CastPP:
 399     case Op_CheckCastPP:
 400     case Op_EncodeP:
 401     case Op_DecodeN:
 402     case Op_EncodePKlass:
 403     case Op_DecodeNKlass: {
 404       add_local_var_and_edge(n, PointsToNode::NoEscape,
 405                              n->in(1), delayed_worklist);
 406       break;
 407     }
 408     case Op_CMoveP: {
 409       add_local_var(n, PointsToNode::NoEscape);
 410       // Do not add edges during first iteration because some could be
 411       // not defined yet.
 412       delayed_worklist->push(n);
 413       break;
 414     }
 415     case Op_ConP:
 416     case Op_ConN:
 417     case Op_ConNKlass: {
 418       // assume all oop constants globally escape except for null
 419       PointsToNode::EscapeState es;
 420       const Type* t = igvn->type(n);
 421       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 422         es = PointsToNode::NoEscape;
 423       } else {
 424         es = PointsToNode::GlobalEscape;
 425       }
 426       add_java_object(n, es);
 427       break;
 428     }
 429     case Op_CreateEx: {
 430       // assume that all exception objects globally escape
 431       map_ideal_node(n, phantom_obj);
 432       break;
 433     }
 434     case Op_LoadKlass:
 435     case Op_LoadNKlass: {
 436       // Unknown class is loaded
 437       map_ideal_node(n, phantom_obj);
 438       break;
 439     }
 440     case Op_LoadP:
 441     case Op_LoadN:
 442     case Op_LoadPLocked: {
 443       add_objload_to_connection_graph(n, delayed_worklist);
 444       break;
 445     }
 446     case Op_Parm: {
 447       map_ideal_node(n, phantom_obj);
 448       break;
 449     }
 450     case Op_PartialSubtypeCheck: {
 451       // Produces Null or notNull and is used in only in CmpP so
 452       // phantom_obj could be used.
 453       map_ideal_node(n, phantom_obj); // Result is unknown
 454       break;
 455     }
 456     case Op_Phi: {
 457       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 458       // ThreadLocal has RawPtr type.
 459       const Type* t = n->as_Phi()->type();
 460       if (t->make_ptr() != NULL) {
 461         add_local_var(n, PointsToNode::NoEscape);
 462         // Do not add edges during first iteration because some could be
 463         // not defined yet.
 464         delayed_worklist->push(n);
 465       }
 466       break;
 467     }
 468     case Op_Proj: {
 469       // we are only interested in the oop result projection from a call
 470       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 471           n->in(0)->as_Call()->returns_pointer()) {
 472         add_local_var_and_edge(n, PointsToNode::NoEscape,
 473                                n->in(0), delayed_worklist);
 474       }
 475       break;
 476     }
 477     case Op_Rethrow: // Exception object escapes
 478     case Op_Return: {
 479       if (n->req() > TypeFunc::Parms &&
 480           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 481         // Treat Return value as LocalVar with GlobalEscape escape state.
 482         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 483                                n->in(TypeFunc::Parms), delayed_worklist);
 484       }
 485       break;
 486     }
 487     case Op_GetAndSetP:
 488     case Op_GetAndSetN: {
 489       add_objload_to_connection_graph(n, delayed_worklist);
 490       // fallthrough
 491     }
 492     case Op_StoreP:
 493     case Op_StoreN:
 494     case Op_StoreNKlass:
 495     case Op_StorePConditional:
 496     case Op_CompareAndSwapP:
 497     case Op_CompareAndSwapN: {
 498       Node* adr = n->in(MemNode::Address);
 499       const Type *adr_type = igvn->type(adr);
 500       adr_type = adr_type->make_ptr();
 501       if (adr_type == NULL) {
 502         break; // skip dead nodes
 503       }
 504       if (adr_type->isa_oopptr() ||
 505           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 506                         (adr_type == TypeRawPtr::NOTNULL &&
 507                          adr->in(AddPNode::Address)->is_Proj() &&
 508                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 509         delayed_worklist->push(n); // Process it later.
 510 #ifdef ASSERT
 511         assert(adr->is_AddP(), "expecting an AddP");
 512         if (adr_type == TypeRawPtr::NOTNULL) {
 513           // Verify a raw address for a store captured by Initialize node.
 514           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 515           assert(offs != Type::OffsetBot, "offset must be a constant");
 516         }
 517 #endif
 518       } else {
 519         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 520         if (adr->is_BoxLock())
 521           break;
 522         // Stored value escapes in unsafe access.
 523         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 524           // Pointer stores in G1 barriers looks like unsafe access.
 525           // Ignore such stores to be able scalar replace non-escaping
 526           // allocations.
 527           if (UseG1GC && adr->is_AddP()) {
 528             Node* base = get_addp_base(adr);
 529             if (base->Opcode() == Op_LoadP &&
 530                 base->in(MemNode::Address)->is_AddP()) {
 531               adr = base->in(MemNode::Address);
 532               Node* tls = get_addp_base(adr);
 533               if (tls->Opcode() == Op_ThreadLocal) {
 534                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 535                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 536                                      PtrQueue::byte_offset_of_buf())) {
 537                   break; // G1 pre barier previous oop value store.
 538                 }
 539                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 540                                      PtrQueue::byte_offset_of_buf())) {
 541                   break; // G1 post barier card address store.
 542                 }
 543               }
 544             }
 545           }
 546           delayed_worklist->push(n); // Process unsafe access later.
 547           break;
 548         }
 549 #ifdef ASSERT
 550         n->dump(1);
 551         assert(false, "not unsafe or G1 barrier raw StoreP");
 552 #endif
 553       }
 554       break;
 555     }
 556     case Op_AryEq:
 557     case Op_StrComp:
 558     case Op_StrEquals:
 559     case Op_StrIndexOf:
 560     case Op_EncodeISOArray: {
 561       add_local_var(n, PointsToNode::ArgEscape);
 562       delayed_worklist->push(n); // Process it later.
 563       break;
 564     }
 565     case Op_ThreadLocal: {
 566       add_java_object(n, PointsToNode::ArgEscape);
 567       break;
 568     }
 569     default:
 570       ; // Do nothing for nodes not related to EA.
 571   }
 572   return;
 573 }
 574 
 575 #ifdef ASSERT
 576 #define ELSE_FAIL(name)                               \
 577       /* Should not be called for not pointer type. */  \
 578       n->dump(1);                                       \
 579       assert(false, name);                              \
 580       break;
 581 #else
 582 #define ELSE_FAIL(name) \
 583       break;
 584 #endif
 585 
 586 // Add final simple edges to graph.
 587 void ConnectionGraph::add_final_edges(Node *n) {
 588   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 589 #ifdef ASSERT
 590   if (_verify && n_ptn->is_JavaObject())
 591     return; // This method does not change graph for JavaObject.
 592 #endif
 593 
 594   if (n->is_Call()) {
 595     process_call_arguments(n->as_Call());
 596     return;
 597   }
 598   assert(n->is_Store() || n->is_LoadStore() ||
 599          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 600          "node should be registered already");
 601   int opcode = n->Opcode();
 602   switch (opcode) {
 603     case Op_AddP: {
 604       Node* base = get_addp_base(n);
 605       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 606       assert(ptn_base != NULL, "field's base should be registered");
 607       add_base(n_ptn->as_Field(), ptn_base);
 608       break;
 609     }
 610     case Op_CastPP:
 611     case Op_CheckCastPP:
 612     case Op_EncodeP:
 613     case Op_DecodeN:
 614     case Op_EncodePKlass:
 615     case Op_DecodeNKlass: {
 616       add_local_var_and_edge(n, PointsToNode::NoEscape,
 617                              n->in(1), NULL);
 618       break;
 619     }
 620     case Op_CMoveP: {
 621       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 622         Node* in = n->in(i);
 623         if (in == NULL)
 624           continue;  // ignore NULL
 625         Node* uncast_in = in->uncast();
 626         if (uncast_in->is_top() || uncast_in == n)
 627           continue;  // ignore top or inputs which go back this node
 628         PointsToNode* ptn = ptnode_adr(in->_idx);
 629         assert(ptn != NULL, "node should be registered");
 630         add_edge(n_ptn, ptn);
 631       }
 632       break;
 633     }
 634     case Op_LoadP:
 635     case Op_LoadN:
 636     case Op_LoadPLocked: {
 637       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 638       // ThreadLocal has RawPtr type.
 639       const Type* t = _igvn->type(n);
 640       if (t->make_ptr() != NULL) {
 641         Node* adr = n->in(MemNode::Address);
 642         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 643         break;
 644       }
 645       ELSE_FAIL("Op_LoadP");
 646     }
 647     case Op_Phi: {
 648       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 649       // ThreadLocal has RawPtr type.
 650       const Type* t = n->as_Phi()->type();
 651       if (t->make_ptr() != NULL) {
 652         for (uint i = 1; i < n->req(); i++) {
 653           Node* in = n->in(i);
 654           if (in == NULL)
 655             continue;  // ignore NULL
 656           Node* uncast_in = in->uncast();
 657           if (uncast_in->is_top() || uncast_in == n)
 658             continue;  // ignore top or inputs which go back this node
 659           PointsToNode* ptn = ptnode_adr(in->_idx);
 660           assert(ptn != NULL, "node should be registered");
 661           add_edge(n_ptn, ptn);
 662         }
 663         break;
 664       }
 665       ELSE_FAIL("Op_Phi");
 666     }
 667     case Op_Proj: {
 668       // we are only interested in the oop result projection from a call
 669       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 670           n->in(0)->as_Call()->returns_pointer()) {
 671         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 672         break;
 673       }
 674       ELSE_FAIL("Op_Proj");
 675     }
 676     case Op_Rethrow: // Exception object escapes
 677     case Op_Return: {
 678       if (n->req() > TypeFunc::Parms &&
 679           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 680         // Treat Return value as LocalVar with GlobalEscape escape state.
 681         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 682                                n->in(TypeFunc::Parms), NULL);
 683         break;
 684       }
 685       ELSE_FAIL("Op_Return");
 686     }
 687     case Op_StoreP:
 688     case Op_StoreN:
 689     case Op_StoreNKlass:
 690     case Op_StorePConditional:
 691     case Op_CompareAndSwapP:
 692     case Op_CompareAndSwapN:
 693     case Op_GetAndSetP:
 694     case Op_GetAndSetN: {
 695       Node* adr = n->in(MemNode::Address);
 696       const Type *adr_type = _igvn->type(adr);
 697       adr_type = adr_type->make_ptr();
 698 #ifdef ASSERT
 699       if (adr_type == NULL) {
 700         n->dump(1);
 701         assert(adr_type != NULL, "dead node should not be on list");
 702         break;
 703       }
 704 #endif
 705       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 706         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 707       }
 708       if (adr_type->isa_oopptr() ||
 709           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 710                         (adr_type == TypeRawPtr::NOTNULL &&
 711                          adr->in(AddPNode::Address)->is_Proj() &&
 712                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 713         // Point Address to Value
 714         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 715         assert(adr_ptn != NULL &&
 716                adr_ptn->as_Field()->is_oop(), "node should be registered");
 717         Node *val = n->in(MemNode::ValueIn);
 718         PointsToNode* ptn = ptnode_adr(val->_idx);
 719         assert(ptn != NULL, "node should be registered");
 720         add_edge(adr_ptn, ptn);
 721         break;
 722       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 723         // Stored value escapes in unsafe access.
 724         Node *val = n->in(MemNode::ValueIn);
 725         PointsToNode* ptn = ptnode_adr(val->_idx);
 726         assert(ptn != NULL, "node should be registered");
 727         set_escape_state(ptn, PointsToNode::GlobalEscape);
 728         // Add edge to object for unsafe access with offset.
 729         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 730         assert(adr_ptn != NULL, "node should be registered");
 731         if (adr_ptn->is_Field()) {
 732           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 733           add_edge(adr_ptn, ptn);
 734         }
 735         break;
 736       }
 737       ELSE_FAIL("Op_StoreP");
 738     }
 739     case Op_AryEq:
 740     case Op_StrComp:
 741     case Op_StrEquals:
 742     case Op_StrIndexOf:
 743     case Op_EncodeISOArray: {
 744       // char[] arrays passed to string intrinsic do not escape but
 745       // they are not scalar replaceable. Adjust escape state for them.
 746       // Start from in(2) edge since in(1) is memory edge.
 747       for (uint i = 2; i < n->req(); i++) {
 748         Node* adr = n->in(i);
 749         const Type* at = _igvn->type(adr);
 750         if (!adr->is_top() && at->isa_ptr()) {
 751           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 752                  at->isa_ptr() != NULL, "expecting a pointer");
 753           if (adr->is_AddP()) {
 754             adr = get_addp_base(adr);
 755           }
 756           PointsToNode* ptn = ptnode_adr(adr->_idx);
 757           assert(ptn != NULL, "node should be registered");
 758           add_edge(n_ptn, ptn);
 759         }
 760       }
 761       break;
 762     }
 763     default: {
 764       // This method should be called only for EA specific nodes which may
 765       // miss some edges when they were created.
 766 #ifdef ASSERT
 767       n->dump(1);
 768 #endif
 769       guarantee(false, "unknown node");
 770     }
 771   }
 772   return;
 773 }
 774 
 775 void ConnectionGraph::add_call_node(CallNode* call) {
 776   assert(call->returns_pointer(), "only for call which returns pointer");
 777   uint call_idx = call->_idx;
 778   if (call->is_Allocate()) {
 779     Node* k = call->in(AllocateNode::KlassNode);
 780     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 781     assert(kt != NULL, "TypeKlassPtr  required.");
 782     ciKlass* cik = kt->klass();
 783     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 784     bool scalar_replaceable = true;
 785     if (call->is_AllocateArray()) {
 786       if (!cik->is_array_klass()) { // StressReflectiveCode
 787         es = PointsToNode::GlobalEscape;
 788       } else {
 789         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 790         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 791           // Not scalar replaceable if the length is not constant or too big.
 792           scalar_replaceable = false;
 793         }
 794       }
 795     } else {  // Allocate instance
 796       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 797           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 798          !cik->is_instance_klass() || // StressReflectiveCode
 799           cik->as_instance_klass()->has_finalizer()) {
 800         es = PointsToNode::GlobalEscape;
 801       }
 802     }
 803     add_java_object(call, es);
 804     PointsToNode* ptn = ptnode_adr(call_idx);
 805     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 806       ptn->set_scalar_replaceable(false);
 807     }
 808   } else if (call->is_CallStaticJava()) {
 809     // Call nodes could be different types:
 810     //
 811     // 1. CallDynamicJavaNode (what happened during call is unknown):
 812     //
 813     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 814     //
 815     //    - all oop arguments are escaping globally;
 816     //
 817     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 818     //
 819     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 820     //
 821     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 822     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 823     //      during call is returned;
 824     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 825     //      which are returned and does not escape during call;
 826     //
 827     //    - oop arguments escaping status is defined by bytecode analysis;
 828     //
 829     // For a static call, we know exactly what method is being called.
 830     // Use bytecode estimator to record whether the call's return value escapes.
 831     ciMethod* meth = call->as_CallJava()->method();
 832     if (meth == NULL) {
 833       const char* name = call->as_CallStaticJava()->_name;
 834       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 835       // Returns a newly allocated unescaped object.
 836       add_java_object(call, PointsToNode::NoEscape);
 837       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 838     } else if (meth->is_boxing_method()) {
 839       // Returns boxing object
 840       PointsToNode::EscapeState es;
 841       vmIntrinsics::ID intr = meth->intrinsic_id();
 842       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 843         // It does not escape if object is always allocated.
 844         es = PointsToNode::NoEscape;
 845       } else {
 846         // It escapes globally if object could be loaded from cache.
 847         es = PointsToNode::GlobalEscape;
 848       }
 849       add_java_object(call, es);
 850     } else {
 851       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 852       call_analyzer->copy_dependencies(_compile->dependencies());
 853       if (call_analyzer->is_return_allocated()) {
 854         // Returns a newly allocated unescaped object, simply
 855         // update dependency information.
 856         // Mark it as NoEscape so that objects referenced by
 857         // it's fields will be marked as NoEscape at least.
 858         add_java_object(call, PointsToNode::NoEscape);
 859         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 860       } else {
 861         // Determine whether any arguments are returned.
 862         const TypeTuple* d = call->tf()->domain();
 863         bool ret_arg = false;
 864         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 865           if (d->field_at(i)->isa_ptr() != NULL &&
 866               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 867             ret_arg = true;
 868             break;
 869           }
 870         }
 871         if (ret_arg) {
 872           add_local_var(call, PointsToNode::ArgEscape);
 873         } else {
 874           // Returns unknown object.
 875           map_ideal_node(call, phantom_obj);
 876         }
 877       }
 878     }
 879   } else {
 880     // An other type of call, assume the worst case:
 881     // returned value is unknown and globally escapes.
 882     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 883     map_ideal_node(call, phantom_obj);
 884   }
 885 }
 886 
 887 void ConnectionGraph::process_call_arguments(CallNode *call) {
 888     bool is_arraycopy = false;
 889     switch (call->Opcode()) {
 890 #ifdef ASSERT
 891     case Op_Allocate:
 892     case Op_AllocateArray:
 893     case Op_Lock:
 894     case Op_Unlock:
 895       assert(false, "should be done already");
 896       break;
 897 #endif
 898     case Op_ArrayCopy:
 899     case Op_CallLeafNoFP:
 900       // Most array copies are ArrayCopy nodes at this point but there
 901       // are still a few direct calls to the copy subroutines (See
 902       // PhaseStringOpts::copy_string())
 903       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 904         (call->as_CallLeaf()->_name != NULL &&
 905          strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 906       // fall through
 907     case Op_CallLeaf: {
 908       // Stub calls, objects do not escape but they are not scale replaceable.
 909       // Adjust escape state for outgoing arguments.
 910       const TypeTuple * d = call->tf()->domain();
 911       bool src_has_oops = false;
 912       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 913         const Type* at = d->field_at(i);
 914         Node *arg = call->in(i);
 915         if (arg == NULL) {
 916           continue;
 917         }
 918         const Type *aat = _igvn->type(arg);
 919         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 920           continue;
 921         if (arg->is_AddP()) {
 922           //
 923           // The inline_native_clone() case when the arraycopy stub is called
 924           // after the allocation before Initialize and CheckCastPP nodes.
 925           // Or normal arraycopy for object arrays case.
 926           //
 927           // Set AddP's base (Allocate) as not scalar replaceable since
 928           // pointer to the base (with offset) is passed as argument.
 929           //
 930           arg = get_addp_base(arg);
 931         }
 932         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 933         assert(arg_ptn != NULL, "should be registered");
 934         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 935         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 936           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 937                  aat->isa_ptr() != NULL, "expecting an Ptr");
 938           bool arg_has_oops = aat->isa_oopptr() &&
 939                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 940                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 941           if (i == TypeFunc::Parms) {
 942             src_has_oops = arg_has_oops;
 943           }
 944           //
 945           // src or dst could be j.l.Object when other is basic type array:
 946           //
 947           //   arraycopy(char[],0,Object*,0,size);
 948           //   arraycopy(Object*,0,char[],0,size);
 949           //
 950           // Don't add edges in such cases.
 951           //
 952           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 953                                        arg_has_oops && (i > TypeFunc::Parms);
 954 #ifdef ASSERT
 955           if (!(is_arraycopy ||
 956                 (call->as_CallLeaf()->_name != NULL &&
 957                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 958                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 959                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 960                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 961                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 962                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 963                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 964                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 965                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 966                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 967                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 968                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 969                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 970                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
 971                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 || 
 972                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0)
 973                   ))) {
 974             call->dump();
 975             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 976           }
 977 #endif
 978           // Always process arraycopy's destination object since
 979           // we need to add all possible edges to references in
 980           // source object.
 981           if (arg_esc >= PointsToNode::ArgEscape &&
 982               !arg_is_arraycopy_dest) {
 983             continue;
 984           }
 985           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 986           if (arg_is_arraycopy_dest) {
 987             Node* src = call->in(TypeFunc::Parms);
 988             if (src->is_AddP()) {
 989               src = get_addp_base(src);
 990             }
 991             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 992             assert(src_ptn != NULL, "should be registered");
 993             if (arg_ptn != src_ptn) {
 994               // Special arraycopy edge:
 995               // A destination object's field can't have the source object
 996               // as base since objects escape states are not related.
 997               // Only escape state of destination object's fields affects
 998               // escape state of fields in source object.
 999               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
1000             }
1001           }
1002         }
1003       }
1004       break;
1005     }
1006     case Op_CallStaticJava: {
1007       // For a static call, we know exactly what method is being called.
1008       // Use bytecode estimator to record the call's escape affects
1009 #ifdef ASSERT
1010       const char* name = call->as_CallStaticJava()->_name;
1011       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1012 #endif
1013       ciMethod* meth = call->as_CallJava()->method();
1014       if ((meth != NULL) && meth->is_boxing_method()) {
1015         break; // Boxing methods do not modify any oops.
1016       }
1017       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1018       // fall-through if not a Java method or no analyzer information
1019       if (call_analyzer != NULL) {
1020         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1021         const TypeTuple* d = call->tf()->domain();
1022         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1023           const Type* at = d->field_at(i);
1024           int k = i - TypeFunc::Parms;
1025           Node* arg = call->in(i);
1026           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1027           if (at->isa_ptr() != NULL &&
1028               call_analyzer->is_arg_returned(k)) {
1029             // The call returns arguments.
1030             if (call_ptn != NULL) { // Is call's result used?
1031               assert(call_ptn->is_LocalVar(), "node should be registered");
1032               assert(arg_ptn != NULL, "node should be registered");
1033               add_edge(call_ptn, arg_ptn);
1034             }
1035           }
1036           if (at->isa_oopptr() != NULL &&
1037               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1038             if (!call_analyzer->is_arg_stack(k)) {
1039               // The argument global escapes
1040               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1041             } else {
1042               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1043               if (!call_analyzer->is_arg_local(k)) {
1044                 // The argument itself doesn't escape, but any fields might
1045                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1046               }
1047             }
1048           }
1049         }
1050         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1051           // The call returns arguments.
1052           assert(call_ptn->edge_count() > 0, "sanity");
1053           if (!call_analyzer->is_return_local()) {
1054             // Returns also unknown object.
1055             add_edge(call_ptn, phantom_obj);
1056           }
1057         }
1058         break;
1059       }
1060     }
1061     default: {
1062       // Fall-through here if not a Java method or no analyzer information
1063       // or some other type of call, assume the worst case: all arguments
1064       // globally escape.
1065       const TypeTuple* d = call->tf()->domain();
1066       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1067         const Type* at = d->field_at(i);
1068         if (at->isa_oopptr() != NULL) {
1069           Node* arg = call->in(i);
1070           if (arg->is_AddP()) {
1071             arg = get_addp_base(arg);
1072           }
1073           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1074           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1075         }
1076       }
1077     }
1078   }
1079 }
1080 
1081 
1082 // Finish Graph construction.
1083 bool ConnectionGraph::complete_connection_graph(
1084                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1085                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1086                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1087                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1088   // Normally only 1-3 passes needed to build Connection Graph depending
1089   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1090   // Set limit to 20 to catch situation when something did go wrong and
1091   // bailout Escape Analysis.
1092   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1093 #define CG_BUILD_ITER_LIMIT 20
1094 
1095   // Propagate GlobalEscape and ArgEscape escape states and check that
1096   // we still have non-escaping objects. The method pushs on _worklist
1097   // Field nodes which reference phantom_object.
1098   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1099     return false; // Nothing to do.
1100   }
1101   // Now propagate references to all JavaObject nodes.
1102   int java_objects_length = java_objects_worklist.length();
1103   elapsedTimer time;
1104   bool timeout = false;
1105   int new_edges = 1;
1106   int iterations = 0;
1107   do {
1108     while ((new_edges > 0) &&
1109            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1110       double start_time = time.seconds();
1111       time.start();
1112       new_edges = 0;
1113       // Propagate references to phantom_object for nodes pushed on _worklist
1114       // by find_non_escaped_objects() and find_field_value().
1115       new_edges += add_java_object_edges(phantom_obj, false);
1116       for (int next = 0; next < java_objects_length; ++next) {
1117         JavaObjectNode* ptn = java_objects_worklist.at(next);
1118         new_edges += add_java_object_edges(ptn, true);
1119 
1120 #define SAMPLE_SIZE 4
1121         if ((next % SAMPLE_SIZE) == 0) {
1122           // Each 4 iterations calculate how much time it will take
1123           // to complete graph construction.
1124           time.stop();
1125           // Poll for requests from shutdown mechanism to quiesce compiler
1126           // because Connection graph construction may take long time.
1127           CompileBroker::maybe_block();
1128           double stop_time = time.seconds();
1129           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1130           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1131           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1132             timeout = true;
1133             break; // Timeout
1134           }
1135           start_time = stop_time;
1136           time.start();
1137         }
1138 #undef SAMPLE_SIZE
1139 
1140       }
1141       if (timeout) break;
1142       if (new_edges > 0) {
1143         // Update escape states on each iteration if graph was updated.
1144         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1145           return false; // Nothing to do.
1146         }
1147       }
1148       time.stop();
1149       if (time.seconds() >= EscapeAnalysisTimeout) {
1150         timeout = true;
1151         break;
1152       }
1153     }
1154     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1155       time.start();
1156       // Find fields which have unknown value.
1157       int fields_length = oop_fields_worklist.length();
1158       for (int next = 0; next < fields_length; next++) {
1159         FieldNode* field = oop_fields_worklist.at(next);
1160         if (field->edge_count() == 0) {
1161           new_edges += find_field_value(field);
1162           // This code may added new edges to phantom_object.
1163           // Need an other cycle to propagate references to phantom_object.
1164         }
1165       }
1166       time.stop();
1167       if (time.seconds() >= EscapeAnalysisTimeout) {
1168         timeout = true;
1169         break;
1170       }
1171     } else {
1172       new_edges = 0; // Bailout
1173     }
1174   } while (new_edges > 0);
1175 
1176   // Bailout if passed limits.
1177   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1178     Compile* C = _compile;
1179     if (C->log() != NULL) {
1180       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1181       C->log()->text("%s", timeout ? "time" : "iterations");
1182       C->log()->end_elem(" limit'");
1183     }
1184     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1185            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1186     // Possible infinite build_connection_graph loop,
1187     // bailout (no changes to ideal graph were made).
1188     return false;
1189   }
1190 #ifdef ASSERT
1191   if (Verbose && PrintEscapeAnalysis) {
1192     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1193                   iterations, nodes_size(), ptnodes_worklist.length());
1194   }
1195 #endif
1196 
1197 #undef CG_BUILD_ITER_LIMIT
1198 
1199   // Find fields initialized by NULL for non-escaping Allocations.
1200   int non_escaped_length = non_escaped_worklist.length();
1201   for (int next = 0; next < non_escaped_length; next++) {
1202     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1203     PointsToNode::EscapeState es = ptn->escape_state();
1204     assert(es <= PointsToNode::ArgEscape, "sanity");
1205     if (es == PointsToNode::NoEscape) {
1206       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1207         // Adding references to NULL object does not change escape states
1208         // since it does not escape. Also no fields are added to NULL object.
1209         add_java_object_edges(null_obj, false);
1210       }
1211     }
1212     Node* n = ptn->ideal_node();
1213     if (n->is_Allocate()) {
1214       // The object allocated by this Allocate node will never be
1215       // seen by an other thread. Mark it so that when it is
1216       // expanded no MemBarStoreStore is added.
1217       InitializeNode* ini = n->as_Allocate()->initialization();
1218       if (ini != NULL)
1219         ini->set_does_not_escape();
1220     }
1221   }
1222   return true; // Finished graph construction.
1223 }
1224 
1225 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1226 // and check that we still have non-escaping java objects.
1227 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1228                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1229   GrowableArray<PointsToNode*> escape_worklist;
1230   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1231   int ptnodes_length = ptnodes_worklist.length();
1232   for (int next = 0; next < ptnodes_length; ++next) {
1233     PointsToNode* ptn = ptnodes_worklist.at(next);
1234     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1235         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1236       escape_worklist.push(ptn);
1237     }
1238   }
1239   // Set escape states to referenced nodes (edges list).
1240   while (escape_worklist.length() > 0) {
1241     PointsToNode* ptn = escape_worklist.pop();
1242     PointsToNode::EscapeState es  = ptn->escape_state();
1243     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1244     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1245         es >= PointsToNode::ArgEscape) {
1246       // GlobalEscape or ArgEscape state of field means it has unknown value.
1247       if (add_edge(ptn, phantom_obj)) {
1248         // New edge was added
1249         add_field_uses_to_worklist(ptn->as_Field());
1250       }
1251     }
1252     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1253       PointsToNode* e = i.get();
1254       if (e->is_Arraycopy()) {
1255         assert(ptn->arraycopy_dst(), "sanity");
1256         // Propagate only fields escape state through arraycopy edge.
1257         if (e->fields_escape_state() < field_es) {
1258           set_fields_escape_state(e, field_es);
1259           escape_worklist.push(e);
1260         }
1261       } else if (es >= field_es) {
1262         // fields_escape_state is also set to 'es' if it is less than 'es'.
1263         if (e->escape_state() < es) {
1264           set_escape_state(e, es);
1265           escape_worklist.push(e);
1266         }
1267       } else {
1268         // Propagate field escape state.
1269         bool es_changed = false;
1270         if (e->fields_escape_state() < field_es) {
1271           set_fields_escape_state(e, field_es);
1272           es_changed = true;
1273         }
1274         if ((e->escape_state() < field_es) &&
1275             e->is_Field() && ptn->is_JavaObject() &&
1276             e->as_Field()->is_oop()) {
1277           // Change escape state of referenced fileds.
1278           set_escape_state(e, field_es);
1279           es_changed = true;;
1280         } else if (e->escape_state() < es) {
1281           set_escape_state(e, es);
1282           es_changed = true;;
1283         }
1284         if (es_changed) {
1285           escape_worklist.push(e);
1286         }
1287       }
1288     }
1289   }
1290   // Remove escaped objects from non_escaped list.
1291   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1292     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1293     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1294       non_escaped_worklist.delete_at(next);
1295     }
1296     if (ptn->escape_state() == PointsToNode::NoEscape) {
1297       // Find fields in non-escaped allocations which have unknown value.
1298       find_init_values(ptn, phantom_obj, NULL);
1299     }
1300   }
1301   return (non_escaped_worklist.length() > 0);
1302 }
1303 
1304 // Add all references to JavaObject node by walking over all uses.
1305 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1306   int new_edges = 0;
1307   if (populate_worklist) {
1308     // Populate _worklist by uses of jobj's uses.
1309     for (UseIterator i(jobj); i.has_next(); i.next()) {
1310       PointsToNode* use = i.get();
1311       if (use->is_Arraycopy())
1312         continue;
1313       add_uses_to_worklist(use);
1314       if (use->is_Field() && use->as_Field()->is_oop()) {
1315         // Put on worklist all field's uses (loads) and
1316         // related field nodes (same base and offset).
1317         add_field_uses_to_worklist(use->as_Field());
1318       }
1319     }
1320   }
1321   for (int l = 0; l < _worklist.length(); l++) {
1322     PointsToNode* use = _worklist.at(l);
1323     if (PointsToNode::is_base_use(use)) {
1324       // Add reference from jobj to field and from field to jobj (field's base).
1325       use = PointsToNode::get_use_node(use)->as_Field();
1326       if (add_base(use->as_Field(), jobj)) {
1327         new_edges++;
1328       }
1329       continue;
1330     }
1331     assert(!use->is_JavaObject(), "sanity");
1332     if (use->is_Arraycopy()) {
1333       if (jobj == null_obj) // NULL object does not have field edges
1334         continue;
1335       // Added edge from Arraycopy node to arraycopy's source java object
1336       if (add_edge(use, jobj)) {
1337         jobj->set_arraycopy_src();
1338         new_edges++;
1339       }
1340       // and stop here.
1341       continue;
1342     }
1343     if (!add_edge(use, jobj))
1344       continue; // No new edge added, there was such edge already.
1345     new_edges++;
1346     if (use->is_LocalVar()) {
1347       add_uses_to_worklist(use);
1348       if (use->arraycopy_dst()) {
1349         for (EdgeIterator i(use); i.has_next(); i.next()) {
1350           PointsToNode* e = i.get();
1351           if (e->is_Arraycopy()) {
1352             if (jobj == null_obj) // NULL object does not have field edges
1353               continue;
1354             // Add edge from arraycopy's destination java object to Arraycopy node.
1355             if (add_edge(jobj, e)) {
1356               new_edges++;
1357               jobj->set_arraycopy_dst();
1358             }
1359           }
1360         }
1361       }
1362     } else {
1363       // Added new edge to stored in field values.
1364       // Put on worklist all field's uses (loads) and
1365       // related field nodes (same base and offset).
1366       add_field_uses_to_worklist(use->as_Field());
1367     }
1368   }
1369   _worklist.clear();
1370   _in_worklist.Reset();
1371   return new_edges;
1372 }
1373 
1374 // Put on worklist all related field nodes.
1375 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1376   assert(field->is_oop(), "sanity");
1377   int offset = field->offset();
1378   add_uses_to_worklist(field);
1379   // Loop over all bases of this field and push on worklist Field nodes
1380   // with the same offset and base (since they may reference the same field).
1381   for (BaseIterator i(field); i.has_next(); i.next()) {
1382     PointsToNode* base = i.get();
1383     add_fields_to_worklist(field, base);
1384     // Check if the base was source object of arraycopy and go over arraycopy's
1385     // destination objects since values stored to a field of source object are
1386     // accessable by uses (loads) of fields of destination objects.
1387     if (base->arraycopy_src()) {
1388       for (UseIterator j(base); j.has_next(); j.next()) {
1389         PointsToNode* arycp = j.get();
1390         if (arycp->is_Arraycopy()) {
1391           for (UseIterator k(arycp); k.has_next(); k.next()) {
1392             PointsToNode* abase = k.get();
1393             if (abase->arraycopy_dst() && abase != base) {
1394               // Look for the same arracopy reference.
1395               add_fields_to_worklist(field, abase);
1396             }
1397           }
1398         }
1399       }
1400     }
1401   }
1402 }
1403 
1404 // Put on worklist all related field nodes.
1405 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1406   int offset = field->offset();
1407   if (base->is_LocalVar()) {
1408     for (UseIterator j(base); j.has_next(); j.next()) {
1409       PointsToNode* f = j.get();
1410       if (PointsToNode::is_base_use(f)) { // Field
1411         f = PointsToNode::get_use_node(f);
1412         if (f == field || !f->as_Field()->is_oop())
1413           continue;
1414         int offs = f->as_Field()->offset();
1415         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1416           add_to_worklist(f);
1417         }
1418       }
1419     }
1420   } else {
1421     assert(base->is_JavaObject(), "sanity");
1422     if (// Skip phantom_object since it is only used to indicate that
1423         // this field's content globally escapes.
1424         (base != phantom_obj) &&
1425         // NULL object node does not have fields.
1426         (base != null_obj)) {
1427       for (EdgeIterator i(base); i.has_next(); i.next()) {
1428         PointsToNode* f = i.get();
1429         // Skip arraycopy edge since store to destination object field
1430         // does not update value in source object field.
1431         if (f->is_Arraycopy()) {
1432           assert(base->arraycopy_dst(), "sanity");
1433           continue;
1434         }
1435         if (f == field || !f->as_Field()->is_oop())
1436           continue;
1437         int offs = f->as_Field()->offset();
1438         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1439           add_to_worklist(f);
1440         }
1441       }
1442     }
1443   }
1444 }
1445 
1446 // Find fields which have unknown value.
1447 int ConnectionGraph::find_field_value(FieldNode* field) {
1448   // Escaped fields should have init value already.
1449   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1450   int new_edges = 0;
1451   for (BaseIterator i(field); i.has_next(); i.next()) {
1452     PointsToNode* base = i.get();
1453     if (base->is_JavaObject()) {
1454       // Skip Allocate's fields which will be processed later.
1455       if (base->ideal_node()->is_Allocate())
1456         return 0;
1457       assert(base == null_obj, "only NULL ptr base expected here");
1458     }
1459   }
1460   if (add_edge(field, phantom_obj)) {
1461     // New edge was added
1462     new_edges++;
1463     add_field_uses_to_worklist(field);
1464   }
1465   return new_edges;
1466 }
1467 
1468 // Find fields initializing values for allocations.
1469 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1470   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1471   int new_edges = 0;
1472   Node* alloc = pta->ideal_node();
1473   if (init_val == phantom_obj) {
1474     // Do nothing for Allocate nodes since its fields values are "known".
1475     if (alloc->is_Allocate())
1476       return 0;
1477     assert(alloc->as_CallStaticJava(), "sanity");
1478 #ifdef ASSERT
1479     if (alloc->as_CallStaticJava()->method() == NULL) {
1480       const char* name = alloc->as_CallStaticJava()->_name;
1481       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1482     }
1483 #endif
1484     // Non-escaped allocation returned from Java or runtime call have
1485     // unknown values in fields.
1486     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1487       PointsToNode* field = i.get();
1488       if (field->is_Field() && field->as_Field()->is_oop()) {
1489         if (add_edge(field, phantom_obj)) {
1490           // New edge was added
1491           new_edges++;
1492           add_field_uses_to_worklist(field->as_Field());
1493         }
1494       }
1495     }
1496     return new_edges;
1497   }
1498   assert(init_val == null_obj, "sanity");
1499   // Do nothing for Call nodes since its fields values are unknown.
1500   if (!alloc->is_Allocate())
1501     return 0;
1502 
1503   InitializeNode* ini = alloc->as_Allocate()->initialization();
1504   bool visited_bottom_offset = false;
1505   GrowableArray<int> offsets_worklist;
1506 
1507   // Check if an oop field's initializing value is recorded and add
1508   // a corresponding NULL if field's value if it is not recorded.
1509   // Connection Graph does not record a default initialization by NULL
1510   // captured by Initialize node.
1511   //
1512   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1513     PointsToNode* field = i.get(); // Field (AddP)
1514     if (!field->is_Field() || !field->as_Field()->is_oop())
1515       continue; // Not oop field
1516     int offset = field->as_Field()->offset();
1517     if (offset == Type::OffsetBot) {
1518       if (!visited_bottom_offset) {
1519         // OffsetBot is used to reference array's element,
1520         // always add reference to NULL to all Field nodes since we don't
1521         // known which element is referenced.
1522         if (add_edge(field, null_obj)) {
1523           // New edge was added
1524           new_edges++;
1525           add_field_uses_to_worklist(field->as_Field());
1526           visited_bottom_offset = true;
1527         }
1528       }
1529     } else {
1530       // Check only oop fields.
1531       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1532       if (adr_type->isa_rawptr()) {
1533 #ifdef ASSERT
1534         // Raw pointers are used for initializing stores so skip it
1535         // since it should be recorded already
1536         Node* base = get_addp_base(field->ideal_node());
1537         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1538                (base->in(0) == alloc),"unexpected pointer type");
1539 #endif
1540         continue;
1541       }
1542       if (!offsets_worklist.contains(offset)) {
1543         offsets_worklist.append(offset);
1544         Node* value = NULL;
1545         if (ini != NULL) {
1546           // StoreP::memory_type() == T_ADDRESS
1547           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1548           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1549           // Make sure initializing store has the same type as this AddP.
1550           // This AddP may reference non existing field because it is on a
1551           // dead branch of bimorphic call which is not eliminated yet.
1552           if (store != NULL && store->is_Store() &&
1553               store->as_Store()->memory_type() == ft) {
1554             value = store->in(MemNode::ValueIn);
1555 #ifdef ASSERT
1556             if (VerifyConnectionGraph) {
1557               // Verify that AddP already points to all objects the value points to.
1558               PointsToNode* val = ptnode_adr(value->_idx);
1559               assert((val != NULL), "should be processed already");
1560               PointsToNode* missed_obj = NULL;
1561               if (val->is_JavaObject()) {
1562                 if (!field->points_to(val->as_JavaObject())) {
1563                   missed_obj = val;
1564                 }
1565               } else {
1566                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1567                   tty->print_cr("----------init store has invalid value -----");
1568                   store->dump();
1569                   val->dump();
1570                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1571                 }
1572                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1573                   PointsToNode* obj = j.get();
1574                   if (obj->is_JavaObject()) {
1575                     if (!field->points_to(obj->as_JavaObject())) {
1576                       missed_obj = obj;
1577                       break;
1578                     }
1579                   }
1580                 }
1581               }
1582               if (missed_obj != NULL) {
1583                 tty->print_cr("----------field---------------------------------");
1584                 field->dump();
1585                 tty->print_cr("----------missed referernce to object-----------");
1586                 missed_obj->dump();
1587                 tty->print_cr("----------object referernced by init store -----");
1588                 store->dump();
1589                 val->dump();
1590                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1591               }
1592             }
1593 #endif
1594           } else {
1595             // There could be initializing stores which follow allocation.
1596             // For example, a volatile field store is not collected
1597             // by Initialize node.
1598             //
1599             // Need to check for dependent loads to separate such stores from
1600             // stores which follow loads. For now, add initial value NULL so
1601             // that compare pointers optimization works correctly.
1602           }
1603         }
1604         if (value == NULL) {
1605           // A field's initializing value was not recorded. Add NULL.
1606           if (add_edge(field, null_obj)) {
1607             // New edge was added
1608             new_edges++;
1609             add_field_uses_to_worklist(field->as_Field());
1610           }
1611         }
1612       }
1613     }
1614   }
1615   return new_edges;
1616 }
1617 
1618 // Adjust scalar_replaceable state after Connection Graph is built.
1619 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1620   // Search for non-escaping objects which are not scalar replaceable
1621   // and mark them to propagate the state to referenced objects.
1622 
1623   // 1. An object is not scalar replaceable if the field into which it is
1624   // stored has unknown offset (stored into unknown element of an array).
1625   //
1626   for (UseIterator i(jobj); i.has_next(); i.next()) {
1627     PointsToNode* use = i.get();
1628     assert(!use->is_Arraycopy(), "sanity");
1629     if (use->is_Field()) {
1630       FieldNode* field = use->as_Field();
1631       assert(field->is_oop() && field->scalar_replaceable() &&
1632              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1633       if (field->offset() == Type::OffsetBot) {
1634         jobj->set_scalar_replaceable(false);
1635         return;
1636       }
1637       // 2. An object is not scalar replaceable if the field into which it is
1638       // stored has multiple bases one of which is null.
1639       if (field->base_count() > 1) {
1640         for (BaseIterator i(field); i.has_next(); i.next()) {
1641           PointsToNode* base = i.get();
1642           if (base == null_obj) {
1643             jobj->set_scalar_replaceable(false);
1644             return;
1645           }
1646         }
1647       }
1648     }
1649     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1650     // 3. An object is not scalar replaceable if it is merged with other objects.
1651     for (EdgeIterator j(use); j.has_next(); j.next()) {
1652       PointsToNode* ptn = j.get();
1653       if (ptn->is_JavaObject() && ptn != jobj) {
1654         // Mark all objects.
1655         jobj->set_scalar_replaceable(false);
1656          ptn->set_scalar_replaceable(false);
1657       }
1658     }
1659     if (!jobj->scalar_replaceable()) {
1660       return;
1661     }
1662   }
1663 
1664   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1665     // Non-escaping object node should point only to field nodes.
1666     FieldNode* field = j.get()->as_Field();
1667     int offset = field->as_Field()->offset();
1668 
1669     // 4. An object is not scalar replaceable if it has a field with unknown
1670     // offset (array's element is accessed in loop).
1671     if (offset == Type::OffsetBot) {
1672       jobj->set_scalar_replaceable(false);
1673       return;
1674     }
1675     // 5. Currently an object is not scalar replaceable if a LoadStore node
1676     // access its field since the field value is unknown after it.
1677     //
1678     Node* n = field->ideal_node();
1679     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1680       if (n->fast_out(i)->is_LoadStore()) {
1681         jobj->set_scalar_replaceable(false);
1682         return;
1683       }
1684     }
1685 
1686     // 6. Or the address may point to more then one object. This may produce
1687     // the false positive result (set not scalar replaceable)
1688     // since the flow-insensitive escape analysis can't separate
1689     // the case when stores overwrite the field's value from the case
1690     // when stores happened on different control branches.
1691     //
1692     // Note: it will disable scalar replacement in some cases:
1693     //
1694     //    Point p[] = new Point[1];
1695     //    p[0] = new Point(); // Will be not scalar replaced
1696     //
1697     // but it will save us from incorrect optimizations in next cases:
1698     //
1699     //    Point p[] = new Point[1];
1700     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1701     //
1702     if (field->base_count() > 1) {
1703       for (BaseIterator i(field); i.has_next(); i.next()) {
1704         PointsToNode* base = i.get();
1705         // Don't take into account LocalVar nodes which
1706         // may point to only one object which should be also
1707         // this field's base by now.
1708         if (base->is_JavaObject() && base != jobj) {
1709           // Mark all bases.
1710           jobj->set_scalar_replaceable(false);
1711           base->set_scalar_replaceable(false);
1712         }
1713       }
1714     }
1715   }
1716 }
1717 
1718 #ifdef ASSERT
1719 void ConnectionGraph::verify_connection_graph(
1720                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1721                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1722                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1723                          GrowableArray<Node*>& addp_worklist) {
1724   // Verify that graph is complete - no new edges could be added.
1725   int java_objects_length = java_objects_worklist.length();
1726   int non_escaped_length  = non_escaped_worklist.length();
1727   int new_edges = 0;
1728   for (int next = 0; next < java_objects_length; ++next) {
1729     JavaObjectNode* ptn = java_objects_worklist.at(next);
1730     new_edges += add_java_object_edges(ptn, true);
1731   }
1732   assert(new_edges == 0, "graph was not complete");
1733   // Verify that escape state is final.
1734   int length = non_escaped_worklist.length();
1735   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1736   assert((non_escaped_length == non_escaped_worklist.length()) &&
1737          (non_escaped_length == length) &&
1738          (_worklist.length() == 0), "escape state was not final");
1739 
1740   // Verify fields information.
1741   int addp_length = addp_worklist.length();
1742   for (int next = 0; next < addp_length; ++next ) {
1743     Node* n = addp_worklist.at(next);
1744     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1745     if (field->is_oop()) {
1746       // Verify that field has all bases
1747       Node* base = get_addp_base(n);
1748       PointsToNode* ptn = ptnode_adr(base->_idx);
1749       if (ptn->is_JavaObject()) {
1750         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1751       } else {
1752         assert(ptn->is_LocalVar(), "sanity");
1753         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1754           PointsToNode* e = i.get();
1755           if (e->is_JavaObject()) {
1756             assert(field->has_base(e->as_JavaObject()), "sanity");
1757           }
1758         }
1759       }
1760       // Verify that all fields have initializing values.
1761       if (field->edge_count() == 0) {
1762         tty->print_cr("----------field does not have references----------");
1763         field->dump();
1764         for (BaseIterator i(field); i.has_next(); i.next()) {
1765           PointsToNode* base = i.get();
1766           tty->print_cr("----------field has next base---------------------");
1767           base->dump();
1768           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1769             tty->print_cr("----------base has fields-------------------------");
1770             for (EdgeIterator j(base); j.has_next(); j.next()) {
1771               j.get()->dump();
1772             }
1773             tty->print_cr("----------base has references---------------------");
1774             for (UseIterator j(base); j.has_next(); j.next()) {
1775               j.get()->dump();
1776             }
1777           }
1778         }
1779         for (UseIterator i(field); i.has_next(); i.next()) {
1780           i.get()->dump();
1781         }
1782         assert(field->edge_count() > 0, "sanity");
1783       }
1784     }
1785   }
1786 }
1787 #endif
1788 
1789 // Optimize ideal graph.
1790 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1791                                            GrowableArray<Node*>& storestore_worklist) {
1792   Compile* C = _compile;
1793   PhaseIterGVN* igvn = _igvn;
1794   if (EliminateLocks) {
1795     // Mark locks before changing ideal graph.
1796     int cnt = C->macro_count();
1797     for( int i=0; i < cnt; i++ ) {
1798       Node *n = C->macro_node(i);
1799       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1800         AbstractLockNode* alock = n->as_AbstractLock();
1801         if (!alock->is_non_esc_obj()) {
1802           if (not_global_escape(alock->obj_node())) {
1803             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1804             // The lock could be marked eliminated by lock coarsening
1805             // code during first IGVN before EA. Replace coarsened flag
1806             // to eliminate all associated locks/unlocks.
1807 #ifdef ASSERT
1808             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1809 #endif
1810             alock->set_non_esc_obj();
1811           }
1812         }
1813       }
1814     }
1815   }
1816 
1817   if (OptimizePtrCompare) {
1818     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1819     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1820     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1821     // Optimize objects compare.
1822     while (ptr_cmp_worklist.length() != 0) {
1823       Node *n = ptr_cmp_worklist.pop();
1824       Node *res = optimize_ptr_compare(n);
1825       if (res != NULL) {
1826 #ifndef PRODUCT
1827         if (PrintOptimizePtrCompare) {
1828           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1829           if (Verbose) {
1830             n->dump(1);
1831           }
1832         }
1833 #endif
1834         igvn->replace_node(n, res);
1835       }
1836     }
1837     // cleanup
1838     if (_pcmp_neq->outcnt() == 0)
1839       igvn->hash_delete(_pcmp_neq);
1840     if (_pcmp_eq->outcnt()  == 0)
1841       igvn->hash_delete(_pcmp_eq);
1842   }
1843 
1844   // For MemBarStoreStore nodes added in library_call.cpp, check
1845   // escape status of associated AllocateNode and optimize out
1846   // MemBarStoreStore node if the allocated object never escapes.
1847   while (storestore_worklist.length() != 0) {
1848     Node *n = storestore_worklist.pop();
1849     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1850     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1851     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1852     if (not_global_escape(alloc)) {
1853       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1854       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1855       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1856       igvn->register_new_node_with_optimizer(mb);
1857       igvn->replace_node(storestore, mb);
1858     }
1859   }
1860 }
1861 
1862 // Optimize objects compare.
1863 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1864   assert(OptimizePtrCompare, "sanity");
1865   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1866   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1867   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1868   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1869   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1870   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1871 
1872   // Check simple cases first.
1873   if (jobj1 != NULL) {
1874     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1875       if (jobj1 == jobj2) {
1876         // Comparing the same not escaping object.
1877         return _pcmp_eq;
1878       }
1879       Node* obj = jobj1->ideal_node();
1880       // Comparing not escaping allocation.
1881       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1882           !ptn2->points_to(jobj1)) {
1883         return _pcmp_neq; // This includes nullness check.
1884       }
1885     }
1886   }
1887   if (jobj2 != NULL) {
1888     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1889       Node* obj = jobj2->ideal_node();
1890       // Comparing not escaping allocation.
1891       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1892           !ptn1->points_to(jobj2)) {
1893         return _pcmp_neq; // This includes nullness check.
1894       }
1895     }
1896   }
1897   if (jobj1 != NULL && jobj1 != phantom_obj &&
1898       jobj2 != NULL && jobj2 != phantom_obj &&
1899       jobj1->ideal_node()->is_Con() &&
1900       jobj2->ideal_node()->is_Con()) {
1901     // Klass or String constants compare. Need to be careful with
1902     // compressed pointers - compare types of ConN and ConP instead of nodes.
1903     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1904     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1905     if (t1->make_ptr() == t2->make_ptr()) {
1906       return _pcmp_eq;
1907     } else {
1908       return _pcmp_neq;
1909     }
1910   }
1911   if (ptn1->meet(ptn2)) {
1912     return NULL; // Sets are not disjoint
1913   }
1914 
1915   // Sets are disjoint.
1916   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1917   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1918   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1919   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1920   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1921       set2_has_unknown_ptr && set1_has_null_ptr) {
1922     // Check nullness of unknown object.
1923     return NULL;
1924   }
1925 
1926   // Disjointness by itself is not sufficient since
1927   // alias analysis is not complete for escaped objects.
1928   // Disjoint sets are definitely unrelated only when
1929   // at least one set has only not escaping allocations.
1930   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1931     if (ptn1->non_escaping_allocation()) {
1932       return _pcmp_neq;
1933     }
1934   }
1935   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1936     if (ptn2->non_escaping_allocation()) {
1937       return _pcmp_neq;
1938     }
1939   }
1940   return NULL;
1941 }
1942 
1943 // Connection Graph constuction functions.
1944 
1945 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1946   PointsToNode* ptadr = _nodes.at(n->_idx);
1947   if (ptadr != NULL) {
1948     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1949     return;
1950   }
1951   Compile* C = _compile;
1952   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1953   _nodes.at_put(n->_idx, ptadr);
1954 }
1955 
1956 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1957   PointsToNode* ptadr = _nodes.at(n->_idx);
1958   if (ptadr != NULL) {
1959     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1960     return;
1961   }
1962   Compile* C = _compile;
1963   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1964   _nodes.at_put(n->_idx, ptadr);
1965 }
1966 
1967 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1968   PointsToNode* ptadr = _nodes.at(n->_idx);
1969   if (ptadr != NULL) {
1970     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1971     return;
1972   }
1973   bool unsafe = false;
1974   bool is_oop = is_oop_field(n, offset, &unsafe);
1975   if (unsafe) {
1976     es = PointsToNode::GlobalEscape;
1977   }
1978   Compile* C = _compile;
1979   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
1980   _nodes.at_put(n->_idx, field);
1981 }
1982 
1983 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1984                                     PointsToNode* src, PointsToNode* dst) {
1985   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1986   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1987   PointsToNode* ptadr = _nodes.at(n->_idx);
1988   if (ptadr != NULL) {
1989     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1990     return;
1991   }
1992   Compile* C = _compile;
1993   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
1994   _nodes.at_put(n->_idx, ptadr);
1995   // Add edge from arraycopy node to source object.
1996   (void)add_edge(ptadr, src);
1997   src->set_arraycopy_src();
1998   // Add edge from destination object to arraycopy node.
1999   (void)add_edge(dst, ptadr);
2000   dst->set_arraycopy_dst();
2001 }
2002 
2003 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2004   const Type* adr_type = n->as_AddP()->bottom_type();
2005   BasicType bt = T_INT;
2006   if (offset == Type::OffsetBot) {
2007     // Check only oop fields.
2008     if (!adr_type->isa_aryptr() ||
2009         (adr_type->isa_aryptr()->klass() == NULL) ||
2010          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2011       // OffsetBot is used to reference array's element. Ignore first AddP.
2012       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2013         bt = T_OBJECT;
2014       }
2015     }
2016   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2017     if (adr_type->isa_instptr()) {
2018       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2019       if (field != NULL) {
2020         bt = field->layout_type();
2021       } else {
2022         // Check for unsafe oop field access
2023         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2024           bt = T_OBJECT;
2025           (*unsafe) = true;
2026         }
2027       }
2028     } else if (adr_type->isa_aryptr()) {
2029       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2030         // Ignore array length load.
2031       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2032         // Ignore first AddP.
2033       } else {
2034         const Type* elemtype = adr_type->isa_aryptr()->elem();
2035         bt = elemtype->array_element_basic_type();
2036       }
2037     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2038       // Allocation initialization, ThreadLocal field access, unsafe access
2039       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2040         bt = T_OBJECT;
2041       }
2042     }
2043   }
2044   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2045 }
2046 
2047 // Returns unique pointed java object or NULL.
2048 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2049   assert(!_collecting, "should not call when contructed graph");
2050   // If the node was created after the escape computation we can't answer.
2051   uint idx = n->_idx;
2052   if (idx >= nodes_size()) {
2053     return NULL;
2054   }
2055   PointsToNode* ptn = ptnode_adr(idx);
2056   if (ptn->is_JavaObject()) {
2057     return ptn->as_JavaObject();
2058   }
2059   assert(ptn->is_LocalVar(), "sanity");
2060   // Check all java objects it points to.
2061   JavaObjectNode* jobj = NULL;
2062   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2063     PointsToNode* e = i.get();
2064     if (e->is_JavaObject()) {
2065       if (jobj == NULL) {
2066         jobj = e->as_JavaObject();
2067       } else if (jobj != e) {
2068         return NULL;
2069       }
2070     }
2071   }
2072   return jobj;
2073 }
2074 
2075 // Return true if this node points only to non-escaping allocations.
2076 bool PointsToNode::non_escaping_allocation() {
2077   if (is_JavaObject()) {
2078     Node* n = ideal_node();
2079     if (n->is_Allocate() || n->is_CallStaticJava()) {
2080       return (escape_state() == PointsToNode::NoEscape);
2081     } else {
2082       return false;
2083     }
2084   }
2085   assert(is_LocalVar(), "sanity");
2086   // Check all java objects it points to.
2087   for (EdgeIterator i(this); i.has_next(); i.next()) {
2088     PointsToNode* e = i.get();
2089     if (e->is_JavaObject()) {
2090       Node* n = e->ideal_node();
2091       if ((e->escape_state() != PointsToNode::NoEscape) ||
2092           !(n->is_Allocate() || n->is_CallStaticJava())) {
2093         return false;
2094       }
2095     }
2096   }
2097   return true;
2098 }
2099 
2100 // Return true if we know the node does not escape globally.
2101 bool ConnectionGraph::not_global_escape(Node *n) {
2102   assert(!_collecting, "should not call during graph construction");
2103   // If the node was created after the escape computation we can't answer.
2104   uint idx = n->_idx;
2105   if (idx >= nodes_size()) {
2106     return false;
2107   }
2108   PointsToNode* ptn = ptnode_adr(idx);
2109   PointsToNode::EscapeState es = ptn->escape_state();
2110   // If we have already computed a value, return it.
2111   if (es >= PointsToNode::GlobalEscape)
2112     return false;
2113   if (ptn->is_JavaObject()) {
2114     return true; // (es < PointsToNode::GlobalEscape);
2115   }
2116   assert(ptn->is_LocalVar(), "sanity");
2117   // Check all java objects it points to.
2118   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2119     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2120       return false;
2121   }
2122   return true;
2123 }
2124 
2125 
2126 // Helper functions
2127 
2128 // Return true if this node points to specified node or nodes it points to.
2129 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2130   if (is_JavaObject()) {
2131     return (this == ptn);
2132   }
2133   assert(is_LocalVar() || is_Field(), "sanity");
2134   for (EdgeIterator i(this); i.has_next(); i.next()) {
2135     if (i.get() == ptn)
2136       return true;
2137   }
2138   return false;
2139 }
2140 
2141 // Return true if one node points to an other.
2142 bool PointsToNode::meet(PointsToNode* ptn) {
2143   if (this == ptn) {
2144     return true;
2145   } else if (ptn->is_JavaObject()) {
2146     return this->points_to(ptn->as_JavaObject());
2147   } else if (this->is_JavaObject()) {
2148     return ptn->points_to(this->as_JavaObject());
2149   }
2150   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2151   int ptn_count =  ptn->edge_count();
2152   for (EdgeIterator i(this); i.has_next(); i.next()) {
2153     PointsToNode* this_e = i.get();
2154     for (int j = 0; j < ptn_count; j++) {
2155       if (this_e == ptn->edge(j))
2156         return true;
2157     }
2158   }
2159   return false;
2160 }
2161 
2162 #ifdef ASSERT
2163 // Return true if bases point to this java object.
2164 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2165   for (BaseIterator i(this); i.has_next(); i.next()) {
2166     if (i.get() == jobj)
2167       return true;
2168   }
2169   return false;
2170 }
2171 #endif
2172 
2173 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2174   const Type *adr_type = phase->type(adr);
2175   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2176       adr->in(AddPNode::Address)->is_Proj() &&
2177       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2178     // We are computing a raw address for a store captured by an Initialize
2179     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2180     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2181     assert(offs != Type::OffsetBot ||
2182            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2183            "offset must be a constant or it is initialization of array");
2184     return offs;
2185   }
2186   const TypePtr *t_ptr = adr_type->isa_ptr();
2187   assert(t_ptr != NULL, "must be a pointer type");
2188   return t_ptr->offset();
2189 }
2190 
2191 Node* ConnectionGraph::get_addp_base(Node *addp) {
2192   assert(addp->is_AddP(), "must be AddP");
2193   //
2194   // AddP cases for Base and Address inputs:
2195   // case #1. Direct object's field reference:
2196   //     Allocate
2197   //       |
2198   //     Proj #5 ( oop result )
2199   //       |
2200   //     CheckCastPP (cast to instance type)
2201   //      | |
2202   //     AddP  ( base == address )
2203   //
2204   // case #2. Indirect object's field reference:
2205   //      Phi
2206   //       |
2207   //     CastPP (cast to instance type)
2208   //      | |
2209   //     AddP  ( base == address )
2210   //
2211   // case #3. Raw object's field reference for Initialize node:
2212   //      Allocate
2213   //        |
2214   //      Proj #5 ( oop result )
2215   //  top   |
2216   //     \  |
2217   //     AddP  ( base == top )
2218   //
2219   // case #4. Array's element reference:
2220   //   {CheckCastPP | CastPP}
2221   //     |  | |
2222   //     |  AddP ( array's element offset )
2223   //     |  |
2224   //     AddP ( array's offset )
2225   //
2226   // case #5. Raw object's field reference for arraycopy stub call:
2227   //          The inline_native_clone() case when the arraycopy stub is called
2228   //          after the allocation before Initialize and CheckCastPP nodes.
2229   //      Allocate
2230   //        |
2231   //      Proj #5 ( oop result )
2232   //       | |
2233   //       AddP  ( base == address )
2234   //
2235   // case #6. Constant Pool, ThreadLocal, CastX2P or
2236   //          Raw object's field reference:
2237   //      {ConP, ThreadLocal, CastX2P, raw Load}
2238   //  top   |
2239   //     \  |
2240   //     AddP  ( base == top )
2241   //
2242   // case #7. Klass's field reference.
2243   //      LoadKlass
2244   //       | |
2245   //       AddP  ( base == address )
2246   //
2247   // case #8. narrow Klass's field reference.
2248   //      LoadNKlass
2249   //       |
2250   //      DecodeN
2251   //       | |
2252   //       AddP  ( base == address )
2253   //
2254   Node *base = addp->in(AddPNode::Base);
2255   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2256     base = addp->in(AddPNode::Address);
2257     while (base->is_AddP()) {
2258       // Case #6 (unsafe access) may have several chained AddP nodes.
2259       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2260       base = base->in(AddPNode::Address);
2261     }
2262     Node* uncast_base = base->uncast();
2263     int opcode = uncast_base->Opcode();
2264     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2265            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2266            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2267            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2268   }
2269   return base;
2270 }
2271 
2272 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2273   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2274   Node* addp2 = addp->raw_out(0);
2275   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2276       addp2->in(AddPNode::Base) == n &&
2277       addp2->in(AddPNode::Address) == addp) {
2278     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2279     //
2280     // Find array's offset to push it on worklist first and
2281     // as result process an array's element offset first (pushed second)
2282     // to avoid CastPP for the array's offset.
2283     // Otherwise the inserted CastPP (LocalVar) will point to what
2284     // the AddP (Field) points to. Which would be wrong since
2285     // the algorithm expects the CastPP has the same point as
2286     // as AddP's base CheckCastPP (LocalVar).
2287     //
2288     //    ArrayAllocation
2289     //     |
2290     //    CheckCastPP
2291     //     |
2292     //    memProj (from ArrayAllocation CheckCastPP)
2293     //     |  ||
2294     //     |  ||   Int (element index)
2295     //     |  ||    |   ConI (log(element size))
2296     //     |  ||    |   /
2297     //     |  ||   LShift
2298     //     |  ||  /
2299     //     |  AddP (array's element offset)
2300     //     |  |
2301     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2302     //     | / /
2303     //     AddP (array's offset)
2304     //      |
2305     //     Load/Store (memory operation on array's element)
2306     //
2307     return addp2;
2308   }
2309   return NULL;
2310 }
2311 
2312 //
2313 // Adjust the type and inputs of an AddP which computes the
2314 // address of a field of an instance
2315 //
2316 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2317   PhaseGVN* igvn = _igvn;
2318   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2319   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2320   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2321   if (t == NULL) {
2322     // We are computing a raw address for a store captured by an Initialize
2323     // compute an appropriate address type (cases #3 and #5).
2324     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2325     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2326     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2327     assert(offs != Type::OffsetBot, "offset must be a constant");
2328     t = base_t->add_offset(offs)->is_oopptr();
2329   }
2330   int inst_id =  base_t->instance_id();
2331   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2332                              "old type must be non-instance or match new type");
2333 
2334   // The type 't' could be subclass of 'base_t'.
2335   // As result t->offset() could be large then base_t's size and it will
2336   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2337   // constructor verifies correctness of the offset.
2338   //
2339   // It could happened on subclass's branch (from the type profiling
2340   // inlining) which was not eliminated during parsing since the exactness
2341   // of the allocation type was not propagated to the subclass type check.
2342   //
2343   // Or the type 't' could be not related to 'base_t' at all.
2344   // It could happened when CHA type is different from MDO type on a dead path
2345   // (for example, from instanceof check) which is not collapsed during parsing.
2346   //
2347   // Do nothing for such AddP node and don't process its users since
2348   // this code branch will go away.
2349   //
2350   if (!t->is_known_instance() &&
2351       !base_t->klass()->is_subtype_of(t->klass())) {
2352      return false; // bail out
2353   }
2354   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2355   // Do NOT remove the next line: ensure a new alias index is allocated
2356   // for the instance type. Note: C++ will not remove it since the call
2357   // has side effect.
2358   int alias_idx = _compile->get_alias_index(tinst);
2359   igvn->set_type(addp, tinst);
2360   // record the allocation in the node map
2361   set_map(addp, get_map(base->_idx));
2362   // Set addp's Base and Address to 'base'.
2363   Node *abase = addp->in(AddPNode::Base);
2364   Node *adr   = addp->in(AddPNode::Address);
2365   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2366       adr->in(0)->_idx == (uint)inst_id) {
2367     // Skip AddP cases #3 and #5.
2368   } else {
2369     assert(!abase->is_top(), "sanity"); // AddP case #3
2370     if (abase != base) {
2371       igvn->hash_delete(addp);
2372       addp->set_req(AddPNode::Base, base);
2373       if (abase == adr) {
2374         addp->set_req(AddPNode::Address, base);
2375       } else {
2376         // AddP case #4 (adr is array's element offset AddP node)
2377 #ifdef ASSERT
2378         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2379         assert(adr->is_AddP() && atype != NULL &&
2380                atype->instance_id() == inst_id, "array's element offset should be processed first");
2381 #endif
2382       }
2383       igvn->hash_insert(addp);
2384     }
2385   }
2386   // Put on IGVN worklist since at least addp's type was changed above.
2387   record_for_optimizer(addp);
2388   return true;
2389 }
2390 
2391 //
2392 // Create a new version of orig_phi if necessary. Returns either the newly
2393 // created phi or an existing phi.  Sets create_new to indicate whether a new
2394 // phi was created.  Cache the last newly created phi in the node map.
2395 //
2396 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2397   Compile *C = _compile;
2398   PhaseGVN* igvn = _igvn;
2399   new_created = false;
2400   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2401   // nothing to do if orig_phi is bottom memory or matches alias_idx
2402   if (phi_alias_idx == alias_idx) {
2403     return orig_phi;
2404   }
2405   // Have we recently created a Phi for this alias index?
2406   PhiNode *result = get_map_phi(orig_phi->_idx);
2407   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2408     return result;
2409   }
2410   // Previous check may fail when the same wide memory Phi was split into Phis
2411   // for different memory slices. Search all Phis for this region.
2412   if (result != NULL) {
2413     Node* region = orig_phi->in(0);
2414     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2415       Node* phi = region->fast_out(i);
2416       if (phi->is_Phi() &&
2417           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2418         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2419         return phi->as_Phi();
2420       }
2421     }
2422   }
2423   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2424     if (C->do_escape_analysis() == true && !C->failing()) {
2425       // Retry compilation without escape analysis.
2426       // If this is the first failure, the sentinel string will "stick"
2427       // to the Compile object, and the C2Compiler will see it and retry.
2428       C->record_failure(C2Compiler::retry_no_escape_analysis());
2429     }
2430     return NULL;
2431   }
2432   orig_phi_worklist.append_if_missing(orig_phi);
2433   const TypePtr *atype = C->get_adr_type(alias_idx);
2434   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2435   C->copy_node_notes_to(result, orig_phi);
2436   igvn->set_type(result, result->bottom_type());
2437   record_for_optimizer(result);
2438   set_map(orig_phi, result);
2439   new_created = true;
2440   return result;
2441 }
2442 
2443 //
2444 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2445 // specified alias index.
2446 //
2447 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2448   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2449   Compile *C = _compile;
2450   PhaseGVN* igvn = _igvn;
2451   bool new_phi_created;
2452   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2453   if (!new_phi_created) {
2454     return result;
2455   }
2456   GrowableArray<PhiNode *>  phi_list;
2457   GrowableArray<uint>  cur_input;
2458   PhiNode *phi = orig_phi;
2459   uint idx = 1;
2460   bool finished = false;
2461   while(!finished) {
2462     while (idx < phi->req()) {
2463       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2464       if (mem != NULL && mem->is_Phi()) {
2465         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2466         if (new_phi_created) {
2467           // found an phi for which we created a new split, push current one on worklist and begin
2468           // processing new one
2469           phi_list.push(phi);
2470           cur_input.push(idx);
2471           phi = mem->as_Phi();
2472           result = newphi;
2473           idx = 1;
2474           continue;
2475         } else {
2476           mem = newphi;
2477         }
2478       }
2479       if (C->failing()) {
2480         return NULL;
2481       }
2482       result->set_req(idx++, mem);
2483     }
2484 #ifdef ASSERT
2485     // verify that the new Phi has an input for each input of the original
2486     assert( phi->req() == result->req(), "must have same number of inputs.");
2487     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2488 #endif
2489     // Check if all new phi's inputs have specified alias index.
2490     // Otherwise use old phi.
2491     for (uint i = 1; i < phi->req(); i++) {
2492       Node* in = result->in(i);
2493       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2494     }
2495     // we have finished processing a Phi, see if there are any more to do
2496     finished = (phi_list.length() == 0 );
2497     if (!finished) {
2498       phi = phi_list.pop();
2499       idx = cur_input.pop();
2500       PhiNode *prev_result = get_map_phi(phi->_idx);
2501       prev_result->set_req(idx++, result);
2502       result = prev_result;
2503     }
2504   }
2505   return result;
2506 }
2507 
2508 //
2509 // The next methods are derived from methods in MemNode.
2510 //
2511 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2512   Node *mem = mmem;
2513   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2514   // means an array I have not precisely typed yet.  Do not do any
2515   // alias stuff with it any time soon.
2516   if (toop->base() != Type::AnyPtr &&
2517       !(toop->klass() != NULL &&
2518         toop->klass()->is_java_lang_Object() &&
2519         toop->offset() == Type::OffsetBot)) {
2520     mem = mmem->memory_at(alias_idx);
2521     // Update input if it is progress over what we have now
2522   }
2523   return mem;
2524 }
2525 
2526 //
2527 // Move memory users to their memory slices.
2528 //
2529 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2530   Compile* C = _compile;
2531   PhaseGVN* igvn = _igvn;
2532   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2533   assert(tp != NULL, "ptr type");
2534   int alias_idx = C->get_alias_index(tp);
2535   int general_idx = C->get_general_index(alias_idx);
2536 
2537   // Move users first
2538   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2539     Node* use = n->fast_out(i);
2540     if (use->is_MergeMem()) {
2541       MergeMemNode* mmem = use->as_MergeMem();
2542       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2543       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2544         continue; // Nothing to do
2545       }
2546       // Replace previous general reference to mem node.
2547       uint orig_uniq = C->unique();
2548       Node* m = find_inst_mem(n, general_idx, orig_phis);
2549       assert(orig_uniq == C->unique(), "no new nodes");
2550       mmem->set_memory_at(general_idx, m);
2551       --imax;
2552       --i;
2553     } else if (use->is_MemBar()) {
2554       assert(!use->is_Initialize(), "initializing stores should not be moved");
2555       if (use->req() > MemBarNode::Precedent &&
2556           use->in(MemBarNode::Precedent) == n) {
2557         // Don't move related membars.
2558         record_for_optimizer(use);
2559         continue;
2560       }
2561       tp = use->as_MemBar()->adr_type()->isa_ptr();
2562       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2563           alias_idx == general_idx) {
2564         continue; // Nothing to do
2565       }
2566       // Move to general memory slice.
2567       uint orig_uniq = C->unique();
2568       Node* m = find_inst_mem(n, general_idx, orig_phis);
2569       assert(orig_uniq == C->unique(), "no new nodes");
2570       igvn->hash_delete(use);
2571       imax -= use->replace_edge(n, m);
2572       igvn->hash_insert(use);
2573       record_for_optimizer(use);
2574       --i;
2575 #ifdef ASSERT
2576     } else if (use->is_Mem()) {
2577       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2578         // Don't move related cardmark.
2579         continue;
2580       }
2581       // Memory nodes should have new memory input.
2582       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2583       assert(tp != NULL, "ptr type");
2584       int idx = C->get_alias_index(tp);
2585       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2586              "Following memory nodes should have new memory input or be on the same memory slice");
2587     } else if (use->is_Phi()) {
2588       // Phi nodes should be split and moved already.
2589       tp = use->as_Phi()->adr_type()->isa_ptr();
2590       assert(tp != NULL, "ptr type");
2591       int idx = C->get_alias_index(tp);
2592       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2593     } else {
2594       use->dump();
2595       assert(false, "should not be here");
2596 #endif
2597     }
2598   }
2599 }
2600 
2601 //
2602 // Search memory chain of "mem" to find a MemNode whose address
2603 // is the specified alias index.
2604 //
2605 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2606   if (orig_mem == NULL)
2607     return orig_mem;
2608   Compile* C = _compile;
2609   PhaseGVN* igvn = _igvn;
2610   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2611   bool is_instance = (toop != NULL) && toop->is_known_instance();
2612   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2613   Node *prev = NULL;
2614   Node *result = orig_mem;
2615   while (prev != result) {
2616     prev = result;
2617     if (result == start_mem)
2618       break;  // hit one of our sentinels
2619     if (result->is_Mem()) {
2620       const Type *at = igvn->type(result->in(MemNode::Address));
2621       if (at == Type::TOP)
2622         break; // Dead
2623       assert (at->isa_ptr() != NULL, "pointer type required.");
2624       int idx = C->get_alias_index(at->is_ptr());
2625       if (idx == alias_idx)
2626         break; // Found
2627       if (!is_instance && (at->isa_oopptr() == NULL ||
2628                            !at->is_oopptr()->is_known_instance())) {
2629         break; // Do not skip store to general memory slice.
2630       }
2631       result = result->in(MemNode::Memory);
2632     }
2633     if (!is_instance)
2634       continue;  // don't search further for non-instance types
2635     // skip over a call which does not affect this memory slice
2636     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2637       Node *proj_in = result->in(0);
2638       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2639         break;  // hit one of our sentinels
2640       } else if (proj_in->is_Call()) {
2641         CallNode *call = proj_in->as_Call();
2642         if (!call->may_modify(toop, igvn)) {
2643           result = call->in(TypeFunc::Memory);
2644         }
2645       } else if (proj_in->is_Initialize()) {
2646         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2647         // Stop if this is the initialization for the object instance which
2648         // which contains this memory slice, otherwise skip over it.
2649         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2650           result = proj_in->in(TypeFunc::Memory);
2651         }
2652       } else if (proj_in->is_MemBar()) {
2653         result = proj_in->in(TypeFunc::Memory);
2654       }
2655     } else if (result->is_MergeMem()) {
2656       MergeMemNode *mmem = result->as_MergeMem();
2657       result = step_through_mergemem(mmem, alias_idx, toop);
2658       if (result == mmem->base_memory()) {
2659         // Didn't find instance memory, search through general slice recursively.
2660         result = mmem->memory_at(C->get_general_index(alias_idx));
2661         result = find_inst_mem(result, alias_idx, orig_phis);
2662         if (C->failing()) {
2663           return NULL;
2664         }
2665         mmem->set_memory_at(alias_idx, result);
2666       }
2667     } else if (result->is_Phi() &&
2668                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2669       Node *un = result->as_Phi()->unique_input(igvn);
2670       if (un != NULL) {
2671         orig_phis.append_if_missing(result->as_Phi());
2672         result = un;
2673       } else {
2674         break;
2675       }
2676     } else if (result->is_ClearArray()) {
2677       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2678         // Can not bypass initialization of the instance
2679         // we are looking for.
2680         break;
2681       }
2682       // Otherwise skip it (the call updated 'result' value).
2683     } else if (result->Opcode() == Op_SCMemProj) {
2684       Node* mem = result->in(0);
2685       Node* adr = NULL;
2686       if (mem->is_LoadStore()) {
2687         adr = mem->in(MemNode::Address);
2688       } else {
2689         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2690         adr = mem->in(3); // Memory edge corresponds to destination array
2691       }
2692       const Type *at = igvn->type(adr);
2693       if (at != Type::TOP) {
2694         assert (at->isa_ptr() != NULL, "pointer type required.");
2695         int idx = C->get_alias_index(at->is_ptr());
2696         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2697         break;
2698       }
2699       result = mem->in(MemNode::Memory);
2700     }
2701   }
2702   if (result->is_Phi()) {
2703     PhiNode *mphi = result->as_Phi();
2704     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2705     const TypePtr *t = mphi->adr_type();
2706     if (!is_instance) {
2707       // Push all non-instance Phis on the orig_phis worklist to update inputs
2708       // during Phase 4 if needed.
2709       orig_phis.append_if_missing(mphi);
2710     } else if (C->get_alias_index(t) != alias_idx) {
2711       // Create a new Phi with the specified alias index type.
2712       result = split_memory_phi(mphi, alias_idx, orig_phis);
2713     }
2714   }
2715   // the result is either MemNode, PhiNode, InitializeNode.
2716   return result;
2717 }
2718 
2719 //
2720 //  Convert the types of unescaped object to instance types where possible,
2721 //  propagate the new type information through the graph, and update memory
2722 //  edges and MergeMem inputs to reflect the new type.
2723 //
2724 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2725 //  The processing is done in 4 phases:
2726 //
2727 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2728 //            types for the CheckCastPP for allocations where possible.
2729 //            Propagate the the new types through users as follows:
2730 //               casts and Phi:  push users on alloc_worklist
2731 //               AddP:  cast Base and Address inputs to the instance type
2732 //                      push any AddP users on alloc_worklist and push any memnode
2733 //                      users onto memnode_worklist.
2734 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2735 //            search the Memory chain for a store with the appropriate type
2736 //            address type.  If a Phi is found, create a new version with
2737 //            the appropriate memory slices from each of the Phi inputs.
2738 //            For stores, process the users as follows:
2739 //               MemNode:  push on memnode_worklist
2740 //               MergeMem: push on mergemem_worklist
2741 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2742 //            moving the first node encountered of each  instance type to the
2743 //            the input corresponding to its alias index.
2744 //            appropriate memory slice.
2745 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2746 //
2747 // In the following example, the CheckCastPP nodes are the cast of allocation
2748 // results and the allocation of node 29 is unescaped and eligible to be an
2749 // instance type.
2750 //
2751 // We start with:
2752 //
2753 //     7 Parm #memory
2754 //    10  ConI  "12"
2755 //    19  CheckCastPP   "Foo"
2756 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2757 //    29  CheckCastPP   "Foo"
2758 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2759 //
2760 //    40  StoreP  25   7  20   ... alias_index=4
2761 //    50  StoreP  35  40  30   ... alias_index=4
2762 //    60  StoreP  45  50  20   ... alias_index=4
2763 //    70  LoadP    _  60  30   ... alias_index=4
2764 //    80  Phi     75  50  60   Memory alias_index=4
2765 //    90  LoadP    _  80  30   ... alias_index=4
2766 //   100  LoadP    _  80  20   ... alias_index=4
2767 //
2768 //
2769 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2770 // and creating a new alias index for node 30.  This gives:
2771 //
2772 //     7 Parm #memory
2773 //    10  ConI  "12"
2774 //    19  CheckCastPP   "Foo"
2775 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2776 //    29  CheckCastPP   "Foo"  iid=24
2777 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2778 //
2779 //    40  StoreP  25   7  20   ... alias_index=4
2780 //    50  StoreP  35  40  30   ... alias_index=6
2781 //    60  StoreP  45  50  20   ... alias_index=4
2782 //    70  LoadP    _  60  30   ... alias_index=6
2783 //    80  Phi     75  50  60   Memory alias_index=4
2784 //    90  LoadP    _  80  30   ... alias_index=6
2785 //   100  LoadP    _  80  20   ... alias_index=4
2786 //
2787 // In phase 2, new memory inputs are computed for the loads and stores,
2788 // And a new version of the phi is created.  In phase 4, the inputs to
2789 // node 80 are updated and then the memory nodes are updated with the
2790 // values computed in phase 2.  This results in:
2791 //
2792 //     7 Parm #memory
2793 //    10  ConI  "12"
2794 //    19  CheckCastPP   "Foo"
2795 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2796 //    29  CheckCastPP   "Foo"  iid=24
2797 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2798 //
2799 //    40  StoreP  25  7   20   ... alias_index=4
2800 //    50  StoreP  35  7   30   ... alias_index=6
2801 //    60  StoreP  45  40  20   ... alias_index=4
2802 //    70  LoadP    _  50  30   ... alias_index=6
2803 //    80  Phi     75  40  60   Memory alias_index=4
2804 //   120  Phi     75  50  50   Memory alias_index=6
2805 //    90  LoadP    _ 120  30   ... alias_index=6
2806 //   100  LoadP    _  80  20   ... alias_index=4
2807 //
2808 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2809   GrowableArray<Node *>  memnode_worklist;
2810   GrowableArray<PhiNode *>  orig_phis;
2811   PhaseIterGVN  *igvn = _igvn;
2812   uint new_index_start = (uint) _compile->num_alias_types();
2813   Arena* arena = Thread::current()->resource_area();
2814   VectorSet visited(arena);
2815   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2816   uint unique_old = _compile->unique();
2817 
2818   //  Phase 1:  Process possible allocations from alloc_worklist.
2819   //  Create instance types for the CheckCastPP for allocations where possible.
2820   //
2821   // (Note: don't forget to change the order of the second AddP node on
2822   //  the alloc_worklist if the order of the worklist processing is changed,
2823   //  see the comment in find_second_addp().)
2824   //
2825   while (alloc_worklist.length() != 0) {
2826     Node *n = alloc_worklist.pop();
2827     uint ni = n->_idx;
2828     if (n->is_Call()) {
2829       CallNode *alloc = n->as_Call();
2830       // copy escape information to call node
2831       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2832       PointsToNode::EscapeState es = ptn->escape_state();
2833       // We have an allocation or call which returns a Java object,
2834       // see if it is unescaped.
2835       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2836         continue;
2837       // Find CheckCastPP for the allocate or for the return value of a call
2838       n = alloc->result_cast();
2839       if (n == NULL) {            // No uses except Initialize node
2840         if (alloc->is_Allocate()) {
2841           // Set the scalar_replaceable flag for allocation
2842           // so it could be eliminated if it has no uses.
2843           alloc->as_Allocate()->_is_scalar_replaceable = true;
2844         }
2845         if (alloc->is_CallStaticJava()) {
2846           // Set the scalar_replaceable flag for boxing method
2847           // so it could be eliminated if it has no uses.
2848           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2849         }
2850         continue;
2851       }
2852       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2853         assert(!alloc->is_Allocate(), "allocation should have unique type");
2854         continue;
2855       }
2856 
2857       // The inline code for Object.clone() casts the allocation result to
2858       // java.lang.Object and then to the actual type of the allocated
2859       // object. Detect this case and use the second cast.
2860       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2861       // the allocation result is cast to java.lang.Object and then
2862       // to the actual Array type.
2863       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2864           && (alloc->is_AllocateArray() ||
2865               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2866         Node *cast2 = NULL;
2867         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2868           Node *use = n->fast_out(i);
2869           if (use->is_CheckCastPP()) {
2870             cast2 = use;
2871             break;
2872           }
2873         }
2874         if (cast2 != NULL) {
2875           n = cast2;
2876         } else {
2877           // Non-scalar replaceable if the allocation type is unknown statically
2878           // (reflection allocation), the object can't be restored during
2879           // deoptimization without precise type.
2880           continue;
2881         }
2882       }
2883 
2884       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2885       if (t == NULL)
2886         continue;  // not a TypeOopPtr
2887       if (!t->klass_is_exact())
2888         continue; // not an unique type
2889 
2890       if (alloc->is_Allocate()) {
2891         // Set the scalar_replaceable flag for allocation
2892         // so it could be eliminated.
2893         alloc->as_Allocate()->_is_scalar_replaceable = true;
2894       }
2895       if (alloc->is_CallStaticJava()) {
2896         // Set the scalar_replaceable flag for boxing method
2897         // so it could be eliminated.
2898         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2899       }
2900       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2901       // in order for an object to be scalar-replaceable, it must be:
2902       //   - a direct allocation (not a call returning an object)
2903       //   - non-escaping
2904       //   - eligible to be a unique type
2905       //   - not determined to be ineligible by escape analysis
2906       set_map(alloc, n);
2907       set_map(n, alloc);
2908       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2909       igvn->hash_delete(n);
2910       igvn->set_type(n,  tinst);
2911       n->raise_bottom_type(tinst);
2912       igvn->hash_insert(n);
2913       record_for_optimizer(n);
2914       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2915 
2916         // First, put on the worklist all Field edges from Connection Graph
2917         // which is more accurate then putting immediate users from Ideal Graph.
2918         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2919           PointsToNode* tgt = e.get();
2920           Node* use = tgt->ideal_node();
2921           assert(tgt->is_Field() && use->is_AddP(),
2922                  "only AddP nodes are Field edges in CG");
2923           if (use->outcnt() > 0) { // Don't process dead nodes
2924             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2925             if (addp2 != NULL) {
2926               assert(alloc->is_AllocateArray(),"array allocation was expected");
2927               alloc_worklist.append_if_missing(addp2);
2928             }
2929             alloc_worklist.append_if_missing(use);
2930           }
2931         }
2932 
2933         // An allocation may have an Initialize which has raw stores. Scan
2934         // the users of the raw allocation result and push AddP users
2935         // on alloc_worklist.
2936         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2937         assert (raw_result != NULL, "must have an allocation result");
2938         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2939           Node *use = raw_result->fast_out(i);
2940           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2941             Node* addp2 = find_second_addp(use, raw_result);
2942             if (addp2 != NULL) {
2943               assert(alloc->is_AllocateArray(),"array allocation was expected");
2944               alloc_worklist.append_if_missing(addp2);
2945             }
2946             alloc_worklist.append_if_missing(use);
2947           } else if (use->is_MemBar()) {
2948             memnode_worklist.append_if_missing(use);
2949           }
2950         }
2951       }
2952     } else if (n->is_AddP()) {
2953       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2954       if (jobj == NULL || jobj == phantom_obj) {
2955 #ifdef ASSERT
2956         ptnode_adr(get_addp_base(n)->_idx)->dump();
2957         ptnode_adr(n->_idx)->dump();
2958         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2959 #endif
2960         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2961         return;
2962       }
2963       Node *base = get_map(jobj->idx());  // CheckCastPP node
2964       if (!split_AddP(n, base)) continue; // wrong type from dead path
2965     } else if (n->is_Phi() ||
2966                n->is_CheckCastPP() ||
2967                n->is_EncodeP() ||
2968                n->is_DecodeN() ||
2969                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2970       if (visited.test_set(n->_idx)) {
2971         assert(n->is_Phi(), "loops only through Phi's");
2972         continue;  // already processed
2973       }
2974       JavaObjectNode* jobj = unique_java_object(n);
2975       if (jobj == NULL || jobj == phantom_obj) {
2976 #ifdef ASSERT
2977         ptnode_adr(n->_idx)->dump();
2978         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2979 #endif
2980         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2981         return;
2982       } else {
2983         Node *val = get_map(jobj->idx());   // CheckCastPP node
2984         TypeNode *tn = n->as_Type();
2985         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2986         assert(tinst != NULL && tinst->is_known_instance() &&
2987                tinst->instance_id() == jobj->idx() , "instance type expected.");
2988 
2989         const Type *tn_type = igvn->type(tn);
2990         const TypeOopPtr *tn_t;
2991         if (tn_type->isa_narrowoop()) {
2992           tn_t = tn_type->make_ptr()->isa_oopptr();
2993         } else {
2994           tn_t = tn_type->isa_oopptr();
2995         }
2996         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2997           if (tn_type->isa_narrowoop()) {
2998             tn_type = tinst->make_narrowoop();
2999           } else {
3000             tn_type = tinst;
3001           }
3002           igvn->hash_delete(tn);
3003           igvn->set_type(tn, tn_type);
3004           tn->set_type(tn_type);
3005           igvn->hash_insert(tn);
3006           record_for_optimizer(n);
3007         } else {
3008           assert(tn_type == TypePtr::NULL_PTR ||
3009                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3010                  "unexpected type");
3011           continue; // Skip dead path with different type
3012         }
3013       }
3014     } else {
3015       debug_only(n->dump();)
3016       assert(false, "EA: unexpected node");
3017       continue;
3018     }
3019     // push allocation's users on appropriate worklist
3020     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3021       Node *use = n->fast_out(i);
3022       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3023         // Load/store to instance's field
3024         memnode_worklist.append_if_missing(use);
3025       } else if (use->is_MemBar()) {
3026         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3027           memnode_worklist.append_if_missing(use);
3028         }
3029       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3030         Node* addp2 = find_second_addp(use, n);
3031         if (addp2 != NULL) {
3032           alloc_worklist.append_if_missing(addp2);
3033         }
3034         alloc_worklist.append_if_missing(use);
3035       } else if (use->is_Phi() ||
3036                  use->is_CheckCastPP() ||
3037                  use->is_EncodeNarrowPtr() ||
3038                  use->is_DecodeNarrowPtr() ||
3039                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3040         alloc_worklist.append_if_missing(use);
3041 #ifdef ASSERT
3042       } else if (use->is_Mem()) {
3043         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3044       } else if (use->is_MergeMem()) {
3045         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3046       } else if (use->is_SafePoint()) {
3047         // Look for MergeMem nodes for calls which reference unique allocation
3048         // (through CheckCastPP nodes) even for debug info.
3049         Node* m = use->in(TypeFunc::Memory);
3050         if (m->is_MergeMem()) {
3051           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3052         }
3053       } else if (use->Opcode() == Op_EncodeISOArray) {
3054         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3055           // EncodeISOArray overwrites destination array
3056           memnode_worklist.append_if_missing(use);
3057         }
3058       } else {
3059         uint op = use->Opcode();
3060         if (!(op == Op_CmpP || op == Op_Conv2B ||
3061               op == Op_CastP2X || op == Op_StoreCM ||
3062               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3063               op == Op_StrEquals || op == Op_StrIndexOf)) {
3064           n->dump();
3065           use->dump();
3066           assert(false, "EA: missing allocation reference path");
3067         }
3068 #endif
3069       }
3070     }
3071 
3072   }
3073   // New alias types were created in split_AddP().
3074   uint new_index_end = (uint) _compile->num_alias_types();
3075   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3076 
3077   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3078   //            compute new values for Memory inputs  (the Memory inputs are not
3079   //            actually updated until phase 4.)
3080   if (memnode_worklist.length() == 0)
3081     return;  // nothing to do
3082   while (memnode_worklist.length() != 0) {
3083     Node *n = memnode_worklist.pop();
3084     if (visited.test_set(n->_idx))
3085       continue;
3086     if (n->is_Phi() || n->is_ClearArray()) {
3087       // we don't need to do anything, but the users must be pushed
3088     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3089       // we don't need to do anything, but the users must be pushed
3090       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3091       if (n == NULL)
3092         continue;
3093     } else if (n->Opcode() == Op_EncodeISOArray) {
3094       // get the memory projection
3095       n = n->find_out_with(Op_SCMemProj);
3096       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3097     } else {
3098       assert(n->is_Mem(), "memory node required.");
3099       Node *addr = n->in(MemNode::Address);
3100       const Type *addr_t = igvn->type(addr);
3101       if (addr_t == Type::TOP)
3102         continue;
3103       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3104       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3105       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3106       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3107       if (_compile->failing()) {
3108         return;
3109       }
3110       if (mem != n->in(MemNode::Memory)) {
3111         // We delay the memory edge update since we need old one in
3112         // MergeMem code below when instances memory slices are separated.
3113         set_map(n, mem);
3114       }
3115       if (n->is_Load()) {
3116         continue;  // don't push users
3117       } else if (n->is_LoadStore()) {
3118         // get the memory projection
3119         n = n->find_out_with(Op_SCMemProj);
3120         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3121       }
3122     }
3123     // push user on appropriate worklist
3124     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3125       Node *use = n->fast_out(i);
3126       if (use->is_Phi() || use->is_ClearArray()) {
3127         memnode_worklist.append_if_missing(use);
3128       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3129         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3130           continue;
3131         memnode_worklist.append_if_missing(use);
3132       } else if (use->is_MemBar()) {
3133         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3134           memnode_worklist.append_if_missing(use);
3135         }
3136 #ifdef ASSERT
3137       } else if(use->is_Mem()) {
3138         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3139       } else if (use->is_MergeMem()) {
3140         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3141       } else if (use->Opcode() == Op_EncodeISOArray) {
3142         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3143           // EncodeISOArray overwrites destination array
3144           memnode_worklist.append_if_missing(use);
3145         }
3146       } else {
3147         uint op = use->Opcode();
3148         if (!(op == Op_StoreCM ||
3149               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3150                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3151               op == Op_AryEq || op == Op_StrComp ||
3152               op == Op_StrEquals || op == Op_StrIndexOf)) {
3153           n->dump();
3154           use->dump();
3155           assert(false, "EA: missing memory path");
3156         }
3157 #endif
3158       }
3159     }
3160   }
3161 
3162   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3163   //            Walk each memory slice moving the first node encountered of each
3164   //            instance type to the the input corresponding to its alias index.
3165   uint length = _mergemem_worklist.length();
3166   for( uint next = 0; next < length; ++next ) {
3167     MergeMemNode* nmm = _mergemem_worklist.at(next);
3168     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3169     // Note: we don't want to use MergeMemStream here because we only want to
3170     // scan inputs which exist at the start, not ones we add during processing.
3171     // Note 2: MergeMem may already contains instance memory slices added
3172     // during find_inst_mem() call when memory nodes were processed above.
3173     igvn->hash_delete(nmm);
3174     uint nslices = nmm->req();
3175     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3176       Node* mem = nmm->in(i);
3177       Node* cur = NULL;
3178       if (mem == NULL || mem->is_top())
3179         continue;
3180       // First, update mergemem by moving memory nodes to corresponding slices
3181       // if their type became more precise since this mergemem was created.
3182       while (mem->is_Mem()) {
3183         const Type *at = igvn->type(mem->in(MemNode::Address));
3184         if (at != Type::TOP) {
3185           assert (at->isa_ptr() != NULL, "pointer type required.");
3186           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3187           if (idx == i) {
3188             if (cur == NULL)
3189               cur = mem;
3190           } else {
3191             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3192               nmm->set_memory_at(idx, mem);
3193             }
3194           }
3195         }
3196         mem = mem->in(MemNode::Memory);
3197       }
3198       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3199       // Find any instance of the current type if we haven't encountered
3200       // already a memory slice of the instance along the memory chain.
3201       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3202         if((uint)_compile->get_general_index(ni) == i) {
3203           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3204           if (nmm->is_empty_memory(m)) {
3205             Node* result = find_inst_mem(mem, ni, orig_phis);
3206             if (_compile->failing()) {
3207               return;
3208             }
3209             nmm->set_memory_at(ni, result);
3210           }
3211         }
3212       }
3213     }
3214     // Find the rest of instances values
3215     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3216       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3217       Node* result = step_through_mergemem(nmm, ni, tinst);
3218       if (result == nmm->base_memory()) {
3219         // Didn't find instance memory, search through general slice recursively.
3220         result = nmm->memory_at(_compile->get_general_index(ni));
3221         result = find_inst_mem(result, ni, orig_phis);
3222         if (_compile->failing()) {
3223           return;
3224         }
3225         nmm->set_memory_at(ni, result);
3226       }
3227     }
3228     igvn->hash_insert(nmm);
3229     record_for_optimizer(nmm);
3230   }
3231 
3232   //  Phase 4:  Update the inputs of non-instance memory Phis and
3233   //            the Memory input of memnodes
3234   // First update the inputs of any non-instance Phi's from
3235   // which we split out an instance Phi.  Note we don't have
3236   // to recursively process Phi's encounted on the input memory
3237   // chains as is done in split_memory_phi() since they  will
3238   // also be processed here.
3239   for (int j = 0; j < orig_phis.length(); j++) {
3240     PhiNode *phi = orig_phis.at(j);
3241     int alias_idx = _compile->get_alias_index(phi->adr_type());
3242     igvn->hash_delete(phi);
3243     for (uint i = 1; i < phi->req(); i++) {
3244       Node *mem = phi->in(i);
3245       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3246       if (_compile->failing()) {
3247         return;
3248       }
3249       if (mem != new_mem) {
3250         phi->set_req(i, new_mem);
3251       }
3252     }
3253     igvn->hash_insert(phi);
3254     record_for_optimizer(phi);
3255   }
3256 
3257   // Update the memory inputs of MemNodes with the value we computed
3258   // in Phase 2 and move stores memory users to corresponding memory slices.
3259   // Disable memory split verification code until the fix for 6984348.
3260   // Currently it produces false negative results since it does not cover all cases.
3261 #if 0 // ifdef ASSERT
3262   visited.Reset();
3263   Node_Stack old_mems(arena, _compile->unique() >> 2);
3264 #endif
3265   for (uint i = 0; i < ideal_nodes.size(); i++) {
3266     Node*    n = ideal_nodes.at(i);
3267     Node* nmem = get_map(n->_idx);
3268     assert(nmem != NULL, "sanity");
3269     if (n->is_Mem()) {
3270 #if 0 // ifdef ASSERT
3271       Node* old_mem = n->in(MemNode::Memory);
3272       if (!visited.test_set(old_mem->_idx)) {
3273         old_mems.push(old_mem, old_mem->outcnt());
3274       }
3275 #endif
3276       assert(n->in(MemNode::Memory) != nmem, "sanity");
3277       if (!n->is_Load()) {
3278         // Move memory users of a store first.
3279         move_inst_mem(n, orig_phis);
3280       }
3281       // Now update memory input
3282       igvn->hash_delete(n);
3283       n->set_req(MemNode::Memory, nmem);
3284       igvn->hash_insert(n);
3285       record_for_optimizer(n);
3286     } else {
3287       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3288              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3289     }
3290   }
3291 #if 0 // ifdef ASSERT
3292   // Verify that memory was split correctly
3293   while (old_mems.is_nonempty()) {
3294     Node* old_mem = old_mems.node();
3295     uint  old_cnt = old_mems.index();
3296     old_mems.pop();
3297     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3298   }
3299 #endif
3300 }
3301 
3302 #ifndef PRODUCT
3303 static const char *node_type_names[] = {
3304   "UnknownType",
3305   "JavaObject",
3306   "LocalVar",
3307   "Field",
3308   "Arraycopy"
3309 };
3310 
3311 static const char *esc_names[] = {
3312   "UnknownEscape",
3313   "NoEscape",
3314   "ArgEscape",
3315   "GlobalEscape"
3316 };
3317 
3318 void PointsToNode::dump(bool print_state) const {
3319   NodeType nt = node_type();
3320   tty->print("%s ", node_type_names[(int) nt]);
3321   if (print_state) {
3322     EscapeState es = escape_state();
3323     EscapeState fields_es = fields_escape_state();
3324     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3325     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3326       tty->print("NSR ");
3327   }
3328   if (is_Field()) {
3329     FieldNode* f = (FieldNode*)this;
3330     if (f->is_oop())
3331       tty->print("oop ");
3332     if (f->offset() > 0)
3333       tty->print("+%d ", f->offset());
3334     tty->print("(");
3335     for (BaseIterator i(f); i.has_next(); i.next()) {
3336       PointsToNode* b = i.get();
3337       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3338     }
3339     tty->print(" )");
3340   }
3341   tty->print("[");
3342   for (EdgeIterator i(this); i.has_next(); i.next()) {
3343     PointsToNode* e = i.get();
3344     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3345   }
3346   tty->print(" [");
3347   for (UseIterator i(this); i.has_next(); i.next()) {
3348     PointsToNode* u = i.get();
3349     bool is_base = false;
3350     if (PointsToNode::is_base_use(u)) {
3351       is_base = true;
3352       u = PointsToNode::get_use_node(u)->as_Field();
3353     }
3354     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3355   }
3356   tty->print(" ]]  ");
3357   if (_node == NULL)
3358     tty->print_cr("<null>");
3359   else
3360     _node->dump();
3361 }
3362 
3363 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3364   bool first = true;
3365   int ptnodes_length = ptnodes_worklist.length();
3366   for (int i = 0; i < ptnodes_length; i++) {
3367     PointsToNode *ptn = ptnodes_worklist.at(i);
3368     if (ptn == NULL || !ptn->is_JavaObject())
3369       continue;
3370     PointsToNode::EscapeState es = ptn->escape_state();
3371     if ((es != PointsToNode::NoEscape) && !Verbose) {
3372       continue;
3373     }
3374     Node* n = ptn->ideal_node();
3375     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3376                              n->as_CallStaticJava()->is_boxing_method())) {
3377       if (first) {
3378         tty->cr();
3379         tty->print("======== Connection graph for ");
3380         _compile->method()->print_short_name();
3381         tty->cr();
3382         first = false;
3383       }
3384       ptn->dump();
3385       // Print all locals and fields which reference this allocation
3386       for (UseIterator j(ptn); j.has_next(); j.next()) {
3387         PointsToNode* use = j.get();
3388         if (use->is_LocalVar()) {
3389           use->dump(Verbose);
3390         } else if (Verbose) {
3391           use->dump();
3392         }
3393       }
3394       tty->cr();
3395     }
3396   }
3397 }
3398 #endif