1 /*
   2  * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "compiler/compileLog.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/convertnode.hpp"
  32 #include "opto/divnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/memnode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/opaquenode.hpp"
  38 #include "opto/superword.hpp"
  39 #include "opto/vectornode.hpp"
  40 
  41 //
  42 //                  S U P E R W O R D   T R A N S F O R M
  43 //=============================================================================
  44 
  45 //------------------------------SuperWord---------------------------
  46 SuperWord::SuperWord(PhaseIdealLoop* phase) :
  47   _phase(phase),
  48   _igvn(phase->_igvn),
  49   _arena(phase->C->comp_arena()),
  50   _packset(arena(), 8,  0, NULL),         // packs for the current block
  51   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
  52   _block(arena(), 8,  0, NULL),           // nodes in current block
  53   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
  54   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
  55   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
  56   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
  57   _align_to_ref(NULL),                    // memory reference to align vectors to
  58   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
  59   _dg(_arena),                            // dependence graph
  60   _visited(arena()),                      // visited node set
  61   _post_visited(arena()),                 // post visited node set
  62   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
  63   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
  64   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
  65   _lpt(NULL),                             // loop tree node
  66   _lp(NULL),                              // LoopNode
  67   _bb(NULL),                              // basic block
  68   _iv(NULL),                              // induction var
  69   _race_possible(false)                   // cases where SDMU is true
  70 {}
  71 
  72 //------------------------------transform_loop---------------------------
  73 void SuperWord::transform_loop(IdealLoopTree* lpt) {
  74   assert(UseSuperWord, "should be");
  75   // Do vectors exist on this architecture?
  76   if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
  77 
  78   assert(lpt->_head->is_CountedLoop(), "must be");
  79   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
  80 
  81   if (!cl->is_valid_counted_loop()) return; // skip malformed counted loop
  82 
  83   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
  84 
  85   // Check for no control flow in body (other than exit)
  86   Node *cl_exit = cl->loopexit();
  87   if (cl_exit->in(0) != lpt->_head) return;
  88 
  89   // Make sure the are no extra control users of the loop backedge
  90   if (cl->back_control()->outcnt() != 1) {
  91     return;
  92   }
  93 
  94   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
  95   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
  96   if (pre_end == NULL) return;
  97   Node *pre_opaq1 = pre_end->limit();
  98   if (pre_opaq1->Opcode() != Op_Opaque1) return;
  99 
 100   init(); // initialize data structures
 101 
 102   set_lpt(lpt);
 103   set_lp(cl);
 104 
 105   // For now, define one block which is the entire loop body
 106   set_bb(cl);
 107 
 108   assert(_packset.length() == 0, "packset must be empty");
 109   SLP_extract();
 110 }
 111 
 112 //------------------------------SLP_extract---------------------------
 113 // Extract the superword level parallelism
 114 //
 115 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
 116 //    this list from first to last, all definitions are visited before their uses.
 117 //
 118 // 2) A point-to-point dependence graph is constructed between memory references.
 119 //    This simplies the upcoming "independence" checker.
 120 //
 121 // 3) The maximum depth in the node graph from the beginning of the block
 122 //    to each node is computed.  This is used to prune the graph search
 123 //    in the independence checker.
 124 //
 125 // 4) For integer types, the necessary bit width is propagated backwards
 126 //    from stores to allow packed operations on byte, char, and short
 127 //    integers.  This reverses the promotion to type "int" that javac
 128 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
 129 //
 130 // 5) One of the memory references is picked to be an aligned vector reference.
 131 //    The pre-loop trip count is adjusted to align this reference in the
 132 //    unrolled body.
 133 //
 134 // 6) The initial set of pack pairs is seeded with memory references.
 135 //
 136 // 7) The set of pack pairs is extended by following use->def and def->use links.
 137 //
 138 // 8) The pairs are combined into vector sized packs.
 139 //
 140 // 9) Reorder the memory slices to co-locate members of the memory packs.
 141 //
 142 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
 143 //    inserting scalar promotion, vector creation from multiple scalars, and
 144 //    extraction of scalar values from vectors.
 145 //
 146 void SuperWord::SLP_extract() {
 147 
 148   // Ready the block
 149   if (!construct_bb())
 150     return; // Exit if no interesting nodes or complex graph.
 151 
 152   dependence_graph();
 153 
 154   compute_max_depth();
 155 
 156   compute_vector_element_type();
 157 
 158   // Attempt vectorization
 159 
 160   find_adjacent_refs();
 161 
 162   extend_packlist();
 163 
 164   combine_packs();
 165 
 166   construct_my_pack_map();
 167 
 168   filter_packs();
 169 
 170   schedule();
 171 
 172   output();
 173 }
 174 
 175 //------------------------------find_adjacent_refs---------------------------
 176 // Find the adjacent memory references and create pack pairs for them.
 177 // This is the initial set of packs that will then be extended by
 178 // following use->def and def->use links.  The align positions are
 179 // assigned relative to the reference "align_to_ref"
 180 void SuperWord::find_adjacent_refs() {
 181   // Get list of memory operations
 182   Node_List memops;
 183   for (int i = 0; i < _block.length(); i++) {
 184     Node* n = _block.at(i);
 185     if (n->is_Mem() && !n->is_LoadStore() && in_bb(n) &&
 186         is_java_primitive(n->as_Mem()->memory_type())) {
 187       int align = memory_alignment(n->as_Mem(), 0);
 188       if (align != bottom_align) {
 189         memops.push(n);
 190       }
 191     }
 192   }
 193 
 194   Node_List align_to_refs;
 195   int best_iv_adjustment = 0;
 196   MemNode* best_align_to_mem_ref = NULL;
 197 
 198   while (memops.size() != 0) {
 199     // Find a memory reference to align to.
 200     MemNode* mem_ref = find_align_to_ref(memops);
 201     if (mem_ref == NULL) break;
 202     align_to_refs.push(mem_ref);
 203     int iv_adjustment = get_iv_adjustment(mem_ref);
 204 
 205     if (best_align_to_mem_ref == NULL) {
 206       // Set memory reference which is the best from all memory operations
 207       // to be used for alignment. The pre-loop trip count is modified to align
 208       // this reference to a vector-aligned address.
 209       best_align_to_mem_ref = mem_ref;
 210       best_iv_adjustment = iv_adjustment;
 211     }
 212 
 213     SWPointer align_to_ref_p(mem_ref, this);
 214     // Set alignment relative to "align_to_ref" for all related memory operations.
 215     for (int i = memops.size() - 1; i >= 0; i--) {
 216       MemNode* s = memops.at(i)->as_Mem();
 217       if (isomorphic(s, mem_ref)) {
 218         SWPointer p2(s, this);
 219         if (p2.comparable(align_to_ref_p)) {
 220           int align = memory_alignment(s, iv_adjustment);
 221           set_alignment(s, align);
 222         }
 223       }
 224     }
 225 
 226     // Create initial pack pairs of memory operations for which
 227     // alignment is set and vectors will be aligned.
 228     bool create_pack = true;
 229     if (memory_alignment(mem_ref, best_iv_adjustment) == 0) {
 230       if (!Matcher::misaligned_vectors_ok()) {
 231         int vw = vector_width(mem_ref);
 232         int vw_best = vector_width(best_align_to_mem_ref);
 233         if (vw > vw_best) {
 234           // Do not vectorize a memory access with more elements per vector
 235           // if unaligned memory access is not allowed because number of
 236           // iterations in pre-loop will be not enough to align it.
 237           create_pack = false;
 238         }
 239       }
 240     } else {
 241       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 242         // Can't allow vectorization of unaligned memory accesses with the
 243         // same type since it could be overlapped accesses to the same array.
 244         create_pack = false;
 245       } else {
 246         // Allow independent (different type) unaligned memory operations
 247         // if HW supports them.
 248         if (!Matcher::misaligned_vectors_ok()) {
 249           create_pack = false;
 250         } else {
 251           // Check if packs of the same memory type but
 252           // with a different alignment were created before.
 253           for (uint i = 0; i < align_to_refs.size(); i++) {
 254             MemNode* mr = align_to_refs.at(i)->as_Mem();
 255             if (same_velt_type(mr, mem_ref) &&
 256                 memory_alignment(mr, iv_adjustment) != 0)
 257               create_pack = false;
 258           }
 259         }
 260       }
 261     }
 262     if (create_pack) {
 263       for (uint i = 0; i < memops.size(); i++) {
 264         Node* s1 = memops.at(i);
 265         int align = alignment(s1);
 266         if (align == top_align) continue;
 267         for (uint j = 0; j < memops.size(); j++) {
 268           Node* s2 = memops.at(j);
 269           if (alignment(s2) == top_align) continue;
 270           if (s1 != s2 && are_adjacent_refs(s1, s2)) {
 271             if (stmts_can_pack(s1, s2, align)) {
 272               Node_List* pair = new Node_List();
 273               pair->push(s1);
 274               pair->push(s2);
 275               _packset.append(pair);
 276             }
 277           }
 278         }
 279       }
 280     } else { // Don't create unaligned pack
 281       // First, remove remaining memory ops of the same type from the list.
 282       for (int i = memops.size() - 1; i >= 0; i--) {
 283         MemNode* s = memops.at(i)->as_Mem();
 284         if (same_velt_type(s, mem_ref)) {
 285           memops.remove(i);
 286         }
 287       }
 288 
 289       // Second, remove already constructed packs of the same type.
 290       for (int i = _packset.length() - 1; i >= 0; i--) {
 291         Node_List* p = _packset.at(i);
 292         MemNode* s = p->at(0)->as_Mem();
 293         if (same_velt_type(s, mem_ref)) {
 294           remove_pack_at(i);
 295         }
 296       }
 297 
 298       // If needed find the best memory reference for loop alignment again.
 299       if (same_velt_type(mem_ref, best_align_to_mem_ref)) {
 300         // Put memory ops from remaining packs back on memops list for
 301         // the best alignment search.
 302         uint orig_msize = memops.size();
 303         for (int i = 0; i < _packset.length(); i++) {
 304           Node_List* p = _packset.at(i);
 305           MemNode* s = p->at(0)->as_Mem();
 306           assert(!same_velt_type(s, mem_ref), "sanity");
 307           memops.push(s);
 308         }
 309         MemNode* best_align_to_mem_ref = find_align_to_ref(memops);
 310         if (best_align_to_mem_ref == NULL) break;
 311         best_iv_adjustment = get_iv_adjustment(best_align_to_mem_ref);
 312         // Restore list.
 313         while (memops.size() > orig_msize)
 314           (void)memops.pop();
 315       }
 316     } // unaligned memory accesses
 317 
 318     // Remove used mem nodes.
 319     for (int i = memops.size() - 1; i >= 0; i--) {
 320       MemNode* m = memops.at(i)->as_Mem();
 321       if (alignment(m) != top_align) {
 322         memops.remove(i);
 323       }
 324     }
 325 
 326   } // while (memops.size() != 0
 327   set_align_to_ref(best_align_to_mem_ref);
 328 
 329 #ifndef PRODUCT
 330   if (TraceSuperWord) {
 331     tty->print_cr("\nAfter find_adjacent_refs");
 332     print_packset();
 333   }
 334 #endif
 335 }
 336 
 337 //------------------------------find_align_to_ref---------------------------
 338 // Find a memory reference to align the loop induction variable to.
 339 // Looks first at stores then at loads, looking for a memory reference
 340 // with the largest number of references similar to it.
 341 MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
 342   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
 343 
 344   // Count number of comparable memory ops
 345   for (uint i = 0; i < memops.size(); i++) {
 346     MemNode* s1 = memops.at(i)->as_Mem();
 347     SWPointer p1(s1, this);
 348     // Discard if pre loop can't align this reference
 349     if (!ref_is_alignable(p1)) {
 350       *cmp_ct.adr_at(i) = 0;
 351       continue;
 352     }
 353     for (uint j = i+1; j < memops.size(); j++) {
 354       MemNode* s2 = memops.at(j)->as_Mem();
 355       if (isomorphic(s1, s2)) {
 356         SWPointer p2(s2, this);
 357         if (p1.comparable(p2)) {
 358           (*cmp_ct.adr_at(i))++;
 359           (*cmp_ct.adr_at(j))++;
 360         }
 361       }
 362     }
 363   }
 364 
 365   // Find Store (or Load) with the greatest number of "comparable" references,
 366   // biggest vector size, smallest data size and smallest iv offset.
 367   int max_ct        = 0;
 368   int max_vw        = 0;
 369   int max_idx       = -1;
 370   int min_size      = max_jint;
 371   int min_iv_offset = max_jint;
 372   for (uint j = 0; j < memops.size(); j++) {
 373     MemNode* s = memops.at(j)->as_Mem();
 374     if (s->is_Store()) {
 375       int vw = vector_width_in_bytes(s);
 376       assert(vw > 1, "sanity");
 377       SWPointer p(s, this);
 378       if (cmp_ct.at(j) >  max_ct ||
 379           cmp_ct.at(j) == max_ct &&
 380             (vw >  max_vw ||
 381              vw == max_vw &&
 382               (data_size(s) <  min_size ||
 383                data_size(s) == min_size &&
 384                  (p.offset_in_bytes() < min_iv_offset)))) {
 385         max_ct = cmp_ct.at(j);
 386         max_vw = vw;
 387         max_idx = j;
 388         min_size = data_size(s);
 389         min_iv_offset = p.offset_in_bytes();
 390       }
 391     }
 392   }
 393   // If no stores, look at loads
 394   if (max_ct == 0) {
 395     for (uint j = 0; j < memops.size(); j++) {
 396       MemNode* s = memops.at(j)->as_Mem();
 397       if (s->is_Load()) {
 398         int vw = vector_width_in_bytes(s);
 399         assert(vw > 1, "sanity");
 400         SWPointer p(s, this);
 401         if (cmp_ct.at(j) >  max_ct ||
 402             cmp_ct.at(j) == max_ct &&
 403               (vw >  max_vw ||
 404                vw == max_vw &&
 405                 (data_size(s) <  min_size ||
 406                  data_size(s) == min_size &&
 407                    (p.offset_in_bytes() < min_iv_offset)))) {
 408           max_ct = cmp_ct.at(j);
 409           max_vw = vw;
 410           max_idx = j;
 411           min_size = data_size(s);
 412           min_iv_offset = p.offset_in_bytes();
 413         }
 414       }
 415     }
 416   }
 417 
 418 #ifdef ASSERT
 419   if (TraceSuperWord && Verbose) {
 420     tty->print_cr("\nVector memops after find_align_to_refs");
 421     for (uint i = 0; i < memops.size(); i++) {
 422       MemNode* s = memops.at(i)->as_Mem();
 423       s->dump();
 424     }
 425   }
 426 #endif
 427 
 428   if (max_ct > 0) {
 429 #ifdef ASSERT
 430     if (TraceSuperWord) {
 431       tty->print("\nVector align to node: ");
 432       memops.at(max_idx)->as_Mem()->dump();
 433     }
 434 #endif
 435     return memops.at(max_idx)->as_Mem();
 436   }
 437   return NULL;
 438 }
 439 
 440 //------------------------------ref_is_alignable---------------------------
 441 // Can the preloop align the reference to position zero in the vector?
 442 bool SuperWord::ref_is_alignable(SWPointer& p) {
 443   if (!p.has_iv()) {
 444     return true;   // no induction variable
 445   }
 446   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
 447   assert(pre_end != NULL, "we must have a correct pre-loop");
 448   assert(pre_end->stride_is_con(), "pre loop stride is constant");
 449   int preloop_stride = pre_end->stride_con();
 450 
 451   int span = preloop_stride * p.scale_in_bytes();
 452 
 453   // Stride one accesses are alignable.
 454   if (ABS(span) == p.memory_size())
 455     return true;
 456 
 457   // If initial offset from start of object is computable,
 458   // compute alignment within the vector.
 459   int vw = vector_width_in_bytes(p.mem());
 460   assert(vw > 1, "sanity");
 461   if (vw % span == 0) {
 462     Node* init_nd = pre_end->init_trip();
 463     if (init_nd->is_Con() && p.invar() == NULL) {
 464       int init = init_nd->bottom_type()->is_int()->get_con();
 465 
 466       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
 467       assert(init_offset >= 0, "positive offset from object start");
 468 
 469       if (span > 0) {
 470         return (vw - (init_offset % vw)) % span == 0;
 471       } else {
 472         assert(span < 0, "nonzero stride * scale");
 473         return (init_offset % vw) % -span == 0;
 474       }
 475     }
 476   }
 477   return false;
 478 }
 479 
 480 //---------------------------get_iv_adjustment---------------------------
 481 // Calculate loop's iv adjustment for this memory ops.
 482 int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
 483   SWPointer align_to_ref_p(mem_ref, this);
 484   int offset = align_to_ref_p.offset_in_bytes();
 485   int scale  = align_to_ref_p.scale_in_bytes();
 486   int vw       = vector_width_in_bytes(mem_ref);
 487   assert(vw > 1, "sanity");
 488   int stride_sign   = (scale * iv_stride()) > 0 ? 1 : -1;
 489   // At least one iteration is executed in pre-loop by default. As result
 490   // several iterations are needed to align memory operations in main-loop even
 491   // if offset is 0.
 492   int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
 493   int elt_size = align_to_ref_p.memory_size();
 494   assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
 495          err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
 496   int iv_adjustment = iv_adjustment_in_bytes/elt_size;
 497 
 498 #ifndef PRODUCT
 499   if (TraceSuperWord)
 500     tty->print_cr("\noffset = %d iv_adjust = %d elt_size = %d scale = %d iv_stride = %d vect_size %d",
 501                   offset, iv_adjustment, elt_size, scale, iv_stride(), vw);
 502 #endif
 503   return iv_adjustment;
 504 }
 505 
 506 //---------------------------dependence_graph---------------------------
 507 // Construct dependency graph.
 508 // Add dependence edges to load/store nodes for memory dependence
 509 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
 510 void SuperWord::dependence_graph() {
 511   // First, assign a dependence node to each memory node
 512   for (int i = 0; i < _block.length(); i++ ) {
 513     Node *n = _block.at(i);
 514     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
 515       _dg.make_node(n);
 516     }
 517   }
 518 
 519   // For each memory slice, create the dependences
 520   for (int i = 0; i < _mem_slice_head.length(); i++) {
 521     Node* n      = _mem_slice_head.at(i);
 522     Node* n_tail = _mem_slice_tail.at(i);
 523 
 524     // Get slice in predecessor order (last is first)
 525     mem_slice_preds(n_tail, n, _nlist);
 526 
 527     // Make the slice dependent on the root
 528     DepMem* slice = _dg.dep(n);
 529     _dg.make_edge(_dg.root(), slice);
 530 
 531     // Create a sink for the slice
 532     DepMem* slice_sink = _dg.make_node(NULL);
 533     _dg.make_edge(slice_sink, _dg.tail());
 534 
 535     // Now visit each pair of memory ops, creating the edges
 536     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
 537       Node* s1 = _nlist.at(j);
 538 
 539       // If no dependency yet, use slice
 540       if (_dg.dep(s1)->in_cnt() == 0) {
 541         _dg.make_edge(slice, s1);
 542       }
 543       SWPointer p1(s1->as_Mem(), this);
 544       bool sink_dependent = true;
 545       for (int k = j - 1; k >= 0; k--) {
 546         Node* s2 = _nlist.at(k);
 547         if (s1->is_Load() && s2->is_Load())
 548           continue;
 549         SWPointer p2(s2->as_Mem(), this);
 550 
 551         int cmp = p1.cmp(p2);
 552         if (SuperWordRTDepCheck &&
 553             p1.base() != p2.base() && p1.valid() && p2.valid()) {
 554           // Create a runtime check to disambiguate
 555           OrderedPair pp(p1.base(), p2.base());
 556           _disjoint_ptrs.append_if_missing(pp);
 557         } else if (!SWPointer::not_equal(cmp)) {
 558           // Possibly same address
 559           _dg.make_edge(s1, s2);
 560           sink_dependent = false;
 561         }
 562       }
 563       if (sink_dependent) {
 564         _dg.make_edge(s1, slice_sink);
 565       }
 566     }
 567 #ifndef PRODUCT
 568     if (TraceSuperWord) {
 569       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
 570       for (int q = 0; q < _nlist.length(); q++) {
 571         _dg.print(_nlist.at(q));
 572       }
 573       tty->cr();
 574     }
 575 #endif
 576     _nlist.clear();
 577   }
 578 
 579 #ifndef PRODUCT
 580   if (TraceSuperWord) {
 581     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
 582     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
 583       _disjoint_ptrs.at(r).print();
 584       tty->cr();
 585     }
 586     tty->cr();
 587   }
 588 #endif
 589 }
 590 
 591 //---------------------------mem_slice_preds---------------------------
 592 // Return a memory slice (node list) in predecessor order starting at "start"
 593 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
 594   assert(preds.length() == 0, "start empty");
 595   Node* n = start;
 596   Node* prev = NULL;
 597   while (true) {
 598     assert(in_bb(n), "must be in block");
 599     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 600       Node* out = n->fast_out(i);
 601       if (out->is_Load()) {
 602         if (in_bb(out)) {
 603           preds.push(out);
 604         }
 605       } else {
 606         // FIXME
 607         if (out->is_MergeMem() && !in_bb(out)) {
 608           // Either unrolling is causing a memory edge not to disappear,
 609           // or need to run igvn.optimize() again before SLP
 610         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
 611           // Ditto.  Not sure what else to check further.
 612         } else if (out->Opcode() == Op_StoreCM && out->in(MemNode::OopStore) == n) {
 613           // StoreCM has an input edge used as a precedence edge.
 614           // Maybe an issue when oop stores are vectorized.
 615         } else {
 616           assert(out == prev || prev == NULL, "no branches off of store slice");
 617         }
 618       }
 619     }
 620     if (n == stop) break;
 621     preds.push(n);
 622     prev = n;
 623     assert(n->is_Mem(), err_msg_res("unexpected node %s", n->Name()));
 624     n = n->in(MemNode::Memory);
 625   }
 626 }
 627 
 628 //------------------------------stmts_can_pack---------------------------
 629 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and
 630 // s1 aligned at "align"
 631 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
 632 
 633   // Do not use superword for non-primitives
 634   BasicType bt1 = velt_basic_type(s1);
 635   BasicType bt2 = velt_basic_type(s2);
 636   if(!is_java_primitive(bt1) || !is_java_primitive(bt2))
 637     return false;
 638   if (Matcher::max_vector_size(bt1) < 2) {
 639     return false; // No vectors for this type
 640   }
 641 
 642   if (isomorphic(s1, s2)) {
 643     if (independent(s1, s2) || reduction(s1, s2)) {
 644       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
 645         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
 646           int s1_align = alignment(s1);
 647           int s2_align = alignment(s2);
 648           if (s1_align == top_align || s1_align == align) {
 649             if (s2_align == top_align || s2_align == align + data_size(s1)) {
 650               return true;
 651             }
 652           }
 653         }
 654       }
 655     }
 656   }
 657   return false;
 658 }
 659 
 660 //------------------------------exists_at---------------------------
 661 // Does s exist in a pack at position pos?
 662 bool SuperWord::exists_at(Node* s, uint pos) {
 663   for (int i = 0; i < _packset.length(); i++) {
 664     Node_List* p = _packset.at(i);
 665     if (p->at(pos) == s) {
 666       return true;
 667     }
 668   }
 669   return false;
 670 }
 671 
 672 //------------------------------are_adjacent_refs---------------------------
 673 // Is s1 immediately before s2 in memory?
 674 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
 675   if (!s1->is_Mem() || !s2->is_Mem()) return false;
 676   if (!in_bb(s1)    || !in_bb(s2))    return false;
 677 
 678   // Do not use superword for non-primitives
 679   if (!is_java_primitive(s1->as_Mem()->memory_type()) ||
 680       !is_java_primitive(s2->as_Mem()->memory_type())) {
 681     return false;
 682   }
 683 
 684   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
 685   // only pack memops that are in the same alias set until that's fixed.
 686   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
 687       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
 688     return false;
 689   SWPointer p1(s1->as_Mem(), this);
 690   SWPointer p2(s2->as_Mem(), this);
 691   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
 692   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
 693   return diff == data_size(s1);
 694 }
 695 
 696 //------------------------------isomorphic---------------------------
 697 // Are s1 and s2 similar?
 698 bool SuperWord::isomorphic(Node* s1, Node* s2) {
 699   if (s1->Opcode() != s2->Opcode()) return false;
 700   if (s1->req() != s2->req()) return false;
 701   if (s1->in(0) != s2->in(0)) return false;
 702   if (!same_velt_type(s1, s2)) return false;
 703   return true;
 704 }
 705 
 706 //------------------------------independent---------------------------
 707 // Is there no data path from s1 to s2 or s2 to s1?
 708 bool SuperWord::independent(Node* s1, Node* s2) {
 709   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
 710   int d1 = depth(s1);
 711   int d2 = depth(s2);
 712   if (d1 == d2) return s1 != s2;
 713   Node* deep    = d1 > d2 ? s1 : s2;
 714   Node* shallow = d1 > d2 ? s2 : s1;
 715 
 716   visited_clear();
 717 
 718   return independent_path(shallow, deep);
 719 }
 720 
 721 //------------------------------reduction---------------------------
 722 // Is there a data path between s1 and s2 and the nodes reductions?
 723 bool SuperWord::reduction(Node* s1, Node* s2) {
 724   bool retValue = false;
 725   int d1 = depth(s1);
 726   int d2 = depth(s2);
 727   if (d1 + 1 == d2) {
 728     if (s1->is_reduction() && s2->is_reduction()) {
 729       // This is an ordered set, so s1 should define s2
 730       for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 731         Node* t1 = s1->fast_out(i);
 732         if (t1 == s2) {
 733           // both nodes are reductions and connected
 734           retValue = true;
 735         }
 736       }
 737     }
 738   }
 739 
 740   return retValue;
 741 }
 742 
 743 //------------------------------independent_path------------------------------
 744 // Helper for independent
 745 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
 746   if (dp >= 1000) return false; // stop deep recursion
 747   visited_set(deep);
 748   int shal_depth = depth(shallow);
 749   assert(shal_depth <= depth(deep), "must be");
 750   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
 751     Node* pred = preds.current();
 752     if (in_bb(pred) && !visited_test(pred)) {
 753       if (shallow == pred) {
 754         return false;
 755       }
 756       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
 757         return false;
 758       }
 759     }
 760   }
 761   return true;
 762 }
 763 
 764 //------------------------------set_alignment---------------------------
 765 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
 766   set_alignment(s1, align);
 767   if (align == top_align || align == bottom_align) {
 768     set_alignment(s2, align);
 769   } else {
 770     set_alignment(s2, align + data_size(s1));
 771   }
 772 }
 773 
 774 //------------------------------data_size---------------------------
 775 int SuperWord::data_size(Node* s) {
 776   int bsize = type2aelembytes(velt_basic_type(s));
 777   assert(bsize != 0, "valid size");
 778   return bsize;
 779 }
 780 
 781 //------------------------------extend_packlist---------------------------
 782 // Extend packset by following use->def and def->use links from pack members.
 783 void SuperWord::extend_packlist() {
 784   bool changed;
 785   do {
 786     packset_sort(_packset.length());
 787     changed = false;
 788     for (int i = 0; i < _packset.length(); i++) {
 789       Node_List* p = _packset.at(i);
 790       changed |= follow_use_defs(p);
 791       changed |= follow_def_uses(p);
 792     }
 793   } while (changed);
 794 
 795   if (_race_possible) {
 796     for (int i = 0; i < _packset.length(); i++) {
 797       Node_List* p = _packset.at(i);
 798       order_def_uses(p);
 799     }
 800   }
 801 
 802 #ifndef PRODUCT
 803   if (TraceSuperWord) {
 804     tty->print_cr("\nAfter extend_packlist");
 805     print_packset();
 806   }
 807 #endif
 808 }
 809 
 810 //------------------------------follow_use_defs---------------------------
 811 // Extend the packset by visiting operand definitions of nodes in pack p
 812 bool SuperWord::follow_use_defs(Node_List* p) {
 813   assert(p->size() == 2, "just checking");
 814   Node* s1 = p->at(0);
 815   Node* s2 = p->at(1);
 816   assert(s1->req() == s2->req(), "just checking");
 817   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
 818 
 819   if (s1->is_Load()) return false;
 820 
 821   int align = alignment(s1);
 822   bool changed = false;
 823   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
 824   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
 825   for (int j = start; j < end; j++) {
 826     Node* t1 = s1->in(j);
 827     Node* t2 = s2->in(j);
 828     if (!in_bb(t1) || !in_bb(t2))
 829       continue;
 830     if (stmts_can_pack(t1, t2, align)) {
 831       if (est_savings(t1, t2) >= 0) {
 832         Node_List* pair = new Node_List();
 833         pair->push(t1);
 834         pair->push(t2);
 835         _packset.append(pair);
 836         set_alignment(t1, t2, align);
 837         changed = true;
 838       }
 839     }
 840   }
 841   return changed;
 842 }
 843 
 844 //------------------------------follow_def_uses---------------------------
 845 // Extend the packset by visiting uses of nodes in pack p
 846 bool SuperWord::follow_def_uses(Node_List* p) {
 847   bool changed = false;
 848   Node* s1 = p->at(0);
 849   Node* s2 = p->at(1);
 850   assert(p->size() == 2, "just checking");
 851   assert(s1->req() == s2->req(), "just checking");
 852   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
 853 
 854   if (s1->is_Store()) return false;
 855 
 856   int align = alignment(s1);
 857   int savings = -1;
 858   int num_s1_uses = 0;
 859   Node* u1 = NULL;
 860   Node* u2 = NULL;
 861   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 862     Node* t1 = s1->fast_out(i);
 863     num_s1_uses++;
 864     if (!in_bb(t1)) continue;
 865     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
 866       Node* t2 = s2->fast_out(j);
 867       if (!in_bb(t2)) continue;
 868       if (!opnd_positions_match(s1, t1, s2, t2))
 869         continue;
 870       if (stmts_can_pack(t1, t2, align)) {
 871         int my_savings = est_savings(t1, t2);
 872         if (my_savings > savings) {
 873           savings = my_savings;
 874           u1 = t1;
 875           u2 = t2;
 876         }
 877       }
 878     }
 879   }
 880   if (num_s1_uses > 1) {
 881     _race_possible = true;
 882   }
 883   if (savings >= 0) {
 884     Node_List* pair = new Node_List();
 885     pair->push(u1);
 886     pair->push(u2);
 887     _packset.append(pair);
 888     set_alignment(u1, u2, align);
 889     changed = true;
 890   }
 891   return changed;
 892 }
 893 
 894 //------------------------------order_def_uses---------------------------
 895 // For extended packsets, ordinally arrange uses packset by major component
 896 void SuperWord::order_def_uses(Node_List* p) {
 897   Node* s1 = p->at(0);
 898 
 899   if (s1->is_Store()) return;
 900 
 901   // reductions are always managed beforehand
 902   if (s1->is_reduction()) return;
 903 
 904   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 905     Node* t1 = s1->fast_out(i);
 906 
 907     // Only allow operand swap on commuting operations
 908     if (!t1->is_Add() && !t1->is_Mul()) {
 909       break;
 910     }
 911 
 912     // Now find t1's packset
 913     Node_List* p2 = NULL;
 914     for (int j = 0; j < _packset.length(); j++) {
 915       p2 = _packset.at(j);
 916       Node* first = p2->at(0);
 917       if (t1 == first) {
 918         break;
 919       }
 920       p2 = NULL;
 921     }
 922     // Arrange all sub components by the major component
 923     if (p2 != NULL) {
 924       for (uint j = 1; j < p->size(); j++) {
 925         Node* d1 = p->at(j);
 926         Node* u1 = p2->at(j);
 927         opnd_positions_match(s1, t1, d1, u1);
 928       }
 929     }
 930   }
 931 }
 932 
 933 //---------------------------opnd_positions_match-------------------------
 934 // Is the use of d1 in u1 at the same operand position as d2 in u2?
 935 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
 936   // check reductions to see if they are marshalled to represent the reduction
 937   // operator in a specified opnd
 938   if (u1->is_reduction() && u2->is_reduction()) {
 939     // ensure reductions have phis and reduction definitions feeding the 1st operand
 940     Node* first = u1->in(2);
 941     if (first->is_Phi() || first->is_reduction()) {
 942       u1->swap_edges(1, 2);
 943     }
 944     // ensure reductions have phis and reduction definitions feeding the 1st operand
 945     first = u2->in(2);
 946     if (first->is_Phi() || first->is_reduction()) {
 947       u2->swap_edges(1, 2);
 948     }
 949     return true;
 950   }
 951 
 952   uint ct = u1->req();
 953   if (ct != u2->req()) return false;
 954   uint i1 = 0;
 955   uint i2 = 0;
 956   do {
 957     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
 958     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
 959     if (i1 != i2) {
 960       if ((i1 == (3-i2)) && (u2->is_Add() || u2->is_Mul())) {
 961         // Further analysis relies on operands position matching.
 962         u2->swap_edges(i1, i2);
 963       } else {
 964         return false;
 965       }
 966     }
 967   } while (i1 < ct);
 968   return true;
 969 }
 970 
 971 //------------------------------est_savings---------------------------
 972 // Estimate the savings from executing s1 and s2 as a pack
 973 int SuperWord::est_savings(Node* s1, Node* s2) {
 974   int save_in = 2 - 1; // 2 operations per instruction in packed form
 975 
 976   // inputs
 977   for (uint i = 1; i < s1->req(); i++) {
 978     Node* x1 = s1->in(i);
 979     Node* x2 = s2->in(i);
 980     if (x1 != x2) {
 981       if (are_adjacent_refs(x1, x2)) {
 982         save_in += adjacent_profit(x1, x2);
 983       } else if (!in_packset(x1, x2)) {
 984         save_in -= pack_cost(2);
 985       } else {
 986         save_in += unpack_cost(2);
 987       }
 988     }
 989   }
 990 
 991   // uses of result
 992   uint ct = 0;
 993   int save_use = 0;
 994   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
 995     Node* s1_use = s1->fast_out(i);
 996     for (int j = 0; j < _packset.length(); j++) {
 997       Node_List* p = _packset.at(j);
 998       if (p->at(0) == s1_use) {
 999         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
1000           Node* s2_use = s2->fast_out(k);
1001           if (p->at(p->size()-1) == s2_use) {
1002             ct++;
1003             if (are_adjacent_refs(s1_use, s2_use)) {
1004               save_use += adjacent_profit(s1_use, s2_use);
1005             }
1006           }
1007         }
1008       }
1009     }
1010   }
1011 
1012   if (ct < s1->outcnt()) save_use += unpack_cost(1);
1013   if (ct < s2->outcnt()) save_use += unpack_cost(1);
1014 
1015   return MAX2(save_in, save_use);
1016 }
1017 
1018 //------------------------------costs---------------------------
1019 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
1020 int SuperWord::pack_cost(int ct)   { return ct; }
1021 int SuperWord::unpack_cost(int ct) { return ct; }
1022 
1023 //------------------------------combine_packs---------------------------
1024 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
1025 void SuperWord::combine_packs() {
1026   bool changed = true;
1027   // Combine packs regardless max vector size.
1028   while (changed) {
1029     changed = false;
1030     for (int i = 0; i < _packset.length(); i++) {
1031       Node_List* p1 = _packset.at(i);
1032       if (p1 == NULL) continue;
1033       // Because of sorting we can start at i + 1
1034       for (int j = i + 1; j < _packset.length(); j++) {
1035         Node_List* p2 = _packset.at(j);
1036         if (p2 == NULL) continue;
1037         if (i == j) continue;
1038         if (p1->at(p1->size()-1) == p2->at(0)) {
1039           for (uint k = 1; k < p2->size(); k++) {
1040             p1->push(p2->at(k));
1041           }
1042           _packset.at_put(j, NULL);
1043           changed = true;
1044         }
1045       }
1046     }
1047   }
1048 
1049   // Split packs which have size greater then max vector size.
1050   for (int i = 0; i < _packset.length(); i++) {
1051     Node_List* p1 = _packset.at(i);
1052     if (p1 != NULL) {
1053       BasicType bt = velt_basic_type(p1->at(0));
1054       uint max_vlen = Matcher::max_vector_size(bt); // Max elements in vector
1055       assert(is_power_of_2(max_vlen), "sanity");
1056       uint psize = p1->size();
1057       if (!is_power_of_2(psize)) {
1058         // Skip pack which can't be vector.
1059         // case1: for(...) { a[i] = i; }    elements values are different (i+x)
1060         // case2: for(...) { a[i] = b[i+1]; }  can't align both, load and store
1061         _packset.at_put(i, NULL);
1062         continue;
1063       }
1064       if (psize > max_vlen) {
1065         Node_List* pack = new Node_List();
1066         for (uint j = 0; j < psize; j++) {
1067           pack->push(p1->at(j));
1068           if (pack->size() >= max_vlen) {
1069             assert(is_power_of_2(pack->size()), "sanity");
1070             _packset.append(pack);
1071             pack = new Node_List();
1072           }
1073         }
1074         _packset.at_put(i, NULL);
1075       }
1076     }
1077   }
1078 
1079   // Compress list.
1080   for (int i = _packset.length() - 1; i >= 0; i--) {
1081     Node_List* p1 = _packset.at(i);
1082     if (p1 == NULL) {
1083       _packset.remove_at(i);
1084     }
1085   }
1086 
1087 #ifndef PRODUCT
1088   if (TraceSuperWord) {
1089     tty->print_cr("\nAfter combine_packs");
1090     print_packset();
1091   }
1092 #endif
1093 }
1094 
1095 //-----------------------------construct_my_pack_map--------------------------
1096 // Construct the map from nodes to packs.  Only valid after the
1097 // point where a node is only in one pack (after combine_packs).
1098 void SuperWord::construct_my_pack_map() {
1099   Node_List* rslt = NULL;
1100   for (int i = 0; i < _packset.length(); i++) {
1101     Node_List* p = _packset.at(i);
1102     for (uint j = 0; j < p->size(); j++) {
1103       Node* s = p->at(j);
1104       assert(my_pack(s) == NULL, "only in one pack");
1105       set_my_pack(s, p);
1106     }
1107   }
1108 }
1109 
1110 //------------------------------filter_packs---------------------------
1111 // Remove packs that are not implemented or not profitable.
1112 void SuperWord::filter_packs() {
1113 
1114   // Remove packs that are not implemented
1115   for (int i = _packset.length() - 1; i >= 0; i--) {
1116     Node_List* pk = _packset.at(i);
1117     bool impl = implemented(pk);
1118     if (!impl) {
1119 #ifndef PRODUCT
1120       if (TraceSuperWord && Verbose) {
1121         tty->print_cr("Unimplemented");
1122         pk->at(0)->dump();
1123       }
1124 #endif
1125       remove_pack_at(i);
1126     }
1127   }
1128 
1129   // Remove packs that are not profitable
1130   bool changed;
1131   do {
1132     changed = false;
1133     for (int i = _packset.length() - 1; i >= 0; i--) {
1134       Node_List* pk = _packset.at(i);
1135       bool prof = profitable(pk);
1136       if (!prof) {
1137 #ifndef PRODUCT
1138         if (TraceSuperWord && Verbose) {
1139           tty->print_cr("Unprofitable");
1140           pk->at(0)->dump();
1141         }
1142 #endif
1143         remove_pack_at(i);
1144         changed = true;
1145       }
1146     }
1147   } while (changed);
1148 
1149 #ifndef PRODUCT
1150   if (TraceSuperWord) {
1151     tty->print_cr("\nAfter filter_packs");
1152     print_packset();
1153     tty->cr();
1154   }
1155 #endif
1156 }
1157 
1158 //------------------------------implemented---------------------------
1159 // Can code be generated for pack p?
1160 bool SuperWord::implemented(Node_List* p) {
1161   bool retValue = false;
1162   Node* p0 = p->at(0);
1163   if (p0 != NULL) {
1164     int opc = p0->Opcode();
1165     uint size = p->size();
1166     if (p0->is_reduction()) {
1167       const Type *arith_type = p0->bottom_type();
1168       retValue = ReductionNode::implemented(opc, size, arith_type->basic_type());
1169     } else {
1170       retValue = VectorNode::implemented(opc, size, velt_basic_type(p0));
1171     }
1172   }
1173   return retValue;
1174 }
1175 
1176 //------------------------------same_inputs--------------------------
1177 // For pack p, are all idx operands the same?
1178 static bool same_inputs(Node_List* p, int idx) {
1179   Node* p0 = p->at(0);
1180   uint vlen = p->size();
1181   Node* p0_def = p0->in(idx);
1182   for (uint i = 1; i < vlen; i++) {
1183     Node* pi = p->at(i);
1184     Node* pi_def = pi->in(idx);
1185     if (p0_def != pi_def)
1186       return false;
1187   }
1188   return true;
1189 }
1190 
1191 //------------------------------profitable---------------------------
1192 // For pack p, are all operands and all uses (with in the block) vector?
1193 bool SuperWord::profitable(Node_List* p) {
1194   Node* p0 = p->at(0);
1195   uint start, end;
1196   VectorNode::vector_operands(p0, &start, &end);
1197 
1198   // Return false if some inputs are not vectors or vectors with different
1199   // size or alignment.
1200   // Also, for now, return false if not scalar promotion case when inputs are
1201   // the same. Later, implement PackNode and allow differing, non-vector inputs
1202   // (maybe just the ones from outside the block.)
1203   for (uint i = start; i < end; i++) {
1204     if (!is_vector_use(p0, i))
1205       return false;
1206   }
1207   // Check if reductions are connected
1208   if (p0->is_reduction()) {
1209     Node* second_in = p0->in(2);
1210     Node_List* second_pk = my_pack(second_in);
1211     if (second_pk == NULL) {
1212       // Remove reduction flag if no parent pack, it is not profitable
1213       p0->remove_flag(Node::Flag_is_reduction);
1214       return false;
1215     } else if (second_pk->size() != p->size()) {
1216       return false;
1217     }
1218   }
1219   if (VectorNode::is_shift(p0)) {
1220     // For now, return false if shift count is vector or not scalar promotion
1221     // case (different shift counts) because it is not supported yet.
1222     Node* cnt = p0->in(2);
1223     Node_List* cnt_pk = my_pack(cnt);
1224     if (cnt_pk != NULL)
1225       return false;
1226     if (!same_inputs(p, 2))
1227       return false;
1228   }
1229   if (!p0->is_Store()) {
1230     // For now, return false if not all uses are vector.
1231     // Later, implement ExtractNode and allow non-vector uses (maybe
1232     // just the ones outside the block.)
1233     for (uint i = 0; i < p->size(); i++) {
1234       Node* def = p->at(i);
1235       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1236         Node* use = def->fast_out(j);
1237         for (uint k = 0; k < use->req(); k++) {
1238           Node* n = use->in(k);
1239           if (def == n) {
1240             // reductions can be loop carried dependences
1241             if (def->is_reduction() && use->is_Phi())
1242               continue;
1243             if (!is_vector_use(use, k)) {
1244               return false;
1245             }
1246           }
1247         }
1248       }
1249     }
1250   }
1251   return true;
1252 }
1253 
1254 //------------------------------schedule---------------------------
1255 // Adjust the memory graph for the packed operations
1256 void SuperWord::schedule() {
1257 
1258   // Co-locate in the memory graph the members of each memory pack
1259   for (int i = 0; i < _packset.length(); i++) {
1260     co_locate_pack(_packset.at(i));
1261   }
1262 }
1263 
1264 //-------------------------------remove_and_insert-------------------
1265 // Remove "current" from its current position in the memory graph and insert
1266 // it after the appropriate insertion point (lip or uip).
1267 void SuperWord::remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip,
1268                                   Node *uip, Unique_Node_List &sched_before) {
1269   Node* my_mem = current->in(MemNode::Memory);
1270   bool sched_up = sched_before.member(current);
1271 
1272   // remove current_store from its current position in the memmory graph
1273   for (DUIterator i = current->outs(); current->has_out(i); i++) {
1274     Node* use = current->out(i);
1275     if (use->is_Mem()) {
1276       assert(use->in(MemNode::Memory) == current, "must be");
1277       if (use == prev) { // connect prev to my_mem
1278           _igvn.replace_input_of(use, MemNode::Memory, my_mem);
1279           --i; //deleted this edge; rescan position
1280       } else if (sched_before.member(use)) {
1281         if (!sched_up) { // Will be moved together with current
1282           _igvn.replace_input_of(use, MemNode::Memory, uip);
1283           --i; //deleted this edge; rescan position
1284         }
1285       } else {
1286         if (sched_up) { // Will be moved together with current
1287           _igvn.replace_input_of(use, MemNode::Memory, lip);
1288           --i; //deleted this edge; rescan position
1289         }
1290       }
1291     }
1292   }
1293 
1294   Node *insert_pt =  sched_up ?  uip : lip;
1295 
1296   // all uses of insert_pt's memory state should use current's instead
1297   for (DUIterator i = insert_pt->outs(); insert_pt->has_out(i); i++) {
1298     Node* use = insert_pt->out(i);
1299     if (use->is_Mem()) {
1300       assert(use->in(MemNode::Memory) == insert_pt, "must be");
1301       _igvn.replace_input_of(use, MemNode::Memory, current);
1302       --i; //deleted this edge; rescan position
1303     } else if (!sched_up && use->is_Phi() && use->bottom_type() == Type::MEMORY) {
1304       uint pos; //lip (lower insert point) must be the last one in the memory slice
1305       for (pos=1; pos < use->req(); pos++) {
1306         if (use->in(pos) == insert_pt) break;
1307       }
1308       _igvn.replace_input_of(use, pos, current);
1309       --i;
1310     }
1311   }
1312 
1313   //connect current to insert_pt
1314   _igvn.replace_input_of(current, MemNode::Memory, insert_pt);
1315 }
1316 
1317 //------------------------------co_locate_pack----------------------------------
1318 // To schedule a store pack, we need to move any sandwiched memory ops either before
1319 // or after the pack, based upon dependence information:
1320 // (1) If any store in the pack depends on the sandwiched memory op, the
1321 //     sandwiched memory op must be scheduled BEFORE the pack;
1322 // (2) If a sandwiched memory op depends on any store in the pack, the
1323 //     sandwiched memory op must be scheduled AFTER the pack;
1324 // (3) If a sandwiched memory op (say, memA) depends on another sandwiched
1325 //     memory op (say memB), memB must be scheduled before memA. So, if memA is
1326 //     scheduled before the pack, memB must also be scheduled before the pack;
1327 // (4) If there is no dependence restriction for a sandwiched memory op, we simply
1328 //     schedule this store AFTER the pack
1329 // (5) We know there is no dependence cycle, so there in no other case;
1330 // (6) Finally, all memory ops in another single pack should be moved in the same direction.
1331 //
1332 // To schedule a load pack, we use the memory state of either the first or the last load in
1333 // the pack, based on the dependence constraint.
1334 void SuperWord::co_locate_pack(Node_List* pk) {
1335   if (pk->at(0)->is_Store()) {
1336     MemNode* first     = executed_first(pk)->as_Mem();
1337     MemNode* last      = executed_last(pk)->as_Mem();
1338     Unique_Node_List schedule_before_pack;
1339     Unique_Node_List memops;
1340 
1341     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
1342     MemNode* previous  = last;
1343     while (true) {
1344       assert(in_bb(current), "stay in block");
1345       memops.push(previous);
1346       for (DUIterator i = current->outs(); current->has_out(i); i++) {
1347         Node* use = current->out(i);
1348         if (use->is_Mem() && use != previous)
1349           memops.push(use);
1350       }
1351       if (current == first) break;
1352       previous = current;
1353       current  = current->in(MemNode::Memory)->as_Mem();
1354     }
1355 
1356     // determine which memory operations should be scheduled before the pack
1357     for (uint i = 1; i < memops.size(); i++) {
1358       Node *s1 = memops.at(i);
1359       if (!in_pack(s1, pk) && !schedule_before_pack.member(s1)) {
1360         for (uint j = 0; j< i; j++) {
1361           Node *s2 = memops.at(j);
1362           if (!independent(s1, s2)) {
1363             if (in_pack(s2, pk) || schedule_before_pack.member(s2)) {
1364               schedule_before_pack.push(s1); // s1 must be scheduled before
1365               Node_List* mem_pk = my_pack(s1);
1366               if (mem_pk != NULL) {
1367                 for (uint ii = 0; ii < mem_pk->size(); ii++) {
1368                   Node* s = mem_pk->at(ii);  // follow partner
1369                   if (memops.member(s) && !schedule_before_pack.member(s))
1370                     schedule_before_pack.push(s);
1371                 }
1372               }
1373               break;
1374             }
1375           }
1376         }
1377       }
1378     }
1379 
1380     Node*    upper_insert_pt = first->in(MemNode::Memory);
1381     // Following code moves loads connected to upper_insert_pt below aliased stores.
1382     // Collect such loads here and reconnect them back to upper_insert_pt later.
1383     memops.clear();
1384     for (DUIterator i = upper_insert_pt->outs(); upper_insert_pt->has_out(i); i++) {
1385       Node* use = upper_insert_pt->out(i);
1386       if (use->is_Mem() && !use->is_Store()) {
1387         memops.push(use);
1388       }
1389     }
1390 
1391     MemNode* lower_insert_pt = last;
1392     previous                 = last; //previous store in pk
1393     current                  = last->in(MemNode::Memory)->as_Mem();
1394 
1395     // start scheduling from "last" to "first"
1396     while (true) {
1397       assert(in_bb(current), "stay in block");
1398       assert(in_pack(previous, pk), "previous stays in pack");
1399       Node* my_mem = current->in(MemNode::Memory);
1400 
1401       if (in_pack(current, pk)) {
1402         // Forward users of my memory state (except "previous) to my input memory state
1403         for (DUIterator i = current->outs(); current->has_out(i); i++) {
1404           Node* use = current->out(i);
1405           if (use->is_Mem() && use != previous) {
1406             assert(use->in(MemNode::Memory) == current, "must be");
1407             if (schedule_before_pack.member(use)) {
1408               _igvn.replace_input_of(use, MemNode::Memory, upper_insert_pt);
1409             } else {
1410               _igvn.replace_input_of(use, MemNode::Memory, lower_insert_pt);
1411             }
1412             --i; // deleted this edge; rescan position
1413           }
1414         }
1415         previous = current;
1416       } else { // !in_pack(current, pk) ==> a sandwiched store
1417         remove_and_insert(current, previous, lower_insert_pt, upper_insert_pt, schedule_before_pack);
1418       }
1419 
1420       if (current == first) break;
1421       current = my_mem->as_Mem();
1422     } // end while
1423 
1424     // Reconnect loads back to upper_insert_pt.
1425     for (uint i = 0; i < memops.size(); i++) {
1426       Node *ld = memops.at(i);
1427       if (ld->in(MemNode::Memory) != upper_insert_pt) {
1428         _igvn.replace_input_of(ld, MemNode::Memory, upper_insert_pt);
1429       }
1430     }
1431   } else if (pk->at(0)->is_Load()) { //load
1432     // all loads in the pack should have the same memory state. By default,
1433     // we use the memory state of the last load. However, if any load could
1434     // not be moved down due to the dependence constraint, we use the memory
1435     // state of the first load.
1436     Node* last_mem  = executed_last(pk)->in(MemNode::Memory);
1437     Node* first_mem = executed_first(pk)->in(MemNode::Memory);
1438     bool schedule_last = true;
1439     for (uint i = 0; i < pk->size(); i++) {
1440       Node* ld = pk->at(i);
1441       for (Node* current = last_mem; current != ld->in(MemNode::Memory);
1442            current=current->in(MemNode::Memory)) {
1443         assert(current != first_mem, "corrupted memory graph");
1444         if(current->is_Mem() && !independent(current, ld)){
1445           schedule_last = false; // a later store depends on this load
1446           break;
1447         }
1448       }
1449     }
1450 
1451     Node* mem_input = schedule_last ? last_mem : first_mem;
1452     _igvn.hash_delete(mem_input);
1453     // Give each load the same memory state
1454     for (uint i = 0; i < pk->size(); i++) {
1455       LoadNode* ld = pk->at(i)->as_Load();
1456       _igvn.replace_input_of(ld, MemNode::Memory, mem_input);
1457     }
1458   }
1459 }
1460 
1461 //------------------------------output---------------------------
1462 // Convert packs into vector node operations
1463 void SuperWord::output() {
1464   if (_packset.length() == 0) return;
1465 
1466 #ifndef PRODUCT
1467   if (TraceLoopOpts) {
1468     tty->print("SuperWord    ");
1469     lpt()->dump_head();
1470   }
1471 #endif
1472 
1473   // MUST ENSURE main loop's initial value is properly aligned:
1474   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
1475 
1476   align_initial_loop_index(align_to_ref());
1477 
1478   // Insert extract (unpack) operations for scalar uses
1479   for (int i = 0; i < _packset.length(); i++) {
1480     insert_extracts(_packset.at(i));
1481   }
1482 
1483   Compile* C = _phase->C;
1484   uint max_vlen_in_bytes = 0;
1485   for (int i = 0; i < _block.length(); i++) {
1486     Node* n = _block.at(i);
1487     Node_List* p = my_pack(n);
1488     if (p && n == executed_last(p)) {
1489       uint vlen = p->size();
1490       uint vlen_in_bytes = 0;
1491       Node* vn = NULL;
1492       Node* low_adr = p->at(0);
1493       Node* first   = executed_first(p);
1494       int   opc = n->Opcode();
1495       if (n->is_Load()) {
1496         Node* ctl = n->in(MemNode::Control);
1497         Node* mem = first->in(MemNode::Memory);
1498         SWPointer p1(n->as_Mem(), this);
1499         // Identify the memory dependency for the new loadVector node by
1500         // walking up through memory chain.
1501         // This is done to give flexibility to the new loadVector node so that
1502         // it can move above independent storeVector nodes.
1503         while (mem->is_StoreVector()) {
1504           SWPointer p2(mem->as_Mem(), this);
1505           int cmp = p1.cmp(p2);
1506           if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
1507             mem = mem->in(MemNode::Memory);
1508           } else {
1509             break; // dependent memory
1510           }
1511         }
1512         Node* adr = low_adr->in(MemNode::Address);
1513         const TypePtr* atyp = n->adr_type();
1514         vn = LoadVectorNode::make(opc, ctl, mem, adr, atyp, vlen, velt_basic_type(n));
1515         vlen_in_bytes = vn->as_LoadVector()->memory_size();
1516       } else if (n->is_Store()) {
1517         // Promote value to be stored to vector
1518         Node* val = vector_opd(p, MemNode::ValueIn);
1519         Node* ctl = n->in(MemNode::Control);
1520         Node* mem = first->in(MemNode::Memory);
1521         Node* adr = low_adr->in(MemNode::Address);
1522         const TypePtr* atyp = n->adr_type();
1523         vn = StoreVectorNode::make(opc, ctl, mem, adr, atyp, val, vlen);
1524         vlen_in_bytes = vn->as_StoreVector()->memory_size();
1525       } else if (n->req() == 3) {
1526         // Promote operands to vector
1527         Node* in1 = NULL;
1528         bool node_isa_reduction = n->is_reduction();
1529         if (node_isa_reduction) {
1530           // the input to the first reduction operation is retained
1531           in1 = low_adr->in(1);
1532         } else {
1533           in1 = vector_opd(p, 1);
1534         }
1535         Node* in2 = vector_opd(p, 2);
1536         if (VectorNode::is_invariant_vector(in1) && (node_isa_reduction == false) && (n->is_Add() || n->is_Mul())) {
1537           // Move invariant vector input into second position to avoid register spilling.
1538           Node* tmp = in1;
1539           in1 = in2;
1540           in2 = tmp;
1541         }
1542         if (node_isa_reduction) {
1543           const Type *arith_type = n->bottom_type();
1544           vn = ReductionNode::make(opc, NULL, in1, in2, arith_type->basic_type());
1545           if (in2->is_Load()) {
1546             vlen_in_bytes = in2->as_LoadVector()->memory_size();
1547           } else {
1548             vlen_in_bytes = in2->as_Vector()->length_in_bytes();
1549           }
1550         } else {
1551           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
1552           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
1553         }
1554       } else {
1555         ShouldNotReachHere();
1556       }
1557       assert(vn != NULL, "sanity");
1558       _igvn.register_new_node_with_optimizer(vn);
1559       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
1560       for (uint j = 0; j < p->size(); j++) {
1561         Node* pm = p->at(j);
1562         _igvn.replace_node(pm, vn);
1563       }
1564       _igvn._worklist.push(vn);
1565 
1566       if (vlen_in_bytes > max_vlen_in_bytes) {
1567         max_vlen_in_bytes = vlen_in_bytes;
1568       }
1569 #ifdef ASSERT
1570       if (TraceNewVectors) {
1571         tty->print("new Vector node: ");
1572         vn->dump();
1573       }
1574 #endif
1575     }
1576   }
1577   C->set_max_vector_size(max_vlen_in_bytes);
1578 }
1579 
1580 //------------------------------vector_opd---------------------------
1581 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
1582 Node* SuperWord::vector_opd(Node_List* p, int opd_idx) {
1583   Node* p0 = p->at(0);
1584   uint vlen = p->size();
1585   Node* opd = p0->in(opd_idx);
1586 
1587   if (same_inputs(p, opd_idx)) {
1588     if (opd->is_Vector() || opd->is_LoadVector()) {
1589       assert(((opd_idx != 2) || !VectorNode::is_shift(p0)), "shift's count can't be vector");
1590       return opd; // input is matching vector
1591     }
1592     if ((opd_idx == 2) && VectorNode::is_shift(p0)) {
1593       Compile* C = _phase->C;
1594       Node* cnt = opd;
1595       // Vector instructions do not mask shift count, do it here.
1596       juint mask = (p0->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
1597       const TypeInt* t = opd->find_int_type();
1598       if (t != NULL && t->is_con()) {
1599         juint shift = t->get_con();
1600         if (shift > mask) { // Unsigned cmp
1601           cnt = ConNode::make(TypeInt::make(shift & mask));
1602         }
1603       } else {
1604         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
1605           cnt = ConNode::make(TypeInt::make(mask));
1606           _igvn.register_new_node_with_optimizer(cnt);
1607           cnt = new AndINode(opd, cnt);
1608           _igvn.register_new_node_with_optimizer(cnt);
1609           _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
1610         }
1611         assert(opd->bottom_type()->isa_int(), "int type only");
1612         // Move non constant shift count into vector register.
1613         cnt = VectorNode::shift_count(p0, cnt, vlen, velt_basic_type(p0));
1614       }
1615       if (cnt != opd) {
1616         _igvn.register_new_node_with_optimizer(cnt);
1617         _phase->set_ctrl(cnt, _phase->get_ctrl(opd));
1618       }
1619       return cnt;
1620     }
1621     assert(!opd->is_StoreVector(), "such vector is not expected here");
1622     // Convert scalar input to vector with the same number of elements as
1623     // p0's vector. Use p0's type because size of operand's container in
1624     // vector should match p0's size regardless operand's size.
1625     const Type* p0_t = velt_type(p0);
1626     VectorNode* vn = VectorNode::scalar2vector(opd, vlen, p0_t);
1627 
1628     _igvn.register_new_node_with_optimizer(vn);
1629     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
1630 #ifdef ASSERT
1631     if (TraceNewVectors) {
1632       tty->print("new Vector node: ");
1633       vn->dump();
1634     }
1635 #endif
1636     return vn;
1637   }
1638 
1639   // Insert pack operation
1640   BasicType bt = velt_basic_type(p0);
1641   PackNode* pk = PackNode::make(opd, vlen, bt);
1642   DEBUG_ONLY( const BasicType opd_bt = opd->bottom_type()->basic_type(); )
1643 
1644   for (uint i = 1; i < vlen; i++) {
1645     Node* pi = p->at(i);
1646     Node* in = pi->in(opd_idx);
1647     assert(my_pack(in) == NULL, "Should already have been unpacked");
1648     assert(opd_bt == in->bottom_type()->basic_type(), "all same type");
1649     pk->add_opd(in);
1650   }
1651   _igvn.register_new_node_with_optimizer(pk);
1652   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
1653 #ifdef ASSERT
1654   if (TraceNewVectors) {
1655     tty->print("new Vector node: ");
1656     pk->dump();
1657   }
1658 #endif
1659   return pk;
1660 }
1661 
1662 //------------------------------insert_extracts---------------------------
1663 // If a use of pack p is not a vector use, then replace the
1664 // use with an extract operation.
1665 void SuperWord::insert_extracts(Node_List* p) {
1666   if (p->at(0)->is_Store()) return;
1667   assert(_n_idx_list.is_empty(), "empty (node,index) list");
1668 
1669   // Inspect each use of each pack member.  For each use that is
1670   // not a vector use, replace the use with an extract operation.
1671 
1672   for (uint i = 0; i < p->size(); i++) {
1673     Node* def = p->at(i);
1674     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
1675       Node* use = def->fast_out(j);
1676       for (uint k = 0; k < use->req(); k++) {
1677         Node* n = use->in(k);
1678         if (def == n) {
1679           if (!is_vector_use(use, k)) {
1680             _n_idx_list.push(use, k);
1681           }
1682         }
1683       }
1684     }
1685   }
1686 
1687   while (_n_idx_list.is_nonempty()) {
1688     Node* use = _n_idx_list.node();
1689     int   idx = _n_idx_list.index();
1690     _n_idx_list.pop();
1691     Node* def = use->in(idx);
1692 
1693     if (def->is_reduction()) continue;
1694 
1695     // Insert extract operation
1696     _igvn.hash_delete(def);
1697     int def_pos = alignment(def) / data_size(def);
1698 
1699     Node* ex = ExtractNode::make(def, def_pos, velt_basic_type(def));
1700     _igvn.register_new_node_with_optimizer(ex);
1701     _phase->set_ctrl(ex, _phase->get_ctrl(def));
1702     _igvn.replace_input_of(use, idx, ex);
1703     _igvn._worklist.push(def);
1704 
1705     bb_insert_after(ex, bb_idx(def));
1706     set_velt_type(ex, velt_type(def));
1707   }
1708 }
1709 
1710 //------------------------------is_vector_use---------------------------
1711 // Is use->in(u_idx) a vector use?
1712 bool SuperWord::is_vector_use(Node* use, int u_idx) {
1713   Node_List* u_pk = my_pack(use);
1714   if (u_pk == NULL) return false;
1715   if (use->is_reduction()) return true;
1716   Node* def = use->in(u_idx);
1717   Node_List* d_pk = my_pack(def);
1718   if (d_pk == NULL) {
1719     // check for scalar promotion
1720     Node* n = u_pk->at(0)->in(u_idx);
1721     for (uint i = 1; i < u_pk->size(); i++) {
1722       if (u_pk->at(i)->in(u_idx) != n) return false;
1723     }
1724     return true;
1725   }
1726   if (u_pk->size() != d_pk->size())
1727     return false;
1728   for (uint i = 0; i < u_pk->size(); i++) {
1729     Node* ui = u_pk->at(i);
1730     Node* di = d_pk->at(i);
1731     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
1732       return false;
1733   }
1734   return true;
1735 }
1736 
1737 //------------------------------construct_bb---------------------------
1738 // Construct reverse postorder list of block members
1739 bool SuperWord::construct_bb() {
1740   Node* entry = bb();
1741 
1742   assert(_stk.length() == 0,            "stk is empty");
1743   assert(_block.length() == 0,          "block is empty");
1744   assert(_data_entry.length() == 0,     "data_entry is empty");
1745   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
1746   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
1747 
1748   // Find non-control nodes with no inputs from within block,
1749   // create a temporary map from node _idx to bb_idx for use
1750   // by the visited and post_visited sets,
1751   // and count number of nodes in block.
1752   int bb_ct = 0;
1753   for (uint i = 0; i < lpt()->_body.size(); i++) {
1754     Node *n = lpt()->_body.at(i);
1755     set_bb_idx(n, i); // Create a temporary map
1756     if (in_bb(n)) {
1757       if (n->is_LoadStore() || n->is_MergeMem() ||
1758           (n->is_Proj() && !n->as_Proj()->is_CFG())) {
1759         // Bailout if the loop has LoadStore, MergeMem or data Proj
1760         // nodes. Superword optimization does not work with them.
1761         return false;
1762       }
1763       bb_ct++;
1764       if (!n->is_CFG()) {
1765         bool found = false;
1766         for (uint j = 0; j < n->req(); j++) {
1767           Node* def = n->in(j);
1768           if (def && in_bb(def)) {
1769             found = true;
1770             break;
1771           }
1772         }
1773         if (!found) {
1774           assert(n != entry, "can't be entry");
1775           _data_entry.push(n);
1776         }
1777       }
1778     }
1779   }
1780 
1781   // Find memory slices (head and tail)
1782   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
1783     Node *n = lp()->fast_out(i);
1784     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
1785       Node* n_tail  = n->in(LoopNode::LoopBackControl);
1786       if (n_tail != n->in(LoopNode::EntryControl)) {
1787         if (!n_tail->is_Mem()) {
1788           assert(n_tail->is_Mem(), err_msg_res("unexpected node for memory slice: %s", n_tail->Name()));
1789           return false; // Bailout
1790         }
1791         _mem_slice_head.push(n);
1792         _mem_slice_tail.push(n_tail);
1793       }
1794     }
1795   }
1796 
1797   // Create an RPO list of nodes in block
1798 
1799   visited_clear();
1800   post_visited_clear();
1801 
1802   // Push all non-control nodes with no inputs from within block, then control entry
1803   for (int j = 0; j < _data_entry.length(); j++) {
1804     Node* n = _data_entry.at(j);
1805     visited_set(n);
1806     _stk.push(n);
1807   }
1808   visited_set(entry);
1809   _stk.push(entry);
1810 
1811   // Do a depth first walk over out edges
1812   int rpo_idx = bb_ct - 1;
1813   int size;
1814   int reduction_uses = 0;
1815   while ((size = _stk.length()) > 0) {
1816     Node* n = _stk.top(); // Leave node on stack
1817     if (!visited_test_set(n)) {
1818       // forward arc in graph
1819     } else if (!post_visited_test(n)) {
1820       // cross or back arc
1821       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1822         Node *use = n->fast_out(i);
1823         if (in_bb(use) && !visited_test(use) &&
1824             // Don't go around backedge
1825             (!use->is_Phi() || n == entry)) {
1826           if (use->is_reduction()) {
1827             // First see if we can map the reduction on the given system we are on, then
1828             // make a data entry operation for each reduction we see.
1829             const Type *arith_type = use->bottom_type();
1830             int vopc = ReductionNode::opcode(use->Opcode(), arith_type->basic_type());
1831             if (vopc != use->Opcode()) {
1832               if (Matcher::match_rule_supported(vopc)) {
1833                 _stk.push(use);
1834                 reduction_uses++;
1835               } else {
1836                 // failed a support issue
1837                 return false;
1838               }
1839             }
1840           } else {
1841             _stk.push(use);
1842           }
1843         }
1844       }
1845       if (_stk.length() == size) {
1846         // There were no additional uses, post visit node now
1847         _stk.pop(); // Remove node from stack
1848         assert(rpo_idx >= 0, "");
1849         _block.at_put_grow(rpo_idx, n);
1850         rpo_idx--;
1851         post_visited_set(n);
1852         assert(rpo_idx >= 0 || _stk.is_empty(), "");
1853       }
1854     } else {
1855       _stk.pop(); // Remove post-visited node from stack
1856     }
1857   }
1858 
1859   // Create real map of block indices for nodes
1860   for (int j = 0; j < _block.length(); j++) {
1861     Node* n = _block.at(j);
1862     set_bb_idx(n, j);
1863   }
1864 
1865   // Ensure extra info is allocated.
1866   initialize_bb();
1867 
1868 #ifndef PRODUCT
1869   if (TraceSuperWord) {
1870     print_bb();
1871     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
1872     for (int m = 0; m < _data_entry.length(); m++) {
1873       tty->print("%3d ", m);
1874       _data_entry.at(m)->dump();
1875     }
1876     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
1877     for (int m = 0; m < _mem_slice_head.length(); m++) {
1878       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
1879       tty->print("    ");    _mem_slice_tail.at(m)->dump();
1880     }
1881   }
1882 #endif
1883   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
1884   return (_mem_slice_head.length() > 0) || (reduction_uses > 0) || (_data_entry.length() > 0);
1885 }
1886 
1887 //------------------------------initialize_bb---------------------------
1888 // Initialize per node info
1889 void SuperWord::initialize_bb() {
1890   Node* last = _block.at(_block.length() - 1);
1891   grow_node_info(bb_idx(last));
1892 }
1893 
1894 //------------------------------bb_insert_after---------------------------
1895 // Insert n into block after pos
1896 void SuperWord::bb_insert_after(Node* n, int pos) {
1897   int n_pos = pos + 1;
1898   // Make room
1899   for (int i = _block.length() - 1; i >= n_pos; i--) {
1900     _block.at_put_grow(i+1, _block.at(i));
1901   }
1902   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
1903     _node_info.at_put_grow(j+1, _node_info.at(j));
1904   }
1905   // Set value
1906   _block.at_put_grow(n_pos, n);
1907   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
1908   // Adjust map from node->_idx to _block index
1909   for (int i = n_pos; i < _block.length(); i++) {
1910     set_bb_idx(_block.at(i), i);
1911   }
1912 }
1913 
1914 //------------------------------compute_max_depth---------------------------
1915 // Compute max depth for expressions from beginning of block
1916 // Use to prune search paths during test for independence.
1917 void SuperWord::compute_max_depth() {
1918   int ct = 0;
1919   bool again;
1920   do {
1921     again = false;
1922     for (int i = 0; i < _block.length(); i++) {
1923       Node* n = _block.at(i);
1924       if (!n->is_Phi()) {
1925         int d_orig = depth(n);
1926         int d_in   = 0;
1927         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
1928           Node* pred = preds.current();
1929           if (in_bb(pred)) {
1930             d_in = MAX2(d_in, depth(pred));
1931           }
1932         }
1933         if (d_in + 1 != d_orig) {
1934           set_depth(n, d_in + 1);
1935           again = true;
1936         }
1937       }
1938     }
1939     ct++;
1940   } while (again);
1941 #ifndef PRODUCT
1942   if (TraceSuperWord && Verbose)
1943     tty->print_cr("compute_max_depth iterated: %d times", ct);
1944 #endif
1945 }
1946 
1947 //-------------------------compute_vector_element_type-----------------------
1948 // Compute necessary vector element type for expressions
1949 // This propagates backwards a narrower integer type when the
1950 // upper bits of the value are not needed.
1951 // Example:  char a,b,c;  a = b + c;
1952 // Normally the type of the add is integer, but for packed character
1953 // operations the type of the add needs to be char.
1954 void SuperWord::compute_vector_element_type() {
1955 #ifndef PRODUCT
1956   if (TraceSuperWord && Verbose)
1957     tty->print_cr("\ncompute_velt_type:");
1958 #endif
1959 
1960   // Initial type
1961   for (int i = 0; i < _block.length(); i++) {
1962     Node* n = _block.at(i);
1963     set_velt_type(n, container_type(n));
1964   }
1965 
1966   // Propagate integer narrowed type backwards through operations
1967   // that don't depend on higher order bits
1968   for (int i = _block.length() - 1; i >= 0; i--) {
1969     Node* n = _block.at(i);
1970     // Only integer types need be examined
1971     const Type* vtn = velt_type(n);
1972     if (vtn->basic_type() == T_INT) {
1973       uint start, end;
1974       VectorNode::vector_operands(n, &start, &end);
1975 
1976       for (uint j = start; j < end; j++) {
1977         Node* in  = n->in(j);
1978         // Don't propagate through a memory
1979         if (!in->is_Mem() && in_bb(in) && velt_type(in)->basic_type() == T_INT &&
1980             data_size(n) < data_size(in)) {
1981           bool same_type = true;
1982           for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
1983             Node *use = in->fast_out(k);
1984             if (!in_bb(use) || !same_velt_type(use, n)) {
1985               same_type = false;
1986               break;
1987             }
1988           }
1989           if (same_type) {
1990             // For right shifts of small integer types (bool, byte, char, short)
1991             // we need precise information about sign-ness. Only Load nodes have
1992             // this information because Store nodes are the same for signed and
1993             // unsigned values. And any arithmetic operation after a load may
1994             // expand a value to signed Int so such right shifts can't be used
1995             // because vector elements do not have upper bits of Int.
1996             const Type* vt = vtn;
1997             if (VectorNode::is_shift(in)) {
1998               Node* load = in->in(1);
1999               if (load->is_Load() && in_bb(load) && (velt_type(load)->basic_type() == T_INT)) {
2000                 vt = velt_type(load);
2001               } else if (in->Opcode() != Op_LShiftI) {
2002                 // Widen type to Int to avoid creation of right shift vector
2003                 // (align + data_size(s1) check in stmts_can_pack() will fail).
2004                 // Note, left shifts work regardless type.
2005                 vt = TypeInt::INT;
2006               }
2007             }
2008             set_velt_type(in, vt);
2009           }
2010         }
2011       }
2012     }
2013   }
2014 #ifndef PRODUCT
2015   if (TraceSuperWord && Verbose) {
2016     for (int i = 0; i < _block.length(); i++) {
2017       Node* n = _block.at(i);
2018       velt_type(n)->dump();
2019       tty->print("\t");
2020       n->dump();
2021     }
2022   }
2023 #endif
2024 }
2025 
2026 //------------------------------memory_alignment---------------------------
2027 // Alignment within a vector memory reference
2028 int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
2029   SWPointer p(s, this);
2030   if (!p.valid()) {
2031     return bottom_align;
2032   }
2033   int vw = vector_width_in_bytes(s);
2034   if (vw < 2) {
2035     return bottom_align; // No vectors for this type
2036   }
2037   int offset  = p.offset_in_bytes();
2038   offset     += iv_adjust*p.memory_size();
2039   int off_rem = offset % vw;
2040   int off_mod = off_rem >= 0 ? off_rem : off_rem + vw;
2041   return off_mod;
2042 }
2043 
2044 //---------------------------container_type---------------------------
2045 // Smallest type containing range of values
2046 const Type* SuperWord::container_type(Node* n) {
2047   if (n->is_Mem()) {
2048     BasicType bt = n->as_Mem()->memory_type();
2049     if (n->is_Store() && (bt == T_CHAR)) {
2050       // Use T_SHORT type instead of T_CHAR for stored values because any
2051       // preceding arithmetic operation extends values to signed Int.
2052       bt = T_SHORT;
2053     }
2054     if (n->Opcode() == Op_LoadUB) {
2055       // Adjust type for unsigned byte loads, it is important for right shifts.
2056       // T_BOOLEAN is used because there is no basic type representing type
2057       // TypeInt::UBYTE. Use of T_BOOLEAN for vectors is fine because only
2058       // size (one byte) and sign is important.
2059       bt = T_BOOLEAN;
2060     }
2061     return Type::get_const_basic_type(bt);
2062   }
2063   const Type* t = _igvn.type(n);
2064   if (t->basic_type() == T_INT) {
2065     // A narrow type of arithmetic operations will be determined by
2066     // propagating the type of memory operations.
2067     return TypeInt::INT;
2068   }
2069   return t;
2070 }
2071 
2072 bool SuperWord::same_velt_type(Node* n1, Node* n2) {
2073   const Type* vt1 = velt_type(n1);
2074   const Type* vt2 = velt_type(n2);
2075   if (vt1->basic_type() == T_INT && vt2->basic_type() == T_INT) {
2076     // Compare vectors element sizes for integer types.
2077     return data_size(n1) == data_size(n2);
2078   }
2079   return vt1 == vt2;
2080 }
2081 
2082 //------------------------------in_packset---------------------------
2083 // Are s1 and s2 in a pack pair and ordered as s1,s2?
2084 bool SuperWord::in_packset(Node* s1, Node* s2) {
2085   for (int i = 0; i < _packset.length(); i++) {
2086     Node_List* p = _packset.at(i);
2087     assert(p->size() == 2, "must be");
2088     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
2089       return true;
2090     }
2091   }
2092   return false;
2093 }
2094 
2095 //------------------------------in_pack---------------------------
2096 // Is s in pack p?
2097 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
2098   for (uint i = 0; i < p->size(); i++) {
2099     if (p->at(i) == s) {
2100       return p;
2101     }
2102   }
2103   return NULL;
2104 }
2105 
2106 //------------------------------remove_pack_at---------------------------
2107 // Remove the pack at position pos in the packset
2108 void SuperWord::remove_pack_at(int pos) {
2109   Node_List* p = _packset.at(pos);
2110   for (uint i = 0; i < p->size(); i++) {
2111     Node* s = p->at(i);
2112     set_my_pack(s, NULL);
2113   }
2114   _packset.remove_at(pos);
2115 }
2116 
2117 void SuperWord::packset_sort(int n)
2118 {
2119   // simple bubble sort so that we capitalize with O(n) when its already sorted
2120   while (n != 0) {
2121     bool swapped = false;
2122     for (int i = 1; i < n; i++) {
2123       Node_List* q_low = _packset.at(i-1);
2124       Node_List* q_i = _packset.at(i);
2125 
2126       // only swap when we find something to swap
2127       if (alignment(q_low->at(0)) > alignment(q_i->at(0))) {
2128         Node_List* t = q_i;
2129         *(_packset.adr_at(i)) = q_low;
2130         *(_packset.adr_at(i-1)) = q_i;
2131         swapped = true;
2132       }
2133     }
2134     if (swapped == false) break;
2135     n--;
2136   }
2137 }
2138 
2139 //------------------------------executed_first---------------------------
2140 // Return the node executed first in pack p.  Uses the RPO block list
2141 // to determine order.
2142 Node* SuperWord::executed_first(Node_List* p) {
2143   Node* n = p->at(0);
2144   int n_rpo = bb_idx(n);
2145   for (uint i = 1; i < p->size(); i++) {
2146     Node* s = p->at(i);
2147     int s_rpo = bb_idx(s);
2148     if (s_rpo < n_rpo) {
2149       n = s;
2150       n_rpo = s_rpo;
2151     }
2152   }
2153   return n;
2154 }
2155 
2156 //------------------------------executed_last---------------------------
2157 // Return the node executed last in pack p.
2158 Node* SuperWord::executed_last(Node_List* p) {
2159   Node* n = p->at(0);
2160   int n_rpo = bb_idx(n);
2161   for (uint i = 1; i < p->size(); i++) {
2162     Node* s = p->at(i);
2163     int s_rpo = bb_idx(s);
2164     if (s_rpo > n_rpo) {
2165       n = s;
2166       n_rpo = s_rpo;
2167     }
2168   }
2169   return n;
2170 }
2171 
2172 //----------------------------align_initial_loop_index---------------------------
2173 // Adjust pre-loop limit so that in main loop, a load/store reference
2174 // to align_to_ref will be a position zero in the vector.
2175 //   (iv + k) mod vector_align == 0
2176 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
2177   CountedLoopNode *main_head = lp()->as_CountedLoop();
2178   assert(main_head->is_main_loop(), "");
2179   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
2180   assert(pre_end != NULL, "we must have a correct pre-loop");
2181   Node *pre_opaq1 = pre_end->limit();
2182   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
2183   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
2184   Node *lim0 = pre_opaq->in(1);
2185 
2186   // Where we put new limit calculations
2187   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
2188 
2189   // Ensure the original loop limit is available from the
2190   // pre-loop Opaque1 node.
2191   Node *orig_limit = pre_opaq->original_loop_limit();
2192   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
2193 
2194   SWPointer align_to_ref_p(align_to_ref, this);
2195   assert(align_to_ref_p.valid(), "sanity");
2196 
2197   // Given:
2198   //     lim0 == original pre loop limit
2199   //     V == v_align (power of 2)
2200   //     invar == extra invariant piece of the address expression
2201   //     e == offset [ +/- invar ]
2202   //
2203   // When reassociating expressions involving '%' the basic rules are:
2204   //     (a - b) % k == 0   =>  a % k == b % k
2205   // and:
2206   //     (a + b) % k == 0   =>  a % k == (k - b) % k
2207   //
2208   // For stride > 0 && scale > 0,
2209   //   Derive the new pre-loop limit "lim" such that the two constraints:
2210   //     (1) lim = lim0 + N           (where N is some positive integer < V)
2211   //     (2) (e + lim) % V == 0
2212   //   are true.
2213   //
2214   //   Substituting (1) into (2),
2215   //     (e + lim0 + N) % V == 0
2216   //   solve for N:
2217   //     N = (V - (e + lim0)) % V
2218   //   substitute back into (1), so that new limit
2219   //     lim = lim0 + (V - (e + lim0)) % V
2220   //
2221   // For stride > 0 && scale < 0
2222   //   Constraints:
2223   //     lim = lim0 + N
2224   //     (e - lim) % V == 0
2225   //   Solving for lim:
2226   //     (e - lim0 - N) % V == 0
2227   //     N = (e - lim0) % V
2228   //     lim = lim0 + (e - lim0) % V
2229   //
2230   // For stride < 0 && scale > 0
2231   //   Constraints:
2232   //     lim = lim0 - N
2233   //     (e + lim) % V == 0
2234   //   Solving for lim:
2235   //     (e + lim0 - N) % V == 0
2236   //     N = (e + lim0) % V
2237   //     lim = lim0 - (e + lim0) % V
2238   //
2239   // For stride < 0 && scale < 0
2240   //   Constraints:
2241   //     lim = lim0 - N
2242   //     (e - lim) % V == 0
2243   //   Solving for lim:
2244   //     (e - lim0 + N) % V == 0
2245   //     N = (V - (e - lim0)) % V
2246   //     lim = lim0 - (V - (e - lim0)) % V
2247 
2248   int vw = vector_width_in_bytes(align_to_ref);
2249   int stride   = iv_stride();
2250   int scale    = align_to_ref_p.scale_in_bytes();
2251   int elt_size = align_to_ref_p.memory_size();
2252   int v_align  = vw / elt_size;
2253   assert(v_align > 1, "sanity");
2254   int offset   = align_to_ref_p.offset_in_bytes() / elt_size;
2255   Node *offsn  = _igvn.intcon(offset);
2256 
2257   Node *e = offsn;
2258   if (align_to_ref_p.invar() != NULL) {
2259     // incorporate any extra invariant piece producing (offset +/- invar) >>> log2(elt)
2260     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
2261     Node* aref     = new URShiftINode(align_to_ref_p.invar(), log2_elt);
2262     _igvn.register_new_node_with_optimizer(aref);
2263     _phase->set_ctrl(aref, pre_ctrl);
2264     if (align_to_ref_p.negate_invar()) {
2265       e = new SubINode(e, aref);
2266     } else {
2267       e = new AddINode(e, aref);
2268     }
2269     _igvn.register_new_node_with_optimizer(e);
2270     _phase->set_ctrl(e, pre_ctrl);
2271   }
2272   if (vw > ObjectAlignmentInBytes) {
2273     // incorporate base e +/- base && Mask >>> log2(elt)
2274     Node* xbase = new CastP2XNode(NULL, align_to_ref_p.base());
2275     _igvn.register_new_node_with_optimizer(xbase);
2276 #ifdef _LP64
2277     xbase  = new ConvL2INode(xbase);
2278     _igvn.register_new_node_with_optimizer(xbase);
2279 #endif
2280     Node* mask = _igvn.intcon(vw-1);
2281     Node* masked_xbase  = new AndINode(xbase, mask);
2282     _igvn.register_new_node_with_optimizer(masked_xbase);
2283     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
2284     Node* bref     = new URShiftINode(masked_xbase, log2_elt);
2285     _igvn.register_new_node_with_optimizer(bref);
2286     _phase->set_ctrl(bref, pre_ctrl);
2287     e = new AddINode(e, bref);
2288     _igvn.register_new_node_with_optimizer(e);
2289     _phase->set_ctrl(e, pre_ctrl);
2290   }
2291 
2292   // compute e +/- lim0
2293   if (scale < 0) {
2294     e = new SubINode(e, lim0);
2295   } else {
2296     e = new AddINode(e, lim0);
2297   }
2298   _igvn.register_new_node_with_optimizer(e);
2299   _phase->set_ctrl(e, pre_ctrl);
2300 
2301   if (stride * scale > 0) {
2302     // compute V - (e +/- lim0)
2303     Node* va  = _igvn.intcon(v_align);
2304     e = new SubINode(va, e);
2305     _igvn.register_new_node_with_optimizer(e);
2306     _phase->set_ctrl(e, pre_ctrl);
2307   }
2308   // compute N = (exp) % V
2309   Node* va_msk = _igvn.intcon(v_align - 1);
2310   Node* N = new AndINode(e, va_msk);
2311   _igvn.register_new_node_with_optimizer(N);
2312   _phase->set_ctrl(N, pre_ctrl);
2313 
2314   //   substitute back into (1), so that new limit
2315   //     lim = lim0 + N
2316   Node* lim;
2317   if (stride < 0) {
2318     lim = new SubINode(lim0, N);
2319   } else {
2320     lim = new AddINode(lim0, N);
2321   }
2322   _igvn.register_new_node_with_optimizer(lim);
2323   _phase->set_ctrl(lim, pre_ctrl);
2324   Node* constrained =
2325     (stride > 0) ? (Node*) new MinINode(lim, orig_limit)
2326                  : (Node*) new MaxINode(lim, orig_limit);
2327   _igvn.register_new_node_with_optimizer(constrained);
2328   _phase->set_ctrl(constrained, pre_ctrl);
2329   _igvn.hash_delete(pre_opaq);
2330   pre_opaq->set_req(1, constrained);
2331 }
2332 
2333 //----------------------------get_pre_loop_end---------------------------
2334 // Find pre loop end from main loop.  Returns null if none.
2335 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
2336   Node *ctrl = cl->in(LoopNode::EntryControl);
2337   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
2338   Node *iffm = ctrl->in(0);
2339   if (!iffm->is_If()) return NULL;
2340   Node *p_f = iffm->in(0);
2341   if (!p_f->is_IfFalse()) return NULL;
2342   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
2343   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2344   CountedLoopNode* loop_node = pre_end->loopnode();
2345   if (loop_node == NULL || !loop_node->is_pre_loop()) return NULL;
2346   return pre_end;
2347 }
2348 
2349 
2350 //------------------------------init---------------------------
2351 void SuperWord::init() {
2352   _dg.init();
2353   _packset.clear();
2354   _disjoint_ptrs.clear();
2355   _block.clear();
2356   _data_entry.clear();
2357   _mem_slice_head.clear();
2358   _mem_slice_tail.clear();
2359   _node_info.clear();
2360   _align_to_ref = NULL;
2361   _lpt = NULL;
2362   _lp = NULL;
2363   _bb = NULL;
2364   _iv = NULL;
2365 }
2366 
2367 //------------------------------print_packset---------------------------
2368 void SuperWord::print_packset() {
2369 #ifndef PRODUCT
2370   tty->print_cr("packset");
2371   for (int i = 0; i < _packset.length(); i++) {
2372     tty->print_cr("Pack: %d", i);
2373     Node_List* p = _packset.at(i);
2374     print_pack(p);
2375   }
2376 #endif
2377 }
2378 
2379 //------------------------------print_pack---------------------------
2380 void SuperWord::print_pack(Node_List* p) {
2381   for (uint i = 0; i < p->size(); i++) {
2382     print_stmt(p->at(i));
2383   }
2384 }
2385 
2386 //------------------------------print_bb---------------------------
2387 void SuperWord::print_bb() {
2388 #ifndef PRODUCT
2389   tty->print_cr("\nBlock");
2390   for (int i = 0; i < _block.length(); i++) {
2391     Node* n = _block.at(i);
2392     tty->print("%d ", i);
2393     if (n) {
2394       n->dump();
2395     }
2396   }
2397 #endif
2398 }
2399 
2400 //------------------------------print_stmt---------------------------
2401 void SuperWord::print_stmt(Node* s) {
2402 #ifndef PRODUCT
2403   tty->print(" align: %d \t", alignment(s));
2404   s->dump();
2405 #endif
2406 }
2407 
2408 //------------------------------blank---------------------------
2409 char* SuperWord::blank(uint depth) {
2410   static char blanks[101];
2411   assert(depth < 101, "too deep");
2412   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
2413   blanks[depth] = '\0';
2414   return blanks;
2415 }
2416 
2417 
2418 //==============================SWPointer===========================
2419 
2420 //----------------------------SWPointer------------------------
2421 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
2422   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
2423   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
2424 
2425   Node* adr = mem->in(MemNode::Address);
2426   if (!adr->is_AddP()) {
2427     assert(!valid(), "too complex");
2428     return;
2429   }
2430   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
2431   Node* base = adr->in(AddPNode::Base);
2432   //unsafe reference could not be aligned appropriately without runtime checking
2433   if (base == NULL || base->bottom_type() == Type::TOP) {
2434     assert(!valid(), "unsafe access");
2435     return;
2436   }
2437   for (int i = 0; i < 3; i++) {
2438     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
2439       assert(!valid(), "too complex");
2440       return;
2441     }
2442     adr = adr->in(AddPNode::Address);
2443     if (base == adr || !adr->is_AddP()) {
2444       break; // stop looking at addp's
2445     }
2446   }
2447   _base = base;
2448   _adr  = adr;
2449   assert(valid(), "Usable");
2450 }
2451 
2452 // Following is used to create a temporary object during
2453 // the pattern match of an address expression.
2454 SWPointer::SWPointer(SWPointer* p) :
2455   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
2456   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
2457 
2458 //------------------------scaled_iv_plus_offset--------------------
2459 // Match: k*iv + offset
2460 // where: k is a constant that maybe zero, and
2461 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
2462 bool SWPointer::scaled_iv_plus_offset(Node* n) {
2463   if (scaled_iv(n)) {
2464     return true;
2465   }
2466   if (offset_plus_k(n)) {
2467     return true;
2468   }
2469   int opc = n->Opcode();
2470   if (opc == Op_AddI) {
2471     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
2472       return true;
2473     }
2474     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
2475       return true;
2476     }
2477   } else if (opc == Op_SubI) {
2478     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
2479       return true;
2480     }
2481     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
2482       _scale *= -1;
2483       return true;
2484     }
2485   }
2486   return false;
2487 }
2488 
2489 //----------------------------scaled_iv------------------------
2490 // Match: k*iv where k is a constant that's not zero
2491 bool SWPointer::scaled_iv(Node* n) {
2492   if (_scale != 0) {
2493     return false;  // already found a scale
2494   }
2495   if (n == iv()) {
2496     _scale = 1;
2497     return true;
2498   }
2499   int opc = n->Opcode();
2500   if (opc == Op_MulI) {
2501     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2502       _scale = n->in(2)->get_int();
2503       return true;
2504     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
2505       _scale = n->in(1)->get_int();
2506       return true;
2507     }
2508   } else if (opc == Op_LShiftI) {
2509     if (n->in(1) == iv() && n->in(2)->is_Con()) {
2510       _scale = 1 << n->in(2)->get_int();
2511       return true;
2512     }
2513   } else if (opc == Op_ConvI2L) {
2514     if (scaled_iv_plus_offset(n->in(1))) {
2515       return true;
2516     }
2517   } else if (opc == Op_LShiftL) {
2518     if (!has_iv() && _invar == NULL) {
2519       // Need to preserve the current _offset value, so
2520       // create a temporary object for this expression subtree.
2521       // Hacky, so should re-engineer the address pattern match.
2522       SWPointer tmp(this);
2523       if (tmp.scaled_iv_plus_offset(n->in(1))) {
2524         if (tmp._invar == NULL) {
2525           int mult = 1 << n->in(2)->get_int();
2526           _scale   = tmp._scale  * mult;
2527           _offset += tmp._offset * mult;
2528           return true;
2529         }
2530       }
2531     }
2532   }
2533   return false;
2534 }
2535 
2536 //----------------------------offset_plus_k------------------------
2537 // Match: offset is (k [+/- invariant])
2538 // where k maybe zero and invariant is optional, but not both.
2539 bool SWPointer::offset_plus_k(Node* n, bool negate) {
2540   int opc = n->Opcode();
2541   if (opc == Op_ConI) {
2542     _offset += negate ? -(n->get_int()) : n->get_int();
2543     return true;
2544   } else if (opc == Op_ConL) {
2545     // Okay if value fits into an int
2546     const TypeLong* t = n->find_long_type();
2547     if (t->higher_equal(TypeLong::INT)) {
2548       jlong loff = n->get_long();
2549       jint  off  = (jint)loff;
2550       _offset += negate ? -off : loff;
2551       return true;
2552     }
2553     return false;
2554   }
2555   if (_invar != NULL) return false; // already have an invariant
2556   if (opc == Op_AddI) {
2557     if (n->in(2)->is_Con() && invariant(n->in(1))) {
2558       _negate_invar = negate;
2559       _invar = n->in(1);
2560       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
2561       return true;
2562     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
2563       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
2564       _negate_invar = negate;
2565       _invar = n->in(2);
2566       return true;
2567     }
2568   }
2569   if (opc == Op_SubI) {
2570     if (n->in(2)->is_Con() && invariant(n->in(1))) {
2571       _negate_invar = negate;
2572       _invar = n->in(1);
2573       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
2574       return true;
2575     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
2576       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
2577       _negate_invar = !negate;
2578       _invar = n->in(2);
2579       return true;
2580     }
2581   }
2582   if (invariant(n)) {
2583     _negate_invar = negate;
2584     _invar = n;
2585     return true;
2586   }
2587   return false;
2588 }
2589 
2590 //----------------------------print------------------------
2591 void SWPointer::print() {
2592 #ifndef PRODUCT
2593   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
2594              _base != NULL ? _base->_idx : 0,
2595              _adr  != NULL ? _adr->_idx  : 0,
2596              _scale, _offset,
2597              _negate_invar?'-':'+',
2598              _invar != NULL ? _invar->_idx : 0);
2599 #endif
2600 }
2601 
2602 // ========================= OrderedPair =====================
2603 
2604 const OrderedPair OrderedPair::initial;
2605 
2606 // ========================= SWNodeInfo =====================
2607 
2608 const SWNodeInfo SWNodeInfo::initial;
2609 
2610 
2611 // ============================ DepGraph ===========================
2612 
2613 //------------------------------make_node---------------------------
2614 // Make a new dependence graph node for an ideal node.
2615 DepMem* DepGraph::make_node(Node* node) {
2616   DepMem* m = new (_arena) DepMem(node);
2617   if (node != NULL) {
2618     assert(_map.at_grow(node->_idx) == NULL, "one init only");
2619     _map.at_put_grow(node->_idx, m);
2620   }
2621   return m;
2622 }
2623 
2624 //------------------------------make_edge---------------------------
2625 // Make a new dependence graph edge from dpred -> dsucc
2626 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
2627   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
2628   dpred->set_out_head(e);
2629   dsucc->set_in_head(e);
2630   return e;
2631 }
2632 
2633 // ========================== DepMem ========================
2634 
2635 //------------------------------in_cnt---------------------------
2636 int DepMem::in_cnt() {
2637   int ct = 0;
2638   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
2639   return ct;
2640 }
2641 
2642 //------------------------------out_cnt---------------------------
2643 int DepMem::out_cnt() {
2644   int ct = 0;
2645   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
2646   return ct;
2647 }
2648 
2649 //------------------------------print-----------------------------
2650 void DepMem::print() {
2651 #ifndef PRODUCT
2652   tty->print("  DepNode %d (", _node->_idx);
2653   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
2654     Node* pred = p->pred()->node();
2655     tty->print(" %d", pred != NULL ? pred->_idx : 0);
2656   }
2657   tty->print(") [");
2658   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
2659     Node* succ = s->succ()->node();
2660     tty->print(" %d", succ != NULL ? succ->_idx : 0);
2661   }
2662   tty->print_cr(" ]");
2663 #endif
2664 }
2665 
2666 // =========================== DepEdge =========================
2667 
2668 //------------------------------DepPreds---------------------------
2669 void DepEdge::print() {
2670 #ifndef PRODUCT
2671   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
2672 #endif
2673 }
2674 
2675 // =========================== DepPreds =========================
2676 // Iterator over predecessor edges in the dependence graph.
2677 
2678 //------------------------------DepPreds---------------------------
2679 DepPreds::DepPreds(Node* n, DepGraph& dg) {
2680   _n = n;
2681   _done = false;
2682   if (_n->is_Store() || _n->is_Load()) {
2683     _next_idx = MemNode::Address;
2684     _end_idx  = n->req();
2685     _dep_next = dg.dep(_n)->in_head();
2686   } else if (_n->is_Mem()) {
2687     _next_idx = 0;
2688     _end_idx  = 0;
2689     _dep_next = dg.dep(_n)->in_head();
2690   } else {
2691     _next_idx = 1;
2692     _end_idx  = _n->req();
2693     _dep_next = NULL;
2694   }
2695   next();
2696 }
2697 
2698 //------------------------------next---------------------------
2699 void DepPreds::next() {
2700   if (_dep_next != NULL) {
2701     _current  = _dep_next->pred()->node();
2702     _dep_next = _dep_next->next_in();
2703   } else if (_next_idx < _end_idx) {
2704     _current  = _n->in(_next_idx++);
2705   } else {
2706     _done = true;
2707   }
2708 }
2709 
2710 // =========================== DepSuccs =========================
2711 // Iterator over successor edges in the dependence graph.
2712 
2713 //------------------------------DepSuccs---------------------------
2714 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
2715   _n = n;
2716   _done = false;
2717   if (_n->is_Load()) {
2718     _next_idx = 0;
2719     _end_idx  = _n->outcnt();
2720     _dep_next = dg.dep(_n)->out_head();
2721   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
2722     _next_idx = 0;
2723     _end_idx  = 0;
2724     _dep_next = dg.dep(_n)->out_head();
2725   } else {
2726     _next_idx = 0;
2727     _end_idx  = _n->outcnt();
2728     _dep_next = NULL;
2729   }
2730   next();
2731 }
2732 
2733 //-------------------------------next---------------------------
2734 void DepSuccs::next() {
2735   if (_dep_next != NULL) {
2736     _current  = _dep_next->succ()->node();
2737     _dep_next = _dep_next->next_out();
2738   } else if (_next_idx < _end_idx) {
2739     _current  = _n->raw_out(_next_idx++);
2740   } else {
2741     _done = true;
2742   }
2743 }