< prev index next >

src/share/vm/opto/regmask.hpp

Print this page




  81 
  82 public:
  83   enum { CHUNK_SIZE = RM_SIZE*_WordBits };
  84 
  85   // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
  86   // Also, consider the maximum alignment size for a normally allocated
  87   // value.  Since we allocate register pairs but not register quads (at
  88   // present), this alignment is SlotsPerLong (== 2).  A normally
  89   // aligned allocated register is either a single register, or a pair
  90   // of adjacent registers, the lower-numbered being even.
  91   // See also is_aligned_Pairs() below, and the padding added before
  92   // Matcher::_new_SP to keep allocated pairs aligned properly.
  93   // If we ever go to quad-word allocations, SlotsPerQuad will become
  94   // the controlling alignment constraint.  Note that this alignment
  95   // requirement is internal to the allocator, and independent of any
  96   // particular platform.
  97   enum { SlotsPerLong = 2,
  98          SlotsPerVecS = 1,
  99          SlotsPerVecD = 2,
 100          SlotsPerVecX = 4,
 101          SlotsPerVecY = 8 };

 102 
 103   // A constructor only used by the ADLC output.  All mask fields are filled
 104   // in directly.  Calls to this look something like RM(1,2,3,4);
 105   RegMask(
 106 #   define BODY(I) int a##I,
 107     FORALL_BODY
 108 #   undef BODY
 109     int dummy = 0 ) {
 110 #   define BODY(I) _A[I] = a##I;
 111     FORALL_BODY
 112 #   undef BODY
 113   }
 114 
 115   // Handy copying constructor
 116   RegMask( RegMask *rm ) {
 117 #   define BODY(I) _A[I] = rm->_A[I];
 118     FORALL_BODY
 119 #   undef BODY
 120   }
 121 


 282   // Subtract 'rm' from 'this'
 283   void SUBTRACT( const RegMask &rm ) {
 284 #   define BODY(I) _A[I] &= ~rm._A[I];
 285     FORALL_BODY
 286 #   undef BODY
 287   }
 288 
 289   // Compute size of register mask: number of bits
 290   uint Size() const;
 291 
 292 #ifndef PRODUCT
 293   void print() const { dump(); }
 294   void dump(outputStream *st = tty) const; // Print a mask
 295 #endif
 296 
 297   static const RegMask Empty;   // Common empty mask
 298 
 299   static bool can_represent(OptoReg::Name reg) {
 300     // NOTE: -1 in computation reflects the usage of the last
 301     //       bit of the regmask as an infinite stack flag and
 302     //       -7 is to keep mask aligned for largest value (VecY).
 303     return (int)reg < (int)(CHUNK_SIZE-1);
 304   }
 305   static bool can_represent_arg(OptoReg::Name reg) {
 306     // NOTE: -SlotsPerVecY in computation reflects the need
 307     //       to keep mask aligned for largest value (VecY).
 308     return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecY);
 309   }
 310 };
 311 
 312 // Do not use this constant directly in client code!
 313 #undef RM_SIZE
 314 
 315 #endif // SHARE_VM_OPTO_REGMASK_HPP


  81 
  82 public:
  83   enum { CHUNK_SIZE = RM_SIZE*_WordBits };
  84 
  85   // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
  86   // Also, consider the maximum alignment size for a normally allocated
  87   // value.  Since we allocate register pairs but not register quads (at
  88   // present), this alignment is SlotsPerLong (== 2).  A normally
  89   // aligned allocated register is either a single register, or a pair
  90   // of adjacent registers, the lower-numbered being even.
  91   // See also is_aligned_Pairs() below, and the padding added before
  92   // Matcher::_new_SP to keep allocated pairs aligned properly.
  93   // If we ever go to quad-word allocations, SlotsPerQuad will become
  94   // the controlling alignment constraint.  Note that this alignment
  95   // requirement is internal to the allocator, and independent of any
  96   // particular platform.
  97   enum { SlotsPerLong = 2,
  98          SlotsPerVecS = 1,
  99          SlotsPerVecD = 2,
 100          SlotsPerVecX = 4,
 101          SlotsPerVecY = 8,
 102          SlotsPerVecZ = 16 };
 103 
 104   // A constructor only used by the ADLC output.  All mask fields are filled
 105   // in directly.  Calls to this look something like RM(1,2,3,4);
 106   RegMask(
 107 #   define BODY(I) int a##I,
 108     FORALL_BODY
 109 #   undef BODY
 110     int dummy = 0 ) {
 111 #   define BODY(I) _A[I] = a##I;
 112     FORALL_BODY
 113 #   undef BODY
 114   }
 115 
 116   // Handy copying constructor
 117   RegMask( RegMask *rm ) {
 118 #   define BODY(I) _A[I] = rm->_A[I];
 119     FORALL_BODY
 120 #   undef BODY
 121   }
 122 


 283   // Subtract 'rm' from 'this'
 284   void SUBTRACT( const RegMask &rm ) {
 285 #   define BODY(I) _A[I] &= ~rm._A[I];
 286     FORALL_BODY
 287 #   undef BODY
 288   }
 289 
 290   // Compute size of register mask: number of bits
 291   uint Size() const;
 292 
 293 #ifndef PRODUCT
 294   void print() const { dump(); }
 295   void dump(outputStream *st = tty) const; // Print a mask
 296 #endif
 297 
 298   static const RegMask Empty;   // Common empty mask
 299 
 300   static bool can_represent(OptoReg::Name reg) {
 301     // NOTE: -1 in computation reflects the usage of the last
 302     //       bit of the regmask as an infinite stack flag and
 303     //       -7 is to keep mask aligned for largest value (VecZ).
 304     return (int)reg < (int)(CHUNK_SIZE-1);
 305   }
 306   static bool can_represent_arg(OptoReg::Name reg) {
 307     // NOTE: -SlotsPerVecZ in computation reflects the need
 308     //       to keep mask aligned for largest value (VecZ).
 309     return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecZ);
 310   }
 311 };
 312 
 313 // Do not use this constant directly in client code!
 314 #undef RM_SIZE
 315 
 316 #endif // SHARE_VM_OPTO_REGMASK_HPP
< prev index next >