1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  72 #elif defined(PPC64)
  73   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  74   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  75   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  76   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  77   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  78 #else // all other
  79   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  80   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  81   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  82   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  83   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  84 #endif
  85   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  86   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  87   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  88   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  89   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  90   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  91   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  92   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  93   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  94   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  95   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  96   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  97   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  98   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  99   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 100   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 101   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 102   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 103 };
 104 
 105 // Map ideal registers (machine types) to ideal types
 106 const Type *Type::mreg2type[_last_machine_leaf];
 107 
 108 // Map basic types to canonical Type* pointers.
 109 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 110 
 111 // Map basic types to constant-zero Types.
 112 const Type* Type::            _zero_type[T_CONFLICT+1];
 113 
 114 // Map basic types to array-body alias types.
 115 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 116 
 117 //=============================================================================
 118 // Convenience common pre-built types.
 119 const Type *Type::ABIO;         // State-of-machine only
 120 const Type *Type::BOTTOM;       // All values
 121 const Type *Type::CONTROL;      // Control only
 122 const Type *Type::DOUBLE;       // All doubles
 123 const Type *Type::FLOAT;        // All floats
 124 const Type *Type::HALF;         // Placeholder half of doublewide type
 125 const Type *Type::MEMORY;       // Abstract store only
 126 const Type *Type::RETURN_ADDRESS;
 127 const Type *Type::TOP;          // No values in set
 128 
 129 //------------------------------get_const_type---------------------------
 130 const Type* Type::get_const_type(ciType* type) {
 131   if (type == NULL) {
 132     return NULL;
 133   } else if (type->is_primitive_type()) {
 134     return get_const_basic_type(type->basic_type());
 135   } else {
 136     return TypeOopPtr::make_from_klass(type->as_klass());
 137   }
 138 }
 139 
 140 //---------------------------array_element_basic_type---------------------------------
 141 // Mapping to the array element's basic type.
 142 BasicType Type::array_element_basic_type() const {
 143   BasicType bt = basic_type();
 144   if (bt == T_INT) {
 145     if (this == TypeInt::INT)   return T_INT;
 146     if (this == TypeInt::CHAR)  return T_CHAR;
 147     if (this == TypeInt::BYTE)  return T_BYTE;
 148     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 149     if (this == TypeInt::SHORT) return T_SHORT;
 150     return T_VOID;
 151   }
 152   return bt;
 153 }
 154 
 155 //---------------------------get_typeflow_type---------------------------------
 156 // Import a type produced by ciTypeFlow.
 157 const Type* Type::get_typeflow_type(ciType* type) {
 158   switch (type->basic_type()) {
 159 
 160   case ciTypeFlow::StateVector::T_BOTTOM:
 161     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 162     return Type::BOTTOM;
 163 
 164   case ciTypeFlow::StateVector::T_TOP:
 165     assert(type == ciTypeFlow::StateVector::top_type(), "");
 166     return Type::TOP;
 167 
 168   case ciTypeFlow::StateVector::T_NULL:
 169     assert(type == ciTypeFlow::StateVector::null_type(), "");
 170     return TypePtr::NULL_PTR;
 171 
 172   case ciTypeFlow::StateVector::T_LONG2:
 173     // The ciTypeFlow pass pushes a long, then the half.
 174     // We do the same.
 175     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 176     return TypeInt::TOP;
 177 
 178   case ciTypeFlow::StateVector::T_DOUBLE2:
 179     // The ciTypeFlow pass pushes double, then the half.
 180     // Our convention is the same.
 181     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 182     return Type::TOP;
 183 
 184   case T_ADDRESS:
 185     assert(type->is_return_address(), "");
 186     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 187 
 188   default:
 189     // make sure we did not mix up the cases:
 190     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 191     assert(type != ciTypeFlow::StateVector::top_type(), "");
 192     assert(type != ciTypeFlow::StateVector::null_type(), "");
 193     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 194     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 195     assert(!type->is_return_address(), "");
 196 
 197     return Type::get_const_type(type);
 198   }
 199 }
 200 
 201 
 202 //-----------------------make_from_constant------------------------------------
 203 const Type* Type::make_from_constant(ciConstant constant,
 204                                      bool require_constant, bool is_autobox_cache) {
 205   switch (constant.basic_type()) {
 206   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 207   case T_CHAR:     return TypeInt::make(constant.as_char());
 208   case T_BYTE:     return TypeInt::make(constant.as_byte());
 209   case T_SHORT:    return TypeInt::make(constant.as_short());
 210   case T_INT:      return TypeInt::make(constant.as_int());
 211   case T_LONG:     return TypeLong::make(constant.as_long());
 212   case T_FLOAT:    return TypeF::make(constant.as_float());
 213   case T_DOUBLE:   return TypeD::make(constant.as_double());
 214   case T_ARRAY:
 215   case T_OBJECT:
 216     {
 217       // cases:
 218       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 219       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 220       // An oop is not scavengable if it is in the perm gen.
 221       ciObject* oop_constant = constant.as_object();
 222       if (oop_constant->is_null_object()) {
 223         return Type::get_zero_type(T_OBJECT);
 224       } else if (require_constant || oop_constant->should_be_constant()) {
 225         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 226       }
 227     }
 228   }
 229   // Fall through to failure
 230   return NULL;
 231 }
 232 
 233 
 234 //------------------------------make-------------------------------------------
 235 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 236 // and look for an existing copy in the type dictionary.
 237 const Type *Type::make( enum TYPES t ) {
 238   return (new Type(t))->hashcons();
 239 }
 240 
 241 //------------------------------cmp--------------------------------------------
 242 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 243   if( t1->_base != t2->_base )
 244     return 1;                   // Missed badly
 245   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 246   return !t1->eq(t2);           // Return ZERO if equal
 247 }
 248 
 249 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 250   if (!include_speculative) {
 251     return remove_speculative();
 252   }
 253   return this;
 254 }
 255 
 256 //------------------------------hash-------------------------------------------
 257 int Type::uhash( const Type *const t ) {
 258   return t->hash();
 259 }
 260 
 261 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 262 
 263 //--------------------------Initialize_shared----------------------------------
 264 void Type::Initialize_shared(Compile* current) {
 265   // This method does not need to be locked because the first system
 266   // compilations (stub compilations) occur serially.  If they are
 267   // changed to proceed in parallel, then this section will need
 268   // locking.
 269 
 270   Arena* save = current->type_arena();
 271   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 272 
 273   current->set_type_arena(shared_type_arena);
 274   _shared_type_dict =
 275     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 276                                   shared_type_arena, 128 );
 277   current->set_type_dict(_shared_type_dict);
 278 
 279   // Make shared pre-built types.
 280   CONTROL = make(Control);      // Control only
 281   TOP     = make(Top);          // No values in set
 282   MEMORY  = make(Memory);       // Abstract store only
 283   ABIO    = make(Abio);         // State-of-machine only
 284   RETURN_ADDRESS=make(Return_Address);
 285   FLOAT   = make(FloatBot);     // All floats
 286   DOUBLE  = make(DoubleBot);    // All doubles
 287   BOTTOM  = make(Bottom);       // Everything
 288   HALF    = make(Half);         // Placeholder half of doublewide type
 289 
 290   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 291   TypeF::ONE  = TypeF::make(1.0); // Float 1
 292 
 293   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 294   TypeD::ONE  = TypeD::make(1.0); // Double 1
 295 
 296   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 297   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 298   TypeInt::ONE     = TypeInt::make( 1);  //  1
 299   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 300   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 301   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 302   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 303   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 304   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 305   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 306   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 307   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 308   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 309   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 310   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 311   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 312   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 313   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 314   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 315   // CmpL is overloaded both as the bytecode computation returning
 316   // a trinary (-1,0,+1) integer result AND as an efficient long
 317   // compare returning optimizer ideal-type flags.
 318   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 319   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 320   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 321   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 322   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 323 
 324   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 325   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 326   TypeLong::ONE     = TypeLong::make( 1);        //  1
 327   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 328   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 329   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 330   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 331   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 332 
 333   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 334   fboth[0] = Type::CONTROL;
 335   fboth[1] = Type::CONTROL;
 336   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 337 
 338   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 339   ffalse[0] = Type::CONTROL;
 340   ffalse[1] = Type::TOP;
 341   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 342 
 343   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 344   fneither[0] = Type::TOP;
 345   fneither[1] = Type::TOP;
 346   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 347 
 348   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 349   ftrue[0] = Type::TOP;
 350   ftrue[1] = Type::CONTROL;
 351   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 352 
 353   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 354   floop[0] = Type::CONTROL;
 355   floop[1] = TypeInt::INT;
 356   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 357 
 358   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 359   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 360   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 361 
 362   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 363   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 364 
 365   const Type **fmembar = TypeTuple::fields(0);
 366   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 367 
 368   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 369   fsc[0] = TypeInt::CC;
 370   fsc[1] = Type::MEMORY;
 371   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 372 
 373   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 374   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 375   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 376   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 377                                            false, 0, oopDesc::mark_offset_in_bytes());
 378   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 379                                            false, 0, oopDesc::klass_offset_in_bytes());
 380   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 381 
 382   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 383 
 384   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 385   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 386 
 387   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 388 
 389   mreg2type[Op_Node] = Type::BOTTOM;
 390   mreg2type[Op_Set ] = 0;
 391   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 392   mreg2type[Op_RegI] = TypeInt::INT;
 393   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 394   mreg2type[Op_RegF] = Type::FLOAT;
 395   mreg2type[Op_RegD] = Type::DOUBLE;
 396   mreg2type[Op_RegL] = TypeLong::LONG;
 397   mreg2type[Op_RegFlags] = TypeInt::CC;
 398 
 399   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 400 
 401   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 402 
 403 #ifdef _LP64
 404   if (UseCompressedOops) {
 405     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 406     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 407   } else
 408 #endif
 409   {
 410     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 411     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 412   }
 413   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 414   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 415   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 416   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 417   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 418   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 419   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 420 
 421   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 422   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 423   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 424   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 425   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 426   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 427   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 428   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 429   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 430   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 431   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 432   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 433 
 434   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 435   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 436 
 437   const Type **fi2c = TypeTuple::fields(2);
 438   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 439   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 440   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 441 
 442   const Type **intpair = TypeTuple::fields(2);
 443   intpair[0] = TypeInt::INT;
 444   intpair[1] = TypeInt::INT;
 445   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 446 
 447   const Type **longpair = TypeTuple::fields(2);
 448   longpair[0] = TypeLong::LONG;
 449   longpair[1] = TypeLong::LONG;
 450   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 451 
 452   const Type **intccpair = TypeTuple::fields(2);
 453   intccpair[0] = TypeInt::INT;
 454   intccpair[1] = TypeInt::CC;
 455   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 456 
 457   const Type **longccpair = TypeTuple::fields(2);
 458   longccpair[0] = TypeLong::LONG;
 459   longccpair[1] = TypeInt::CC;
 460   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 461 
 462   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 463   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 464   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 465   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 466   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 467   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 468   _const_basic_type[T_INT]         = TypeInt::INT;
 469   _const_basic_type[T_LONG]        = TypeLong::LONG;
 470   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 471   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 472   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 473   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 474   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 475   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 476   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 477 
 478   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 479   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 480   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 481   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 482   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 483   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 484   _zero_type[T_INT]         = TypeInt::ZERO;
 485   _zero_type[T_LONG]        = TypeLong::ZERO;
 486   _zero_type[T_FLOAT]       = TypeF::ZERO;
 487   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 488   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 489   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 490   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 491   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 492 
 493   // get_zero_type() should not happen for T_CONFLICT
 494   _zero_type[T_CONFLICT]= NULL;
 495 
 496   // Vector predefined types, it needs initialized _const_basic_type[].
 497   if (Matcher::vector_size_supported(T_BYTE,4)) {
 498     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 499   }
 500   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 501     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 502   }
 503   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 504     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 505   }
 506   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 507     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 508   }
 509   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 510     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 511   }
 512   mreg2type[Op_VecS] = TypeVect::VECTS;
 513   mreg2type[Op_VecD] = TypeVect::VECTD;
 514   mreg2type[Op_VecX] = TypeVect::VECTX;
 515   mreg2type[Op_VecY] = TypeVect::VECTY;
 516   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 517 
 518   // Restore working type arena.
 519   current->set_type_arena(save);
 520   current->set_type_dict(NULL);
 521 }
 522 
 523 //------------------------------Initialize-------------------------------------
 524 void Type::Initialize(Compile* current) {
 525   assert(current->type_arena() != NULL, "must have created type arena");
 526 
 527   if (_shared_type_dict == NULL) {
 528     Initialize_shared(current);
 529   }
 530 
 531   Arena* type_arena = current->type_arena();
 532 
 533   // Create the hash-cons'ing dictionary with top-level storage allocation
 534   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 535   current->set_type_dict(tdic);
 536 
 537   // Transfer the shared types.
 538   DictI i(_shared_type_dict);
 539   for( ; i.test(); ++i ) {
 540     Type* t = (Type*)i._value;
 541     tdic->Insert(t,t);  // New Type, insert into Type table
 542   }
 543 }
 544 
 545 //------------------------------hashcons---------------------------------------
 546 // Do the hash-cons trick.  If the Type already exists in the type table,
 547 // delete the current Type and return the existing Type.  Otherwise stick the
 548 // current Type in the Type table.
 549 const Type *Type::hashcons(void) {
 550   debug_only(base());           // Check the assertion in Type::base().
 551   // Look up the Type in the Type dictionary
 552   Dict *tdic = type_dict();
 553   Type* old = (Type*)(tdic->Insert(this, this, false));
 554   if( old ) {                   // Pre-existing Type?
 555     if( old != this )           // Yes, this guy is not the pre-existing?
 556       delete this;              // Yes, Nuke this guy
 557     assert( old->_dual, "" );
 558     return old;                 // Return pre-existing
 559   }
 560 
 561   // Every type has a dual (to make my lattice symmetric).
 562   // Since we just discovered a new Type, compute its dual right now.
 563   assert( !_dual, "" );         // No dual yet
 564   _dual = xdual();              // Compute the dual
 565   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 566     _dual = this;
 567     return this;
 568   }
 569   assert( !_dual->_dual, "" );  // No reverse dual yet
 570   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 571   // New Type, insert into Type table
 572   tdic->Insert((void*)_dual,(void*)_dual);
 573   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 574 #ifdef ASSERT
 575   Type *dual_dual = (Type*)_dual->xdual();
 576   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 577   delete dual_dual;
 578 #endif
 579   return this;                  // Return new Type
 580 }
 581 
 582 //------------------------------eq---------------------------------------------
 583 // Structural equality check for Type representations
 584 bool Type::eq( const Type * ) const {
 585   return true;                  // Nothing else can go wrong
 586 }
 587 
 588 //------------------------------hash-------------------------------------------
 589 // Type-specific hashing function.
 590 int Type::hash(void) const {
 591   return _base;
 592 }
 593 
 594 //------------------------------is_finite--------------------------------------
 595 // Has a finite value
 596 bool Type::is_finite() const {
 597   return false;
 598 }
 599 
 600 //------------------------------is_nan-----------------------------------------
 601 // Is not a number (NaN)
 602 bool Type::is_nan()    const {
 603   return false;
 604 }
 605 
 606 //----------------------interface_vs_oop---------------------------------------
 607 #ifdef ASSERT
 608 bool Type::interface_vs_oop_helper(const Type *t) const {
 609   bool result = false;
 610 
 611   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 612   const TypePtr*    t_ptr =    t->make_ptr();
 613   if( this_ptr == NULL || t_ptr == NULL )
 614     return result;
 615 
 616   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 617   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 618   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 619     bool this_interface = this_inst->klass()->is_interface();
 620     bool    t_interface =    t_inst->klass()->is_interface();
 621     result = this_interface ^ t_interface;
 622   }
 623 
 624   return result;
 625 }
 626 
 627 bool Type::interface_vs_oop(const Type *t) const {
 628   if (interface_vs_oop_helper(t)) {
 629     return true;
 630   }
 631   // Now check the speculative parts as well
 632   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 633   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 634   if (this_spec != NULL && t_spec != NULL) {
 635     if (this_spec->interface_vs_oop_helper(t_spec)) {
 636       return true;
 637     }
 638     return false;
 639   }
 640   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 641     return true;
 642   }
 643   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 644     return true;
 645   }
 646   return false;
 647 }
 648 
 649 #endif
 650 
 651 //------------------------------meet-------------------------------------------
 652 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 653 // commutative and the lattice is symmetric.
 654 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 655   if (isa_narrowoop() && t->isa_narrowoop()) {
 656     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 657     return result->make_narrowoop();
 658   }
 659   if (isa_narrowklass() && t->isa_narrowklass()) {
 660     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 661     return result->make_narrowklass();
 662   }
 663 
 664   const Type *this_t = maybe_remove_speculative(include_speculative);
 665   t = t->maybe_remove_speculative(include_speculative);
 666 
 667   const Type *mt = this_t->xmeet(t);
 668   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 669   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 670 #ifdef ASSERT
 671   assert(mt == t->xmeet(this_t), "meet not commutative");
 672   const Type* dual_join = mt->_dual;
 673   const Type *t2t    = dual_join->xmeet(t->_dual);
 674   const Type *t2this = dual_join->xmeet(this_t->_dual);
 675 
 676   // Interface meet Oop is Not Symmetric:
 677   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 678   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 679 
 680   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 681     tty->print_cr("=== Meet Not Symmetric ===");
 682     tty->print("t   =                   ");              t->dump(); tty->cr();
 683     tty->print("this=                   ");         this_t->dump(); tty->cr();
 684     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 685 
 686     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 687     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 688     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 689 
 690     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 691     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 692 
 693     fatal("meet not symmetric" );
 694   }
 695 #endif
 696   return mt;
 697 }
 698 
 699 //------------------------------xmeet------------------------------------------
 700 // Compute the MEET of two types.  It returns a new Type object.
 701 const Type *Type::xmeet( const Type *t ) const {
 702   // Perform a fast test for common case; meeting the same types together.
 703   if( this == t ) return this;  // Meeting same type-rep?
 704 
 705   // Meeting TOP with anything?
 706   if( _base == Top ) return t;
 707 
 708   // Meeting BOTTOM with anything?
 709   if( _base == Bottom ) return BOTTOM;
 710 
 711   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 712   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 713   switch (t->base()) {  // Switch on original type
 714 
 715   // Cut in half the number of cases I must handle.  Only need cases for when
 716   // the given enum "t->type" is less than or equal to the local enum "type".
 717   case FloatCon:
 718   case DoubleCon:
 719   case Int:
 720   case Long:
 721     return t->xmeet(this);
 722 
 723   case OopPtr:
 724     return t->xmeet(this);
 725 
 726   case InstPtr:
 727     return t->xmeet(this);
 728 
 729   case MetadataPtr:
 730   case KlassPtr:
 731     return t->xmeet(this);
 732 
 733   case AryPtr:
 734     return t->xmeet(this);
 735 
 736   case NarrowOop:
 737     return t->xmeet(this);
 738 
 739   case NarrowKlass:
 740     return t->xmeet(this);
 741 
 742   case Bad:                     // Type check
 743   default:                      // Bogus type not in lattice
 744     typerr(t);
 745     return Type::BOTTOM;
 746 
 747   case Bottom:                  // Ye Olde Default
 748     return t;
 749 
 750   case FloatTop:
 751     if( _base == FloatTop ) return this;
 752   case FloatBot:                // Float
 753     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 754     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 755     typerr(t);
 756     return Type::BOTTOM;
 757 
 758   case DoubleTop:
 759     if( _base == DoubleTop ) return this;
 760   case DoubleBot:               // Double
 761     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 762     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 763     typerr(t);
 764     return Type::BOTTOM;
 765 
 766   // These next few cases must match exactly or it is a compile-time error.
 767   case Control:                 // Control of code
 768   case Abio:                    // State of world outside of program
 769   case Memory:
 770     if( _base == t->_base )  return this;
 771     typerr(t);
 772     return Type::BOTTOM;
 773 
 774   case Top:                     // Top of the lattice
 775     return this;
 776   }
 777 
 778   // The type is unchanged
 779   return this;
 780 }
 781 
 782 //-----------------------------filter------------------------------------------
 783 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 784   const Type* ft = join_helper(kills, include_speculative);
 785   if (ft->empty())
 786     return Type::TOP;           // Canonical empty value
 787   return ft;
 788 }
 789 
 790 //------------------------------xdual------------------------------------------
 791 // Compute dual right now.
 792 const Type::TYPES Type::dual_type[Type::lastype] = {
 793   Bad,          // Bad
 794   Control,      // Control
 795   Bottom,       // Top
 796   Bad,          // Int - handled in v-call
 797   Bad,          // Long - handled in v-call
 798   Half,         // Half
 799   Bad,          // NarrowOop - handled in v-call
 800   Bad,          // NarrowKlass - handled in v-call
 801 
 802   Bad,          // Tuple - handled in v-call
 803   Bad,          // Array - handled in v-call
 804   Bad,          // VectorS - handled in v-call
 805   Bad,          // VectorD - handled in v-call
 806   Bad,          // VectorX - handled in v-call
 807   Bad,          // VectorY - handled in v-call
 808   Bad,          // VectorZ - handled in v-call
 809 
 810   Bad,          // AnyPtr - handled in v-call
 811   Bad,          // RawPtr - handled in v-call
 812   Bad,          // OopPtr - handled in v-call
 813   Bad,          // InstPtr - handled in v-call
 814   Bad,          // AryPtr - handled in v-call
 815 
 816   Bad,          //  MetadataPtr - handled in v-call
 817   Bad,          // KlassPtr - handled in v-call
 818 
 819   Bad,          // Function - handled in v-call
 820   Abio,         // Abio
 821   Return_Address,// Return_Address
 822   Memory,       // Memory
 823   FloatBot,     // FloatTop
 824   FloatCon,     // FloatCon
 825   FloatTop,     // FloatBot
 826   DoubleBot,    // DoubleTop
 827   DoubleCon,    // DoubleCon
 828   DoubleTop,    // DoubleBot
 829   Top           // Bottom
 830 };
 831 
 832 const Type *Type::xdual() const {
 833   // Note: the base() accessor asserts the sanity of _base.
 834   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 835   return new Type(_type_info[_base].dual_type);
 836 }
 837 
 838 //------------------------------has_memory-------------------------------------
 839 bool Type::has_memory() const {
 840   Type::TYPES tx = base();
 841   if (tx == Memory) return true;
 842   if (tx == Tuple) {
 843     const TypeTuple *t = is_tuple();
 844     for (uint i=0; i < t->cnt(); i++) {
 845       tx = t->field_at(i)->base();
 846       if (tx == Memory)  return true;
 847     }
 848   }
 849   return false;
 850 }
 851 
 852 #ifndef PRODUCT
 853 //------------------------------dump2------------------------------------------
 854 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 855   st->print("%s", _type_info[_base].msg);
 856 }
 857 
 858 //------------------------------dump-------------------------------------------
 859 void Type::dump_on(outputStream *st) const {
 860   ResourceMark rm;
 861   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 862   dump2(d,1, st);
 863   if (is_ptr_to_narrowoop()) {
 864     st->print(" [narrow]");
 865   } else if (is_ptr_to_narrowklass()) {
 866     st->print(" [narrowklass]");
 867   }
 868 }
 869 #endif
 870 
 871 //------------------------------singleton--------------------------------------
 872 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 873 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 874 bool Type::singleton(void) const {
 875   return _base == Top || _base == Half;
 876 }
 877 
 878 //------------------------------empty------------------------------------------
 879 // TRUE if Type is a type with no values, FALSE otherwise.
 880 bool Type::empty(void) const {
 881   switch (_base) {
 882   case DoubleTop:
 883   case FloatTop:
 884   case Top:
 885     return true;
 886 
 887   case Half:
 888   case Abio:
 889   case Return_Address:
 890   case Memory:
 891   case Bottom:
 892   case FloatBot:
 893   case DoubleBot:
 894     return false;  // never a singleton, therefore never empty
 895   }
 896 
 897   ShouldNotReachHere();
 898   return false;
 899 }
 900 
 901 //------------------------------dump_stats-------------------------------------
 902 // Dump collected statistics to stderr
 903 #ifndef PRODUCT
 904 void Type::dump_stats() {
 905   tty->print("Types made: %d\n", type_dict()->Size());
 906 }
 907 #endif
 908 
 909 //------------------------------typerr-----------------------------------------
 910 void Type::typerr( const Type *t ) const {
 911 #ifndef PRODUCT
 912   tty->print("\nError mixing types: ");
 913   dump();
 914   tty->print(" and ");
 915   t->dump();
 916   tty->print("\n");
 917 #endif
 918   ShouldNotReachHere();
 919 }
 920 
 921 
 922 //=============================================================================
 923 // Convenience common pre-built types.
 924 const TypeF *TypeF::ZERO;       // Floating point zero
 925 const TypeF *TypeF::ONE;        // Floating point one
 926 
 927 //------------------------------make-------------------------------------------
 928 // Create a float constant
 929 const TypeF *TypeF::make(float f) {
 930   return (TypeF*)(new TypeF(f))->hashcons();
 931 }
 932 
 933 //------------------------------meet-------------------------------------------
 934 // Compute the MEET of two types.  It returns a new Type object.
 935 const Type *TypeF::xmeet( const Type *t ) const {
 936   // Perform a fast test for common case; meeting the same types together.
 937   if( this == t ) return this;  // Meeting same type-rep?
 938 
 939   // Current "this->_base" is FloatCon
 940   switch (t->base()) {          // Switch on original type
 941   case AnyPtr:                  // Mixing with oops happens when javac
 942   case RawPtr:                  // reuses local variables
 943   case OopPtr:
 944   case InstPtr:
 945   case AryPtr:
 946   case MetadataPtr:
 947   case KlassPtr:
 948   case NarrowOop:
 949   case NarrowKlass:
 950   case Int:
 951   case Long:
 952   case DoubleTop:
 953   case DoubleCon:
 954   case DoubleBot:
 955   case Bottom:                  // Ye Olde Default
 956     return Type::BOTTOM;
 957 
 958   case FloatBot:
 959     return t;
 960 
 961   default:                      // All else is a mistake
 962     typerr(t);
 963 
 964   case FloatCon:                // Float-constant vs Float-constant?
 965     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 966                                 // must compare bitwise as positive zero, negative zero and NaN have
 967                                 // all the same representation in C++
 968       return FLOAT;             // Return generic float
 969                                 // Equal constants
 970   case Top:
 971   case FloatTop:
 972     break;                      // Return the float constant
 973   }
 974   return this;                  // Return the float constant
 975 }
 976 
 977 //------------------------------xdual------------------------------------------
 978 // Dual: symmetric
 979 const Type *TypeF::xdual() const {
 980   return this;
 981 }
 982 
 983 //------------------------------eq---------------------------------------------
 984 // Structural equality check for Type representations
 985 bool TypeF::eq(const Type *t) const {
 986   // Bitwise comparison to distinguish between +/-0. These values must be treated
 987   // as different to be consistent with C1 and the interpreter.
 988   return (jint_cast(_f) == jint_cast(t->getf()));
 989 }
 990 
 991 //------------------------------hash-------------------------------------------
 992 // Type-specific hashing function.
 993 int TypeF::hash(void) const {
 994   return *(int*)(&_f);
 995 }
 996 
 997 //------------------------------is_finite--------------------------------------
 998 // Has a finite value
 999 bool TypeF::is_finite() const {
1000   return g_isfinite(getf()) != 0;
1001 }
1002 
1003 //------------------------------is_nan-----------------------------------------
1004 // Is not a number (NaN)
1005 bool TypeF::is_nan()    const {
1006   return g_isnan(getf()) != 0;
1007 }
1008 
1009 //------------------------------dump2------------------------------------------
1010 // Dump float constant Type
1011 #ifndef PRODUCT
1012 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1013   Type::dump2(d,depth, st);
1014   st->print("%f", _f);
1015 }
1016 #endif
1017 
1018 //------------------------------singleton--------------------------------------
1019 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1020 // constants (Ldi nodes).  Singletons are integer, float or double constants
1021 // or a single symbol.
1022 bool TypeF::singleton(void) const {
1023   return true;                  // Always a singleton
1024 }
1025 
1026 bool TypeF::empty(void) const {
1027   return false;                 // always exactly a singleton
1028 }
1029 
1030 //=============================================================================
1031 // Convenience common pre-built types.
1032 const TypeD *TypeD::ZERO;       // Floating point zero
1033 const TypeD *TypeD::ONE;        // Floating point one
1034 
1035 //------------------------------make-------------------------------------------
1036 const TypeD *TypeD::make(double d) {
1037   return (TypeD*)(new TypeD(d))->hashcons();
1038 }
1039 
1040 //------------------------------meet-------------------------------------------
1041 // Compute the MEET of two types.  It returns a new Type object.
1042 const Type *TypeD::xmeet( const Type *t ) const {
1043   // Perform a fast test for common case; meeting the same types together.
1044   if( this == t ) return this;  // Meeting same type-rep?
1045 
1046   // Current "this->_base" is DoubleCon
1047   switch (t->base()) {          // Switch on original type
1048   case AnyPtr:                  // Mixing with oops happens when javac
1049   case RawPtr:                  // reuses local variables
1050   case OopPtr:
1051   case InstPtr:
1052   case AryPtr:
1053   case MetadataPtr:
1054   case KlassPtr:
1055   case NarrowOop:
1056   case NarrowKlass:
1057   case Int:
1058   case Long:
1059   case FloatTop:
1060   case FloatCon:
1061   case FloatBot:
1062   case Bottom:                  // Ye Olde Default
1063     return Type::BOTTOM;
1064 
1065   case DoubleBot:
1066     return t;
1067 
1068   default:                      // All else is a mistake
1069     typerr(t);
1070 
1071   case DoubleCon:               // Double-constant vs Double-constant?
1072     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1073       return DOUBLE;            // Return generic double
1074   case Top:
1075   case DoubleTop:
1076     break;
1077   }
1078   return this;                  // Return the double constant
1079 }
1080 
1081 //------------------------------xdual------------------------------------------
1082 // Dual: symmetric
1083 const Type *TypeD::xdual() const {
1084   return this;
1085 }
1086 
1087 //------------------------------eq---------------------------------------------
1088 // Structural equality check for Type representations
1089 bool TypeD::eq(const Type *t) const {
1090   // Bitwise comparison to distinguish between +/-0. These values must be treated
1091   // as different to be consistent with C1 and the interpreter.
1092   return (jlong_cast(_d) == jlong_cast(t->getd()));
1093 }
1094 
1095 //------------------------------hash-------------------------------------------
1096 // Type-specific hashing function.
1097 int TypeD::hash(void) const {
1098   return *(int*)(&_d);
1099 }
1100 
1101 //------------------------------is_finite--------------------------------------
1102 // Has a finite value
1103 bool TypeD::is_finite() const {
1104   return g_isfinite(getd()) != 0;
1105 }
1106 
1107 //------------------------------is_nan-----------------------------------------
1108 // Is not a number (NaN)
1109 bool TypeD::is_nan()    const {
1110   return g_isnan(getd()) != 0;
1111 }
1112 
1113 //------------------------------dump2------------------------------------------
1114 // Dump double constant Type
1115 #ifndef PRODUCT
1116 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1117   Type::dump2(d,depth,st);
1118   st->print("%f", _d);
1119 }
1120 #endif
1121 
1122 //------------------------------singleton--------------------------------------
1123 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1124 // constants (Ldi nodes).  Singletons are integer, float or double constants
1125 // or a single symbol.
1126 bool TypeD::singleton(void) const {
1127   return true;                  // Always a singleton
1128 }
1129 
1130 bool TypeD::empty(void) const {
1131   return false;                 // always exactly a singleton
1132 }
1133 
1134 //=============================================================================
1135 // Convience common pre-built types.
1136 const TypeInt *TypeInt::MINUS_1;// -1
1137 const TypeInt *TypeInt::ZERO;   // 0
1138 const TypeInt *TypeInt::ONE;    // 1
1139 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1140 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1141 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1142 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1143 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1144 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1145 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1146 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1147 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1148 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1149 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1150 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1151 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1152 const TypeInt *TypeInt::INT;    // 32-bit integers
1153 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1154 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1155 
1156 //------------------------------TypeInt----------------------------------------
1157 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1158 }
1159 
1160 //------------------------------make-------------------------------------------
1161 const TypeInt *TypeInt::make( jint lo ) {
1162   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1163 }
1164 
1165 static int normalize_int_widen( jint lo, jint hi, int w ) {
1166   // Certain normalizations keep us sane when comparing types.
1167   // The 'SMALLINT' covers constants and also CC and its relatives.
1168   if (lo <= hi) {
1169     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1170     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1171   } else {
1172     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1173     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1174   }
1175   return w;
1176 }
1177 
1178 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1179   w = normalize_int_widen(lo, hi, w);
1180   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1181 }
1182 
1183 //------------------------------meet-------------------------------------------
1184 // Compute the MEET of two types.  It returns a new Type representation object
1185 // with reference count equal to the number of Types pointing at it.
1186 // Caller should wrap a Types around it.
1187 const Type *TypeInt::xmeet( const Type *t ) const {
1188   // Perform a fast test for common case; meeting the same types together.
1189   if( this == t ) return this;  // Meeting same type?
1190 
1191   // Currently "this->_base" is a TypeInt
1192   switch (t->base()) {          // Switch on original type
1193   case AnyPtr:                  // Mixing with oops happens when javac
1194   case RawPtr:                  // reuses local variables
1195   case OopPtr:
1196   case InstPtr:
1197   case AryPtr:
1198   case MetadataPtr:
1199   case KlassPtr:
1200   case NarrowOop:
1201   case NarrowKlass:
1202   case Long:
1203   case FloatTop:
1204   case FloatCon:
1205   case FloatBot:
1206   case DoubleTop:
1207   case DoubleCon:
1208   case DoubleBot:
1209   case Bottom:                  // Ye Olde Default
1210     return Type::BOTTOM;
1211   default:                      // All else is a mistake
1212     typerr(t);
1213   case Top:                     // No change
1214     return this;
1215   case Int:                     // Int vs Int?
1216     break;
1217   }
1218 
1219   // Expand covered set
1220   const TypeInt *r = t->is_int();
1221   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1222 }
1223 
1224 //------------------------------xdual------------------------------------------
1225 // Dual: reverse hi & lo; flip widen
1226 const Type *TypeInt::xdual() const {
1227   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1228   return new TypeInt(_hi,_lo,w);
1229 }
1230 
1231 //------------------------------widen------------------------------------------
1232 // Only happens for optimistic top-down optimizations.
1233 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1234   // Coming from TOP or such; no widening
1235   if( old->base() != Int ) return this;
1236   const TypeInt *ot = old->is_int();
1237 
1238   // If new guy is equal to old guy, no widening
1239   if( _lo == ot->_lo && _hi == ot->_hi )
1240     return old;
1241 
1242   // If new guy contains old, then we widened
1243   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1244     // New contains old
1245     // If new guy is already wider than old, no widening
1246     if( _widen > ot->_widen ) return this;
1247     // If old guy was a constant, do not bother
1248     if (ot->_lo == ot->_hi)  return this;
1249     // Now widen new guy.
1250     // Check for widening too far
1251     if (_widen == WidenMax) {
1252       int max = max_jint;
1253       int min = min_jint;
1254       if (limit->isa_int()) {
1255         max = limit->is_int()->_hi;
1256         min = limit->is_int()->_lo;
1257       }
1258       if (min < _lo && _hi < max) {
1259         // If neither endpoint is extremal yet, push out the endpoint
1260         // which is closer to its respective limit.
1261         if (_lo >= 0 ||                 // easy common case
1262             (juint)(_lo - min) >= (juint)(max - _hi)) {
1263           // Try to widen to an unsigned range type of 31 bits:
1264           return make(_lo, max, WidenMax);
1265         } else {
1266           return make(min, _hi, WidenMax);
1267         }
1268       }
1269       return TypeInt::INT;
1270     }
1271     // Returned widened new guy
1272     return make(_lo,_hi,_widen+1);
1273   }
1274 
1275   // If old guy contains new, then we probably widened too far & dropped to
1276   // bottom.  Return the wider fellow.
1277   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1278     return old;
1279 
1280   //fatal("Integer value range is not subset");
1281   //return this;
1282   return TypeInt::INT;
1283 }
1284 
1285 //------------------------------narrow---------------------------------------
1286 // Only happens for pessimistic optimizations.
1287 const Type *TypeInt::narrow( const Type *old ) const {
1288   if (_lo >= _hi)  return this;   // already narrow enough
1289   if (old == NULL)  return this;
1290   const TypeInt* ot = old->isa_int();
1291   if (ot == NULL)  return this;
1292   jint olo = ot->_lo;
1293   jint ohi = ot->_hi;
1294 
1295   // If new guy is equal to old guy, no narrowing
1296   if (_lo == olo && _hi == ohi)  return old;
1297 
1298   // If old guy was maximum range, allow the narrowing
1299   if (olo == min_jint && ohi == max_jint)  return this;
1300 
1301   if (_lo < olo || _hi > ohi)
1302     return this;                // doesn't narrow; pretty wierd
1303 
1304   // The new type narrows the old type, so look for a "death march".
1305   // See comments on PhaseTransform::saturate.
1306   juint nrange = _hi - _lo;
1307   juint orange = ohi - olo;
1308   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1309     // Use the new type only if the range shrinks a lot.
1310     // We do not want the optimizer computing 2^31 point by point.
1311     return old;
1312   }
1313 
1314   return this;
1315 }
1316 
1317 //-----------------------------filter------------------------------------------
1318 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1319   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1320   if (ft == NULL || ft->empty())
1321     return Type::TOP;           // Canonical empty value
1322   if (ft->_widen < this->_widen) {
1323     // Do not allow the value of kill->_widen to affect the outcome.
1324     // The widen bits must be allowed to run freely through the graph.
1325     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1326   }
1327   return ft;
1328 }
1329 
1330 //------------------------------eq---------------------------------------------
1331 // Structural equality check for Type representations
1332 bool TypeInt::eq( const Type *t ) const {
1333   const TypeInt *r = t->is_int(); // Handy access
1334   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1335 }
1336 
1337 //------------------------------hash-------------------------------------------
1338 // Type-specific hashing function.
1339 int TypeInt::hash(void) const {
1340   return _lo+_hi+_widen+(int)Type::Int;
1341 }
1342 
1343 //------------------------------is_finite--------------------------------------
1344 // Has a finite value
1345 bool TypeInt::is_finite() const {
1346   return true;
1347 }
1348 
1349 //------------------------------dump2------------------------------------------
1350 // Dump TypeInt
1351 #ifndef PRODUCT
1352 static const char* intname(char* buf, jint n) {
1353   if (n == min_jint)
1354     return "min";
1355   else if (n < min_jint + 10000)
1356     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1357   else if (n == max_jint)
1358     return "max";
1359   else if (n > max_jint - 10000)
1360     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1361   else
1362     sprintf(buf, INT32_FORMAT, n);
1363   return buf;
1364 }
1365 
1366 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1367   char buf[40], buf2[40];
1368   if (_lo == min_jint && _hi == max_jint)
1369     st->print("int");
1370   else if (is_con())
1371     st->print("int:%s", intname(buf, get_con()));
1372   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1373     st->print("bool");
1374   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1375     st->print("byte");
1376   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1377     st->print("char");
1378   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1379     st->print("short");
1380   else if (_hi == max_jint)
1381     st->print("int:>=%s", intname(buf, _lo));
1382   else if (_lo == min_jint)
1383     st->print("int:<=%s", intname(buf, _hi));
1384   else
1385     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1386 
1387   if (_widen != 0 && this != TypeInt::INT)
1388     st->print(":%.*s", _widen, "wwww");
1389 }
1390 #endif
1391 
1392 //------------------------------singleton--------------------------------------
1393 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1394 // constants.
1395 bool TypeInt::singleton(void) const {
1396   return _lo >= _hi;
1397 }
1398 
1399 bool TypeInt::empty(void) const {
1400   return _lo > _hi;
1401 }
1402 
1403 //=============================================================================
1404 // Convenience common pre-built types.
1405 const TypeLong *TypeLong::MINUS_1;// -1
1406 const TypeLong *TypeLong::ZERO; // 0
1407 const TypeLong *TypeLong::ONE;  // 1
1408 const TypeLong *TypeLong::POS;  // >=0
1409 const TypeLong *TypeLong::LONG; // 64-bit integers
1410 const TypeLong *TypeLong::INT;  // 32-bit subrange
1411 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1412 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1413 
1414 //------------------------------TypeLong---------------------------------------
1415 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1416 }
1417 
1418 //------------------------------make-------------------------------------------
1419 const TypeLong *TypeLong::make( jlong lo ) {
1420   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1421 }
1422 
1423 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1424   // Certain normalizations keep us sane when comparing types.
1425   // The 'SMALLINT' covers constants.
1426   if (lo <= hi) {
1427     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1428     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1429   } else {
1430     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1431     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1432   }
1433   return w;
1434 }
1435 
1436 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1437   w = normalize_long_widen(lo, hi, w);
1438   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1439 }
1440 
1441 
1442 //------------------------------meet-------------------------------------------
1443 // Compute the MEET of two types.  It returns a new Type representation object
1444 // with reference count equal to the number of Types pointing at it.
1445 // Caller should wrap a Types around it.
1446 const Type *TypeLong::xmeet( const Type *t ) const {
1447   // Perform a fast test for common case; meeting the same types together.
1448   if( this == t ) return this;  // Meeting same type?
1449 
1450   // Currently "this->_base" is a TypeLong
1451   switch (t->base()) {          // Switch on original type
1452   case AnyPtr:                  // Mixing with oops happens when javac
1453   case RawPtr:                  // reuses local variables
1454   case OopPtr:
1455   case InstPtr:
1456   case AryPtr:
1457   case MetadataPtr:
1458   case KlassPtr:
1459   case NarrowOop:
1460   case NarrowKlass:
1461   case Int:
1462   case FloatTop:
1463   case FloatCon:
1464   case FloatBot:
1465   case DoubleTop:
1466   case DoubleCon:
1467   case DoubleBot:
1468   case Bottom:                  // Ye Olde Default
1469     return Type::BOTTOM;
1470   default:                      // All else is a mistake
1471     typerr(t);
1472   case Top:                     // No change
1473     return this;
1474   case Long:                    // Long vs Long?
1475     break;
1476   }
1477 
1478   // Expand covered set
1479   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1480   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1481 }
1482 
1483 //------------------------------xdual------------------------------------------
1484 // Dual: reverse hi & lo; flip widen
1485 const Type *TypeLong::xdual() const {
1486   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1487   return new TypeLong(_hi,_lo,w);
1488 }
1489 
1490 //------------------------------widen------------------------------------------
1491 // Only happens for optimistic top-down optimizations.
1492 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1493   // Coming from TOP or such; no widening
1494   if( old->base() != Long ) return this;
1495   const TypeLong *ot = old->is_long();
1496 
1497   // If new guy is equal to old guy, no widening
1498   if( _lo == ot->_lo && _hi == ot->_hi )
1499     return old;
1500 
1501   // If new guy contains old, then we widened
1502   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1503     // New contains old
1504     // If new guy is already wider than old, no widening
1505     if( _widen > ot->_widen ) return this;
1506     // If old guy was a constant, do not bother
1507     if (ot->_lo == ot->_hi)  return this;
1508     // Now widen new guy.
1509     // Check for widening too far
1510     if (_widen == WidenMax) {
1511       jlong max = max_jlong;
1512       jlong min = min_jlong;
1513       if (limit->isa_long()) {
1514         max = limit->is_long()->_hi;
1515         min = limit->is_long()->_lo;
1516       }
1517       if (min < _lo && _hi < max) {
1518         // If neither endpoint is extremal yet, push out the endpoint
1519         // which is closer to its respective limit.
1520         if (_lo >= 0 ||                 // easy common case
1521             (julong)(_lo - min) >= (julong)(max - _hi)) {
1522           // Try to widen to an unsigned range type of 32/63 bits:
1523           if (max >= max_juint && _hi < max_juint)
1524             return make(_lo, max_juint, WidenMax);
1525           else
1526             return make(_lo, max, WidenMax);
1527         } else {
1528           return make(min, _hi, WidenMax);
1529         }
1530       }
1531       return TypeLong::LONG;
1532     }
1533     // Returned widened new guy
1534     return make(_lo,_hi,_widen+1);
1535   }
1536 
1537   // If old guy contains new, then we probably widened too far & dropped to
1538   // bottom.  Return the wider fellow.
1539   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1540     return old;
1541 
1542   //  fatal("Long value range is not subset");
1543   // return this;
1544   return TypeLong::LONG;
1545 }
1546 
1547 //------------------------------narrow----------------------------------------
1548 // Only happens for pessimistic optimizations.
1549 const Type *TypeLong::narrow( const Type *old ) const {
1550   if (_lo >= _hi)  return this;   // already narrow enough
1551   if (old == NULL)  return this;
1552   const TypeLong* ot = old->isa_long();
1553   if (ot == NULL)  return this;
1554   jlong olo = ot->_lo;
1555   jlong ohi = ot->_hi;
1556 
1557   // If new guy is equal to old guy, no narrowing
1558   if (_lo == olo && _hi == ohi)  return old;
1559 
1560   // If old guy was maximum range, allow the narrowing
1561   if (olo == min_jlong && ohi == max_jlong)  return this;
1562 
1563   if (_lo < olo || _hi > ohi)
1564     return this;                // doesn't narrow; pretty wierd
1565 
1566   // The new type narrows the old type, so look for a "death march".
1567   // See comments on PhaseTransform::saturate.
1568   julong nrange = _hi - _lo;
1569   julong orange = ohi - olo;
1570   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1571     // Use the new type only if the range shrinks a lot.
1572     // We do not want the optimizer computing 2^31 point by point.
1573     return old;
1574   }
1575 
1576   return this;
1577 }
1578 
1579 //-----------------------------filter------------------------------------------
1580 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1581   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1582   if (ft == NULL || ft->empty())
1583     return Type::TOP;           // Canonical empty value
1584   if (ft->_widen < this->_widen) {
1585     // Do not allow the value of kill->_widen to affect the outcome.
1586     // The widen bits must be allowed to run freely through the graph.
1587     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1588   }
1589   return ft;
1590 }
1591 
1592 //------------------------------eq---------------------------------------------
1593 // Structural equality check for Type representations
1594 bool TypeLong::eq( const Type *t ) const {
1595   const TypeLong *r = t->is_long(); // Handy access
1596   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1597 }
1598 
1599 //------------------------------hash-------------------------------------------
1600 // Type-specific hashing function.
1601 int TypeLong::hash(void) const {
1602   return (int)(_lo+_hi+_widen+(int)Type::Long);
1603 }
1604 
1605 //------------------------------is_finite--------------------------------------
1606 // Has a finite value
1607 bool TypeLong::is_finite() const {
1608   return true;
1609 }
1610 
1611 //------------------------------dump2------------------------------------------
1612 // Dump TypeLong
1613 #ifndef PRODUCT
1614 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1615   if (n > x) {
1616     if (n >= x + 10000)  return NULL;
1617     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1618   } else if (n < x) {
1619     if (n <= x - 10000)  return NULL;
1620     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1621   } else {
1622     return xname;
1623   }
1624   return buf;
1625 }
1626 
1627 static const char* longname(char* buf, jlong n) {
1628   const char* str;
1629   if (n == min_jlong)
1630     return "min";
1631   else if (n < min_jlong + 10000)
1632     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1633   else if (n == max_jlong)
1634     return "max";
1635   else if (n > max_jlong - 10000)
1636     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1637   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1638     return str;
1639   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1640     return str;
1641   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1642     return str;
1643   else
1644     sprintf(buf, JLONG_FORMAT, n);
1645   return buf;
1646 }
1647 
1648 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1649   char buf[80], buf2[80];
1650   if (_lo == min_jlong && _hi == max_jlong)
1651     st->print("long");
1652   else if (is_con())
1653     st->print("long:%s", longname(buf, get_con()));
1654   else if (_hi == max_jlong)
1655     st->print("long:>=%s", longname(buf, _lo));
1656   else if (_lo == min_jlong)
1657     st->print("long:<=%s", longname(buf, _hi));
1658   else
1659     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1660 
1661   if (_widen != 0 && this != TypeLong::LONG)
1662     st->print(":%.*s", _widen, "wwww");
1663 }
1664 #endif
1665 
1666 //------------------------------singleton--------------------------------------
1667 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1668 // constants
1669 bool TypeLong::singleton(void) const {
1670   return _lo >= _hi;
1671 }
1672 
1673 bool TypeLong::empty(void) const {
1674   return _lo > _hi;
1675 }
1676 
1677 //=============================================================================
1678 // Convenience common pre-built types.
1679 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1680 const TypeTuple *TypeTuple::IFFALSE;
1681 const TypeTuple *TypeTuple::IFTRUE;
1682 const TypeTuple *TypeTuple::IFNEITHER;
1683 const TypeTuple *TypeTuple::LOOPBODY;
1684 const TypeTuple *TypeTuple::MEMBAR;
1685 const TypeTuple *TypeTuple::STORECONDITIONAL;
1686 const TypeTuple *TypeTuple::START_I2C;
1687 const TypeTuple *TypeTuple::INT_PAIR;
1688 const TypeTuple *TypeTuple::LONG_PAIR;
1689 const TypeTuple *TypeTuple::INT_CC_PAIR;
1690 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1691 
1692 
1693 //------------------------------make-------------------------------------------
1694 // Make a TypeTuple from the range of a method signature
1695 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1696   ciType* return_type = sig->return_type();
1697   uint arg_cnt = return_type->size();
1698   const Type **field_array = fields(arg_cnt);
1699   switch (return_type->basic_type()) {
1700   case T_LONG:
1701     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1702     field_array[TypeFunc::Parms+1] = Type::HALF;
1703     break;
1704   case T_DOUBLE:
1705     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1706     field_array[TypeFunc::Parms+1] = Type::HALF;
1707     break;
1708   case T_OBJECT:
1709   case T_ARRAY:
1710   case T_BOOLEAN:
1711   case T_CHAR:
1712   case T_FLOAT:
1713   case T_BYTE:
1714   case T_SHORT:
1715   case T_INT:
1716     field_array[TypeFunc::Parms] = get_const_type(return_type);
1717     break;
1718   case T_VOID:
1719     break;
1720   default:
1721     ShouldNotReachHere();
1722   }
1723   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1724 }
1725 
1726 // Make a TypeTuple from the domain of a method signature
1727 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1728   uint arg_cnt = sig->size();
1729 
1730   uint pos = TypeFunc::Parms;
1731   const Type **field_array;
1732   if (recv != NULL) {
1733     arg_cnt++;
1734     field_array = fields(arg_cnt);
1735     // Use get_const_type here because it respects UseUniqueSubclasses:
1736     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1737   } else {
1738     field_array = fields(arg_cnt);
1739   }
1740 
1741   int i = 0;
1742   while (pos < TypeFunc::Parms + arg_cnt) {
1743     ciType* type = sig->type_at(i);
1744 
1745     switch (type->basic_type()) {
1746     case T_LONG:
1747       field_array[pos++] = TypeLong::LONG;
1748       field_array[pos++] = Type::HALF;
1749       break;
1750     case T_DOUBLE:
1751       field_array[pos++] = Type::DOUBLE;
1752       field_array[pos++] = Type::HALF;
1753       break;
1754     case T_OBJECT:
1755     case T_ARRAY:
1756     case T_BOOLEAN:
1757     case T_CHAR:
1758     case T_FLOAT:
1759     case T_BYTE:
1760     case T_SHORT:
1761     case T_INT:
1762       field_array[pos++] = get_const_type(type);
1763       break;
1764     default:
1765       ShouldNotReachHere();
1766     }
1767     i++;
1768   }
1769 
1770   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1771 }
1772 
1773 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1774   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1775 }
1776 
1777 //------------------------------fields-----------------------------------------
1778 // Subroutine call type with space allocated for argument types
1779 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1780 const Type **TypeTuple::fields( uint arg_cnt ) {
1781   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1782   flds[TypeFunc::Control  ] = Type::CONTROL;
1783   flds[TypeFunc::I_O      ] = Type::ABIO;
1784   flds[TypeFunc::Memory   ] = Type::MEMORY;
1785   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1786   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1787 
1788   return flds;
1789 }
1790 
1791 //------------------------------meet-------------------------------------------
1792 // Compute the MEET of two types.  It returns a new Type object.
1793 const Type *TypeTuple::xmeet( const Type *t ) const {
1794   // Perform a fast test for common case; meeting the same types together.
1795   if( this == t ) return this;  // Meeting same type-rep?
1796 
1797   // Current "this->_base" is Tuple
1798   switch (t->base()) {          // switch on original type
1799 
1800   case Bottom:                  // Ye Olde Default
1801     return t;
1802 
1803   default:                      // All else is a mistake
1804     typerr(t);
1805 
1806   case Tuple: {                 // Meeting 2 signatures?
1807     const TypeTuple *x = t->is_tuple();
1808     assert( _cnt == x->_cnt, "" );
1809     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1810     for( uint i=0; i<_cnt; i++ )
1811       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1812     return TypeTuple::make(_cnt,fields);
1813   }
1814   case Top:
1815     break;
1816   }
1817   return this;                  // Return the double constant
1818 }
1819 
1820 //------------------------------xdual------------------------------------------
1821 // Dual: compute field-by-field dual
1822 const Type *TypeTuple::xdual() const {
1823   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1824   for( uint i=0; i<_cnt; i++ )
1825     fields[i] = _fields[i]->dual();
1826   return new TypeTuple(_cnt,fields);
1827 }
1828 
1829 //------------------------------eq---------------------------------------------
1830 // Structural equality check for Type representations
1831 bool TypeTuple::eq( const Type *t ) const {
1832   const TypeTuple *s = (const TypeTuple *)t;
1833   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1834   for (uint i = 0; i < _cnt; i++)
1835     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1836       return false;             // Missed
1837   return true;
1838 }
1839 
1840 //------------------------------hash-------------------------------------------
1841 // Type-specific hashing function.
1842 int TypeTuple::hash(void) const {
1843   intptr_t sum = _cnt;
1844   for( uint i=0; i<_cnt; i++ )
1845     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1846   return sum;
1847 }
1848 
1849 //------------------------------dump2------------------------------------------
1850 // Dump signature Type
1851 #ifndef PRODUCT
1852 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1853   st->print("{");
1854   if( !depth || d[this] ) {     // Check for recursive print
1855     st->print("...}");
1856     return;
1857   }
1858   d.Insert((void*)this, (void*)this);   // Stop recursion
1859   if( _cnt ) {
1860     uint i;
1861     for( i=0; i<_cnt-1; i++ ) {
1862       st->print("%d:", i);
1863       _fields[i]->dump2(d, depth-1, st);
1864       st->print(", ");
1865     }
1866     st->print("%d:", i);
1867     _fields[i]->dump2(d, depth-1, st);
1868   }
1869   st->print("}");
1870 }
1871 #endif
1872 
1873 //------------------------------singleton--------------------------------------
1874 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1875 // constants (Ldi nodes).  Singletons are integer, float or double constants
1876 // or a single symbol.
1877 bool TypeTuple::singleton(void) const {
1878   return false;                 // Never a singleton
1879 }
1880 
1881 bool TypeTuple::empty(void) const {
1882   for( uint i=0; i<_cnt; i++ ) {
1883     if (_fields[i]->empty())  return true;
1884   }
1885   return false;
1886 }
1887 
1888 //=============================================================================
1889 // Convenience common pre-built types.
1890 
1891 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1892   // Certain normalizations keep us sane when comparing types.
1893   // We do not want arrayOop variables to differ only by the wideness
1894   // of their index types.  Pick minimum wideness, since that is the
1895   // forced wideness of small ranges anyway.
1896   if (size->_widen != Type::WidenMin)
1897     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1898   else
1899     return size;
1900 }
1901 
1902 //------------------------------make-------------------------------------------
1903 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1904   if (UseCompressedOops && elem->isa_oopptr()) {
1905     elem = elem->make_narrowoop();
1906   }
1907   size = normalize_array_size(size);
1908   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1909 }
1910 
1911 //------------------------------meet-------------------------------------------
1912 // Compute the MEET of two types.  It returns a new Type object.
1913 const Type *TypeAry::xmeet( const Type *t ) const {
1914   // Perform a fast test for common case; meeting the same types together.
1915   if( this == t ) return this;  // Meeting same type-rep?
1916 
1917   // Current "this->_base" is Ary
1918   switch (t->base()) {          // switch on original type
1919 
1920   case Bottom:                  // Ye Olde Default
1921     return t;
1922 
1923   default:                      // All else is a mistake
1924     typerr(t);
1925 
1926   case Array: {                 // Meeting 2 arrays?
1927     const TypeAry *a = t->is_ary();
1928     return TypeAry::make(_elem->meet_speculative(a->_elem),
1929                          _size->xmeet(a->_size)->is_int(),
1930                          _stable & a->_stable);
1931   }
1932   case Top:
1933     break;
1934   }
1935   return this;                  // Return the double constant
1936 }
1937 
1938 //------------------------------xdual------------------------------------------
1939 // Dual: compute field-by-field dual
1940 const Type *TypeAry::xdual() const {
1941   const TypeInt* size_dual = _size->dual()->is_int();
1942   size_dual = normalize_array_size(size_dual);
1943   return new TypeAry(_elem->dual(), size_dual, !_stable);
1944 }
1945 
1946 //------------------------------eq---------------------------------------------
1947 // Structural equality check for Type representations
1948 bool TypeAry::eq( const Type *t ) const {
1949   const TypeAry *a = (const TypeAry*)t;
1950   return _elem == a->_elem &&
1951     _stable == a->_stable &&
1952     _size == a->_size;
1953 }
1954 
1955 //------------------------------hash-------------------------------------------
1956 // Type-specific hashing function.
1957 int TypeAry::hash(void) const {
1958   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1959 }
1960 
1961 /**
1962  * Return same type without a speculative part in the element
1963  */
1964 const Type* TypeAry::remove_speculative() const {
1965   return make(_elem->remove_speculative(), _size, _stable);
1966 }
1967 
1968 /**
1969  * Return same type with cleaned up speculative part of element
1970  */
1971 const Type* TypeAry::cleanup_speculative() const {
1972   return make(_elem->cleanup_speculative(), _size, _stable);
1973 }
1974 
1975 /**
1976  * Return same type but with a different inline depth (used for speculation)
1977  *
1978  * @param depth  depth to meet with
1979  */
1980 const TypePtr* TypePtr::with_inline_depth(int depth) const {
1981   if (!UseInlineDepthForSpeculativeTypes) {
1982     return this;
1983   }
1984   return make(AnyPtr, _ptr, _offset, _speculative, depth);
1985 }
1986 
1987 //----------------------interface_vs_oop---------------------------------------
1988 #ifdef ASSERT
1989 bool TypeAry::interface_vs_oop(const Type *t) const {
1990   const TypeAry* t_ary = t->is_ary();
1991   if (t_ary) {
1992     return _elem->interface_vs_oop(t_ary->_elem);
1993   }
1994   return false;
1995 }
1996 #endif
1997 
1998 //------------------------------dump2------------------------------------------
1999 #ifndef PRODUCT
2000 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2001   if (_stable)  st->print("stable:");
2002   _elem->dump2(d, depth, st);
2003   st->print("[");
2004   _size->dump2(d, depth, st);
2005   st->print("]");
2006 }
2007 #endif
2008 
2009 //------------------------------singleton--------------------------------------
2010 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2011 // constants (Ldi nodes).  Singletons are integer, float or double constants
2012 // or a single symbol.
2013 bool TypeAry::singleton(void) const {
2014   return false;                 // Never a singleton
2015 }
2016 
2017 bool TypeAry::empty(void) const {
2018   return _elem->empty() || _size->empty();
2019 }
2020 
2021 //--------------------------ary_must_be_exact----------------------------------
2022 bool TypeAry::ary_must_be_exact() const {
2023   if (!UseExactTypes)       return false;
2024   // This logic looks at the element type of an array, and returns true
2025   // if the element type is either a primitive or a final instance class.
2026   // In such cases, an array built on this ary must have no subclasses.
2027   if (_elem == BOTTOM)      return false;  // general array not exact
2028   if (_elem == TOP   )      return false;  // inverted general array not exact
2029   const TypeOopPtr*  toop = NULL;
2030   if (UseCompressedOops && _elem->isa_narrowoop()) {
2031     toop = _elem->make_ptr()->isa_oopptr();
2032   } else {
2033     toop = _elem->isa_oopptr();
2034   }
2035   if (!toop)                return true;   // a primitive type, like int
2036   ciKlass* tklass = toop->klass();
2037   if (tklass == NULL)       return false;  // unloaded class
2038   if (!tklass->is_loaded()) return false;  // unloaded class
2039   const TypeInstPtr* tinst;
2040   if (_elem->isa_narrowoop())
2041     tinst = _elem->make_ptr()->isa_instptr();
2042   else
2043     tinst = _elem->isa_instptr();
2044   if (tinst)
2045     return tklass->as_instance_klass()->is_final();
2046   const TypeAryPtr*  tap;
2047   if (_elem->isa_narrowoop())
2048     tap = _elem->make_ptr()->isa_aryptr();
2049   else
2050     tap = _elem->isa_aryptr();
2051   if (tap)
2052     return tap->ary()->ary_must_be_exact();
2053   return false;
2054 }
2055 
2056 //==============================TypeVect=======================================
2057 // Convenience common pre-built types.
2058 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2059 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2060 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2061 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2062 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2063 
2064 //------------------------------make-------------------------------------------
2065 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2066   BasicType elem_bt = elem->array_element_basic_type();
2067   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2068   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2069   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2070   int size = length * type2aelembytes(elem_bt);
2071   switch (Matcher::vector_ideal_reg(size)) {
2072   case Op_VecS:
2073     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2074   case Op_RegL:
2075   case Op_VecD:
2076   case Op_RegD:
2077     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2078   case Op_VecX:
2079     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2080   case Op_VecY:
2081     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2082   case Op_VecZ:
2083     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2084   }
2085  ShouldNotReachHere();
2086   return NULL;
2087 }
2088 
2089 //------------------------------meet-------------------------------------------
2090 // Compute the MEET of two types.  It returns a new Type object.
2091 const Type *TypeVect::xmeet( const Type *t ) const {
2092   // Perform a fast test for common case; meeting the same types together.
2093   if( this == t ) return this;  // Meeting same type-rep?
2094 
2095   // Current "this->_base" is Vector
2096   switch (t->base()) {          // switch on original type
2097 
2098   case Bottom:                  // Ye Olde Default
2099     return t;
2100 
2101   default:                      // All else is a mistake
2102     typerr(t);
2103 
2104   case VectorS:
2105   case VectorD:
2106   case VectorX:
2107   case VectorY:
2108   case VectorZ: {                // Meeting 2 vectors?
2109     const TypeVect* v = t->is_vect();
2110     assert(  base() == v->base(), "");
2111     assert(length() == v->length(), "");
2112     assert(element_basic_type() == v->element_basic_type(), "");
2113     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2114   }
2115   case Top:
2116     break;
2117   }
2118   return this;
2119 }
2120 
2121 //------------------------------xdual------------------------------------------
2122 // Dual: compute field-by-field dual
2123 const Type *TypeVect::xdual() const {
2124   return new TypeVect(base(), _elem->dual(), _length);
2125 }
2126 
2127 //------------------------------eq---------------------------------------------
2128 // Structural equality check for Type representations
2129 bool TypeVect::eq(const Type *t) const {
2130   const TypeVect *v = t->is_vect();
2131   return (_elem == v->_elem) && (_length == v->_length);
2132 }
2133 
2134 //------------------------------hash-------------------------------------------
2135 // Type-specific hashing function.
2136 int TypeVect::hash(void) const {
2137   return (intptr_t)_elem + (intptr_t)_length;
2138 }
2139 
2140 //------------------------------singleton--------------------------------------
2141 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2142 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2143 // constant value (when vector is created with Replicate code).
2144 bool TypeVect::singleton(void) const {
2145 // There is no Con node for vectors yet.
2146 //  return _elem->singleton();
2147   return false;
2148 }
2149 
2150 bool TypeVect::empty(void) const {
2151   return _elem->empty();
2152 }
2153 
2154 //------------------------------dump2------------------------------------------
2155 #ifndef PRODUCT
2156 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2157   switch (base()) {
2158   case VectorS:
2159     st->print("vectors["); break;
2160   case VectorD:
2161     st->print("vectord["); break;
2162   case VectorX:
2163     st->print("vectorx["); break;
2164   case VectorY:
2165     st->print("vectory["); break;
2166   case VectorZ:
2167     st->print("vectorz["); break;
2168   default:
2169     ShouldNotReachHere();
2170   }
2171   st->print("%d]:{", _length);
2172   _elem->dump2(d, depth, st);
2173   st->print("}");
2174 }
2175 #endif
2176 
2177 
2178 //=============================================================================
2179 // Convenience common pre-built types.
2180 const TypePtr *TypePtr::NULL_PTR;
2181 const TypePtr *TypePtr::NOTNULL;
2182 const TypePtr *TypePtr::BOTTOM;
2183 
2184 //------------------------------meet-------------------------------------------
2185 // Meet over the PTR enum
2186 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2187   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2188   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2189   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2190   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2191   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2192   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2193   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2194 };
2195 
2196 //------------------------------make-------------------------------------------
2197 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2198   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2199 }
2200 
2201 //------------------------------cast_to_ptr_type-------------------------------
2202 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2203   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2204   if( ptr == _ptr ) return this;
2205   return make(_base, ptr, _offset, _speculative, _inline_depth);
2206 }
2207 
2208 //------------------------------get_con----------------------------------------
2209 intptr_t TypePtr::get_con() const {
2210   assert( _ptr == Null, "" );
2211   return _offset;
2212 }
2213 
2214 //------------------------------meet-------------------------------------------
2215 // Compute the MEET of two types.  It returns a new Type object.
2216 const Type *TypePtr::xmeet(const Type *t) const {
2217   const Type* res = xmeet_helper(t);
2218   if (res->isa_ptr() == NULL) {
2219     return res;
2220   }
2221 
2222   const TypePtr* res_ptr = res->is_ptr();
2223   if (res_ptr->speculative() != NULL) {
2224     // type->speculative() == NULL means that speculation is no better
2225     // than type, i.e. type->speculative() == type. So there are 2
2226     // ways to represent the fact that we have no useful speculative
2227     // data and we should use a single one to be able to test for
2228     // equality between types. Check whether type->speculative() ==
2229     // type and set speculative to NULL if it is the case.
2230     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2231       return res_ptr->remove_speculative();
2232     }
2233   }
2234 
2235   return res;
2236 }
2237 
2238 const Type *TypePtr::xmeet_helper(const Type *t) const {
2239   // Perform a fast test for common case; meeting the same types together.
2240   if( this == t ) return this;  // Meeting same type-rep?
2241 
2242   // Current "this->_base" is AnyPtr
2243   switch (t->base()) {          // switch on original type
2244   case Int:                     // Mixing ints & oops happens when javac
2245   case Long:                    // reuses local variables
2246   case FloatTop:
2247   case FloatCon:
2248   case FloatBot:
2249   case DoubleTop:
2250   case DoubleCon:
2251   case DoubleBot:
2252   case NarrowOop:
2253   case NarrowKlass:
2254   case Bottom:                  // Ye Olde Default
2255     return Type::BOTTOM;
2256   case Top:
2257     return this;
2258 
2259   case AnyPtr: {                // Meeting to AnyPtrs
2260     const TypePtr *tp = t->is_ptr();
2261     const TypePtr* speculative = xmeet_speculative(tp);
2262     int depth = meet_inline_depth(tp->inline_depth());
2263     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2264   }
2265   case RawPtr:                  // For these, flip the call around to cut down
2266   case OopPtr:
2267   case InstPtr:                 // on the cases I have to handle.
2268   case AryPtr:
2269   case MetadataPtr:
2270   case KlassPtr:
2271     return t->xmeet(this);      // Call in reverse direction
2272   default:                      // All else is a mistake
2273     typerr(t);
2274 
2275   }
2276   return this;
2277 }
2278 
2279 //------------------------------meet_offset------------------------------------
2280 int TypePtr::meet_offset( int offset ) const {
2281   // Either is 'TOP' offset?  Return the other offset!
2282   if( _offset == OffsetTop ) return offset;
2283   if( offset == OffsetTop ) return _offset;
2284   // If either is different, return 'BOTTOM' offset
2285   if( _offset != offset ) return OffsetBot;
2286   return _offset;
2287 }
2288 
2289 //------------------------------dual_offset------------------------------------
2290 int TypePtr::dual_offset( ) const {
2291   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2292   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2293   return _offset;               // Map everything else into self
2294 }
2295 
2296 //------------------------------xdual------------------------------------------
2297 // Dual: compute field-by-field dual
2298 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2299   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2300 };
2301 const Type *TypePtr::xdual() const {
2302   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2303 }
2304 
2305 //------------------------------xadd_offset------------------------------------
2306 int TypePtr::xadd_offset( intptr_t offset ) const {
2307   // Adding to 'TOP' offset?  Return 'TOP'!
2308   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2309   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2310   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2311   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2312   offset += (intptr_t)_offset;
2313   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2314 
2315   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2316   // It is possible to construct a negative offset during PhaseCCP
2317 
2318   return (int)offset;        // Sum valid offsets
2319 }
2320 
2321 //------------------------------add_offset-------------------------------------
2322 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2323   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2324 }
2325 
2326 //------------------------------eq---------------------------------------------
2327 // Structural equality check for Type representations
2328 bool TypePtr::eq( const Type *t ) const {
2329   const TypePtr *a = (const TypePtr*)t;
2330   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2331 }
2332 
2333 //------------------------------hash-------------------------------------------
2334 // Type-specific hashing function.
2335 int TypePtr::hash(void) const {
2336   return _ptr + _offset + hash_speculative() + _inline_depth;
2337 ;
2338 }
2339 
2340 /**
2341  * Return same type without a speculative part
2342  */
2343 const Type* TypePtr::remove_speculative() const {
2344   if (_speculative == NULL) {
2345     return this;
2346   }
2347   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2348   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2349 }
2350 
2351 /**
2352  * Return same type but drop speculative part if we know we won't use
2353  * it
2354  */
2355 const Type* TypePtr::cleanup_speculative() const {
2356   if (speculative() == NULL) {
2357     return this;
2358   }
2359   const Type* no_spec = remove_speculative();
2360   // If this is NULL_PTR then we don't need the speculative type
2361   // (with_inline_depth in case the current type inline depth is
2362   // InlineDepthTop)
2363   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2364     return no_spec;
2365   }
2366   if (above_centerline(speculative()->ptr())) {
2367     return no_spec;
2368   }
2369   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2370   // If the speculative may be null and is an inexact klass then it
2371   // doesn't help
2372   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2373     return no_spec;
2374   }
2375   return this;
2376 }
2377 
2378 /**
2379  * dual of the speculative part of the type
2380  */
2381 const TypePtr* TypePtr::dual_speculative() const {
2382   if (_speculative == NULL) {
2383     return NULL;
2384   }
2385   return _speculative->dual()->is_ptr();
2386 }
2387 
2388 /**
2389  * meet of the speculative parts of 2 types
2390  *
2391  * @param other  type to meet with
2392  */
2393 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2394   bool this_has_spec = (_speculative != NULL);
2395   bool other_has_spec = (other->speculative() != NULL);
2396 
2397   if (!this_has_spec && !other_has_spec) {
2398     return NULL;
2399   }
2400 
2401   // If we are at a point where control flow meets and one branch has
2402   // a speculative type and the other has not, we meet the speculative
2403   // type of one branch with the actual type of the other. If the
2404   // actual type is exact and the speculative is as well, then the
2405   // result is a speculative type which is exact and we can continue
2406   // speculation further.
2407   const TypePtr* this_spec = _speculative;
2408   const TypePtr* other_spec = other->speculative();
2409 
2410   if (!this_has_spec) {
2411     this_spec = this;
2412   }
2413 
2414   if (!other_has_spec) {
2415     other_spec = other;
2416   }
2417 
2418   return this_spec->meet(other_spec)->is_ptr();
2419 }
2420 
2421 /**
2422  * dual of the inline depth for this type (used for speculation)
2423  */
2424 int TypePtr::dual_inline_depth() const {
2425   return -inline_depth();
2426 }
2427 
2428 /**
2429  * meet of 2 inline depths (used for speculation)
2430  *
2431  * @param depth  depth to meet with
2432  */
2433 int TypePtr::meet_inline_depth(int depth) const {
2434   return MAX2(inline_depth(), depth);
2435 }
2436 
2437 /**
2438  * Are the speculative parts of 2 types equal?
2439  *
2440  * @param other  type to compare this one to
2441  */
2442 bool TypePtr::eq_speculative(const TypePtr* other) const {
2443   if (_speculative == NULL || other->speculative() == NULL) {
2444     return _speculative == other->speculative();
2445   }
2446 
2447   if (_speculative->base() != other->speculative()->base()) {
2448     return false;
2449   }
2450 
2451   return _speculative->eq(other->speculative());
2452 }
2453 
2454 /**
2455  * Hash of the speculative part of the type
2456  */
2457 int TypePtr::hash_speculative() const {
2458   if (_speculative == NULL) {
2459     return 0;
2460   }
2461 
2462   return _speculative->hash();
2463 }
2464 
2465 /**
2466  * add offset to the speculative part of the type
2467  *
2468  * @param offset  offset to add
2469  */
2470 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2471   if (_speculative == NULL) {
2472     return NULL;
2473   }
2474   return _speculative->add_offset(offset)->is_ptr();
2475 }
2476 
2477 /**
2478  * return exact klass from the speculative type if there's one
2479  */
2480 ciKlass* TypePtr::speculative_type() const {
2481   if (_speculative != NULL && _speculative->isa_oopptr()) {
2482     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2483     if (speculative->klass_is_exact()) {
2484       return speculative->klass();
2485     }
2486   }
2487   return NULL;
2488 }
2489 
2490 /**
2491  * return true if speculative type may be null
2492  */
2493 bool TypePtr::speculative_maybe_null() const {
2494   if (_speculative != NULL) {
2495     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2496     return speculative->maybe_null();
2497   }
2498   return true;
2499 }
2500 
2501 /**
2502  * Same as TypePtr::speculative_type() but return the klass only if
2503  * the speculative tells us is not null
2504  */
2505 ciKlass* TypePtr::speculative_type_not_null() const {
2506   if (speculative_maybe_null()) {
2507     return NULL;
2508   }
2509   return speculative_type();
2510 }
2511 
2512 /**
2513  * Check whether new profiling would improve speculative type
2514  *
2515  * @param   exact_kls    class from profiling
2516  * @param   inline_depth inlining depth of profile point
2517  *
2518  * @return  true if type profile is valuable
2519  */
2520 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2521   // no profiling?
2522   if (exact_kls == NULL) {
2523     return false;
2524   }
2525   // no speculative type or non exact speculative type?
2526   if (speculative_type() == NULL) {
2527     return true;
2528   }
2529   // If the node already has an exact speculative type keep it,
2530   // unless it was provided by profiling that is at a deeper
2531   // inlining level. Profiling at a higher inlining depth is
2532   // expected to be less accurate.
2533   if (_speculative->inline_depth() == InlineDepthBottom) {
2534     return false;
2535   }
2536   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2537   return inline_depth < _speculative->inline_depth();
2538 }
2539 
2540 /**
2541  * Check whether new profiling would improve ptr (= tells us it is non
2542  * null)
2543  *
2544  * @param   maybe_null true if profiling tells the ptr may be null
2545  *
2546  * @return  true if ptr profile is valuable
2547  */
2548 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2549   // profiling doesn't tell us anything useful
2550   if (maybe_null) {
2551     return false;
2552   }
2553   // We already know this is not be null
2554   if (!this->maybe_null()) {
2555     return false;
2556   }
2557   // We already know the speculative type cannot be null
2558   if (!speculative_maybe_null()) {
2559     return false;
2560   }
2561   return true;
2562 }
2563 
2564 //------------------------------dump2------------------------------------------
2565 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2566   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2567 };
2568 
2569 #ifndef PRODUCT
2570 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2571   if( _ptr == Null ) st->print("NULL");
2572   else st->print("%s *", ptr_msg[_ptr]);
2573   if( _offset == OffsetTop ) st->print("+top");
2574   else if( _offset == OffsetBot ) st->print("+bot");
2575   else if( _offset ) st->print("+%d", _offset);
2576   dump_inline_depth(st);
2577   dump_speculative(st);
2578 }
2579 
2580 /**
2581  *dump the speculative part of the type
2582  */
2583 void TypePtr::dump_speculative(outputStream *st) const {
2584   if (_speculative != NULL) {
2585     st->print(" (speculative=");
2586     _speculative->dump_on(st);
2587     st->print(")");
2588   }
2589 }
2590 
2591 /**
2592  *dump the inline depth of the type
2593  */
2594 void TypePtr::dump_inline_depth(outputStream *st) const {
2595   if (_inline_depth != InlineDepthBottom) {
2596     if (_inline_depth == InlineDepthTop) {
2597       st->print(" (inline_depth=InlineDepthTop)");
2598     } else {
2599       st->print(" (inline_depth=%d)", _inline_depth);
2600     }
2601   }
2602 }
2603 #endif
2604 
2605 //------------------------------singleton--------------------------------------
2606 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2607 // constants
2608 bool TypePtr::singleton(void) const {
2609   // TopPTR, Null, AnyNull, Constant are all singletons
2610   return (_offset != OffsetBot) && !below_centerline(_ptr);
2611 }
2612 
2613 bool TypePtr::empty(void) const {
2614   return (_offset == OffsetTop) || above_centerline(_ptr);
2615 }
2616 
2617 //=============================================================================
2618 // Convenience common pre-built types.
2619 const TypeRawPtr *TypeRawPtr::BOTTOM;
2620 const TypeRawPtr *TypeRawPtr::NOTNULL;
2621 
2622 //------------------------------make-------------------------------------------
2623 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2624   assert( ptr != Constant, "what is the constant?" );
2625   assert( ptr != Null, "Use TypePtr for NULL" );
2626   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2627 }
2628 
2629 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2630   assert( bits, "Use TypePtr for NULL" );
2631   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2632 }
2633 
2634 //------------------------------cast_to_ptr_type-------------------------------
2635 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2636   assert( ptr != Constant, "what is the constant?" );
2637   assert( ptr != Null, "Use TypePtr for NULL" );
2638   assert( _bits==0, "Why cast a constant address?");
2639   if( ptr == _ptr ) return this;
2640   return make(ptr);
2641 }
2642 
2643 //------------------------------get_con----------------------------------------
2644 intptr_t TypeRawPtr::get_con() const {
2645   assert( _ptr == Null || _ptr == Constant, "" );
2646   return (intptr_t)_bits;
2647 }
2648 
2649 //------------------------------meet-------------------------------------------
2650 // Compute the MEET of two types.  It returns a new Type object.
2651 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2652   // Perform a fast test for common case; meeting the same types together.
2653   if( this == t ) return this;  // Meeting same type-rep?
2654 
2655   // Current "this->_base" is RawPtr
2656   switch( t->base() ) {         // switch on original type
2657   case Bottom:                  // Ye Olde Default
2658     return t;
2659   case Top:
2660     return this;
2661   case AnyPtr:                  // Meeting to AnyPtrs
2662     break;
2663   case RawPtr: {                // might be top, bot, any/not or constant
2664     enum PTR tptr = t->is_ptr()->ptr();
2665     enum PTR ptr = meet_ptr( tptr );
2666     if( ptr == Constant ) {     // Cannot be equal constants, so...
2667       if( tptr == Constant && _ptr != Constant)  return t;
2668       if( _ptr == Constant && tptr != Constant)  return this;
2669       ptr = NotNull;            // Fall down in lattice
2670     }
2671     return make( ptr );
2672   }
2673 
2674   case OopPtr:
2675   case InstPtr:
2676   case AryPtr:
2677   case MetadataPtr:
2678   case KlassPtr:
2679     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2680   default:                      // All else is a mistake
2681     typerr(t);
2682   }
2683 
2684   // Found an AnyPtr type vs self-RawPtr type
2685   const TypePtr *tp = t->is_ptr();
2686   switch (tp->ptr()) {
2687   case TypePtr::TopPTR:  return this;
2688   case TypePtr::BotPTR:  return t;
2689   case TypePtr::Null:
2690     if( _ptr == TypePtr::TopPTR ) return t;
2691     return TypeRawPtr::BOTTOM;
2692   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2693   case TypePtr::AnyNull:
2694     if( _ptr == TypePtr::Constant) return this;
2695     return make( meet_ptr(TypePtr::AnyNull) );
2696   default: ShouldNotReachHere();
2697   }
2698   return this;
2699 }
2700 
2701 //------------------------------xdual------------------------------------------
2702 // Dual: compute field-by-field dual
2703 const Type *TypeRawPtr::xdual() const {
2704   return new TypeRawPtr( dual_ptr(), _bits );
2705 }
2706 
2707 //------------------------------add_offset-------------------------------------
2708 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2709   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2710   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2711   if( offset == 0 ) return this; // No change
2712   switch (_ptr) {
2713   case TypePtr::TopPTR:
2714   case TypePtr::BotPTR:
2715   case TypePtr::NotNull:
2716     return this;
2717   case TypePtr::Null:
2718   case TypePtr::Constant: {
2719     address bits = _bits+offset;
2720     if ( bits == 0 ) return TypePtr::NULL_PTR;
2721     return make( bits );
2722   }
2723   default:  ShouldNotReachHere();
2724   }
2725   return NULL;                  // Lint noise
2726 }
2727 
2728 //------------------------------eq---------------------------------------------
2729 // Structural equality check for Type representations
2730 bool TypeRawPtr::eq( const Type *t ) const {
2731   const TypeRawPtr *a = (const TypeRawPtr*)t;
2732   return _bits == a->_bits && TypePtr::eq(t);
2733 }
2734 
2735 //------------------------------hash-------------------------------------------
2736 // Type-specific hashing function.
2737 int TypeRawPtr::hash(void) const {
2738   return (intptr_t)_bits + TypePtr::hash();
2739 }
2740 
2741 //------------------------------dump2------------------------------------------
2742 #ifndef PRODUCT
2743 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2744   if( _ptr == Constant )
2745     st->print(INTPTR_FORMAT, _bits);
2746   else
2747     st->print("rawptr:%s", ptr_msg[_ptr]);
2748 }
2749 #endif
2750 
2751 //=============================================================================
2752 // Convenience common pre-built type.
2753 const TypeOopPtr *TypeOopPtr::BOTTOM;
2754 
2755 //------------------------------TypeOopPtr-------------------------------------
2756 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2757                        int instance_id, const TypePtr* speculative, int inline_depth)
2758   : TypePtr(t, ptr, offset, speculative, inline_depth),
2759     _const_oop(o), _klass(k),
2760     _klass_is_exact(xk),
2761     _is_ptr_to_narrowoop(false),
2762     _is_ptr_to_narrowklass(false),
2763     _is_ptr_to_boxed_value(false),
2764     _instance_id(instance_id) {
2765   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2766       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2767     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2768   }
2769 #ifdef _LP64
2770   if (_offset != 0) {
2771     if (_offset == oopDesc::klass_offset_in_bytes()) {
2772       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2773     } else if (klass() == NULL) {
2774       // Array with unknown body type
2775       assert(this->isa_aryptr(), "only arrays without klass");
2776       _is_ptr_to_narrowoop = UseCompressedOops;
2777     } else if (this->isa_aryptr()) {
2778       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2779                              _offset != arrayOopDesc::length_offset_in_bytes());
2780     } else if (klass()->is_instance_klass()) {
2781       ciInstanceKlass* ik = klass()->as_instance_klass();
2782       ciField* field = NULL;
2783       if (this->isa_klassptr()) {
2784         // Perm objects don't use compressed references
2785       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2786         // unsafe access
2787         _is_ptr_to_narrowoop = UseCompressedOops;
2788       } else { // exclude unsafe ops
2789         assert(this->isa_instptr(), "must be an instance ptr.");
2790 
2791         if (klass() == ciEnv::current()->Class_klass() &&
2792             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2793              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2794           // Special hidden fields from the Class.
2795           assert(this->isa_instptr(), "must be an instance ptr.");
2796           _is_ptr_to_narrowoop = false;
2797         } else if (klass() == ciEnv::current()->Class_klass() &&
2798                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2799           // Static fields
2800           assert(o != NULL, "must be constant");
2801           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2802           ciField* field = k->get_field_by_offset(_offset, true);
2803           assert(field != NULL, "missing field");
2804           BasicType basic_elem_type = field->layout_type();
2805           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2806                                                        basic_elem_type == T_ARRAY);
2807         } else {
2808           // Instance fields which contains a compressed oop references.
2809           field = ik->get_field_by_offset(_offset, false);
2810           if (field != NULL) {
2811             BasicType basic_elem_type = field->layout_type();
2812             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2813                                                          basic_elem_type == T_ARRAY);
2814           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2815             // Compile::find_alias_type() cast exactness on all types to verify
2816             // that it does not affect alias type.
2817             _is_ptr_to_narrowoop = UseCompressedOops;
2818           } else {
2819             // Type for the copy start in LibraryCallKit::inline_native_clone().
2820             _is_ptr_to_narrowoop = UseCompressedOops;
2821           }
2822         }
2823       }
2824     }
2825   }
2826 #endif
2827 }
2828 
2829 //------------------------------make-------------------------------------------
2830 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2831                                      const TypePtr* speculative, int inline_depth) {
2832   assert(ptr != Constant, "no constant generic pointers");
2833   ciKlass*  k = Compile::current()->env()->Object_klass();
2834   bool      xk = false;
2835   ciObject* o = NULL;
2836   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2837 }
2838 
2839 
2840 //------------------------------cast_to_ptr_type-------------------------------
2841 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2842   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2843   if( ptr == _ptr ) return this;
2844   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2845 }
2846 
2847 //-----------------------------cast_to_instance_id----------------------------
2848 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2849   // There are no instances of a general oop.
2850   // Return self unchanged.
2851   return this;
2852 }
2853 
2854 //-----------------------------cast_to_exactness-------------------------------
2855 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2856   // There is no such thing as an exact general oop.
2857   // Return self unchanged.
2858   return this;
2859 }
2860 
2861 
2862 //------------------------------as_klass_type----------------------------------
2863 // Return the klass type corresponding to this instance or array type.
2864 // It is the type that is loaded from an object of this type.
2865 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2866   ciKlass* k = klass();
2867   bool    xk = klass_is_exact();
2868   if (k == NULL)
2869     return TypeKlassPtr::OBJECT;
2870   else
2871     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2872 }
2873 
2874 //------------------------------meet-------------------------------------------
2875 // Compute the MEET of two types.  It returns a new Type object.
2876 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2877   // Perform a fast test for common case; meeting the same types together.
2878   if( this == t ) return this;  // Meeting same type-rep?
2879 
2880   // Current "this->_base" is OopPtr
2881   switch (t->base()) {          // switch on original type
2882 
2883   case Int:                     // Mixing ints & oops happens when javac
2884   case Long:                    // reuses local variables
2885   case FloatTop:
2886   case FloatCon:
2887   case FloatBot:
2888   case DoubleTop:
2889   case DoubleCon:
2890   case DoubleBot:
2891   case NarrowOop:
2892   case NarrowKlass:
2893   case Bottom:                  // Ye Olde Default
2894     return Type::BOTTOM;
2895   case Top:
2896     return this;
2897 
2898   default:                      // All else is a mistake
2899     typerr(t);
2900 
2901   case RawPtr:
2902   case MetadataPtr:
2903   case KlassPtr:
2904     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2905 
2906   case AnyPtr: {
2907     // Found an AnyPtr type vs self-OopPtr type
2908     const TypePtr *tp = t->is_ptr();
2909     int offset = meet_offset(tp->offset());
2910     PTR ptr = meet_ptr(tp->ptr());
2911     const TypePtr* speculative = xmeet_speculative(tp);
2912     int depth = meet_inline_depth(tp->inline_depth());
2913     switch (tp->ptr()) {
2914     case Null:
2915       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2916       // else fall through:
2917     case TopPTR:
2918     case AnyNull: {
2919       int instance_id = meet_instance_id(InstanceTop);
2920       return make(ptr, offset, instance_id, speculative, depth);
2921     }
2922     case BotPTR:
2923     case NotNull:
2924       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2925     default: typerr(t);
2926     }
2927   }
2928 
2929   case OopPtr: {                 // Meeting to other OopPtrs
2930     const TypeOopPtr *tp = t->is_oopptr();
2931     int instance_id = meet_instance_id(tp->instance_id());
2932     const TypePtr* speculative = xmeet_speculative(tp);
2933     int depth = meet_inline_depth(tp->inline_depth());
2934     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2935   }
2936 
2937   case InstPtr:                  // For these, flip the call around to cut down
2938   case AryPtr:
2939     return t->xmeet(this);      // Call in reverse direction
2940 
2941   } // End of switch
2942   return this;                  // Return the double constant
2943 }
2944 
2945 
2946 //------------------------------xdual------------------------------------------
2947 // Dual of a pure heap pointer.  No relevant klass or oop information.
2948 const Type *TypeOopPtr::xdual() const {
2949   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2950   assert(const_oop() == NULL,             "no constants here");
2951   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2952 }
2953 
2954 //--------------------------make_from_klass_common-----------------------------
2955 // Computes the element-type given a klass.
2956 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2957   if (klass->is_instance_klass()) {
2958     Compile* C = Compile::current();
2959     Dependencies* deps = C->dependencies();
2960     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2961     // Element is an instance
2962     bool klass_is_exact = false;
2963     if (klass->is_loaded()) {
2964       // Try to set klass_is_exact.
2965       ciInstanceKlass* ik = klass->as_instance_klass();
2966       klass_is_exact = ik->is_final();
2967       if (!klass_is_exact && klass_change
2968           && deps != NULL && UseUniqueSubclasses) {
2969         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2970         if (sub != NULL) {
2971           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2972           klass = ik = sub;
2973           klass_is_exact = sub->is_final();
2974         }
2975       }
2976       if (!klass_is_exact && try_for_exact
2977           && deps != NULL && UseExactTypes) {
2978         if (!ik->is_interface() && !ik->has_subklass()) {
2979           // Add a dependence; if concrete subclass added we need to recompile
2980           deps->assert_leaf_type(ik);
2981           klass_is_exact = true;
2982         }
2983       }
2984     }
2985     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2986   } else if (klass->is_obj_array_klass()) {
2987     // Element is an object array. Recursively call ourself.
2988     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2989     bool xk = etype->klass_is_exact();
2990     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2991     // We used to pass NotNull in here, asserting that the sub-arrays
2992     // are all not-null.  This is not true in generally, as code can
2993     // slam NULLs down in the subarrays.
2994     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2995     return arr;
2996   } else if (klass->is_type_array_klass()) {
2997     // Element is an typeArray
2998     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2999     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3000     // We used to pass NotNull in here, asserting that the array pointer
3001     // is not-null. That was not true in general.
3002     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3003     return arr;
3004   } else {
3005     ShouldNotReachHere();
3006     return NULL;
3007   }
3008 }
3009 
3010 //------------------------------make_from_constant-----------------------------
3011 // Make a java pointer from an oop constant
3012 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
3013                                                  bool require_constant,
3014                                                  bool is_autobox_cache) {
3015   assert(!o->is_null_object(), "null object not yet handled here.");
3016   ciKlass* klass = o->klass();
3017   if (klass->is_instance_klass()) {
3018     // Element is an instance
3019     if (require_constant) {
3020       if (!o->can_be_constant())  return NULL;
3021     } else if (!o->should_be_constant()) {
3022       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3023     }
3024     return TypeInstPtr::make(o);
3025   } else if (klass->is_obj_array_klass()) {
3026     // Element is an object array. Recursively call ourself.
3027     const TypeOopPtr *etype =
3028       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3029     if (is_autobox_cache) {
3030       // The pointers in the autobox arrays are always non-null.
3031       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3032     }
3033     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3034     // We used to pass NotNull in here, asserting that the sub-arrays
3035     // are all not-null.  This is not true in generally, as code can
3036     // slam NULLs down in the subarrays.
3037     if (require_constant) {
3038       if (!o->can_be_constant())  return NULL;
3039     } else if (!o->should_be_constant()) {
3040       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3041     }
3042     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
3043     return arr;
3044   } else if (klass->is_type_array_klass()) {
3045     // Element is an typeArray
3046     const Type* etype =
3047       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3048     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3049     // We used to pass NotNull in here, asserting that the array pointer
3050     // is not-null. That was not true in general.
3051     if (require_constant) {
3052       if (!o->can_be_constant())  return NULL;
3053     } else if (!o->should_be_constant()) {
3054       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3055     }
3056     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3057     return arr;
3058   }
3059 
3060   fatal("unhandled object type");
3061   return NULL;
3062 }
3063 
3064 //------------------------------get_con----------------------------------------
3065 intptr_t TypeOopPtr::get_con() const {
3066   assert( _ptr == Null || _ptr == Constant, "" );
3067   assert( _offset >= 0, "" );
3068 
3069   if (_offset != 0) {
3070     // After being ported to the compiler interface, the compiler no longer
3071     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3072     // to a handle at compile time.  This handle is embedded in the generated
3073     // code and dereferenced at the time the nmethod is made.  Until that time,
3074     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3075     // have access to the addresses!).  This does not seem to currently happen,
3076     // but this assertion here is to help prevent its occurence.
3077     tty->print_cr("Found oop constant with non-zero offset");
3078     ShouldNotReachHere();
3079   }
3080 
3081   return (intptr_t)const_oop()->constant_encoding();
3082 }
3083 
3084 
3085 //-----------------------------filter------------------------------------------
3086 // Do not allow interface-vs.-noninterface joins to collapse to top.
3087 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3088 
3089   const Type* ft = join_helper(kills, include_speculative);
3090   const TypeInstPtr* ftip = ft->isa_instptr();
3091   const TypeInstPtr* ktip = kills->isa_instptr();
3092 
3093   if (ft->empty()) {
3094     // Check for evil case of 'this' being a class and 'kills' expecting an
3095     // interface.  This can happen because the bytecodes do not contain
3096     // enough type info to distinguish a Java-level interface variable
3097     // from a Java-level object variable.  If we meet 2 classes which
3098     // both implement interface I, but their meet is at 'j/l/O' which
3099     // doesn't implement I, we have no way to tell if the result should
3100     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3101     // into a Phi which "knows" it's an Interface type we'll have to
3102     // uplift the type.
3103     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3104       return kills;             // Uplift to interface
3105 
3106     return Type::TOP;           // Canonical empty value
3107   }
3108 
3109   // If we have an interface-typed Phi or cast and we narrow to a class type,
3110   // the join should report back the class.  However, if we have a J/L/Object
3111   // class-typed Phi and an interface flows in, it's possible that the meet &
3112   // join report an interface back out.  This isn't possible but happens
3113   // because the type system doesn't interact well with interfaces.
3114   if (ftip != NULL && ktip != NULL &&
3115       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3116       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3117     assert(!ftip->klass_is_exact(), "interface could not be exact");
3118     return ktip->cast_to_ptr_type(ftip->ptr());
3119   }
3120 
3121   return ft;
3122 }
3123 
3124 //------------------------------eq---------------------------------------------
3125 // Structural equality check for Type representations
3126 bool TypeOopPtr::eq( const Type *t ) const {
3127   const TypeOopPtr *a = (const TypeOopPtr*)t;
3128   if (_klass_is_exact != a->_klass_is_exact ||
3129       _instance_id != a->_instance_id)  return false;
3130   ciObject* one = const_oop();
3131   ciObject* two = a->const_oop();
3132   if (one == NULL || two == NULL) {
3133     return (one == two) && TypePtr::eq(t);
3134   } else {
3135     return one->equals(two) && TypePtr::eq(t);
3136   }
3137 }
3138 
3139 //------------------------------hash-------------------------------------------
3140 // Type-specific hashing function.
3141 int TypeOopPtr::hash(void) const {
3142   return
3143     (const_oop() ? const_oop()->hash() : 0) +
3144     _klass_is_exact +
3145     _instance_id +
3146     TypePtr::hash();
3147 }
3148 
3149 //------------------------------dump2------------------------------------------
3150 #ifndef PRODUCT
3151 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3152   st->print("oopptr:%s", ptr_msg[_ptr]);
3153   if( _klass_is_exact ) st->print(":exact");
3154   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
3155   switch( _offset ) {
3156   case OffsetTop: st->print("+top"); break;
3157   case OffsetBot: st->print("+any"); break;
3158   case         0: break;
3159   default:        st->print("+%d",_offset); break;
3160   }
3161   if (_instance_id == InstanceTop)
3162     st->print(",iid=top");
3163   else if (_instance_id != InstanceBot)
3164     st->print(",iid=%d",_instance_id);
3165 
3166   dump_inline_depth(st);
3167   dump_speculative(st);
3168 }
3169 #endif
3170 
3171 //------------------------------singleton--------------------------------------
3172 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3173 // constants
3174 bool TypeOopPtr::singleton(void) const {
3175   // detune optimizer to not generate constant oop + constant offset as a constant!
3176   // TopPTR, Null, AnyNull, Constant are all singletons
3177   return (_offset == 0) && !below_centerline(_ptr);
3178 }
3179 
3180 //------------------------------add_offset-------------------------------------
3181 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3182   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3183 }
3184 
3185 /**
3186  * Return same type without a speculative part
3187  */
3188 const Type* TypeOopPtr::remove_speculative() const {
3189   if (_speculative == NULL) {
3190     return this;
3191   }
3192   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3193   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3194 }
3195 
3196 /**
3197  * Return same type but drop speculative part if we know we won't use
3198  * it
3199  */
3200 const Type* TypeOopPtr::cleanup_speculative() const {
3201   // If the klass is exact and the ptr is not null then there's
3202   // nothing that the speculative type can help us with
3203   if (klass_is_exact() && !maybe_null()) {
3204     return remove_speculative();
3205   }
3206   return TypePtr::cleanup_speculative();
3207 }
3208 
3209 /**
3210  * Return same type but with a different inline depth (used for speculation)
3211  *
3212  * @param depth  depth to meet with
3213  */
3214 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3215   if (!UseInlineDepthForSpeculativeTypes) {
3216     return this;
3217   }
3218   return make(_ptr, _offset, _instance_id, _speculative, depth);
3219 }
3220 
3221 //------------------------------meet_instance_id--------------------------------
3222 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3223   // Either is 'TOP' instance?  Return the other instance!
3224   if( _instance_id == InstanceTop ) return  instance_id;
3225   if(  instance_id == InstanceTop ) return _instance_id;
3226   // If either is different, return 'BOTTOM' instance
3227   if( _instance_id != instance_id ) return InstanceBot;
3228   return _instance_id;
3229 }
3230 
3231 //------------------------------dual_instance_id--------------------------------
3232 int TypeOopPtr::dual_instance_id( ) const {
3233   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3234   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3235   return _instance_id;              // Map everything else into self
3236 }
3237 
3238 /**
3239  * Check whether new profiling would improve speculative type
3240  *
3241  * @param   exact_kls    class from profiling
3242  * @param   inline_depth inlining depth of profile point
3243  *
3244  * @return  true if type profile is valuable
3245  */
3246 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3247   // no way to improve an already exact type
3248   if (klass_is_exact()) {
3249     return false;
3250   }
3251   return TypePtr::would_improve_type(exact_kls, inline_depth);
3252 }
3253 
3254 //=============================================================================
3255 // Convenience common pre-built types.
3256 const TypeInstPtr *TypeInstPtr::NOTNULL;
3257 const TypeInstPtr *TypeInstPtr::BOTTOM;
3258 const TypeInstPtr *TypeInstPtr::MIRROR;
3259 const TypeInstPtr *TypeInstPtr::MARK;
3260 const TypeInstPtr *TypeInstPtr::KLASS;
3261 
3262 //------------------------------TypeInstPtr-------------------------------------
3263 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3264                          int instance_id, const TypePtr* speculative, int inline_depth)
3265   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3266     _name(k->name()) {
3267    assert(k != NULL &&
3268           (k->is_loaded() || o == NULL),
3269           "cannot have constants with non-loaded klass");
3270 };
3271 
3272 //------------------------------make-------------------------------------------
3273 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3274                                      ciKlass* k,
3275                                      bool xk,
3276                                      ciObject* o,
3277                                      int offset,
3278                                      int instance_id,
3279                                      const TypePtr* speculative,
3280                                      int inline_depth) {
3281   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3282   // Either const_oop() is NULL or else ptr is Constant
3283   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3284           "constant pointers must have a value supplied" );
3285   // Ptr is never Null
3286   assert( ptr != Null, "NULL pointers are not typed" );
3287 
3288   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3289   if (!UseExactTypes)  xk = false;
3290   if (ptr == Constant) {
3291     // Note:  This case includes meta-object constants, such as methods.
3292     xk = true;
3293   } else if (k->is_loaded()) {
3294     ciInstanceKlass* ik = k->as_instance_klass();
3295     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3296     if (xk && ik->is_interface())  xk = false;  // no exact interface
3297   }
3298 
3299   // Now hash this baby
3300   TypeInstPtr *result =
3301     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3302 
3303   return result;
3304 }
3305 
3306 /**
3307  *  Create constant type for a constant boxed value
3308  */
3309 const Type* TypeInstPtr::get_const_boxed_value() const {
3310   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3311   assert((const_oop() != NULL), "should be called only for constant object");
3312   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3313   BasicType bt = constant.basic_type();
3314   switch (bt) {
3315     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3316     case T_INT:      return TypeInt::make(constant.as_int());
3317     case T_CHAR:     return TypeInt::make(constant.as_char());
3318     case T_BYTE:     return TypeInt::make(constant.as_byte());
3319     case T_SHORT:    return TypeInt::make(constant.as_short());
3320     case T_FLOAT:    return TypeF::make(constant.as_float());
3321     case T_DOUBLE:   return TypeD::make(constant.as_double());
3322     case T_LONG:     return TypeLong::make(constant.as_long());
3323     default:         break;
3324   }
3325   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3326   return NULL;
3327 }
3328 
3329 //------------------------------cast_to_ptr_type-------------------------------
3330 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3331   if( ptr == _ptr ) return this;
3332   // Reconstruct _sig info here since not a problem with later lazy
3333   // construction, _sig will show up on demand.
3334   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3335 }
3336 
3337 
3338 //-----------------------------cast_to_exactness-------------------------------
3339 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3340   if( klass_is_exact == _klass_is_exact ) return this;
3341   if (!UseExactTypes)  return this;
3342   if (!_klass->is_loaded())  return this;
3343   ciInstanceKlass* ik = _klass->as_instance_klass();
3344   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3345   if( ik->is_interface() )              return this;  // cannot set xk
3346   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3347 }
3348 
3349 //-----------------------------cast_to_instance_id----------------------------
3350 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3351   if( instance_id == _instance_id ) return this;
3352   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3353 }
3354 
3355 //------------------------------xmeet_unloaded---------------------------------
3356 // Compute the MEET of two InstPtrs when at least one is unloaded.
3357 // Assume classes are different since called after check for same name/class-loader
3358 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3359     int off = meet_offset(tinst->offset());
3360     PTR ptr = meet_ptr(tinst->ptr());
3361     int instance_id = meet_instance_id(tinst->instance_id());
3362     const TypePtr* speculative = xmeet_speculative(tinst);
3363     int depth = meet_inline_depth(tinst->inline_depth());
3364 
3365     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3366     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3367     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3368       //
3369       // Meet unloaded class with java/lang/Object
3370       //
3371       // Meet
3372       //          |                     Unloaded Class
3373       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3374       //  ===================================================================
3375       //   TOP    | ..........................Unloaded......................|
3376       //  AnyNull |  U-AN    |................Unloaded......................|
3377       // Constant | ... O-NN .................................. |   O-BOT   |
3378       //  NotNull | ... O-NN .................................. |   O-BOT   |
3379       //  BOTTOM  | ........................Object-BOTTOM ..................|
3380       //
3381       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3382       //
3383       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3384       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3385       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3386       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3387         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3388         else                                      { return TypeInstPtr::NOTNULL; }
3389       }
3390       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3391 
3392       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3393     }
3394 
3395     // Both are unloaded, not the same class, not Object
3396     // Or meet unloaded with a different loaded class, not java/lang/Object
3397     if( ptr != TypePtr::BotPTR ) {
3398       return TypeInstPtr::NOTNULL;
3399     }
3400     return TypeInstPtr::BOTTOM;
3401 }
3402 
3403 
3404 //------------------------------meet-------------------------------------------
3405 // Compute the MEET of two types.  It returns a new Type object.
3406 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3407   // Perform a fast test for common case; meeting the same types together.
3408   if( this == t ) return this;  // Meeting same type-rep?
3409 
3410   // Current "this->_base" is Pointer
3411   switch (t->base()) {          // switch on original type
3412 
3413   case Int:                     // Mixing ints & oops happens when javac
3414   case Long:                    // reuses local variables
3415   case FloatTop:
3416   case FloatCon:
3417   case FloatBot:
3418   case DoubleTop:
3419   case DoubleCon:
3420   case DoubleBot:
3421   case NarrowOop:
3422   case NarrowKlass:
3423   case Bottom:                  // Ye Olde Default
3424     return Type::BOTTOM;
3425   case Top:
3426     return this;
3427 
3428   default:                      // All else is a mistake
3429     typerr(t);
3430 
3431   case MetadataPtr:
3432   case KlassPtr:
3433   case RawPtr: return TypePtr::BOTTOM;
3434 
3435   case AryPtr: {                // All arrays inherit from Object class
3436     const TypeAryPtr *tp = t->is_aryptr();
3437     int offset = meet_offset(tp->offset());
3438     PTR ptr = meet_ptr(tp->ptr());
3439     int instance_id = meet_instance_id(tp->instance_id());
3440     const TypePtr* speculative = xmeet_speculative(tp);
3441     int depth = meet_inline_depth(tp->inline_depth());
3442     switch (ptr) {
3443     case TopPTR:
3444     case AnyNull:                // Fall 'down' to dual of object klass
3445       // For instances when a subclass meets a superclass we fall
3446       // below the centerline when the superclass is exact. We need to
3447       // do the same here.
3448       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3449         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3450       } else {
3451         // cannot subclass, so the meet has to fall badly below the centerline
3452         ptr = NotNull;
3453         instance_id = InstanceBot;
3454         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3455       }
3456     case Constant:
3457     case NotNull:
3458     case BotPTR:                // Fall down to object klass
3459       // LCA is object_klass, but if we subclass from the top we can do better
3460       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3461         // If 'this' (InstPtr) is above the centerline and it is Object class
3462         // then we can subclass in the Java class hierarchy.
3463         // For instances when a subclass meets a superclass we fall
3464         // below the centerline when the superclass is exact. We need
3465         // to do the same here.
3466         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3467           // that is, tp's array type is a subtype of my klass
3468           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3469                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3470         }
3471       }
3472       // The other case cannot happen, since I cannot be a subtype of an array.
3473       // The meet falls down to Object class below centerline.
3474       if( ptr == Constant )
3475          ptr = NotNull;
3476       instance_id = InstanceBot;
3477       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3478     default: typerr(t);
3479     }
3480   }
3481 
3482   case OopPtr: {                // Meeting to OopPtrs
3483     // Found a OopPtr type vs self-InstPtr type
3484     const TypeOopPtr *tp = t->is_oopptr();
3485     int offset = meet_offset(tp->offset());
3486     PTR ptr = meet_ptr(tp->ptr());
3487     switch (tp->ptr()) {
3488     case TopPTR:
3489     case AnyNull: {
3490       int instance_id = meet_instance_id(InstanceTop);
3491       const TypePtr* speculative = xmeet_speculative(tp);
3492       int depth = meet_inline_depth(tp->inline_depth());
3493       return make(ptr, klass(), klass_is_exact(),
3494                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3495     }
3496     case NotNull:
3497     case BotPTR: {
3498       int instance_id = meet_instance_id(tp->instance_id());
3499       const TypePtr* speculative = xmeet_speculative(tp);
3500       int depth = meet_inline_depth(tp->inline_depth());
3501       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3502     }
3503     default: typerr(t);
3504     }
3505   }
3506 
3507   case AnyPtr: {                // Meeting to AnyPtrs
3508     // Found an AnyPtr type vs self-InstPtr type
3509     const TypePtr *tp = t->is_ptr();
3510     int offset = meet_offset(tp->offset());
3511     PTR ptr = meet_ptr(tp->ptr());
3512     int instance_id = meet_instance_id(InstanceTop);
3513     const TypePtr* speculative = xmeet_speculative(tp);
3514     int depth = meet_inline_depth(tp->inline_depth());
3515     switch (tp->ptr()) {
3516     case Null:
3517       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3518       // else fall through to AnyNull
3519     case TopPTR:
3520     case AnyNull: {
3521       return make(ptr, klass(), klass_is_exact(),
3522                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3523     }
3524     case NotNull:
3525     case BotPTR:
3526       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3527     default: typerr(t);
3528     }
3529   }
3530 
3531   /*
3532                  A-top         }
3533                /   |   \       }  Tops
3534            B-top A-any C-top   }
3535               | /  |  \ |      }  Any-nulls
3536            B-any   |   C-any   }
3537               |    |    |
3538            B-con A-con C-con   } constants; not comparable across classes
3539               |    |    |
3540            B-not   |   C-not   }
3541               | \  |  / |      }  not-nulls
3542            B-bot A-not C-bot   }
3543                \   |   /       }  Bottoms
3544                  A-bot         }
3545   */
3546 
3547   case InstPtr: {                // Meeting 2 Oops?
3548     // Found an InstPtr sub-type vs self-InstPtr type
3549     const TypeInstPtr *tinst = t->is_instptr();
3550     int off = meet_offset( tinst->offset() );
3551     PTR ptr = meet_ptr( tinst->ptr() );
3552     int instance_id = meet_instance_id(tinst->instance_id());
3553     const TypePtr* speculative = xmeet_speculative(tinst);
3554     int depth = meet_inline_depth(tinst->inline_depth());
3555 
3556     // Check for easy case; klasses are equal (and perhaps not loaded!)
3557     // If we have constants, then we created oops so classes are loaded
3558     // and we can handle the constants further down.  This case handles
3559     // both-not-loaded or both-loaded classes
3560     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3561       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3562     }
3563 
3564     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3565     ciKlass* tinst_klass = tinst->klass();
3566     ciKlass* this_klass  = this->klass();
3567     bool tinst_xk = tinst->klass_is_exact();
3568     bool this_xk  = this->klass_is_exact();
3569     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3570       // One of these classes has not been loaded
3571       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3572 #ifndef PRODUCT
3573       if( PrintOpto && Verbose ) {
3574         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3575         tty->print("  this == "); this->dump(); tty->cr();
3576         tty->print(" tinst == "); tinst->dump(); tty->cr();
3577       }
3578 #endif
3579       return unloaded_meet;
3580     }
3581 
3582     // Handle mixing oops and interfaces first.
3583     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3584                                         tinst_klass == ciEnv::current()->Object_klass())) {
3585       ciKlass *tmp = tinst_klass; // Swap interface around
3586       tinst_klass = this_klass;
3587       this_klass = tmp;
3588       bool tmp2 = tinst_xk;
3589       tinst_xk = this_xk;
3590       this_xk = tmp2;
3591     }
3592     if (tinst_klass->is_interface() &&
3593         !(this_klass->is_interface() ||
3594           // Treat java/lang/Object as an honorary interface,
3595           // because we need a bottom for the interface hierarchy.
3596           this_klass == ciEnv::current()->Object_klass())) {
3597       // Oop meets interface!
3598 
3599       // See if the oop subtypes (implements) interface.
3600       ciKlass *k;
3601       bool xk;
3602       if( this_klass->is_subtype_of( tinst_klass ) ) {
3603         // Oop indeed subtypes.  Now keep oop or interface depending
3604         // on whether we are both above the centerline or either is
3605         // below the centerline.  If we are on the centerline
3606         // (e.g., Constant vs. AnyNull interface), use the constant.
3607         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3608         // If we are keeping this_klass, keep its exactness too.
3609         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3610       } else {                  // Does not implement, fall to Object
3611         // Oop does not implement interface, so mixing falls to Object
3612         // just like the verifier does (if both are above the
3613         // centerline fall to interface)
3614         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3615         xk = above_centerline(ptr) ? tinst_xk : false;
3616         // Watch out for Constant vs. AnyNull interface.
3617         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3618         instance_id = InstanceBot;
3619       }
3620       ciObject* o = NULL;  // the Constant value, if any
3621       if (ptr == Constant) {
3622         // Find out which constant.
3623         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3624       }
3625       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3626     }
3627 
3628     // Either oop vs oop or interface vs interface or interface vs Object
3629 
3630     // !!! Here's how the symmetry requirement breaks down into invariants:
3631     // If we split one up & one down AND they subtype, take the down man.
3632     // If we split one up & one down AND they do NOT subtype, "fall hard".
3633     // If both are up and they subtype, take the subtype class.
3634     // If both are up and they do NOT subtype, "fall hard".
3635     // If both are down and they subtype, take the supertype class.
3636     // If both are down and they do NOT subtype, "fall hard".
3637     // Constants treated as down.
3638 
3639     // Now, reorder the above list; observe that both-down+subtype is also
3640     // "fall hard"; "fall hard" becomes the default case:
3641     // If we split one up & one down AND they subtype, take the down man.
3642     // If both are up and they subtype, take the subtype class.
3643 
3644     // If both are down and they subtype, "fall hard".
3645     // If both are down and they do NOT subtype, "fall hard".
3646     // If both are up and they do NOT subtype, "fall hard".
3647     // If we split one up & one down AND they do NOT subtype, "fall hard".
3648 
3649     // If a proper subtype is exact, and we return it, we return it exactly.
3650     // If a proper supertype is exact, there can be no subtyping relationship!
3651     // If both types are equal to the subtype, exactness is and-ed below the
3652     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3653 
3654     // Check for subtyping:
3655     ciKlass *subtype = NULL;
3656     bool subtype_exact = false;
3657     if( tinst_klass->equals(this_klass) ) {
3658       subtype = this_klass;
3659       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3660     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3661       subtype = this_klass;     // Pick subtyping class
3662       subtype_exact = this_xk;
3663     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3664       subtype = tinst_klass;    // Pick subtyping class
3665       subtype_exact = tinst_xk;
3666     }
3667 
3668     if( subtype ) {
3669       if( above_centerline(ptr) ) { // both are up?
3670         this_klass = tinst_klass = subtype;
3671         this_xk = tinst_xk = subtype_exact;
3672       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3673         this_klass = tinst_klass; // tinst is down; keep down man
3674         this_xk = tinst_xk;
3675       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3676         tinst_klass = this_klass; // this is down; keep down man
3677         tinst_xk = this_xk;
3678       } else {
3679         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3680       }
3681     }
3682 
3683     // Check for classes now being equal
3684     if (tinst_klass->equals(this_klass)) {
3685       // If the klasses are equal, the constants may still differ.  Fall to
3686       // NotNull if they do (neither constant is NULL; that is a special case
3687       // handled elsewhere).
3688       ciObject* o = NULL;             // Assume not constant when done
3689       ciObject* this_oop  = const_oop();
3690       ciObject* tinst_oop = tinst->const_oop();
3691       if( ptr == Constant ) {
3692         if (this_oop != NULL && tinst_oop != NULL &&
3693             this_oop->equals(tinst_oop) )
3694           o = this_oop;
3695         else if (above_centerline(this ->_ptr))
3696           o = tinst_oop;
3697         else if (above_centerline(tinst ->_ptr))
3698           o = this_oop;
3699         else
3700           ptr = NotNull;
3701       }
3702       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3703     } // Else classes are not equal
3704 
3705     // Since klasses are different, we require a LCA in the Java
3706     // class hierarchy - which means we have to fall to at least NotNull.
3707     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3708       ptr = NotNull;
3709 
3710     instance_id = InstanceBot;
3711 
3712     // Now we find the LCA of Java classes
3713     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3714     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3715   } // End of case InstPtr
3716 
3717   } // End of switch
3718   return this;                  // Return the double constant
3719 }
3720 
3721 
3722 //------------------------java_mirror_type--------------------------------------
3723 ciType* TypeInstPtr::java_mirror_type() const {
3724   // must be a singleton type
3725   if( const_oop() == NULL )  return NULL;
3726 
3727   // must be of type java.lang.Class
3728   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3729 
3730   return const_oop()->as_instance()->java_mirror_type();
3731 }
3732 
3733 
3734 //------------------------------xdual------------------------------------------
3735 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3736 // inheritance mechanism.
3737 const Type *TypeInstPtr::xdual() const {
3738   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3739 }
3740 
3741 //------------------------------eq---------------------------------------------
3742 // Structural equality check for Type representations
3743 bool TypeInstPtr::eq( const Type *t ) const {
3744   const TypeInstPtr *p = t->is_instptr();
3745   return
3746     klass()->equals(p->klass()) &&
3747     TypeOopPtr::eq(p);          // Check sub-type stuff
3748 }
3749 
3750 //------------------------------hash-------------------------------------------
3751 // Type-specific hashing function.
3752 int TypeInstPtr::hash(void) const {
3753   int hash = klass()->hash() + TypeOopPtr::hash();
3754   return hash;
3755 }
3756 
3757 //------------------------------dump2------------------------------------------
3758 // Dump oop Type
3759 #ifndef PRODUCT
3760 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3761   // Print the name of the klass.
3762   klass()->print_name_on(st);
3763 
3764   switch( _ptr ) {
3765   case Constant:
3766     // TO DO: Make CI print the hex address of the underlying oop.
3767     if (WizardMode || Verbose) {
3768       const_oop()->print_oop(st);
3769     }
3770   case BotPTR:
3771     if (!WizardMode && !Verbose) {
3772       if( _klass_is_exact ) st->print(":exact");
3773       break;
3774     }
3775   case TopPTR:
3776   case AnyNull:
3777   case NotNull:
3778     st->print(":%s", ptr_msg[_ptr]);
3779     if( _klass_is_exact ) st->print(":exact");
3780     break;
3781   }
3782 
3783   if( _offset ) {               // Dump offset, if any
3784     if( _offset == OffsetBot )      st->print("+any");
3785     else if( _offset == OffsetTop ) st->print("+unknown");
3786     else st->print("+%d", _offset);
3787   }
3788 
3789   st->print(" *");
3790   if (_instance_id == InstanceTop)
3791     st->print(",iid=top");
3792   else if (_instance_id != InstanceBot)
3793     st->print(",iid=%d",_instance_id);
3794 
3795   dump_inline_depth(st);
3796   dump_speculative(st);
3797 }
3798 #endif
3799 
3800 //------------------------------add_offset-------------------------------------
3801 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3802   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3803               _instance_id, add_offset_speculative(offset), _inline_depth);
3804 }
3805 
3806 const Type *TypeInstPtr::remove_speculative() const {
3807   if (_speculative == NULL) {
3808     return this;
3809   }
3810   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3811   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3812               _instance_id, NULL, _inline_depth);
3813 }
3814 
3815 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3816   if (!UseInlineDepthForSpeculativeTypes) {
3817     return this;
3818   }
3819   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3820 }
3821 
3822 //=============================================================================
3823 // Convenience common pre-built types.
3824 const TypeAryPtr *TypeAryPtr::RANGE;
3825 const TypeAryPtr *TypeAryPtr::OOPS;
3826 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3827 const TypeAryPtr *TypeAryPtr::BYTES;
3828 const TypeAryPtr *TypeAryPtr::SHORTS;
3829 const TypeAryPtr *TypeAryPtr::CHARS;
3830 const TypeAryPtr *TypeAryPtr::INTS;
3831 const TypeAryPtr *TypeAryPtr::LONGS;
3832 const TypeAryPtr *TypeAryPtr::FLOATS;
3833 const TypeAryPtr *TypeAryPtr::DOUBLES;
3834 
3835 //------------------------------make-------------------------------------------
3836 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3837                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3838   assert(!(k == NULL && ary->_elem->isa_int()),
3839          "integral arrays must be pre-equipped with a class");
3840   if (!xk)  xk = ary->ary_must_be_exact();
3841   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3842   if (!UseExactTypes)  xk = (ptr == Constant);
3843   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3844 }
3845 
3846 //------------------------------make-------------------------------------------
3847 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3848                                    int instance_id, const TypePtr* speculative, int inline_depth,
3849                                    bool is_autobox_cache) {
3850   assert(!(k == NULL && ary->_elem->isa_int()),
3851          "integral arrays must be pre-equipped with a class");
3852   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3853   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3854   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3855   if (!UseExactTypes)  xk = (ptr == Constant);
3856   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3857 }
3858 
3859 //------------------------------cast_to_ptr_type-------------------------------
3860 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3861   if( ptr == _ptr ) return this;
3862   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3863 }
3864 
3865 
3866 //-----------------------------cast_to_exactness-------------------------------
3867 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3868   if( klass_is_exact == _klass_is_exact ) return this;
3869   if (!UseExactTypes)  return this;
3870   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3871   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3872 }
3873 
3874 //-----------------------------cast_to_instance_id----------------------------
3875 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3876   if( instance_id == _instance_id ) return this;
3877   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3878 }
3879 
3880 //-----------------------------narrow_size_type-------------------------------
3881 // Local cache for arrayOopDesc::max_array_length(etype),
3882 // which is kind of slow (and cached elsewhere by other users).
3883 static jint max_array_length_cache[T_CONFLICT+1];
3884 static jint max_array_length(BasicType etype) {
3885   jint& cache = max_array_length_cache[etype];
3886   jint res = cache;
3887   if (res == 0) {
3888     switch (etype) {
3889     case T_NARROWOOP:
3890       etype = T_OBJECT;
3891       break;
3892     case T_NARROWKLASS:
3893     case T_CONFLICT:
3894     case T_ILLEGAL:
3895     case T_VOID:
3896       etype = T_BYTE;           // will produce conservatively high value
3897     }
3898     cache = res = arrayOopDesc::max_array_length(etype);
3899   }
3900   return res;
3901 }
3902 
3903 // Narrow the given size type to the index range for the given array base type.
3904 // Return NULL if the resulting int type becomes empty.
3905 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3906   jint hi = size->_hi;
3907   jint lo = size->_lo;
3908   jint min_lo = 0;
3909   jint max_hi = max_array_length(elem()->basic_type());
3910   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3911   bool chg = false;
3912   if (lo < min_lo) {
3913     lo = min_lo;
3914     if (size->is_con()) {
3915       hi = lo;
3916     }
3917     chg = true;
3918   }
3919   if (hi > max_hi) {
3920     hi = max_hi;
3921     if (size->is_con()) {
3922       lo = hi;
3923     }
3924     chg = true;
3925   }
3926   // Negative length arrays will produce weird intermediate dead fast-path code
3927   if (lo > hi)
3928     return TypeInt::ZERO;
3929   if (!chg)
3930     return size;
3931   return TypeInt::make(lo, hi, Type::WidenMin);
3932 }
3933 
3934 //-------------------------------cast_to_size----------------------------------
3935 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3936   assert(new_size != NULL, "");
3937   new_size = narrow_size_type(new_size);
3938   if (new_size == size())  return this;
3939   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3940   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3941 }
3942 
3943 
3944 //------------------------------cast_to_stable---------------------------------
3945 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3946   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3947     return this;
3948 
3949   const Type* elem = this->elem();
3950   const TypePtr* elem_ptr = elem->make_ptr();
3951 
3952   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3953     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3954     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3955   }
3956 
3957   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3958 
3959   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3960 }
3961 
3962 //-----------------------------stable_dimension--------------------------------
3963 int TypeAryPtr::stable_dimension() const {
3964   if (!is_stable())  return 0;
3965   int dim = 1;
3966   const TypePtr* elem_ptr = elem()->make_ptr();
3967   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3968     dim += elem_ptr->is_aryptr()->stable_dimension();
3969   return dim;
3970 }
3971 
3972 //------------------------------eq---------------------------------------------
3973 // Structural equality check for Type representations
3974 bool TypeAryPtr::eq( const Type *t ) const {
3975   const TypeAryPtr *p = t->is_aryptr();
3976   return
3977     _ary == p->_ary &&  // Check array
3978     TypeOopPtr::eq(p);  // Check sub-parts
3979 }
3980 
3981 //------------------------------hash-------------------------------------------
3982 // Type-specific hashing function.
3983 int TypeAryPtr::hash(void) const {
3984   return (intptr_t)_ary + TypeOopPtr::hash();
3985 }
3986 
3987 //------------------------------meet-------------------------------------------
3988 // Compute the MEET of two types.  It returns a new Type object.
3989 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3990   // Perform a fast test for common case; meeting the same types together.
3991   if( this == t ) return this;  // Meeting same type-rep?
3992   // Current "this->_base" is Pointer
3993   switch (t->base()) {          // switch on original type
3994 
3995   // Mixing ints & oops happens when javac reuses local variables
3996   case Int:
3997   case Long:
3998   case FloatTop:
3999   case FloatCon:
4000   case FloatBot:
4001   case DoubleTop:
4002   case DoubleCon:
4003   case DoubleBot:
4004   case NarrowOop:
4005   case NarrowKlass:
4006   case Bottom:                  // Ye Olde Default
4007     return Type::BOTTOM;
4008   case Top:
4009     return this;
4010 
4011   default:                      // All else is a mistake
4012     typerr(t);
4013 
4014   case OopPtr: {                // Meeting to OopPtrs
4015     // Found a OopPtr type vs self-AryPtr type
4016     const TypeOopPtr *tp = t->is_oopptr();
4017     int offset = meet_offset(tp->offset());
4018     PTR ptr = meet_ptr(tp->ptr());
4019     int depth = meet_inline_depth(tp->inline_depth());
4020     const TypePtr* speculative = xmeet_speculative(tp);
4021     switch (tp->ptr()) {
4022     case TopPTR:
4023     case AnyNull: {
4024       int instance_id = meet_instance_id(InstanceTop);
4025       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4026                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4027     }
4028     case BotPTR:
4029     case NotNull: {
4030       int instance_id = meet_instance_id(tp->instance_id());
4031       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4032     }
4033     default: ShouldNotReachHere();
4034     }
4035   }
4036 
4037   case AnyPtr: {                // Meeting two AnyPtrs
4038     // Found an AnyPtr type vs self-AryPtr type
4039     const TypePtr *tp = t->is_ptr();
4040     int offset = meet_offset(tp->offset());
4041     PTR ptr = meet_ptr(tp->ptr());
4042     const TypePtr* speculative = xmeet_speculative(tp);
4043     int depth = meet_inline_depth(tp->inline_depth());
4044     switch (tp->ptr()) {
4045     case TopPTR:
4046       return this;
4047     case BotPTR:
4048     case NotNull:
4049       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4050     case Null:
4051       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4052       // else fall through to AnyNull
4053     case AnyNull: {
4054       int instance_id = meet_instance_id(InstanceTop);
4055       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4056                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4057     }
4058     default: ShouldNotReachHere();
4059     }
4060   }
4061 
4062   case MetadataPtr:
4063   case KlassPtr:
4064   case RawPtr: return TypePtr::BOTTOM;
4065 
4066   case AryPtr: {                // Meeting 2 references?
4067     const TypeAryPtr *tap = t->is_aryptr();
4068     int off = meet_offset(tap->offset());
4069     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4070     PTR ptr = meet_ptr(tap->ptr());
4071     int instance_id = meet_instance_id(tap->instance_id());
4072     const TypePtr* speculative = xmeet_speculative(tap);
4073     int depth = meet_inline_depth(tap->inline_depth());
4074     ciKlass* lazy_klass = NULL;
4075     if (tary->_elem->isa_int()) {
4076       // Integral array element types have irrelevant lattice relations.
4077       // It is the klass that determines array layout, not the element type.
4078       if (_klass == NULL)
4079         lazy_klass = tap->_klass;
4080       else if (tap->_klass == NULL || tap->_klass == _klass) {
4081         lazy_klass = _klass;
4082       } else {
4083         // Something like byte[int+] meets char[int+].
4084         // This must fall to bottom, not (int[-128..65535])[int+].
4085         instance_id = InstanceBot;
4086         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4087       }
4088     } else // Non integral arrays.
4089       // Must fall to bottom if exact klasses in upper lattice
4090       // are not equal or super klass is exact.
4091       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4092           // meet with top[] and bottom[] are processed further down:
4093           tap->_klass != NULL  && this->_klass != NULL   &&
4094           // both are exact and not equal:
4095           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4096            // 'tap'  is exact and super or unrelated:
4097            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4098            // 'this' is exact and super or unrelated:
4099            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4100       if (above_centerline(ptr)) {
4101         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4102       }
4103       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4104     }
4105 
4106     bool xk = false;
4107     switch (tap->ptr()) {
4108     case AnyNull:
4109     case TopPTR:
4110       // Compute new klass on demand, do not use tap->_klass
4111       if (below_centerline(this->_ptr)) {
4112         xk = this->_klass_is_exact;
4113       } else {
4114         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4115       }
4116       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4117     case Constant: {
4118       ciObject* o = const_oop();
4119       if( _ptr == Constant ) {
4120         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4121           xk = (klass() == tap->klass());
4122           ptr = NotNull;
4123           o = NULL;
4124           instance_id = InstanceBot;
4125         } else {
4126           xk = true;
4127         }
4128       } else if(above_centerline(_ptr)) {
4129         o = tap->const_oop();
4130         xk = true;
4131       } else {
4132         // Only precise for identical arrays
4133         xk = this->_klass_is_exact && (klass() == tap->klass());
4134       }
4135       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4136     }
4137     case NotNull:
4138     case BotPTR:
4139       // Compute new klass on demand, do not use tap->_klass
4140       if (above_centerline(this->_ptr))
4141             xk = tap->_klass_is_exact;
4142       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4143               (klass() == tap->klass()); // Only precise for identical arrays
4144       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4145     default: ShouldNotReachHere();
4146     }
4147   }
4148 
4149   // All arrays inherit from Object class
4150   case InstPtr: {
4151     const TypeInstPtr *tp = t->is_instptr();
4152     int offset = meet_offset(tp->offset());
4153     PTR ptr = meet_ptr(tp->ptr());
4154     int instance_id = meet_instance_id(tp->instance_id());
4155     const TypePtr* speculative = xmeet_speculative(tp);
4156     int depth = meet_inline_depth(tp->inline_depth());
4157     switch (ptr) {
4158     case TopPTR:
4159     case AnyNull:                // Fall 'down' to dual of object klass
4160       // For instances when a subclass meets a superclass we fall
4161       // below the centerline when the superclass is exact. We need to
4162       // do the same here.
4163       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4164         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4165       } else {
4166         // cannot subclass, so the meet has to fall badly below the centerline
4167         ptr = NotNull;
4168         instance_id = InstanceBot;
4169         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4170       }
4171     case Constant:
4172     case NotNull:
4173     case BotPTR:                // Fall down to object klass
4174       // LCA is object_klass, but if we subclass from the top we can do better
4175       if (above_centerline(tp->ptr())) {
4176         // If 'tp'  is above the centerline and it is Object class
4177         // then we can subclass in the Java class hierarchy.
4178         // For instances when a subclass meets a superclass we fall
4179         // below the centerline when the superclass is exact. We need
4180         // to do the same here.
4181         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4182           // that is, my array type is a subtype of 'tp' klass
4183           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4184                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4185         }
4186       }
4187       // The other case cannot happen, since t cannot be a subtype of an array.
4188       // The meet falls down to Object class below centerline.
4189       if( ptr == Constant )
4190          ptr = NotNull;
4191       instance_id = InstanceBot;
4192       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4193     default: typerr(t);
4194     }
4195   }
4196   }
4197   return this;                  // Lint noise
4198 }
4199 
4200 //------------------------------xdual------------------------------------------
4201 // Dual: compute field-by-field dual
4202 const Type *TypeAryPtr::xdual() const {
4203   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4204 }
4205 
4206 //----------------------interface_vs_oop---------------------------------------
4207 #ifdef ASSERT
4208 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4209   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4210   if (t_aryptr) {
4211     return _ary->interface_vs_oop(t_aryptr->_ary);
4212   }
4213   return false;
4214 }
4215 #endif
4216 
4217 //------------------------------dump2------------------------------------------
4218 #ifndef PRODUCT
4219 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4220   _ary->dump2(d,depth,st);
4221   switch( _ptr ) {
4222   case Constant:
4223     const_oop()->print(st);
4224     break;
4225   case BotPTR:
4226     if (!WizardMode && !Verbose) {
4227       if( _klass_is_exact ) st->print(":exact");
4228       break;
4229     }
4230   case TopPTR:
4231   case AnyNull:
4232   case NotNull:
4233     st->print(":%s", ptr_msg[_ptr]);
4234     if( _klass_is_exact ) st->print(":exact");
4235     break;
4236   }
4237 
4238   if( _offset != 0 ) {
4239     int header_size = objArrayOopDesc::header_size() * wordSize;
4240     if( _offset == OffsetTop )       st->print("+undefined");
4241     else if( _offset == OffsetBot )  st->print("+any");
4242     else if( _offset < header_size ) st->print("+%d", _offset);
4243     else {
4244       BasicType basic_elem_type = elem()->basic_type();
4245       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4246       int elem_size = type2aelembytes(basic_elem_type);
4247       st->print("[%d]", (_offset - array_base)/elem_size);
4248     }
4249   }
4250   st->print(" *");
4251   if (_instance_id == InstanceTop)
4252     st->print(",iid=top");
4253   else if (_instance_id != InstanceBot)
4254     st->print(",iid=%d",_instance_id);
4255 
4256   dump_inline_depth(st);
4257   dump_speculative(st);
4258 }
4259 #endif
4260 
4261 bool TypeAryPtr::empty(void) const {
4262   if (_ary->empty())       return true;
4263   return TypeOopPtr::empty();
4264 }
4265 
4266 //------------------------------add_offset-------------------------------------
4267 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4268   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4269 }
4270 
4271 const Type *TypeAryPtr::remove_speculative() const {
4272   if (_speculative == NULL) {
4273     return this;
4274   }
4275   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4276   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4277 }
4278 
4279 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4280   if (!UseInlineDepthForSpeculativeTypes) {
4281     return this;
4282   }
4283   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4284 }
4285 
4286 //=============================================================================
4287 
4288 //------------------------------hash-------------------------------------------
4289 // Type-specific hashing function.
4290 int TypeNarrowPtr::hash(void) const {
4291   return _ptrtype->hash() + 7;
4292 }
4293 
4294 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4295   return _ptrtype->singleton();
4296 }
4297 
4298 bool TypeNarrowPtr::empty(void) const {
4299   return _ptrtype->empty();
4300 }
4301 
4302 intptr_t TypeNarrowPtr::get_con() const {
4303   return _ptrtype->get_con();
4304 }
4305 
4306 bool TypeNarrowPtr::eq( const Type *t ) const {
4307   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4308   if (tc != NULL) {
4309     if (_ptrtype->base() != tc->_ptrtype->base()) {
4310       return false;
4311     }
4312     return tc->_ptrtype->eq(_ptrtype);
4313   }
4314   return false;
4315 }
4316 
4317 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4318   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4319   return make_same_narrowptr(odual);
4320 }
4321 
4322 
4323 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4324   if (isa_same_narrowptr(kills)) {
4325     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4326     if (ft->empty())
4327       return Type::TOP;           // Canonical empty value
4328     if (ft->isa_ptr()) {
4329       return make_hash_same_narrowptr(ft->isa_ptr());
4330     }
4331     return ft;
4332   } else if (kills->isa_ptr()) {
4333     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4334     if (ft->empty())
4335       return Type::TOP;           // Canonical empty value
4336     return ft;
4337   } else {
4338     return Type::TOP;
4339   }
4340 }
4341 
4342 //------------------------------xmeet------------------------------------------
4343 // Compute the MEET of two types.  It returns a new Type object.
4344 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4345   // Perform a fast test for common case; meeting the same types together.
4346   if( this == t ) return this;  // Meeting same type-rep?
4347 
4348   if (t->base() == base()) {
4349     const Type* result = _ptrtype->xmeet(t->make_ptr());
4350     if (result->isa_ptr()) {
4351       return make_hash_same_narrowptr(result->is_ptr());
4352     }
4353     return result;
4354   }
4355 
4356   // Current "this->_base" is NarrowKlass or NarrowOop
4357   switch (t->base()) {          // switch on original type
4358 
4359   case Int:                     // Mixing ints & oops happens when javac
4360   case Long:                    // reuses local variables
4361   case FloatTop:
4362   case FloatCon:
4363   case FloatBot:
4364   case DoubleTop:
4365   case DoubleCon:
4366   case DoubleBot:
4367   case AnyPtr:
4368   case RawPtr:
4369   case OopPtr:
4370   case InstPtr:
4371   case AryPtr:
4372   case MetadataPtr:
4373   case KlassPtr:
4374   case NarrowOop:
4375   case NarrowKlass:
4376 
4377   case Bottom:                  // Ye Olde Default
4378     return Type::BOTTOM;
4379   case Top:
4380     return this;
4381 
4382   default:                      // All else is a mistake
4383     typerr(t);
4384 
4385   } // End of switch
4386 
4387   return this;
4388 }
4389 
4390 #ifndef PRODUCT
4391 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4392   _ptrtype->dump2(d, depth, st);
4393 }
4394 #endif
4395 
4396 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4397 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4398 
4399 
4400 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4401   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4402 }
4403 
4404 const Type* TypeNarrowOop::remove_speculative() const {
4405   return make(_ptrtype->remove_speculative()->is_ptr());
4406 }
4407 
4408 const Type* TypeNarrowOop::cleanup_speculative() const {
4409   return make(_ptrtype->cleanup_speculative()->is_ptr());
4410 }
4411 
4412 #ifndef PRODUCT
4413 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4414   st->print("narrowoop: ");
4415   TypeNarrowPtr::dump2(d, depth, st);
4416 }
4417 #endif
4418 
4419 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4420 
4421 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4422   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4423 }
4424 
4425 #ifndef PRODUCT
4426 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4427   st->print("narrowklass: ");
4428   TypeNarrowPtr::dump2(d, depth, st);
4429 }
4430 #endif
4431 
4432 
4433 //------------------------------eq---------------------------------------------
4434 // Structural equality check for Type representations
4435 bool TypeMetadataPtr::eq( const Type *t ) const {
4436   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4437   ciMetadata* one = metadata();
4438   ciMetadata* two = a->metadata();
4439   if (one == NULL || two == NULL) {
4440     return (one == two) && TypePtr::eq(t);
4441   } else {
4442     return one->equals(two) && TypePtr::eq(t);
4443   }
4444 }
4445 
4446 //------------------------------hash-------------------------------------------
4447 // Type-specific hashing function.
4448 int TypeMetadataPtr::hash(void) const {
4449   return
4450     (metadata() ? metadata()->hash() : 0) +
4451     TypePtr::hash();
4452 }
4453 
4454 //------------------------------singleton--------------------------------------
4455 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4456 // constants
4457 bool TypeMetadataPtr::singleton(void) const {
4458   // detune optimizer to not generate constant metadta + constant offset as a constant!
4459   // TopPTR, Null, AnyNull, Constant are all singletons
4460   return (_offset == 0) && !below_centerline(_ptr);
4461 }
4462 
4463 //------------------------------add_offset-------------------------------------
4464 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4465   return make( _ptr, _metadata, xadd_offset(offset));
4466 }
4467 
4468 //-----------------------------filter------------------------------------------
4469 // Do not allow interface-vs.-noninterface joins to collapse to top.
4470 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4471   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4472   if (ft == NULL || ft->empty())
4473     return Type::TOP;           // Canonical empty value
4474   return ft;
4475 }
4476 
4477  //------------------------------get_con----------------------------------------
4478 intptr_t TypeMetadataPtr::get_con() const {
4479   assert( _ptr == Null || _ptr == Constant, "" );
4480   assert( _offset >= 0, "" );
4481 
4482   if (_offset != 0) {
4483     // After being ported to the compiler interface, the compiler no longer
4484     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4485     // to a handle at compile time.  This handle is embedded in the generated
4486     // code and dereferenced at the time the nmethod is made.  Until that time,
4487     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4488     // have access to the addresses!).  This does not seem to currently happen,
4489     // but this assertion here is to help prevent its occurence.
4490     tty->print_cr("Found oop constant with non-zero offset");
4491     ShouldNotReachHere();
4492   }
4493 
4494   return (intptr_t)metadata()->constant_encoding();
4495 }
4496 
4497 //------------------------------cast_to_ptr_type-------------------------------
4498 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4499   if( ptr == _ptr ) return this;
4500   return make(ptr, metadata(), _offset);
4501 }
4502 
4503 //------------------------------meet-------------------------------------------
4504 // Compute the MEET of two types.  It returns a new Type object.
4505 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4506   // Perform a fast test for common case; meeting the same types together.
4507   if( this == t ) return this;  // Meeting same type-rep?
4508 
4509   // Current "this->_base" is OopPtr
4510   switch (t->base()) {          // switch on original type
4511 
4512   case Int:                     // Mixing ints & oops happens when javac
4513   case Long:                    // reuses local variables
4514   case FloatTop:
4515   case FloatCon:
4516   case FloatBot:
4517   case DoubleTop:
4518   case DoubleCon:
4519   case DoubleBot:
4520   case NarrowOop:
4521   case NarrowKlass:
4522   case Bottom:                  // Ye Olde Default
4523     return Type::BOTTOM;
4524   case Top:
4525     return this;
4526 
4527   default:                      // All else is a mistake
4528     typerr(t);
4529 
4530   case AnyPtr: {
4531     // Found an AnyPtr type vs self-OopPtr type
4532     const TypePtr *tp = t->is_ptr();
4533     int offset = meet_offset(tp->offset());
4534     PTR ptr = meet_ptr(tp->ptr());
4535     switch (tp->ptr()) {
4536     case Null:
4537       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4538       // else fall through:
4539     case TopPTR:
4540     case AnyNull: {
4541       return make(ptr, _metadata, offset);
4542     }
4543     case BotPTR:
4544     case NotNull:
4545       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4546     default: typerr(t);
4547     }
4548   }
4549 
4550   case RawPtr:
4551   case KlassPtr:
4552   case OopPtr:
4553   case InstPtr:
4554   case AryPtr:
4555     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4556 
4557   case MetadataPtr: {
4558     const TypeMetadataPtr *tp = t->is_metadataptr();
4559     int offset = meet_offset(tp->offset());
4560     PTR tptr = tp->ptr();
4561     PTR ptr = meet_ptr(tptr);
4562     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4563     if (tptr == TopPTR || _ptr == TopPTR ||
4564         metadata()->equals(tp->metadata())) {
4565       return make(ptr, md, offset);
4566     }
4567     // metadata is different
4568     if( ptr == Constant ) {  // Cannot be equal constants, so...
4569       if( tptr == Constant && _ptr != Constant)  return t;
4570       if( _ptr == Constant && tptr != Constant)  return this;
4571       ptr = NotNull;            // Fall down in lattice
4572     }
4573     return make(ptr, NULL, offset);
4574     break;
4575   }
4576   } // End of switch
4577   return this;                  // Return the double constant
4578 }
4579 
4580 
4581 //------------------------------xdual------------------------------------------
4582 // Dual of a pure metadata pointer.
4583 const Type *TypeMetadataPtr::xdual() const {
4584   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4585 }
4586 
4587 //------------------------------dump2------------------------------------------
4588 #ifndef PRODUCT
4589 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4590   st->print("metadataptr:%s", ptr_msg[_ptr]);
4591   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4592   switch( _offset ) {
4593   case OffsetTop: st->print("+top"); break;
4594   case OffsetBot: st->print("+any"); break;
4595   case         0: break;
4596   default:        st->print("+%d",_offset); break;
4597   }
4598 }
4599 #endif
4600 
4601 
4602 //=============================================================================
4603 // Convenience common pre-built type.
4604 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4605 
4606 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4607   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4608 }
4609 
4610 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4611   return make(Constant, m, 0);
4612 }
4613 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4614   return make(Constant, m, 0);
4615 }
4616 
4617 //------------------------------make-------------------------------------------
4618 // Create a meta data constant
4619 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4620   assert(m == NULL || !m->is_klass(), "wrong type");
4621   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4622 }
4623 
4624 
4625 //=============================================================================
4626 // Convenience common pre-built types.
4627 
4628 // Not-null object klass or below
4629 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4630 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4631 
4632 //------------------------------TypeKlassPtr-----------------------------------
4633 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4634   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4635 }
4636 
4637 //------------------------------make-------------------------------------------
4638 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4639 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4640   assert( k != NULL, "Expect a non-NULL klass");
4641   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4642   TypeKlassPtr *r =
4643     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4644 
4645   return r;
4646 }
4647 
4648 //------------------------------eq---------------------------------------------
4649 // Structural equality check for Type representations
4650 bool TypeKlassPtr::eq( const Type *t ) const {
4651   const TypeKlassPtr *p = t->is_klassptr();
4652   return
4653     klass()->equals(p->klass()) &&
4654     TypePtr::eq(p);
4655 }
4656 
4657 //------------------------------hash-------------------------------------------
4658 // Type-specific hashing function.
4659 int TypeKlassPtr::hash(void) const {
4660   return klass()->hash() + TypePtr::hash();
4661 }
4662 
4663 //------------------------------singleton--------------------------------------
4664 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4665 // constants
4666 bool TypeKlassPtr::singleton(void) const {
4667   // detune optimizer to not generate constant klass + constant offset as a constant!
4668   // TopPTR, Null, AnyNull, Constant are all singletons
4669   return (_offset == 0) && !below_centerline(_ptr);
4670 }
4671 
4672 // Do not allow interface-vs.-noninterface joins to collapse to top.
4673 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4674   // logic here mirrors the one from TypeOopPtr::filter. See comments
4675   // there.
4676   const Type* ft = join_helper(kills, include_speculative);
4677   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4678   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4679 
4680   if (ft->empty()) {
4681     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4682       return kills;             // Uplift to interface
4683 
4684     return Type::TOP;           // Canonical empty value
4685   }
4686 
4687   // Interface klass type could be exact in opposite to interface type,
4688   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4689   if (ftkp != NULL && ktkp != NULL &&
4690       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4691       !ftkp->klass_is_exact() && // Keep exact interface klass
4692       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4693     return ktkp->cast_to_ptr_type(ftkp->ptr());
4694   }
4695 
4696   return ft;
4697 }
4698 
4699 //----------------------compute_klass------------------------------------------
4700 // Compute the defining klass for this class
4701 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4702   // Compute _klass based on element type.
4703   ciKlass* k_ary = NULL;
4704   const TypeInstPtr *tinst;
4705   const TypeAryPtr *tary;
4706   const Type* el = elem();
4707   if (el->isa_narrowoop()) {
4708     el = el->make_ptr();
4709   }
4710 
4711   // Get element klass
4712   if ((tinst = el->isa_instptr()) != NULL) {
4713     // Compute array klass from element klass
4714     k_ary = ciObjArrayKlass::make(tinst->klass());
4715   } else if ((tary = el->isa_aryptr()) != NULL) {
4716     // Compute array klass from element klass
4717     ciKlass* k_elem = tary->klass();
4718     // If element type is something like bottom[], k_elem will be null.
4719     if (k_elem != NULL)
4720       k_ary = ciObjArrayKlass::make(k_elem);
4721   } else if ((el->base() == Type::Top) ||
4722              (el->base() == Type::Bottom)) {
4723     // element type of Bottom occurs from meet of basic type
4724     // and object; Top occurs when doing join on Bottom.
4725     // Leave k_ary at NULL.
4726   } else {
4727     // Cannot compute array klass directly from basic type,
4728     // since subtypes of TypeInt all have basic type T_INT.
4729 #ifdef ASSERT
4730     if (verify && el->isa_int()) {
4731       // Check simple cases when verifying klass.
4732       BasicType bt = T_ILLEGAL;
4733       if (el == TypeInt::BYTE) {
4734         bt = T_BYTE;
4735       } else if (el == TypeInt::SHORT) {
4736         bt = T_SHORT;
4737       } else if (el == TypeInt::CHAR) {
4738         bt = T_CHAR;
4739       } else if (el == TypeInt::INT) {
4740         bt = T_INT;
4741       } else {
4742         return _klass; // just return specified klass
4743       }
4744       return ciTypeArrayKlass::make(bt);
4745     }
4746 #endif
4747     assert(!el->isa_int(),
4748            "integral arrays must be pre-equipped with a class");
4749     // Compute array klass directly from basic type
4750     k_ary = ciTypeArrayKlass::make(el->basic_type());
4751   }
4752   return k_ary;
4753 }
4754 
4755 //------------------------------klass------------------------------------------
4756 // Return the defining klass for this class
4757 ciKlass* TypeAryPtr::klass() const {
4758   if( _klass ) return _klass;   // Return cached value, if possible
4759 
4760   // Oops, need to compute _klass and cache it
4761   ciKlass* k_ary = compute_klass();
4762 
4763   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4764     // The _klass field acts as a cache of the underlying
4765     // ciKlass for this array type.  In order to set the field,
4766     // we need to cast away const-ness.
4767     //
4768     // IMPORTANT NOTE: we *never* set the _klass field for the
4769     // type TypeAryPtr::OOPS.  This Type is shared between all
4770     // active compilations.  However, the ciKlass which represents
4771     // this Type is *not* shared between compilations, so caching
4772     // this value would result in fetching a dangling pointer.
4773     //
4774     // Recomputing the underlying ciKlass for each request is
4775     // a bit less efficient than caching, but calls to
4776     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4777     ((TypeAryPtr*)this)->_klass = k_ary;
4778     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4779         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4780       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4781     }
4782   }
4783   return k_ary;
4784 }
4785 
4786 
4787 //------------------------------add_offset-------------------------------------
4788 // Access internals of klass object
4789 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4790   return make( _ptr, klass(), xadd_offset(offset) );
4791 }
4792 
4793 //------------------------------cast_to_ptr_type-------------------------------
4794 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4795   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4796   if( ptr == _ptr ) return this;
4797   return make(ptr, _klass, _offset);
4798 }
4799 
4800 
4801 //-----------------------------cast_to_exactness-------------------------------
4802 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4803   if( klass_is_exact == _klass_is_exact ) return this;
4804   if (!UseExactTypes)  return this;
4805   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4806 }
4807 
4808 
4809 //-----------------------------as_instance_type--------------------------------
4810 // Corresponding type for an instance of the given class.
4811 // It will be NotNull, and exact if and only if the klass type is exact.
4812 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4813   ciKlass* k = klass();
4814   bool    xk = klass_is_exact();
4815   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4816   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4817   guarantee(toop != NULL, "need type for given klass");
4818   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4819   return toop->cast_to_exactness(xk)->is_oopptr();
4820 }
4821 
4822 
4823 //------------------------------xmeet------------------------------------------
4824 // Compute the MEET of two types, return a new Type object.
4825 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4826   // Perform a fast test for common case; meeting the same types together.
4827   if( this == t ) return this;  // Meeting same type-rep?
4828 
4829   // Current "this->_base" is Pointer
4830   switch (t->base()) {          // switch on original type
4831 
4832   case Int:                     // Mixing ints & oops happens when javac
4833   case Long:                    // reuses local variables
4834   case FloatTop:
4835   case FloatCon:
4836   case FloatBot:
4837   case DoubleTop:
4838   case DoubleCon:
4839   case DoubleBot:
4840   case NarrowOop:
4841   case NarrowKlass:
4842   case Bottom:                  // Ye Olde Default
4843     return Type::BOTTOM;
4844   case Top:
4845     return this;
4846 
4847   default:                      // All else is a mistake
4848     typerr(t);
4849 
4850   case AnyPtr: {                // Meeting to AnyPtrs
4851     // Found an AnyPtr type vs self-KlassPtr type
4852     const TypePtr *tp = t->is_ptr();
4853     int offset = meet_offset(tp->offset());
4854     PTR ptr = meet_ptr(tp->ptr());
4855     switch (tp->ptr()) {
4856     case TopPTR:
4857       return this;
4858     case Null:
4859       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4860     case AnyNull:
4861       return make( ptr, klass(), offset );
4862     case BotPTR:
4863     case NotNull:
4864       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4865     default: typerr(t);
4866     }
4867   }
4868 
4869   case RawPtr:
4870   case MetadataPtr:
4871   case OopPtr:
4872   case AryPtr:                  // Meet with AryPtr
4873   case InstPtr:                 // Meet with InstPtr
4874     return TypePtr::BOTTOM;
4875 
4876   //
4877   //             A-top         }
4878   //           /   |   \       }  Tops
4879   //       B-top A-any C-top   }
4880   //          | /  |  \ |      }  Any-nulls
4881   //       B-any   |   C-any   }
4882   //          |    |    |
4883   //       B-con A-con C-con   } constants; not comparable across classes
4884   //          |    |    |
4885   //       B-not   |   C-not   }
4886   //          | \  |  / |      }  not-nulls
4887   //       B-bot A-not C-bot   }
4888   //           \   |   /       }  Bottoms
4889   //             A-bot         }
4890   //
4891 
4892   case KlassPtr: {  // Meet two KlassPtr types
4893     const TypeKlassPtr *tkls = t->is_klassptr();
4894     int  off     = meet_offset(tkls->offset());
4895     PTR  ptr     = meet_ptr(tkls->ptr());
4896 
4897     // Check for easy case; klasses are equal (and perhaps not loaded!)
4898     // If we have constants, then we created oops so classes are loaded
4899     // and we can handle the constants further down.  This case handles
4900     // not-loaded classes
4901     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4902       return make( ptr, klass(), off );
4903     }
4904 
4905     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4906     ciKlass* tkls_klass = tkls->klass();
4907     ciKlass* this_klass = this->klass();
4908     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4909     assert( this_klass->is_loaded(), "This class should have been loaded.");
4910 
4911     // If 'this' type is above the centerline and is a superclass of the
4912     // other, we can treat 'this' as having the same type as the other.
4913     if ((above_centerline(this->ptr())) &&
4914         tkls_klass->is_subtype_of(this_klass)) {
4915       this_klass = tkls_klass;
4916     }
4917     // If 'tinst' type is above the centerline and is a superclass of the
4918     // other, we can treat 'tinst' as having the same type as the other.
4919     if ((above_centerline(tkls->ptr())) &&
4920         this_klass->is_subtype_of(tkls_klass)) {
4921       tkls_klass = this_klass;
4922     }
4923 
4924     // Check for classes now being equal
4925     if (tkls_klass->equals(this_klass)) {
4926       // If the klasses are equal, the constants may still differ.  Fall to
4927       // NotNull if they do (neither constant is NULL; that is a special case
4928       // handled elsewhere).
4929       if( ptr == Constant ) {
4930         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4931             this->klass()->equals(tkls->klass()));
4932         else if (above_centerline(this->ptr()));
4933         else if (above_centerline(tkls->ptr()));
4934         else
4935           ptr = NotNull;
4936       }
4937       return make( ptr, this_klass, off );
4938     } // Else classes are not equal
4939 
4940     // Since klasses are different, we require the LCA in the Java
4941     // class hierarchy - which means we have to fall to at least NotNull.
4942     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4943       ptr = NotNull;
4944     // Now we find the LCA of Java classes
4945     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4946     return   make( ptr, k, off );
4947   } // End of case KlassPtr
4948 
4949   } // End of switch
4950   return this;                  // Return the double constant
4951 }
4952 
4953 //------------------------------xdual------------------------------------------
4954 // Dual: compute field-by-field dual
4955 const Type    *TypeKlassPtr::xdual() const {
4956   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4957 }
4958 
4959 //------------------------------get_con----------------------------------------
4960 intptr_t TypeKlassPtr::get_con() const {
4961   assert( _ptr == Null || _ptr == Constant, "" );
4962   assert( _offset >= 0, "" );
4963 
4964   if (_offset != 0) {
4965     // After being ported to the compiler interface, the compiler no longer
4966     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4967     // to a handle at compile time.  This handle is embedded in the generated
4968     // code and dereferenced at the time the nmethod is made.  Until that time,
4969     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4970     // have access to the addresses!).  This does not seem to currently happen,
4971     // but this assertion here is to help prevent its occurence.
4972     tty->print_cr("Found oop constant with non-zero offset");
4973     ShouldNotReachHere();
4974   }
4975 
4976   return (intptr_t)klass()->constant_encoding();
4977 }
4978 //------------------------------dump2------------------------------------------
4979 // Dump Klass Type
4980 #ifndef PRODUCT
4981 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4982   switch( _ptr ) {
4983   case Constant:
4984     st->print("precise ");
4985   case NotNull:
4986     {
4987       const char *name = klass()->name()->as_utf8();
4988       if( name ) {
4989         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4990       } else {
4991         ShouldNotReachHere();
4992       }
4993     }
4994   case BotPTR:
4995     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4996   case TopPTR:
4997   case AnyNull:
4998     st->print(":%s", ptr_msg[_ptr]);
4999     if( _klass_is_exact ) st->print(":exact");
5000     break;
5001   }
5002 
5003   if( _offset ) {               // Dump offset, if any
5004     if( _offset == OffsetBot )      { st->print("+any"); }
5005     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5006     else                            { st->print("+%d", _offset); }
5007   }
5008 
5009   st->print(" *");
5010 }
5011 #endif
5012 
5013 
5014 
5015 //=============================================================================
5016 // Convenience common pre-built types.
5017 
5018 //------------------------------make-------------------------------------------
5019 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5020   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5021 }
5022 
5023 //------------------------------make-------------------------------------------
5024 const TypeFunc *TypeFunc::make(ciMethod* method) {
5025   Compile* C = Compile::current();
5026   const TypeFunc* tf = C->last_tf(method); // check cache
5027   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5028   const TypeTuple *domain;
5029   if (method->is_static()) {
5030     domain = TypeTuple::make_domain(NULL, method->signature());
5031   } else {
5032     domain = TypeTuple::make_domain(method->holder(), method->signature());
5033   }
5034   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5035   tf = TypeFunc::make(domain, range);
5036   C->set_last_tf(method, tf);  // fill cache
5037   return tf;
5038 }
5039 
5040 //------------------------------meet-------------------------------------------
5041 // Compute the MEET of two types.  It returns a new Type object.
5042 const Type *TypeFunc::xmeet( const Type *t ) const {
5043   // Perform a fast test for common case; meeting the same types together.
5044   if( this == t ) return this;  // Meeting same type-rep?
5045 
5046   // Current "this->_base" is Func
5047   switch (t->base()) {          // switch on original type
5048 
5049   case Bottom:                  // Ye Olde Default
5050     return t;
5051 
5052   default:                      // All else is a mistake
5053     typerr(t);
5054 
5055   case Top:
5056     break;
5057   }
5058   return this;                  // Return the double constant
5059 }
5060 
5061 //------------------------------xdual------------------------------------------
5062 // Dual: compute field-by-field dual
5063 const Type *TypeFunc::xdual() const {
5064   return this;
5065 }
5066 
5067 //------------------------------eq---------------------------------------------
5068 // Structural equality check for Type representations
5069 bool TypeFunc::eq( const Type *t ) const {
5070   const TypeFunc *a = (const TypeFunc*)t;
5071   return _domain == a->_domain &&
5072     _range == a->_range;
5073 }
5074 
5075 //------------------------------hash-------------------------------------------
5076 // Type-specific hashing function.
5077 int TypeFunc::hash(void) const {
5078   return (intptr_t)_domain + (intptr_t)_range;
5079 }
5080 
5081 //------------------------------dump2------------------------------------------
5082 // Dump Function Type
5083 #ifndef PRODUCT
5084 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5085   if( _range->cnt() <= Parms )
5086     st->print("void");
5087   else {
5088     uint i;
5089     for (i = Parms; i < _range->cnt()-1; i++) {
5090       _range->field_at(i)->dump2(d,depth,st);
5091       st->print("/");
5092     }
5093     _range->field_at(i)->dump2(d,depth,st);
5094   }
5095   st->print(" ");
5096   st->print("( ");
5097   if( !depth || d[this] ) {     // Check for recursive dump
5098     st->print("...)");
5099     return;
5100   }
5101   d.Insert((void*)this,(void*)this);    // Stop recursion
5102   if (Parms < _domain->cnt())
5103     _domain->field_at(Parms)->dump2(d,depth-1,st);
5104   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5105     st->print(", ");
5106     _domain->field_at(i)->dump2(d,depth-1,st);
5107   }
5108   st->print(" )");
5109 }
5110 #endif
5111 
5112 //------------------------------singleton--------------------------------------
5113 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5114 // constants (Ldi nodes).  Singletons are integer, float or double constants
5115 // or a single symbol.
5116 bool TypeFunc::singleton(void) const {
5117   return false;                 // Never a singleton
5118 }
5119 
5120 bool TypeFunc::empty(void) const {
5121   return false;                 // Never empty
5122 }
5123 
5124 
5125 BasicType TypeFunc::return_type() const{
5126   if (range()->cnt() == TypeFunc::Parms) {
5127     return T_VOID;
5128   }
5129   return range()->field_at(TypeFunc::Parms)->basic_type();
5130 }