1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "code/vmreg.inline.hpp"
  35 #include "utilities/bitMap.inline.hpp"
  36 
  37 #ifndef PRODUCT
  38 
  39   static LinearScanStatistic _stat_before_alloc;
  40   static LinearScanStatistic _stat_after_asign;
  41   static LinearScanStatistic _stat_final;
  42 
  43   static LinearScanTimers _total_timer;
  44 
  45   // helper macro for short definition of timer
  46   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  47 
  48   // helper macro for short definition of trace-output inside code
  49   #define TRACE_LINEAR_SCAN(level, code)       \
  50     if (TraceLinearScanLevel >= level) {       \
  51       code;                                    \
  52     }
  53 
  54 #else
  55 
  56   #define TIME_LINEAR_SCAN(timer_name)
  57   #define TRACE_LINEAR_SCAN(level, code)
  58 
  59 #endif
  60 
  61 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  62 #ifdef _LP64
  63 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  64 #else
  65 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  66 #endif
  67 
  68 
  69 // Implementation of LinearScan
  70 
  71 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  72  : _compilation(ir->compilation())
  73  , _ir(ir)
  74  , _gen(gen)
  75  , _frame_map(frame_map)
  76  , _num_virtual_regs(gen->max_virtual_register_number())
  77  , _has_fpu_registers(false)
  78  , _num_calls(-1)
  79  , _max_spills(0)
  80  , _unused_spill_slot(-1)
  81  , _intervals(0)   // initialized later with correct length
  82  , _new_intervals_from_allocation(new IntervalList())
  83  , _sorted_intervals(NULL)
  84  , _needs_full_resort(false)
  85  , _lir_ops(0)     // initialized later with correct length
  86  , _block_of_op(0) // initialized later with correct length
  87  , _has_info(0)
  88  , _has_call(0)
  89  , _scope_value_cache(0) // initialized later with correct length
  90  , _interval_in_loop(0, 0) // initialized later with correct length
  91  , _cached_blocks(*ir->linear_scan_order())
  92 #ifdef X86
  93  , _fpu_stack_allocator(NULL)
  94 #endif
  95 {
  96   assert(this->ir() != NULL,          "check if valid");
  97   assert(this->compilation() != NULL, "check if valid");
  98   assert(this->gen() != NULL,         "check if valid");
  99   assert(this->frame_map() != NULL,   "check if valid");
 100 }
 101 
 102 
 103 // ********** functions for converting LIR-Operands to register numbers
 104 //
 105 // Emulate a flat register file comprising physical integer registers,
 106 // physical floating-point registers and virtual registers, in that order.
 107 // Virtual registers already have appropriate numbers, since V0 is
 108 // the number of physical registers.
 109 // Returns -1 for hi word if opr is a single word operand.
 110 //
 111 // Note: the inverse operation (calculating an operand for register numbers)
 112 //       is done in calc_operand_for_interval()
 113 
 114 int LinearScan::reg_num(LIR_Opr opr) {
 115   assert(opr->is_register(), "should not call this otherwise");
 116 
 117   if (opr->is_virtual_register()) {
 118     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 119     return opr->vreg_number();
 120   } else if (opr->is_single_cpu()) {
 121     return opr->cpu_regnr();
 122   } else if (opr->is_double_cpu()) {
 123     return opr->cpu_regnrLo();
 124 #ifdef X86
 125   } else if (opr->is_single_xmm()) {
 126     return opr->fpu_regnr() + pd_first_xmm_reg;
 127   } else if (opr->is_double_xmm()) {
 128     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 129 #endif
 130   } else if (opr->is_single_fpu()) {
 131     return opr->fpu_regnr() + pd_first_fpu_reg;
 132   } else if (opr->is_double_fpu()) {
 133     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 134   } else {
 135     ShouldNotReachHere();
 136     return -1;
 137   }
 138 }
 139 
 140 int LinearScan::reg_numHi(LIR_Opr opr) {
 141   assert(opr->is_register(), "should not call this otherwise");
 142 
 143   if (opr->is_virtual_register()) {
 144     return -1;
 145   } else if (opr->is_single_cpu()) {
 146     return -1;
 147   } else if (opr->is_double_cpu()) {
 148     return opr->cpu_regnrHi();
 149 #ifdef X86
 150   } else if (opr->is_single_xmm()) {
 151     return -1;
 152   } else if (opr->is_double_xmm()) {
 153     return -1;
 154 #endif
 155   } else if (opr->is_single_fpu()) {
 156     return -1;
 157   } else if (opr->is_double_fpu()) {
 158     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 159   } else {
 160     ShouldNotReachHere();
 161     return -1;
 162   }
 163 }
 164 
 165 
 166 // ********** functions for classification of intervals
 167 
 168 bool LinearScan::is_precolored_interval(const Interval* i) {
 169   return i->reg_num() < LinearScan::nof_regs;
 170 }
 171 
 172 bool LinearScan::is_virtual_interval(const Interval* i) {
 173   return i->reg_num() >= LIR_OprDesc::vreg_base;
 174 }
 175 
 176 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 177   return i->reg_num() < LinearScan::nof_cpu_regs;
 178 }
 179 
 180 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 181 #if defined(__SOFTFP__) || defined(E500V2)
 182   return i->reg_num() >= LIR_OprDesc::vreg_base;
 183 #else
 184   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 185 #endif // __SOFTFP__ or E500V2
 186 }
 187 
 188 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 189   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 190 }
 191 
 192 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 193 #if defined(__SOFTFP__) || defined(E500V2)
 194   return false;
 195 #else
 196   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 197 #endif // __SOFTFP__ or E500V2
 198 }
 199 
 200 bool LinearScan::is_in_fpu_register(const Interval* i) {
 201   // fixed intervals not needed for FPU stack allocation
 202   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 203 }
 204 
 205 bool LinearScan::is_oop_interval(const Interval* i) {
 206   // fixed intervals never contain oops
 207   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 208 }
 209 
 210 
 211 // ********** General helper functions
 212 
 213 // compute next unused stack index that can be used for spilling
 214 int LinearScan::allocate_spill_slot(bool double_word) {
 215   int spill_slot;
 216   if (double_word) {
 217     if ((_max_spills & 1) == 1) {
 218       // alignment of double-word values
 219       // the hole because of the alignment is filled with the next single-word value
 220       assert(_unused_spill_slot == -1, "wasting a spill slot");
 221       _unused_spill_slot = _max_spills;
 222       _max_spills++;
 223     }
 224     spill_slot = _max_spills;
 225     _max_spills += 2;
 226 
 227   } else if (_unused_spill_slot != -1) {
 228     // re-use hole that was the result of a previous double-word alignment
 229     spill_slot = _unused_spill_slot;
 230     _unused_spill_slot = -1;
 231 
 232   } else {
 233     spill_slot = _max_spills;
 234     _max_spills++;
 235   }
 236 
 237   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 238 
 239   // the class OopMapValue uses only 11 bits for storing the name of the
 240   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 241   // that is not reported in product builds. Prevent this by checking the
 242   // spill slot here (altough this value and the later used location name
 243   // are slightly different)
 244   if (result > 2000) {
 245     bailout("too many stack slots used");
 246   }
 247 
 248   return result;
 249 }
 250 
 251 void LinearScan::assign_spill_slot(Interval* it) {
 252   // assign the canonical spill slot of the parent (if a part of the interval
 253   // is already spilled) or allocate a new spill slot
 254   if (it->canonical_spill_slot() >= 0) {
 255     it->assign_reg(it->canonical_spill_slot());
 256   } else {
 257     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 258     it->set_canonical_spill_slot(spill);
 259     it->assign_reg(spill);
 260   }
 261 }
 262 
 263 void LinearScan::propagate_spill_slots() {
 264   if (!frame_map()->finalize_frame(max_spills())) {
 265     bailout("frame too large");
 266   }
 267 }
 268 
 269 // create a new interval with a predefined reg_num
 270 // (only used for parent intervals that are created during the building phase)
 271 Interval* LinearScan::create_interval(int reg_num) {
 272   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 273 
 274   Interval* interval = new Interval(reg_num);
 275   _intervals.at_put(reg_num, interval);
 276 
 277   // assign register number for precolored intervals
 278   if (reg_num < LIR_OprDesc::vreg_base) {
 279     interval->assign_reg(reg_num);
 280   }
 281   return interval;
 282 }
 283 
 284 // assign a new reg_num to the interval and append it to the list of intervals
 285 // (only used for child intervals that are created during register allocation)
 286 void LinearScan::append_interval(Interval* it) {
 287   it->set_reg_num(_intervals.length());
 288   _intervals.append(it);
 289   _new_intervals_from_allocation->append(it);
 290 }
 291 
 292 // copy the vreg-flags if an interval is split
 293 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 294   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 295     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 296   }
 297   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 298     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 299   }
 300 
 301   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 302   //       intervals (only the very beginning of the interval must be in memory)
 303 }
 304 
 305 
 306 // ********** spill move optimization
 307 // eliminate moves from register to stack if stack slot is known to be correct
 308 
 309 // called during building of intervals
 310 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 311   assert(interval->is_split_parent(), "can only be called for split parents");
 312 
 313   switch (interval->spill_state()) {
 314     case noDefinitionFound:
 315       assert(interval->spill_definition_pos() == -1, "must no be set before");
 316       interval->set_spill_definition_pos(def_pos);
 317       interval->set_spill_state(oneDefinitionFound);
 318       break;
 319 
 320     case oneDefinitionFound:
 321       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 322       if (def_pos < interval->spill_definition_pos() - 2) {
 323         // second definition found, so no spill optimization possible for this interval
 324         interval->set_spill_state(noOptimization);
 325       } else {
 326         // two consecutive definitions (because of two-operand LIR form)
 327         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 328       }
 329       break;
 330 
 331     case noOptimization:
 332       // nothing to do
 333       break;
 334 
 335     default:
 336       assert(false, "other states not allowed at this time");
 337   }
 338 }
 339 
 340 // called during register allocation
 341 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 342   switch (interval->spill_state()) {
 343     case oneDefinitionFound: {
 344       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 345       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 346 
 347       if (def_loop_depth < spill_loop_depth) {
 348         // the loop depth of the spilling position is higher then the loop depth
 349         // at the definition of the interval -> move write to memory out of loop
 350         // by storing at definitin of the interval
 351         interval->set_spill_state(storeAtDefinition);
 352       } else {
 353         // the interval is currently spilled only once, so for now there is no
 354         // reason to store the interval at the definition
 355         interval->set_spill_state(oneMoveInserted);
 356       }
 357       break;
 358     }
 359 
 360     case oneMoveInserted: {
 361       // the interval is spilled more then once, so it is better to store it to
 362       // memory at the definition
 363       interval->set_spill_state(storeAtDefinition);
 364       break;
 365     }
 366 
 367     case storeAtDefinition:
 368     case startInMemory:
 369     case noOptimization:
 370     case noDefinitionFound:
 371       // nothing to do
 372       break;
 373 
 374     default:
 375       assert(false, "other states not allowed at this time");
 376   }
 377 }
 378 
 379 
 380 bool LinearScan::must_store_at_definition(const Interval* i) {
 381   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 382 }
 383 
 384 // called once before asignment of register numbers
 385 void LinearScan::eliminate_spill_moves() {
 386   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 387   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 388 
 389   // collect all intervals that must be stored after their definion.
 390   // the list is sorted by Interval::spill_definition_pos
 391   Interval* interval;
 392   Interval* temp_list;
 393   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 394 
 395 #ifdef ASSERT
 396   Interval* prev = NULL;
 397   Interval* temp = interval;
 398   while (temp != Interval::end()) {
 399     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 400     if (prev != NULL) {
 401       assert(temp->from() >= prev->from(), "intervals not sorted");
 402       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 403     }
 404 
 405     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 406     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 407     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 408 
 409     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 410 
 411     temp = temp->next();
 412   }
 413 #endif
 414 
 415   LIR_InsertionBuffer insertion_buffer;
 416   int num_blocks = block_count();
 417   for (int i = 0; i < num_blocks; i++) {
 418     BlockBegin* block = block_at(i);
 419     LIR_OpList* instructions = block->lir()->instructions_list();
 420     int         num_inst = instructions->length();
 421     bool        has_new = false;
 422 
 423     // iterate all instructions of the block. skip the first because it is always a label
 424     for (int j = 1; j < num_inst; j++) {
 425       LIR_Op* op = instructions->at(j);
 426       int op_id = op->id();
 427 
 428       if (op_id == -1) {
 429         // remove move from register to stack if the stack slot is guaranteed to be correct.
 430         // only moves that have been inserted by LinearScan can be removed.
 431         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 432         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 433         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 434 
 435         LIR_Op1* op1 = (LIR_Op1*)op;
 436         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 437 
 438         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 439           // move target is a stack slot that is always correct, so eliminate instruction
 440           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 441           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 442         }
 443 
 444       } else {
 445         // insert move from register to stack just after the beginning of the interval
 446         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 447         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 448 
 449         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 450           if (!has_new) {
 451             // prepare insertion buffer (appended when all instructions of the block are processed)
 452             insertion_buffer.init(block->lir());
 453             has_new = true;
 454           }
 455 
 456           LIR_Opr from_opr = operand_for_interval(interval);
 457           LIR_Opr to_opr = canonical_spill_opr(interval);
 458           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 459           assert(to_opr->is_stack(), "to operand must be a stack slot");
 460 
 461           insertion_buffer.move(j, from_opr, to_opr);
 462           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 463 
 464           interval = interval->next();
 465         }
 466       }
 467     } // end of instruction iteration
 468 
 469     if (has_new) {
 470       block->lir()->append(&insertion_buffer);
 471     }
 472   } // end of block iteration
 473 
 474   assert(interval == Interval::end(), "missed an interval");
 475 }
 476 
 477 
 478 // ********** Phase 1: number all instructions in all blocks
 479 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 480 
 481 void LinearScan::number_instructions() {
 482   {
 483     // dummy-timer to measure the cost of the timer itself
 484     // (this time is then subtracted from all other timers to get the real value)
 485     TIME_LINEAR_SCAN(timer_do_nothing);
 486   }
 487   TIME_LINEAR_SCAN(timer_number_instructions);
 488 
 489   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 490   int num_blocks = block_count();
 491   int num_instructions = 0;
 492   int i;
 493   for (i = 0; i < num_blocks; i++) {
 494     num_instructions += block_at(i)->lir()->instructions_list()->length();
 495   }
 496 
 497   // initialize with correct length
 498   _lir_ops = LIR_OpArray(num_instructions);
 499   _block_of_op = BlockBeginArray(num_instructions);
 500 
 501   int op_id = 0;
 502   int idx = 0;
 503 
 504   for (i = 0; i < num_blocks; i++) {
 505     BlockBegin* block = block_at(i);
 506     block->set_first_lir_instruction_id(op_id);
 507     LIR_OpList* instructions = block->lir()->instructions_list();
 508 
 509     int num_inst = instructions->length();
 510     for (int j = 0; j < num_inst; j++) {
 511       LIR_Op* op = instructions->at(j);
 512       op->set_id(op_id);
 513 
 514       _lir_ops.at_put(idx, op);
 515       _block_of_op.at_put(idx, block);
 516       assert(lir_op_with_id(op_id) == op, "must match");
 517 
 518       idx++;
 519       op_id += 2; // numbering of lir_ops by two
 520     }
 521     block->set_last_lir_instruction_id(op_id - 2);
 522   }
 523   assert(idx == num_instructions, "must match");
 524   assert(idx * 2 == op_id, "must match");
 525 
 526   _has_call = BitMap(num_instructions); _has_call.clear();
 527   _has_info = BitMap(num_instructions); _has_info.clear();
 528 }
 529 
 530 
 531 // ********** Phase 2: compute local live sets separately for each block
 532 // (sets live_gen and live_kill for each block)
 533 
 534 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 535   LIR_Opr opr = value->operand();
 536   Constant* con = value->as_Constant();
 537 
 538   // check some asumptions about debug information
 539   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 540   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 541   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 542 
 543   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 544     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 545     int reg = opr->vreg_number();
 546     if (!live_kill.at(reg)) {
 547       live_gen.set_bit(reg);
 548       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 549     }
 550   }
 551 }
 552 
 553 
 554 void LinearScan::compute_local_live_sets() {
 555   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 556 
 557   int  num_blocks = block_count();
 558   int  live_size = live_set_size();
 559   bool local_has_fpu_registers = false;
 560   int  local_num_calls = 0;
 561   LIR_OpVisitState visitor;
 562 
 563   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 564   local_interval_in_loop.clear();
 565 
 566   // iterate all blocks
 567   for (int i = 0; i < num_blocks; i++) {
 568     BlockBegin* block = block_at(i);
 569 
 570     BitMap live_gen(live_size);  live_gen.clear();
 571     BitMap live_kill(live_size); live_kill.clear();
 572 
 573     if (block->is_set(BlockBegin::exception_entry_flag)) {
 574       // Phi functions at the begin of an exception handler are
 575       // implicitly defined (= killed) at the beginning of the block.
 576       for_each_phi_fun(block, phi,
 577         live_kill.set_bit(phi->operand()->vreg_number())
 578       );
 579     }
 580 
 581     LIR_OpList* instructions = block->lir()->instructions_list();
 582     int num_inst = instructions->length();
 583 
 584     // iterate all instructions of the block. skip the first because it is always a label
 585     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 586     for (int j = 1; j < num_inst; j++) {
 587       LIR_Op* op = instructions->at(j);
 588 
 589       // visit operation to collect all operands
 590       visitor.visit(op);
 591 
 592       if (visitor.has_call()) {
 593         _has_call.set_bit(op->id() >> 1);
 594         local_num_calls++;
 595       }
 596       if (visitor.info_count() > 0) {
 597         _has_info.set_bit(op->id() >> 1);
 598       }
 599 
 600       // iterate input operands of instruction
 601       int k, n, reg;
 602       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 603       for (k = 0; k < n; k++) {
 604         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 605         assert(opr->is_register(), "visitor should only return register operands");
 606 
 607         if (opr->is_virtual_register()) {
 608           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 609           reg = opr->vreg_number();
 610           if (!live_kill.at(reg)) {
 611             live_gen.set_bit(reg);
 612             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 613           }
 614           if (block->loop_index() >= 0) {
 615             local_interval_in_loop.set_bit(reg, block->loop_index());
 616           }
 617           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 618         }
 619 
 620 #ifdef ASSERT
 621         // fixed intervals are never live at block boundaries, so
 622         // they need not be processed in live sets.
 623         // this is checked by these assertions to be sure about it.
 624         // the entry block may have incoming values in registers, which is ok.
 625         if (!opr->is_virtual_register() && block != ir()->start()) {
 626           reg = reg_num(opr);
 627           if (is_processed_reg_num(reg)) {
 628             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 629           }
 630           reg = reg_numHi(opr);
 631           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 632             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 633           }
 634         }
 635 #endif
 636       }
 637 
 638       // Add uses of live locals from interpreter's point of view for proper debug information generation
 639       n = visitor.info_count();
 640       for (k = 0; k < n; k++) {
 641         CodeEmitInfo* info = visitor.info_at(k);
 642         ValueStack* stack = info->stack();
 643         for_each_state_value(stack, value,
 644           set_live_gen_kill(value, op, live_gen, live_kill)
 645         );
 646       }
 647 
 648       // iterate temp operands of instruction
 649       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 650       for (k = 0; k < n; k++) {
 651         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 652         assert(opr->is_register(), "visitor should only return register operands");
 653 
 654         if (opr->is_virtual_register()) {
 655           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 656           reg = opr->vreg_number();
 657           live_kill.set_bit(reg);
 658           if (block->loop_index() >= 0) {
 659             local_interval_in_loop.set_bit(reg, block->loop_index());
 660           }
 661           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 662         }
 663 
 664 #ifdef ASSERT
 665         // fixed intervals are never live at block boundaries, so
 666         // they need not be processed in live sets
 667         // process them only in debug mode so that this can be checked
 668         if (!opr->is_virtual_register()) {
 669           reg = reg_num(opr);
 670           if (is_processed_reg_num(reg)) {
 671             live_kill.set_bit(reg_num(opr));
 672           }
 673           reg = reg_numHi(opr);
 674           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 675             live_kill.set_bit(reg);
 676           }
 677         }
 678 #endif
 679       }
 680 
 681       // iterate output operands of instruction
 682       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 683       for (k = 0; k < n; k++) {
 684         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 685         assert(opr->is_register(), "visitor should only return register operands");
 686 
 687         if (opr->is_virtual_register()) {
 688           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 689           reg = opr->vreg_number();
 690           live_kill.set_bit(reg);
 691           if (block->loop_index() >= 0) {
 692             local_interval_in_loop.set_bit(reg, block->loop_index());
 693           }
 694           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 695         }
 696 
 697 #ifdef ASSERT
 698         // fixed intervals are never live at block boundaries, so
 699         // they need not be processed in live sets
 700         // process them only in debug mode so that this can be checked
 701         if (!opr->is_virtual_register()) {
 702           reg = reg_num(opr);
 703           if (is_processed_reg_num(reg)) {
 704             live_kill.set_bit(reg_num(opr));
 705           }
 706           reg = reg_numHi(opr);
 707           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 708             live_kill.set_bit(reg);
 709           }
 710         }
 711 #endif
 712       }
 713     } // end of instruction iteration
 714 
 715     block->set_live_gen (live_gen);
 716     block->set_live_kill(live_kill);
 717     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 718     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 719 
 720     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 721     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 722   } // end of block iteration
 723 
 724   // propagate local calculated information into LinearScan object
 725   _has_fpu_registers = local_has_fpu_registers;
 726   compilation()->set_has_fpu_code(local_has_fpu_registers);
 727 
 728   _num_calls = local_num_calls;
 729   _interval_in_loop = local_interval_in_loop;
 730 }
 731 
 732 
 733 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 734 // (sets live_in and live_out for each block)
 735 
 736 void LinearScan::compute_global_live_sets() {
 737   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 738 
 739   int  num_blocks = block_count();
 740   bool change_occurred;
 741   bool change_occurred_in_block;
 742   int  iteration_count = 0;
 743   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 744 
 745   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 746   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 747   // Exception handlers must be processed because not all live values are
 748   // present in the state array, e.g. because of global value numbering
 749   do {
 750     change_occurred = false;
 751 
 752     // iterate all blocks in reverse order
 753     for (int i = num_blocks - 1; i >= 0; i--) {
 754       BlockBegin* block = block_at(i);
 755 
 756       change_occurred_in_block = false;
 757 
 758       // live_out(block) is the union of live_in(sux), for successors sux of block
 759       int n = block->number_of_sux();
 760       int e = block->number_of_exception_handlers();
 761       if (n + e > 0) {
 762         // block has successors
 763         if (n > 0) {
 764           live_out.set_from(block->sux_at(0)->live_in());
 765           for (int j = 1; j < n; j++) {
 766             live_out.set_union(block->sux_at(j)->live_in());
 767           }
 768         } else {
 769           live_out.clear();
 770         }
 771         for (int j = 0; j < e; j++) {
 772           live_out.set_union(block->exception_handler_at(j)->live_in());
 773         }
 774 
 775         if (!block->live_out().is_same(live_out)) {
 776           // A change occurred.  Swap the old and new live out sets to avoid copying.
 777           BitMap temp = block->live_out();
 778           block->set_live_out(live_out);
 779           live_out = temp;
 780 
 781           change_occurred = true;
 782           change_occurred_in_block = true;
 783         }
 784       }
 785 
 786       if (iteration_count == 0 || change_occurred_in_block) {
 787         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 788         // note: live_in has to be computed only in first iteration or if live_out has changed!
 789         BitMap live_in = block->live_in();
 790         live_in.set_from(block->live_out());
 791         live_in.set_difference(block->live_kill());
 792         live_in.set_union(block->live_gen());
 793       }
 794 
 795 #ifndef PRODUCT
 796       if (TraceLinearScanLevel >= 4) {
 797         char c = ' ';
 798         if (iteration_count == 0 || change_occurred_in_block) {
 799           c = '*';
 800         }
 801         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 802         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 803       }
 804 #endif
 805     }
 806     iteration_count++;
 807 
 808     if (change_occurred && iteration_count > 50) {
 809       BAILOUT("too many iterations in compute_global_live_sets");
 810     }
 811   } while (change_occurred);
 812 
 813 
 814 #ifdef ASSERT
 815   // check that fixed intervals are not live at block boundaries
 816   // (live set must be empty at fixed intervals)
 817   for (int i = 0; i < num_blocks; i++) {
 818     BlockBegin* block = block_at(i);
 819     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 820       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 821       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 822       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 823     }
 824   }
 825 #endif
 826 
 827   // check that the live_in set of the first block is empty
 828   BitMap live_in_args(ir()->start()->live_in().size());
 829   live_in_args.clear();
 830   if (!ir()->start()->live_in().is_same(live_in_args)) {
 831 #ifdef ASSERT
 832     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 833     tty->print_cr("affected registers:");
 834     print_bitmap(ir()->start()->live_in());
 835 
 836     // print some additional information to simplify debugging
 837     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 838       if (ir()->start()->live_in().at(i)) {
 839         Instruction* instr = gen()->instruction_for_vreg(i);
 840         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 841 
 842         for (int j = 0; j < num_blocks; j++) {
 843           BlockBegin* block = block_at(j);
 844           if (block->live_gen().at(i)) {
 845             tty->print_cr("  used in block B%d", block->block_id());
 846           }
 847           if (block->live_kill().at(i)) {
 848             tty->print_cr("  defined in block B%d", block->block_id());
 849           }
 850         }
 851       }
 852     }
 853 
 854 #endif
 855     // when this fails, virtual registers are used before they are defined.
 856     assert(false, "live_in set of first block must be empty");
 857     // bailout of if this occurs in product mode.
 858     bailout("live_in set of first block not empty");
 859   }
 860 }
 861 
 862 
 863 // ********** Phase 4: build intervals
 864 // (fills the list _intervals)
 865 
 866 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 867   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 868   LIR_Opr opr = value->operand();
 869   Constant* con = value->as_Constant();
 870 
 871   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 872     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 873     add_use(opr, from, to, use_kind);
 874   }
 875 }
 876 
 877 
 878 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 879   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 880   assert(opr->is_register(), "should not be called otherwise");
 881 
 882   if (opr->is_virtual_register()) {
 883     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 884     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 885 
 886   } else {
 887     int reg = reg_num(opr);
 888     if (is_processed_reg_num(reg)) {
 889       add_def(reg, def_pos, use_kind, opr->type_register());
 890     }
 891     reg = reg_numHi(opr);
 892     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 893       add_def(reg, def_pos, use_kind, opr->type_register());
 894     }
 895   }
 896 }
 897 
 898 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 899   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 900   assert(opr->is_register(), "should not be called otherwise");
 901 
 902   if (opr->is_virtual_register()) {
 903     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 904     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 905 
 906   } else {
 907     int reg = reg_num(opr);
 908     if (is_processed_reg_num(reg)) {
 909       add_use(reg, from, to, use_kind, opr->type_register());
 910     }
 911     reg = reg_numHi(opr);
 912     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 913       add_use(reg, from, to, use_kind, opr->type_register());
 914     }
 915   }
 916 }
 917 
 918 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 919   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 920   assert(opr->is_register(), "should not be called otherwise");
 921 
 922   if (opr->is_virtual_register()) {
 923     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 924     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 925 
 926   } else {
 927     int reg = reg_num(opr);
 928     if (is_processed_reg_num(reg)) {
 929       add_temp(reg, temp_pos, use_kind, opr->type_register());
 930     }
 931     reg = reg_numHi(opr);
 932     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 933       add_temp(reg, temp_pos, use_kind, opr->type_register());
 934     }
 935   }
 936 }
 937 
 938 
 939 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 940   Interval* interval = interval_at(reg_num);
 941   if (interval != NULL) {
 942     assert(interval->reg_num() == reg_num, "wrong interval");
 943 
 944     if (type != T_ILLEGAL) {
 945       interval->set_type(type);
 946     }
 947 
 948     Range* r = interval->first();
 949     if (r->from() <= def_pos) {
 950       // Update the starting point (when a range is first created for a use, its
 951       // start is the beginning of the current block until a def is encountered.)
 952       r->set_from(def_pos);
 953       interval->add_use_pos(def_pos, use_kind);
 954 
 955     } else {
 956       // Dead value - make vacuous interval
 957       // also add use_kind for dead intervals
 958       interval->add_range(def_pos, def_pos + 1);
 959       interval->add_use_pos(def_pos, use_kind);
 960       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 961     }
 962 
 963   } else {
 964     // Dead value - make vacuous interval
 965     // also add use_kind for dead intervals
 966     interval = create_interval(reg_num);
 967     if (type != T_ILLEGAL) {
 968       interval->set_type(type);
 969     }
 970 
 971     interval->add_range(def_pos, def_pos + 1);
 972     interval->add_use_pos(def_pos, use_kind);
 973     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 974   }
 975 
 976   change_spill_definition_pos(interval, def_pos);
 977   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 978         // detection of method-parameters and roundfp-results
 979         // TODO: move this directly to position where use-kind is computed
 980     interval->set_spill_state(startInMemory);
 981   }
 982 }
 983 
 984 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 985   Interval* interval = interval_at(reg_num);
 986   if (interval == NULL) {
 987     interval = create_interval(reg_num);
 988   }
 989   assert(interval->reg_num() == reg_num, "wrong interval");
 990 
 991   if (type != T_ILLEGAL) {
 992     interval->set_type(type);
 993   }
 994 
 995   interval->add_range(from, to);
 996   interval->add_use_pos(to, use_kind);
 997 }
 998 
 999 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1000   Interval* interval = interval_at(reg_num);
1001   if (interval == NULL) {
1002     interval = create_interval(reg_num);
1003   }
1004   assert(interval->reg_num() == reg_num, "wrong interval");
1005 
1006   if (type != T_ILLEGAL) {
1007     interval->set_type(type);
1008   }
1009 
1010   interval->add_range(temp_pos, temp_pos + 1);
1011   interval->add_use_pos(temp_pos, use_kind);
1012 }
1013 
1014 
1015 // the results of this functions are used for optimizing spilling and reloading
1016 // if the functions return shouldHaveRegister and the interval is spilled,
1017 // it is not reloaded to a register.
1018 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1019   if (op->code() == lir_move) {
1020     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1021     LIR_Op1* move = (LIR_Op1*)op;
1022     LIR_Opr res = move->result_opr();
1023     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1024 
1025     if (result_in_memory) {
1026       // Begin of an interval with must_start_in_memory set.
1027       // This interval will always get a stack slot first, so return noUse.
1028       return noUse;
1029 
1030     } else if (move->in_opr()->is_stack()) {
1031       // method argument (condition must be equal to handle_method_arguments)
1032       return noUse;
1033 
1034     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1035       // Move from register to register
1036       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1037         // special handling of phi-function moves inside osr-entry blocks
1038         // input operand must have a register instead of output operand (leads to better register allocation)
1039         return shouldHaveRegister;
1040       }
1041     }
1042   }
1043 
1044   if (opr->is_virtual() &&
1045       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1046     // result is a stack-slot, so prevent immediate reloading
1047     return noUse;
1048   }
1049 
1050   // all other operands require a register
1051   return mustHaveRegister;
1052 }
1053 
1054 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1055   if (op->code() == lir_move) {
1056     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1057     LIR_Op1* move = (LIR_Op1*)op;
1058     LIR_Opr res = move->result_opr();
1059     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1060 
1061     if (result_in_memory) {
1062       // Move to an interval with must_start_in_memory set.
1063       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1064       return mustHaveRegister;
1065 
1066     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1067       // Move from register to register
1068       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1069         // special handling of phi-function moves inside osr-entry blocks
1070         // input operand must have a register instead of output operand (leads to better register allocation)
1071         return mustHaveRegister;
1072       }
1073 
1074       // The input operand is not forced to a register (moves from stack to register are allowed),
1075       // but it is faster if the input operand is in a register
1076       return shouldHaveRegister;
1077     }
1078   }
1079 
1080 
1081 #ifdef X86
1082   if (op->code() == lir_cmove) {
1083     // conditional moves can handle stack operands
1084     assert(op->result_opr()->is_register(), "result must always be in a register");
1085     return shouldHaveRegister;
1086   }
1087 
1088   // optimizations for second input operand of arithmehtic operations on Intel
1089   // this operand is allowed to be on the stack in some cases
1090   BasicType opr_type = opr->type_register();
1091   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1092     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1093       // SSE float instruction (T_DOUBLE only supported with SSE2)
1094       switch (op->code()) {
1095         case lir_cmp:
1096         case lir_add:
1097         case lir_sub:
1098         case lir_mul:
1099         case lir_div:
1100         {
1101           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1102           LIR_Op2* op2 = (LIR_Op2*)op;
1103           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1104             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1105             return shouldHaveRegister;
1106           }
1107         }
1108       }
1109     } else {
1110       // FPU stack float instruction
1111       switch (op->code()) {
1112         case lir_add:
1113         case lir_sub:
1114         case lir_mul:
1115         case lir_div:
1116         {
1117           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1118           LIR_Op2* op2 = (LIR_Op2*)op;
1119           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1120             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1121             return shouldHaveRegister;
1122           }
1123         }
1124       }
1125     }
1126     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1127     // Since 64bit logical operations do not current support operands on stack, we have to make sure
1128     // T_OBJECT doesn't get spilled along with T_LONG.
1129   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1130     // integer instruction (note: long operands must always be in register)
1131     switch (op->code()) {
1132       case lir_cmp:
1133       case lir_add:
1134       case lir_sub:
1135       case lir_logic_and:
1136       case lir_logic_or:
1137       case lir_logic_xor:
1138       {
1139         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1140         LIR_Op2* op2 = (LIR_Op2*)op;
1141         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1142           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1143           return shouldHaveRegister;
1144         }
1145       }
1146     }
1147   }
1148 #endif // X86
1149 
1150   // all other operands require a register
1151   return mustHaveRegister;
1152 }
1153 
1154 
1155 void LinearScan::handle_method_arguments(LIR_Op* op) {
1156   // special handling for method arguments (moves from stack to virtual register):
1157   // the interval gets no register assigned, but the stack slot.
1158   // it is split before the first use by the register allocator.
1159 
1160   if (op->code() == lir_move) {
1161     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1162     LIR_Op1* move = (LIR_Op1*)op;
1163 
1164     if (move->in_opr()->is_stack()) {
1165 #ifdef ASSERT
1166       int arg_size = compilation()->method()->arg_size();
1167       LIR_Opr o = move->in_opr();
1168       if (o->is_single_stack()) {
1169         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1170       } else if (o->is_double_stack()) {
1171         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1172       } else {
1173         ShouldNotReachHere();
1174       }
1175 
1176       assert(move->id() > 0, "invalid id");
1177       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1178       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1179 
1180       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1181 #endif
1182 
1183       Interval* interval = interval_at(reg_num(move->result_opr()));
1184 
1185       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1186       interval->set_canonical_spill_slot(stack_slot);
1187       interval->assign_reg(stack_slot);
1188     }
1189   }
1190 }
1191 
1192 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1193   // special handling for doubleword move from memory to register:
1194   // in this case the registers of the input address and the result
1195   // registers must not overlap -> add a temp range for the input registers
1196   if (op->code() == lir_move) {
1197     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1198     LIR_Op1* move = (LIR_Op1*)op;
1199 
1200     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1201       LIR_Address* address = move->in_opr()->as_address_ptr();
1202       if (address != NULL) {
1203         if (address->base()->is_valid()) {
1204           add_temp(address->base(), op->id(), noUse);
1205         }
1206         if (address->index()->is_valid()) {
1207           add_temp(address->index(), op->id(), noUse);
1208         }
1209       }
1210     }
1211   }
1212 }
1213 
1214 void LinearScan::add_register_hints(LIR_Op* op) {
1215   switch (op->code()) {
1216     case lir_move:      // fall through
1217     case lir_convert: {
1218       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1219       LIR_Op1* move = (LIR_Op1*)op;
1220 
1221       LIR_Opr move_from = move->in_opr();
1222       LIR_Opr move_to = move->result_opr();
1223 
1224       if (move_to->is_register() && move_from->is_register()) {
1225         Interval* from = interval_at(reg_num(move_from));
1226         Interval* to = interval_at(reg_num(move_to));
1227         if (from != NULL && to != NULL) {
1228           to->set_register_hint(from);
1229           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1230         }
1231       }
1232       break;
1233     }
1234     case lir_cmove: {
1235       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1236       LIR_Op2* cmove = (LIR_Op2*)op;
1237 
1238       LIR_Opr move_from = cmove->in_opr1();
1239       LIR_Opr move_to = cmove->result_opr();
1240 
1241       if (move_to->is_register() && move_from->is_register()) {
1242         Interval* from = interval_at(reg_num(move_from));
1243         Interval* to = interval_at(reg_num(move_to));
1244         if (from != NULL && to != NULL) {
1245           to->set_register_hint(from);
1246           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1247         }
1248       }
1249       break;
1250     }
1251   }
1252 }
1253 
1254 
1255 void LinearScan::build_intervals() {
1256   TIME_LINEAR_SCAN(timer_build_intervals);
1257 
1258   // initialize interval list with expected number of intervals
1259   // (32 is added to have some space for split children without having to resize the list)
1260   _intervals = IntervalList(num_virtual_regs() + 32);
1261   // initialize all slots that are used by build_intervals
1262   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1263 
1264   // create a list with all caller-save registers (cpu, fpu, xmm)
1265   // when an instruction is a call, a temp range is created for all these registers
1266   int num_caller_save_registers = 0;
1267   int caller_save_registers[LinearScan::nof_regs];
1268 
1269   int i;
1270   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1271     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1272     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1273     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1274     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1275   }
1276 
1277   // temp ranges for fpu registers are only created when the method has
1278   // virtual fpu operands. Otherwise no allocation for fpu registers is
1279   // perfomed and so the temp ranges would be useless
1280   if (has_fpu_registers()) {
1281 #ifdef X86
1282     if (UseSSE < 2) {
1283 #endif
1284       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1285         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1286         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1287         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1288         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1289       }
1290 #ifdef X86
1291     }
1292     if (UseSSE > 0) {
1293       int num_caller_save_xmm_regs = FrameMap::nof_caller_save_xmm_regs;
1294 #if _LP64
1295       if (UseAVX < 3) {
1296         num_caller_save_xmm_regs = num_caller_save_xmm_regs / 2;
1297       }
1298 #endif
1299       for (i = 0; i < num_caller_save_xmm_regs; i ++) {
1300         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1301         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1302         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1303         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1304       }
1305     }
1306 #endif
1307   }
1308   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1309 
1310 
1311   LIR_OpVisitState visitor;
1312 
1313   // iterate all blocks in reverse order
1314   for (i = block_count() - 1; i >= 0; i--) {
1315     BlockBegin* block = block_at(i);
1316     LIR_OpList* instructions = block->lir()->instructions_list();
1317     int         block_from =   block->first_lir_instruction_id();
1318     int         block_to =     block->last_lir_instruction_id();
1319 
1320     assert(block_from == instructions->at(0)->id(), "must be");
1321     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1322 
1323     // Update intervals for registers live at the end of this block;
1324     BitMap live = block->live_out();
1325     int size = (int)live.size();
1326     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1327       assert(live.at(number), "should not stop here otherwise");
1328       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1329       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1330 
1331       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1332 
1333       // add special use positions for loop-end blocks when the
1334       // interval is used anywhere inside this loop.  It's possible
1335       // that the block was part of a non-natural loop, so it might
1336       // have an invalid loop index.
1337       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1338           block->loop_index() != -1 &&
1339           is_interval_in_loop(number, block->loop_index())) {
1340         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1341       }
1342     }
1343 
1344     // iterate all instructions of the block in reverse order.
1345     // skip the first instruction because it is always a label
1346     // definitions of intervals are processed before uses
1347     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1348     for (int j = instructions->length() - 1; j >= 1; j--) {
1349       LIR_Op* op = instructions->at(j);
1350       int op_id = op->id();
1351 
1352       // visit operation to collect all operands
1353       visitor.visit(op);
1354 
1355       // add a temp range for each register if operation destroys caller-save registers
1356       if (visitor.has_call()) {
1357         for (int k = 0; k < num_caller_save_registers; k++) {
1358           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1359         }
1360         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1361       }
1362 
1363       // Add any platform dependent temps
1364       pd_add_temps(op);
1365 
1366       // visit definitions (output and temp operands)
1367       int k, n;
1368       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1369       for (k = 0; k < n; k++) {
1370         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1371         assert(opr->is_register(), "visitor should only return register operands");
1372         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1373       }
1374 
1375       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1376       for (k = 0; k < n; k++) {
1377         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1378         assert(opr->is_register(), "visitor should only return register operands");
1379         add_temp(opr, op_id, mustHaveRegister);
1380       }
1381 
1382       // visit uses (input operands)
1383       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1384       for (k = 0; k < n; k++) {
1385         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1386         assert(opr->is_register(), "visitor should only return register operands");
1387         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1388       }
1389 
1390       // Add uses of live locals from interpreter's point of view for proper
1391       // debug information generation
1392       // Treat these operands as temp values (if the life range is extended
1393       // to a call site, the value would be in a register at the call otherwise)
1394       n = visitor.info_count();
1395       for (k = 0; k < n; k++) {
1396         CodeEmitInfo* info = visitor.info_at(k);
1397         ValueStack* stack = info->stack();
1398         for_each_state_value(stack, value,
1399           add_use(value, block_from, op_id + 1, noUse);
1400         );
1401       }
1402 
1403       // special steps for some instructions (especially moves)
1404       handle_method_arguments(op);
1405       handle_doubleword_moves(op);
1406       add_register_hints(op);
1407 
1408     } // end of instruction iteration
1409   } // end of block iteration
1410 
1411 
1412   // add the range [0, 1[ to all fixed intervals
1413   // -> the register allocator need not handle unhandled fixed intervals
1414   for (int n = 0; n < LinearScan::nof_regs; n++) {
1415     Interval* interval = interval_at(n);
1416     if (interval != NULL) {
1417       interval->add_range(0, 1);
1418     }
1419   }
1420 }
1421 
1422 
1423 // ********** Phase 5: actual register allocation
1424 
1425 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1426   if (*a != NULL) {
1427     if (*b != NULL) {
1428       return (*a)->from() - (*b)->from();
1429     } else {
1430       return -1;
1431     }
1432   } else {
1433     if (*b != NULL) {
1434       return 1;
1435     } else {
1436       return 0;
1437     }
1438   }
1439 }
1440 
1441 #ifndef PRODUCT
1442 bool LinearScan::is_sorted(IntervalArray* intervals) {
1443   int from = -1;
1444   int i, j;
1445   for (i = 0; i < intervals->length(); i ++) {
1446     Interval* it = intervals->at(i);
1447     if (it != NULL) {
1448       if (from > it->from()) {
1449         assert(false, "");
1450         return false;
1451       }
1452       from = it->from();
1453     }
1454   }
1455 
1456   // check in both directions if sorted list and unsorted list contain same intervals
1457   for (i = 0; i < interval_count(); i++) {
1458     if (interval_at(i) != NULL) {
1459       int num_found = 0;
1460       for (j = 0; j < intervals->length(); j++) {
1461         if (interval_at(i) == intervals->at(j)) {
1462           num_found++;
1463         }
1464       }
1465       assert(num_found == 1, "lists do not contain same intervals");
1466     }
1467   }
1468   for (j = 0; j < intervals->length(); j++) {
1469     int num_found = 0;
1470     for (i = 0; i < interval_count(); i++) {
1471       if (interval_at(i) == intervals->at(j)) {
1472         num_found++;
1473       }
1474     }
1475     assert(num_found == 1, "lists do not contain same intervals");
1476   }
1477 
1478   return true;
1479 }
1480 #endif
1481 
1482 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1483   if (*prev != NULL) {
1484     (*prev)->set_next(interval);
1485   } else {
1486     *first = interval;
1487   }
1488   *prev = interval;
1489 }
1490 
1491 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1492   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1493 
1494   *list1 = *list2 = Interval::end();
1495 
1496   Interval* list1_prev = NULL;
1497   Interval* list2_prev = NULL;
1498   Interval* v;
1499 
1500   const int n = _sorted_intervals->length();
1501   for (int i = 0; i < n; i++) {
1502     v = _sorted_intervals->at(i);
1503     if (v == NULL) continue;
1504 
1505     if (is_list1(v)) {
1506       add_to_list(list1, &list1_prev, v);
1507     } else if (is_list2 == NULL || is_list2(v)) {
1508       add_to_list(list2, &list2_prev, v);
1509     }
1510   }
1511 
1512   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1513   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1514 
1515   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1516   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1517 }
1518 
1519 
1520 void LinearScan::sort_intervals_before_allocation() {
1521   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1522 
1523   if (_needs_full_resort) {
1524     // There is no known reason why this should occur but just in case...
1525     assert(false, "should never occur");
1526     // Re-sort existing interval list because an Interval::from() has changed
1527     _sorted_intervals->sort(interval_cmp);
1528     _needs_full_resort = false;
1529   }
1530 
1531   IntervalList* unsorted_list = &_intervals;
1532   int unsorted_len = unsorted_list->length();
1533   int sorted_len = 0;
1534   int unsorted_idx;
1535   int sorted_idx = 0;
1536   int sorted_from_max = -1;
1537 
1538   // calc number of items for sorted list (sorted list must not contain NULL values)
1539   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1540     if (unsorted_list->at(unsorted_idx) != NULL) {
1541       sorted_len++;
1542     }
1543   }
1544   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1545 
1546   // special sorting algorithm: the original interval-list is almost sorted,
1547   // only some intervals are swapped. So this is much faster than a complete QuickSort
1548   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1549     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1550 
1551     if (cur_interval != NULL) {
1552       int cur_from = cur_interval->from();
1553 
1554       if (sorted_from_max <= cur_from) {
1555         sorted_list->at_put(sorted_idx++, cur_interval);
1556         sorted_from_max = cur_interval->from();
1557       } else {
1558         // the asumption that the intervals are already sorted failed,
1559         // so this interval must be sorted in manually
1560         int j;
1561         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1562           sorted_list->at_put(j + 1, sorted_list->at(j));
1563         }
1564         sorted_list->at_put(j + 1, cur_interval);
1565         sorted_idx++;
1566       }
1567     }
1568   }
1569   _sorted_intervals = sorted_list;
1570   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1571 }
1572 
1573 void LinearScan::sort_intervals_after_allocation() {
1574   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1575 
1576   if (_needs_full_resort) {
1577     // Re-sort existing interval list because an Interval::from() has changed
1578     _sorted_intervals->sort(interval_cmp);
1579     _needs_full_resort = false;
1580   }
1581 
1582   IntervalArray* old_list      = _sorted_intervals;
1583   IntervalList*  new_list      = _new_intervals_from_allocation;
1584   int old_len = old_list->length();
1585   int new_len = new_list->length();
1586 
1587   if (new_len == 0) {
1588     // no intervals have been added during allocation, so sorted list is already up to date
1589     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1590     return;
1591   }
1592 
1593   // conventional sort-algorithm for new intervals
1594   new_list->sort(interval_cmp);
1595 
1596   // merge old and new list (both already sorted) into one combined list
1597   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1598   int old_idx = 0;
1599   int new_idx = 0;
1600 
1601   while (old_idx + new_idx < old_len + new_len) {
1602     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1603       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1604       old_idx++;
1605     } else {
1606       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1607       new_idx++;
1608     }
1609   }
1610 
1611   _sorted_intervals = combined_list;
1612   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1613 }
1614 
1615 
1616 void LinearScan::allocate_registers() {
1617   TIME_LINEAR_SCAN(timer_allocate_registers);
1618 
1619   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1620   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1621 
1622   // allocate cpu registers
1623   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1624                          is_precolored_cpu_interval, is_virtual_cpu_interval);
1625 
1626   // allocate fpu registers
1627   create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1628                          is_precolored_fpu_interval, is_virtual_fpu_interval);
1629 
1630   // the fpu interval allocation cannot be moved down below with the fpu section as
1631   // the cpu_lsw.walk() changes interval positions.
1632 
1633   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1634   cpu_lsw.walk();
1635   cpu_lsw.finish_allocation();
1636 
1637   if (has_fpu_registers()) {
1638     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1639     fpu_lsw.walk();
1640     fpu_lsw.finish_allocation();
1641   }
1642 }
1643 
1644 
1645 // ********** Phase 6: resolve data flow
1646 // (insert moves at edges between blocks if intervals have been split)
1647 
1648 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1649 // instead of returning NULL
1650 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1651   Interval* result = interval->split_child_at_op_id(op_id, mode);
1652   if (result != NULL) {
1653     return result;
1654   }
1655 
1656   assert(false, "must find an interval, but do a clean bailout in product mode");
1657   result = new Interval(LIR_OprDesc::vreg_base);
1658   result->assign_reg(0);
1659   result->set_type(T_INT);
1660   BAILOUT_("LinearScan: interval is NULL", result);
1661 }
1662 
1663 
1664 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1665   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1666   assert(interval_at(reg_num) != NULL, "no interval found");
1667 
1668   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1669 }
1670 
1671 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1672   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1673   assert(interval_at(reg_num) != NULL, "no interval found");
1674 
1675   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1676 }
1677 
1678 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1679   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1680   assert(interval_at(reg_num) != NULL, "no interval found");
1681 
1682   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1683 }
1684 
1685 
1686 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1687   DEBUG_ONLY(move_resolver.check_empty());
1688 
1689   const int num_regs = num_virtual_regs();
1690   const int size = live_set_size();
1691   const BitMap live_at_edge = to_block->live_in();
1692 
1693   // visit all registers where the live_at_edge bit is set
1694   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1695     assert(r < num_regs, "live information set for not exisiting interval");
1696     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1697 
1698     Interval* from_interval = interval_at_block_end(from_block, r);
1699     Interval* to_interval = interval_at_block_begin(to_block, r);
1700 
1701     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1702       // need to insert move instruction
1703       move_resolver.add_mapping(from_interval, to_interval);
1704     }
1705   }
1706 }
1707 
1708 
1709 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1710   if (from_block->number_of_sux() <= 1) {
1711     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1712 
1713     LIR_OpList* instructions = from_block->lir()->instructions_list();
1714     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1715     if (branch != NULL) {
1716       // insert moves before branch
1717       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1718       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1719     } else {
1720       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1721     }
1722 
1723   } else {
1724     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1725 #ifdef ASSERT
1726     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1727 
1728     // because the number of predecessor edges matches the number of
1729     // successor edges, blocks which are reached by switch statements
1730     // may have be more than one predecessor but it will be guaranteed
1731     // that all predecessors will be the same.
1732     for (int i = 0; i < to_block->number_of_preds(); i++) {
1733       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1734     }
1735 #endif
1736 
1737     move_resolver.set_insert_position(to_block->lir(), 0);
1738   }
1739 }
1740 
1741 
1742 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1743 void LinearScan::resolve_data_flow() {
1744   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1745 
1746   int num_blocks = block_count();
1747   MoveResolver move_resolver(this);
1748   BitMap block_completed(num_blocks);  block_completed.clear();
1749   BitMap already_resolved(num_blocks); already_resolved.clear();
1750 
1751   int i;
1752   for (i = 0; i < num_blocks; i++) {
1753     BlockBegin* block = block_at(i);
1754 
1755     // check if block has only one predecessor and only one successor
1756     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1757       LIR_OpList* instructions = block->lir()->instructions_list();
1758       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1759       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1760       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1761 
1762       // check if block is empty (only label and branch)
1763       if (instructions->length() == 2) {
1764         BlockBegin* pred = block->pred_at(0);
1765         BlockBegin* sux = block->sux_at(0);
1766 
1767         // prevent optimization of two consecutive blocks
1768         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1769           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1770           block_completed.set_bit(block->linear_scan_number());
1771 
1772           // directly resolve between pred and sux (without looking at the empty block between)
1773           resolve_collect_mappings(pred, sux, move_resolver);
1774           if (move_resolver.has_mappings()) {
1775             move_resolver.set_insert_position(block->lir(), 0);
1776             move_resolver.resolve_and_append_moves();
1777           }
1778         }
1779       }
1780     }
1781   }
1782 
1783 
1784   for (i = 0; i < num_blocks; i++) {
1785     if (!block_completed.at(i)) {
1786       BlockBegin* from_block = block_at(i);
1787       already_resolved.set_from(block_completed);
1788 
1789       int num_sux = from_block->number_of_sux();
1790       for (int s = 0; s < num_sux; s++) {
1791         BlockBegin* to_block = from_block->sux_at(s);
1792 
1793         // check for duplicate edges between the same blocks (can happen with switch blocks)
1794         if (!already_resolved.at(to_block->linear_scan_number())) {
1795           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1796           already_resolved.set_bit(to_block->linear_scan_number());
1797 
1798           // collect all intervals that have been split between from_block and to_block
1799           resolve_collect_mappings(from_block, to_block, move_resolver);
1800           if (move_resolver.has_mappings()) {
1801             resolve_find_insert_pos(from_block, to_block, move_resolver);
1802             move_resolver.resolve_and_append_moves();
1803           }
1804         }
1805       }
1806     }
1807   }
1808 }
1809 
1810 
1811 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1812   if (interval_at(reg_num) == NULL) {
1813     // if a phi function is never used, no interval is created -> ignore this
1814     return;
1815   }
1816 
1817   Interval* interval = interval_at_block_begin(block, reg_num);
1818   int reg = interval->assigned_reg();
1819   int regHi = interval->assigned_regHi();
1820 
1821   if ((reg < nof_regs && interval->always_in_memory()) ||
1822       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1823     // the interval is split to get a short range that is located on the stack
1824     // in the following two cases:
1825     // * the interval started in memory (e.g. method parameter), but is currently in a register
1826     //   this is an optimization for exception handling that reduces the number of moves that
1827     //   are necessary for resolving the states when an exception uses this exception handler
1828     // * the interval would be on the fpu stack at the begin of the exception handler
1829     //   this is not allowed because of the complicated fpu stack handling on Intel
1830 
1831     // range that will be spilled to memory
1832     int from_op_id = block->first_lir_instruction_id();
1833     int to_op_id = from_op_id + 1;  // short live range of length 1
1834     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1835            "no split allowed between exception entry and first instruction");
1836 
1837     if (interval->from() != from_op_id) {
1838       // the part before from_op_id is unchanged
1839       interval = interval->split(from_op_id);
1840       interval->assign_reg(reg, regHi);
1841       append_interval(interval);
1842     } else {
1843       _needs_full_resort = true;
1844     }
1845     assert(interval->from() == from_op_id, "must be true now");
1846 
1847     Interval* spilled_part = interval;
1848     if (interval->to() != to_op_id) {
1849       // the part after to_op_id is unchanged
1850       spilled_part = interval->split_from_start(to_op_id);
1851       append_interval(spilled_part);
1852       move_resolver.add_mapping(spilled_part, interval);
1853     }
1854     assign_spill_slot(spilled_part);
1855 
1856     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1857   }
1858 }
1859 
1860 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1861   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1862   DEBUG_ONLY(move_resolver.check_empty());
1863 
1864   // visit all registers where the live_in bit is set
1865   int size = live_set_size();
1866   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1867     resolve_exception_entry(block, r, move_resolver);
1868   }
1869 
1870   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1871   for_each_phi_fun(block, phi,
1872     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1873   );
1874 
1875   if (move_resolver.has_mappings()) {
1876     // insert moves after first instruction
1877     move_resolver.set_insert_position(block->lir(), 0);
1878     move_resolver.resolve_and_append_moves();
1879   }
1880 }
1881 
1882 
1883 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1884   if (interval_at(reg_num) == NULL) {
1885     // if a phi function is never used, no interval is created -> ignore this
1886     return;
1887   }
1888 
1889   // the computation of to_interval is equal to resolve_collect_mappings,
1890   // but from_interval is more complicated because of phi functions
1891   BlockBegin* to_block = handler->entry_block();
1892   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1893 
1894   if (phi != NULL) {
1895     // phi function of the exception entry block
1896     // no moves are created for this phi function in the LIR_Generator, so the
1897     // interval at the throwing instruction must be searched using the operands
1898     // of the phi function
1899     Value from_value = phi->operand_at(handler->phi_operand());
1900 
1901     // with phi functions it can happen that the same from_value is used in
1902     // multiple mappings, so notify move-resolver that this is allowed
1903     move_resolver.set_multiple_reads_allowed();
1904 
1905     Constant* con = from_value->as_Constant();
1906     if (con != NULL && !con->is_pinned()) {
1907       // unpinned constants may have no register, so add mapping from constant to interval
1908       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1909     } else {
1910       // search split child at the throwing op_id
1911       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1912       move_resolver.add_mapping(from_interval, to_interval);
1913     }
1914 
1915   } else {
1916     // no phi function, so use reg_num also for from_interval
1917     // search split child at the throwing op_id
1918     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1919     if (from_interval != to_interval) {
1920       // optimization to reduce number of moves: when to_interval is on stack and
1921       // the stack slot is known to be always correct, then no move is necessary
1922       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1923         move_resolver.add_mapping(from_interval, to_interval);
1924       }
1925     }
1926   }
1927 }
1928 
1929 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1930   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1931 
1932   DEBUG_ONLY(move_resolver.check_empty());
1933   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1934   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1935   assert(handler->entry_code() == NULL, "code already present");
1936 
1937   // visit all registers where the live_in bit is set
1938   BlockBegin* block = handler->entry_block();
1939   int size = live_set_size();
1940   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1941     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1942   }
1943 
1944   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1945   for_each_phi_fun(block, phi,
1946     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1947   );
1948 
1949   if (move_resolver.has_mappings()) {
1950     LIR_List* entry_code = new LIR_List(compilation());
1951     move_resolver.set_insert_position(entry_code, 0);
1952     move_resolver.resolve_and_append_moves();
1953 
1954     entry_code->jump(handler->entry_block());
1955     handler->set_entry_code(entry_code);
1956   }
1957 }
1958 
1959 
1960 void LinearScan::resolve_exception_handlers() {
1961   MoveResolver move_resolver(this);
1962   LIR_OpVisitState visitor;
1963   int num_blocks = block_count();
1964 
1965   int i;
1966   for (i = 0; i < num_blocks; i++) {
1967     BlockBegin* block = block_at(i);
1968     if (block->is_set(BlockBegin::exception_entry_flag)) {
1969       resolve_exception_entry(block, move_resolver);
1970     }
1971   }
1972 
1973   for (i = 0; i < num_blocks; i++) {
1974     BlockBegin* block = block_at(i);
1975     LIR_List* ops = block->lir();
1976     int num_ops = ops->length();
1977 
1978     // iterate all instructions of the block. skip the first because it is always a label
1979     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1980     for (int j = 1; j < num_ops; j++) {
1981       LIR_Op* op = ops->at(j);
1982       int op_id = op->id();
1983 
1984       if (op_id != -1 && has_info(op_id)) {
1985         // visit operation to collect all operands
1986         visitor.visit(op);
1987         assert(visitor.info_count() > 0, "should not visit otherwise");
1988 
1989         XHandlers* xhandlers = visitor.all_xhandler();
1990         int n = xhandlers->length();
1991         for (int k = 0; k < n; k++) {
1992           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
1993         }
1994 
1995 #ifdef ASSERT
1996       } else {
1997         visitor.visit(op);
1998         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
1999 #endif
2000       }
2001     }
2002   }
2003 }
2004 
2005 
2006 // ********** Phase 7: assign register numbers back to LIR
2007 // (includes computation of debug information and oop maps)
2008 
2009 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2010   VMReg reg = interval->cached_vm_reg();
2011   if (!reg->is_valid() ) {
2012     reg = vm_reg_for_operand(operand_for_interval(interval));
2013     interval->set_cached_vm_reg(reg);
2014   }
2015   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2016   return reg;
2017 }
2018 
2019 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2020   assert(opr->is_oop(), "currently only implemented for oop operands");
2021   return frame_map()->regname(opr);
2022 }
2023 
2024 
2025 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2026   LIR_Opr opr = interval->cached_opr();
2027   if (opr->is_illegal()) {
2028     opr = calc_operand_for_interval(interval);
2029     interval->set_cached_opr(opr);
2030   }
2031 
2032   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2033   return opr;
2034 }
2035 
2036 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2037   int assigned_reg = interval->assigned_reg();
2038   BasicType type = interval->type();
2039 
2040   if (assigned_reg >= nof_regs) {
2041     // stack slot
2042     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2043     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2044 
2045   } else {
2046     // register
2047     switch (type) {
2048       case T_OBJECT: {
2049         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2050         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2051         return LIR_OprFact::single_cpu_oop(assigned_reg);
2052       }
2053 
2054       case T_ADDRESS: {
2055         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2056         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2057         return LIR_OprFact::single_cpu_address(assigned_reg);
2058       }
2059 
2060       case T_METADATA: {
2061         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2062         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2063         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2064       }
2065 
2066 #ifdef __SOFTFP__
2067       case T_FLOAT:  // fall through
2068 #endif // __SOFTFP__
2069       case T_INT: {
2070         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2071         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2072         return LIR_OprFact::single_cpu(assigned_reg);
2073       }
2074 
2075 #ifdef __SOFTFP__
2076       case T_DOUBLE:  // fall through
2077 #endif // __SOFTFP__
2078       case T_LONG: {
2079         int assigned_regHi = interval->assigned_regHi();
2080         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2081         assert(num_physical_regs(T_LONG) == 1 ||
2082                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2083 
2084         assert(assigned_reg != assigned_regHi, "invalid allocation");
2085         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2086                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2087         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2088         if (requires_adjacent_regs(T_LONG)) {
2089           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2090         }
2091 
2092 #ifdef _LP64
2093         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2094 #else
2095 #if defined(SPARC) || defined(PPC)
2096         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2097 #else
2098         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2099 #endif // SPARC
2100 #endif // LP64
2101       }
2102 
2103 #ifndef __SOFTFP__
2104       case T_FLOAT: {
2105 #ifdef X86
2106         if (UseSSE >= 1) {
2107           int last_xmm_reg = pd_last_xmm_reg;
2108 #ifdef _LP64
2109           if (UseAVX < 3) {
2110             last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2111           }
2112 #endif
2113           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2114           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2115           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2116         }
2117 #endif
2118 
2119         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2120         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2121         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2122       }
2123 
2124       case T_DOUBLE: {
2125 #ifdef X86
2126         if (UseSSE >= 2) {
2127           int last_xmm_reg = pd_last_xmm_reg;
2128 #ifdef _LP64
2129           if (UseAVX < 3) {
2130             last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2131           }
2132 #endif
2133           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2134           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2135           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2136         }
2137 #endif
2138 
2139 #ifdef SPARC
2140         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2141         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2142         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2143         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2144 #elif defined(ARM32)
2145         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2146         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2147         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2148         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2149 #else
2150         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2151         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2152         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2153 #endif
2154         return result;
2155       }
2156 #endif // __SOFTFP__
2157 
2158       default: {
2159         ShouldNotReachHere();
2160         return LIR_OprFact::illegalOpr;
2161       }
2162     }
2163   }
2164 }
2165 
2166 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2167   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2168   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2169 }
2170 
2171 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2172   assert(opr->is_virtual(), "should not call this otherwise");
2173 
2174   Interval* interval = interval_at(opr->vreg_number());
2175   assert(interval != NULL, "interval must exist");
2176 
2177   if (op_id != -1) {
2178 #ifdef ASSERT
2179     BlockBegin* block = block_of_op_with_id(op_id);
2180     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2181       // check if spill moves could have been appended at the end of this block, but
2182       // before the branch instruction. So the split child information for this branch would
2183       // be incorrect.
2184       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2185       if (branch != NULL) {
2186         if (block->live_out().at(opr->vreg_number())) {
2187           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2188           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2189         }
2190       }
2191     }
2192 #endif
2193 
2194     // operands are not changed when an interval is split during allocation,
2195     // so search the right interval here
2196     interval = split_child_at_op_id(interval, op_id, mode);
2197   }
2198 
2199   LIR_Opr res = operand_for_interval(interval);
2200 
2201 #ifdef X86
2202   // new semantic for is_last_use: not only set on definite end of interval,
2203   // but also before hole
2204   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2205   // last use information is completely correct
2206   // information is only needed for fpu stack allocation
2207   if (res->is_fpu_register()) {
2208     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2209       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2210       res = res->make_last_use();
2211     }
2212   }
2213 #endif
2214 
2215   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2216 
2217   return res;
2218 }
2219 
2220 
2221 #ifdef ASSERT
2222 // some methods used to check correctness of debug information
2223 
2224 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2225   if (values == NULL) {
2226     return;
2227   }
2228 
2229   for (int i = 0; i < values->length(); i++) {
2230     ScopeValue* value = values->at(i);
2231 
2232     if (value->is_location()) {
2233       Location location = ((LocationValue*)value)->location();
2234       assert(location.where() == Location::on_stack, "value is in register");
2235     }
2236   }
2237 }
2238 
2239 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2240   if (values == NULL) {
2241     return;
2242   }
2243 
2244   for (int i = 0; i < values->length(); i++) {
2245     MonitorValue* value = values->at(i);
2246 
2247     if (value->owner()->is_location()) {
2248       Location location = ((LocationValue*)value->owner())->location();
2249       assert(location.where() == Location::on_stack, "owner is in register");
2250     }
2251     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2252   }
2253 }
2254 
2255 void assert_equal(Location l1, Location l2) {
2256   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2257 }
2258 
2259 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2260   if (v1->is_location()) {
2261     assert(v2->is_location(), "");
2262     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2263   } else if (v1->is_constant_int()) {
2264     assert(v2->is_constant_int(), "");
2265     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2266   } else if (v1->is_constant_double()) {
2267     assert(v2->is_constant_double(), "");
2268     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2269   } else if (v1->is_constant_long()) {
2270     assert(v2->is_constant_long(), "");
2271     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2272   } else if (v1->is_constant_oop()) {
2273     assert(v2->is_constant_oop(), "");
2274     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2275   } else {
2276     ShouldNotReachHere();
2277   }
2278 }
2279 
2280 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2281   assert_equal(m1->owner(), m2->owner());
2282   assert_equal(m1->basic_lock(), m2->basic_lock());
2283 }
2284 
2285 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2286   assert(d1->scope() == d2->scope(), "not equal");
2287   assert(d1->bci() == d2->bci(), "not equal");
2288 
2289   if (d1->locals() != NULL) {
2290     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2291     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2292     for (int i = 0; i < d1->locals()->length(); i++) {
2293       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2294     }
2295   } else {
2296     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2297   }
2298 
2299   if (d1->expressions() != NULL) {
2300     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2301     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2302     for (int i = 0; i < d1->expressions()->length(); i++) {
2303       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2304     }
2305   } else {
2306     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2307   }
2308 
2309   if (d1->monitors() != NULL) {
2310     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2311     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2312     for (int i = 0; i < d1->monitors()->length(); i++) {
2313       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2314     }
2315   } else {
2316     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2317   }
2318 
2319   if (d1->caller() != NULL) {
2320     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2321     assert_equal(d1->caller(), d2->caller());
2322   } else {
2323     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2324   }
2325 }
2326 
2327 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2328   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2329     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2330     switch (code) {
2331       case Bytecodes::_ifnull    : // fall through
2332       case Bytecodes::_ifnonnull : // fall through
2333       case Bytecodes::_ifeq      : // fall through
2334       case Bytecodes::_ifne      : // fall through
2335       case Bytecodes::_iflt      : // fall through
2336       case Bytecodes::_ifge      : // fall through
2337       case Bytecodes::_ifgt      : // fall through
2338       case Bytecodes::_ifle      : // fall through
2339       case Bytecodes::_if_icmpeq : // fall through
2340       case Bytecodes::_if_icmpne : // fall through
2341       case Bytecodes::_if_icmplt : // fall through
2342       case Bytecodes::_if_icmpge : // fall through
2343       case Bytecodes::_if_icmpgt : // fall through
2344       case Bytecodes::_if_icmple : // fall through
2345       case Bytecodes::_if_acmpeq : // fall through
2346       case Bytecodes::_if_acmpne :
2347         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2348         break;
2349     }
2350   }
2351 }
2352 
2353 #endif // ASSERT
2354 
2355 
2356 IntervalWalker* LinearScan::init_compute_oop_maps() {
2357   // setup lists of potential oops for walking
2358   Interval* oop_intervals;
2359   Interval* non_oop_intervals;
2360 
2361   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2362 
2363   // intervals that have no oops inside need not to be processed
2364   // to ensure a walking until the last instruction id, add a dummy interval
2365   // with a high operation id
2366   non_oop_intervals = new Interval(any_reg);
2367   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2368 
2369   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2370 }
2371 
2372 
2373 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2374   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2375 
2376   // walk before the current operation -> intervals that start at
2377   // the operation (= output operands of the operation) are not
2378   // included in the oop map
2379   iw->walk_before(op->id());
2380 
2381   int frame_size = frame_map()->framesize();
2382   int arg_count = frame_map()->oop_map_arg_count();
2383   OopMap* map = new OopMap(frame_size, arg_count);
2384 
2385   // Iterate through active intervals
2386   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2387     int assigned_reg = interval->assigned_reg();
2388 
2389     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2390     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2391     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2392 
2393     // Check if this range covers the instruction. Intervals that
2394     // start or end at the current operation are not included in the
2395     // oop map, except in the case of patching moves.  For patching
2396     // moves, any intervals which end at this instruction are included
2397     // in the oop map since we may safepoint while doing the patch
2398     // before we've consumed the inputs.
2399     if (op->is_patching() || op->id() < interval->current_to()) {
2400 
2401       // caller-save registers must not be included into oop-maps at calls
2402       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2403 
2404       VMReg name = vm_reg_for_interval(interval);
2405       set_oop(map, name);
2406 
2407       // Spill optimization: when the stack value is guaranteed to be always correct,
2408       // then it must be added to the oop map even if the interval is currently in a register
2409       if (interval->always_in_memory() &&
2410           op->id() > interval->spill_definition_pos() &&
2411           interval->assigned_reg() != interval->canonical_spill_slot()) {
2412         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2413         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2414         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2415 
2416         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2417       }
2418     }
2419   }
2420 
2421   // add oops from lock stack
2422   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2423   int locks_count = info->stack()->total_locks_size();
2424   for (int i = 0; i < locks_count; i++) {
2425     set_oop(map, frame_map()->monitor_object_regname(i));
2426   }
2427 
2428   return map;
2429 }
2430 
2431 
2432 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2433   assert(visitor.info_count() > 0, "no oop map needed");
2434 
2435   // compute oop_map only for first CodeEmitInfo
2436   // because it is (in most cases) equal for all other infos of the same operation
2437   CodeEmitInfo* first_info = visitor.info_at(0);
2438   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2439 
2440   for (int i = 0; i < visitor.info_count(); i++) {
2441     CodeEmitInfo* info = visitor.info_at(i);
2442     OopMap* oop_map = first_oop_map;
2443 
2444     // compute worst case interpreter size in case of a deoptimization
2445     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2446 
2447     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2448       // this info has a different number of locks then the precomputed oop map
2449       // (possible for lock and unlock instructions) -> compute oop map with
2450       // correct lock information
2451       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2452     }
2453 
2454     if (info->_oop_map == NULL) {
2455       info->_oop_map = oop_map;
2456     } else {
2457       // a CodeEmitInfo can not be shared between different LIR-instructions
2458       // because interval splitting can occur anywhere between two instructions
2459       // and so the oop maps must be different
2460       // -> check if the already set oop_map is exactly the one calculated for this operation
2461       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2462     }
2463   }
2464 }
2465 
2466 
2467 // frequently used constants
2468 // Allocate them with new so they are never destroyed (otherwise, a
2469 // forced exit could destroy these objects while they are still in
2470 // use).
2471 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2472 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2473 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2474 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2475 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2476 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2477 
2478 void LinearScan::init_compute_debug_info() {
2479   // cache for frequently used scope values
2480   // (cpu registers and stack slots)
2481   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2482 }
2483 
2484 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2485   Location loc;
2486   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2487     bailout("too large frame");
2488   }
2489   ScopeValue* object_scope_value = new LocationValue(loc);
2490 
2491   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2492     bailout("too large frame");
2493   }
2494   return new MonitorValue(object_scope_value, loc);
2495 }
2496 
2497 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2498   Location loc;
2499   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2500     bailout("too large frame");
2501   }
2502   return new LocationValue(loc);
2503 }
2504 
2505 
2506 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2507   assert(opr->is_constant(), "should not be called otherwise");
2508 
2509   LIR_Const* c = opr->as_constant_ptr();
2510   BasicType t = c->type();
2511   switch (t) {
2512     case T_OBJECT: {
2513       jobject value = c->as_jobject();
2514       if (value == NULL) {
2515         scope_values->append(_oop_null_scope_value);
2516       } else {
2517         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2518       }
2519       return 1;
2520     }
2521 
2522     case T_INT: // fall through
2523     case T_FLOAT: {
2524       int value = c->as_jint_bits();
2525       switch (value) {
2526         case -1: scope_values->append(_int_m1_scope_value); break;
2527         case 0:  scope_values->append(_int_0_scope_value); break;
2528         case 1:  scope_values->append(_int_1_scope_value); break;
2529         case 2:  scope_values->append(_int_2_scope_value); break;
2530         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2531       }
2532       return 1;
2533     }
2534 
2535     case T_LONG: // fall through
2536     case T_DOUBLE: {
2537 #ifdef _LP64
2538       scope_values->append(_int_0_scope_value);
2539       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2540 #else
2541       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2542         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2543         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2544       } else {
2545         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2546         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2547       }
2548 #endif
2549       return 2;
2550     }
2551 
2552     case T_ADDRESS: {
2553 #ifdef _LP64
2554       scope_values->append(new ConstantLongValue(c->as_jint()));
2555 #else
2556       scope_values->append(new ConstantIntValue(c->as_jint()));
2557 #endif
2558       return 1;
2559     }
2560 
2561     default:
2562       ShouldNotReachHere();
2563       return -1;
2564   }
2565 }
2566 
2567 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2568   if (opr->is_single_stack()) {
2569     int stack_idx = opr->single_stack_ix();
2570     bool is_oop = opr->is_oop_register();
2571     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2572 
2573     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2574     if (sv == NULL) {
2575       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2576       sv = location_for_name(stack_idx, loc_type);
2577       _scope_value_cache.at_put(cache_idx, sv);
2578     }
2579 
2580     // check if cached value is correct
2581     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2582 
2583     scope_values->append(sv);
2584     return 1;
2585 
2586   } else if (opr->is_single_cpu()) {
2587     bool is_oop = opr->is_oop_register();
2588     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2589     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2590 
2591     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2592     if (sv == NULL) {
2593       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2594       VMReg rname = frame_map()->regname(opr);
2595       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2596       _scope_value_cache.at_put(cache_idx, sv);
2597     }
2598 
2599     // check if cached value is correct
2600     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2601 
2602     scope_values->append(sv);
2603     return 1;
2604 
2605 #ifdef X86
2606   } else if (opr->is_single_xmm()) {
2607     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2608     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2609 
2610     scope_values->append(sv);
2611     return 1;
2612 #endif
2613 
2614   } else if (opr->is_single_fpu()) {
2615 #ifdef X86
2616     // the exact location of fpu stack values is only known
2617     // during fpu stack allocation, so the stack allocator object
2618     // must be present
2619     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2620     assert(_fpu_stack_allocator != NULL, "must be present");
2621     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2622 #endif
2623 
2624     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2625     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2626 #ifndef __SOFTFP__
2627 #ifndef VM_LITTLE_ENDIAN
2628     if (! float_saved_as_double) {
2629       // On big endian system, we may have an issue if float registers use only
2630       // the low half of the (same) double registers.
2631       // Both the float and the double could have the same regnr but would correspond
2632       // to two different addresses once saved.
2633 
2634       // get next safely (no assertion checks)
2635       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2636       if (next->is_reg() &&
2637           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2638         // the back-end does use the same numbering for the double and the float
2639         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2640       }
2641     }
2642 #endif
2643 #endif
2644     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2645 
2646     scope_values->append(sv);
2647     return 1;
2648 
2649   } else {
2650     // double-size operands
2651 
2652     ScopeValue* first;
2653     ScopeValue* second;
2654 
2655     if (opr->is_double_stack()) {
2656 #ifdef _LP64
2657       Location loc1;
2658       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2659       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2660         bailout("too large frame");
2661       }
2662       // Does this reverse on x86 vs. sparc?
2663       first =  new LocationValue(loc1);
2664       second = _int_0_scope_value;
2665 #else
2666       Location loc1, loc2;
2667       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2668         bailout("too large frame");
2669       }
2670       first =  new LocationValue(loc1);
2671       second = new LocationValue(loc2);
2672 #endif // _LP64
2673 
2674     } else if (opr->is_double_cpu()) {
2675 #ifdef _LP64
2676       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2677       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2678       second = _int_0_scope_value;
2679 #else
2680       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2681       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2682 
2683       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2684         // lo/hi and swapped relative to first and second, so swap them
2685         VMReg tmp = rname_first;
2686         rname_first = rname_second;
2687         rname_second = tmp;
2688       }
2689 
2690       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2691       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2692 #endif //_LP64
2693 
2694 
2695 #ifdef X86
2696     } else if (opr->is_double_xmm()) {
2697       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2698       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2699 #  ifdef _LP64
2700       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2701       second = _int_0_scope_value;
2702 #  else
2703       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2704       // %%% This is probably a waste but we'll keep things as they were for now
2705       if (true) {
2706         VMReg rname_second = rname_first->next();
2707         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2708       }
2709 #  endif
2710 #endif
2711 
2712     } else if (opr->is_double_fpu()) {
2713       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2714       // the double as float registers in the native ordering. On X86,
2715       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2716       // the low-order word of the double and fpu_regnrLo + 1 is the
2717       // name for the other half.  *first and *second must represent the
2718       // least and most significant words, respectively.
2719 
2720 #ifdef X86
2721       // the exact location of fpu stack values is only known
2722       // during fpu stack allocation, so the stack allocator object
2723       // must be present
2724       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2725       assert(_fpu_stack_allocator != NULL, "must be present");
2726       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2727 
2728       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2729 #endif
2730 #ifdef SPARC
2731       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2732 #endif
2733 #ifdef ARM32
2734       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2735 #endif
2736 #ifdef PPC
2737       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2738 #endif
2739 
2740 #ifdef VM_LITTLE_ENDIAN
2741       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2742 #else
2743       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2744 #endif
2745 
2746 #ifdef _LP64
2747       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2748       second = _int_0_scope_value;
2749 #else
2750       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2751       // %%% This is probably a waste but we'll keep things as they were for now
2752       if (true) {
2753         VMReg rname_second = rname_first->next();
2754         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2755       }
2756 #endif
2757 
2758     } else {
2759       ShouldNotReachHere();
2760       first = NULL;
2761       second = NULL;
2762     }
2763 
2764     assert(first != NULL && second != NULL, "must be set");
2765     // The convention the interpreter uses is that the second local
2766     // holds the first raw word of the native double representation.
2767     // This is actually reasonable, since locals and stack arrays
2768     // grow downwards in all implementations.
2769     // (If, on some machine, the interpreter's Java locals or stack
2770     // were to grow upwards, the embedded doubles would be word-swapped.)
2771     scope_values->append(second);
2772     scope_values->append(first);
2773     return 2;
2774   }
2775 }
2776 
2777 
2778 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2779   if (value != NULL) {
2780     LIR_Opr opr = value->operand();
2781     Constant* con = value->as_Constant();
2782 
2783     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2784     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2785 
2786     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2787       // Unpinned constants may have a virtual operand for a part of the lifetime
2788       // or may be illegal when it was optimized away,
2789       // so always use a constant operand
2790       opr = LIR_OprFact::value_type(con->type());
2791     }
2792     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2793 
2794     if (opr->is_virtual()) {
2795       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2796 
2797       BlockBegin* block = block_of_op_with_id(op_id);
2798       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2799         // generating debug information for the last instruction of a block.
2800         // if this instruction is a branch, spill moves are inserted before this branch
2801         // and so the wrong operand would be returned (spill moves at block boundaries are not
2802         // considered in the live ranges of intervals)
2803         // Solution: use the first op_id of the branch target block instead.
2804         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2805           if (block->live_out().at(opr->vreg_number())) {
2806             op_id = block->sux_at(0)->first_lir_instruction_id();
2807             mode = LIR_OpVisitState::outputMode;
2808           }
2809         }
2810       }
2811 
2812       // Get current location of operand
2813       // The operand must be live because debug information is considered when building the intervals
2814       // if the interval is not live, color_lir_opr will cause an assertion failure
2815       opr = color_lir_opr(opr, op_id, mode);
2816       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2817 
2818       // Append to ScopeValue array
2819       return append_scope_value_for_operand(opr, scope_values);
2820 
2821     } else {
2822       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2823       assert(opr->is_constant(), "operand must be constant");
2824 
2825       return append_scope_value_for_constant(opr, scope_values);
2826     }
2827   } else {
2828     // append a dummy value because real value not needed
2829     scope_values->append(_illegal_value);
2830     return 1;
2831   }
2832 }
2833 
2834 
2835 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2836   IRScopeDebugInfo* caller_debug_info = NULL;
2837 
2838   ValueStack* caller_state = cur_state->caller_state();
2839   if (caller_state != NULL) {
2840     // process recursively to compute outermost scope first
2841     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2842   }
2843 
2844   // initialize these to null.
2845   // If we don't need deopt info or there are no locals, expressions or monitors,
2846   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2847   GrowableArray<ScopeValue*>*   locals      = NULL;
2848   GrowableArray<ScopeValue*>*   expressions = NULL;
2849   GrowableArray<MonitorValue*>* monitors    = NULL;
2850 
2851   // describe local variable values
2852   int nof_locals = cur_state->locals_size();
2853   if (nof_locals > 0) {
2854     locals = new GrowableArray<ScopeValue*>(nof_locals);
2855 
2856     int pos = 0;
2857     while (pos < nof_locals) {
2858       assert(pos < cur_state->locals_size(), "why not?");
2859 
2860       Value local = cur_state->local_at(pos);
2861       pos += append_scope_value(op_id, local, locals);
2862 
2863       assert(locals->length() == pos, "must match");
2864     }
2865     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2866     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2867   } else if (cur_scope->method()->max_locals() > 0) {
2868     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2869     nof_locals = cur_scope->method()->max_locals();
2870     locals = new GrowableArray<ScopeValue*>(nof_locals);
2871     for(int i = 0; i < nof_locals; i++) {
2872       locals->append(_illegal_value);
2873     }
2874   }
2875 
2876   // describe expression stack
2877   int nof_stack = cur_state->stack_size();
2878   if (nof_stack > 0) {
2879     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2880 
2881     int pos = 0;
2882     while (pos < nof_stack) {
2883       Value expression = cur_state->stack_at_inc(pos);
2884       append_scope_value(op_id, expression, expressions);
2885 
2886       assert(expressions->length() == pos, "must match");
2887     }
2888     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2889   }
2890 
2891   // describe monitors
2892   int nof_locks = cur_state->locks_size();
2893   if (nof_locks > 0) {
2894     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2895     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2896     for (int i = 0; i < nof_locks; i++) {
2897       monitors->append(location_for_monitor_index(lock_offset + i));
2898     }
2899   }
2900 
2901   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2902 }
2903 
2904 
2905 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2906   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2907 
2908   IRScope* innermost_scope = info->scope();
2909   ValueStack* innermost_state = info->stack();
2910 
2911   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2912 
2913   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2914 
2915   if (info->_scope_debug_info == NULL) {
2916     // compute debug information
2917     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2918   } else {
2919     // debug information already set. Check that it is correct from the current point of view
2920     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2921   }
2922 }
2923 
2924 
2925 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2926   LIR_OpVisitState visitor;
2927   int num_inst = instructions->length();
2928   bool has_dead = false;
2929 
2930   for (int j = 0; j < num_inst; j++) {
2931     LIR_Op* op = instructions->at(j);
2932     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2933       has_dead = true;
2934       continue;
2935     }
2936     int op_id = op->id();
2937 
2938     // visit instruction to get list of operands
2939     visitor.visit(op);
2940 
2941     // iterate all modes of the visitor and process all virtual operands
2942     for_each_visitor_mode(mode) {
2943       int n = visitor.opr_count(mode);
2944       for (int k = 0; k < n; k++) {
2945         LIR_Opr opr = visitor.opr_at(mode, k);
2946         if (opr->is_virtual_register()) {
2947           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2948         }
2949       }
2950     }
2951 
2952     if (visitor.info_count() > 0) {
2953       // exception handling
2954       if (compilation()->has_exception_handlers()) {
2955         XHandlers* xhandlers = visitor.all_xhandler();
2956         int n = xhandlers->length();
2957         for (int k = 0; k < n; k++) {
2958           XHandler* handler = xhandlers->handler_at(k);
2959           if (handler->entry_code() != NULL) {
2960             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2961           }
2962         }
2963       } else {
2964         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2965       }
2966 
2967       // compute oop map
2968       assert(iw != NULL, "needed for compute_oop_map");
2969       compute_oop_map(iw, visitor, op);
2970 
2971       // compute debug information
2972       if (!use_fpu_stack_allocation()) {
2973         // compute debug information if fpu stack allocation is not needed.
2974         // when fpu stack allocation is needed, the debug information can not
2975         // be computed here because the exact location of fpu operands is not known
2976         // -> debug information is created inside the fpu stack allocator
2977         int n = visitor.info_count();
2978         for (int k = 0; k < n; k++) {
2979           compute_debug_info(visitor.info_at(k), op_id);
2980         }
2981       }
2982     }
2983 
2984 #ifdef ASSERT
2985     // make sure we haven't made the op invalid.
2986     op->verify();
2987 #endif
2988 
2989     // remove useless moves
2990     if (op->code() == lir_move) {
2991       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2992       LIR_Op1* move = (LIR_Op1*)op;
2993       LIR_Opr src = move->in_opr();
2994       LIR_Opr dst = move->result_opr();
2995       if (dst == src ||
2996           !dst->is_pointer() && !src->is_pointer() &&
2997           src->is_same_register(dst)) {
2998         instructions->at_put(j, NULL);
2999         has_dead = true;
3000       }
3001     }
3002   }
3003 
3004   if (has_dead) {
3005     // iterate all instructions of the block and remove all null-values.
3006     int insert_point = 0;
3007     for (int j = 0; j < num_inst; j++) {
3008       LIR_Op* op = instructions->at(j);
3009       if (op != NULL) {
3010         if (insert_point != j) {
3011           instructions->at_put(insert_point, op);
3012         }
3013         insert_point++;
3014       }
3015     }
3016     instructions->truncate(insert_point);
3017   }
3018 }
3019 
3020 void LinearScan::assign_reg_num() {
3021   TIME_LINEAR_SCAN(timer_assign_reg_num);
3022 
3023   init_compute_debug_info();
3024   IntervalWalker* iw = init_compute_oop_maps();
3025 
3026   int num_blocks = block_count();
3027   for (int i = 0; i < num_blocks; i++) {
3028     BlockBegin* block = block_at(i);
3029     assign_reg_num(block->lir()->instructions_list(), iw);
3030   }
3031 }
3032 
3033 
3034 void LinearScan::do_linear_scan() {
3035   NOT_PRODUCT(_total_timer.begin_method());
3036 
3037   number_instructions();
3038 
3039   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3040 
3041   compute_local_live_sets();
3042   compute_global_live_sets();
3043   CHECK_BAILOUT();
3044 
3045   build_intervals();
3046   CHECK_BAILOUT();
3047   sort_intervals_before_allocation();
3048 
3049   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3050   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3051 
3052   allocate_registers();
3053   CHECK_BAILOUT();
3054 
3055   resolve_data_flow();
3056   if (compilation()->has_exception_handlers()) {
3057     resolve_exception_handlers();
3058   }
3059   // fill in number of spill slots into frame_map
3060   propagate_spill_slots();
3061   CHECK_BAILOUT();
3062 
3063   NOT_PRODUCT(print_intervals("After Register Allocation"));
3064   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3065 
3066   sort_intervals_after_allocation();
3067 
3068   DEBUG_ONLY(verify());
3069 
3070   eliminate_spill_moves();
3071   assign_reg_num();
3072   CHECK_BAILOUT();
3073 
3074   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3075   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3076 
3077   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3078 
3079     if (use_fpu_stack_allocation()) {
3080       allocate_fpu_stack(); // Only has effect on Intel
3081       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3082     }
3083   }
3084 
3085   { TIME_LINEAR_SCAN(timer_optimize_lir);
3086 
3087     EdgeMoveOptimizer::optimize(ir()->code());
3088     ControlFlowOptimizer::optimize(ir()->code());
3089     // check that cfg is still correct after optimizations
3090     ir()->verify();
3091   }
3092 
3093   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3094   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3095   NOT_PRODUCT(_total_timer.end_method(this));
3096 }
3097 
3098 
3099 // ********** Printing functions
3100 
3101 #ifndef PRODUCT
3102 
3103 void LinearScan::print_timers(double total) {
3104   _total_timer.print(total);
3105 }
3106 
3107 void LinearScan::print_statistics() {
3108   _stat_before_alloc.print("before allocation");
3109   _stat_after_asign.print("after assignment of register");
3110   _stat_final.print("after optimization");
3111 }
3112 
3113 void LinearScan::print_bitmap(BitMap& b) {
3114   for (unsigned int i = 0; i < b.size(); i++) {
3115     if (b.at(i)) tty->print("%d ", i);
3116   }
3117   tty->cr();
3118 }
3119 
3120 void LinearScan::print_intervals(const char* label) {
3121   if (TraceLinearScanLevel >= 1) {
3122     int i;
3123     tty->cr();
3124     tty->print_cr("%s", label);
3125 
3126     for (i = 0; i < interval_count(); i++) {
3127       Interval* interval = interval_at(i);
3128       if (interval != NULL) {
3129         interval->print();
3130       }
3131     }
3132 
3133     tty->cr();
3134     tty->print_cr("--- Basic Blocks ---");
3135     for (i = 0; i < block_count(); i++) {
3136       BlockBegin* block = block_at(i);
3137       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3138     }
3139     tty->cr();
3140     tty->cr();
3141   }
3142 
3143   if (PrintCFGToFile) {
3144     CFGPrinter::print_intervals(&_intervals, label);
3145   }
3146 }
3147 
3148 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3149   if (TraceLinearScanLevel >= level) {
3150     tty->cr();
3151     tty->print_cr("%s", label);
3152     print_LIR(ir()->linear_scan_order());
3153     tty->cr();
3154   }
3155 
3156   if (level == 1 && PrintCFGToFile) {
3157     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3158   }
3159 }
3160 
3161 #endif //PRODUCT
3162 
3163 
3164 // ********** verification functions for allocation
3165 // (check that all intervals have a correct register and that no registers are overwritten)
3166 #ifdef ASSERT
3167 
3168 void LinearScan::verify() {
3169   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3170   verify_intervals();
3171 
3172   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3173   verify_no_oops_in_fixed_intervals();
3174 
3175   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3176   verify_constants();
3177 
3178   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3179   verify_registers();
3180 
3181   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3182 }
3183 
3184 void LinearScan::verify_intervals() {
3185   int len = interval_count();
3186   bool has_error = false;
3187 
3188   for (int i = 0; i < len; i++) {
3189     Interval* i1 = interval_at(i);
3190     if (i1 == NULL) continue;
3191 
3192     i1->check_split_children();
3193 
3194     if (i1->reg_num() != i) {
3195       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3196       has_error = true;
3197     }
3198 
3199     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3200       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3201       has_error = true;
3202     }
3203 
3204     if (i1->assigned_reg() == any_reg) {
3205       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3206       has_error = true;
3207     }
3208 
3209     if (i1->assigned_reg() == i1->assigned_regHi()) {
3210       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3211       has_error = true;
3212     }
3213 
3214     if (!is_processed_reg_num(i1->assigned_reg())) {
3215       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3216       has_error = true;
3217     }
3218 
3219     if (i1->first() == Range::end()) {
3220       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3221       has_error = true;
3222     }
3223 
3224     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3225       if (r->from() >= r->to()) {
3226         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3227         has_error = true;
3228       }
3229     }
3230 
3231     for (int j = i + 1; j < len; j++) {
3232       Interval* i2 = interval_at(j);
3233       if (i2 == NULL) continue;
3234 
3235       // special intervals that are created in MoveResolver
3236       // -> ignore them because the range information has no meaning there
3237       if (i1->from() == 1 && i1->to() == 2) continue;
3238       if (i2->from() == 1 && i2->to() == 2) continue;
3239 
3240       int r1 = i1->assigned_reg();
3241       int r1Hi = i1->assigned_regHi();
3242       int r2 = i2->assigned_reg();
3243       int r2Hi = i2->assigned_regHi();
3244       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3245         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3246         i1->print(); tty->cr();
3247         i2->print(); tty->cr();
3248         has_error = true;
3249       }
3250     }
3251   }
3252 
3253   assert(has_error == false, "register allocation invalid");
3254 }
3255 
3256 
3257 void LinearScan::verify_no_oops_in_fixed_intervals() {
3258   Interval* fixed_intervals;
3259   Interval* other_intervals;
3260   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3261 
3262   // to ensure a walking until the last instruction id, add a dummy interval
3263   // with a high operation id
3264   other_intervals = new Interval(any_reg);
3265   other_intervals->add_range(max_jint - 2, max_jint - 1);
3266   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3267 
3268   LIR_OpVisitState visitor;
3269   for (int i = 0; i < block_count(); i++) {
3270     BlockBegin* block = block_at(i);
3271 
3272     LIR_OpList* instructions = block->lir()->instructions_list();
3273 
3274     for (int j = 0; j < instructions->length(); j++) {
3275       LIR_Op* op = instructions->at(j);
3276       int op_id = op->id();
3277 
3278       visitor.visit(op);
3279 
3280       if (visitor.info_count() > 0) {
3281         iw->walk_before(op->id());
3282         bool check_live = true;
3283         if (op->code() == lir_move) {
3284           LIR_Op1* move = (LIR_Op1*)op;
3285           check_live = (move->patch_code() == lir_patch_none);
3286         }
3287         LIR_OpBranch* branch = op->as_OpBranch();
3288         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3289           // Don't bother checking the stub in this case since the
3290           // exception stub will never return to normal control flow.
3291           check_live = false;
3292         }
3293 
3294         // Make sure none of the fixed registers is live across an
3295         // oopmap since we can't handle that correctly.
3296         if (check_live) {
3297           for (Interval* interval = iw->active_first(fixedKind);
3298                interval != Interval::end();
3299                interval = interval->next()) {
3300             if (interval->current_to() > op->id() + 1) {
3301               // This interval is live out of this op so make sure
3302               // that this interval represents some value that's
3303               // referenced by this op either as an input or output.
3304               bool ok = false;
3305               for_each_visitor_mode(mode) {
3306                 int n = visitor.opr_count(mode);
3307                 for (int k = 0; k < n; k++) {
3308                   LIR_Opr opr = visitor.opr_at(mode, k);
3309                   if (opr->is_fixed_cpu()) {
3310                     if (interval_at(reg_num(opr)) == interval) {
3311                       ok = true;
3312                       break;
3313                     }
3314                     int hi = reg_numHi(opr);
3315                     if (hi != -1 && interval_at(hi) == interval) {
3316                       ok = true;
3317                       break;
3318                     }
3319                   }
3320                 }
3321               }
3322               assert(ok, "fixed intervals should never be live across an oopmap point");
3323             }
3324           }
3325         }
3326       }
3327 
3328       // oop-maps at calls do not contain registers, so check is not needed
3329       if (!visitor.has_call()) {
3330 
3331         for_each_visitor_mode(mode) {
3332           int n = visitor.opr_count(mode);
3333           for (int k = 0; k < n; k++) {
3334             LIR_Opr opr = visitor.opr_at(mode, k);
3335 
3336             if (opr->is_fixed_cpu() && opr->is_oop()) {
3337               // operand is a non-virtual cpu register and contains an oop
3338               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3339 
3340               Interval* interval = interval_at(reg_num(opr));
3341               assert(interval != NULL, "no interval");
3342 
3343               if (mode == LIR_OpVisitState::inputMode) {
3344                 if (interval->to() >= op_id + 1) {
3345                   assert(interval->to() < op_id + 2 ||
3346                          interval->has_hole_between(op_id, op_id + 2),
3347                          "oop input operand live after instruction");
3348                 }
3349               } else if (mode == LIR_OpVisitState::outputMode) {
3350                 if (interval->from() <= op_id - 1) {
3351                   assert(interval->has_hole_between(op_id - 1, op_id),
3352                          "oop input operand live after instruction");
3353                 }
3354               }
3355             }
3356           }
3357         }
3358       }
3359     }
3360   }
3361 }
3362 
3363 
3364 void LinearScan::verify_constants() {
3365   int num_regs = num_virtual_regs();
3366   int size = live_set_size();
3367   int num_blocks = block_count();
3368 
3369   for (int i = 0; i < num_blocks; i++) {
3370     BlockBegin* block = block_at(i);
3371     BitMap live_at_edge = block->live_in();
3372 
3373     // visit all registers where the live_at_edge bit is set
3374     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3375       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3376 
3377       Value value = gen()->instruction_for_vreg(r);
3378 
3379       assert(value != NULL, "all intervals live across block boundaries must have Value");
3380       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3381       assert(value->operand()->vreg_number() == r, "register number must match");
3382       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3383     }
3384   }
3385 }
3386 
3387 
3388 class RegisterVerifier: public StackObj {
3389  private:
3390   LinearScan*   _allocator;
3391   BlockList     _work_list;      // all blocks that must be processed
3392   IntervalsList _saved_states;   // saved information of previous check
3393 
3394   // simplified access to methods of LinearScan
3395   Compilation*  compilation() const              { return _allocator->compilation(); }
3396   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3397   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3398 
3399   // currently, only registers are processed
3400   int           state_size()                     { return LinearScan::nof_regs; }
3401 
3402   // accessors
3403   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3404   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3405   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3406 
3407   // helper functions
3408   IntervalList* copy(IntervalList* input_state);
3409   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3410   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3411 
3412   void process_block(BlockBegin* block);
3413   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3414   void process_successor(BlockBegin* block, IntervalList* input_state);
3415   void process_operations(LIR_List* ops, IntervalList* input_state);
3416 
3417  public:
3418   RegisterVerifier(LinearScan* allocator)
3419     : _allocator(allocator)
3420     , _work_list(16)
3421     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3422   { }
3423 
3424   void verify(BlockBegin* start);
3425 };
3426 
3427 
3428 // entry function from LinearScan that starts the verification
3429 void LinearScan::verify_registers() {
3430   RegisterVerifier verifier(this);
3431   verifier.verify(block_at(0));
3432 }
3433 
3434 
3435 void RegisterVerifier::verify(BlockBegin* start) {
3436   // setup input registers (method arguments) for first block
3437   IntervalList* input_state = new IntervalList(state_size(), NULL);
3438   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3439   for (int n = 0; n < args->length(); n++) {
3440     LIR_Opr opr = args->at(n);
3441     if (opr->is_register()) {
3442       Interval* interval = interval_at(reg_num(opr));
3443 
3444       if (interval->assigned_reg() < state_size()) {
3445         input_state->at_put(interval->assigned_reg(), interval);
3446       }
3447       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3448         input_state->at_put(interval->assigned_regHi(), interval);
3449       }
3450     }
3451   }
3452 
3453   set_state_for_block(start, input_state);
3454   add_to_work_list(start);
3455 
3456   // main loop for verification
3457   do {
3458     BlockBegin* block = _work_list.at(0);
3459     _work_list.remove_at(0);
3460 
3461     process_block(block);
3462   } while (!_work_list.is_empty());
3463 }
3464 
3465 void RegisterVerifier::process_block(BlockBegin* block) {
3466   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3467 
3468   // must copy state because it is modified
3469   IntervalList* input_state = copy(state_for_block(block));
3470 
3471   if (TraceLinearScanLevel >= 4) {
3472     tty->print_cr("Input-State of intervals:");
3473     tty->print("    ");
3474     for (int i = 0; i < state_size(); i++) {
3475       if (input_state->at(i) != NULL) {
3476         tty->print(" %4d", input_state->at(i)->reg_num());
3477       } else {
3478         tty->print("   __");
3479       }
3480     }
3481     tty->cr();
3482     tty->cr();
3483   }
3484 
3485   // process all operations of the block
3486   process_operations(block->lir(), input_state);
3487 
3488   // iterate all successors
3489   for (int i = 0; i < block->number_of_sux(); i++) {
3490     process_successor(block->sux_at(i), input_state);
3491   }
3492 }
3493 
3494 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3495   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3496 
3497   // must copy state because it is modified
3498   input_state = copy(input_state);
3499 
3500   if (xhandler->entry_code() != NULL) {
3501     process_operations(xhandler->entry_code(), input_state);
3502   }
3503   process_successor(xhandler->entry_block(), input_state);
3504 }
3505 
3506 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3507   IntervalList* saved_state = state_for_block(block);
3508 
3509   if (saved_state != NULL) {
3510     // this block was already processed before.
3511     // check if new input_state is consistent with saved_state
3512 
3513     bool saved_state_correct = true;
3514     for (int i = 0; i < state_size(); i++) {
3515       if (input_state->at(i) != saved_state->at(i)) {
3516         // current input_state and previous saved_state assume a different
3517         // interval in this register -> assume that this register is invalid
3518         if (saved_state->at(i) != NULL) {
3519           // invalidate old calculation only if it assumed that
3520           // register was valid. when the register was already invalid,
3521           // then the old calculation was correct.
3522           saved_state_correct = false;
3523           saved_state->at_put(i, NULL);
3524 
3525           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3526         }
3527       }
3528     }
3529 
3530     if (saved_state_correct) {
3531       // already processed block with correct input_state
3532       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3533     } else {
3534       // must re-visit this block
3535       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3536       add_to_work_list(block);
3537     }
3538 
3539   } else {
3540     // block was not processed before, so set initial input_state
3541     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3542 
3543     set_state_for_block(block, copy(input_state));
3544     add_to_work_list(block);
3545   }
3546 }
3547 
3548 
3549 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3550   IntervalList* copy_state = new IntervalList(input_state->length());
3551   copy_state->push_all(input_state);
3552   return copy_state;
3553 }
3554 
3555 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3556   if (reg != LinearScan::any_reg && reg < state_size()) {
3557     if (interval != NULL) {
3558       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3559     } else if (input_state->at(reg) != NULL) {
3560       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3561     }
3562 
3563     input_state->at_put(reg, interval);
3564   }
3565 }
3566 
3567 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3568   if (reg != LinearScan::any_reg && reg < state_size()) {
3569     if (input_state->at(reg) != interval) {
3570       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3571       return true;
3572     }
3573   }
3574   return false;
3575 }
3576 
3577 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3578   // visit all instructions of the block
3579   LIR_OpVisitState visitor;
3580   bool has_error = false;
3581 
3582   for (int i = 0; i < ops->length(); i++) {
3583     LIR_Op* op = ops->at(i);
3584     visitor.visit(op);
3585 
3586     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3587 
3588     // check if input operands are correct
3589     int j;
3590     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3591     for (j = 0; j < n; j++) {
3592       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3593       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3594         Interval* interval = interval_at(reg_num(opr));
3595         if (op->id() != -1) {
3596           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3597         }
3598 
3599         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3600         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3601 
3602         // When an operand is marked with is_last_use, then the fpu stack allocator
3603         // removes the register from the fpu stack -> the register contains no value
3604         if (opr->is_last_use()) {
3605           state_put(input_state, interval->assigned_reg(),   NULL);
3606           state_put(input_state, interval->assigned_regHi(), NULL);
3607         }
3608       }
3609     }
3610 
3611     // invalidate all caller save registers at calls
3612     if (visitor.has_call()) {
3613       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3614         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3615       }
3616       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3617         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3618       }
3619 
3620 #ifdef X86
3621       int num_caller_save_xmm_regs = FrameMap::nof_caller_save_xmm_regs;
3622 #if _LP64
3623       if (UseAVX < 3) {
3624         num_caller_save_xmm_regs = num_caller_save_xmm_regs / 2;
3625       }
3626 #endif
3627       for (j = 0; j < num_caller_save_xmm_regs; j++) {
3628         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3629       }
3630 #endif
3631     }
3632 
3633     // process xhandler before output and temp operands
3634     XHandlers* xhandlers = visitor.all_xhandler();
3635     n = xhandlers->length();
3636     for (int k = 0; k < n; k++) {
3637       process_xhandler(xhandlers->handler_at(k), input_state);
3638     }
3639 
3640     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3641     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3642     for (j = 0; j < n; j++) {
3643       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3644       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3645         Interval* interval = interval_at(reg_num(opr));
3646         if (op->id() != -1) {
3647           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3648         }
3649 
3650         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3651         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3652       }
3653     }
3654 
3655     // set output operands
3656     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3657     for (j = 0; j < n; j++) {
3658       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3659       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3660         Interval* interval = interval_at(reg_num(opr));
3661         if (op->id() != -1) {
3662           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3663         }
3664 
3665         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3666         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3667       }
3668     }
3669   }
3670   assert(has_error == false, "Error in register allocation");
3671 }
3672 
3673 #endif // ASSERT
3674 
3675 
3676 
3677 // **** Implementation of MoveResolver ******************************
3678 
3679 MoveResolver::MoveResolver(LinearScan* allocator) :
3680   _allocator(allocator),
3681   _multiple_reads_allowed(false),
3682   _mapping_from(8),
3683   _mapping_from_opr(8),
3684   _mapping_to(8),
3685   _insert_list(NULL),
3686   _insert_idx(-1),
3687   _insertion_buffer()
3688 {
3689   for (int i = 0; i < LinearScan::nof_regs; i++) {
3690     _register_blocked[i] = 0;
3691   }
3692   DEBUG_ONLY(check_empty());
3693 }
3694 
3695 
3696 #ifdef ASSERT
3697 
3698 void MoveResolver::check_empty() {
3699   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3700   for (int i = 0; i < LinearScan::nof_regs; i++) {
3701     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3702   }
3703   assert(_multiple_reads_allowed == false, "must have default value");
3704 }
3705 
3706 void MoveResolver::verify_before_resolve() {
3707   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3708   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3709   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3710 
3711   int i, j;
3712   if (!_multiple_reads_allowed) {
3713     for (i = 0; i < _mapping_from.length(); i++) {
3714       for (j = i + 1; j < _mapping_from.length(); j++) {
3715         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3716       }
3717     }
3718   }
3719 
3720   for (i = 0; i < _mapping_to.length(); i++) {
3721     for (j = i + 1; j < _mapping_to.length(); j++) {
3722       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3723     }
3724   }
3725 
3726 
3727   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3728   used_regs.clear();
3729   if (!_multiple_reads_allowed) {
3730     for (i = 0; i < _mapping_from.length(); i++) {
3731       Interval* it = _mapping_from.at(i);
3732       if (it != NULL) {
3733         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3734         used_regs.set_bit(it->assigned_reg());
3735 
3736         if (it->assigned_regHi() != LinearScan::any_reg) {
3737           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3738           used_regs.set_bit(it->assigned_regHi());
3739         }
3740       }
3741     }
3742   }
3743 
3744   used_regs.clear();
3745   for (i = 0; i < _mapping_to.length(); i++) {
3746     Interval* it = _mapping_to.at(i);
3747     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3748     used_regs.set_bit(it->assigned_reg());
3749 
3750     if (it->assigned_regHi() != LinearScan::any_reg) {
3751       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3752       used_regs.set_bit(it->assigned_regHi());
3753     }
3754   }
3755 
3756   used_regs.clear();
3757   for (i = 0; i < _mapping_from.length(); i++) {
3758     Interval* it = _mapping_from.at(i);
3759     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3760       used_regs.set_bit(it->assigned_reg());
3761     }
3762   }
3763   for (i = 0; i < _mapping_to.length(); i++) {
3764     Interval* it = _mapping_to.at(i);
3765     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3766   }
3767 }
3768 
3769 #endif // ASSERT
3770 
3771 
3772 // mark assigned_reg and assigned_regHi of the interval as blocked
3773 void MoveResolver::block_registers(Interval* it) {
3774   int reg = it->assigned_reg();
3775   if (reg < LinearScan::nof_regs) {
3776     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3777     set_register_blocked(reg, 1);
3778   }
3779   reg = it->assigned_regHi();
3780   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3781     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3782     set_register_blocked(reg, 1);
3783   }
3784 }
3785 
3786 // mark assigned_reg and assigned_regHi of the interval as unblocked
3787 void MoveResolver::unblock_registers(Interval* it) {
3788   int reg = it->assigned_reg();
3789   if (reg < LinearScan::nof_regs) {
3790     assert(register_blocked(reg) > 0, "register already marked as unused");
3791     set_register_blocked(reg, -1);
3792   }
3793   reg = it->assigned_regHi();
3794   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3795     assert(register_blocked(reg) > 0, "register already marked as unused");
3796     set_register_blocked(reg, -1);
3797   }
3798 }
3799 
3800 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3801 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3802   int from_reg = -1;
3803   int from_regHi = -1;
3804   if (from != NULL) {
3805     from_reg = from->assigned_reg();
3806     from_regHi = from->assigned_regHi();
3807   }
3808 
3809   int reg = to->assigned_reg();
3810   if (reg < LinearScan::nof_regs) {
3811     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3812       return false;
3813     }
3814   }
3815   reg = to->assigned_regHi();
3816   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3817     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3818       return false;
3819     }
3820   }
3821 
3822   return true;
3823 }
3824 
3825 
3826 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3827   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3828   _insertion_buffer.init(list);
3829 }
3830 
3831 void MoveResolver::append_insertion_buffer() {
3832   if (_insertion_buffer.initialized()) {
3833     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3834   }
3835   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3836 
3837   _insert_list = NULL;
3838   _insert_idx = -1;
3839 }
3840 
3841 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3842   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3843   assert(from_interval->type() == to_interval->type(), "move between different types");
3844   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3845   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3846 
3847   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3848   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3849 
3850   if (!_multiple_reads_allowed) {
3851     // the last_use flag is an optimization for FPU stack allocation. When the same
3852     // input interval is used in more than one move, then it is too difficult to determine
3853     // if this move is really the last use.
3854     from_opr = from_opr->make_last_use();
3855   }
3856   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3857 
3858   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3859 }
3860 
3861 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3862   assert(from_opr->type() == to_interval->type(), "move between different types");
3863   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3864   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3865 
3866   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3867   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3868 
3869   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3870 }
3871 
3872 
3873 void MoveResolver::resolve_mappings() {
3874   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3875   DEBUG_ONLY(verify_before_resolve());
3876 
3877   // Block all registers that are used as input operands of a move.
3878   // When a register is blocked, no move to this register is emitted.
3879   // This is necessary for detecting cycles in moves.
3880   int i;
3881   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3882     Interval* from_interval = _mapping_from.at(i);
3883     if (from_interval != NULL) {
3884       block_registers(from_interval);
3885     }
3886   }
3887 
3888   int spill_candidate = -1;
3889   while (_mapping_from.length() > 0) {
3890     bool processed_interval = false;
3891 
3892     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3893       Interval* from_interval = _mapping_from.at(i);
3894       Interval* to_interval = _mapping_to.at(i);
3895 
3896       if (save_to_process_move(from_interval, to_interval)) {
3897         // this inverval can be processed because target is free
3898         if (from_interval != NULL) {
3899           insert_move(from_interval, to_interval);
3900           unblock_registers(from_interval);
3901         } else {
3902           insert_move(_mapping_from_opr.at(i), to_interval);
3903         }
3904         _mapping_from.remove_at(i);
3905         _mapping_from_opr.remove_at(i);
3906         _mapping_to.remove_at(i);
3907 
3908         processed_interval = true;
3909       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3910         // this interval cannot be processed now because target is not free
3911         // it starts in a register, so it is a possible candidate for spilling
3912         spill_candidate = i;
3913       }
3914     }
3915 
3916     if (!processed_interval) {
3917       // no move could be processed because there is a cycle in the move list
3918       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3919       assert(spill_candidate != -1, "no interval in register for spilling found");
3920 
3921       // create a new spill interval and assign a stack slot to it
3922       Interval* from_interval = _mapping_from.at(spill_candidate);
3923       Interval* spill_interval = new Interval(-1);
3924       spill_interval->set_type(from_interval->type());
3925 
3926       // add a dummy range because real position is difficult to calculate
3927       // Note: this range is a special case when the integrity of the allocation is checked
3928       spill_interval->add_range(1, 2);
3929 
3930       //       do not allocate a new spill slot for temporary interval, but
3931       //       use spill slot assigned to from_interval. Otherwise moves from
3932       //       one stack slot to another can happen (not allowed by LIR_Assembler
3933       int spill_slot = from_interval->canonical_spill_slot();
3934       if (spill_slot < 0) {
3935         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3936         from_interval->set_canonical_spill_slot(spill_slot);
3937       }
3938       spill_interval->assign_reg(spill_slot);
3939       allocator()->append_interval(spill_interval);
3940 
3941       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3942 
3943       // insert a move from register to stack and update the mapping
3944       insert_move(from_interval, spill_interval);
3945       _mapping_from.at_put(spill_candidate, spill_interval);
3946       unblock_registers(from_interval);
3947     }
3948   }
3949 
3950   // reset to default value
3951   _multiple_reads_allowed = false;
3952 
3953   // check that all intervals have been processed
3954   DEBUG_ONLY(check_empty());
3955 }
3956 
3957 
3958 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3959   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3960   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3961 
3962   create_insertion_buffer(insert_list);
3963   _insert_list = insert_list;
3964   _insert_idx = insert_idx;
3965 }
3966 
3967 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3968   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3969 
3970   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3971     // insert position changed -> resolve current mappings
3972     resolve_mappings();
3973   }
3974 
3975   if (insert_list != _insert_list) {
3976     // block changed -> append insertion_buffer because it is
3977     // bound to a specific block and create a new insertion_buffer
3978     append_insertion_buffer();
3979     create_insertion_buffer(insert_list);
3980   }
3981 
3982   _insert_list = insert_list;
3983   _insert_idx = insert_idx;
3984 }
3985 
3986 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3987   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3988 
3989   _mapping_from.append(from_interval);
3990   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3991   _mapping_to.append(to_interval);
3992 }
3993 
3994 
3995 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3996   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3997   assert(from_opr->is_constant(), "only for constants");
3998 
3999   _mapping_from.append(NULL);
4000   _mapping_from_opr.append(from_opr);
4001   _mapping_to.append(to_interval);
4002 }
4003 
4004 void MoveResolver::resolve_and_append_moves() {
4005   if (has_mappings()) {
4006     resolve_mappings();
4007   }
4008   append_insertion_buffer();
4009 }
4010 
4011 
4012 
4013 // **** Implementation of Range *************************************
4014 
4015 Range::Range(int from, int to, Range* next) :
4016   _from(from),
4017   _to(to),
4018   _next(next)
4019 {
4020 }
4021 
4022 // initialize sentinel
4023 Range* Range::_end = NULL;
4024 void Range::initialize(Arena* arena) {
4025   _end = new (arena) Range(max_jint, max_jint, NULL);
4026 }
4027 
4028 int Range::intersects_at(Range* r2) const {
4029   const Range* r1 = this;
4030 
4031   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4032   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4033 
4034   do {
4035     if (r1->from() < r2->from()) {
4036       if (r1->to() <= r2->from()) {
4037         r1 = r1->next(); if (r1 == _end) return -1;
4038       } else {
4039         return r2->from();
4040       }
4041     } else if (r2->from() < r1->from()) {
4042       if (r2->to() <= r1->from()) {
4043         r2 = r2->next(); if (r2 == _end) return -1;
4044       } else {
4045         return r1->from();
4046       }
4047     } else { // r1->from() == r2->from()
4048       if (r1->from() == r1->to()) {
4049         r1 = r1->next(); if (r1 == _end) return -1;
4050       } else if (r2->from() == r2->to()) {
4051         r2 = r2->next(); if (r2 == _end) return -1;
4052       } else {
4053         return r1->from();
4054       }
4055     }
4056   } while (true);
4057 }
4058 
4059 #ifndef PRODUCT
4060 void Range::print(outputStream* out) const {
4061   out->print("[%d, %d[ ", _from, _to);
4062 }
4063 #endif
4064 
4065 
4066 
4067 // **** Implementation of Interval **********************************
4068 
4069 // initialize sentinel
4070 Interval* Interval::_end = NULL;
4071 void Interval::initialize(Arena* arena) {
4072   Range::initialize(arena);
4073   _end = new (arena) Interval(-1);
4074 }
4075 
4076 Interval::Interval(int reg_num) :
4077   _reg_num(reg_num),
4078   _type(T_ILLEGAL),
4079   _first(Range::end()),
4080   _use_pos_and_kinds(12),
4081   _current(Range::end()),
4082   _next(_end),
4083   _state(invalidState),
4084   _assigned_reg(LinearScan::any_reg),
4085   _assigned_regHi(LinearScan::any_reg),
4086   _cached_to(-1),
4087   _cached_opr(LIR_OprFact::illegalOpr),
4088   _cached_vm_reg(VMRegImpl::Bad()),
4089   _split_children(0),
4090   _canonical_spill_slot(-1),
4091   _insert_move_when_activated(false),
4092   _register_hint(NULL),
4093   _spill_state(noDefinitionFound),
4094   _spill_definition_pos(-1)
4095 {
4096   _split_parent = this;
4097   _current_split_child = this;
4098 }
4099 
4100 int Interval::calc_to() {
4101   assert(_first != Range::end(), "interval has no range");
4102 
4103   Range* r = _first;
4104   while (r->next() != Range::end()) {
4105     r = r->next();
4106   }
4107   return r->to();
4108 }
4109 
4110 
4111 #ifdef ASSERT
4112 // consistency check of split-children
4113 void Interval::check_split_children() {
4114   if (_split_children.length() > 0) {
4115     assert(is_split_parent(), "only split parents can have children");
4116 
4117     for (int i = 0; i < _split_children.length(); i++) {
4118       Interval* i1 = _split_children.at(i);
4119 
4120       assert(i1->split_parent() == this, "not a split child of this interval");
4121       assert(i1->type() == type(), "must be equal for all split children");
4122       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4123 
4124       for (int j = i + 1; j < _split_children.length(); j++) {
4125         Interval* i2 = _split_children.at(j);
4126 
4127         assert(i1->reg_num() != i2->reg_num(), "same register number");
4128 
4129         if (i1->from() < i2->from()) {
4130           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4131         } else {
4132           assert(i2->from() < i1->from(), "intervals start at same op_id");
4133           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4134         }
4135       }
4136     }
4137   }
4138 }
4139 #endif // ASSERT
4140 
4141 Interval* Interval::register_hint(bool search_split_child) const {
4142   if (!search_split_child) {
4143     return _register_hint;
4144   }
4145 
4146   if (_register_hint != NULL) {
4147     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4148 
4149     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4150       return _register_hint;
4151 
4152     } else if (_register_hint->_split_children.length() > 0) {
4153       // search the first split child that has a register assigned
4154       int len = _register_hint->_split_children.length();
4155       for (int i = 0; i < len; i++) {
4156         Interval* cur = _register_hint->_split_children.at(i);
4157 
4158         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4159           return cur;
4160         }
4161       }
4162     }
4163   }
4164 
4165   // no hint interval found that has a register assigned
4166   return NULL;
4167 }
4168 
4169 
4170 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4171   assert(is_split_parent(), "can only be called for split parents");
4172   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4173 
4174   Interval* result;
4175   if (_split_children.length() == 0) {
4176     result = this;
4177   } else {
4178     result = NULL;
4179     int len = _split_children.length();
4180 
4181     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4182     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4183 
4184     int i;
4185     for (i = 0; i < len; i++) {
4186       Interval* cur = _split_children.at(i);
4187       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4188         if (i > 0) {
4189           // exchange current split child to start of list (faster access for next call)
4190           _split_children.at_put(i, _split_children.at(0));
4191           _split_children.at_put(0, cur);
4192         }
4193 
4194         // interval found
4195         result = cur;
4196         break;
4197       }
4198     }
4199 
4200 #ifdef ASSERT
4201     for (i = 0; i < len; i++) {
4202       Interval* tmp = _split_children.at(i);
4203       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4204         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4205         result->print();
4206         tmp->print();
4207         assert(false, "two valid result intervals found");
4208       }
4209     }
4210 #endif
4211   }
4212 
4213   assert(result != NULL, "no matching interval found");
4214   assert(result->covers(op_id, mode), "op_id not covered by interval");
4215 
4216   return result;
4217 }
4218 
4219 
4220 // returns the last split child that ends before the given op_id
4221 Interval* Interval::split_child_before_op_id(int op_id) {
4222   assert(op_id >= 0, "invalid op_id");
4223 
4224   Interval* parent = split_parent();
4225   Interval* result = NULL;
4226 
4227   int len = parent->_split_children.length();
4228   assert(len > 0, "no split children available");
4229 
4230   for (int i = len - 1; i >= 0; i--) {
4231     Interval* cur = parent->_split_children.at(i);
4232     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4233       result = cur;
4234     }
4235   }
4236 
4237   assert(result != NULL, "no split child found");
4238   return result;
4239 }
4240 
4241 
4242 // checks if op_id is covered by any split child
4243 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4244   assert(is_split_parent(), "can only be called for split parents");
4245   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4246 
4247   if (_split_children.length() == 0) {
4248     // simple case if interval was not split
4249     return covers(op_id, mode);
4250 
4251   } else {
4252     // extended case: check all split children
4253     int len = _split_children.length();
4254     for (int i = 0; i < len; i++) {
4255       Interval* cur = _split_children.at(i);
4256       if (cur->covers(op_id, mode)) {
4257         return true;
4258       }
4259     }
4260     return false;
4261   }
4262 }
4263 
4264 
4265 // Note: use positions are sorted descending -> first use has highest index
4266 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4267   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4268 
4269   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4270     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4271       return _use_pos_and_kinds.at(i);
4272     }
4273   }
4274   return max_jint;
4275 }
4276 
4277 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4278   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4279 
4280   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4281     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4282       return _use_pos_and_kinds.at(i);
4283     }
4284   }
4285   return max_jint;
4286 }
4287 
4288 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4289   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4290 
4291   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4292     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4293       return _use_pos_and_kinds.at(i);
4294     }
4295   }
4296   return max_jint;
4297 }
4298 
4299 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4300   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4301 
4302   int prev = 0;
4303   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4304     if (_use_pos_and_kinds.at(i) > from) {
4305       return prev;
4306     }
4307     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4308       prev = _use_pos_and_kinds.at(i);
4309     }
4310   }
4311   return prev;
4312 }
4313 
4314 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4315   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4316 
4317   // do not add use positions for precolored intervals because
4318   // they are never used
4319   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4320 #ifdef ASSERT
4321     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4322     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4323       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4324       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4325       if (i > 0) {
4326         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4327       }
4328     }
4329 #endif
4330 
4331     // Note: add_use is called in descending order, so list gets sorted
4332     //       automatically by just appending new use positions
4333     int len = _use_pos_and_kinds.length();
4334     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4335       _use_pos_and_kinds.append(pos);
4336       _use_pos_and_kinds.append(use_kind);
4337     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4338       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4339       _use_pos_and_kinds.at_put(len - 1, use_kind);
4340     }
4341   }
4342 }
4343 
4344 void Interval::add_range(int from, int to) {
4345   assert(from < to, "invalid range");
4346   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4347   assert(from <= first()->to(), "not inserting at begin of interval");
4348 
4349   if (first()->from() <= to) {
4350     // join intersecting ranges
4351     first()->set_from(MIN2(from, first()->from()));
4352     first()->set_to  (MAX2(to,   first()->to()));
4353   } else {
4354     // insert new range
4355     _first = new Range(from, to, first());
4356   }
4357 }
4358 
4359 Interval* Interval::new_split_child() {
4360   // allocate new interval
4361   Interval* result = new Interval(-1);
4362   result->set_type(type());
4363 
4364   Interval* parent = split_parent();
4365   result->_split_parent = parent;
4366   result->set_register_hint(parent);
4367 
4368   // insert new interval in children-list of parent
4369   if (parent->_split_children.length() == 0) {
4370     assert(is_split_parent(), "list must be initialized at first split");
4371 
4372     parent->_split_children = IntervalList(4);
4373     parent->_split_children.append(this);
4374   }
4375   parent->_split_children.append(result);
4376 
4377   return result;
4378 }
4379 
4380 // split this interval at the specified position and return
4381 // the remainder as a new interval.
4382 //
4383 // when an interval is split, a bi-directional link is established between the original interval
4384 // (the split parent) and the intervals that are split off this interval (the split children)
4385 // When a split child is split again, the new created interval is also a direct child
4386 // of the original parent (there is no tree of split children stored, but a flat list)
4387 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4388 //
4389 // Note: The new interval has no valid reg_num
4390 Interval* Interval::split(int split_pos) {
4391   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4392 
4393   // allocate new interval
4394   Interval* result = new_split_child();
4395 
4396   // split the ranges
4397   Range* prev = NULL;
4398   Range* cur = _first;
4399   while (cur != Range::end() && cur->to() <= split_pos) {
4400     prev = cur;
4401     cur = cur->next();
4402   }
4403   assert(cur != Range::end(), "split interval after end of last range");
4404 
4405   if (cur->from() < split_pos) {
4406     result->_first = new Range(split_pos, cur->to(), cur->next());
4407     cur->set_to(split_pos);
4408     cur->set_next(Range::end());
4409 
4410   } else {
4411     assert(prev != NULL, "split before start of first range");
4412     result->_first = cur;
4413     prev->set_next(Range::end());
4414   }
4415   result->_current = result->_first;
4416   _cached_to = -1; // clear cached value
4417 
4418   // split list of use positions
4419   int total_len = _use_pos_and_kinds.length();
4420   int start_idx = total_len - 2;
4421   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4422     start_idx -= 2;
4423   }
4424 
4425   intStack new_use_pos_and_kinds(total_len - start_idx);
4426   int i;
4427   for (i = start_idx + 2; i < total_len; i++) {
4428     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4429   }
4430 
4431   _use_pos_and_kinds.truncate(start_idx + 2);
4432   result->_use_pos_and_kinds = _use_pos_and_kinds;
4433   _use_pos_and_kinds = new_use_pos_and_kinds;
4434 
4435 #ifdef ASSERT
4436   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4437   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4438   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4439 
4440   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4441     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4442     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4443   }
4444   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4445     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4446     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4447   }
4448 #endif
4449 
4450   return result;
4451 }
4452 
4453 // split this interval at the specified position and return
4454 // the head as a new interval (the original interval is the tail)
4455 //
4456 // Currently, only the first range can be split, and the new interval
4457 // must not have split positions
4458 Interval* Interval::split_from_start(int split_pos) {
4459   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4460   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4461   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4462   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4463 
4464   // allocate new interval
4465   Interval* result = new_split_child();
4466 
4467   // the new created interval has only one range (checked by assertion above),
4468   // so the splitting of the ranges is very simple
4469   result->add_range(_first->from(), split_pos);
4470 
4471   if (split_pos == _first->to()) {
4472     assert(_first->next() != Range::end(), "must not be at end");
4473     _first = _first->next();
4474   } else {
4475     _first->set_from(split_pos);
4476   }
4477 
4478   return result;
4479 }
4480 
4481 
4482 // returns true if the op_id is inside the interval
4483 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4484   Range* cur  = _first;
4485 
4486   while (cur != Range::end() && cur->to() < op_id) {
4487     cur = cur->next();
4488   }
4489   if (cur != Range::end()) {
4490     assert(cur->to() != cur->next()->from(), "ranges not separated");
4491 
4492     if (mode == LIR_OpVisitState::outputMode) {
4493       return cur->from() <= op_id && op_id < cur->to();
4494     } else {
4495       return cur->from() <= op_id && op_id <= cur->to();
4496     }
4497   }
4498   return false;
4499 }
4500 
4501 // returns true if the interval has any hole between hole_from and hole_to
4502 // (even if the hole has only the length 1)
4503 bool Interval::has_hole_between(int hole_from, int hole_to) {
4504   assert(hole_from < hole_to, "check");
4505   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4506 
4507   Range* cur  = _first;
4508   while (cur != Range::end()) {
4509     assert(cur->to() < cur->next()->from(), "no space between ranges");
4510 
4511     // hole-range starts before this range -> hole
4512     if (hole_from < cur->from()) {
4513       return true;
4514 
4515     // hole-range completely inside this range -> no hole
4516     } else if (hole_to <= cur->to()) {
4517       return false;
4518 
4519     // overlapping of hole-range with this range -> hole
4520     } else if (hole_from <= cur->to()) {
4521       return true;
4522     }
4523 
4524     cur = cur->next();
4525   }
4526 
4527   return false;
4528 }
4529 
4530 
4531 #ifndef PRODUCT
4532 void Interval::print(outputStream* out) const {
4533   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4534   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4535 
4536   const char* type_name;
4537   LIR_Opr opr = LIR_OprFact::illegal();
4538   if (reg_num() < LIR_OprDesc::vreg_base) {
4539     type_name = "fixed";
4540     // need a temporary operand for fixed intervals because type() cannot be called
4541 #ifdef X86
4542     int last_xmm_reg = pd_last_xmm_reg;
4543 #ifdef _LP64
4544     if (UseAVX < 3) {
4545       last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
4546     }
4547 #endif
4548 #endif
4549     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4550       opr = LIR_OprFact::single_cpu(assigned_reg());
4551     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4552       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4553 #ifdef X86
4554     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= last_xmm_reg) {
4555       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4556 #endif
4557     } else {
4558       ShouldNotReachHere();
4559     }
4560   } else {
4561     type_name = type2name(type());
4562     if (assigned_reg() != -1 &&
4563         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4564       opr = LinearScan::calc_operand_for_interval(this);
4565     }
4566   }
4567 
4568   out->print("%d %s ", reg_num(), type_name);
4569   if (opr->is_valid()) {
4570     out->print("\"");
4571     opr->print(out);
4572     out->print("\" ");
4573   }
4574   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4575 
4576   // print ranges
4577   Range* cur = _first;
4578   while (cur != Range::end()) {
4579     cur->print(out);
4580     cur = cur->next();
4581     assert(cur != NULL, "range list not closed with range sentinel");
4582   }
4583 
4584   // print use positions
4585   int prev = 0;
4586   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4587   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4588     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4589     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4590 
4591     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4592     prev = _use_pos_and_kinds.at(i);
4593   }
4594 
4595   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4596   out->cr();
4597 }
4598 #endif
4599 
4600 
4601 
4602 // **** Implementation of IntervalWalker ****************************
4603 
4604 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4605  : _compilation(allocator->compilation())
4606  , _allocator(allocator)
4607 {
4608   _unhandled_first[fixedKind] = unhandled_fixed_first;
4609   _unhandled_first[anyKind]   = unhandled_any_first;
4610   _active_first[fixedKind]    = Interval::end();
4611   _inactive_first[fixedKind]  = Interval::end();
4612   _active_first[anyKind]      = Interval::end();
4613   _inactive_first[anyKind]    = Interval::end();
4614   _current_position = -1;
4615   _current = NULL;
4616   next_interval();
4617 }
4618 
4619 
4620 // append interval at top of list
4621 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4622   interval->set_next(*list); *list = interval;
4623 }
4624 
4625 
4626 // append interval in order of current range from()
4627 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4628   Interval* prev = NULL;
4629   Interval* cur  = *list;
4630   while (cur->current_from() < interval->current_from()) {
4631     prev = cur; cur = cur->next();
4632   }
4633   if (prev == NULL) {
4634     *list = interval;
4635   } else {
4636     prev->set_next(interval);
4637   }
4638   interval->set_next(cur);
4639 }
4640 
4641 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4642   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4643 
4644   Interval* prev = NULL;
4645   Interval* cur  = *list;
4646   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4647     prev = cur; cur = cur->next();
4648   }
4649   if (prev == NULL) {
4650     *list = interval;
4651   } else {
4652     prev->set_next(interval);
4653   }
4654   interval->set_next(cur);
4655 }
4656 
4657 
4658 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4659   while (*list != Interval::end() && *list != i) {
4660     list = (*list)->next_addr();
4661   }
4662   if (*list != Interval::end()) {
4663     assert(*list == i, "check");
4664     *list = (*list)->next();
4665     return true;
4666   } else {
4667     return false;
4668   }
4669 }
4670 
4671 void IntervalWalker::remove_from_list(Interval* i) {
4672   bool deleted;
4673 
4674   if (i->state() == activeState) {
4675     deleted = remove_from_list(active_first_addr(anyKind), i);
4676   } else {
4677     assert(i->state() == inactiveState, "invalid state");
4678     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4679   }
4680 
4681   assert(deleted, "interval has not been found in list");
4682 }
4683 
4684 
4685 void IntervalWalker::walk_to(IntervalState state, int from) {
4686   assert (state == activeState || state == inactiveState, "wrong state");
4687   for_each_interval_kind(kind) {
4688     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4689     Interval* next   = *prev;
4690     while (next->current_from() <= from) {
4691       Interval* cur = next;
4692       next = cur->next();
4693 
4694       bool range_has_changed = false;
4695       while (cur->current_to() <= from) {
4696         cur->next_range();
4697         range_has_changed = true;
4698       }
4699 
4700       // also handle move from inactive list to active list
4701       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4702 
4703       if (range_has_changed) {
4704         // remove cur from list
4705         *prev = next;
4706         if (cur->current_at_end()) {
4707           // move to handled state (not maintained as a list)
4708           cur->set_state(handledState);
4709           interval_moved(cur, kind, state, handledState);
4710         } else if (cur->current_from() <= from){
4711           // sort into active list
4712           append_sorted(active_first_addr(kind), cur);
4713           cur->set_state(activeState);
4714           if (*prev == cur) {
4715             assert(state == activeState, "check");
4716             prev = cur->next_addr();
4717           }
4718           interval_moved(cur, kind, state, activeState);
4719         } else {
4720           // sort into inactive list
4721           append_sorted(inactive_first_addr(kind), cur);
4722           cur->set_state(inactiveState);
4723           if (*prev == cur) {
4724             assert(state == inactiveState, "check");
4725             prev = cur->next_addr();
4726           }
4727           interval_moved(cur, kind, state, inactiveState);
4728         }
4729       } else {
4730         prev = cur->next_addr();
4731         continue;
4732       }
4733     }
4734   }
4735 }
4736 
4737 
4738 void IntervalWalker::next_interval() {
4739   IntervalKind kind;
4740   Interval* any   = _unhandled_first[anyKind];
4741   Interval* fixed = _unhandled_first[fixedKind];
4742 
4743   if (any != Interval::end()) {
4744     // intervals may start at same position -> prefer fixed interval
4745     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4746 
4747     assert (kind == fixedKind && fixed->from() <= any->from() ||
4748             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4749     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4750 
4751   } else if (fixed != Interval::end()) {
4752     kind = fixedKind;
4753   } else {
4754     _current = NULL; return;
4755   }
4756   _current_kind = kind;
4757   _current = _unhandled_first[kind];
4758   _unhandled_first[kind] = _current->next();
4759   _current->set_next(Interval::end());
4760   _current->rewind_range();
4761 }
4762 
4763 
4764 void IntervalWalker::walk_to(int lir_op_id) {
4765   assert(_current_position <= lir_op_id, "can not walk backwards");
4766   while (current() != NULL) {
4767     bool is_active = current()->from() <= lir_op_id;
4768     int id = is_active ? current()->from() : lir_op_id;
4769 
4770     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4771 
4772     // set _current_position prior to call of walk_to
4773     _current_position = id;
4774 
4775     // call walk_to even if _current_position == id
4776     walk_to(activeState, id);
4777     walk_to(inactiveState, id);
4778 
4779     if (is_active) {
4780       current()->set_state(activeState);
4781       if (activate_current()) {
4782         append_sorted(active_first_addr(current_kind()), current());
4783         interval_moved(current(), current_kind(), unhandledState, activeState);
4784       }
4785 
4786       next_interval();
4787     } else {
4788       return;
4789     }
4790   }
4791 }
4792 
4793 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4794 #ifndef PRODUCT
4795   if (TraceLinearScanLevel >= 4) {
4796     #define print_state(state) \
4797     switch(state) {\
4798       case unhandledState: tty->print("unhandled"); break;\
4799       case activeState: tty->print("active"); break;\
4800       case inactiveState: tty->print("inactive"); break;\
4801       case handledState: tty->print("handled"); break;\
4802       default: ShouldNotReachHere(); \
4803     }
4804 
4805     print_state(from); tty->print(" to "); print_state(to);
4806     tty->fill_to(23);
4807     interval->print();
4808 
4809     #undef print_state
4810   }
4811 #endif
4812 }
4813 
4814 
4815 
4816 // **** Implementation of LinearScanWalker **************************
4817 
4818 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4819   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4820   , _move_resolver(allocator)
4821 {
4822   for (int i = 0; i < LinearScan::nof_regs; i++) {
4823     _spill_intervals[i] = new IntervalList(2);
4824   }
4825 }
4826 
4827 
4828 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4829   for (int i = _first_reg; i <= _last_reg; i++) {
4830     _use_pos[i] = max_jint;
4831 
4832     if (!only_process_use_pos) {
4833       _block_pos[i] = max_jint;
4834       _spill_intervals[i]->clear();
4835     }
4836   }
4837 }
4838 
4839 inline void LinearScanWalker::exclude_from_use(int reg) {
4840   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4841   if (reg >= _first_reg && reg <= _last_reg) {
4842     _use_pos[reg] = 0;
4843   }
4844 }
4845 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4846   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4847 
4848   exclude_from_use(i->assigned_reg());
4849   exclude_from_use(i->assigned_regHi());
4850 }
4851 
4852 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4853   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4854 
4855   if (reg >= _first_reg && reg <= _last_reg) {
4856     if (_use_pos[reg] > use_pos) {
4857       _use_pos[reg] = use_pos;
4858     }
4859     if (!only_process_use_pos) {
4860       _spill_intervals[reg]->append(i);
4861     }
4862   }
4863 }
4864 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4865   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4866   if (use_pos != -1) {
4867     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4868     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4869   }
4870 }
4871 
4872 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4873   if (reg >= _first_reg && reg <= _last_reg) {
4874     if (_block_pos[reg] > block_pos) {
4875       _block_pos[reg] = block_pos;
4876     }
4877     if (_use_pos[reg] > block_pos) {
4878       _use_pos[reg] = block_pos;
4879     }
4880   }
4881 }
4882 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4883   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4884   if (block_pos != -1) {
4885     set_block_pos(i->assigned_reg(), i, block_pos);
4886     set_block_pos(i->assigned_regHi(), i, block_pos);
4887   }
4888 }
4889 
4890 
4891 void LinearScanWalker::free_exclude_active_fixed() {
4892   Interval* list = active_first(fixedKind);
4893   while (list != Interval::end()) {
4894     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4895     exclude_from_use(list);
4896     list = list->next();
4897   }
4898 }
4899 
4900 void LinearScanWalker::free_exclude_active_any() {
4901   Interval* list = active_first(anyKind);
4902   while (list != Interval::end()) {
4903     exclude_from_use(list);
4904     list = list->next();
4905   }
4906 }
4907 
4908 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4909   Interval* list = inactive_first(fixedKind);
4910   while (list != Interval::end()) {
4911     if (cur->to() <= list->current_from()) {
4912       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4913       set_use_pos(list, list->current_from(), true);
4914     } else {
4915       set_use_pos(list, list->current_intersects_at(cur), true);
4916     }
4917     list = list->next();
4918   }
4919 }
4920 
4921 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4922   Interval* list = inactive_first(anyKind);
4923   while (list != Interval::end()) {
4924     set_use_pos(list, list->current_intersects_at(cur), true);
4925     list = list->next();
4926   }
4927 }
4928 
4929 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4930   Interval* list = unhandled_first(kind);
4931   while (list != Interval::end()) {
4932     set_use_pos(list, list->intersects_at(cur), true);
4933     if (kind == fixedKind && cur->to() <= list->from()) {
4934       set_use_pos(list, list->from(), true);
4935     }
4936     list = list->next();
4937   }
4938 }
4939 
4940 void LinearScanWalker::spill_exclude_active_fixed() {
4941   Interval* list = active_first(fixedKind);
4942   while (list != Interval::end()) {
4943     exclude_from_use(list);
4944     list = list->next();
4945   }
4946 }
4947 
4948 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4949   Interval* list = unhandled_first(fixedKind);
4950   while (list != Interval::end()) {
4951     set_block_pos(list, list->intersects_at(cur));
4952     list = list->next();
4953   }
4954 }
4955 
4956 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4957   Interval* list = inactive_first(fixedKind);
4958   while (list != Interval::end()) {
4959     if (cur->to() > list->current_from()) {
4960       set_block_pos(list, list->current_intersects_at(cur));
4961     } else {
4962       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4963     }
4964 
4965     list = list->next();
4966   }
4967 }
4968 
4969 void LinearScanWalker::spill_collect_active_any() {
4970   Interval* list = active_first(anyKind);
4971   while (list != Interval::end()) {
4972     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4973     list = list->next();
4974   }
4975 }
4976 
4977 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4978   Interval* list = inactive_first(anyKind);
4979   while (list != Interval::end()) {
4980     if (list->current_intersects(cur)) {
4981       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4982     }
4983     list = list->next();
4984   }
4985 }
4986 
4987 
4988 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4989   // output all moves here. When source and target are equal, the move is
4990   // optimized away later in assign_reg_nums
4991 
4992   op_id = (op_id + 1) & ~1;
4993   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4994   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4995 
4996   // calculate index of instruction inside instruction list of current block
4997   // the minimal index (for a block with no spill moves) can be calculated because the
4998   // numbering of instructions is known.
4999   // When the block already contains spill moves, the index must be increased until the
5000   // correct index is reached.
5001   LIR_OpList* list = op_block->lir()->instructions_list();
5002   int index = (op_id - list->at(0)->id()) / 2;
5003   assert(list->at(index)->id() <= op_id, "error in calculation");
5004 
5005   while (list->at(index)->id() != op_id) {
5006     index++;
5007     assert(0 <= index && index < list->length(), "index out of bounds");
5008   }
5009   assert(1 <= index && index < list->length(), "index out of bounds");
5010   assert(list->at(index)->id() == op_id, "error in calculation");
5011 
5012   // insert new instruction before instruction at position index
5013   _move_resolver.move_insert_position(op_block->lir(), index - 1);
5014   _move_resolver.add_mapping(src_it, dst_it);
5015 }
5016 
5017 
5018 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5019   int from_block_nr = min_block->linear_scan_number();
5020   int to_block_nr = max_block->linear_scan_number();
5021 
5022   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5023   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5024   assert(from_block_nr < to_block_nr, "must cross block boundary");
5025 
5026   // Try to split at end of max_block. If this would be after
5027   // max_split_pos, then use the begin of max_block
5028   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5029   if (optimal_split_pos > max_split_pos) {
5030     optimal_split_pos = max_block->first_lir_instruction_id();
5031   }
5032 
5033   int min_loop_depth = max_block->loop_depth();
5034   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5035     BlockBegin* cur = block_at(i);
5036 
5037     if (cur->loop_depth() < min_loop_depth) {
5038       // block with lower loop-depth found -> split at the end of this block
5039       min_loop_depth = cur->loop_depth();
5040       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5041     }
5042   }
5043   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5044 
5045   return optimal_split_pos;
5046 }
5047 
5048 
5049 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5050   int optimal_split_pos = -1;
5051   if (min_split_pos == max_split_pos) {
5052     // trivial case, no optimization of split position possible
5053     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5054     optimal_split_pos = min_split_pos;
5055 
5056   } else {
5057     assert(min_split_pos < max_split_pos, "must be true then");
5058     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5059 
5060     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5061     // beginning of a block, then min_split_pos is also a possible split position.
5062     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5063     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5064 
5065     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5066     // when an interval ends at the end of the last block of the method
5067     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5068     // block at this op_id)
5069     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5070 
5071     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5072     if (min_block == max_block) {
5073       // split position cannot be moved to block boundary, so split as late as possible
5074       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5075       optimal_split_pos = max_split_pos;
5076 
5077     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5078       // Do not move split position if the interval has a hole before max_split_pos.
5079       // Intervals resulting from Phi-Functions have more than one definition (marked
5080       // as mustHaveRegister) with a hole before each definition. When the register is needed
5081       // for the second definition, an earlier reloading is unnecessary.
5082       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5083       optimal_split_pos = max_split_pos;
5084 
5085     } else {
5086       // seach optimal block boundary between min_split_pos and max_split_pos
5087       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5088 
5089       if (do_loop_optimization) {
5090         // Loop optimization: if a loop-end marker is found between min- and max-position,
5091         // then split before this loop
5092         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5093         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5094 
5095         assert(loop_end_pos > min_split_pos, "invalid order");
5096         if (loop_end_pos < max_split_pos) {
5097           // loop-end marker found between min- and max-position
5098           // if it is not the end marker for the same loop as the min-position, then move
5099           // the max-position to this loop block.
5100           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5101           // of the interval (normally, only mustHaveRegister causes a reloading)
5102           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5103 
5104           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5105           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5106 
5107           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5108           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5109             optimal_split_pos = -1;
5110             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5111           } else {
5112             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5113           }
5114         }
5115       }
5116 
5117       if (optimal_split_pos == -1) {
5118         // not calculated by loop optimization
5119         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5120       }
5121     }
5122   }
5123   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5124 
5125   return optimal_split_pos;
5126 }
5127 
5128 
5129 /*
5130   split an interval at the optimal position between min_split_pos and
5131   max_split_pos in two parts:
5132   1) the left part has already a location assigned
5133   2) the right part is sorted into to the unhandled-list
5134 */
5135 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5136   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5137   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5138 
5139   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5140   assert(current_position() < min_split_pos, "cannot split before current position");
5141   assert(min_split_pos <= max_split_pos,     "invalid order");
5142   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5143 
5144   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5145 
5146   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5147   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5148   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5149 
5150   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5151     // the split position would be just before the end of the interval
5152     // -> no split at all necessary
5153     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5154     return;
5155   }
5156 
5157   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5158   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5159 
5160   if (!allocator()->is_block_begin(optimal_split_pos)) {
5161     // move position before actual instruction (odd op_id)
5162     optimal_split_pos = (optimal_split_pos - 1) | 1;
5163   }
5164 
5165   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5166   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5167   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5168 
5169   Interval* split_part = it->split(optimal_split_pos);
5170 
5171   allocator()->append_interval(split_part);
5172   allocator()->copy_register_flags(it, split_part);
5173   split_part->set_insert_move_when_activated(move_necessary);
5174   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5175 
5176   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5177   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5178   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5179 }
5180 
5181 /*
5182   split an interval at the optimal position between min_split_pos and
5183   max_split_pos in two parts:
5184   1) the left part has already a location assigned
5185   2) the right part is always on the stack and therefore ignored in further processing
5186 */
5187 void LinearScanWalker::split_for_spilling(Interval* it) {
5188   // calculate allowed range of splitting position
5189   int max_split_pos = current_position();
5190   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5191 
5192   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5193   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5194 
5195   assert(it->state() == activeState,     "why spill interval that is not active?");
5196   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5197   assert(min_split_pos <= max_split_pos, "invalid order");
5198   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5199   assert(current_position() < it->to(),  "interval must not end before current position");
5200 
5201   if (min_split_pos == it->from()) {
5202     // the whole interval is never used, so spill it entirely to memory
5203     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5204     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5205 
5206     allocator()->assign_spill_slot(it);
5207     allocator()->change_spill_state(it, min_split_pos);
5208 
5209     // Also kick parent intervals out of register to memory when they have no use
5210     // position. This avoids short interval in register surrounded by intervals in
5211     // memory -> avoid useless moves from memory to register and back
5212     Interval* parent = it;
5213     while (parent != NULL && parent->is_split_child()) {
5214       parent = parent->split_child_before_op_id(parent->from());
5215 
5216       if (parent->assigned_reg() < LinearScan::nof_regs) {
5217         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5218           // parent is never used, so kick it out of its assigned register
5219           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5220           allocator()->assign_spill_slot(parent);
5221         } else {
5222           // do not go further back because the register is actually used by the interval
5223           parent = NULL;
5224         }
5225       }
5226     }
5227 
5228   } else {
5229     // search optimal split pos, split interval and spill only the right hand part
5230     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5231 
5232     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5233     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5234     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5235 
5236     if (!allocator()->is_block_begin(optimal_split_pos)) {
5237       // move position before actual instruction (odd op_id)
5238       optimal_split_pos = (optimal_split_pos - 1) | 1;
5239     }
5240 
5241     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5242     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5243     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5244 
5245     Interval* spilled_part = it->split(optimal_split_pos);
5246     allocator()->append_interval(spilled_part);
5247     allocator()->assign_spill_slot(spilled_part);
5248     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5249 
5250     if (!allocator()->is_block_begin(optimal_split_pos)) {
5251       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5252       insert_move(optimal_split_pos, it, spilled_part);
5253     }
5254 
5255     // the current_split_child is needed later when moves are inserted for reloading
5256     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5257     spilled_part->make_current_split_child();
5258 
5259     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5260     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5261     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5262   }
5263 }
5264 
5265 
5266 void LinearScanWalker::split_stack_interval(Interval* it) {
5267   int min_split_pos = current_position() + 1;
5268   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5269 
5270   split_before_usage(it, min_split_pos, max_split_pos);
5271 }
5272 
5273 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5274   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5275   int max_split_pos = register_available_until;
5276 
5277   split_before_usage(it, min_split_pos, max_split_pos);
5278 }
5279 
5280 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5281   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5282 
5283   int current_pos = current_position();
5284   if (it->state() == inactiveState) {
5285     // the interval is currently inactive, so no spill slot is needed for now.
5286     // when the split part is activated, the interval has a new chance to get a register,
5287     // so in the best case no stack slot is necessary
5288     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5289     split_before_usage(it, current_pos + 1, current_pos + 1);
5290 
5291   } else {
5292     // search the position where the interval must have a register and split
5293     // at the optimal position before.
5294     // The new created part is added to the unhandled list and will get a register
5295     // when it is activated
5296     int min_split_pos = current_pos + 1;
5297     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5298 
5299     split_before_usage(it, min_split_pos, max_split_pos);
5300 
5301     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5302     split_for_spilling(it);
5303   }
5304 }
5305 
5306 
5307 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5308   int min_full_reg = any_reg;
5309   int max_partial_reg = any_reg;
5310 
5311   for (int i = _first_reg; i <= _last_reg; i++) {
5312     if (i == ignore_reg) {
5313       // this register must be ignored
5314 
5315     } else if (_use_pos[i] >= interval_to) {
5316       // this register is free for the full interval
5317       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5318         min_full_reg = i;
5319       }
5320     } else if (_use_pos[i] > reg_needed_until) {
5321       // this register is at least free until reg_needed_until
5322       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5323         max_partial_reg = i;
5324       }
5325     }
5326   }
5327 
5328   if (min_full_reg != any_reg) {
5329     return min_full_reg;
5330   } else if (max_partial_reg != any_reg) {
5331     *need_split = true;
5332     return max_partial_reg;
5333   } else {
5334     return any_reg;
5335   }
5336 }
5337 
5338 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5339   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5340 
5341   int min_full_reg = any_reg;
5342   int max_partial_reg = any_reg;
5343 
5344   for (int i = _first_reg; i < _last_reg; i+=2) {
5345     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5346       // this register is free for the full interval
5347       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5348         min_full_reg = i;
5349       }
5350     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5351       // this register is at least free until reg_needed_until
5352       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5353         max_partial_reg = i;
5354       }
5355     }
5356   }
5357 
5358   if (min_full_reg != any_reg) {
5359     return min_full_reg;
5360   } else if (max_partial_reg != any_reg) {
5361     *need_split = true;
5362     return max_partial_reg;
5363   } else {
5364     return any_reg;
5365   }
5366 }
5367 
5368 
5369 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5370   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5371 
5372   init_use_lists(true);
5373   free_exclude_active_fixed();
5374   free_exclude_active_any();
5375   free_collect_inactive_fixed(cur);
5376   free_collect_inactive_any(cur);
5377 //  free_collect_unhandled(fixedKind, cur);
5378   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5379 
5380   // _use_pos contains the start of the next interval that has this register assigned
5381   // (either as a fixed register or a normal allocated register in the past)
5382   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5383   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5384   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5385 
5386   int hint_reg, hint_regHi;
5387   Interval* register_hint = cur->register_hint();
5388   if (register_hint != NULL) {
5389     hint_reg = register_hint->assigned_reg();
5390     hint_regHi = register_hint->assigned_regHi();
5391 
5392     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5393       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5394       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5395     }
5396     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5397 
5398   } else {
5399     hint_reg = any_reg;
5400     hint_regHi = any_reg;
5401   }
5402   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5403   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5404 
5405   // the register must be free at least until this position
5406   int reg_needed_until = cur->from() + 1;
5407   int interval_to = cur->to();
5408 
5409   bool need_split = false;
5410   int split_pos = -1;
5411   int reg = any_reg;
5412   int regHi = any_reg;
5413 
5414   if (_adjacent_regs) {
5415     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5416     regHi = reg + 1;
5417     if (reg == any_reg) {
5418       return false;
5419     }
5420     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5421 
5422   } else {
5423     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5424     if (reg == any_reg) {
5425       return false;
5426     }
5427     split_pos = _use_pos[reg];
5428 
5429     if (_num_phys_regs == 2) {
5430       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5431 
5432       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5433         // do not split interval if only one register can be assigned until the split pos
5434         // (when one register is found for the whole interval, split&spill is only
5435         // performed for the hi register)
5436         return false;
5437 
5438       } else if (regHi != any_reg) {
5439         split_pos = MIN2(split_pos, _use_pos[regHi]);
5440 
5441         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5442         if (reg > regHi) {
5443           int temp = reg;
5444           reg = regHi;
5445           regHi = temp;
5446         }
5447       }
5448     }
5449   }
5450 
5451   cur->assign_reg(reg, regHi);
5452   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5453 
5454   assert(split_pos > 0, "invalid split_pos");
5455   if (need_split) {
5456     // register not available for full interval, so split it
5457     split_when_partial_register_available(cur, split_pos);
5458   }
5459 
5460   // only return true if interval is completely assigned
5461   return _num_phys_regs == 1 || regHi != any_reg;
5462 }
5463 
5464 
5465 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5466   int max_reg = any_reg;
5467 
5468   for (int i = _first_reg; i <= _last_reg; i++) {
5469     if (i == ignore_reg) {
5470       // this register must be ignored
5471 
5472     } else if (_use_pos[i] > reg_needed_until) {
5473       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5474         max_reg = i;
5475       }
5476     }
5477   }
5478 
5479   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5480     *need_split = true;
5481   }
5482 
5483   return max_reg;
5484 }
5485 
5486 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5487   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5488 
5489   int max_reg = any_reg;
5490 
5491   for (int i = _first_reg; i < _last_reg; i+=2) {
5492     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5493       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5494         max_reg = i;
5495       }
5496     }
5497   }
5498 
5499   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5500     *need_split = true;
5501   }
5502 
5503   return max_reg;
5504 }
5505 
5506 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5507   assert(reg != any_reg, "no register assigned");
5508 
5509   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5510     Interval* it = _spill_intervals[reg]->at(i);
5511     remove_from_list(it);
5512     split_and_spill_interval(it);
5513   }
5514 
5515   if (regHi != any_reg) {
5516     IntervalList* processed = _spill_intervals[reg];
5517     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5518       Interval* it = _spill_intervals[regHi]->at(i);
5519       if (processed->index_of(it) == -1) {
5520         remove_from_list(it);
5521         split_and_spill_interval(it);
5522       }
5523     }
5524   }
5525 }
5526 
5527 
5528 // Split an Interval and spill it to memory so that cur can be placed in a register
5529 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5530   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5531 
5532   // collect current usage of registers
5533   init_use_lists(false);
5534   spill_exclude_active_fixed();
5535 //  spill_block_unhandled_fixed(cur);
5536   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5537   spill_block_inactive_fixed(cur);
5538   spill_collect_active_any();
5539   spill_collect_inactive_any(cur);
5540 
5541 #ifndef PRODUCT
5542   if (TraceLinearScanLevel >= 4) {
5543     tty->print_cr("      state of registers:");
5544     for (int i = _first_reg; i <= _last_reg; i++) {
5545       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5546       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5547         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5548       }
5549       tty->cr();
5550     }
5551   }
5552 #endif
5553 
5554   // the register must be free at least until this position
5555   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5556   int interval_to = cur->to();
5557   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5558 
5559   int split_pos = 0;
5560   int use_pos = 0;
5561   bool need_split = false;
5562   int reg, regHi;
5563 
5564   if (_adjacent_regs) {
5565     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5566     regHi = reg + 1;
5567 
5568     if (reg != any_reg) {
5569       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5570       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5571     }
5572   } else {
5573     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5574     regHi = any_reg;
5575 
5576     if (reg != any_reg) {
5577       use_pos = _use_pos[reg];
5578       split_pos = _block_pos[reg];
5579 
5580       if (_num_phys_regs == 2) {
5581         if (cur->assigned_reg() != any_reg) {
5582           regHi = reg;
5583           reg = cur->assigned_reg();
5584         } else {
5585           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5586           if (regHi != any_reg) {
5587             use_pos = MIN2(use_pos, _use_pos[regHi]);
5588             split_pos = MIN2(split_pos, _block_pos[regHi]);
5589           }
5590         }
5591 
5592         if (regHi != any_reg && reg > regHi) {
5593           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5594           int temp = reg;
5595           reg = regHi;
5596           regHi = temp;
5597         }
5598       }
5599     }
5600   }
5601 
5602   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5603     // the first use of cur is later than the spilling position -> spill cur
5604     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5605 
5606     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5607       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5608       // assign a reasonable register and do a bailout in product mode to avoid errors
5609       allocator()->assign_spill_slot(cur);
5610       BAILOUT("LinearScan: no register found");
5611     }
5612 
5613     split_and_spill_interval(cur);
5614   } else {
5615     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5616     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5617     assert(split_pos > 0, "invalid split_pos");
5618     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5619 
5620     cur->assign_reg(reg, regHi);
5621     if (need_split) {
5622       // register not available for full interval, so split it
5623       split_when_partial_register_available(cur, split_pos);
5624     }
5625 
5626     // perform splitting and spilling for all affected intervalls
5627     split_and_spill_intersecting_intervals(reg, regHi);
5628   }
5629 }
5630 
5631 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5632 #ifdef X86
5633   // fast calculation of intervals that can never get a register because the
5634   // the next instruction is a call that blocks all registers
5635   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5636 
5637   // check if this interval is the result of a split operation
5638   // (an interval got a register until this position)
5639   int pos = cur->from();
5640   if ((pos & 1) == 1) {
5641     // the current instruction is a call that blocks all registers
5642     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5643       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5644 
5645       // safety check that there is really no register available
5646       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5647       return true;
5648     }
5649 
5650   }
5651 #endif
5652   return false;
5653 }
5654 
5655 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5656   BasicType type = cur->type();
5657   _num_phys_regs = LinearScan::num_physical_regs(type);
5658   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5659 
5660   if (pd_init_regs_for_alloc(cur)) {
5661     // the appropriate register range was selected.
5662   } else if (type == T_FLOAT || type == T_DOUBLE) {
5663     _first_reg = pd_first_fpu_reg;
5664     _last_reg = pd_last_fpu_reg;
5665   } else {
5666     _first_reg = pd_first_cpu_reg;
5667     _last_reg = FrameMap::last_cpu_reg();
5668   }
5669 
5670   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5671   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5672 }
5673 
5674 
5675 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5676   if (op->code() != lir_move) {
5677     return false;
5678   }
5679   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5680 
5681   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5682   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5683   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5684 }
5685 
5686 // optimization (especially for phi functions of nested loops):
5687 // assign same spill slot to non-intersecting intervals
5688 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5689   if (cur->is_split_child()) {
5690     // optimization is only suitable for split parents
5691     return;
5692   }
5693 
5694   Interval* register_hint = cur->register_hint(false);
5695   if (register_hint == NULL) {
5696     // cur is not the target of a move, otherwise register_hint would be set
5697     return;
5698   }
5699   assert(register_hint->is_split_parent(), "register hint must be split parent");
5700 
5701   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5702     // combining the stack slots for intervals where spill move optimization is applied
5703     // is not benefitial and would cause problems
5704     return;
5705   }
5706 
5707   int begin_pos = cur->from();
5708   int end_pos = cur->to();
5709   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5710     // safety check that lir_op_with_id is allowed
5711     return;
5712   }
5713 
5714   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5715     // cur and register_hint are not connected with two moves
5716     return;
5717   }
5718 
5719   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5720   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5721   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5722     // register_hint must be split, otherwise the re-writing of use positions does not work
5723     return;
5724   }
5725 
5726   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5727   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5728   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5729   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5730 
5731   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5732     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5733     return;
5734   }
5735   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5736 
5737   // modify intervals such that cur gets the same stack slot as register_hint
5738   // delete use positions to prevent the intervals to get a register at beginning
5739   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5740   cur->remove_first_use_pos();
5741   end_hint->remove_first_use_pos();
5742 }
5743 
5744 
5745 // allocate a physical register or memory location to an interval
5746 bool LinearScanWalker::activate_current() {
5747   Interval* cur = current();
5748   bool result = true;
5749 
5750   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5751   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5752 
5753   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5754     // activating an interval that has a stack slot assigned -> split it at first use position
5755     // used for method parameters
5756     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5757 
5758     split_stack_interval(cur);
5759     result = false;
5760 
5761   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5762     // activating an interval that must start in a stack slot, but may get a register later
5763     // used for lir_roundfp: rounding is done by store to stack and reload later
5764     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5765     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5766 
5767     allocator()->assign_spill_slot(cur);
5768     split_stack_interval(cur);
5769     result = false;
5770 
5771   } else if (cur->assigned_reg() == any_reg) {
5772     // interval has not assigned register -> normal allocation
5773     // (this is the normal case for most intervals)
5774     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5775 
5776     // assign same spill slot to non-intersecting intervals
5777     combine_spilled_intervals(cur);
5778 
5779     init_vars_for_alloc(cur);
5780     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5781       // no empty register available.
5782       // split and spill another interval so that this interval gets a register
5783       alloc_locked_reg(cur);
5784     }
5785 
5786     // spilled intervals need not be move to active-list
5787     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5788       result = false;
5789     }
5790   }
5791 
5792   // load spilled values that become active from stack slot to register
5793   if (cur->insert_move_when_activated()) {
5794     assert(cur->is_split_child(), "must be");
5795     assert(cur->current_split_child() != NULL, "must be");
5796     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5797     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5798 
5799     insert_move(cur->from(), cur->current_split_child(), cur);
5800   }
5801   cur->make_current_split_child();
5802 
5803   return result; // true = interval is moved to active list
5804 }
5805 
5806 
5807 // Implementation of EdgeMoveOptimizer
5808 
5809 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5810   _edge_instructions(4),
5811   _edge_instructions_idx(4)
5812 {
5813 }
5814 
5815 void EdgeMoveOptimizer::optimize(BlockList* code) {
5816   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5817 
5818   // ignore the first block in the list (index 0 is not processed)
5819   for (int i = code->length() - 1; i >= 1; i--) {
5820     BlockBegin* block = code->at(i);
5821 
5822     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5823       optimizer.optimize_moves_at_block_end(block);
5824     }
5825     if (block->number_of_sux() == 2) {
5826       optimizer.optimize_moves_at_block_begin(block);
5827     }
5828   }
5829 }
5830 
5831 
5832 // clear all internal data structures
5833 void EdgeMoveOptimizer::init_instructions() {
5834   _edge_instructions.clear();
5835   _edge_instructions_idx.clear();
5836 }
5837 
5838 // append a lir-instruction-list and the index of the current operation in to the list
5839 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5840   _edge_instructions.append(instructions);
5841   _edge_instructions_idx.append(instructions_idx);
5842 }
5843 
5844 // return the current operation of the given edge (predecessor or successor)
5845 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5846   LIR_OpList* instructions = _edge_instructions.at(edge);
5847   int idx = _edge_instructions_idx.at(edge);
5848 
5849   if (idx < instructions->length()) {
5850     return instructions->at(idx);
5851   } else {
5852     return NULL;
5853   }
5854 }
5855 
5856 // removes the current operation of the given edge (predecessor or successor)
5857 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5858   LIR_OpList* instructions = _edge_instructions.at(edge);
5859   int idx = _edge_instructions_idx.at(edge);
5860   instructions->remove_at(idx);
5861 
5862   if (decrement_index) {
5863     _edge_instructions_idx.at_put(edge, idx - 1);
5864   }
5865 }
5866 
5867 
5868 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5869   if (op1 == NULL || op2 == NULL) {
5870     // at least one block is already empty -> no optimization possible
5871     return true;
5872   }
5873 
5874   if (op1->code() == lir_move && op2->code() == lir_move) {
5875     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5876     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5877     LIR_Op1* move1 = (LIR_Op1*)op1;
5878     LIR_Op1* move2 = (LIR_Op1*)op2;
5879     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5880       // these moves are exactly equal and can be optimized
5881       return false;
5882     }
5883 
5884   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5885     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5886     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5887     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5888     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5889     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5890       // equal FPU stack operations can be optimized
5891       return false;
5892     }
5893 
5894   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5895     // equal FPU stack operations can be optimized
5896     return false;
5897   }
5898 
5899   // no optimization possible
5900   return true;
5901 }
5902 
5903 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5904   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5905 
5906   if (block->is_predecessor(block)) {
5907     // currently we can't handle this correctly.
5908     return;
5909   }
5910 
5911   init_instructions();
5912   int num_preds = block->number_of_preds();
5913   assert(num_preds > 1, "do not call otherwise");
5914   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5915 
5916   // setup a list with the lir-instructions of all predecessors
5917   int i;
5918   for (i = 0; i < num_preds; i++) {
5919     BlockBegin* pred = block->pred_at(i);
5920     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5921 
5922     if (pred->number_of_sux() != 1) {
5923       // this can happen with switch-statements where multiple edges are between
5924       // the same blocks.
5925       return;
5926     }
5927 
5928     assert(pred->number_of_sux() == 1, "can handle only one successor");
5929     assert(pred->sux_at(0) == block, "invalid control flow");
5930     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5931     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5932     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5933 
5934     if (pred_instructions->last()->info() != NULL) {
5935       // can not optimize instructions when debug info is needed
5936       return;
5937     }
5938 
5939     // ignore the unconditional branch at the end of the block
5940     append_instructions(pred_instructions, pred_instructions->length() - 2);
5941   }
5942 
5943 
5944   // process lir-instructions while all predecessors end with the same instruction
5945   while (true) {
5946     LIR_Op* op = instruction_at(0);
5947     for (i = 1; i < num_preds; i++) {
5948       if (operations_different(op, instruction_at(i))) {
5949         // these instructions are different and cannot be optimized ->
5950         // no further optimization possible
5951         return;
5952       }
5953     }
5954 
5955     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5956 
5957     // insert the instruction at the beginning of the current block
5958     block->lir()->insert_before(1, op);
5959 
5960     // delete the instruction at the end of all predecessors
5961     for (i = 0; i < num_preds; i++) {
5962       remove_cur_instruction(i, true);
5963     }
5964   }
5965 }
5966 
5967 
5968 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5969   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5970 
5971   init_instructions();
5972   int num_sux = block->number_of_sux();
5973 
5974   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5975 
5976   assert(num_sux == 2, "method should not be called otherwise");
5977   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5978   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5979   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5980 
5981   if (cur_instructions->last()->info() != NULL) {
5982     // can no optimize instructions when debug info is needed
5983     return;
5984   }
5985 
5986   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5987   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5988     // not a valid case for optimization
5989     // currently, only blocks that end with two branches (conditional branch followed
5990     // by unconditional branch) are optimized
5991     return;
5992   }
5993 
5994   // now it is guaranteed that the block ends with two branch instructions.
5995   // the instructions are inserted at the end of the block before these two branches
5996   int insert_idx = cur_instructions->length() - 2;
5997 
5998   int i;
5999 #ifdef ASSERT
6000   for (i = insert_idx - 1; i >= 0; i--) {
6001     LIR_Op* op = cur_instructions->at(i);
6002     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
6003       assert(false, "block with two successors can have only two branch instructions");
6004     }
6005   }
6006 #endif
6007 
6008   // setup a list with the lir-instructions of all successors
6009   for (i = 0; i < num_sux; i++) {
6010     BlockBegin* sux = block->sux_at(i);
6011     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6012 
6013     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6014 
6015     if (sux->number_of_preds() != 1) {
6016       // this can happen with switch-statements where multiple edges are between
6017       // the same blocks.
6018       return;
6019     }
6020     assert(sux->pred_at(0) == block, "invalid control flow");
6021     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6022 
6023     // ignore the label at the beginning of the block
6024     append_instructions(sux_instructions, 1);
6025   }
6026 
6027   // process lir-instructions while all successors begin with the same instruction
6028   while (true) {
6029     LIR_Op* op = instruction_at(0);
6030     for (i = 1; i < num_sux; i++) {
6031       if (operations_different(op, instruction_at(i))) {
6032         // these instructions are different and cannot be optimized ->
6033         // no further optimization possible
6034         return;
6035       }
6036     }
6037 
6038     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6039 
6040     // insert instruction at end of current block
6041     block->lir()->insert_before(insert_idx, op);
6042     insert_idx++;
6043 
6044     // delete the instructions at the beginning of all successors
6045     for (i = 0; i < num_sux; i++) {
6046       remove_cur_instruction(i, false);
6047     }
6048   }
6049 }
6050 
6051 
6052 // Implementation of ControlFlowOptimizer
6053 
6054 ControlFlowOptimizer::ControlFlowOptimizer() :
6055   _original_preds(4)
6056 {
6057 }
6058 
6059 void ControlFlowOptimizer::optimize(BlockList* code) {
6060   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6061 
6062   // push the OSR entry block to the end so that we're not jumping over it.
6063   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6064   if (osr_entry) {
6065     int index = osr_entry->linear_scan_number();
6066     assert(code->at(index) == osr_entry, "wrong index");
6067     code->remove_at(index);
6068     code->append(osr_entry);
6069   }
6070 
6071   optimizer.reorder_short_loops(code);
6072   optimizer.delete_empty_blocks(code);
6073   optimizer.delete_unnecessary_jumps(code);
6074   optimizer.delete_jumps_to_return(code);
6075 }
6076 
6077 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6078   int i = header_idx + 1;
6079   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6080   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6081     i++;
6082   }
6083 
6084   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6085     int end_idx = i - 1;
6086     BlockBegin* end_block = code->at(end_idx);
6087 
6088     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6089       // short loop from header_idx to end_idx found -> reorder blocks such that
6090       // the header_block is the last block instead of the first block of the loop
6091       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6092                                          end_idx - header_idx + 1,
6093                                          header_block->block_id(), end_block->block_id()));
6094 
6095       for (int j = header_idx; j < end_idx; j++) {
6096         code->at_put(j, code->at(j + 1));
6097       }
6098       code->at_put(end_idx, header_block);
6099 
6100       // correct the flags so that any loop alignment occurs in the right place.
6101       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6102       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6103       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6104     }
6105   }
6106 }
6107 
6108 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6109   for (int i = code->length() - 1; i >= 0; i--) {
6110     BlockBegin* block = code->at(i);
6111 
6112     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6113       reorder_short_loop(code, block, i);
6114     }
6115   }
6116 
6117   DEBUG_ONLY(verify(code));
6118 }
6119 
6120 // only blocks with exactly one successor can be deleted. Such blocks
6121 // must always end with an unconditional branch to this successor
6122 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6123   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6124     return false;
6125   }
6126 
6127   LIR_OpList* instructions = block->lir()->instructions_list();
6128 
6129   assert(instructions->length() >= 2, "block must have label and branch");
6130   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6131   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6132   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6133   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6134 
6135   // block must have exactly one successor
6136 
6137   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6138     return true;
6139   }
6140   return false;
6141 }
6142 
6143 // substitute branch targets in all branch-instructions of this blocks
6144 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6145   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6146 
6147   LIR_OpList* instructions = block->lir()->instructions_list();
6148 
6149   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6150   for (int i = instructions->length() - 1; i >= 1; i--) {
6151     LIR_Op* op = instructions->at(i);
6152 
6153     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6154       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6155       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6156 
6157       if (branch->block() == target_from) {
6158         branch->change_block(target_to);
6159       }
6160       if (branch->ublock() == target_from) {
6161         branch->change_ublock(target_to);
6162       }
6163     }
6164   }
6165 }
6166 
6167 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6168   int old_pos = 0;
6169   int new_pos = 0;
6170   int num_blocks = code->length();
6171 
6172   while (old_pos < num_blocks) {
6173     BlockBegin* block = code->at(old_pos);
6174 
6175     if (can_delete_block(block)) {
6176       BlockBegin* new_target = block->sux_at(0);
6177 
6178       // propagate backward branch target flag for correct code alignment
6179       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6180         new_target->set(BlockBegin::backward_branch_target_flag);
6181       }
6182 
6183       // collect a list with all predecessors that contains each predecessor only once
6184       // the predecessors of cur are changed during the substitution, so a copy of the
6185       // predecessor list is necessary
6186       int j;
6187       _original_preds.clear();
6188       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6189         BlockBegin* pred = block->pred_at(j);
6190         if (_original_preds.index_of(pred) == -1) {
6191           _original_preds.append(pred);
6192         }
6193       }
6194 
6195       for (j = _original_preds.length() - 1; j >= 0; j--) {
6196         BlockBegin* pred = _original_preds.at(j);
6197         substitute_branch_target(pred, block, new_target);
6198         pred->substitute_sux(block, new_target);
6199       }
6200     } else {
6201       // adjust position of this block in the block list if blocks before
6202       // have been deleted
6203       if (new_pos != old_pos) {
6204         code->at_put(new_pos, code->at(old_pos));
6205       }
6206       new_pos++;
6207     }
6208     old_pos++;
6209   }
6210   code->truncate(new_pos);
6211 
6212   DEBUG_ONLY(verify(code));
6213 }
6214 
6215 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6216   // skip the last block because there a branch is always necessary
6217   for (int i = code->length() - 2; i >= 0; i--) {
6218     BlockBegin* block = code->at(i);
6219     LIR_OpList* instructions = block->lir()->instructions_list();
6220 
6221     LIR_Op* last_op = instructions->last();
6222     if (last_op->code() == lir_branch) {
6223       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6224       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6225 
6226       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6227       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6228 
6229       if (last_branch->info() == NULL) {
6230         if (last_branch->block() == code->at(i + 1)) {
6231 
6232           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6233 
6234           // delete last branch instruction
6235           instructions->truncate(instructions->length() - 1);
6236 
6237         } else {
6238           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6239           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6240             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6241             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6242 
6243             if (prev_branch->stub() == NULL) {
6244 
6245               LIR_Op2* prev_cmp = NULL;
6246 
6247               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6248                 prev_op = instructions->at(j);
6249                 if (prev_op->code() == lir_cmp) {
6250                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6251                   prev_cmp = (LIR_Op2*)prev_op;
6252                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6253                 }
6254               }
6255               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6256               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6257 
6258                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6259 
6260                 // eliminate a conditional branch to the immediate successor
6261                 prev_branch->change_block(last_branch->block());
6262                 prev_branch->negate_cond();
6263                 prev_cmp->set_condition(prev_branch->cond());
6264                 instructions->truncate(instructions->length() - 1);
6265               }
6266             }
6267           }
6268         }
6269       }
6270     }
6271   }
6272 
6273   DEBUG_ONLY(verify(code));
6274 }
6275 
6276 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6277 #ifdef ASSERT
6278   BitMap return_converted(BlockBegin::number_of_blocks());
6279   return_converted.clear();
6280 #endif
6281 
6282   for (int i = code->length() - 1; i >= 0; i--) {
6283     BlockBegin* block = code->at(i);
6284     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6285     LIR_Op*     cur_last_op = cur_instructions->last();
6286 
6287     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6288     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6289       // the block contains only a label and a return
6290       // if a predecessor ends with an unconditional jump to this block, then the jump
6291       // can be replaced with a return instruction
6292       //
6293       // Note: the original block with only a return statement cannot be deleted completely
6294       //       because the predecessors might have other (conditional) jumps to this block
6295       //       -> this may lead to unnecesary return instructions in the final code
6296 
6297       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6298       assert(block->number_of_sux() == 0 ||
6299              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6300              "blocks that end with return must not have successors");
6301 
6302       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6303       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6304 
6305       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6306         BlockBegin* pred = block->pred_at(j);
6307         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6308         LIR_Op*     pred_last_op = pred_instructions->last();
6309 
6310         if (pred_last_op->code() == lir_branch) {
6311           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6312           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6313 
6314           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6315             // replace the jump to a return with a direct return
6316             // Note: currently the edge between the blocks is not deleted
6317             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6318 #ifdef ASSERT
6319             return_converted.set_bit(pred->block_id());
6320 #endif
6321           }
6322         }
6323       }
6324     }
6325   }
6326 }
6327 
6328 
6329 #ifdef ASSERT
6330 void ControlFlowOptimizer::verify(BlockList* code) {
6331   for (int i = 0; i < code->length(); i++) {
6332     BlockBegin* block = code->at(i);
6333     LIR_OpList* instructions = block->lir()->instructions_list();
6334 
6335     int j;
6336     for (j = 0; j < instructions->length(); j++) {
6337       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6338 
6339       if (op_branch != NULL) {
6340         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6341         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6342       }
6343     }
6344 
6345     for (j = 0; j < block->number_of_sux() - 1; j++) {
6346       BlockBegin* sux = block->sux_at(j);
6347       assert(code->index_of(sux) != -1, "successor not valid");
6348     }
6349 
6350     for (j = 0; j < block->number_of_preds() - 1; j++) {
6351       BlockBegin* pred = block->pred_at(j);
6352       assert(code->index_of(pred) != -1, "successor not valid");
6353     }
6354   }
6355 }
6356 #endif
6357 
6358 
6359 #ifndef PRODUCT
6360 
6361 // Implementation of LinearStatistic
6362 
6363 const char* LinearScanStatistic::counter_name(int counter_idx) {
6364   switch (counter_idx) {
6365     case counter_method:          return "compiled methods";
6366     case counter_fpu_method:      return "methods using fpu";
6367     case counter_loop_method:     return "methods with loops";
6368     case counter_exception_method:return "methods with xhandler";
6369 
6370     case counter_loop:            return "loops";
6371     case counter_block:           return "blocks";
6372     case counter_loop_block:      return "blocks inside loop";
6373     case counter_exception_block: return "exception handler entries";
6374     case counter_interval:        return "intervals";
6375     case counter_fixed_interval:  return "fixed intervals";
6376     case counter_range:           return "ranges";
6377     case counter_fixed_range:     return "fixed ranges";
6378     case counter_use_pos:         return "use positions";
6379     case counter_fixed_use_pos:   return "fixed use positions";
6380     case counter_spill_slots:     return "spill slots";
6381 
6382     // counter for classes of lir instructions
6383     case counter_instruction:     return "total instructions";
6384     case counter_label:           return "labels";
6385     case counter_entry:           return "method entries";
6386     case counter_return:          return "method returns";
6387     case counter_call:            return "method calls";
6388     case counter_move:            return "moves";
6389     case counter_cmp:             return "compare";
6390     case counter_cond_branch:     return "conditional branches";
6391     case counter_uncond_branch:   return "unconditional branches";
6392     case counter_stub_branch:     return "branches to stub";
6393     case counter_alu:             return "artithmetic + logic";
6394     case counter_alloc:           return "allocations";
6395     case counter_sync:            return "synchronisation";
6396     case counter_throw:           return "throw";
6397     case counter_unwind:          return "unwind";
6398     case counter_typecheck:       return "type+null-checks";
6399     case counter_fpu_stack:       return "fpu-stack";
6400     case counter_misc_inst:       return "other instructions";
6401     case counter_other_inst:      return "misc. instructions";
6402 
6403     // counter for different types of moves
6404     case counter_move_total:      return "total moves";
6405     case counter_move_reg_reg:    return "register->register";
6406     case counter_move_reg_stack:  return "register->stack";
6407     case counter_move_stack_reg:  return "stack->register";
6408     case counter_move_stack_stack:return "stack->stack";
6409     case counter_move_reg_mem:    return "register->memory";
6410     case counter_move_mem_reg:    return "memory->register";
6411     case counter_move_const_any:  return "constant->any";
6412 
6413     case blank_line_1:            return "";
6414     case blank_line_2:            return "";
6415 
6416     default: ShouldNotReachHere(); return "";
6417   }
6418 }
6419 
6420 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6421   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6422     return counter_method;
6423   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6424     return counter_block;
6425   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6426     return counter_instruction;
6427   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6428     return counter_move_total;
6429   }
6430   return invalid_counter;
6431 }
6432 
6433 LinearScanStatistic::LinearScanStatistic() {
6434   for (int i = 0; i < number_of_counters; i++) {
6435     _counters_sum[i] = 0;
6436     _counters_max[i] = -1;
6437   }
6438 
6439 }
6440 
6441 // add the method-local numbers to the total sum
6442 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6443   for (int i = 0; i < number_of_counters; i++) {
6444     _counters_sum[i] += method_statistic._counters_sum[i];
6445     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6446   }
6447 }
6448 
6449 void LinearScanStatistic::print(const char* title) {
6450   if (CountLinearScan || TraceLinearScanLevel > 0) {
6451     tty->cr();
6452     tty->print_cr("***** LinearScan statistic - %s *****", title);
6453 
6454     for (int i = 0; i < number_of_counters; i++) {
6455       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6456         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6457 
6458         if (base_counter(i) != invalid_counter) {
6459           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6460         } else {
6461           tty->print("           ");
6462         }
6463 
6464         if (_counters_max[i] >= 0) {
6465           tty->print("%8d", _counters_max[i]);
6466         }
6467       }
6468       tty->cr();
6469     }
6470   }
6471 }
6472 
6473 void LinearScanStatistic::collect(LinearScan* allocator) {
6474   inc_counter(counter_method);
6475   if (allocator->has_fpu_registers()) {
6476     inc_counter(counter_fpu_method);
6477   }
6478   if (allocator->num_loops() > 0) {
6479     inc_counter(counter_loop_method);
6480   }
6481   inc_counter(counter_loop, allocator->num_loops());
6482   inc_counter(counter_spill_slots, allocator->max_spills());
6483 
6484   int i;
6485   for (i = 0; i < allocator->interval_count(); i++) {
6486     Interval* cur = allocator->interval_at(i);
6487 
6488     if (cur != NULL) {
6489       inc_counter(counter_interval);
6490       inc_counter(counter_use_pos, cur->num_use_positions());
6491       if (LinearScan::is_precolored_interval(cur)) {
6492         inc_counter(counter_fixed_interval);
6493         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6494       }
6495 
6496       Range* range = cur->first();
6497       while (range != Range::end()) {
6498         inc_counter(counter_range);
6499         if (LinearScan::is_precolored_interval(cur)) {
6500           inc_counter(counter_fixed_range);
6501         }
6502         range = range->next();
6503       }
6504     }
6505   }
6506 
6507   bool has_xhandlers = false;
6508   // Note: only count blocks that are in code-emit order
6509   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6510     BlockBegin* cur = allocator->ir()->code()->at(i);
6511 
6512     inc_counter(counter_block);
6513     if (cur->loop_depth() > 0) {
6514       inc_counter(counter_loop_block);
6515     }
6516     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6517       inc_counter(counter_exception_block);
6518       has_xhandlers = true;
6519     }
6520 
6521     LIR_OpList* instructions = cur->lir()->instructions_list();
6522     for (int j = 0; j < instructions->length(); j++) {
6523       LIR_Op* op = instructions->at(j);
6524 
6525       inc_counter(counter_instruction);
6526 
6527       switch (op->code()) {
6528         case lir_label:           inc_counter(counter_label); break;
6529         case lir_std_entry:
6530         case lir_osr_entry:       inc_counter(counter_entry); break;
6531         case lir_return:          inc_counter(counter_return); break;
6532 
6533         case lir_rtcall:
6534         case lir_static_call:
6535         case lir_optvirtual_call:
6536         case lir_virtual_call:    inc_counter(counter_call); break;
6537 
6538         case lir_move: {
6539           inc_counter(counter_move);
6540           inc_counter(counter_move_total);
6541 
6542           LIR_Opr in = op->as_Op1()->in_opr();
6543           LIR_Opr res = op->as_Op1()->result_opr();
6544           if (in->is_register()) {
6545             if (res->is_register()) {
6546               inc_counter(counter_move_reg_reg);
6547             } else if (res->is_stack()) {
6548               inc_counter(counter_move_reg_stack);
6549             } else if (res->is_address()) {
6550               inc_counter(counter_move_reg_mem);
6551             } else {
6552               ShouldNotReachHere();
6553             }
6554           } else if (in->is_stack()) {
6555             if (res->is_register()) {
6556               inc_counter(counter_move_stack_reg);
6557             } else {
6558               inc_counter(counter_move_stack_stack);
6559             }
6560           } else if (in->is_address()) {
6561             assert(res->is_register(), "must be");
6562             inc_counter(counter_move_mem_reg);
6563           } else if (in->is_constant()) {
6564             inc_counter(counter_move_const_any);
6565           } else {
6566             ShouldNotReachHere();
6567           }
6568           break;
6569         }
6570 
6571         case lir_cmp:             inc_counter(counter_cmp); break;
6572 
6573         case lir_branch:
6574         case lir_cond_float_branch: {
6575           LIR_OpBranch* branch = op->as_OpBranch();
6576           if (branch->block() == NULL) {
6577             inc_counter(counter_stub_branch);
6578           } else if (branch->cond() == lir_cond_always) {
6579             inc_counter(counter_uncond_branch);
6580           } else {
6581             inc_counter(counter_cond_branch);
6582           }
6583           break;
6584         }
6585 
6586         case lir_neg:
6587         case lir_add:
6588         case lir_sub:
6589         case lir_mul:
6590         case lir_mul_strictfp:
6591         case lir_div:
6592         case lir_div_strictfp:
6593         case lir_rem:
6594         case lir_sqrt:
6595         case lir_sin:
6596         case lir_cos:
6597         case lir_abs:
6598         case lir_log10:
6599         case lir_log:
6600         case lir_pow:
6601         case lir_exp:
6602         case lir_logic_and:
6603         case lir_logic_or:
6604         case lir_logic_xor:
6605         case lir_shl:
6606         case lir_shr:
6607         case lir_ushr:            inc_counter(counter_alu); break;
6608 
6609         case lir_alloc_object:
6610         case lir_alloc_array:     inc_counter(counter_alloc); break;
6611 
6612         case lir_monaddr:
6613         case lir_lock:
6614         case lir_unlock:          inc_counter(counter_sync); break;
6615 
6616         case lir_throw:           inc_counter(counter_throw); break;
6617 
6618         case lir_unwind:          inc_counter(counter_unwind); break;
6619 
6620         case lir_null_check:
6621         case lir_leal:
6622         case lir_instanceof:
6623         case lir_checkcast:
6624         case lir_store_check:     inc_counter(counter_typecheck); break;
6625 
6626         case lir_fpop_raw:
6627         case lir_fxch:
6628         case lir_fld:             inc_counter(counter_fpu_stack); break;
6629 
6630         case lir_nop:
6631         case lir_push:
6632         case lir_pop:
6633         case lir_convert:
6634         case lir_roundfp:
6635         case lir_cmove:           inc_counter(counter_misc_inst); break;
6636 
6637         default:                  inc_counter(counter_other_inst); break;
6638       }
6639     }
6640   }
6641 
6642   if (has_xhandlers) {
6643     inc_counter(counter_exception_method);
6644   }
6645 }
6646 
6647 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6648   if (CountLinearScan || TraceLinearScanLevel > 0) {
6649 
6650     LinearScanStatistic local_statistic = LinearScanStatistic();
6651 
6652     local_statistic.collect(allocator);
6653     global_statistic.sum_up(local_statistic);
6654 
6655     if (TraceLinearScanLevel > 2) {
6656       local_statistic.print("current local statistic");
6657     }
6658   }
6659 }
6660 
6661 
6662 // Implementation of LinearTimers
6663 
6664 LinearScanTimers::LinearScanTimers() {
6665   for (int i = 0; i < number_of_timers; i++) {
6666     timer(i)->reset();
6667   }
6668 }
6669 
6670 const char* LinearScanTimers::timer_name(int idx) {
6671   switch (idx) {
6672     case timer_do_nothing:               return "Nothing (Time Check)";
6673     case timer_number_instructions:      return "Number Instructions";
6674     case timer_compute_local_live_sets:  return "Local Live Sets";
6675     case timer_compute_global_live_sets: return "Global Live Sets";
6676     case timer_build_intervals:          return "Build Intervals";
6677     case timer_sort_intervals_before:    return "Sort Intervals Before";
6678     case timer_allocate_registers:       return "Allocate Registers";
6679     case timer_resolve_data_flow:        return "Resolve Data Flow";
6680     case timer_sort_intervals_after:     return "Sort Intervals After";
6681     case timer_eliminate_spill_moves:    return "Spill optimization";
6682     case timer_assign_reg_num:           return "Assign Reg Num";
6683     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6684     case timer_optimize_lir:             return "Optimize LIR";
6685     default: ShouldNotReachHere();       return "";
6686   }
6687 }
6688 
6689 void LinearScanTimers::begin_method() {
6690   if (TimeEachLinearScan) {
6691     // reset all timers to measure only current method
6692     for (int i = 0; i < number_of_timers; i++) {
6693       timer(i)->reset();
6694     }
6695   }
6696 }
6697 
6698 void LinearScanTimers::end_method(LinearScan* allocator) {
6699   if (TimeEachLinearScan) {
6700 
6701     double c = timer(timer_do_nothing)->seconds();
6702     double total = 0;
6703     for (int i = 1; i < number_of_timers; i++) {
6704       total += timer(i)->seconds() - c;
6705     }
6706 
6707     if (total >= 0.0005) {
6708       // print all information in one line for automatic processing
6709       tty->print("@"); allocator->compilation()->method()->print_name();
6710 
6711       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6712       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6713       tty->print("@ %d ", allocator->block_count());
6714       tty->print("@ %d ", allocator->num_virtual_regs());
6715       tty->print("@ %d ", allocator->interval_count());
6716       tty->print("@ %d ", allocator->_num_calls);
6717       tty->print("@ %d ", allocator->num_loops());
6718 
6719       tty->print("@ %6.6f ", total);
6720       for (int i = 1; i < number_of_timers; i++) {
6721         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6722       }
6723       tty->cr();
6724     }
6725   }
6726 }
6727 
6728 void LinearScanTimers::print(double total_time) {
6729   if (TimeLinearScan) {
6730     // correction value: sum of dummy-timer that only measures the time that
6731     // is necesary to start and stop itself
6732     double c = timer(timer_do_nothing)->seconds();
6733 
6734     for (int i = 0; i < number_of_timers; i++) {
6735       double t = timer(i)->seconds();
6736       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6737     }
6738   }
6739 }
6740 
6741 #endif // #ifndef PRODUCT