/* * Copyright (c) 2015, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.graalvm.compiler.lir.alloc.lsra; import static org.graalvm.compiler.core.common.GraalOptions.DetailedAsserts; import java.util.BitSet; import java.util.List; import org.graalvm.compiler.core.common.cfg.AbstractBlockBase; import org.graalvm.compiler.debug.Debug; import org.graalvm.compiler.debug.Indent; import org.graalvm.compiler.lir.LIRInstruction; import org.graalvm.compiler.lir.StandardOp; import org.graalvm.compiler.lir.gen.LIRGenerationResult; import org.graalvm.compiler.lir.phases.AllocationPhase; import jdk.vm.ci.code.TargetDescription; /** * Phase 6: resolve data flow * * Insert moves at edges between blocks if intervals have been split. */ public class LinearScanResolveDataFlowPhase extends AllocationPhase { protected final LinearScan allocator; protected LinearScanResolveDataFlowPhase(LinearScan allocator) { this.allocator = allocator; } @Override protected void run(TargetDescription target, LIRGenerationResult lirGenRes, AllocationContext context) { resolveDataFlow(); allocator.printIntervals("After resolve data flow"); } protected void resolveCollectMappings(AbstractBlockBase fromBlock, AbstractBlockBase toBlock, AbstractBlockBase midBlock, MoveResolver moveResolver) { assert moveResolver.checkEmpty(); assert midBlock == null || (midBlock.getPredecessorCount() == 1 && midBlock.getSuccessorCount() == 1 && midBlock.getPredecessors()[0].equals(fromBlock) && midBlock.getSuccessors()[0].equals( toBlock)); int toBlockFirstInstructionId = allocator.getFirstLirInstructionId(toBlock); int fromBlockLastInstructionId = allocator.getLastLirInstructionId(fromBlock) + 1; int numOperands = allocator.operandSize(); BitSet liveAtEdge = allocator.getBlockData(toBlock).liveIn; // visit all variables for which the liveAtEdge bit is set for (int operandNum = liveAtEdge.nextSetBit(0); operandNum >= 0; operandNum = liveAtEdge.nextSetBit(operandNum + 1)) { assert operandNum < numOperands : "live information set for not exisiting interval"; assert allocator.getBlockData(fromBlock).liveOut.get(operandNum) && allocator.getBlockData(toBlock).liveIn.get(operandNum) : "interval not live at this edge"; Interval fromInterval = allocator.splitChildAtOpId(allocator.intervalFor(operandNum), fromBlockLastInstructionId, LIRInstruction.OperandMode.DEF); Interval toInterval = allocator.splitChildAtOpId(allocator.intervalFor(operandNum), toBlockFirstInstructionId, LIRInstruction.OperandMode.DEF); if (fromInterval != toInterval && !fromInterval.location().equals(toInterval.location())) { // need to insert move instruction moveResolver.addMapping(fromInterval, toInterval); } } } void resolveFindInsertPos(AbstractBlockBase fromBlock, AbstractBlockBase toBlock, MoveResolver moveResolver) { if (fromBlock.getSuccessorCount() <= 1) { if (Debug.isLogEnabled()) { Debug.log("inserting moves at end of fromBlock B%d", fromBlock.getId()); } List instructions = allocator.getLIR().getLIRforBlock(fromBlock); LIRInstruction instr = instructions.get(instructions.size() - 1); if (instr instanceof StandardOp.JumpOp) { // insert moves before branch moveResolver.setInsertPosition(instructions, instructions.size() - 1); } else { moveResolver.setInsertPosition(instructions, instructions.size()); } } else { if (Debug.isLogEnabled()) { Debug.log("inserting moves at beginning of toBlock B%d", toBlock.getId()); } if (DetailedAsserts.getValue()) { assert allocator.getLIR().getLIRforBlock(fromBlock).get(0) instanceof StandardOp.LabelOp : "block does not start with a label"; /* * Because the number of predecessor edges matches the number of successor edges, * blocks which are reached by switch statements may have be more than one * predecessor but it will be guaranteed that all predecessors will be the same. */ for (AbstractBlockBase predecessor : toBlock.getPredecessors()) { assert fromBlock == predecessor : "all critical edges must be broken"; } } moveResolver.setInsertPosition(allocator.getLIR().getLIRforBlock(toBlock), 1); } } /** * Inserts necessary moves (spilling or reloading) at edges between blocks for intervals that * have been split. */ @SuppressWarnings("try") protected void resolveDataFlow() { try (Indent indent = Debug.logAndIndent("resolve data flow")) { MoveResolver moveResolver = allocator.createMoveResolver(); BitSet blockCompleted = new BitSet(allocator.blockCount()); optimizeEmptyBlocks(moveResolver, blockCompleted); resolveDataFlow0(moveResolver, blockCompleted); } } protected void optimizeEmptyBlocks(MoveResolver moveResolver, BitSet blockCompleted) { for (AbstractBlockBase block : allocator.sortedBlocks()) { // check if block has only one predecessor and only one successor if (block.getPredecessorCount() == 1 && block.getSuccessorCount() == 1) { List instructions = allocator.getLIR().getLIRforBlock(block); assert instructions.get(0) instanceof StandardOp.LabelOp : "block must start with label"; assert instructions.get(instructions.size() - 1) instanceof StandardOp.JumpOp : "block with successor must end with unconditional jump"; // check if block is empty (only label and branch) if (instructions.size() == 2) { AbstractBlockBase pred = block.getPredecessors()[0]; AbstractBlockBase sux = block.getSuccessors()[0]; // prevent optimization of two consecutive blocks if (!blockCompleted.get(pred.getLinearScanNumber()) && !blockCompleted.get(sux.getLinearScanNumber())) { if (Debug.isLogEnabled()) { Debug.log(" optimizing empty block B%d (pred: B%d, sux: B%d)", block.getId(), pred.getId(), sux.getId()); } blockCompleted.set(block.getLinearScanNumber()); /* * Directly resolve between pred and sux (without looking at the empty block * between). */ resolveCollectMappings(pred, sux, block, moveResolver); if (moveResolver.hasMappings()) { moveResolver.setInsertPosition(instructions, 1); moveResolver.resolveAndAppendMoves(); } } } } } } protected void resolveDataFlow0(MoveResolver moveResolver, BitSet blockCompleted) { BitSet alreadyResolved = new BitSet(allocator.blockCount()); for (AbstractBlockBase fromBlock : allocator.sortedBlocks()) { if (!blockCompleted.get(fromBlock.getLinearScanNumber())) { alreadyResolved.clear(); alreadyResolved.or(blockCompleted); for (AbstractBlockBase toBlock : fromBlock.getSuccessors()) { /* * Check for duplicate edges between the same blocks (can happen with switch * blocks). */ if (!alreadyResolved.get(toBlock.getLinearScanNumber())) { if (Debug.isLogEnabled()) { Debug.log("processing edge between B%d and B%d", fromBlock.getId(), toBlock.getId()); } alreadyResolved.set(toBlock.getLinearScanNumber()); // collect all intervals that have been split between // fromBlock and toBlock resolveCollectMappings(fromBlock, toBlock, null, moveResolver); if (moveResolver.hasMappings()) { resolveFindInsertPos(fromBlock, toBlock, moveResolver); moveResolver.resolveAndAppendMoves(); } } } } } } }