1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "gc/parallel/gcTaskManager.hpp"
  34 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  35 #include "gc/parallel/parMarkBitMap.inline.hpp"
  36 #include "gc/parallel/pcTasks.hpp"
  37 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  38 #include "gc/parallel/psCompactionManager.inline.hpp"
  39 #include "gc/parallel/psOldGen.hpp"
  40 #include "gc/parallel/psParallelCompact.inline.hpp"
  41 #include "gc/parallel/psPromotionManager.inline.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/referencePolicy.hpp"
  53 #include "gc/shared/referenceProcessor.hpp"
  54 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  55 #include "gc/shared/spaceDecorator.hpp"
  56 #include "gc/shared/weakProcessor.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/iterator.inline.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/access.inline.hpp"
  61 #include "oops/instanceClassLoaderKlass.inline.hpp"
  62 #include "oops/instanceKlass.inline.hpp"
  63 #include "oops/instanceMirrorKlass.inline.hpp"
  64 #include "oops/methodData.hpp"
  65 #include "oops/objArrayKlass.inline.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/safepoint.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/management.hpp"
  72 #include "services/memTracker.hpp"
  73 #include "services/memoryService.hpp"
  74 #include "utilities/align.hpp"
  75 #include "utilities/debug.hpp"
  76 #include "utilities/events.hpp"
  77 #include "utilities/formatBuffer.hpp"
  78 #include "utilities/macros.hpp"
  79 #include "utilities/stack.inline.hpp"
  80 
  81 #include <math.h>
  82 
  83 // All sizes are in HeapWords.
  84 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  85 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  86 const size_t ParallelCompactData::RegionSizeBytes =
  87   RegionSize << LogHeapWordSize;
  88 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  89 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  90 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  91 
  92 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  93 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  94 const size_t ParallelCompactData::BlockSizeBytes  =
  95   BlockSize << LogHeapWordSize;
  96 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  97 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  98 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  99 
 100 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
 101 const size_t ParallelCompactData::Log2BlocksPerRegion =
 102   Log2RegionSize - Log2BlockSize;
 103 
 104 const ParallelCompactData::RegionData::region_sz_t
 105 ParallelCompactData::RegionData::dc_shift = 27;
 106 
 107 const ParallelCompactData::RegionData::region_sz_t
 108 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 109 
 110 const ParallelCompactData::RegionData::region_sz_t
 111 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 112 
 113 const ParallelCompactData::RegionData::region_sz_t
 114 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 115 
 116 const ParallelCompactData::RegionData::region_sz_t
 117 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 118 
 119 const ParallelCompactData::RegionData::region_sz_t
 120 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 121 
 122 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 123 
 124 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 125 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 126 
 127 double PSParallelCompact::_dwl_mean;
 128 double PSParallelCompact::_dwl_std_dev;
 129 double PSParallelCompact::_dwl_first_term;
 130 double PSParallelCompact::_dwl_adjustment;
 131 #ifdef  ASSERT
 132 bool   PSParallelCompact::_dwl_initialized = false;
 133 #endif  // #ifdef ASSERT
 134 
 135 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 136                        HeapWord* destination)
 137 {
 138   assert(src_region_idx != 0, "invalid src_region_idx");
 139   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 140   assert(destination != NULL, "invalid destination argument");
 141 
 142   _src_region_idx = src_region_idx;
 143   _partial_obj_size = partial_obj_size;
 144   _destination = destination;
 145 
 146   // These fields may not be updated below, so make sure they're clear.
 147   assert(_dest_region_addr == NULL, "should have been cleared");
 148   assert(_first_src_addr == NULL, "should have been cleared");
 149 
 150   // Determine the number of destination regions for the partial object.
 151   HeapWord* const last_word = destination + partial_obj_size - 1;
 152   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 153   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 154   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 155 
 156   if (beg_region_addr == end_region_addr) {
 157     // One destination region.
 158     _destination_count = 1;
 159     if (end_region_addr == destination) {
 160       // The destination falls on a region boundary, thus the first word of the
 161       // partial object will be the first word copied to the destination region.
 162       _dest_region_addr = end_region_addr;
 163       _first_src_addr = sd.region_to_addr(src_region_idx);
 164     }
 165   } else {
 166     // Two destination regions.  When copied, the partial object will cross a
 167     // destination region boundary, so a word somewhere within the partial
 168     // object will be the first word copied to the second destination region.
 169     _destination_count = 2;
 170     _dest_region_addr = end_region_addr;
 171     const size_t ofs = pointer_delta(end_region_addr, destination);
 172     assert(ofs < _partial_obj_size, "sanity");
 173     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 174   }
 175 }
 176 
 177 void SplitInfo::clear()
 178 {
 179   _src_region_idx = 0;
 180   _partial_obj_size = 0;
 181   _destination = NULL;
 182   _destination_count = 0;
 183   _dest_region_addr = NULL;
 184   _first_src_addr = NULL;
 185   assert(!is_valid(), "sanity");
 186 }
 187 
 188 #ifdef  ASSERT
 189 void SplitInfo::verify_clear()
 190 {
 191   assert(_src_region_idx == 0, "not clear");
 192   assert(_partial_obj_size == 0, "not clear");
 193   assert(_destination == NULL, "not clear");
 194   assert(_destination_count == 0, "not clear");
 195   assert(_dest_region_addr == NULL, "not clear");
 196   assert(_first_src_addr == NULL, "not clear");
 197 }
 198 #endif  // #ifdef ASSERT
 199 
 200 
 201 void PSParallelCompact::print_on_error(outputStream* st) {
 202   _mark_bitmap.print_on_error(st);
 203 }
 204 
 205 #ifndef PRODUCT
 206 const char* PSParallelCompact::space_names[] = {
 207   "old ", "eden", "from", "to  "
 208 };
 209 
 210 void PSParallelCompact::print_region_ranges() {
 211   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 212     return;
 213   }
 214   Log(gc, compaction) log;
 215   ResourceMark rm;
 216   LogStream ls(log.trace());
 217   Universe::print_on(&ls);
 218   log.trace("space  bottom     top        end        new_top");
 219   log.trace("------ ---------- ---------- ---------- ----------");
 220 
 221   for (unsigned int id = 0; id < last_space_id; ++id) {
 222     const MutableSpace* space = _space_info[id].space();
 223     log.trace("%u %s "
 224               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 225               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 226               id, space_names[id],
 227               summary_data().addr_to_region_idx(space->bottom()),
 228               summary_data().addr_to_region_idx(space->top()),
 229               summary_data().addr_to_region_idx(space->end()),
 230               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 231   }
 232 }
 233 
 234 void
 235 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 236 {
 237 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 238 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 239 
 240   ParallelCompactData& sd = PSParallelCompact::summary_data();
 241   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 242   log_develop_trace(gc, compaction)(
 243       REGION_IDX_FORMAT " " PTR_FORMAT " "
 244       REGION_IDX_FORMAT " " PTR_FORMAT " "
 245       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 246       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 247       i, p2i(c->data_location()), dci, p2i(c->destination()),
 248       c->partial_obj_size(), c->live_obj_size(),
 249       c->data_size(), c->source_region(), c->destination_count());
 250 
 251 #undef  REGION_IDX_FORMAT
 252 #undef  REGION_DATA_FORMAT
 253 }
 254 
 255 void
 256 print_generic_summary_data(ParallelCompactData& summary_data,
 257                            HeapWord* const beg_addr,
 258                            HeapWord* const end_addr)
 259 {
 260   size_t total_words = 0;
 261   size_t i = summary_data.addr_to_region_idx(beg_addr);
 262   const size_t last = summary_data.addr_to_region_idx(end_addr);
 263   HeapWord* pdest = 0;
 264 
 265   while (i < last) {
 266     ParallelCompactData::RegionData* c = summary_data.region(i);
 267     if (c->data_size() != 0 || c->destination() != pdest) {
 268       print_generic_summary_region(i, c);
 269       total_words += c->data_size();
 270       pdest = c->destination();
 271     }
 272     ++i;
 273   }
 274 
 275   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 276 }
 277 
 278 void
 279 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 280                                               HeapWord* const beg_addr,
 281                                               HeapWord* const end_addr) {
 282   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 283 }
 284 
 285 void
 286 print_generic_summary_data(ParallelCompactData& summary_data,
 287                            SpaceInfo* space_info)
 288 {
 289   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 290     return;
 291   }
 292 
 293   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 294     const MutableSpace* space = space_info[id].space();
 295     print_generic_summary_data(summary_data, space->bottom(),
 296                                MAX2(space->top(), space_info[id].new_top()));
 297   }
 298 }
 299 
 300 void
 301 print_initial_summary_data(ParallelCompactData& summary_data,
 302                            const MutableSpace* space) {
 303   if (space->top() == space->bottom()) {
 304     return;
 305   }
 306 
 307   const size_t region_size = ParallelCompactData::RegionSize;
 308   typedef ParallelCompactData::RegionData RegionData;
 309   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 310   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 311   const RegionData* c = summary_data.region(end_region - 1);
 312   HeapWord* end_addr = c->destination() + c->data_size();
 313   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 314 
 315   // Print (and count) the full regions at the beginning of the space.
 316   size_t full_region_count = 0;
 317   size_t i = summary_data.addr_to_region_idx(space->bottom());
 318   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 319     ParallelCompactData::RegionData* c = summary_data.region(i);
 320     log_develop_trace(gc, compaction)(
 321         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 322         i, p2i(c->destination()),
 323         c->partial_obj_size(), c->live_obj_size(),
 324         c->data_size(), c->source_region(), c->destination_count());
 325     ++full_region_count;
 326     ++i;
 327   }
 328 
 329   size_t live_to_right = live_in_space - full_region_count * region_size;
 330 
 331   double max_reclaimed_ratio = 0.0;
 332   size_t max_reclaimed_ratio_region = 0;
 333   size_t max_dead_to_right = 0;
 334   size_t max_live_to_right = 0;
 335 
 336   // Print the 'reclaimed ratio' for regions while there is something live in
 337   // the region or to the right of it.  The remaining regions are empty (and
 338   // uninteresting), and computing the ratio will result in division by 0.
 339   while (i < end_region && live_to_right > 0) {
 340     c = summary_data.region(i);
 341     HeapWord* const region_addr = summary_data.region_to_addr(i);
 342     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 343     const size_t dead_to_right = used_to_right - live_to_right;
 344     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 345 
 346     if (reclaimed_ratio > max_reclaimed_ratio) {
 347             max_reclaimed_ratio = reclaimed_ratio;
 348             max_reclaimed_ratio_region = i;
 349             max_dead_to_right = dead_to_right;
 350             max_live_to_right = live_to_right;
 351     }
 352 
 353     ParallelCompactData::RegionData* c = summary_data.region(i);
 354     log_develop_trace(gc, compaction)(
 355         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 356         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 357         i, p2i(c->destination()),
 358         c->partial_obj_size(), c->live_obj_size(),
 359         c->data_size(), c->source_region(), c->destination_count(),
 360         reclaimed_ratio, dead_to_right, live_to_right);
 361 
 362 
 363     live_to_right -= c->data_size();
 364     ++i;
 365   }
 366 
 367   // Any remaining regions are empty.  Print one more if there is one.
 368   if (i < end_region) {
 369     ParallelCompactData::RegionData* c = summary_data.region(i);
 370     log_develop_trace(gc, compaction)(
 371         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 372          i, p2i(c->destination()),
 373          c->partial_obj_size(), c->live_obj_size(),
 374          c->data_size(), c->source_region(), c->destination_count());
 375   }
 376 
 377   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 378                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 379 }
 380 
 381 void
 382 print_initial_summary_data(ParallelCompactData& summary_data,
 383                            SpaceInfo* space_info) {
 384   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 385     return;
 386   }
 387 
 388   unsigned int id = PSParallelCompact::old_space_id;
 389   const MutableSpace* space;
 390   do {
 391     space = space_info[id].space();
 392     print_initial_summary_data(summary_data, space);
 393   } while (++id < PSParallelCompact::eden_space_id);
 394 
 395   do {
 396     space = space_info[id].space();
 397     print_generic_summary_data(summary_data, space->bottom(), space->top());
 398   } while (++id < PSParallelCompact::last_space_id);
 399 }
 400 #endif  // #ifndef PRODUCT
 401 
 402 #ifdef  ASSERT
 403 size_t add_obj_count;
 404 size_t add_obj_size;
 405 size_t mark_bitmap_count;
 406 size_t mark_bitmap_size;
 407 #endif  // #ifdef ASSERT
 408 
 409 ParallelCompactData::ParallelCompactData() :
 410   _region_start(NULL),
 411   DEBUG_ONLY(_region_end(NULL) COMMA)
 412   _region_vspace(NULL),
 413   _reserved_byte_size(0),
 414   _region_data(NULL),
 415   _region_count(0),
 416   _block_vspace(NULL),
 417   _block_data(NULL),
 418   _block_count(0) {}
 419 
 420 bool ParallelCompactData::initialize(MemRegion covered_region)
 421 {
 422   _region_start = covered_region.start();
 423   const size_t region_size = covered_region.word_size();
 424   DEBUG_ONLY(_region_end = _region_start + region_size;)
 425 
 426   assert(region_align_down(_region_start) == _region_start,
 427          "region start not aligned");
 428   assert((region_size & RegionSizeOffsetMask) == 0,
 429          "region size not a multiple of RegionSize");
 430 
 431   bool result = initialize_region_data(region_size) && initialize_block_data();
 432   return result;
 433 }
 434 
 435 PSVirtualSpace*
 436 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 437 {
 438   const size_t raw_bytes = count * element_size;
 439   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 440   const size_t granularity = os::vm_allocation_granularity();
 441   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 442 
 443   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 444     MAX2(page_sz, granularity);
 445   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 446   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 447                        rs.size());
 448 
 449   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 450 
 451   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 452   if (vspace != 0) {
 453     if (vspace->expand_by(_reserved_byte_size)) {
 454       return vspace;
 455     }
 456     delete vspace;
 457     // Release memory reserved in the space.
 458     rs.release();
 459   }
 460 
 461   return 0;
 462 }
 463 
 464 bool ParallelCompactData::initialize_region_data(size_t region_size)
 465 {
 466   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 467   _region_vspace = create_vspace(count, sizeof(RegionData));
 468   if (_region_vspace != 0) {
 469     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 470     _region_count = count;
 471     return true;
 472   }
 473   return false;
 474 }
 475 
 476 bool ParallelCompactData::initialize_block_data()
 477 {
 478   assert(_region_count != 0, "region data must be initialized first");
 479   const size_t count = _region_count << Log2BlocksPerRegion;
 480   _block_vspace = create_vspace(count, sizeof(BlockData));
 481   if (_block_vspace != 0) {
 482     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 483     _block_count = count;
 484     return true;
 485   }
 486   return false;
 487 }
 488 
 489 void ParallelCompactData::clear()
 490 {
 491   memset(_region_data, 0, _region_vspace->committed_size());
 492   memset(_block_data, 0, _block_vspace->committed_size());
 493 }
 494 
 495 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 496   assert(beg_region <= _region_count, "beg_region out of range");
 497   assert(end_region <= _region_count, "end_region out of range");
 498   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 499 
 500   const size_t region_cnt = end_region - beg_region;
 501   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 502 
 503   const size_t beg_block = beg_region * BlocksPerRegion;
 504   const size_t block_cnt = region_cnt * BlocksPerRegion;
 505   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 506 }
 507 
 508 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 509 {
 510   const RegionData* cur_cp = region(region_idx);
 511   const RegionData* const end_cp = region(region_count() - 1);
 512 
 513   HeapWord* result = region_to_addr(region_idx);
 514   if (cur_cp < end_cp) {
 515     do {
 516       result += cur_cp->partial_obj_size();
 517     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 518   }
 519   return result;
 520 }
 521 
 522 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 523 {
 524   const size_t obj_ofs = pointer_delta(addr, _region_start);
 525   const size_t beg_region = obj_ofs >> Log2RegionSize;
 526   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 527 
 528   DEBUG_ONLY(Atomic::inc(&add_obj_count);)
 529   DEBUG_ONLY(Atomic::add(len, &add_obj_size);)
 530 
 531   if (beg_region == end_region) {
 532     // All in one region.
 533     _region_data[beg_region].add_live_obj(len);
 534     return;
 535   }
 536 
 537   // First region.
 538   const size_t beg_ofs = region_offset(addr);
 539   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 540 
 541   Klass* klass = ((oop)addr)->klass();
 542   // Middle regions--completely spanned by this object.
 543   for (size_t region = beg_region + 1; region < end_region; ++region) {
 544     _region_data[region].set_partial_obj_size(RegionSize);
 545     _region_data[region].set_partial_obj_addr(addr);
 546   }
 547 
 548   // Last region.
 549   const size_t end_ofs = region_offset(addr + len - 1);
 550   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 551   _region_data[end_region].set_partial_obj_addr(addr);
 552 }
 553 
 554 void
 555 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 556 {
 557   assert(region_offset(beg) == 0, "not RegionSize aligned");
 558   assert(region_offset(end) == 0, "not RegionSize aligned");
 559 
 560   size_t cur_region = addr_to_region_idx(beg);
 561   const size_t end_region = addr_to_region_idx(end);
 562   HeapWord* addr = beg;
 563   while (cur_region < end_region) {
 564     _region_data[cur_region].set_destination(addr);
 565     _region_data[cur_region].set_destination_count(0);
 566     _region_data[cur_region].set_source_region(cur_region);
 567     _region_data[cur_region].set_data_location(addr);
 568 
 569     // Update live_obj_size so the region appears completely full.
 570     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 571     _region_data[cur_region].set_live_obj_size(live_size);
 572 
 573     ++cur_region;
 574     addr += RegionSize;
 575   }
 576 }
 577 
 578 // Find the point at which a space can be split and, if necessary, record the
 579 // split point.
 580 //
 581 // If the current src region (which overflowed the destination space) doesn't
 582 // have a partial object, the split point is at the beginning of the current src
 583 // region (an "easy" split, no extra bookkeeping required).
 584 //
 585 // If the current src region has a partial object, the split point is in the
 586 // region where that partial object starts (call it the split_region).  If
 587 // split_region has a partial object, then the split point is just after that
 588 // partial object (a "hard" split where we have to record the split data and
 589 // zero the partial_obj_size field).  With a "hard" split, we know that the
 590 // partial_obj ends within split_region because the partial object that caused
 591 // the overflow starts in split_region.  If split_region doesn't have a partial
 592 // obj, then the split is at the beginning of split_region (another "easy"
 593 // split).
 594 HeapWord*
 595 ParallelCompactData::summarize_split_space(size_t src_region,
 596                                            SplitInfo& split_info,
 597                                            HeapWord* destination,
 598                                            HeapWord* target_end,
 599                                            HeapWord** target_next)
 600 {
 601   assert(destination <= target_end, "sanity");
 602   assert(destination + _region_data[src_region].data_size() > target_end,
 603     "region should not fit into target space");
 604   assert(is_region_aligned(target_end), "sanity");
 605 
 606   size_t split_region = src_region;
 607   HeapWord* split_destination = destination;
 608   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 609 
 610   if (destination + partial_obj_size > target_end) {
 611     // The split point is just after the partial object (if any) in the
 612     // src_region that contains the start of the object that overflowed the
 613     // destination space.
 614     //
 615     // Find the start of the "overflow" object and set split_region to the
 616     // region containing it.
 617     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 618     split_region = addr_to_region_idx(overflow_obj);
 619 
 620     // Clear the source_region field of all destination regions whose first word
 621     // came from data after the split point (a non-null source_region field
 622     // implies a region must be filled).
 623     //
 624     // An alternative to the simple loop below:  clear during post_compact(),
 625     // which uses memcpy instead of individual stores, and is easy to
 626     // parallelize.  (The downside is that it clears the entire RegionData
 627     // object as opposed to just one field.)
 628     //
 629     // post_compact() would have to clear the summary data up to the highest
 630     // address that was written during the summary phase, which would be
 631     //
 632     //         max(top, max(new_top, clear_top))
 633     //
 634     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 635     // to target_end.
 636     const RegionData* const sr = region(split_region);
 637     const size_t beg_idx =
 638       addr_to_region_idx(region_align_up(sr->destination() +
 639                                          sr->partial_obj_size()));
 640     const size_t end_idx = addr_to_region_idx(target_end);
 641 
 642     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 643     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 644       _region_data[idx].set_source_region(0);
 645     }
 646 
 647     // Set split_destination and partial_obj_size to reflect the split region.
 648     split_destination = sr->destination();
 649     partial_obj_size = sr->partial_obj_size();
 650   }
 651 
 652   // The split is recorded only if a partial object extends onto the region.
 653   if (partial_obj_size != 0) {
 654     _region_data[split_region].set_partial_obj_size(0);
 655     split_info.record(split_region, partial_obj_size, split_destination);
 656   }
 657 
 658   // Setup the continuation addresses.
 659   *target_next = split_destination + partial_obj_size;
 660   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 661 
 662   if (log_develop_is_enabled(Trace, gc, compaction)) {
 663     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 664     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 665                                       split_type, p2i(source_next), split_region, partial_obj_size);
 666     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 667                                       split_type, p2i(split_destination),
 668                                       addr_to_region_idx(split_destination),
 669                                       p2i(*target_next));
 670 
 671     if (partial_obj_size != 0) {
 672       HeapWord* const po_beg = split_info.destination();
 673       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 674       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 675                                         split_type,
 676                                         p2i(po_beg), addr_to_region_idx(po_beg),
 677                                         p2i(po_end), addr_to_region_idx(po_end));
 678     }
 679   }
 680 
 681   return source_next;
 682 }
 683 
 684 bool ParallelCompactData::summarize(SplitInfo& split_info,
 685                                     HeapWord* source_beg, HeapWord* source_end,
 686                                     HeapWord** source_next,
 687                                     HeapWord* target_beg, HeapWord* target_end,
 688                                     HeapWord** target_next)
 689 {
 690   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 691   log_develop_trace(gc, compaction)(
 692       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 693       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 694       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 695       p2i(target_beg), p2i(target_end), p2i(*target_next));
 696 
 697   size_t cur_region = addr_to_region_idx(source_beg);
 698   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 699 
 700   HeapWord *dest_addr = target_beg;
 701   while (cur_region < end_region) {
 702     // The destination must be set even if the region has no data.
 703     _region_data[cur_region].set_destination(dest_addr);
 704 
 705     size_t words = _region_data[cur_region].data_size();
 706     if (words > 0) {
 707       // If cur_region does not fit entirely into the target space, find a point
 708       // at which the source space can be 'split' so that part is copied to the
 709       // target space and the rest is copied elsewhere.
 710       if (dest_addr + words > target_end) {
 711         assert(source_next != NULL, "source_next is NULL when splitting");
 712         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 713                                              target_end, target_next);
 714         return false;
 715       }
 716 
 717       // Compute the destination_count for cur_region, and if necessary, update
 718       // source_region for a destination region.  The source_region field is
 719       // updated if cur_region is the first (left-most) region to be copied to a
 720       // destination region.
 721       //
 722       // The destination_count calculation is a bit subtle.  A region that has
 723       // data that compacts into itself does not count itself as a destination.
 724       // This maintains the invariant that a zero count means the region is
 725       // available and can be claimed and then filled.
 726       uint destination_count = 0;
 727       if (split_info.is_split(cur_region)) {
 728         // The current region has been split:  the partial object will be copied
 729         // to one destination space and the remaining data will be copied to
 730         // another destination space.  Adjust the initial destination_count and,
 731         // if necessary, set the source_region field if the partial object will
 732         // cross a destination region boundary.
 733         destination_count = split_info.destination_count();
 734         if (destination_count == 2) {
 735           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 736           _region_data[dest_idx].set_source_region(cur_region);
 737         }
 738       }
 739 
 740       HeapWord* const last_addr = dest_addr + words - 1;
 741       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 742       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 743 
 744       // Initially assume that the destination regions will be the same and
 745       // adjust the value below if necessary.  Under this assumption, if
 746       // cur_region == dest_region_2, then cur_region will be compacted
 747       // completely into itself.
 748       destination_count += cur_region == dest_region_2 ? 0 : 1;
 749       if (dest_region_1 != dest_region_2) {
 750         // Destination regions differ; adjust destination_count.
 751         destination_count += 1;
 752         // Data from cur_region will be copied to the start of dest_region_2.
 753         _region_data[dest_region_2].set_source_region(cur_region);
 754       } else if (region_offset(dest_addr) == 0) {
 755         // Data from cur_region will be copied to the start of the destination
 756         // region.
 757         _region_data[dest_region_1].set_source_region(cur_region);
 758       }
 759 
 760       _region_data[cur_region].set_destination_count(destination_count);
 761       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 762       dest_addr += words;
 763     }
 764 
 765     ++cur_region;
 766   }
 767 
 768   *target_next = dest_addr;
 769   return true;
 770 }
 771 
 772 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 773   assert(addr != NULL, "Should detect NULL oop earlier");
 774   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 775   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 776 
 777   // Region covering the object.
 778   RegionData* const region_ptr = addr_to_region_ptr(addr);
 779   HeapWord* result = region_ptr->destination();
 780 
 781   // If the entire Region is live, the new location is region->destination + the
 782   // offset of the object within in the Region.
 783 
 784   // Run some performance tests to determine if this special case pays off.  It
 785   // is worth it for pointers into the dense prefix.  If the optimization to
 786   // avoid pointer updates in regions that only point to the dense prefix is
 787   // ever implemented, this should be revisited.
 788   if (region_ptr->data_size() == RegionSize) {
 789     result += region_offset(addr);
 790     return result;
 791   }
 792 
 793   // Otherwise, the new location is region->destination + block offset + the
 794   // number of live words in the Block that are (a) to the left of addr and (b)
 795   // due to objects that start in the Block.
 796 
 797   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 798   // threads may fill the block table for a region (harmless, since it is
 799   // idempotent).
 800   if (!region_ptr->blocks_filled()) {
 801     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 802     region_ptr->set_blocks_filled();
 803   }
 804 
 805   HeapWord* const search_start = block_align_down(addr);
 806   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 807 
 808   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 809   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 810   result += block_offset + live;
 811   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 812   return result;
 813 }
 814 
 815 #ifdef ASSERT
 816 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 817 {
 818   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 819   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 820   for (const size_t* p = beg; p < end; ++p) {
 821     assert(*p == 0, "not zero");
 822   }
 823 }
 824 
 825 void ParallelCompactData::verify_clear()
 826 {
 827   verify_clear(_region_vspace);
 828   verify_clear(_block_vspace);
 829 }
 830 #endif  // #ifdef ASSERT
 831 
 832 STWGCTimer          PSParallelCompact::_gc_timer;
 833 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 834 elapsedTimer        PSParallelCompact::_accumulated_time;
 835 unsigned int        PSParallelCompact::_total_invocations = 0;
 836 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 837 jlong               PSParallelCompact::_time_of_last_gc = 0;
 838 CollectorCounters*  PSParallelCompact::_counters = NULL;
 839 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 840 ParallelCompactData PSParallelCompact::_summary_data;
 841 
 842 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 843 
 844 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 845 
 846 class PCReferenceProcessor: public ReferenceProcessor {
 847 public:
 848   PCReferenceProcessor(
 849     BoolObjectClosure* is_subject_to_discovery,
 850     BoolObjectClosure* is_alive_non_header) :
 851       ReferenceProcessor(is_subject_to_discovery,
 852       ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 853       ParallelGCThreads,   // mt processing degree
 854       true,                // mt discovery
 855       ParallelGCThreads,   // mt discovery degree
 856       true,                // atomic_discovery
 857       is_alive_non_header) {
 858   }
 859 
 860   template<typename T> bool discover(oop obj, ReferenceType type) {
 861     T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj);
 862     T heap_oop = RawAccess<>::oop_load(referent_addr);
 863     oop referent = CompressedOops::decode_not_null(heap_oop);
 864     return PSParallelCompact::mark_bitmap()->is_unmarked(referent)
 865         && ReferenceProcessor::discover_reference(obj, type);
 866   }
 867   virtual bool discover_reference(oop obj, ReferenceType type) {
 868     if (UseCompressedOops) {
 869       return discover<narrowOop>(obj, type);
 870     } else {
 871       return discover<oop>(obj, type);
 872     }
 873   }
 874 };
 875 
 876 void PSParallelCompact::post_initialize() {
 877   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 878   _span_based_discoverer.set_span(heap->reserved_region());
 879   _ref_processor =
 880     new PCReferenceProcessor(&_span_based_discoverer,
 881                              &_is_alive_closure); // non-header is alive closure
 882 
 883   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 884 
 885   // Initialize static fields in ParCompactionManager.
 886   ParCompactionManager::initialize(mark_bitmap());
 887 }
 888 
 889 bool PSParallelCompact::initialize() {
 890   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 891   MemRegion mr = heap->reserved_region();
 892 
 893   // Was the old gen get allocated successfully?
 894   if (!heap->old_gen()->is_allocated()) {
 895     return false;
 896   }
 897 
 898   initialize_space_info();
 899   initialize_dead_wood_limiter();
 900 
 901   if (!_mark_bitmap.initialize(mr)) {
 902     vm_shutdown_during_initialization(
 903       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 904       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 905       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 906     return false;
 907   }
 908 
 909   if (!_summary_data.initialize(mr)) {
 910     vm_shutdown_during_initialization(
 911       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 912       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 913       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 914     return false;
 915   }
 916 
 917   return true;
 918 }
 919 
 920 void PSParallelCompact::initialize_space_info()
 921 {
 922   memset(&_space_info, 0, sizeof(_space_info));
 923 
 924   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 925   PSYoungGen* young_gen = heap->young_gen();
 926 
 927   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 928   _space_info[eden_space_id].set_space(young_gen->eden_space());
 929   _space_info[from_space_id].set_space(young_gen->from_space());
 930   _space_info[to_space_id].set_space(young_gen->to_space());
 931 
 932   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 933 }
 934 
 935 void PSParallelCompact::initialize_dead_wood_limiter()
 936 {
 937   const size_t max = 100;
 938   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 939   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 940   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 941   DEBUG_ONLY(_dwl_initialized = true;)
 942   _dwl_adjustment = normal_distribution(1.0);
 943 }
 944 
 945 void
 946 PSParallelCompact::clear_data_covering_space(SpaceId id)
 947 {
 948   // At this point, top is the value before GC, new_top() is the value that will
 949   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 950   // should be marked above top.  The summary data is cleared to the larger of
 951   // top & new_top.
 952   MutableSpace* const space = _space_info[id].space();
 953   HeapWord* const bot = space->bottom();
 954   HeapWord* const top = space->top();
 955   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 956 
 957   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 958   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 959   _mark_bitmap.clear_range(beg_bit, end_bit);
 960 
 961   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 962   const size_t end_region =
 963     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 964   _summary_data.clear_range(beg_region, end_region);
 965 
 966   // Clear the data used to 'split' regions.
 967   SplitInfo& split_info = _space_info[id].split_info();
 968   if (split_info.is_valid()) {
 969     split_info.clear();
 970   }
 971   DEBUG_ONLY(split_info.verify_clear();)
 972 }
 973 
 974 void PSParallelCompact::pre_compact()
 975 {
 976   // Update the from & to space pointers in space_info, since they are swapped
 977   // at each young gen gc.  Do the update unconditionally (even though a
 978   // promotion failure does not swap spaces) because an unknown number of young
 979   // collections will have swapped the spaces an unknown number of times.
 980   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 981   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 982   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 983   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 984 
 985   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 986   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 987 
 988   // Increment the invocation count
 989   heap->increment_total_collections(true);
 990 
 991   // We need to track unique mark sweep invocations as well.
 992   _total_invocations++;
 993 
 994   heap->print_heap_before_gc();
 995   heap->trace_heap_before_gc(&_gc_tracer);
 996 
 997   // Fill in TLABs
 998   heap->ensure_parsability(true);  // retire TLABs
 999 
1000   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
1001     HandleMark hm;  // Discard invalid handles created during verification
1002     Universe::verify("Before GC");
1003   }
1004 
1005   // Verify object start arrays
1006   if (VerifyObjectStartArray &&
1007       VerifyBeforeGC) {
1008     heap->old_gen()->verify_object_start_array();
1009   }
1010 
1011   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1012   DEBUG_ONLY(summary_data().verify_clear();)
1013 
1014   // Have worker threads release resources the next time they run a task.
1015   gc_task_manager()->release_all_resources();
1016 
1017   ParCompactionManager::reset_all_bitmap_query_caches();
1018 }
1019 
1020 void PSParallelCompact::post_compact()
1021 {
1022   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1023 
1024   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1025     // Clear the marking bitmap, summary data and split info.
1026     clear_data_covering_space(SpaceId(id));
1027     // Update top().  Must be done after clearing the bitmap and summary data.
1028     _space_info[id].publish_new_top();
1029   }
1030 
1031   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1032   MutableSpace* const from_space = _space_info[from_space_id].space();
1033   MutableSpace* const to_space   = _space_info[to_space_id].space();
1034 
1035   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1036   bool eden_empty = eden_space->is_empty();
1037   if (!eden_empty) {
1038     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1039                                             heap->young_gen(), heap->old_gen());
1040   }
1041 
1042   // Update heap occupancy information which is used as input to the soft ref
1043   // clearing policy at the next gc.
1044   Universe::update_heap_info_at_gc();
1045 
1046   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1047     to_space->is_empty();
1048 
1049   PSCardTable* ct = heap->card_table();
1050   MemRegion old_mr = heap->old_gen()->reserved();
1051   if (young_gen_empty) {
1052     ct->clear(MemRegion(old_mr.start(), old_mr.end()));
1053   } else {
1054     ct->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1055   }
1056 
1057   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1058   ClassLoaderDataGraph::purge();
1059   MetaspaceUtils::verify_metrics();
1060 
1061   heap->prune_scavengable_nmethods();
1062   JvmtiExport::gc_epilogue();
1063 
1064 #if COMPILER2_OR_JVMCI
1065   DerivedPointerTable::update_pointers();
1066 #endif
1067 
1068   if (ZapUnusedHeapArea) {
1069     heap->gen_mangle_unused_area();
1070   }
1071 
1072   // Update time of last GC
1073   reset_millis_since_last_gc();
1074 }
1075 
1076 HeapWord*
1077 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1078                                                     bool maximum_compaction)
1079 {
1080   const size_t region_size = ParallelCompactData::RegionSize;
1081   const ParallelCompactData& sd = summary_data();
1082 
1083   const MutableSpace* const space = _space_info[id].space();
1084   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1085   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1086   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1087 
1088   // Skip full regions at the beginning of the space--they are necessarily part
1089   // of the dense prefix.
1090   size_t full_count = 0;
1091   const RegionData* cp;
1092   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1093     ++full_count;
1094   }
1095 
1096   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1097   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1098   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1099   if (maximum_compaction || cp == end_cp || interval_ended) {
1100     _maximum_compaction_gc_num = total_invocations();
1101     return sd.region_to_addr(cp);
1102   }
1103 
1104   HeapWord* const new_top = _space_info[id].new_top();
1105   const size_t space_live = pointer_delta(new_top, space->bottom());
1106   const size_t space_used = space->used_in_words();
1107   const size_t space_capacity = space->capacity_in_words();
1108 
1109   const double cur_density = double(space_live) / space_capacity;
1110   const double deadwood_density =
1111     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1112   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1113 
1114   if (TraceParallelOldGCDensePrefix) {
1115     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1116                   cur_density, deadwood_density, deadwood_goal);
1117     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1118                   "space_cap=" SIZE_FORMAT,
1119                   space_live, space_used,
1120                   space_capacity);
1121   }
1122 
1123   // XXX - Use binary search?
1124   HeapWord* dense_prefix = sd.region_to_addr(cp);
1125   const RegionData* full_cp = cp;
1126   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1127   while (cp < end_cp) {
1128     HeapWord* region_destination = cp->destination();
1129     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1130     if (TraceParallelOldGCDensePrefix && Verbose) {
1131       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1132                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1133                     sd.region(cp), p2i(region_destination),
1134                     p2i(dense_prefix), cur_deadwood);
1135     }
1136 
1137     if (cur_deadwood >= deadwood_goal) {
1138       // Found the region that has the correct amount of deadwood to the left.
1139       // This typically occurs after crossing a fairly sparse set of regions, so
1140       // iterate backwards over those sparse regions, looking for the region
1141       // that has the lowest density of live objects 'to the right.'
1142       size_t space_to_left = sd.region(cp) * region_size;
1143       size_t live_to_left = space_to_left - cur_deadwood;
1144       size_t space_to_right = space_capacity - space_to_left;
1145       size_t live_to_right = space_live - live_to_left;
1146       double density_to_right = double(live_to_right) / space_to_right;
1147       while (cp > full_cp) {
1148         --cp;
1149         const size_t prev_region_live_to_right = live_to_right -
1150           cp->data_size();
1151         const size_t prev_region_space_to_right = space_to_right + region_size;
1152         double prev_region_density_to_right =
1153           double(prev_region_live_to_right) / prev_region_space_to_right;
1154         if (density_to_right <= prev_region_density_to_right) {
1155           return dense_prefix;
1156         }
1157         if (TraceParallelOldGCDensePrefix && Verbose) {
1158           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1159                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1160                         prev_region_density_to_right);
1161         }
1162         dense_prefix -= region_size;
1163         live_to_right = prev_region_live_to_right;
1164         space_to_right = prev_region_space_to_right;
1165         density_to_right = prev_region_density_to_right;
1166       }
1167       return dense_prefix;
1168     }
1169 
1170     dense_prefix += region_size;
1171     ++cp;
1172   }
1173 
1174   return dense_prefix;
1175 }
1176 
1177 #ifndef PRODUCT
1178 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1179                                                  const SpaceId id,
1180                                                  const bool maximum_compaction,
1181                                                  HeapWord* const addr)
1182 {
1183   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1184   RegionData* const cp = summary_data().region(region_idx);
1185   const MutableSpace* const space = _space_info[id].space();
1186   HeapWord* const new_top = _space_info[id].new_top();
1187 
1188   const size_t space_live = pointer_delta(new_top, space->bottom());
1189   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1190   const size_t space_cap = space->capacity_in_words();
1191   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1192   const size_t live_to_right = new_top - cp->destination();
1193   const size_t dead_to_right = space->top() - addr - live_to_right;
1194 
1195   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1196                 "spl=" SIZE_FORMAT " "
1197                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1198                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1199                 " ratio=%10.8f",
1200                 algorithm, p2i(addr), region_idx,
1201                 space_live,
1202                 dead_to_left, dead_to_left_pct,
1203                 dead_to_right, live_to_right,
1204                 double(dead_to_right) / live_to_right);
1205 }
1206 #endif  // #ifndef PRODUCT
1207 
1208 // Return a fraction indicating how much of the generation can be treated as
1209 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1210 // based on the density of live objects in the generation to determine a limit,
1211 // which is then adjusted so the return value is min_percent when the density is
1212 // 1.
1213 //
1214 // The following table shows some return values for a different values of the
1215 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1216 // min_percent is 1.
1217 //
1218 //                          fraction allowed as dead wood
1219 //         -----------------------------------------------------------------
1220 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1221 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1222 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1223 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1224 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1225 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1226 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1227 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1228 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1229 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1230 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1231 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1232 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1233 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1234 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1235 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1236 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1237 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1238 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1239 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1240 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1241 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1242 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1243 
1244 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1245 {
1246   assert(_dwl_initialized, "uninitialized");
1247 
1248   // The raw limit is the value of the normal distribution at x = density.
1249   const double raw_limit = normal_distribution(density);
1250 
1251   // Adjust the raw limit so it becomes the minimum when the density is 1.
1252   //
1253   // First subtract the adjustment value (which is simply the precomputed value
1254   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1255   // Then add the minimum value, so the minimum is returned when the density is
1256   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1257   const double min = double(min_percent) / 100.0;
1258   const double limit = raw_limit - _dwl_adjustment + min;
1259   return MAX2(limit, 0.0);
1260 }
1261 
1262 ParallelCompactData::RegionData*
1263 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1264                                            const RegionData* end)
1265 {
1266   const size_t region_size = ParallelCompactData::RegionSize;
1267   ParallelCompactData& sd = summary_data();
1268   size_t left = sd.region(beg);
1269   size_t right = end > beg ? sd.region(end) - 1 : left;
1270 
1271   // Binary search.
1272   while (left < right) {
1273     // Equivalent to (left + right) / 2, but does not overflow.
1274     const size_t middle = left + (right - left) / 2;
1275     RegionData* const middle_ptr = sd.region(middle);
1276     HeapWord* const dest = middle_ptr->destination();
1277     HeapWord* const addr = sd.region_to_addr(middle);
1278     assert(dest != NULL, "sanity");
1279     assert(dest <= addr, "must move left");
1280 
1281     if (middle > left && dest < addr) {
1282       right = middle - 1;
1283     } else if (middle < right && middle_ptr->data_size() == region_size) {
1284       left = middle + 1;
1285     } else {
1286       return middle_ptr;
1287     }
1288   }
1289   return sd.region(left);
1290 }
1291 
1292 ParallelCompactData::RegionData*
1293 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1294                                           const RegionData* end,
1295                                           size_t dead_words)
1296 {
1297   ParallelCompactData& sd = summary_data();
1298   size_t left = sd.region(beg);
1299   size_t right = end > beg ? sd.region(end) - 1 : left;
1300 
1301   // Binary search.
1302   while (left < right) {
1303     // Equivalent to (left + right) / 2, but does not overflow.
1304     const size_t middle = left + (right - left) / 2;
1305     RegionData* const middle_ptr = sd.region(middle);
1306     HeapWord* const dest = middle_ptr->destination();
1307     HeapWord* const addr = sd.region_to_addr(middle);
1308     assert(dest != NULL, "sanity");
1309     assert(dest <= addr, "must move left");
1310 
1311     const size_t dead_to_left = pointer_delta(addr, dest);
1312     if (middle > left && dead_to_left > dead_words) {
1313       right = middle - 1;
1314     } else if (middle < right && dead_to_left < dead_words) {
1315       left = middle + 1;
1316     } else {
1317       return middle_ptr;
1318     }
1319   }
1320   return sd.region(left);
1321 }
1322 
1323 // The result is valid during the summary phase, after the initial summarization
1324 // of each space into itself, and before final summarization.
1325 inline double
1326 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1327                                    HeapWord* const bottom,
1328                                    HeapWord* const top,
1329                                    HeapWord* const new_top)
1330 {
1331   ParallelCompactData& sd = summary_data();
1332 
1333   assert(cp != NULL, "sanity");
1334   assert(bottom != NULL, "sanity");
1335   assert(top != NULL, "sanity");
1336   assert(new_top != NULL, "sanity");
1337   assert(top >= new_top, "summary data problem?");
1338   assert(new_top > bottom, "space is empty; should not be here");
1339   assert(new_top >= cp->destination(), "sanity");
1340   assert(top >= sd.region_to_addr(cp), "sanity");
1341 
1342   HeapWord* const destination = cp->destination();
1343   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1344   const size_t compacted_region_live = pointer_delta(new_top, destination);
1345   const size_t compacted_region_used = pointer_delta(top,
1346                                                      sd.region_to_addr(cp));
1347   const size_t reclaimable = compacted_region_used - compacted_region_live;
1348 
1349   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1350   return double(reclaimable) / divisor;
1351 }
1352 
1353 // Return the address of the end of the dense prefix, a.k.a. the start of the
1354 // compacted region.  The address is always on a region boundary.
1355 //
1356 // Completely full regions at the left are skipped, since no compaction can
1357 // occur in those regions.  Then the maximum amount of dead wood to allow is
1358 // computed, based on the density (amount live / capacity) of the generation;
1359 // the region with approximately that amount of dead space to the left is
1360 // identified as the limit region.  Regions between the last completely full
1361 // region and the limit region are scanned and the one that has the best
1362 // (maximum) reclaimed_ratio() is selected.
1363 HeapWord*
1364 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1365                                         bool maximum_compaction)
1366 {
1367   const size_t region_size = ParallelCompactData::RegionSize;
1368   const ParallelCompactData& sd = summary_data();
1369 
1370   const MutableSpace* const space = _space_info[id].space();
1371   HeapWord* const top = space->top();
1372   HeapWord* const top_aligned_up = sd.region_align_up(top);
1373   HeapWord* const new_top = _space_info[id].new_top();
1374   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1375   HeapWord* const bottom = space->bottom();
1376   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1377   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1378   const RegionData* const new_top_cp =
1379     sd.addr_to_region_ptr(new_top_aligned_up);
1380 
1381   // Skip full regions at the beginning of the space--they are necessarily part
1382   // of the dense prefix.
1383   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1384   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1385          space->is_empty(), "no dead space allowed to the left");
1386   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1387          "region must have dead space");
1388 
1389   // The gc number is saved whenever a maximum compaction is done, and used to
1390   // determine when the maximum compaction interval has expired.  This avoids
1391   // successive max compactions for different reasons.
1392   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1393   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1394   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1395     total_invocations() == HeapFirstMaximumCompactionCount;
1396   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1397     _maximum_compaction_gc_num = total_invocations();
1398     return sd.region_to_addr(full_cp);
1399   }
1400 
1401   const size_t space_live = pointer_delta(new_top, bottom);
1402   const size_t space_used = space->used_in_words();
1403   const size_t space_capacity = space->capacity_in_words();
1404 
1405   const double density = double(space_live) / double(space_capacity);
1406   const size_t min_percent_free = MarkSweepDeadRatio;
1407   const double limiter = dead_wood_limiter(density, min_percent_free);
1408   const size_t dead_wood_max = space_used - space_live;
1409   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1410                                       dead_wood_max);
1411 
1412   if (TraceParallelOldGCDensePrefix) {
1413     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1414                   "space_cap=" SIZE_FORMAT,
1415                   space_live, space_used,
1416                   space_capacity);
1417     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1418                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1419                   density, min_percent_free, limiter,
1420                   dead_wood_max, dead_wood_limit);
1421   }
1422 
1423   // Locate the region with the desired amount of dead space to the left.
1424   const RegionData* const limit_cp =
1425     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1426 
1427   // Scan from the first region with dead space to the limit region and find the
1428   // one with the best (largest) reclaimed ratio.
1429   double best_ratio = 0.0;
1430   const RegionData* best_cp = full_cp;
1431   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1432     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1433     if (tmp_ratio > best_ratio) {
1434       best_cp = cp;
1435       best_ratio = tmp_ratio;
1436     }
1437   }
1438 
1439   return sd.region_to_addr(best_cp);
1440 }
1441 
1442 void PSParallelCompact::summarize_spaces_quick()
1443 {
1444   for (unsigned int i = 0; i < last_space_id; ++i) {
1445     const MutableSpace* space = _space_info[i].space();
1446     HeapWord** nta = _space_info[i].new_top_addr();
1447     bool result = _summary_data.summarize(_space_info[i].split_info(),
1448                                           space->bottom(), space->top(), NULL,
1449                                           space->bottom(), space->end(), nta);
1450     assert(result, "space must fit into itself");
1451     _space_info[i].set_dense_prefix(space->bottom());
1452   }
1453 }
1454 
1455 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1456 {
1457   HeapWord* const dense_prefix_end = dense_prefix(id);
1458   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1459   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1460   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1461     // Only enough dead space is filled so that any remaining dead space to the
1462     // left is larger than the minimum filler object.  (The remainder is filled
1463     // during the copy/update phase.)
1464     //
1465     // The size of the dead space to the right of the boundary is not a
1466     // concern, since compaction will be able to use whatever space is
1467     // available.
1468     //
1469     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1470     // surrounds the space to be filled with an object.
1471     //
1472     // In the 32-bit VM, each bit represents two 32-bit words:
1473     //                              +---+
1474     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1475     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1476     //                              +---+
1477     //
1478     // In the 64-bit VM, each bit represents one 64-bit word:
1479     //                              +------------+
1480     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1481     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1482     //                              +------------+
1483     //                          +-------+
1484     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1485     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1486     //                          +-------+
1487     //                      +-----------+
1488     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1489     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1490     //                      +-----------+
1491     //                          +-------+
1492     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1493     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1494     //                          +-------+
1495 
1496     // Initially assume case a, c or e will apply.
1497     size_t obj_len = CollectedHeap::min_fill_size();
1498     HeapWord* obj_beg = dense_prefix_end - obj_len;
1499 
1500 #ifdef  _LP64
1501     if (MinObjAlignment > 1) { // object alignment > heap word size
1502       // Cases a, c or e.
1503     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1504       // Case b above.
1505       obj_beg = dense_prefix_end - 1;
1506     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1507                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1508       // Case d above.
1509       obj_beg = dense_prefix_end - 3;
1510       obj_len = 3;
1511     }
1512 #endif  // #ifdef _LP64
1513 
1514     CollectedHeap::fill_with_object(obj_beg, obj_len);
1515     _mark_bitmap.mark_obj(obj_beg, obj_len);
1516     _summary_data.add_obj(obj_beg, obj_len);
1517     assert(start_array(id) != NULL, "sanity");
1518     start_array(id)->allocate_block(obj_beg);
1519   }
1520 }
1521 
1522 void
1523 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1524 {
1525   assert(id < last_space_id, "id out of range");
1526   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1527          "should have been reset in summarize_spaces_quick()");
1528 
1529   const MutableSpace* space = _space_info[id].space();
1530   if (_space_info[id].new_top() != space->bottom()) {
1531     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1532     _space_info[id].set_dense_prefix(dense_prefix_end);
1533 
1534 #ifndef PRODUCT
1535     if (TraceParallelOldGCDensePrefix) {
1536       print_dense_prefix_stats("ratio", id, maximum_compaction,
1537                                dense_prefix_end);
1538       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1539       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1540     }
1541 #endif  // #ifndef PRODUCT
1542 
1543     // Recompute the summary data, taking into account the dense prefix.  If
1544     // every last byte will be reclaimed, then the existing summary data which
1545     // compacts everything can be left in place.
1546     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1547       // If dead space crosses the dense prefix boundary, it is (at least
1548       // partially) filled with a dummy object, marked live and added to the
1549       // summary data.  This simplifies the copy/update phase and must be done
1550       // before the final locations of objects are determined, to prevent
1551       // leaving a fragment of dead space that is too small to fill.
1552       fill_dense_prefix_end(id);
1553 
1554       // Compute the destination of each Region, and thus each object.
1555       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1556       _summary_data.summarize(_space_info[id].split_info(),
1557                               dense_prefix_end, space->top(), NULL,
1558                               dense_prefix_end, space->end(),
1559                               _space_info[id].new_top_addr());
1560     }
1561   }
1562 
1563   if (log_develop_is_enabled(Trace, gc, compaction)) {
1564     const size_t region_size = ParallelCompactData::RegionSize;
1565     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1566     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1567     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1568     HeapWord* const new_top = _space_info[id].new_top();
1569     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1570     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1571     log_develop_trace(gc, compaction)(
1572         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1573         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1574         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1575         id, space->capacity_in_words(), p2i(dense_prefix_end),
1576         dp_region, dp_words / region_size,
1577         cr_words / region_size, p2i(new_top));
1578   }
1579 }
1580 
1581 #ifndef PRODUCT
1582 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1583                                           HeapWord* dst_beg, HeapWord* dst_end,
1584                                           SpaceId src_space_id,
1585                                           HeapWord* src_beg, HeapWord* src_end)
1586 {
1587   log_develop_trace(gc, compaction)(
1588       "Summarizing %d [%s] into %d [%s]:  "
1589       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1590       SIZE_FORMAT "-" SIZE_FORMAT " "
1591       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1592       SIZE_FORMAT "-" SIZE_FORMAT,
1593       src_space_id, space_names[src_space_id],
1594       dst_space_id, space_names[dst_space_id],
1595       p2i(src_beg), p2i(src_end),
1596       _summary_data.addr_to_region_idx(src_beg),
1597       _summary_data.addr_to_region_idx(src_end),
1598       p2i(dst_beg), p2i(dst_end),
1599       _summary_data.addr_to_region_idx(dst_beg),
1600       _summary_data.addr_to_region_idx(dst_end));
1601 }
1602 #endif  // #ifndef PRODUCT
1603 
1604 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1605                                       bool maximum_compaction)
1606 {
1607   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1608 
1609 #ifdef  ASSERT
1610   if (TraceParallelOldGCMarkingPhase) {
1611     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1612                   "add_obj_bytes=" SIZE_FORMAT,
1613                   add_obj_count, add_obj_size * HeapWordSize);
1614     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1615                   "mark_bitmap_bytes=" SIZE_FORMAT,
1616                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1617   }
1618 #endif  // #ifdef ASSERT
1619 
1620   // Quick summarization of each space into itself, to see how much is live.
1621   summarize_spaces_quick();
1622 
1623   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1624   NOT_PRODUCT(print_region_ranges());
1625   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1626 
1627   // The amount of live data that will end up in old space (assuming it fits).
1628   size_t old_space_total_live = 0;
1629   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1630     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1631                                           _space_info[id].space()->bottom());
1632   }
1633 
1634   MutableSpace* const old_space = _space_info[old_space_id].space();
1635   const size_t old_capacity = old_space->capacity_in_words();
1636   if (old_space_total_live > old_capacity) {
1637     // XXX - should also try to expand
1638     maximum_compaction = true;
1639   }
1640 
1641   // Old generations.
1642   summarize_space(old_space_id, maximum_compaction);
1643 
1644   // Summarize the remaining spaces in the young gen.  The initial target space
1645   // is the old gen.  If a space does not fit entirely into the target, then the
1646   // remainder is compacted into the space itself and that space becomes the new
1647   // target.
1648   SpaceId dst_space_id = old_space_id;
1649   HeapWord* dst_space_end = old_space->end();
1650   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1651   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1652     const MutableSpace* space = _space_info[id].space();
1653     const size_t live = pointer_delta(_space_info[id].new_top(),
1654                                       space->bottom());
1655     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1656 
1657     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1658                                   SpaceId(id), space->bottom(), space->top());)
1659     if (live > 0 && live <= available) {
1660       // All the live data will fit.
1661       bool done = _summary_data.summarize(_space_info[id].split_info(),
1662                                           space->bottom(), space->top(),
1663                                           NULL,
1664                                           *new_top_addr, dst_space_end,
1665                                           new_top_addr);
1666       assert(done, "space must fit into old gen");
1667 
1668       // Reset the new_top value for the space.
1669       _space_info[id].set_new_top(space->bottom());
1670     } else if (live > 0) {
1671       // Attempt to fit part of the source space into the target space.
1672       HeapWord* next_src_addr = NULL;
1673       bool done = _summary_data.summarize(_space_info[id].split_info(),
1674                                           space->bottom(), space->top(),
1675                                           &next_src_addr,
1676                                           *new_top_addr, dst_space_end,
1677                                           new_top_addr);
1678       assert(!done, "space should not fit into old gen");
1679       assert(next_src_addr != NULL, "sanity");
1680 
1681       // The source space becomes the new target, so the remainder is compacted
1682       // within the space itself.
1683       dst_space_id = SpaceId(id);
1684       dst_space_end = space->end();
1685       new_top_addr = _space_info[id].new_top_addr();
1686       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1687                                     space->bottom(), dst_space_end,
1688                                     SpaceId(id), next_src_addr, space->top());)
1689       done = _summary_data.summarize(_space_info[id].split_info(),
1690                                      next_src_addr, space->top(),
1691                                      NULL,
1692                                      space->bottom(), dst_space_end,
1693                                      new_top_addr);
1694       assert(done, "space must fit when compacted into itself");
1695       assert(*new_top_addr <= space->top(), "usage should not grow");
1696     }
1697   }
1698 
1699   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1700   NOT_PRODUCT(print_region_ranges());
1701   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1702 }
1703 
1704 // This method should contain all heap-specific policy for invoking a full
1705 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1706 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1707 // before full gc, or any other specialized behavior, it needs to be added here.
1708 //
1709 // Note that this method should only be called from the vm_thread while at a
1710 // safepoint.
1711 //
1712 // Note that the all_soft_refs_clear flag in the collector policy
1713 // may be true because this method can be called without intervening
1714 // activity.  For example when the heap space is tight and full measure
1715 // are being taken to free space.
1716 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1717   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1718   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1719          "should be in vm thread");
1720 
1721   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1722   GCCause::Cause gc_cause = heap->gc_cause();
1723   assert(!heap->is_gc_active(), "not reentrant");
1724 
1725   PSAdaptiveSizePolicy* policy = heap->size_policy();
1726   IsGCActiveMark mark;
1727 
1728   if (ScavengeBeforeFullGC) {
1729     PSScavenge::invoke_no_policy();
1730   }
1731 
1732   const bool clear_all_soft_refs =
1733     heap->soft_ref_policy()->should_clear_all_soft_refs();
1734 
1735   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1736                                       maximum_heap_compaction);
1737 }
1738 
1739 // This method contains no policy. You should probably
1740 // be calling invoke() instead.
1741 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1742   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1743   assert(ref_processor() != NULL, "Sanity");
1744 
1745   if (GCLocker::check_active_before_gc()) {
1746     return false;
1747   }
1748 
1749   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1750 
1751   GCIdMark gc_id_mark;
1752   _gc_timer.register_gc_start();
1753   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1754 
1755   TimeStamp marking_start;
1756   TimeStamp compaction_start;
1757   TimeStamp collection_exit;
1758 
1759   GCCause::Cause gc_cause = heap->gc_cause();
1760   PSYoungGen* young_gen = heap->young_gen();
1761   PSOldGen* old_gen = heap->old_gen();
1762   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1763 
1764   // The scope of casr should end after code that can change
1765   // CollectorPolicy::_should_clear_all_soft_refs.
1766   ClearedAllSoftRefs casr(maximum_heap_compaction,
1767                           heap->soft_ref_policy());
1768 
1769   if (ZapUnusedHeapArea) {
1770     // Save information needed to minimize mangling
1771     heap->record_gen_tops_before_GC();
1772   }
1773 
1774   // Make sure data structures are sane, make the heap parsable, and do other
1775   // miscellaneous bookkeeping.
1776   pre_compact();
1777 
1778   PreGCValues pre_gc_values(heap);
1779 
1780   // Get the compaction manager reserved for the VM thread.
1781   ParCompactionManager* const vmthread_cm =
1782     ParCompactionManager::manager_array(gc_task_manager()->workers());
1783 
1784   {
1785     ResourceMark rm;
1786     HandleMark hm;
1787 
1788     // Set the number of GC threads to be used in this collection
1789     gc_task_manager()->set_active_gang();
1790     gc_task_manager()->task_idle_workers();
1791 
1792     GCTraceCPUTime tcpu;
1793     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1794 
1795     heap->pre_full_gc_dump(&_gc_timer);
1796 
1797     TraceCollectorStats tcs(counters());
1798     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause);
1799 
1800     if (log_is_enabled(Debug, gc, heap, exit)) {
1801       accumulated_time()->start();
1802     }
1803 
1804     // Let the size policy know we're starting
1805     size_policy->major_collection_begin();
1806 
1807 #if COMPILER2_OR_JVMCI
1808     DerivedPointerTable::clear();
1809 #endif
1810 
1811     ref_processor()->enable_discovery();
1812     ref_processor()->setup_policy(maximum_heap_compaction);
1813 
1814     bool marked_for_unloading = false;
1815 
1816     marking_start.update();
1817     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1818 
1819     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1820       && GCCause::is_user_requested_gc(gc_cause);
1821     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1822 
1823 #if COMPILER2_OR_JVMCI
1824     assert(DerivedPointerTable::is_active(), "Sanity");
1825     DerivedPointerTable::set_active(false);
1826 #endif
1827 
1828     // adjust_roots() updates Universe::_intArrayKlassObj which is
1829     // needed by the compaction for filling holes in the dense prefix.
1830     adjust_roots(vmthread_cm);
1831 
1832     compaction_start.update();
1833     compact();
1834 
1835     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1836     // done before resizing.
1837     post_compact();
1838 
1839     // Let the size policy know we're done
1840     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1841 
1842     if (UseAdaptiveSizePolicy) {
1843       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1844       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1845                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1846 
1847       // Don't check if the size_policy is ready here.  Let
1848       // the size_policy check that internally.
1849       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1850           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1851         // Swap the survivor spaces if from_space is empty. The
1852         // resize_young_gen() called below is normally used after
1853         // a successful young GC and swapping of survivor spaces;
1854         // otherwise, it will fail to resize the young gen with
1855         // the current implementation.
1856         if (young_gen->from_space()->is_empty()) {
1857           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1858           young_gen->swap_spaces();
1859         }
1860 
1861         // Calculate optimal free space amounts
1862         assert(young_gen->max_size() >
1863           young_gen->from_space()->capacity_in_bytes() +
1864           young_gen->to_space()->capacity_in_bytes(),
1865           "Sizes of space in young gen are out-of-bounds");
1866 
1867         size_t young_live = young_gen->used_in_bytes();
1868         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1869         size_t old_live = old_gen->used_in_bytes();
1870         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1871         size_t max_old_gen_size = old_gen->max_gen_size();
1872         size_t max_eden_size = young_gen->max_size() -
1873           young_gen->from_space()->capacity_in_bytes() -
1874           young_gen->to_space()->capacity_in_bytes();
1875 
1876         // Used for diagnostics
1877         size_policy->clear_generation_free_space_flags();
1878 
1879         size_policy->compute_generations_free_space(young_live,
1880                                                     eden_live,
1881                                                     old_live,
1882                                                     cur_eden,
1883                                                     max_old_gen_size,
1884                                                     max_eden_size,
1885                                                     true /* full gc*/);
1886 
1887         size_policy->check_gc_overhead_limit(eden_live,
1888                                              max_old_gen_size,
1889                                              max_eden_size,
1890                                              true /* full gc*/,
1891                                              gc_cause,
1892                                              heap->soft_ref_policy());
1893 
1894         size_policy->decay_supplemental_growth(true /* full gc*/);
1895 
1896         heap->resize_old_gen(
1897           size_policy->calculated_old_free_size_in_bytes());
1898 
1899         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1900                                size_policy->calculated_survivor_size_in_bytes());
1901       }
1902 
1903       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1904     }
1905 
1906     if (UsePerfData) {
1907       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1908       counters->update_counters();
1909       counters->update_old_capacity(old_gen->capacity_in_bytes());
1910       counters->update_young_capacity(young_gen->capacity_in_bytes());
1911     }
1912 
1913     heap->resize_all_tlabs();
1914 
1915     // Resize the metaspace capacity after a collection
1916     MetaspaceGC::compute_new_size();
1917 
1918     if (log_is_enabled(Debug, gc, heap, exit)) {
1919       accumulated_time()->stop();
1920     }
1921 
1922     young_gen->print_used_change(pre_gc_values.young_gen_used());
1923     old_gen->print_used_change(pre_gc_values.old_gen_used());
1924     MetaspaceUtils::print_metaspace_change(pre_gc_values.metadata_used());
1925 
1926     // Track memory usage and detect low memory
1927     MemoryService::track_memory_usage();
1928     heap->update_counters();
1929     gc_task_manager()->release_idle_workers();
1930 
1931     heap->post_full_gc_dump(&_gc_timer);
1932   }
1933 
1934 #ifdef ASSERT
1935   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1936     ParCompactionManager* const cm =
1937       ParCompactionManager::manager_array(int(i));
1938     assert(cm->marking_stack()->is_empty(),       "should be empty");
1939     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1940   }
1941 #endif // ASSERT
1942 
1943   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1944     HandleMark hm;  // Discard invalid handles created during verification
1945     Universe::verify("After GC");
1946   }
1947 
1948   // Re-verify object start arrays
1949   if (VerifyObjectStartArray &&
1950       VerifyAfterGC) {
1951     old_gen->verify_object_start_array();
1952   }
1953 
1954   if (ZapUnusedHeapArea) {
1955     old_gen->object_space()->check_mangled_unused_area_complete();
1956   }
1957 
1958   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1959 
1960   collection_exit.update();
1961 
1962   heap->print_heap_after_gc();
1963   heap->trace_heap_after_gc(&_gc_tracer);
1964 
1965   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1966                          marking_start.ticks(), compaction_start.ticks(),
1967                          collection_exit.ticks());
1968   gc_task_manager()->print_task_time_stamps();
1969 
1970 #ifdef TRACESPINNING
1971   ParallelTaskTerminator::print_termination_counts();
1972 #endif
1973 
1974   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1975 
1976   _gc_timer.register_gc_end();
1977 
1978   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1979   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1980 
1981   return true;
1982 }
1983 
1984 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1985                                              PSYoungGen* young_gen,
1986                                              PSOldGen* old_gen) {
1987   MutableSpace* const eden_space = young_gen->eden_space();
1988   assert(!eden_space->is_empty(), "eden must be non-empty");
1989   assert(young_gen->virtual_space()->alignment() ==
1990          old_gen->virtual_space()->alignment(), "alignments do not match");
1991 
1992   // We also return false when it's a heterogenous heap because old generation cannot absorb data from eden
1993   // when it is allocated on different memory (example, nv-dimm) than young.
1994   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary) ||
1995       ParallelScavengeHeap::heap()->ps_collector_policy()->is_hetero_heap()) {
1996     return false;
1997   }
1998 
1999   // Both generations must be completely committed.
2000   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2001     return false;
2002   }
2003   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2004     return false;
2005   }
2006 
2007   // Figure out how much to take from eden.  Include the average amount promoted
2008   // in the total; otherwise the next young gen GC will simply bail out to a
2009   // full GC.
2010   const size_t alignment = old_gen->virtual_space()->alignment();
2011   const size_t eden_used = eden_space->used_in_bytes();
2012   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2013   const size_t absorb_size = align_up(eden_used + promoted, alignment);
2014   const size_t eden_capacity = eden_space->capacity_in_bytes();
2015 
2016   if (absorb_size >= eden_capacity) {
2017     return false; // Must leave some space in eden.
2018   }
2019 
2020   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2021   if (new_young_size < young_gen->min_gen_size()) {
2022     return false; // Respect young gen minimum size.
2023   }
2024 
2025   log_trace(gc, ergo, heap)(" absorbing " SIZE_FORMAT "K:  "
2026                             "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2027                             "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2028                             "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2029                             absorb_size / K,
2030                             eden_capacity / K, (eden_capacity - absorb_size) / K,
2031                             young_gen->from_space()->used_in_bytes() / K,
2032                             young_gen->to_space()->used_in_bytes() / K,
2033                             young_gen->capacity_in_bytes() / K, new_young_size / K);
2034 
2035   // Fill the unused part of the old gen.
2036   MutableSpace* const old_space = old_gen->object_space();
2037   HeapWord* const unused_start = old_space->top();
2038   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2039 
2040   if (unused_words > 0) {
2041     if (unused_words < CollectedHeap::min_fill_size()) {
2042       return false;  // If the old gen cannot be filled, must give up.
2043     }
2044     CollectedHeap::fill_with_objects(unused_start, unused_words);
2045   }
2046 
2047   // Take the live data from eden and set both top and end in the old gen to
2048   // eden top.  (Need to set end because reset_after_change() mangles the region
2049   // from end to virtual_space->high() in debug builds).
2050   HeapWord* const new_top = eden_space->top();
2051   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2052                                         absorb_size);
2053   young_gen->reset_after_change();
2054   old_space->set_top(new_top);
2055   old_space->set_end(new_top);
2056   old_gen->reset_after_change();
2057 
2058   // Update the object start array for the filler object and the data from eden.
2059   ObjectStartArray* const start_array = old_gen->start_array();
2060   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2061     start_array->allocate_block(p);
2062   }
2063 
2064   // Could update the promoted average here, but it is not typically updated at
2065   // full GCs and the value to use is unclear.  Something like
2066   //
2067   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2068 
2069   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2070   return true;
2071 }
2072 
2073 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2074   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2075     "shouldn't return NULL");
2076   return ParallelScavengeHeap::gc_task_manager();
2077 }
2078 
2079 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
2080 private:
2081   GCTaskQueue* _q;
2082 
2083 public:
2084   PCAddThreadRootsMarkingTaskClosure(GCTaskQueue* q) : _q(q) { }
2085   void do_thread(Thread* t) {
2086     _q->enqueue(new ThreadRootsMarkingTask(t));
2087   }
2088 };
2089 
2090 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2091                                       bool maximum_heap_compaction,
2092                                       ParallelOldTracer *gc_tracer) {
2093   // Recursively traverse all live objects and mark them
2094   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2095 
2096   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2097   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2098   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2099   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2100   TaskTerminator terminator(active_gc_threads, qset);
2101 
2102   PCMarkAndPushClosure mark_and_push_closure(cm);
2103   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2104 
2105   // Need new claim bits before marking starts.
2106   ClassLoaderDataGraph::clear_claimed_marks();
2107 
2108   {
2109     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2110 
2111     ParallelScavengeHeap::ParStrongRootsScope psrs;
2112 
2113     GCTaskQueue* q = GCTaskQueue::create();
2114 
2115     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2116     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2117     // We scan the thread roots in parallel
2118     PCAddThreadRootsMarkingTaskClosure cl(q);
2119     Threads::java_threads_and_vm_thread_do(&cl);
2120     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2121     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2122     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2123     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2124     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2125     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2126 
2127     if (active_gc_threads > 1) {
2128       for (uint j = 0; j < active_gc_threads; j++) {
2129         q->enqueue(new StealMarkingTask(terminator.terminator()));
2130       }
2131     }
2132 
2133     gc_task_manager()->execute_and_wait(q);
2134   }
2135 
2136   // Process reference objects found during marking
2137   {
2138     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2139 
2140     ReferenceProcessorStats stats;
2141     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2142 
2143     if (ref_processor()->processing_is_mt()) {
2144       ref_processor()->set_active_mt_degree(active_gc_threads);
2145 
2146       RefProcTaskExecutor task_executor;
2147       stats = ref_processor()->process_discovered_references(
2148         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2149         &task_executor, &pt);
2150     } else {
2151       stats = ref_processor()->process_discovered_references(
2152         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2153         &pt);
2154     }
2155 
2156     gc_tracer->report_gc_reference_stats(stats);
2157     pt.print_all_references();
2158   }
2159 
2160   // This is the point where the entire marking should have completed.
2161   assert(cm->marking_stacks_empty(), "Marking should have completed");
2162 
2163   {
2164     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2165     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
2166   }
2167 
2168   {
2169     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2170 
2171     // Follow system dictionary roots and unload classes.
2172     bool purged_class = SystemDictionary::do_unloading(&_gc_timer);
2173 
2174     // Unload nmethods.
2175     CodeCache::do_unloading(is_alive_closure(), purged_class);
2176 
2177     // Prune dead klasses from subklass/sibling/implementor lists.
2178     Klass::clean_weak_klass_links(purged_class);
2179   }
2180 
2181   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2182 }
2183 
2184 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2185   // Adjust the pointers to reflect the new locations
2186   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2187 
2188   // Need new claim bits when tracing through and adjusting pointers.
2189   ClassLoaderDataGraph::clear_claimed_marks();
2190 
2191   PCAdjustPointerClosure oop_closure(cm);
2192 
2193   // General strong roots.
2194   Universe::oops_do(&oop_closure);
2195   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2196   Threads::oops_do(&oop_closure, NULL);
2197   ObjectSynchronizer::oops_do(&oop_closure);
2198   Management::oops_do(&oop_closure);
2199   JvmtiExport::oops_do(&oop_closure);
2200   SystemDictionary::oops_do(&oop_closure);
2201   CLDToOopClosure cld_closure(&oop_closure, ClassLoaderData::_claim_strong);
2202   ClassLoaderDataGraph::cld_do(&cld_closure);
2203 
2204   // Now adjust pointers in remaining weak roots.  (All of which should
2205   // have been cleared if they pointed to non-surviving objects.)
2206   WeakProcessor::oops_do(&oop_closure);
2207 
2208   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2209   CodeCache::blobs_do(&adjust_from_blobs);
2210   AOTLoader::oops_do(&oop_closure);
2211   ref_processor()->weak_oops_do(&oop_closure);
2212   // Roots were visited so references into the young gen in roots
2213   // may have been scanned.  Process them also.
2214   // Should the reference processor have a span that excludes
2215   // young gen objects?
2216   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2217 }
2218 
2219 // Helper class to print 8 region numbers per line and then print the total at the end.
2220 class FillableRegionLogger : public StackObj {
2221 private:
2222   Log(gc, compaction) log;
2223   static const int LineLength = 8;
2224   size_t _regions[LineLength];
2225   int _next_index;
2226   bool _enabled;
2227   size_t _total_regions;
2228 public:
2229   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
2230   ~FillableRegionLogger() {
2231     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2232   }
2233 
2234   void print_line() {
2235     if (!_enabled || _next_index == 0) {
2236       return;
2237     }
2238     FormatBuffer<> line("Fillable: ");
2239     for (int i = 0; i < _next_index; i++) {
2240       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2241     }
2242     log.trace("%s", line.buffer());
2243     _next_index = 0;
2244   }
2245 
2246   void handle(size_t region) {
2247     if (!_enabled) {
2248       return;
2249     }
2250     _regions[_next_index++] = region;
2251     if (_next_index == LineLength) {
2252       print_line();
2253     }
2254     _total_regions++;
2255   }
2256 };
2257 
2258 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2259                                                       uint parallel_gc_threads)
2260 {
2261   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2262 
2263   // Find the threads that are active
2264   unsigned int which = 0;
2265 
2266   // Find all regions that are available (can be filled immediately) and
2267   // distribute them to the thread stacks.  The iteration is done in reverse
2268   // order (high to low) so the regions will be removed in ascending order.
2269 
2270   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2271 
2272   which = 0;
2273   // id + 1 is used to test termination so unsigned  can
2274   // be used with an old_space_id == 0.
2275   FillableRegionLogger region_logger;
2276   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2277     SpaceInfo* const space_info = _space_info + id;
2278     MutableSpace* const space = space_info->space();
2279     HeapWord* const new_top = space_info->new_top();
2280 
2281     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2282     const size_t end_region =
2283       sd.addr_to_region_idx(sd.region_align_up(new_top));
2284 
2285     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2286       if (sd.region(cur)->claim_unsafe()) {
2287         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2288         cm->region_stack()->push(cur);
2289         region_logger.handle(cur);
2290         // Assign regions to tasks in round-robin fashion.
2291         if (++which == parallel_gc_threads) {
2292           which = 0;
2293         }
2294       }
2295     }
2296     region_logger.print_line();
2297   }
2298 }
2299 
2300 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2301 
2302 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2303                                                     uint parallel_gc_threads) {
2304   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2305 
2306   ParallelCompactData& sd = PSParallelCompact::summary_data();
2307 
2308   // Iterate over all the spaces adding tasks for updating
2309   // regions in the dense prefix.  Assume that 1 gc thread
2310   // will work on opening the gaps and the remaining gc threads
2311   // will work on the dense prefix.
2312   unsigned int space_id;
2313   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2314     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2315     const MutableSpace* const space = _space_info[space_id].space();
2316 
2317     if (dense_prefix_end == space->bottom()) {
2318       // There is no dense prefix for this space.
2319       continue;
2320     }
2321 
2322     // The dense prefix is before this region.
2323     size_t region_index_end_dense_prefix =
2324         sd.addr_to_region_idx(dense_prefix_end);
2325     RegionData* const dense_prefix_cp =
2326       sd.region(region_index_end_dense_prefix);
2327     assert(dense_prefix_end == space->end() ||
2328            dense_prefix_cp->available() ||
2329            dense_prefix_cp->claimed(),
2330            "The region after the dense prefix should always be ready to fill");
2331 
2332     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2333 
2334     // Is there dense prefix work?
2335     size_t total_dense_prefix_regions =
2336       region_index_end_dense_prefix - region_index_start;
2337     // How many regions of the dense prefix should be given to
2338     // each thread?
2339     if (total_dense_prefix_regions > 0) {
2340       uint tasks_for_dense_prefix = 1;
2341       if (total_dense_prefix_regions <=
2342           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2343         // Don't over partition.  This assumes that
2344         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2345         // so there are not many regions to process.
2346         tasks_for_dense_prefix = parallel_gc_threads;
2347       } else {
2348         // Over partition
2349         tasks_for_dense_prefix = parallel_gc_threads *
2350           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2351       }
2352       size_t regions_per_thread = total_dense_prefix_regions /
2353         tasks_for_dense_prefix;
2354       // Give each thread at least 1 region.
2355       if (regions_per_thread == 0) {
2356         regions_per_thread = 1;
2357       }
2358 
2359       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2360         if (region_index_start >= region_index_end_dense_prefix) {
2361           break;
2362         }
2363         // region_index_end is not processed
2364         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2365                                        region_index_end_dense_prefix);
2366         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2367                                              region_index_start,
2368                                              region_index_end));
2369         region_index_start = region_index_end;
2370       }
2371     }
2372     // This gets any part of the dense prefix that did not
2373     // fit evenly.
2374     if (region_index_start < region_index_end_dense_prefix) {
2375       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2376                                            region_index_start,
2377                                            region_index_end_dense_prefix));
2378     }
2379   }
2380 }
2381 
2382 void PSParallelCompact::enqueue_region_stealing_tasks(
2383                                      GCTaskQueue* q,
2384                                      ParallelTaskTerminator* terminator_ptr,
2385                                      uint parallel_gc_threads) {
2386   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2387 
2388   // Once a thread has drained it's stack, it should try to steal regions from
2389   // other threads.
2390   for (uint j = 0; j < parallel_gc_threads; j++) {
2391     q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2392   }
2393 }
2394 
2395 #ifdef ASSERT
2396 // Write a histogram of the number of times the block table was filled for a
2397 // region.
2398 void PSParallelCompact::write_block_fill_histogram()
2399 {
2400   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2401     return;
2402   }
2403 
2404   Log(gc, compaction) log;
2405   ResourceMark rm;
2406   LogStream ls(log.trace());
2407   outputStream* out = &ls;
2408 
2409   typedef ParallelCompactData::RegionData rd_t;
2410   ParallelCompactData& sd = summary_data();
2411 
2412   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2413     MutableSpace* const spc = _space_info[id].space();
2414     if (spc->bottom() != spc->top()) {
2415       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2416       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2417       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2418 
2419       size_t histo[5] = { 0, 0, 0, 0, 0 };
2420       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2421       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2422 
2423       for (const rd_t* cur = beg; cur < end; ++cur) {
2424         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2425       }
2426       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2427       for (size_t i = 0; i < histo_len; ++i) {
2428         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2429                    histo[i], 100.0 * histo[i] / region_cnt);
2430       }
2431       out->cr();
2432     }
2433   }
2434 }
2435 #endif // #ifdef ASSERT
2436 
2437 void PSParallelCompact::compact() {
2438   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2439 
2440   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2441   PSOldGen* old_gen = heap->old_gen();
2442   old_gen->start_array()->reset();
2443   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2444   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2445   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2446   TaskTerminator terminator(active_gc_threads, qset);
2447 
2448   GCTaskQueue* q = GCTaskQueue::create();
2449   prepare_region_draining_tasks(q, active_gc_threads);
2450   enqueue_dense_prefix_tasks(q, active_gc_threads);
2451   enqueue_region_stealing_tasks(q, terminator.terminator(), active_gc_threads);
2452 
2453   {
2454     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2455 
2456     gc_task_manager()->execute_and_wait(q);
2457 
2458 #ifdef  ASSERT
2459     // Verify that all regions have been processed before the deferred updates.
2460     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2461       verify_complete(SpaceId(id));
2462     }
2463 #endif
2464   }
2465 
2466   {
2467     // Update the deferred objects, if any.  Any compaction manager can be used.
2468     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2469     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2470     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2471       update_deferred_objects(cm, SpaceId(id));
2472     }
2473   }
2474 
2475   DEBUG_ONLY(write_block_fill_histogram());
2476 }
2477 
2478 #ifdef  ASSERT
2479 void PSParallelCompact::verify_complete(SpaceId space_id) {
2480   // All Regions between space bottom() to new_top() should be marked as filled
2481   // and all Regions between new_top() and top() should be available (i.e.,
2482   // should have been emptied).
2483   ParallelCompactData& sd = summary_data();
2484   SpaceInfo si = _space_info[space_id];
2485   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2486   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2487   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2488   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2489   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2490 
2491   bool issued_a_warning = false;
2492 
2493   size_t cur_region;
2494   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2495     const RegionData* const c = sd.region(cur_region);
2496     if (!c->completed()) {
2497       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2498                       cur_region, c->destination_count());
2499       issued_a_warning = true;
2500     }
2501   }
2502 
2503   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2504     const RegionData* const c = sd.region(cur_region);
2505     if (!c->available()) {
2506       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2507                       cur_region, c->destination_count());
2508       issued_a_warning = true;
2509     }
2510   }
2511 
2512   if (issued_a_warning) {
2513     print_region_ranges();
2514   }
2515 }
2516 #endif  // #ifdef ASSERT
2517 
2518 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2519   _start_array->allocate_block(addr);
2520   compaction_manager()->update_contents(oop(addr));
2521 }
2522 
2523 // Update interior oops in the ranges of regions [beg_region, end_region).
2524 void
2525 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2526                                                        SpaceId space_id,
2527                                                        size_t beg_region,
2528                                                        size_t end_region) {
2529   ParallelCompactData& sd = summary_data();
2530   ParMarkBitMap* const mbm = mark_bitmap();
2531 
2532   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2533   HeapWord* const end_addr = sd.region_to_addr(end_region);
2534   assert(beg_region <= end_region, "bad region range");
2535   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2536 
2537 #ifdef  ASSERT
2538   // Claim the regions to avoid triggering an assert when they are marked as
2539   // filled.
2540   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2541     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2542   }
2543 #endif  // #ifdef ASSERT
2544 
2545   if (beg_addr != space(space_id)->bottom()) {
2546     // Find the first live object or block of dead space that *starts* in this
2547     // range of regions.  If a partial object crosses onto the region, skip it;
2548     // it will be marked for 'deferred update' when the object head is
2549     // processed.  If dead space crosses onto the region, it is also skipped; it
2550     // will be filled when the prior region is processed.  If neither of those
2551     // apply, the first word in the region is the start of a live object or dead
2552     // space.
2553     assert(beg_addr > space(space_id)->bottom(), "sanity");
2554     const RegionData* const cp = sd.region(beg_region);
2555     if (cp->partial_obj_size() != 0) {
2556       beg_addr = sd.partial_obj_end(beg_region);
2557     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2558       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2559     }
2560   }
2561 
2562   if (beg_addr < end_addr) {
2563     // A live object or block of dead space starts in this range of Regions.
2564      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2565 
2566     // Create closures and iterate.
2567     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2568     FillClosure fill_closure(cm, space_id);
2569     ParMarkBitMap::IterationStatus status;
2570     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2571                           dense_prefix_end);
2572     if (status == ParMarkBitMap::incomplete) {
2573       update_closure.do_addr(update_closure.source());
2574     }
2575   }
2576 
2577   // Mark the regions as filled.
2578   RegionData* const beg_cp = sd.region(beg_region);
2579   RegionData* const end_cp = sd.region(end_region);
2580   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2581     cp->set_completed();
2582   }
2583 }
2584 
2585 // Return the SpaceId for the space containing addr.  If addr is not in the
2586 // heap, last_space_id is returned.  In debug mode it expects the address to be
2587 // in the heap and asserts such.
2588 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2589   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2590 
2591   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2592     if (_space_info[id].space()->contains(addr)) {
2593       return SpaceId(id);
2594     }
2595   }
2596 
2597   assert(false, "no space contains the addr");
2598   return last_space_id;
2599 }
2600 
2601 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2602                                                 SpaceId id) {
2603   assert(id < last_space_id, "bad space id");
2604 
2605   ParallelCompactData& sd = summary_data();
2606   const SpaceInfo* const space_info = _space_info + id;
2607   ObjectStartArray* const start_array = space_info->start_array();
2608 
2609   const MutableSpace* const space = space_info->space();
2610   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2611   HeapWord* const beg_addr = space_info->dense_prefix();
2612   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2613 
2614   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2615   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2616   const RegionData* cur_region;
2617   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2618     HeapWord* const addr = cur_region->deferred_obj_addr();
2619     if (addr != NULL) {
2620       if (start_array != NULL) {
2621         start_array->allocate_block(addr);
2622       }
2623       cm->update_contents(oop(addr));
2624       assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2625     }
2626   }
2627 }
2628 
2629 // Skip over count live words starting from beg, and return the address of the
2630 // next live word.  Unless marked, the word corresponding to beg is assumed to
2631 // be dead.  Callers must either ensure beg does not correspond to the middle of
2632 // an object, or account for those live words in some other way.  Callers must
2633 // also ensure that there are enough live words in the range [beg, end) to skip.
2634 HeapWord*
2635 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2636 {
2637   assert(count > 0, "sanity");
2638 
2639   ParMarkBitMap* m = mark_bitmap();
2640   idx_t bits_to_skip = m->words_to_bits(count);
2641   idx_t cur_beg = m->addr_to_bit(beg);
2642   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2643 
2644   do {
2645     cur_beg = m->find_obj_beg(cur_beg, search_end);
2646     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2647     const size_t obj_bits = cur_end - cur_beg + 1;
2648     if (obj_bits > bits_to_skip) {
2649       return m->bit_to_addr(cur_beg + bits_to_skip);
2650     }
2651     bits_to_skip -= obj_bits;
2652     cur_beg = cur_end + 1;
2653   } while (bits_to_skip > 0);
2654 
2655   // Skipping the desired number of words landed just past the end of an object.
2656   // Find the start of the next object.
2657   cur_beg = m->find_obj_beg(cur_beg, search_end);
2658   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2659   return m->bit_to_addr(cur_beg);
2660 }
2661 
2662 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2663                                             SpaceId src_space_id,
2664                                             size_t src_region_idx)
2665 {
2666   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2667 
2668   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2669   if (split_info.dest_region_addr() == dest_addr) {
2670     // The partial object ending at the split point contains the first word to
2671     // be copied to dest_addr.
2672     return split_info.first_src_addr();
2673   }
2674 
2675   const ParallelCompactData& sd = summary_data();
2676   ParMarkBitMap* const bitmap = mark_bitmap();
2677   const size_t RegionSize = ParallelCompactData::RegionSize;
2678 
2679   assert(sd.is_region_aligned(dest_addr), "not aligned");
2680   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2681   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2682   HeapWord* const src_region_destination = src_region_ptr->destination();
2683 
2684   assert(dest_addr >= src_region_destination, "wrong src region");
2685   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2686 
2687   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2688   HeapWord* const src_region_end = src_region_beg + RegionSize;
2689 
2690   HeapWord* addr = src_region_beg;
2691   if (dest_addr == src_region_destination) {
2692     // Return the first live word in the source region.
2693     if (partial_obj_size == 0) {
2694       addr = bitmap->find_obj_beg(addr, src_region_end);
2695       assert(addr < src_region_end, "no objects start in src region");
2696     }
2697     return addr;
2698   }
2699 
2700   // Must skip some live data.
2701   size_t words_to_skip = dest_addr - src_region_destination;
2702   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2703 
2704   if (partial_obj_size >= words_to_skip) {
2705     // All the live words to skip are part of the partial object.
2706     addr += words_to_skip;
2707     if (partial_obj_size == words_to_skip) {
2708       // Find the first live word past the partial object.
2709       addr = bitmap->find_obj_beg(addr, src_region_end);
2710       assert(addr < src_region_end, "wrong src region");
2711     }
2712     return addr;
2713   }
2714 
2715   // Skip over the partial object (if any).
2716   if (partial_obj_size != 0) {
2717     words_to_skip -= partial_obj_size;
2718     addr += partial_obj_size;
2719   }
2720 
2721   // Skip over live words due to objects that start in the region.
2722   addr = skip_live_words(addr, src_region_end, words_to_skip);
2723   assert(addr < src_region_end, "wrong src region");
2724   return addr;
2725 }
2726 
2727 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2728                                                      SpaceId src_space_id,
2729                                                      size_t beg_region,
2730                                                      HeapWord* end_addr)
2731 {
2732   ParallelCompactData& sd = summary_data();
2733 
2734 #ifdef ASSERT
2735   MutableSpace* const src_space = _space_info[src_space_id].space();
2736   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2737   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2738          "src_space_id does not match beg_addr");
2739   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2740          "src_space_id does not match end_addr");
2741 #endif // #ifdef ASSERT
2742 
2743   RegionData* const beg = sd.region(beg_region);
2744   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2745 
2746   // Regions up to new_top() are enqueued if they become available.
2747   HeapWord* const new_top = _space_info[src_space_id].new_top();
2748   RegionData* const enqueue_end =
2749     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2750 
2751   for (RegionData* cur = beg; cur < end; ++cur) {
2752     assert(cur->data_size() > 0, "region must have live data");
2753     cur->decrement_destination_count();
2754     if (cur < enqueue_end && cur->available() && cur->claim()) {
2755       cm->push_region(sd.region(cur));
2756     }
2757   }
2758 }
2759 
2760 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2761                                           SpaceId& src_space_id,
2762                                           HeapWord*& src_space_top,
2763                                           HeapWord* end_addr)
2764 {
2765   typedef ParallelCompactData::RegionData RegionData;
2766 
2767   ParallelCompactData& sd = PSParallelCompact::summary_data();
2768   const size_t region_size = ParallelCompactData::RegionSize;
2769 
2770   size_t src_region_idx = 0;
2771 
2772   // Skip empty regions (if any) up to the top of the space.
2773   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2774   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2775   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2776   const RegionData* const top_region_ptr =
2777     sd.addr_to_region_ptr(top_aligned_up);
2778   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2779     ++src_region_ptr;
2780   }
2781 
2782   if (src_region_ptr < top_region_ptr) {
2783     // The next source region is in the current space.  Update src_region_idx
2784     // and the source address to match src_region_ptr.
2785     src_region_idx = sd.region(src_region_ptr);
2786     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2787     if (src_region_addr > closure.source()) {
2788       closure.set_source(src_region_addr);
2789     }
2790     return src_region_idx;
2791   }
2792 
2793   // Switch to a new source space and find the first non-empty region.
2794   unsigned int space_id = src_space_id + 1;
2795   assert(space_id < last_space_id, "not enough spaces");
2796 
2797   HeapWord* const destination = closure.destination();
2798 
2799   do {
2800     MutableSpace* space = _space_info[space_id].space();
2801     HeapWord* const bottom = space->bottom();
2802     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2803 
2804     // Iterate over the spaces that do not compact into themselves.
2805     if (bottom_cp->destination() != bottom) {
2806       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2807       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2808 
2809       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2810         if (src_cp->live_obj_size() > 0) {
2811           // Found it.
2812           assert(src_cp->destination() == destination,
2813                  "first live obj in the space must match the destination");
2814           assert(src_cp->partial_obj_size() == 0,
2815                  "a space cannot begin with a partial obj");
2816 
2817           src_space_id = SpaceId(space_id);
2818           src_space_top = space->top();
2819           const size_t src_region_idx = sd.region(src_cp);
2820           closure.set_source(sd.region_to_addr(src_region_idx));
2821           return src_region_idx;
2822         } else {
2823           assert(src_cp->data_size() == 0, "sanity");
2824         }
2825       }
2826     }
2827   } while (++space_id < last_space_id);
2828 
2829   assert(false, "no source region was found");
2830   return 0;
2831 }
2832 
2833 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2834 {
2835   typedef ParMarkBitMap::IterationStatus IterationStatus;
2836   const size_t RegionSize = ParallelCompactData::RegionSize;
2837   ParMarkBitMap* const bitmap = mark_bitmap();
2838   ParallelCompactData& sd = summary_data();
2839   RegionData* const region_ptr = sd.region(region_idx);
2840 
2841   // Get the items needed to construct the closure.
2842   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2843   SpaceId dest_space_id = space_id(dest_addr);
2844   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2845   HeapWord* new_top = _space_info[dest_space_id].new_top();
2846   assert(dest_addr < new_top, "sanity");
2847   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2848 
2849   // Get the source region and related info.
2850   size_t src_region_idx = region_ptr->source_region();
2851   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2852   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2853 
2854   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2855   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2856 
2857   // Adjust src_region_idx to prepare for decrementing destination counts (the
2858   // destination count is not decremented when a region is copied to itself).
2859   if (src_region_idx == region_idx) {
2860     src_region_idx += 1;
2861   }
2862 
2863   if (bitmap->is_unmarked(closure.source())) {
2864     // The first source word is in the middle of an object; copy the remainder
2865     // of the object or as much as will fit.  The fact that pointer updates were
2866     // deferred will be noted when the object header is processed.
2867     HeapWord* const old_src_addr = closure.source();
2868     closure.copy_partial_obj();
2869     if (closure.is_full()) {
2870       decrement_destination_counts(cm, src_space_id, src_region_idx,
2871                                    closure.source());
2872       region_ptr->set_deferred_obj_addr(NULL);
2873       region_ptr->set_completed();
2874       return;
2875     }
2876 
2877     HeapWord* const end_addr = sd.region_align_down(closure.source());
2878     if (sd.region_align_down(old_src_addr) != end_addr) {
2879       // The partial object was copied from more than one source region.
2880       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2881 
2882       // Move to the next source region, possibly switching spaces as well.  All
2883       // args except end_addr may be modified.
2884       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2885                                        end_addr);
2886     }
2887   }
2888 
2889   do {
2890     HeapWord* const cur_addr = closure.source();
2891     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2892                                     src_space_top);
2893     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2894 
2895     if (status == ParMarkBitMap::incomplete) {
2896       // The last obj that starts in the source region does not end in the
2897       // region.
2898       assert(closure.source() < end_addr, "sanity");
2899       HeapWord* const obj_beg = closure.source();
2900       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2901                                        src_space_top);
2902       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2903       if (obj_end < range_end) {
2904         // The end was found; the entire object will fit.
2905         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2906         assert(status != ParMarkBitMap::would_overflow, "sanity");
2907       } else {
2908         // The end was not found; the object will not fit.
2909         assert(range_end < src_space_top, "obj cannot cross space boundary");
2910         status = ParMarkBitMap::would_overflow;
2911       }
2912     }
2913 
2914     if (status == ParMarkBitMap::would_overflow) {
2915       // The last object did not fit.  Note that interior oop updates were
2916       // deferred, then copy enough of the object to fill the region.
2917       region_ptr->set_deferred_obj_addr(closure.destination());
2918       status = closure.copy_until_full(); // copies from closure.source()
2919 
2920       decrement_destination_counts(cm, src_space_id, src_region_idx,
2921                                    closure.source());
2922       region_ptr->set_completed();
2923       return;
2924     }
2925 
2926     if (status == ParMarkBitMap::full) {
2927       decrement_destination_counts(cm, src_space_id, src_region_idx,
2928                                    closure.source());
2929       region_ptr->set_deferred_obj_addr(NULL);
2930       region_ptr->set_completed();
2931       return;
2932     }
2933 
2934     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2935 
2936     // Move to the next source region, possibly switching spaces as well.  All
2937     // args except end_addr may be modified.
2938     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2939                                      end_addr);
2940   } while (true);
2941 }
2942 
2943 void PSParallelCompact::fill_blocks(size_t region_idx)
2944 {
2945   // Fill in the block table elements for the specified region.  Each block
2946   // table element holds the number of live words in the region that are to the
2947   // left of the first object that starts in the block.  Thus only blocks in
2948   // which an object starts need to be filled.
2949   //
2950   // The algorithm scans the section of the bitmap that corresponds to the
2951   // region, keeping a running total of the live words.  When an object start is
2952   // found, if it's the first to start in the block that contains it, the
2953   // current total is written to the block table element.
2954   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2955   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2956   const size_t RegionSize = ParallelCompactData::RegionSize;
2957 
2958   ParallelCompactData& sd = summary_data();
2959   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2960   if (partial_obj_size >= RegionSize) {
2961     return; // No objects start in this region.
2962   }
2963 
2964   // Ensure the first loop iteration decides that the block has changed.
2965   size_t cur_block = sd.block_count();
2966 
2967   const ParMarkBitMap* const bitmap = mark_bitmap();
2968 
2969   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2970   assert((size_t)1 << Log2BitsPerBlock ==
2971          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2972 
2973   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2974   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2975   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2976   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2977   while (beg_bit < range_end) {
2978     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2979     if (new_block != cur_block) {
2980       cur_block = new_block;
2981       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2982     }
2983 
2984     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2985     if (end_bit < range_end - 1) {
2986       live_bits += end_bit - beg_bit + 1;
2987       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2988     } else {
2989       return;
2990     }
2991   }
2992 }
2993 
2994 void
2995 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2996   const MutableSpace* sp = space(space_id);
2997   if (sp->is_empty()) {
2998     return;
2999   }
3000 
3001   ParallelCompactData& sd = PSParallelCompact::summary_data();
3002   ParMarkBitMap* const bitmap = mark_bitmap();
3003   HeapWord* const dp_addr = dense_prefix(space_id);
3004   HeapWord* beg_addr = sp->bottom();
3005   HeapWord* end_addr = sp->top();
3006 
3007   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3008 
3009   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3010   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3011   if (beg_region < dp_region) {
3012     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3013   }
3014 
3015   // The destination of the first live object that starts in the region is one
3016   // past the end of the partial object entering the region (if any).
3017   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3018   HeapWord* const new_top = _space_info[space_id].new_top();
3019   assert(new_top >= dest_addr, "bad new_top value");
3020   const size_t words = pointer_delta(new_top, dest_addr);
3021 
3022   if (words > 0) {
3023     ObjectStartArray* start_array = _space_info[space_id].start_array();
3024     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3025 
3026     ParMarkBitMap::IterationStatus status;
3027     status = bitmap->iterate(&closure, dest_addr, end_addr);
3028     assert(status == ParMarkBitMap::full, "iteration not complete");
3029     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3030            "live objects skipped because closure is full");
3031   }
3032 }
3033 
3034 jlong PSParallelCompact::millis_since_last_gc() {
3035   // We need a monotonically non-decreasing time in ms but
3036   // os::javaTimeMillis() does not guarantee monotonicity.
3037   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3038   jlong ret_val = now - _time_of_last_gc;
3039   // XXX See note in genCollectedHeap::millis_since_last_gc().
3040   if (ret_val < 0) {
3041     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3042     return 0;
3043   }
3044   return ret_val;
3045 }
3046 
3047 void PSParallelCompact::reset_millis_since_last_gc() {
3048   // We need a monotonically non-decreasing time in ms but
3049   // os::javaTimeMillis() does not guarantee monotonicity.
3050   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3051 }
3052 
3053 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3054 {
3055   if (source() != destination()) {
3056     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3057     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3058   }
3059   update_state(words_remaining());
3060   assert(is_full(), "sanity");
3061   return ParMarkBitMap::full;
3062 }
3063 
3064 void MoveAndUpdateClosure::copy_partial_obj()
3065 {
3066   size_t words = words_remaining();
3067 
3068   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3069   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3070   if (end_addr < range_end) {
3071     words = bitmap()->obj_size(source(), end_addr);
3072   }
3073 
3074   // This test is necessary; if omitted, the pointer updates to a partial object
3075   // that crosses the dense prefix boundary could be overwritten.
3076   if (source() != destination()) {
3077     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3078     Copy::aligned_conjoint_words(source(), destination(), words);
3079   }
3080   update_state(words);
3081 }
3082 
3083 ParMarkBitMapClosure::IterationStatus
3084 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3085   assert(destination() != NULL, "sanity");
3086   assert(bitmap()->obj_size(addr) == words, "bad size");
3087 
3088   _source = addr;
3089   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3090          destination(), "wrong destination");
3091 
3092   if (words > words_remaining()) {
3093     return ParMarkBitMap::would_overflow;
3094   }
3095 
3096   // The start_array must be updated even if the object is not moving.
3097   if (_start_array != NULL) {
3098     _start_array->allocate_block(destination());
3099   }
3100 
3101   if (destination() != source()) {
3102     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3103     Copy::aligned_conjoint_words(source(), destination(), words);
3104   }
3105 
3106   oop moved_oop = (oop) destination();
3107   compaction_manager()->update_contents(moved_oop);
3108   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3109 
3110   update_state(words);
3111   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3112   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3113 }
3114 
3115 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3116                                      ParCompactionManager* cm,
3117                                      PSParallelCompact::SpaceId space_id) :
3118   ParMarkBitMapClosure(mbm, cm),
3119   _space_id(space_id),
3120   _start_array(PSParallelCompact::start_array(space_id))
3121 {
3122 }
3123 
3124 // Updates the references in the object to their new values.
3125 ParMarkBitMapClosure::IterationStatus
3126 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3127   do_addr(addr);
3128   return ParMarkBitMap::incomplete;
3129 }
3130 
3131 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3132   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3133   _start_array(PSParallelCompact::start_array(space_id))
3134 {
3135   assert(space_id == PSParallelCompact::old_space_id,
3136          "cannot use FillClosure in the young gen");
3137 }
3138 
3139 ParMarkBitMapClosure::IterationStatus
3140 FillClosure::do_addr(HeapWord* addr, size_t size) {
3141   CollectedHeap::fill_with_objects(addr, size);
3142   HeapWord* const end = addr + size;
3143   do {
3144     _start_array->allocate_block(addr);
3145     addr += oop(addr)->size();
3146   } while (addr < end);
3147   return ParMarkBitMap::incomplete;
3148 }