1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileLog.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/directivesParser.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "jfr/jfrEvents.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "memory/allocation.inline.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.hpp"
  44 #include "oops/methodData.hpp"
  45 #include "oops/method.inline.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "prims/nativeLookup.hpp"
  48 #include "prims/whitebox.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/atomic.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.inline.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/os.hpp"
  58 #include "runtime/safepointVerifiers.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/sweeper.hpp"
  61 #include "runtime/timerTrace.hpp"
  62 #include "runtime/vframe.inline.hpp"
  63 #include "utilities/debug.hpp"
  64 #include "utilities/dtrace.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/formatBuffer.hpp"
  67 #include "utilities/macros.hpp"
  68 #ifdef COMPILER1
  69 #include "c1/c1_Compiler.hpp"
  70 #endif
  71 #if INCLUDE_JVMCI
  72 #include "jvmci/jvmciEnv.hpp"
  73 #include "jvmci/jvmciRuntime.hpp"
  74 #endif
  75 #ifdef COMPILER2
  76 #include "opto/c2compiler.hpp"
  77 #endif
  78 
  79 #ifdef DTRACE_ENABLED
  80 
  81 // Only bother with this argument setup if dtrace is available
  82 
  83 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  84   {                                                                      \
  85     Symbol* klass_name = (method)->klass_name();                         \
  86     Symbol* name = (method)->name();                                     \
  87     Symbol* signature = (method)->signature();                           \
  88     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  89       (char *) comp_name, strlen(comp_name),                             \
  90       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  91       (char *) name->bytes(), name->utf8_length(),                       \
  92       (char *) signature->bytes(), signature->utf8_length());            \
  93   }
  94 
  95 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
  96   {                                                                      \
  97     Symbol* klass_name = (method)->klass_name();                         \
  98     Symbol* name = (method)->name();                                     \
  99     Symbol* signature = (method)->signature();                           \
 100     HOTSPOT_METHOD_COMPILE_END(                                          \
 101       (char *) comp_name, strlen(comp_name),                             \
 102       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 103       (char *) name->bytes(), name->utf8_length(),                       \
 104       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 105   }
 106 
 107 #else //  ndef DTRACE_ENABLED
 108 
 109 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 110 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 111 
 112 #endif // ndef DTRACE_ENABLED
 113 
 114 bool CompileBroker::_initialized = false;
 115 volatile bool CompileBroker::_should_block = false;
 116 volatile int  CompileBroker::_print_compilation_warning = 0;
 117 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 118 
 119 // The installed compiler(s)
 120 AbstractCompiler* CompileBroker::_compilers[2];
 121 
 122 // The maximum numbers of compiler threads to be determined during startup.
 123 int CompileBroker::_c1_count = 0;
 124 int CompileBroker::_c2_count = 0;
 125 
 126 // An array of compiler names as Java String objects
 127 jobject* CompileBroker::_compiler1_objects = NULL;
 128 jobject* CompileBroker::_compiler2_objects = NULL;
 129 
 130 CompileLog** CompileBroker::_compiler1_logs = NULL;
 131 CompileLog** CompileBroker::_compiler2_logs = NULL;
 132 
 133 // These counters are used to assign an unique ID to each compilation.
 134 volatile jint CompileBroker::_compilation_id     = 0;
 135 volatile jint CompileBroker::_osr_compilation_id = 0;
 136 
 137 // Performance counters
 138 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 139 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 140 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 141 
 142 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 143 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 144 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 145 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 146 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 147 
 148 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 149 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 150 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 151 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 152 
 153 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 154 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 155 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 156 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 157 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 158 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 159 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 160 
 161 // Timers and counters for generating statistics
 162 elapsedTimer CompileBroker::_t_total_compilation;
 163 elapsedTimer CompileBroker::_t_osr_compilation;
 164 elapsedTimer CompileBroker::_t_standard_compilation;
 165 elapsedTimer CompileBroker::_t_invalidated_compilation;
 166 elapsedTimer CompileBroker::_t_bailedout_compilation;
 167 
 168 int CompileBroker::_total_bailout_count            = 0;
 169 int CompileBroker::_total_invalidated_count        = 0;
 170 int CompileBroker::_total_compile_count            = 0;
 171 int CompileBroker::_total_osr_compile_count        = 0;
 172 int CompileBroker::_total_standard_compile_count   = 0;
 173 int CompileBroker::_total_compiler_stopped_count   = 0;
 174 int CompileBroker::_total_compiler_restarted_count = 0;
 175 
 176 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 177 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 178 int CompileBroker::_sum_nmethod_size               = 0;
 179 int CompileBroker::_sum_nmethod_code_size          = 0;
 180 
 181 long CompileBroker::_peak_compilation_time         = 0;
 182 
 183 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 184 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 185 
 186 
 187 
 188 class CompilationLog : public StringEventLog {
 189  public:
 190   CompilationLog() : StringEventLog("Compilation events") {
 191   }
 192 
 193   void log_compile(JavaThread* thread, CompileTask* task) {
 194     StringLogMessage lm;
 195     stringStream sstr(lm.buffer(), lm.size());
 196     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 197     task->print(&sstr, NULL, true, false);
 198     log(thread, "%s", (const char*)lm);
 199   }
 200 
 201   void log_nmethod(JavaThread* thread, nmethod* nm) {
 202     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 203         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 204         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 205   }
 206 
 207   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 208     StringLogMessage lm;
 209     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 210     if (retry_message != NULL) {
 211       lm.append(" (%s)", retry_message);
 212     }
 213     lm.print("\n");
 214     log(thread, "%s", (const char*)lm);
 215   }
 216 
 217   void log_metaspace_failure(const char* reason) {
 218     ResourceMark rm;
 219     StringLogMessage lm;
 220     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 221     lm.print("\n");
 222     log(JavaThread::current(), "%s", (const char*)lm);
 223   }
 224 };
 225 
 226 static CompilationLog* _compilation_log = NULL;
 227 
 228 bool compileBroker_init() {
 229   if (LogEvents) {
 230     _compilation_log = new CompilationLog();
 231   }
 232 
 233   // init directives stack, adding default directive
 234   DirectivesStack::init();
 235 
 236   if (DirectivesParser::has_file()) {
 237     return DirectivesParser::parse_from_flag();
 238   } else if (CompilerDirectivesPrint) {
 239     // Print default directive even when no other was added
 240     DirectivesStack::print(tty);
 241   }
 242 
 243   return true;
 244 }
 245 
 246 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 247   CompilerThread* thread = CompilerThread::current();
 248   thread->set_task(task);
 249 #if INCLUDE_JVMCI
 250   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 251     task->set_jvmci_compiler_thread(thread);
 252   }
 253 #endif
 254   CompileLog*     log  = thread->log();
 255   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 256 }
 257 
 258 CompileTaskWrapper::~CompileTaskWrapper() {
 259   CompilerThread* thread = CompilerThread::current();
 260   CompileTask* task = thread->task();
 261   CompileLog*  log  = thread->log();
 262   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 263   thread->set_task(NULL);
 264   task->set_code_handle(NULL);
 265   thread->set_env(NULL);
 266   if (task->is_blocking()) {
 267     bool free_task = false;
 268     {
 269       MutexLocker notifier(task->lock(), thread);
 270       task->mark_complete();
 271 #if INCLUDE_JVMCI
 272       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 273         if (!task->has_waiter()) {
 274           // The waiting thread timed out and thus did not free the task.
 275           free_task = true;
 276         }
 277         task->set_jvmci_compiler_thread(NULL);
 278       }
 279 #endif
 280       if (!free_task) {
 281         // Notify the waiting thread that the compilation has completed
 282         // so that it can free the task.
 283         task->lock()->notify_all();
 284       }
 285     }
 286     if (free_task) {
 287       // The task can only be freed once the task lock is released.
 288       CompileTask::free(task);
 289     }
 290   } else {
 291     task->mark_complete();
 292 
 293     // By convention, the compiling thread is responsible for
 294     // recycling a non-blocking CompileTask.
 295     CompileTask::free(task);
 296   }
 297 }
 298 
 299 /**
 300  * Check if a CompilerThread can be removed and update count if requested.
 301  */
 302 static bool can_remove(CompilerThread *ct, bool do_it) {
 303   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 304   if (!ReduceNumberOfCompilerThreads) return false;
 305 
 306   AbstractCompiler *compiler = ct->compiler();
 307   int compiler_count = compiler->num_compiler_threads();
 308   bool c1 = compiler->is_c1();
 309 
 310   // Keep at least 1 compiler thread of each type.
 311   if (compiler_count < 2) return false;
 312 
 313   // Keep thread alive for at least some time.
 314   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 315 
 316   // We only allow the last compiler thread of each type to get removed.
 317   jobject last_compiler = c1 ? CompileBroker::compiler1_object(compiler_count - 1)
 318                              : CompileBroker::compiler2_object(compiler_count - 1);
 319   if (oopDesc::equals(ct->threadObj(), JNIHandles::resolve_non_null(last_compiler))) {
 320     if (do_it) {
 321       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 322       compiler->set_num_compiler_threads(compiler_count - 1);
 323     }
 324     return true;
 325   }
 326   return false;
 327 }
 328 
 329 /**
 330  * Add a CompileTask to a CompileQueue.
 331  */
 332 void CompileQueue::add(CompileTask* task) {
 333   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 334 
 335   task->set_next(NULL);
 336   task->set_prev(NULL);
 337 
 338   if (_last == NULL) {
 339     // The compile queue is empty.
 340     assert(_first == NULL, "queue is empty");
 341     _first = task;
 342     _last = task;
 343   } else {
 344     // Append the task to the queue.
 345     assert(_last->next() == NULL, "not last");
 346     _last->set_next(task);
 347     task->set_prev(_last);
 348     _last = task;
 349   }
 350   ++_size;
 351 
 352   // Mark the method as being in the compile queue.
 353   task->method()->set_queued_for_compilation();
 354 
 355   if (CIPrintCompileQueue) {
 356     print_tty();
 357   }
 358 
 359   if (LogCompilation && xtty != NULL) {
 360     task->log_task_queued();
 361   }
 362 
 363   // Notify CompilerThreads that a task is available.
 364   MethodCompileQueue_lock->notify_all();
 365 }
 366 
 367 /**
 368  * Empties compilation queue by putting all compilation tasks onto
 369  * a freelist. Furthermore, the method wakes up all threads that are
 370  * waiting on a compilation task to finish. This can happen if background
 371  * compilation is disabled.
 372  */
 373 void CompileQueue::free_all() {
 374   MutexLocker mu(MethodCompileQueue_lock);
 375   CompileTask* next = _first;
 376 
 377   // Iterate over all tasks in the compile queue
 378   while (next != NULL) {
 379     CompileTask* current = next;
 380     next = current->next();
 381     {
 382       // Wake up thread that blocks on the compile task.
 383       MutexLocker ct_lock(current->lock());
 384       current->lock()->notify();
 385     }
 386     // Put the task back on the freelist.
 387     CompileTask::free(current);
 388   }
 389   _first = NULL;
 390 
 391   // Wake up all threads that block on the queue.
 392   MethodCompileQueue_lock->notify_all();
 393 }
 394 
 395 /**
 396  * Get the next CompileTask from a CompileQueue
 397  */
 398 CompileTask* CompileQueue::get() {
 399   // save methods from RedefineClasses across safepoint
 400   // across MethodCompileQueue_lock below.
 401   methodHandle save_method;
 402   methodHandle save_hot_method;
 403 
 404   MonitorLocker locker(MethodCompileQueue_lock);
 405   // If _first is NULL we have no more compile jobs. There are two reasons for
 406   // having no compile jobs: First, we compiled everything we wanted. Second,
 407   // we ran out of code cache so compilation has been disabled. In the latter
 408   // case we perform code cache sweeps to free memory such that we can re-enable
 409   // compilation.
 410   while (_first == NULL) {
 411     // Exit loop if compilation is disabled forever
 412     if (CompileBroker::is_compilation_disabled_forever()) {
 413       return NULL;
 414     }
 415 
 416     // If there are no compilation tasks and we can compile new jobs
 417     // (i.e., there is enough free space in the code cache) there is
 418     // no need to invoke the sweeper. As a result, the hotness of methods
 419     // remains unchanged. This behavior is desired, since we want to keep
 420     // the stable state, i.e., we do not want to evict methods from the
 421     // code cache if it is unnecessary.
 422     // We need a timed wait here, since compiler threads can exit if compilation
 423     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 424     // is not critical and we do not want idle compiler threads to wake up too often.
 425     locker.wait(5*1000);
 426 
 427     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 428       // Still nothing to compile. Give caller a chance to stop this thread.
 429       if (can_remove(CompilerThread::current(), false)) return NULL;
 430     }
 431   }
 432 
 433   if (CompileBroker::is_compilation_disabled_forever()) {
 434     return NULL;
 435   }
 436 
 437   CompileTask* task;
 438   {
 439     NoSafepointVerifier nsv;
 440     task = CompilationPolicy::policy()->select_task(this);
 441     if (task != NULL) {
 442       task = task->select_for_compilation();
 443     }
 444   }
 445 
 446   if (task != NULL) {
 447     // Save method pointers across unlock safepoint.  The task is removed from
 448     // the compilation queue, which is walked during RedefineClasses.
 449     save_method = methodHandle(task->method());
 450     save_hot_method = methodHandle(task->hot_method());
 451 
 452     remove(task);
 453   }
 454   purge_stale_tasks(); // may temporarily release MCQ lock
 455   return task;
 456 }
 457 
 458 // Clean & deallocate stale compile tasks.
 459 // Temporarily releases MethodCompileQueue lock.
 460 void CompileQueue::purge_stale_tasks() {
 461   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 462   if (_first_stale != NULL) {
 463     // Stale tasks are purged when MCQ lock is released,
 464     // but _first_stale updates are protected by MCQ lock.
 465     // Once task processing starts and MCQ lock is released,
 466     // other compiler threads can reuse _first_stale.
 467     CompileTask* head = _first_stale;
 468     _first_stale = NULL;
 469     {
 470       MutexUnlocker ul(MethodCompileQueue_lock);
 471       for (CompileTask* task = head; task != NULL; ) {
 472         CompileTask* next_task = task->next();
 473         CompileTaskWrapper ctw(task); // Frees the task
 474         task->set_failure_reason("stale task");
 475         task = next_task;
 476       }
 477     }
 478   }
 479 }
 480 
 481 void CompileQueue::remove(CompileTask* task) {
 482   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 483   if (task->prev() != NULL) {
 484     task->prev()->set_next(task->next());
 485   } else {
 486     // max is the first element
 487     assert(task == _first, "Sanity");
 488     _first = task->next();
 489   }
 490 
 491   if (task->next() != NULL) {
 492     task->next()->set_prev(task->prev());
 493   } else {
 494     // max is the last element
 495     assert(task == _last, "Sanity");
 496     _last = task->prev();
 497   }
 498   --_size;
 499 }
 500 
 501 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 502   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 503   remove(task);
 504 
 505   // Enqueue the task for reclamation (should be done outside MCQ lock)
 506   task->set_next(_first_stale);
 507   task->set_prev(NULL);
 508   _first_stale = task;
 509 }
 510 
 511 // methods in the compile queue need to be marked as used on the stack
 512 // so that they don't get reclaimed by Redefine Classes
 513 void CompileQueue::mark_on_stack() {
 514   CompileTask* task = _first;
 515   while (task != NULL) {
 516     task->mark_on_stack();
 517     task = task->next();
 518   }
 519 }
 520 
 521 
 522 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 523   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 524   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 525   return NULL;
 526 }
 527 
 528 void CompileBroker::print_compile_queues(outputStream* st) {
 529   st->print_cr("Current compiles: ");
 530 
 531   char buf[2000];
 532   int buflen = sizeof(buf);
 533   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 534 
 535   st->cr();
 536   if (_c1_compile_queue != NULL) {
 537     _c1_compile_queue->print(st);
 538   }
 539   if (_c2_compile_queue != NULL) {
 540     _c2_compile_queue->print(st);
 541   }
 542 }
 543 
 544 void CompileQueue::print(outputStream* st) {
 545   assert_locked_or_safepoint(MethodCompileQueue_lock);
 546   st->print_cr("%s:", name());
 547   CompileTask* task = _first;
 548   if (task == NULL) {
 549     st->print_cr("Empty");
 550   } else {
 551     while (task != NULL) {
 552       task->print(st, NULL, true, true);
 553       task = task->next();
 554     }
 555   }
 556   st->cr();
 557 }
 558 
 559 void CompileQueue::print_tty() {
 560   ttyLocker ttyl;
 561   print(tty);
 562 }
 563 
 564 CompilerCounters::CompilerCounters() {
 565   _current_method[0] = '\0';
 566   _compile_type = CompileBroker::no_compile;
 567 }
 568 
 569 // ------------------------------------------------------------------
 570 // CompileBroker::compilation_init
 571 //
 572 // Initialize the Compilation object
 573 void CompileBroker::compilation_init_phase1(TRAPS) {
 574   // No need to initialize compilation system if we do not use it.
 575   if (!UseCompiler) {
 576     return;
 577   }
 578   // Set the interface to the current compiler(s).
 579   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 580   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 581 
 582 #if INCLUDE_JVMCI
 583   if (EnableJVMCI) {
 584     // This is creating a JVMCICompiler singleton.
 585     JVMCICompiler* jvmci = new JVMCICompiler();
 586 
 587     if (UseJVMCICompiler) {
 588       _compilers[1] = jvmci;
 589       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 590         if (BootstrapJVMCI) {
 591           // JVMCI will bootstrap so give it more threads
 592           _c2_count = MIN2(32, os::active_processor_count());
 593         }
 594       } else {
 595         _c2_count = JVMCIThreads;
 596       }
 597       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 598       } else {
 599         _c1_count = JVMCIHostThreads;
 600       }
 601     }
 602   }
 603 #endif // INCLUDE_JVMCI
 604 
 605 #ifdef COMPILER1
 606   if (_c1_count > 0) {
 607     _compilers[0] = new Compiler();
 608   }
 609 #endif // COMPILER1
 610 
 611 #ifdef COMPILER2
 612   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 613     if (_c2_count > 0) {
 614       _compilers[1] = new C2Compiler();
 615     }
 616   }
 617 #endif // COMPILER2
 618 
 619   // Start the compiler thread(s) and the sweeper thread
 620   init_compiler_sweeper_threads();
 621   // totalTime performance counter is always created as it is required
 622   // by the implementation of java.lang.management.CompilationMBean.
 623   {
 624     EXCEPTION_MARK;
 625     _perf_total_compilation =
 626                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 627                                                  PerfData::U_Ticks, CHECK);
 628   }
 629 
 630   if (UsePerfData) {
 631 
 632     EXCEPTION_MARK;
 633 
 634     // create the jvmstat performance counters
 635     _perf_osr_compilation =
 636                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 637                                                  PerfData::U_Ticks, CHECK);
 638 
 639     _perf_standard_compilation =
 640                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 641                                                  PerfData::U_Ticks, CHECK);
 642 
 643     _perf_total_bailout_count =
 644                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 645                                                  PerfData::U_Events, CHECK);
 646 
 647     _perf_total_invalidated_count =
 648                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 649                                                  PerfData::U_Events, CHECK);
 650 
 651     _perf_total_compile_count =
 652                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 653                                                  PerfData::U_Events, CHECK);
 654     _perf_total_osr_compile_count =
 655                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 656                                                  PerfData::U_Events, CHECK);
 657 
 658     _perf_total_standard_compile_count =
 659                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 660                                                  PerfData::U_Events, CHECK);
 661 
 662     _perf_sum_osr_bytes_compiled =
 663                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 664                                                  PerfData::U_Bytes, CHECK);
 665 
 666     _perf_sum_standard_bytes_compiled =
 667                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 668                                                  PerfData::U_Bytes, CHECK);
 669 
 670     _perf_sum_nmethod_size =
 671                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 672                                                  PerfData::U_Bytes, CHECK);
 673 
 674     _perf_sum_nmethod_code_size =
 675                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 676                                                  PerfData::U_Bytes, CHECK);
 677 
 678     _perf_last_method =
 679                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 680                                        CompilerCounters::cmname_buffer_length,
 681                                        "", CHECK);
 682 
 683     _perf_last_failed_method =
 684             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 685                                        CompilerCounters::cmname_buffer_length,
 686                                        "", CHECK);
 687 
 688     _perf_last_invalidated_method =
 689         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 690                                      CompilerCounters::cmname_buffer_length,
 691                                      "", CHECK);
 692 
 693     _perf_last_compile_type =
 694              PerfDataManager::create_variable(SUN_CI, "lastType",
 695                                               PerfData::U_None,
 696                                               (jlong)CompileBroker::no_compile,
 697                                               CHECK);
 698 
 699     _perf_last_compile_size =
 700              PerfDataManager::create_variable(SUN_CI, "lastSize",
 701                                               PerfData::U_Bytes,
 702                                               (jlong)CompileBroker::no_compile,
 703                                               CHECK);
 704 
 705 
 706     _perf_last_failed_type =
 707              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 708                                               PerfData::U_None,
 709                                               (jlong)CompileBroker::no_compile,
 710                                               CHECK);
 711 
 712     _perf_last_invalidated_type =
 713          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 714                                           PerfData::U_None,
 715                                           (jlong)CompileBroker::no_compile,
 716                                           CHECK);
 717   }
 718 }
 719 
 720 // Completes compiler initialization. Compilation requests submitted
 721 // prior to this will be silently ignored.
 722 void CompileBroker::compilation_init_phase2() {
 723   _initialized = true;
 724 }
 725 
 726 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 727   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
 728   Handle thread_group(THREAD, Universe::system_thread_group());
 729   return JavaCalls::construct_new_instance(
 730                        SystemDictionary::Thread_klass(),
 731                        vmSymbols::threadgroup_string_void_signature(),
 732                        thread_group,
 733                        string,
 734                        CHECK_NH);
 735 }
 736 
 737 
 738 JavaThread* CompileBroker::make_thread(jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, TRAPS) {
 739   JavaThread* thread = NULL;
 740   {
 741     MutexLocker mu(Threads_lock, THREAD);
 742     if (comp != NULL) {
 743       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 744         CompilerCounters* counters = new CompilerCounters();
 745         thread = new CompilerThread(queue, counters);
 746       }
 747     } else {
 748       thread = new CodeCacheSweeperThread();
 749     }
 750     // At this point the new CompilerThread data-races with this startup
 751     // thread (which I believe is the primoridal thread and NOT the VM
 752     // thread).  This means Java bytecodes being executed at startup can
 753     // queue compile jobs which will run at whatever default priority the
 754     // newly created CompilerThread runs at.
 755 
 756 
 757     // At this point it may be possible that no osthread was created for the
 758     // JavaThread due to lack of memory. We would have to throw an exception
 759     // in that case. However, since this must work and we do not allow
 760     // exceptions anyway, check and abort if this fails. But first release the
 761     // lock.
 762 
 763     if (thread != NULL && thread->osthread() != NULL) {
 764 
 765       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), thread);
 766 
 767       // Note that this only sets the JavaThread _priority field, which by
 768       // definition is limited to Java priorities and not OS priorities.
 769       // The os-priority is set in the CompilerThread startup code itself
 770 
 771       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
 772 
 773       // Note that we cannot call os::set_priority because it expects Java
 774       // priorities and we are *explicitly* using OS priorities so that it's
 775       // possible to set the compiler thread priority higher than any Java
 776       // thread.
 777 
 778       int native_prio = CompilerThreadPriority;
 779       if (native_prio == -1) {
 780         if (UseCriticalCompilerThreadPriority) {
 781           native_prio = os::java_to_os_priority[CriticalPriority];
 782         } else {
 783           native_prio = os::java_to_os_priority[NearMaxPriority];
 784         }
 785       }
 786       os::set_native_priority(thread, native_prio);
 787 
 788       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
 789 
 790       thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
 791       if (comp != NULL) {
 792         thread->as_CompilerThread()->set_compiler(comp);
 793       }
 794       Threads::add(thread);
 795       Thread::start(thread);
 796     }
 797   }
 798 
 799   // First release lock before aborting VM.
 800   if (thread == NULL || thread->osthread() == NULL) {
 801     if (UseDynamicNumberOfCompilerThreads && comp != NULL && comp->num_compiler_threads() > 0) {
 802       if (thread != NULL) {
 803         thread->smr_delete();
 804       }
 805       return NULL;
 806     }
 807     vm_exit_during_initialization("java.lang.OutOfMemoryError",
 808                                   os::native_thread_creation_failed_msg());
 809   }
 810 
 811   // Let go of Threads_lock before yielding
 812   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 813 
 814   return thread;
 815 }
 816 
 817 
 818 void CompileBroker::init_compiler_sweeper_threads() {
 819   EXCEPTION_MARK;
 820 #if !defined(ZERO)
 821   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 822 #endif // !ZERO
 823   // Initialize the compilation queue
 824   if (_c2_count > 0) {
 825     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 826     _c2_compile_queue  = new CompileQueue(name);
 827     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 828     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 829   }
 830   if (_c1_count > 0) {
 831     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 832     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 833     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 834   }
 835 
 836   char name_buffer[256];
 837 
 838   for (int i = 0; i < _c2_count; i++) {
 839     // Create a name for our thread.
 840     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 841     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 842     jobject thread_handle = JNIHandles::make_global(thread_oop);
 843     _compiler2_objects[i] = thread_handle;
 844     _compiler2_logs[i] = NULL;
 845 
 846     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 847       JavaThread *ct = make_thread(thread_handle, _c2_compile_queue, _compilers[1], CHECK);
 848       assert(ct != NULL, "should have been handled for initial thread");
 849       _compilers[1]->set_num_compiler_threads(i + 1);
 850       if (TraceCompilerThreads) {
 851         ResourceMark rm;
 852         MutexLocker mu(Threads_lock);
 853         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 854       }
 855     }
 856   }
 857 
 858   for (int i = 0; i < _c1_count; i++) {
 859     // Create a name for our thread.
 860     sprintf(name_buffer, "C1 CompilerThread%d", i);
 861     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 862     jobject thread_handle = JNIHandles::make_global(thread_oop);
 863     _compiler1_objects[i] = thread_handle;
 864     _compiler1_logs[i] = NULL;
 865 
 866     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 867       JavaThread *ct = make_thread(thread_handle, _c1_compile_queue, _compilers[0], CHECK);
 868       assert(ct != NULL, "should have been handled for initial thread");
 869       _compilers[0]->set_num_compiler_threads(i + 1);
 870       if (TraceCompilerThreads) {
 871         ResourceMark rm;
 872         MutexLocker mu(Threads_lock);
 873         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 874       }
 875     }
 876   }
 877 
 878   if (UsePerfData) {
 879     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
 880   }
 881 
 882   if (MethodFlushing) {
 883     // Initialize the sweeper thread
 884     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
 885     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
 886     make_thread(thread_handle, NULL, NULL, CHECK);
 887   }
 888 }
 889 
 890 void CompileBroker::possibly_add_compiler_threads() {
 891   EXCEPTION_MARK;
 892 
 893   julong available_memory = os::available_memory();
 894   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
 895   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
 896          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
 897 
 898   // Only do attempt to start additional threads if the lock is free.
 899   if (!CompileThread_lock->try_lock()) return;
 900 
 901   if (_c2_compile_queue != NULL) {
 902     int old_c2_count = _compilers[1]->num_compiler_threads();
 903     int new_c2_count = MIN4(_c2_count,
 904         _c2_compile_queue->size() / 2,
 905         (int)(available_memory / (200*M)),
 906         (int)(available_cc_np / (128*K)));
 907 
 908     for (int i = old_c2_count; i < new_c2_count; i++) {
 909       JavaThread *ct = make_thread(compiler2_object(i), _c2_compile_queue, _compilers[1], CHECK);
 910       if (ct == NULL) break;
 911       _compilers[1]->set_num_compiler_threads(i + 1);
 912       if (TraceCompilerThreads) {
 913         ResourceMark rm;
 914         MutexLocker mu(Threads_lock);
 915         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
 916                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
 917       }
 918     }
 919   }
 920 
 921   if (_c1_compile_queue != NULL) {
 922     int old_c1_count = _compilers[0]->num_compiler_threads();
 923     int new_c1_count = MIN4(_c1_count,
 924         _c1_compile_queue->size() / 4,
 925         (int)(available_memory / (100*M)),
 926         (int)(available_cc_p / (128*K)));
 927 
 928     for (int i = old_c1_count; i < new_c1_count; i++) {
 929       JavaThread *ct = make_thread(compiler1_object(i), _c1_compile_queue, _compilers[0], CHECK);
 930       if (ct == NULL) break;
 931       _compilers[0]->set_num_compiler_threads(i + 1);
 932       if (TraceCompilerThreads) {
 933         ResourceMark rm;
 934         MutexLocker mu(Threads_lock);
 935         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
 936                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
 937       }
 938     }
 939   }
 940 
 941   CompileThread_lock->unlock();
 942 }
 943 
 944 
 945 /**
 946  * Set the methods on the stack as on_stack so that redefine classes doesn't
 947  * reclaim them. This method is executed at a safepoint.
 948  */
 949 void CompileBroker::mark_on_stack() {
 950   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
 951   // Since we are at a safepoint, we do not need a lock to access
 952   // the compile queues.
 953   if (_c2_compile_queue != NULL) {
 954     _c2_compile_queue->mark_on_stack();
 955   }
 956   if (_c1_compile_queue != NULL) {
 957     _c1_compile_queue->mark_on_stack();
 958   }
 959 }
 960 
 961 // ------------------------------------------------------------------
 962 // CompileBroker::compile_method
 963 //
 964 // Request compilation of a method.
 965 void CompileBroker::compile_method_base(const methodHandle& method,
 966                                         int osr_bci,
 967                                         int comp_level,
 968                                         const methodHandle& hot_method,
 969                                         int hot_count,
 970                                         CompileTask::CompileReason compile_reason,
 971                                         bool blocking,
 972                                         Thread* thread) {
 973   guarantee(!method->is_abstract(), "cannot compile abstract methods");
 974   assert(method->method_holder()->is_instance_klass(),
 975          "sanity check");
 976   assert(!method->method_holder()->is_not_initialized(),
 977          "method holder must be initialized");
 978   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
 979 
 980   if (CIPrintRequests) {
 981     tty->print("request: ");
 982     method->print_short_name(tty);
 983     if (osr_bci != InvocationEntryBci) {
 984       tty->print(" osr_bci: %d", osr_bci);
 985     }
 986     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
 987     if (!hot_method.is_null()) {
 988       tty->print(" hot: ");
 989       if (hot_method() != method()) {
 990           hot_method->print_short_name(tty);
 991       } else {
 992         tty->print("yes");
 993       }
 994     }
 995     tty->cr();
 996   }
 997 
 998   // A request has been made for compilation.  Before we do any
 999   // real work, check to see if the method has been compiled
1000   // in the meantime with a definitive result.
1001   if (compilation_is_complete(method, osr_bci, comp_level)) {
1002     return;
1003   }
1004 
1005 #ifndef PRODUCT
1006   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1007     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1008       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1009       return;
1010     }
1011   }
1012 #endif
1013 
1014   // If this method is already in the compile queue, then
1015   // we do not block the current thread.
1016   if (compilation_is_in_queue(method)) {
1017     // We may want to decay our counter a bit here to prevent
1018     // multiple denied requests for compilation.  This is an
1019     // open compilation policy issue. Note: The other possibility,
1020     // in the case that this is a blocking compile request, is to have
1021     // all subsequent blocking requesters wait for completion of
1022     // ongoing compiles. Note that in this case we'll need a protocol
1023     // for freeing the associated compile tasks. [Or we could have
1024     // a single static monitor on which all these waiters sleep.]
1025     return;
1026   }
1027 
1028   if (TieredCompilation) {
1029     // Tiered policy requires MethodCounters to exist before adding a method to
1030     // the queue. Create if we don't have them yet.
1031     method->get_method_counters(thread);
1032   }
1033 
1034   // Outputs from the following MutexLocker block:
1035   CompileTask* task     = NULL;
1036   CompileQueue* queue  = compile_queue(comp_level);
1037 
1038   // Acquire our lock.
1039   {
1040     MutexLocker locker(MethodCompileQueue_lock, thread);
1041 
1042     // Make sure the method has not slipped into the queues since
1043     // last we checked; note that those checks were "fast bail-outs".
1044     // Here we need to be more careful, see 14012000 below.
1045     if (compilation_is_in_queue(method)) {
1046       return;
1047     }
1048 
1049     // We need to check again to see if the compilation has
1050     // completed.  A previous compilation may have registered
1051     // some result.
1052     if (compilation_is_complete(method, osr_bci, comp_level)) {
1053       return;
1054     }
1055 
1056     // We now know that this compilation is not pending, complete,
1057     // or prohibited.  Assign a compile_id to this compilation
1058     // and check to see if it is in our [Start..Stop) range.
1059     int compile_id = assign_compile_id(method, osr_bci);
1060     if (compile_id == 0) {
1061       // The compilation falls outside the allowed range.
1062       return;
1063     }
1064 
1065 #if INCLUDE_JVMCI
1066     if (UseJVMCICompiler && blocking) {
1067       // Don't allow blocking compiles for requests triggered by JVMCI.
1068       if (thread->is_Compiler_thread()) {
1069         blocking = false;
1070       }
1071 
1072       if (!UseJVMCINativeLibrary) {
1073         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1074         vframeStream vfst((JavaThread*) thread);
1075         for (; !vfst.at_end(); vfst.next()) {
1076           if (vfst.method()->is_static_initializer() ||
1077               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1078                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1079             blocking = false;
1080             break;
1081           }
1082         }
1083       }
1084 
1085       // Don't allow blocking compilation requests to JVMCI
1086       // if JVMCI itself is not yet initialized
1087       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1088         blocking = false;
1089       }
1090 
1091       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1092       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1093       // such as the DestroyJavaVM thread.
1094       if (JVMCI::shutdown_called()) {
1095         blocking = false;
1096       }
1097     }
1098 #endif // INCLUDE_JVMCI
1099 
1100     // We will enter the compilation in the queue.
1101     // 14012000: Note that this sets the queued_for_compile bits in
1102     // the target method. We can now reason that a method cannot be
1103     // queued for compilation more than once, as follows:
1104     // Before a thread queues a task for compilation, it first acquires
1105     // the compile queue lock, then checks if the method's queued bits
1106     // are set or it has already been compiled. Thus there can not be two
1107     // instances of a compilation task for the same method on the
1108     // compilation queue. Consider now the case where the compilation
1109     // thread has already removed a task for that method from the queue
1110     // and is in the midst of compiling it. In this case, the
1111     // queued_for_compile bits must be set in the method (and these
1112     // will be visible to the current thread, since the bits were set
1113     // under protection of the compile queue lock, which we hold now.
1114     // When the compilation completes, the compiler thread first sets
1115     // the compilation result and then clears the queued_for_compile
1116     // bits. Neither of these actions are protected by a barrier (or done
1117     // under the protection of a lock), so the only guarantee we have
1118     // (on machines with TSO (Total Store Order)) is that these values
1119     // will update in that order. As a result, the only combinations of
1120     // these bits that the current thread will see are, in temporal order:
1121     // <RESULT, QUEUE> :
1122     //     <0, 1> : in compile queue, but not yet compiled
1123     //     <1, 1> : compiled but queue bit not cleared
1124     //     <1, 0> : compiled and queue bit cleared
1125     // Because we first check the queue bits then check the result bits,
1126     // we are assured that we cannot introduce a duplicate task.
1127     // Note that if we did the tests in the reverse order (i.e. check
1128     // result then check queued bit), we could get the result bit before
1129     // the compilation completed, and the queue bit after the compilation
1130     // completed, and end up introducing a "duplicate" (redundant) task.
1131     // In that case, the compiler thread should first check if a method
1132     // has already been compiled before trying to compile it.
1133     // NOTE: in the event that there are multiple compiler threads and
1134     // there is de-optimization/recompilation, things will get hairy,
1135     // and in that case it's best to protect both the testing (here) of
1136     // these bits, and their updating (here and elsewhere) under a
1137     // common lock.
1138     task = create_compile_task(queue,
1139                                compile_id, method,
1140                                osr_bci, comp_level,
1141                                hot_method, hot_count, compile_reason,
1142                                blocking);
1143   }
1144 
1145   if (blocking) {
1146     wait_for_completion(task);
1147   }
1148 }
1149 
1150 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1151                                        int comp_level,
1152                                        const methodHandle& hot_method, int hot_count,
1153                                        CompileTask::CompileReason compile_reason,
1154                                        Thread* THREAD) {
1155   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1156   if (!_initialized || comp_level == CompLevel_none) {
1157     return NULL;
1158   }
1159 
1160   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1161   assert(comp != NULL, "Ensure we have a compiler");
1162 
1163   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1164   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1165   DirectivesStack::release(directive);
1166   return nm;
1167 }
1168 
1169 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1170                                          int comp_level,
1171                                          const methodHandle& hot_method, int hot_count,
1172                                          CompileTask::CompileReason compile_reason,
1173                                          DirectiveSet* directive,
1174                                          Thread* THREAD) {
1175 
1176   // make sure arguments make sense
1177   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1178   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1179   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1180   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1181   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1182   // allow any levels for WhiteBox
1183   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1184   // return quickly if possible
1185 
1186   // lock, make sure that the compilation
1187   // isn't prohibited in a straightforward way.
1188   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1189   if (comp == NULL || !comp->can_compile_method(method) ||
1190       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1191     return NULL;
1192   }
1193 
1194 #if INCLUDE_JVMCI
1195   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1196     return NULL;
1197   }
1198 #endif
1199 
1200   if (osr_bci == InvocationEntryBci) {
1201     // standard compilation
1202     CompiledMethod* method_code = method->code();
1203     if (method_code != NULL && method_code->is_nmethod()) {
1204       if (compilation_is_complete(method, osr_bci, comp_level)) {
1205         return (nmethod*) method_code;
1206       }
1207     }
1208     if (method->is_not_compilable(comp_level)) {
1209       return NULL;
1210     }
1211   } else {
1212     // osr compilation
1213 #ifndef TIERED
1214     // seems like an assert of dubious value
1215     assert(comp_level == CompLevel_highest_tier,
1216            "all OSR compiles are assumed to be at a single compilation level");
1217 #endif // TIERED
1218     // We accept a higher level osr method
1219     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1220     if (nm != NULL) return nm;
1221     if (method->is_not_osr_compilable(comp_level)) return NULL;
1222   }
1223 
1224   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1225   // some prerequisites that are compiler specific
1226   if (comp->is_c2()) {
1227     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1228     // Resolve all classes seen in the signature of the method
1229     // we are compiling.
1230     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1231   }
1232 
1233   // If the method is native, do the lookup in the thread requesting
1234   // the compilation. Native lookups can load code, which is not
1235   // permitted during compilation.
1236   //
1237   // Note: A native method implies non-osr compilation which is
1238   //       checked with an assertion at the entry of this method.
1239   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1240     bool in_base_library;
1241     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1242     if (HAS_PENDING_EXCEPTION) {
1243       // In case of an exception looking up the method, we just forget
1244       // about it. The interpreter will kick-in and throw the exception.
1245       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1246       CLEAR_PENDING_EXCEPTION;
1247       return NULL;
1248     }
1249     assert(method->has_native_function(), "must have native code by now");
1250   }
1251 
1252   // RedefineClasses() has replaced this method; just return
1253   if (method->is_old()) {
1254     return NULL;
1255   }
1256 
1257   // JVMTI -- post_compile_event requires jmethod_id() that may require
1258   // a lock the compiling thread can not acquire. Prefetch it here.
1259   if (JvmtiExport::should_post_compiled_method_load()) {
1260     method->jmethod_id();
1261   }
1262 
1263   // do the compilation
1264   if (method->is_native()) {
1265     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1266       // The following native methods:
1267       //
1268       // java.lang.Float.intBitsToFloat
1269       // java.lang.Float.floatToRawIntBits
1270       // java.lang.Double.longBitsToDouble
1271       // java.lang.Double.doubleToRawLongBits
1272       //
1273       // are called through the interpreter even if interpreter native stubs
1274       // are not preferred (i.e., calling through adapter handlers is preferred).
1275       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1276       // if the version of the methods from the native libraries is called.
1277       // As the interpreter and the C2-intrinsified version of the methods preserves
1278       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1279       if ((UseSSE >= 1 &&
1280           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1281            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1282           (UseSSE >= 2 &&
1283            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1284             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1285         return NULL;
1286       }
1287 
1288       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1289       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1290       //
1291       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1292       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1293       AdapterHandlerLibrary::create_native_wrapper(method);
1294     } else {
1295       return NULL;
1296     }
1297   } else {
1298     // If the compiler is shut off due to code cache getting full
1299     // fail out now so blocking compiles dont hang the java thread
1300     if (!should_compile_new_jobs()) {
1301       CompilationPolicy::policy()->delay_compilation(method());
1302       return NULL;
1303     }
1304     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1305     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1306   }
1307 
1308   // return requested nmethod
1309   // We accept a higher level osr method
1310   if (osr_bci == InvocationEntryBci) {
1311     CompiledMethod* code = method->code();
1312     if (code == NULL) {
1313       return (nmethod*) code;
1314     } else {
1315       return code->as_nmethod_or_null();
1316     }
1317   }
1318   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1319 }
1320 
1321 
1322 // ------------------------------------------------------------------
1323 // CompileBroker::compilation_is_complete
1324 //
1325 // See if compilation of this method is already complete.
1326 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1327                                             int                 osr_bci,
1328                                             int                 comp_level) {
1329   bool is_osr = (osr_bci != standard_entry_bci);
1330   if (is_osr) {
1331     if (method->is_not_osr_compilable(comp_level)) {
1332       return true;
1333     } else {
1334       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1335       return (result != NULL);
1336     }
1337   } else {
1338     if (method->is_not_compilable(comp_level)) {
1339       return true;
1340     } else {
1341       CompiledMethod* result = method->code();
1342       if (result == NULL) return false;
1343       return comp_level == result->comp_level();
1344     }
1345   }
1346 }
1347 
1348 
1349 /**
1350  * See if this compilation is already requested.
1351  *
1352  * Implementation note: there is only a single "is in queue" bit
1353  * for each method.  This means that the check below is overly
1354  * conservative in the sense that an osr compilation in the queue
1355  * will block a normal compilation from entering the queue (and vice
1356  * versa).  This can be remedied by a full queue search to disambiguate
1357  * cases.  If it is deemed profitable, this may be done.
1358  */
1359 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1360   return method->queued_for_compilation();
1361 }
1362 
1363 // ------------------------------------------------------------------
1364 // CompileBroker::compilation_is_prohibited
1365 //
1366 // See if this compilation is not allowed.
1367 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1368   bool is_native = method->is_native();
1369   // Some compilers may not support the compilation of natives.
1370   AbstractCompiler *comp = compiler(comp_level);
1371   if (is_native &&
1372       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1373     method->set_not_compilable_quietly("native methods not supported", comp_level);
1374     return true;
1375   }
1376 
1377   bool is_osr = (osr_bci != standard_entry_bci);
1378   // Some compilers may not support on stack replacement.
1379   if (is_osr &&
1380       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1381     method->set_not_osr_compilable("OSR not supported", comp_level);
1382     return true;
1383   }
1384 
1385   // The method may be explicitly excluded by the user.
1386   double scale;
1387   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1388     bool quietly = CompilerOracle::should_exclude_quietly();
1389     if (PrintCompilation && !quietly) {
1390       // This does not happen quietly...
1391       ResourceMark rm;
1392       tty->print("### Excluding %s:%s",
1393                  method->is_native() ? "generation of native wrapper" : "compile",
1394                  (method->is_static() ? " static" : ""));
1395       method->print_short_name(tty);
1396       tty->cr();
1397     }
1398     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1399   }
1400 
1401   return false;
1402 }
1403 
1404 /**
1405  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1406  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1407  * The function also allows to generate separate compilation IDs for OSR compilations.
1408  */
1409 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1410 #ifdef ASSERT
1411   bool is_osr = (osr_bci != standard_entry_bci);
1412   int id;
1413   if (method->is_native()) {
1414     assert(!is_osr, "can't be osr");
1415     // Adapters, native wrappers and method handle intrinsics
1416     // should be generated always.
1417     return Atomic::add(1, &_compilation_id);
1418   } else if (CICountOSR && is_osr) {
1419     id = Atomic::add(1, &_osr_compilation_id);
1420     if (CIStartOSR <= id && id < CIStopOSR) {
1421       return id;
1422     }
1423   } else {
1424     id = Atomic::add(1, &_compilation_id);
1425     if (CIStart <= id && id < CIStop) {
1426       return id;
1427     }
1428   }
1429 
1430   // Method was not in the appropriate compilation range.
1431   method->set_not_compilable_quietly("Not in requested compile id range");
1432   return 0;
1433 #else
1434   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1435   // only _compilation_id is incremented.
1436   return Atomic::add(1, &_compilation_id);
1437 #endif
1438 }
1439 
1440 // ------------------------------------------------------------------
1441 // CompileBroker::assign_compile_id_unlocked
1442 //
1443 // Public wrapper for assign_compile_id that acquires the needed locks
1444 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1445   MutexLocker locker(MethodCompileQueue_lock, thread);
1446   return assign_compile_id(method, osr_bci);
1447 }
1448 
1449 // ------------------------------------------------------------------
1450 // CompileBroker::preload_classes
1451 void CompileBroker::preload_classes(const methodHandle& method, TRAPS) {
1452   // Move this code over from c1_Compiler.cpp
1453   ShouldNotReachHere();
1454 }
1455 
1456 
1457 // ------------------------------------------------------------------
1458 // CompileBroker::create_compile_task
1459 //
1460 // Create a CompileTask object representing the current request for
1461 // compilation.  Add this task to the queue.
1462 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1463                                                 int                 compile_id,
1464                                                 const methodHandle& method,
1465                                                 int                 osr_bci,
1466                                                 int                 comp_level,
1467                                                 const methodHandle& hot_method,
1468                                                 int                 hot_count,
1469                                                 CompileTask::CompileReason compile_reason,
1470                                                 bool                blocking) {
1471   CompileTask* new_task = CompileTask::allocate();
1472   new_task->initialize(compile_id, method, osr_bci, comp_level,
1473                        hot_method, hot_count, compile_reason,
1474                        blocking);
1475   queue->add(new_task);
1476   return new_task;
1477 }
1478 
1479 #if INCLUDE_JVMCI
1480 // The number of milliseconds to wait before checking if
1481 // JVMCI compilation has made progress.
1482 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1483 
1484 // The number of JVMCI compilation progress checks that must fail
1485 // before unblocking a thread waiting for a blocking compilation.
1486 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1487 
1488 /**
1489  * Waits for a JVMCI compiler to complete a given task. This thread
1490  * waits until either the task completes or it sees no JVMCI compilation
1491  * progress for N consecutive milliseconds where N is
1492  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1493  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1494  *
1495  * @return true if this thread needs to free/recycle the task
1496  */
1497 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1498   MonitorLocker ml(task->lock(), thread);
1499   int progress_wait_attempts = 0;
1500   int methods_compiled = jvmci->methods_compiled();
1501   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1502          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1503     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1504 
1505     bool progress;
1506     if (jvmci_compiler_thread != NULL) {
1507       // If the JVMCI compiler thread is not blocked or suspended, we deem it to be making progress.
1508       progress = jvmci_compiler_thread->thread_state() != _thread_blocked &&
1509         !jvmci_compiler_thread->is_external_suspend();
1510     } else {
1511       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1512       // that all JVMCI compiler threads are blocked on. We use the counter for
1513       // successful JVMCI compilations to determine whether JVMCI compilation
1514       // is still making progress through the JVMCI compiler queue.
1515       progress = jvmci->methods_compiled() != methods_compiled;
1516     }
1517 
1518     if (!progress) {
1519       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1520         if (PrintCompilation) {
1521           task->print(tty, "wait for blocking compilation timed out");
1522         }
1523         break;
1524       }
1525     } else {
1526       progress_wait_attempts = 0;
1527       if (jvmci_compiler_thread == NULL) {
1528         methods_compiled = jvmci->methods_compiled();
1529       }
1530     }
1531   }
1532   task->clear_waiter();
1533   return task->is_complete();
1534 }
1535 #endif
1536 
1537 /**
1538  *  Wait for the compilation task to complete.
1539  */
1540 void CompileBroker::wait_for_completion(CompileTask* task) {
1541   if (CIPrintCompileQueue) {
1542     ttyLocker ttyl;
1543     tty->print_cr("BLOCKING FOR COMPILE");
1544   }
1545 
1546   assert(task->is_blocking(), "can only wait on blocking task");
1547 
1548   JavaThread* thread = JavaThread::current();
1549   thread->set_blocked_on_compilation(true);
1550 
1551   methodHandle method(thread, task->method());
1552   bool free_task;
1553 #if INCLUDE_JVMCI
1554   AbstractCompiler* comp = compiler(task->comp_level());
1555   if (comp->is_jvmci()) {
1556     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1557   } else
1558 #endif
1559   {
1560     MonitorLocker ml(task->lock(), thread);
1561     free_task = true;
1562     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1563       ml.wait();
1564     }
1565   }
1566 
1567   thread->set_blocked_on_compilation(false);
1568   if (free_task) {
1569     if (is_compilation_disabled_forever()) {
1570       CompileTask::free(task);
1571       return;
1572     }
1573 
1574     // It is harmless to check this status without the lock, because
1575     // completion is a stable property (until the task object is recycled).
1576     assert(task->is_complete(), "Compilation should have completed");
1577     assert(task->code_handle() == NULL, "must be reset");
1578 
1579     // By convention, the waiter is responsible for recycling a
1580     // blocking CompileTask. Since there is only one waiter ever
1581     // waiting on a CompileTask, we know that no one else will
1582     // be using this CompileTask; we can free it.
1583     CompileTask::free(task);
1584   }
1585 }
1586 
1587 /**
1588  * Initialize compiler thread(s) + compiler object(s). The postcondition
1589  * of this function is that the compiler runtimes are initialized and that
1590  * compiler threads can start compiling.
1591  */
1592 bool CompileBroker::init_compiler_runtime() {
1593   CompilerThread* thread = CompilerThread::current();
1594   AbstractCompiler* comp = thread->compiler();
1595   // Final sanity check - the compiler object must exist
1596   guarantee(comp != NULL, "Compiler object must exist");
1597 
1598   int system_dictionary_modification_counter;
1599   {
1600     MutexLocker locker(Compile_lock, thread);
1601     system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
1602   }
1603 
1604   {
1605     // Must switch to native to allocate ci_env
1606     ThreadToNativeFromVM ttn(thread);
1607     ciEnv ci_env(NULL, system_dictionary_modification_counter);
1608     // Cache Jvmti state
1609     ci_env.cache_jvmti_state();
1610     // Cache DTrace flags
1611     ci_env.cache_dtrace_flags();
1612 
1613     // Switch back to VM state to do compiler initialization
1614     ThreadInVMfromNative tv(thread);
1615     ResetNoHandleMark rnhm;
1616 
1617     // Perform per-thread and global initializations
1618     comp->initialize();
1619   }
1620 
1621   if (comp->is_failed()) {
1622     disable_compilation_forever();
1623     // If compiler initialization failed, no compiler thread that is specific to a
1624     // particular compiler runtime will ever start to compile methods.
1625     shutdown_compiler_runtime(comp, thread);
1626     return false;
1627   }
1628 
1629   // C1 specific check
1630   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1631     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1632     return false;
1633   }
1634 
1635   return true;
1636 }
1637 
1638 /**
1639  * If C1 and/or C2 initialization failed, we shut down all compilation.
1640  * We do this to keep things simple. This can be changed if it ever turns
1641  * out to be a problem.
1642  */
1643 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1644   // Free buffer blob, if allocated
1645   if (thread->get_buffer_blob() != NULL) {
1646     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1647     CodeCache::free(thread->get_buffer_blob());
1648   }
1649 
1650   if (comp->should_perform_shutdown()) {
1651     // There are two reasons for shutting down the compiler
1652     // 1) compiler runtime initialization failed
1653     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1654     warning("%s initialization failed. Shutting down all compilers", comp->name());
1655 
1656     // Only one thread per compiler runtime object enters here
1657     // Set state to shut down
1658     comp->set_shut_down();
1659 
1660     // Delete all queued compilation tasks to make compiler threads exit faster.
1661     if (_c1_compile_queue != NULL) {
1662       _c1_compile_queue->free_all();
1663     }
1664 
1665     if (_c2_compile_queue != NULL) {
1666       _c2_compile_queue->free_all();
1667     }
1668 
1669     // Set flags so that we continue execution with using interpreter only.
1670     UseCompiler    = false;
1671     UseInterpreter = true;
1672 
1673     // We could delete compiler runtimes also. However, there are references to
1674     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1675     // fail. This can be done later if necessary.
1676   }
1677 }
1678 
1679 /**
1680  * Helper function to create new or reuse old CompileLog.
1681  */
1682 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1683   if (!LogCompilation) return NULL;
1684 
1685   AbstractCompiler *compiler = ct->compiler();
1686   bool c1 = compiler->is_c1();
1687   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1688   assert(compiler_objects != NULL, "must be initialized at this point");
1689   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1690   assert(logs != NULL, "must be initialized at this point");
1691   int count = c1 ? _c1_count : _c2_count;
1692 
1693   // Find Compiler number by its threadObj.
1694   oop compiler_obj = ct->threadObj();
1695   int compiler_number = 0;
1696   bool found = false;
1697   for (; compiler_number < count; compiler_number++) {
1698     if (oopDesc::equals(JNIHandles::resolve_non_null(compiler_objects[compiler_number]), compiler_obj)) {
1699       found = true;
1700       break;
1701     }
1702   }
1703   assert(found, "Compiler must exist at this point");
1704 
1705   // Determine pointer for this thread's log.
1706   CompileLog** log_ptr = &logs[compiler_number];
1707 
1708   // Return old one if it exists.
1709   CompileLog* log = *log_ptr;
1710   if (log != NULL) {
1711     ct->init_log(log);
1712     return log;
1713   }
1714 
1715   // Create a new one and remember it.
1716   init_compiler_thread_log();
1717   log = ct->log();
1718   *log_ptr = log;
1719   return log;
1720 }
1721 
1722 // ------------------------------------------------------------------
1723 // CompileBroker::compiler_thread_loop
1724 //
1725 // The main loop run by a CompilerThread.
1726 void CompileBroker::compiler_thread_loop() {
1727   CompilerThread* thread = CompilerThread::current();
1728   CompileQueue* queue = thread->queue();
1729   // For the thread that initializes the ciObjectFactory
1730   // this resource mark holds all the shared objects
1731   ResourceMark rm;
1732 
1733   // First thread to get here will initialize the compiler interface
1734 
1735   {
1736     ASSERT_IN_VM;
1737     MutexLocker only_one (CompileThread_lock, thread);
1738     if (!ciObjectFactory::is_initialized()) {
1739       ciObjectFactory::initialize();
1740     }
1741   }
1742 
1743   // Open a log.
1744   CompileLog* log = get_log(thread);
1745   if (log != NULL) {
1746     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1747                     thread->name(),
1748                     os::current_thread_id(),
1749                     os::current_process_id());
1750     log->stamp();
1751     log->end_elem();
1752   }
1753 
1754   // If compiler thread/runtime initialization fails, exit the compiler thread
1755   if (!init_compiler_runtime()) {
1756     return;
1757   }
1758 
1759   thread->start_idle_timer();
1760 
1761   // Poll for new compilation tasks as long as the JVM runs. Compilation
1762   // should only be disabled if something went wrong while initializing the
1763   // compiler runtimes. This, in turn, should not happen. The only known case
1764   // when compiler runtime initialization fails is if there is not enough free
1765   // space in the code cache to generate the necessary stubs, etc.
1766   while (!is_compilation_disabled_forever()) {
1767     // We need this HandleMark to avoid leaking VM handles.
1768     HandleMark hm(thread);
1769 
1770     CompileTask* task = queue->get();
1771     if (task == NULL) {
1772       if (UseDynamicNumberOfCompilerThreads) {
1773         // Access compiler_count under lock to enforce consistency.
1774         MutexLocker only_one(CompileThread_lock);
1775         if (can_remove(thread, true)) {
1776           if (TraceCompilerThreads) {
1777             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1778                           thread->name(), thread->idle_time_millis());
1779           }
1780           // Free buffer blob, if allocated
1781           if (thread->get_buffer_blob() != NULL) {
1782             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1783             CodeCache::free(thread->get_buffer_blob());
1784           }
1785           return; // Stop this thread.
1786         }
1787       }
1788     } else {
1789       // Assign the task to the current thread.  Mark this compilation
1790       // thread as active for the profiler.
1791       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1792       // occurs after fetching the compile task off the queue.
1793       CompileTaskWrapper ctw(task);
1794       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1795       task->set_code_handle(&result_handle);
1796       methodHandle method(thread, task->method());
1797 
1798       // Never compile a method if breakpoints are present in it
1799       if (method()->number_of_breakpoints() == 0) {
1800         // Compile the method.
1801         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1802           invoke_compiler_on_method(task);
1803           thread->start_idle_timer();
1804         } else {
1805           // After compilation is disabled, remove remaining methods from queue
1806           method->clear_queued_for_compilation();
1807           task->set_failure_reason("compilation is disabled");
1808         }
1809       }
1810 
1811       if (UseDynamicNumberOfCompilerThreads) {
1812         possibly_add_compiler_threads();
1813       }
1814     }
1815   }
1816 
1817   // Shut down compiler runtime
1818   shutdown_compiler_runtime(thread->compiler(), thread);
1819 }
1820 
1821 // ------------------------------------------------------------------
1822 // CompileBroker::init_compiler_thread_log
1823 //
1824 // Set up state required by +LogCompilation.
1825 void CompileBroker::init_compiler_thread_log() {
1826     CompilerThread* thread = CompilerThread::current();
1827     char  file_name[4*K];
1828     FILE* fp = NULL;
1829     intx thread_id = os::current_thread_id();
1830     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1831       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
1832       if (dir == NULL) {
1833         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1834                      thread_id, os::current_process_id());
1835       } else {
1836         jio_snprintf(file_name, sizeof(file_name),
1837                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1838                      os::file_separator(), thread_id, os::current_process_id());
1839       }
1840 
1841       fp = fopen(file_name, "wt");
1842       if (fp != NULL) {
1843         if (LogCompilation && Verbose) {
1844           tty->print_cr("Opening compilation log %s", file_name);
1845         }
1846         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
1847         if (log == NULL) {
1848           fclose(fp);
1849           return;
1850         }
1851         thread->init_log(log);
1852 
1853         if (xtty != NULL) {
1854           ttyLocker ttyl;
1855           // Record any per thread log files
1856           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
1857         }
1858         return;
1859       }
1860     }
1861     warning("Cannot open log file: %s", file_name);
1862 }
1863 
1864 void CompileBroker::log_metaspace_failure() {
1865   const char* message = "some methods may not be compiled because metaspace "
1866                         "is out of memory";
1867   if (_compilation_log != NULL) {
1868     _compilation_log->log_metaspace_failure(message);
1869   }
1870   if (PrintCompilation) {
1871     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
1872   }
1873 }
1874 
1875 
1876 // ------------------------------------------------------------------
1877 // CompileBroker::set_should_block
1878 //
1879 // Set _should_block.
1880 // Call this from the VM, with Threads_lock held and a safepoint requested.
1881 void CompileBroker::set_should_block() {
1882   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
1883   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
1884 #ifndef PRODUCT
1885   if (PrintCompilation && (Verbose || WizardMode))
1886     tty->print_cr("notifying compiler thread pool to block");
1887 #endif
1888   _should_block = true;
1889 }
1890 
1891 // ------------------------------------------------------------------
1892 // CompileBroker::maybe_block
1893 //
1894 // Call this from the compiler at convenient points, to poll for _should_block.
1895 void CompileBroker::maybe_block() {
1896   if (_should_block) {
1897 #ifndef PRODUCT
1898     if (PrintCompilation && (Verbose || WizardMode))
1899       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
1900 #endif
1901     ThreadInVMfromNative tivfn(JavaThread::current());
1902   }
1903 }
1904 
1905 // wrapper for CodeCache::print_summary()
1906 static void codecache_print(bool detailed)
1907 {
1908   ResourceMark rm;
1909   stringStream s;
1910   // Dump code cache  into a buffer before locking the tty,
1911   {
1912     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1913     CodeCache::print_summary(&s, detailed);
1914   }
1915   ttyLocker ttyl;
1916   tty->print("%s", s.as_string());
1917 }
1918 
1919 // wrapper for CodeCache::print_summary() using outputStream
1920 static void codecache_print(outputStream* out, bool detailed) {
1921   ResourceMark rm;
1922   stringStream s;
1923 
1924   // Dump code cache into a buffer
1925   {
1926     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1927     CodeCache::print_summary(&s, detailed);
1928   }
1929 
1930   char* remaining_log = s.as_string();
1931   while (*remaining_log != '\0') {
1932     char* eol = strchr(remaining_log, '\n');
1933     if (eol == NULL) {
1934       out->print_cr("%s", remaining_log);
1935       remaining_log = remaining_log + strlen(remaining_log);
1936     } else {
1937       *eol = '\0';
1938       out->print_cr("%s", remaining_log);
1939       remaining_log = eol + 1;
1940     }
1941   }
1942 }
1943 
1944 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
1945                                  int compilable, const char* failure_reason) {
1946   if (success) {
1947     task->mark_success();
1948     if (ci_env != NULL) {
1949       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
1950     }
1951     if (_compilation_log != NULL) {
1952       nmethod* code = task->code();
1953       if (code != NULL) {
1954         _compilation_log->log_nmethod(thread, code);
1955       }
1956     }
1957   } else if (AbortVMOnCompilationFailure) {
1958     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
1959       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
1960     }
1961     if (compilable == ciEnv::MethodCompilable_never) {
1962       fatal("Never compilable: %s", failure_reason);
1963     }
1964   }
1965   // simulate crash during compilation
1966   assert(task->compile_id() != CICrashAt, "just as planned");
1967 }
1968 
1969 static void post_compilation_event(EventCompilation* event, CompileTask* task) {
1970   assert(event != NULL, "invariant");
1971   assert(event->should_commit(), "invariant");
1972   event->set_method(task->method());
1973   event->set_compileId(task->compile_id());
1974   event->set_compileLevel(task->comp_level());
1975   event->set_succeded(task->is_success());
1976   event->set_isOsr(task->osr_bci() != CompileBroker::standard_entry_bci);
1977   event->set_codeSize((task->code() == NULL) ? 0 : task->code()->total_size());
1978   event->set_inlinedBytes(task->num_inlined_bytecodes());
1979   event->commit();
1980 }
1981 
1982 int DirectivesStack::_depth = 0;
1983 CompilerDirectives* DirectivesStack::_top = NULL;
1984 CompilerDirectives* DirectivesStack::_bottom = NULL;
1985 
1986 // ------------------------------------------------------------------
1987 // CompileBroker::invoke_compiler_on_method
1988 //
1989 // Compile a method.
1990 //
1991 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
1992   task->print_ul();
1993   if (PrintCompilation) {
1994     ResourceMark rm;
1995     task->print_tty();
1996   }
1997   elapsedTimer time;
1998 
1999   CompilerThread* thread = CompilerThread::current();
2000   ResourceMark rm(thread);
2001 
2002   if (LogEvents) {
2003     _compilation_log->log_compile(thread, task);
2004   }
2005 
2006   // Common flags.
2007   uint compile_id = task->compile_id();
2008   int osr_bci = task->osr_bci();
2009   bool is_osr = (osr_bci != standard_entry_bci);
2010   bool should_log = (thread->log() != NULL);
2011   bool should_break = false;
2012   const int task_level = task->comp_level();
2013   AbstractCompiler* comp = task->compiler();
2014 
2015   DirectiveSet* directive;
2016   {
2017     // create the handle inside it's own block so it can't
2018     // accidentally be referenced once the thread transitions to
2019     // native.  The NoHandleMark before the transition should catch
2020     // any cases where this occurs in the future.
2021     methodHandle method(thread, task->method());
2022     assert(!method->is_native(), "no longer compile natives");
2023 
2024     // Look up matching directives
2025     directive = DirectivesStack::getMatchingDirective(method, comp);
2026 
2027     // Update compile information when using perfdata.
2028     if (UsePerfData) {
2029       update_compile_perf_data(thread, method, is_osr);
2030     }
2031 
2032     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2033   }
2034 
2035   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2036   if (should_log && !directive->LogOption) {
2037     should_log = false;
2038   }
2039 
2040   // Allocate a new set of JNI handles.
2041   push_jni_handle_block();
2042   Method* target_handle = task->method();
2043   int compilable = ciEnv::MethodCompilable;
2044   const char* failure_reason = NULL;
2045   bool failure_reason_on_C_heap = false;
2046   const char* retry_message = NULL;
2047 
2048   int system_dictionary_modification_counter;
2049   {
2050     MutexLocker locker(Compile_lock, thread);
2051     system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
2052   }
2053 
2054 #if INCLUDE_JVMCI
2055   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2056     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2057 
2058     TraceTime t1("compilation", &time);
2059     EventCompilation event;
2060 
2061     // Skip redefined methods
2062     if (target_handle->is_old()) {
2063       failure_reason = "redefined method";
2064       retry_message = "not retryable";
2065       compilable = ciEnv::MethodCompilable_never;
2066     } else {
2067       JVMCICompileState compile_state(task, system_dictionary_modification_counter);
2068       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2069       methodHandle method(thread, target_handle);
2070       env.runtime()->compile_method(&env, jvmci, method, osr_bci);
2071 
2072       failure_reason = compile_state.failure_reason();
2073       failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2074       if (!compile_state.retryable()) {
2075         retry_message = "not retryable";
2076         compilable = ciEnv::MethodCompilable_not_at_tier;
2077       }
2078       if (task->code() == NULL) {
2079         assert(failure_reason != NULL, "must specify failure_reason");
2080       }
2081     }
2082     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2083     if (event.should_commit()) {
2084       post_compilation_event(&event, task);
2085     }
2086 
2087   } else
2088 #endif // INCLUDE_JVMCI
2089   {
2090     NoHandleMark  nhm;
2091     ThreadToNativeFromVM ttn(thread);
2092 
2093     ciEnv ci_env(task, system_dictionary_modification_counter);
2094     if (should_break) {
2095       ci_env.set_break_at_compile(true);
2096     }
2097     if (should_log) {
2098       ci_env.set_log(thread->log());
2099     }
2100     assert(thread->env() == &ci_env, "set by ci_env");
2101     // The thread-env() field is cleared in ~CompileTaskWrapper.
2102 
2103     // Cache Jvmti state
2104     ci_env.cache_jvmti_state();
2105 
2106     // Cache DTrace flags
2107     ci_env.cache_dtrace_flags();
2108 
2109     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2110 
2111     TraceTime t1("compilation", &time);
2112     EventCompilation event;
2113 
2114     if (comp == NULL) {
2115       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2116     } else {
2117       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2118         MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2119         while (WhiteBox::compilation_locked) {
2120           locker.wait();
2121         }
2122       }
2123       comp->compile_method(&ci_env, target, osr_bci, directive);
2124     }
2125 
2126     if (!ci_env.failing() && task->code() == NULL) {
2127       //assert(false, "compiler should always document failure");
2128       // The compiler elected, without comment, not to register a result.
2129       // Do not attempt further compilations of this method.
2130       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2131     }
2132 
2133     // Copy this bit to the enclosing block:
2134     compilable = ci_env.compilable();
2135 
2136     if (ci_env.failing()) {
2137       failure_reason = ci_env.failure_reason();
2138       retry_message = ci_env.retry_message();
2139       ci_env.report_failure(failure_reason);
2140     }
2141 
2142     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2143     if (event.should_commit()) {
2144       post_compilation_event(&event, task);
2145     }
2146   }
2147   // Remove the JNI handle block after the ciEnv destructor has run in
2148   // the previous block.
2149   pop_jni_handle_block();
2150 
2151   if (failure_reason != NULL) {
2152     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2153     if (_compilation_log != NULL) {
2154       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2155     }
2156     if (PrintCompilation) {
2157       FormatBufferResource msg = retry_message != NULL ?
2158         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2159         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2160       task->print(tty, msg);
2161     }
2162   }
2163 
2164   methodHandle method(thread, task->method());
2165 
2166   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2167 
2168   collect_statistics(thread, time, task);
2169 
2170   nmethod* nm = task->code();
2171   if (nm != NULL) {
2172     nm->maybe_print_nmethod(directive);
2173   }
2174   DirectivesStack::release(directive);
2175 
2176   if (PrintCompilation && PrintCompilation2) {
2177     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2178     tty->print("%4d ", compile_id);    // print compilation number
2179     tty->print("%s ", (is_osr ? "%" : " "));
2180     if (task->code() != NULL) {
2181       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2182     }
2183     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2184   }
2185 
2186   Log(compilation, codecache) log;
2187   if (log.is_debug()) {
2188     LogStream ls(log.debug());
2189     codecache_print(&ls, /* detailed= */ false);
2190   }
2191   if (PrintCodeCacheOnCompilation) {
2192     codecache_print(/* detailed= */ false);
2193   }
2194   // Disable compilation, if required.
2195   switch (compilable) {
2196   case ciEnv::MethodCompilable_never:
2197     if (is_osr)
2198       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2199     else
2200       method->set_not_compilable_quietly("MethodCompilable_never");
2201     break;
2202   case ciEnv::MethodCompilable_not_at_tier:
2203     if (is_osr)
2204       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2205     else
2206       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2207     break;
2208   }
2209 
2210   // Note that the queued_for_compilation bits are cleared without
2211   // protection of a mutex. [They were set by the requester thread,
2212   // when adding the task to the compile queue -- at which time the
2213   // compile queue lock was held. Subsequently, we acquired the compile
2214   // queue lock to get this task off the compile queue; thus (to belabour
2215   // the point somewhat) our clearing of the bits must be occurring
2216   // only after the setting of the bits. See also 14012000 above.
2217   method->clear_queued_for_compilation();
2218 }
2219 
2220 /**
2221  * The CodeCache is full. Print warning and disable compilation.
2222  * Schedule code cache cleaning so compilation can continue later.
2223  * This function needs to be called only from CodeCache::allocate(),
2224  * since we currently handle a full code cache uniformly.
2225  */
2226 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2227   UseInterpreter = true;
2228   if (UseCompiler || AlwaysCompileLoopMethods ) {
2229     if (xtty != NULL) {
2230       ResourceMark rm;
2231       stringStream s;
2232       // Dump code cache state into a buffer before locking the tty,
2233       // because log_state() will use locks causing lock conflicts.
2234       CodeCache::log_state(&s);
2235       // Lock to prevent tearing
2236       ttyLocker ttyl;
2237       xtty->begin_elem("code_cache_full");
2238       xtty->print("%s", s.as_string());
2239       xtty->stamp();
2240       xtty->end_elem();
2241     }
2242 
2243 #ifndef PRODUCT
2244     if (ExitOnFullCodeCache) {
2245       codecache_print(/* detailed= */ true);
2246       before_exit(JavaThread::current());
2247       exit_globals(); // will delete tty
2248       vm_direct_exit(1);
2249     }
2250 #endif
2251     if (UseCodeCacheFlushing) {
2252       // Since code cache is full, immediately stop new compiles
2253       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2254         NMethodSweeper::log_sweep("disable_compiler");
2255       }
2256     } else {
2257       disable_compilation_forever();
2258     }
2259 
2260     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2261   }
2262 }
2263 
2264 // ------------------------------------------------------------------
2265 // CompileBroker::update_compile_perf_data
2266 //
2267 // Record this compilation for debugging purposes.
2268 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2269   ResourceMark rm;
2270   char* method_name = method->name()->as_C_string();
2271   char current_method[CompilerCounters::cmname_buffer_length];
2272   size_t maxLen = CompilerCounters::cmname_buffer_length;
2273 
2274   const char* class_name = method->method_holder()->name()->as_C_string();
2275 
2276   size_t s1len = strlen(class_name);
2277   size_t s2len = strlen(method_name);
2278 
2279   // check if we need to truncate the string
2280   if (s1len + s2len + 2 > maxLen) {
2281 
2282     // the strategy is to lop off the leading characters of the
2283     // class name and the trailing characters of the method name.
2284 
2285     if (s2len + 2 > maxLen) {
2286       // lop of the entire class name string, let snprintf handle
2287       // truncation of the method name.
2288       class_name += s1len; // null string
2289     }
2290     else {
2291       // lop off the extra characters from the front of the class name
2292       class_name += ((s1len + s2len + 2) - maxLen);
2293     }
2294   }
2295 
2296   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2297 
2298   int last_compile_type = normal_compile;
2299   if (CICountOSR && is_osr) {
2300     last_compile_type = osr_compile;
2301   }
2302 
2303   CompilerCounters* counters = thread->counters();
2304   counters->set_current_method(current_method);
2305   counters->set_compile_type((jlong) last_compile_type);
2306 }
2307 
2308 // ------------------------------------------------------------------
2309 // CompileBroker::push_jni_handle_block
2310 //
2311 // Push on a new block of JNI handles.
2312 void CompileBroker::push_jni_handle_block() {
2313   JavaThread* thread = JavaThread::current();
2314 
2315   // Allocate a new block for JNI handles.
2316   // Inlined code from jni_PushLocalFrame()
2317   JNIHandleBlock* java_handles = thread->active_handles();
2318   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2319   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2320   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2321   thread->set_active_handles(compile_handles);
2322 }
2323 
2324 
2325 // ------------------------------------------------------------------
2326 // CompileBroker::pop_jni_handle_block
2327 //
2328 // Pop off the current block of JNI handles.
2329 void CompileBroker::pop_jni_handle_block() {
2330   JavaThread* thread = JavaThread::current();
2331 
2332   // Release our JNI handle block
2333   JNIHandleBlock* compile_handles = thread->active_handles();
2334   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2335   thread->set_active_handles(java_handles);
2336   compile_handles->set_pop_frame_link(NULL);
2337   JNIHandleBlock::release_block(compile_handles, thread); // may block
2338 }
2339 
2340 // ------------------------------------------------------------------
2341 // CompileBroker::collect_statistics
2342 //
2343 // Collect statistics about the compilation.
2344 
2345 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2346   bool success = task->is_success();
2347   methodHandle method (thread, task->method());
2348   uint compile_id = task->compile_id();
2349   bool is_osr = (task->osr_bci() != standard_entry_bci);
2350   nmethod* code = task->code();
2351   CompilerCounters* counters = thread->counters();
2352 
2353   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2354   MutexLocker locker(CompileStatistics_lock);
2355 
2356   // _perf variables are production performance counters which are
2357   // updated regardless of the setting of the CITime and CITimeEach flags
2358   //
2359 
2360   // account all time, including bailouts and failures in this counter;
2361   // C1 and C2 counters are counting both successful and unsuccessful compiles
2362   _t_total_compilation.add(time);
2363 
2364   if (!success) {
2365     _total_bailout_count++;
2366     if (UsePerfData) {
2367       _perf_last_failed_method->set_value(counters->current_method());
2368       _perf_last_failed_type->set_value(counters->compile_type());
2369       _perf_total_bailout_count->inc();
2370     }
2371     _t_bailedout_compilation.add(time);
2372   } else if (code == NULL) {
2373     if (UsePerfData) {
2374       _perf_last_invalidated_method->set_value(counters->current_method());
2375       _perf_last_invalidated_type->set_value(counters->compile_type());
2376       _perf_total_invalidated_count->inc();
2377     }
2378     _total_invalidated_count++;
2379     _t_invalidated_compilation.add(time);
2380   } else {
2381     // Compilation succeeded
2382 
2383     // update compilation ticks - used by the implementation of
2384     // java.lang.management.CompilationMBean
2385     _perf_total_compilation->inc(time.ticks());
2386     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2387 
2388     if (CITime) {
2389       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2390       if (is_osr) {
2391         _t_osr_compilation.add(time);
2392         _sum_osr_bytes_compiled += bytes_compiled;
2393       } else {
2394         _t_standard_compilation.add(time);
2395         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2396       }
2397 
2398 #if INCLUDE_JVMCI
2399       AbstractCompiler* comp = compiler(task->comp_level());
2400       if (comp) {
2401         CompilerStatistics* stats = comp->stats();
2402         if (stats) {
2403           if (is_osr) {
2404             stats->_osr.update(time, bytes_compiled);
2405           } else {
2406             stats->_standard.update(time, bytes_compiled);
2407           }
2408           stats->_nmethods_size += code->total_size();
2409           stats->_nmethods_code_size += code->insts_size();
2410         } else { // if (!stats)
2411           assert(false, "Compiler statistics object must exist");
2412         }
2413       } else { // if (!comp)
2414         assert(false, "Compiler object must exist");
2415       }
2416 #endif // INCLUDE_JVMCI
2417     }
2418 
2419     if (UsePerfData) {
2420       // save the name of the last method compiled
2421       _perf_last_method->set_value(counters->current_method());
2422       _perf_last_compile_type->set_value(counters->compile_type());
2423       _perf_last_compile_size->set_value(method->code_size() +
2424                                          task->num_inlined_bytecodes());
2425       if (is_osr) {
2426         _perf_osr_compilation->inc(time.ticks());
2427         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2428       } else {
2429         _perf_standard_compilation->inc(time.ticks());
2430         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2431       }
2432     }
2433 
2434     if (CITimeEach) {
2435       float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds();
2436       tty->print_cr("%3d   seconds: %f bytes/sec : %f (bytes %d + %d inlined)",
2437                     compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2438     }
2439 
2440     // Collect counts of successful compilations
2441     _sum_nmethod_size      += code->total_size();
2442     _sum_nmethod_code_size += code->insts_size();
2443     _total_compile_count++;
2444 
2445     if (UsePerfData) {
2446       _perf_sum_nmethod_size->inc(     code->total_size());
2447       _perf_sum_nmethod_code_size->inc(code->insts_size());
2448       _perf_total_compile_count->inc();
2449     }
2450 
2451     if (is_osr) {
2452       if (UsePerfData) _perf_total_osr_compile_count->inc();
2453       _total_osr_compile_count++;
2454     } else {
2455       if (UsePerfData) _perf_total_standard_compile_count->inc();
2456       _total_standard_compile_count++;
2457     }
2458   }
2459   // set the current method for the thread to null
2460   if (UsePerfData) counters->set_current_method("");
2461 }
2462 
2463 const char* CompileBroker::compiler_name(int comp_level) {
2464   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2465   if (comp == NULL) {
2466     return "no compiler";
2467   } else {
2468     return (comp->name());
2469   }
2470 }
2471 
2472 #if INCLUDE_JVMCI
2473 void CompileBroker::print_times(AbstractCompiler* comp) {
2474   CompilerStatistics* stats = comp->stats();
2475   if (stats) {
2476     tty->print_cr("  %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2477                 comp->name(), stats->bytes_per_second(),
2478                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2479                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2480                 stats->_nmethods_size, stats->_nmethods_code_size);
2481   } else { // if (!stats)
2482     assert(false, "Compiler statistics object must exist");
2483   }
2484   comp->print_timers();
2485 }
2486 #endif // INCLUDE_JVMCI
2487 
2488 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2489 #if INCLUDE_JVMCI
2490   elapsedTimer standard_compilation;
2491   elapsedTimer total_compilation;
2492   elapsedTimer osr_compilation;
2493 
2494   int standard_bytes_compiled = 0;
2495   int osr_bytes_compiled = 0;
2496 
2497   int standard_compile_count = 0;
2498   int osr_compile_count = 0;
2499   int total_compile_count = 0;
2500 
2501   int nmethods_size = 0;
2502   int nmethods_code_size = 0;
2503   bool printedHeader = false;
2504 
2505   for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2506     AbstractCompiler* comp = _compilers[i];
2507     if (comp != NULL) {
2508       if (per_compiler && aggregate && !printedHeader) {
2509         printedHeader = true;
2510         tty->cr();
2511         tty->print_cr("Individual compiler times (for compiled methods only)");
2512         tty->print_cr("------------------------------------------------");
2513         tty->cr();
2514       }
2515       CompilerStatistics* stats = comp->stats();
2516 
2517       if (stats) {
2518         standard_compilation.add(stats->_standard._time);
2519         osr_compilation.add(stats->_osr._time);
2520 
2521         standard_bytes_compiled += stats->_standard._bytes;
2522         osr_bytes_compiled += stats->_osr._bytes;
2523 
2524         standard_compile_count += stats->_standard._count;
2525         osr_compile_count += stats->_osr._count;
2526 
2527         nmethods_size += stats->_nmethods_size;
2528         nmethods_code_size += stats->_nmethods_code_size;
2529       } else { // if (!stats)
2530         assert(false, "Compiler statistics object must exist");
2531       }
2532 
2533       if (per_compiler) {
2534         print_times(comp);
2535       }
2536     }
2537   }
2538   total_compile_count = osr_compile_count + standard_compile_count;
2539   total_compilation.add(osr_compilation);
2540   total_compilation.add(standard_compilation);
2541 
2542   // In hosted mode, print the JVMCI compiler specific counters manually.
2543   if (!UseJVMCICompiler) {
2544     JVMCICompiler::print_compilation_timers();
2545   }
2546 #else // INCLUDE_JVMCI
2547   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2548   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2549   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2550 
2551   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2552   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2553 
2554   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2555   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2556   int total_compile_count = CompileBroker::_total_compile_count;
2557 
2558   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2559   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2560 #endif // INCLUDE_JVMCI
2561 
2562   if (!aggregate) {
2563     return;
2564   }
2565   tty->cr();
2566   tty->print_cr("Accumulated compiler times");
2567   tty->print_cr("----------------------------------------------------------");
2568                //0000000000111111111122222222223333333333444444444455555555556666666666
2569                //0123456789012345678901234567890123456789012345678901234567890123456789
2570   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2571   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2572                 standard_compilation.seconds(),
2573                 standard_compilation.seconds() / standard_compile_count);
2574   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2575                 CompileBroker::_t_bailedout_compilation.seconds(),
2576                 CompileBroker::_t_bailedout_compilation.seconds() / CompileBroker::_total_bailout_count);
2577   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2578                 osr_compilation.seconds(),
2579                 osr_compilation.seconds() / osr_compile_count);
2580   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2581                 CompileBroker::_t_invalidated_compilation.seconds(),
2582                 CompileBroker::_t_invalidated_compilation.seconds() / CompileBroker::_total_invalidated_count);
2583 
2584   AbstractCompiler *comp = compiler(CompLevel_simple);
2585   if (comp != NULL) {
2586     tty->cr();
2587     comp->print_timers();
2588   }
2589   comp = compiler(CompLevel_full_optimization);
2590   if (comp != NULL) {
2591     tty->cr();
2592     comp->print_timers();
2593   }
2594   tty->cr();
2595   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2596   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2597   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2598   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2599   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2600   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2601   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2602   double tcs = total_compilation.seconds();
2603   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2604   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2605   tty->cr();
2606   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2607   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2608 }
2609 
2610 // Print general/accumulated JIT information.
2611 void CompileBroker::print_info(outputStream *out) {
2612   if (out == NULL) out = tty;
2613   out->cr();
2614   out->print_cr("======================");
2615   out->print_cr("   General JIT info   ");
2616   out->print_cr("======================");
2617   out->cr();
2618   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2619   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2620   out->cr();
2621   out->print_cr("CodeCache overview");
2622   out->print_cr("--------------------------------------------------------");
2623   out->cr();
2624   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2625   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2626   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2627   out->cr();
2628 
2629   out->cr();
2630   out->print_cr("CodeCache cleaning overview");
2631   out->print_cr("--------------------------------------------------------");
2632   out->cr();
2633   NMethodSweeper::print(out);
2634   out->print_cr("--------------------------------------------------------");
2635   out->cr();
2636 }
2637 
2638 // Note: tty_lock must not be held upon entry to this function.
2639 //       Print functions called from herein do "micro-locking" on tty_lock.
2640 //       That's a tradeoff which keeps together important blocks of output.
2641 //       At the same time, continuous tty_lock hold time is kept in check,
2642 //       preventing concurrently printing threads from stalling a long time.
2643 void CompileBroker::print_heapinfo(outputStream* out, const char* function, const char* granularity) {
2644   TimeStamp ts_total;
2645   TimeStamp ts_global;
2646   TimeStamp ts;
2647 
2648   bool allFun = !strcmp(function, "all");
2649   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2650   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2651   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2652   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2653   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2654   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2655   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2656   bool discard = !strcmp(function, "discard") || allFun;
2657 
2658   if (out == NULL) {
2659     out = tty;
2660   }
2661 
2662   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2663     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2664     out->cr();
2665     return;
2666   }
2667 
2668   ts_total.update(); // record starting point
2669 
2670   if (aggregate) {
2671     print_info(out);
2672   }
2673 
2674   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2675   // That prevents another thread from destroying our view on the CodeHeap.
2676   // When we request individual parts of the analysis via the jcmd interface, it is possible
2677   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2678   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2679   // across user interaction.
2680   // Acquire this lock before acquiring the CodeCache_lock.
2681   // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2682   // leading to an unnecessarily long hold time of the CodeCache_lock.
2683   ts.update(); // record starting point
2684   MutexLocker mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2685   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2686 
2687   // If we serve an "allFun" call, it is beneficial to hold the CodeCache_lock
2688   // for the entire duration of aggregation and printing. That makes sure
2689   // we see a consistent picture and do not run into issues caused by
2690   // the CodeHeap being altered concurrently.
2691   Monitor* global_lock   = allFun ? CodeCache_lock : NULL;
2692   Monitor* function_lock = allFun ? NULL : CodeCache_lock;
2693   ts_global.update(); // record starting point
2694   MutexLocker mu2(global_lock, Mutex::_no_safepoint_check_flag);
2695   if (global_lock != NULL) {
2696     out->print_cr("\n__ CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2697     ts_global.update(); // record starting point
2698   }
2699 
2700   if (aggregate) {
2701     ts.update(); // record starting point
2702     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2703     if (function_lock != NULL) {
2704       out->print_cr("\n__ CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2705     }
2706 
2707     ts.update(); // record starting point
2708     CodeCache::aggregate(out, granularity);
2709     if (function_lock != NULL) {
2710       out->print_cr("\n__ CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2711     }
2712   }
2713 
2714   if (usedSpace) CodeCache::print_usedSpace(out);
2715   if (freeSpace) CodeCache::print_freeSpace(out);
2716   if (methodCount) CodeCache::print_count(out);
2717   if (methodSpace) CodeCache::print_space(out);
2718   if (methodAge) CodeCache::print_age(out);
2719   if (methodNames) {
2720     // print_names() has shown to be sensitive to concurrent CodeHeap modifications.
2721     // Therefore, request  the CodeCache_lock before calling...
2722     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2723     CodeCache::print_names(out);
2724   }
2725   if (discard) CodeCache::discard(out);
2726 
2727   if (global_lock != NULL) {
2728     out->print_cr("\n__ CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2729   }
2730   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2731 }