1 /*
   2  * Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileBroker.hpp"
  27 #include "compiler/compilerOracle.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "runtime/arguments.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/safepoint.hpp"
  32 #include "runtime/safepointVerifiers.hpp"
  33 #include "runtime/tieredThresholdPolicy.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "oops/method.inline.hpp"
  36 #if INCLUDE_JVMCI
  37 #include "jvmci/jvmci.hpp"
  38 #endif
  39 
  40 #ifdef TIERED
  41 
  42 #include "c1/c1_Compiler.hpp"
  43 #include "opto/c2compiler.hpp"
  44 
  45 template<CompLevel level>
  46 bool TieredThresholdPolicy::call_predicate_helper(int i, int b, double scale, Method* method) {
  47   double threshold_scaling;
  48   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
  49     scale *= threshold_scaling;
  50   }
  51   switch(level) {
  52   case CompLevel_aot:
  53     return (i >= Tier3AOTInvocationThreshold * scale) ||
  54            (i >= Tier3AOTMinInvocationThreshold * scale && i + b >= Tier3AOTCompileThreshold * scale);
  55   case CompLevel_none:
  56   case CompLevel_limited_profile:
  57     return (i >= Tier3InvocationThreshold * scale) ||
  58            (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
  59   case CompLevel_full_profile:
  60    return (i >= Tier4InvocationThreshold * scale) ||
  61           (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
  62   }
  63   return true;
  64 }
  65 
  66 template<CompLevel level>
  67 bool TieredThresholdPolicy::loop_predicate_helper(int i, int b, double scale, Method* method) {
  68   double threshold_scaling;
  69   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
  70     scale *= threshold_scaling;
  71   }
  72   switch(level) {
  73   case CompLevel_aot:
  74     return b >= Tier3AOTBackEdgeThreshold * scale;
  75   case CompLevel_none:
  76   case CompLevel_limited_profile:
  77     return b >= Tier3BackEdgeThreshold * scale;
  78   case CompLevel_full_profile:
  79     return b >= Tier4BackEdgeThreshold * scale;
  80   }
  81   return true;
  82 }
  83 
  84 // Simple methods are as good being compiled with C1 as C2.
  85 // Determine if a given method is such a case.
  86 bool TieredThresholdPolicy::is_trivial(Method* method) {
  87   if (method->is_accessor() ||
  88       method->is_constant_getter()) {
  89     return true;
  90   }
  91   return false;
  92 }
  93 
  94 bool TieredThresholdPolicy::should_compile_at_level_simple(Method* method) {
  95   if (TieredThresholdPolicy::is_trivial(method)) {
  96     return true;
  97   }
  98 #if INCLUDE_JVMCI
  99   if (UseJVMCICompiler) {
 100     AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 101     if (comp != NULL && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 102       return true;
 103     }
 104   }
 105 #endif
 106   return false;
 107 }
 108 
 109 CompLevel TieredThresholdPolicy::comp_level(Method* method) {
 110   CompiledMethod *nm = method->code();
 111   if (nm != NULL && nm->is_in_use()) {
 112     return (CompLevel)nm->comp_level();
 113   }
 114   return CompLevel_none;
 115 }
 116 
 117 void TieredThresholdPolicy::print_counters(const char* prefix, const methodHandle& mh) {
 118   int invocation_count = mh->invocation_count();
 119   int backedge_count = mh->backedge_count();
 120   MethodData* mdh = mh->method_data();
 121   int mdo_invocations = 0, mdo_backedges = 0;
 122   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 123   if (mdh != NULL) {
 124     mdo_invocations = mdh->invocation_count();
 125     mdo_backedges = mdh->backedge_count();
 126     mdo_invocations_start = mdh->invocation_count_start();
 127     mdo_backedges_start = mdh->backedge_count_start();
 128   }
 129   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 130       invocation_count, backedge_count, prefix,
 131       mdo_invocations, mdo_invocations_start,
 132       mdo_backedges, mdo_backedges_start);
 133   tty->print(" %smax levels=%d,%d", prefix,
 134       mh->highest_comp_level(), mh->highest_osr_comp_level());
 135 }
 136 
 137 // Print an event.
 138 void TieredThresholdPolicy::print_event(EventType type, const methodHandle& mh, const methodHandle& imh,
 139                                         int bci, CompLevel level) {
 140   bool inlinee_event = mh() != imh();
 141 
 142   ttyLocker tty_lock;
 143   tty->print("%lf: [", os::elapsedTime());
 144 
 145   switch(type) {
 146   case CALL:
 147     tty->print("call");
 148     break;
 149   case LOOP:
 150     tty->print("loop");
 151     break;
 152   case COMPILE:
 153     tty->print("compile");
 154     break;
 155   case REMOVE_FROM_QUEUE:
 156     tty->print("remove-from-queue");
 157     break;
 158   case UPDATE_IN_QUEUE:
 159     tty->print("update-in-queue");
 160     break;
 161   case REPROFILE:
 162     tty->print("reprofile");
 163     break;
 164   case MAKE_NOT_ENTRANT:
 165     tty->print("make-not-entrant");
 166     break;
 167   default:
 168     tty->print("unknown");
 169   }
 170 
 171   tty->print(" level=%d ", level);
 172 
 173   ResourceMark rm;
 174   char *method_name = mh->name_and_sig_as_C_string();
 175   tty->print("[%s", method_name);
 176   if (inlinee_event) {
 177     char *inlinee_name = imh->name_and_sig_as_C_string();
 178     tty->print(" [%s]] ", inlinee_name);
 179   }
 180   else tty->print("] ");
 181   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 182                                       CompileBroker::queue_size(CompLevel_full_optimization));
 183 
 184   print_specific(type, mh, imh, bci, level);
 185 
 186   if (type != COMPILE) {
 187     print_counters("", mh);
 188     if (inlinee_event) {
 189       print_counters("inlinee ", imh);
 190     }
 191     tty->print(" compilable=");
 192     bool need_comma = false;
 193     if (!mh->is_not_compilable(CompLevel_full_profile)) {
 194       tty->print("c1");
 195       need_comma = true;
 196     }
 197     if (!mh->is_not_osr_compilable(CompLevel_full_profile)) {
 198       if (need_comma) tty->print(",");
 199       tty->print("c1-osr");
 200       need_comma = true;
 201     }
 202     if (!mh->is_not_compilable(CompLevel_full_optimization)) {
 203       if (need_comma) tty->print(",");
 204       tty->print("c2");
 205       need_comma = true;
 206     }
 207     if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) {
 208       if (need_comma) tty->print(",");
 209       tty->print("c2-osr");
 210     }
 211     tty->print(" status=");
 212     if (mh->queued_for_compilation()) {
 213       tty->print("in-queue");
 214     } else tty->print("idle");
 215   }
 216   tty->print_cr("]");
 217 }
 218 
 219 void TieredThresholdPolicy::initialize() {
 220   int count = CICompilerCount;
 221   bool c1_only = TieredStopAtLevel < CompLevel_full_optimization;
 222 #ifdef _LP64
 223   // Turn on ergonomic compiler count selection
 224   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 225     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 226   }
 227   if (CICompilerCountPerCPU) {
 228     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 229     int log_cpu = log2_int(os::active_processor_count());
 230     int loglog_cpu = log2_int(MAX2(log_cpu, 1));
 231     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
 232     // Make sure there is enough space in the code cache to hold all the compiler buffers
 233     size_t c1_size = Compiler::code_buffer_size();
 234     size_t c2_size = C2Compiler::initial_code_buffer_size();
 235     size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
 236     int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
 237     if (count > max_count) {
 238       // Lower the compiler count such that all buffers fit into the code cache
 239       count = MAX2(max_count, c1_only ? 1 : 2);
 240     }
 241     FLAG_SET_ERGO(CICompilerCount, count);
 242   }
 243 #else
 244   // On 32-bit systems, the number of compiler threads is limited to 3.
 245   // On these systems, the virtual address space available to the JVM
 246   // is usually limited to 2-4 GB (the exact value depends on the platform).
 247   // As the compilers (especially C2) can consume a large amount of
 248   // memory, scaling the number of compiler threads with the number of
 249   // available cores can result in the exhaustion of the address space
 250   /// available to the VM and thus cause the VM to crash.
 251   if (FLAG_IS_DEFAULT(CICompilerCount)) {
 252     count = 3;
 253     FLAG_SET_ERGO(CICompilerCount, count);
 254   }
 255 #endif
 256 
 257   if (c1_only) {
 258     // No C2 compiler thread required
 259     set_c1_count(count);
 260   } else {
 261     set_c1_count(MAX2(count / 3, 1));
 262     set_c2_count(MAX2(count - c1_count(), 1));
 263   }
 264   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 265 
 266   // Some inlining tuning
 267 #ifdef X86
 268   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
 269     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
 270   }
 271 #endif
 272 
 273 #if defined SPARC || defined AARCH64
 274   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
 275     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
 276   }
 277 #endif
 278 
 279   set_increase_threshold_at_ratio();
 280   set_start_time(os::javaTimeMillis());
 281 }
 282 
 283 void TieredThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
 284   if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
 285     counter->set_carry_flag();
 286   }
 287 }
 288 
 289 // Set carry flags on the counters if necessary
 290 void TieredThresholdPolicy::handle_counter_overflow(Method* method) {
 291   MethodCounters *mcs = method->method_counters();
 292   if (mcs != NULL) {
 293     set_carry_if_necessary(mcs->invocation_counter());
 294     set_carry_if_necessary(mcs->backedge_counter());
 295   }
 296   MethodData* mdo = method->method_data();
 297   if (mdo != NULL) {
 298     set_carry_if_necessary(mdo->invocation_counter());
 299     set_carry_if_necessary(mdo->backedge_counter());
 300   }
 301 }
 302 
 303 // Called with the queue locked and with at least one element
 304 CompileTask* TieredThresholdPolicy::select_task(CompileQueue* compile_queue) {
 305   CompileTask *max_blocking_task = NULL;
 306   CompileTask *max_task = NULL;
 307   Method* max_method = NULL;
 308   jlong t = os::javaTimeMillis();
 309   // Iterate through the queue and find a method with a maximum rate.
 310   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 311     CompileTask* next_task = task->next();
 312     Method* method = task->method();
 313     // If a method was unloaded or has been stale for some time, remove it from the queue.
 314     // Blocking tasks and tasks submitted from whitebox API don't become stale
 315     if (task->is_unloaded() || (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method))) {
 316       if (!task->is_unloaded()) {
 317         if (PrintTieredEvents) {
 318           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 319         }
 320         method->clear_queued_for_compilation();
 321       }
 322       compile_queue->remove_and_mark_stale(task);
 323       task = next_task;
 324       continue;
 325     }
 326     update_rate(t, method);
 327     if (max_task == NULL || compare_methods(method, max_method)) {
 328       // Select a method with the highest rate
 329       max_task = task;
 330       max_method = method;
 331     }
 332 
 333     if (task->is_blocking()) {
 334       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 335         max_blocking_task = task;
 336       }
 337     }
 338 
 339     task = next_task;
 340   }
 341 
 342   if (max_blocking_task != NULL) {
 343     // In blocking compilation mode, the CompileBroker will make
 344     // compilations submitted by a JVMCI compiler thread non-blocking. These
 345     // compilations should be scheduled after all blocking compilations
 346     // to service non-compiler related compilations sooner and reduce the
 347     // chance of such compilations timing out.
 348     max_task = max_blocking_task;
 349     max_method = max_task->method();
 350   }
 351 
 352   if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile &&
 353       TieredStopAtLevel > CompLevel_full_profile &&
 354       max_method != NULL && is_method_profiled(max_method)) {
 355     max_task->set_comp_level(CompLevel_limited_profile);
 356 
 357     if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
 358       if (PrintTieredEvents) {
 359         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 360       }
 361       compile_queue->remove_and_mark_stale(max_task);
 362       max_method->clear_queued_for_compilation();
 363       return NULL;
 364     }
 365 
 366     if (PrintTieredEvents) {
 367       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 368     }
 369   }
 370 
 371   return max_task;
 372 }
 373 
 374 void TieredThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 375   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 376     if (PrintTieredEvents) {
 377       methodHandle mh(sd->method());
 378       print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none);
 379     }
 380     MethodData* mdo = sd->method()->method_data();
 381     if (mdo != NULL) {
 382       mdo->reset_start_counters();
 383     }
 384     if (sd->is_top()) break;
 385   }
 386 }
 387 
 388 nmethod* TieredThresholdPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 389                                       int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, JavaThread* thread) {
 390   if (comp_level == CompLevel_none &&
 391       JvmtiExport::can_post_interpreter_events() &&
 392       thread->is_interp_only_mode()) {
 393     return NULL;
 394   }
 395   if (ReplayCompiles) {
 396     // Don't trigger other compiles in testing mode
 397     return NULL;
 398   }
 399 
 400   handle_counter_overflow(method());
 401   if (method() != inlinee()) {
 402     handle_counter_overflow(inlinee());
 403   }
 404 
 405   if (PrintTieredEvents) {
 406     print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
 407   }
 408 
 409   if (bci == InvocationEntryBci) {
 410     method_invocation_event(method, inlinee, comp_level, nm, thread);
 411   } else {
 412     // method == inlinee if the event originated in the main method
 413     method_back_branch_event(method, inlinee, bci, comp_level, nm, thread);
 414     // Check if event led to a higher level OSR compilation
 415     nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, comp_level, false);
 416     if (osr_nm != NULL && osr_nm->comp_level() > comp_level) {
 417       // Perform OSR with new nmethod
 418       return osr_nm;
 419     }
 420   }
 421   return NULL;
 422 }
 423 
 424 // Check if the method can be compiled, change level if necessary
 425 void TieredThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 426   assert(level <= TieredStopAtLevel, "Invalid compilation level");
 427   if (level == CompLevel_none) {
 428     return;
 429   }
 430   if (level == CompLevel_aot) {
 431     if (mh->has_aot_code()) {
 432       if (PrintTieredEvents) {
 433         print_event(COMPILE, mh, mh, bci, level);
 434       }
 435       MutexLocker ml(Compile_lock);
 436       NoSafepointVerifier nsv;
 437       if (mh->has_aot_code() && mh->code() != mh->aot_code()) {
 438         mh->aot_code()->make_entrant();
 439         if (mh->has_compiled_code()) {
 440           mh->code()->make_not_entrant();
 441         }
 442         Method::set_code(mh, mh->aot_code());
 443       }
 444     }
 445     return;
 446   }
 447 
 448   // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
 449   // in the interpreter and then compile with C2 (the transition function will request that,
 450   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 451   // pure C1.
 452   if (!can_be_compiled(mh, level)) {
 453     if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 454         compile(mh, bci, CompLevel_simple, thread);
 455     }
 456     return;
 457   }
 458   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
 459     return;
 460   }
 461   if (!CompileBroker::compilation_is_in_queue(mh)) {
 462     if (PrintTieredEvents) {
 463       print_event(COMPILE, mh, mh, bci, level);
 464     }
 465     submit_compile(mh, bci, level, thread);
 466   }
 467 }
 468 
 469 // Update the rate and submit compile
 470 void TieredThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 471   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 472   update_rate(os::javaTimeMillis(), mh());
 473   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
 474 }
 475 
 476 // Print an event.
 477 void TieredThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
 478                                              int bci, CompLevel level) {
 479   tty->print(" rate=");
 480   if (mh->prev_time() == 0) tty->print("n/a");
 481   else tty->print("%f", mh->rate());
 482 
 483   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 484                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 485 
 486 }
 487 
 488 // update_rate() is called from select_task() while holding a compile queue lock.
 489 void TieredThresholdPolicy::update_rate(jlong t, Method* m) {
 490   // Skip update if counters are absent.
 491   // Can't allocate them since we are holding compile queue lock.
 492   if (m->method_counters() == NULL)  return;
 493 
 494   if (is_old(m)) {
 495     // We don't remove old methods from the queue,
 496     // so we can just zero the rate.
 497     m->set_rate(0);
 498     return;
 499   }
 500 
 501   // We don't update the rate if we've just came out of a safepoint.
 502   // delta_s is the time since last safepoint in milliseconds.
 503   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
 504   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
 505   // How many events were there since the last time?
 506   int event_count = m->invocation_count() + m->backedge_count();
 507   int delta_e = event_count - m->prev_event_count();
 508 
 509   // We should be running for at least 1ms.
 510   if (delta_s >= TieredRateUpdateMinTime) {
 511     // And we must've taken the previous point at least 1ms before.
 512     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 513       m->set_prev_time(t);
 514       m->set_prev_event_count(event_count);
 515       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 516     } else {
 517       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 518         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 519         m->set_rate(0);
 520       }
 521     }
 522   }
 523 }
 524 
 525 // Check if this method has been stale for a given number of milliseconds.
 526 // See select_task().
 527 bool TieredThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 528   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
 529   jlong delta_t = t - m->prev_time();
 530   if (delta_t > timeout && delta_s > timeout) {
 531     int event_count = m->invocation_count() + m->backedge_count();
 532     int delta_e = event_count - m->prev_event_count();
 533     // Return true if there were no events.
 534     return delta_e == 0;
 535   }
 536   return false;
 537 }
 538 
 539 // We don't remove old methods from the compile queue even if they have
 540 // very low activity. See select_task().
 541 bool TieredThresholdPolicy::is_old(Method* method) {
 542   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 543 }
 544 
 545 double TieredThresholdPolicy::weight(Method* method) {
 546   return (double)(method->rate() + 1) *
 547     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 548 }
 549 
 550 // Apply heuristics and return true if x should be compiled before y
 551 bool TieredThresholdPolicy::compare_methods(Method* x, Method* y) {
 552   if (x->highest_comp_level() > y->highest_comp_level()) {
 553     // recompilation after deopt
 554     return true;
 555   } else
 556     if (x->highest_comp_level() == y->highest_comp_level()) {
 557       if (weight(x) > weight(y)) {
 558         return true;
 559       }
 560     }
 561   return false;
 562 }
 563 
 564 // Is method profiled enough?
 565 bool TieredThresholdPolicy::is_method_profiled(Method* method) {
 566   MethodData* mdo = method->method_data();
 567   if (mdo != NULL) {
 568     int i = mdo->invocation_count_delta();
 569     int b = mdo->backedge_count_delta();
 570     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
 571   }
 572   return false;
 573 }
 574 
 575 double TieredThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 576   double queue_size = CompileBroker::queue_size(level);
 577   int comp_count = compiler_count(level);
 578   double k = queue_size / (feedback_k * comp_count) + 1;
 579 
 580   // Increase C1 compile threshold when the code cache is filled more
 581   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 582   // The main intention is to keep enough free space for C2 compiled code
 583   // to achieve peak performance if the code cache is under stress.
 584   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 585     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 586     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 587       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 588     }
 589   }
 590   return k;
 591 }
 592 
 593 // Call and loop predicates determine whether a transition to a higher
 594 // compilation level should be performed (pointers to predicate functions
 595 // are passed to common()).
 596 // Tier?LoadFeedback is basically a coefficient that determines of
 597 // how many methods per compiler thread can be in the queue before
 598 // the threshold values double.
 599 bool TieredThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 600   switch(cur_level) {
 601   case CompLevel_aot: {
 602     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 603     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
 604   }
 605   case CompLevel_none:
 606   case CompLevel_limited_profile: {
 607     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 608     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 609   }
 610   case CompLevel_full_profile: {
 611     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 612     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 613   }
 614   default:
 615     return true;
 616   }
 617 }
 618 
 619 bool TieredThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 620   switch(cur_level) {
 621   case CompLevel_aot: {
 622     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 623     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
 624   }
 625   case CompLevel_none:
 626   case CompLevel_limited_profile: {
 627     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 628     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 629   }
 630   case CompLevel_full_profile: {
 631     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 632     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 633   }
 634   default:
 635     return true;
 636   }
 637 }
 638 
 639 // Determine is a method is mature.
 640 bool TieredThresholdPolicy::is_mature(Method* method) {
 641   if (should_compile_at_level_simple(method)) return true;
 642   MethodData* mdo = method->method_data();
 643   if (mdo != NULL) {
 644     int i = mdo->invocation_count();
 645     int b = mdo->backedge_count();
 646     double k = ProfileMaturityPercentage / 100.0;
 647     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method) ||
 648            loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 649   }
 650   return false;
 651 }
 652 
 653 // If a method is old enough and is still in the interpreter we would want to
 654 // start profiling without waiting for the compiled method to arrive.
 655 // We also take the load on compilers into the account.
 656 bool TieredThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 657   if (cur_level == CompLevel_none &&
 658       CompileBroker::queue_size(CompLevel_full_optimization) <=
 659       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 660     int i = method->invocation_count();
 661     int b = method->backedge_count();
 662     double k = Tier0ProfilingStartPercentage / 100.0;
 663     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
 664   }
 665   return false;
 666 }
 667 
 668 // Inlining control: if we're compiling a profiled method with C1 and the callee
 669 // is known to have OSRed in a C2 version, don't inline it.
 670 bool TieredThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 671   CompLevel comp_level = (CompLevel)env->comp_level();
 672   if (comp_level == CompLevel_full_profile ||
 673       comp_level == CompLevel_limited_profile) {
 674     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 675   }
 676   return false;
 677 }
 678 
 679 // Create MDO if necessary.
 680 void TieredThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
 681   if (mh->is_native() ||
 682       mh->is_abstract() ||
 683       mh->is_accessor() ||
 684       mh->is_constant_getter()) {
 685     return;
 686   }
 687   if (mh->method_data() == NULL) {
 688     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 689   }
 690 }
 691 
 692 
 693 /*
 694  * Method states:
 695  *   0 - interpreter (CompLevel_none)
 696  *   1 - pure C1 (CompLevel_simple)
 697  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 698  *   3 - C1 with full profiling (CompLevel_full_profile)
 699  *   4 - C2 (CompLevel_full_optimization)
 700  *
 701  * Common state transition patterns:
 702  * a. 0 -> 3 -> 4.
 703  *    The most common path. But note that even in this straightforward case
 704  *    profiling can start at level 0 and finish at level 3.
 705  *
 706  * b. 0 -> 2 -> 3 -> 4.
 707  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 708  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 709  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 710  *
 711  * c. 0 -> (3->2) -> 4.
 712  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 713  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 714  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 715  *    without full profiling while c2 is compiling.
 716  *
 717  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 718  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 719  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 720  *
 721  * e. 0 -> 4.
 722  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 723  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 724  *    the compiled version already exists).
 725  *
 726  * Note that since state 0 can be reached from any other state via deoptimization different loops
 727  * are possible.
 728  *
 729  */
 730 
 731 // Common transition function. Given a predicate determines if a method should transition to another level.
 732 CompLevel TieredThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 733   CompLevel next_level = cur_level;
 734   int i = method->invocation_count();
 735   int b = method->backedge_count();
 736 
 737   if (should_compile_at_level_simple(method)) {
 738     next_level = CompLevel_simple;
 739   } else {
 740     switch(cur_level) {
 741       default: break;
 742       case CompLevel_aot: {
 743       // If we were at full profile level, would we switch to full opt?
 744       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 745         next_level = CompLevel_full_optimization;
 746       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 747                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 748                                (this->*p)(i, b, cur_level, method))) {
 749         next_level = CompLevel_full_profile;
 750       }
 751     }
 752     break;
 753     case CompLevel_none:
 754       // If we were at full profile level, would we switch to full opt?
 755       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 756         next_level = CompLevel_full_optimization;
 757       } else if ((this->*p)(i, b, cur_level, method)) {
 758 #if INCLUDE_JVMCI
 759         if (EnableJVMCI && UseJVMCICompiler) {
 760           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 761           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
 762           // compilation method and all potential inlinees have mature profiles (which
 763           // includes type profiling). If it sees immature profiles, JVMCI's inliner
 764           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
 765           // exploring/inlining too many graphs). Since a rewrite of the inliner is
 766           // in progress, we simply disable the dialing back heuristic for now and will
 767           // revisit this decision once the new inliner is completed.
 768           next_level = CompLevel_full_profile;
 769         } else
 770 #endif
 771         {
 772           // C1-generated fully profiled code is about 30% slower than the limited profile
 773           // code that has only invocation and backedge counters. The observation is that
 774           // if C2 queue is large enough we can spend too much time in the fully profiled code
 775           // while waiting for C2 to pick the method from the queue. To alleviate this problem
 776           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 777           // we choose to compile a limited profiled version and then recompile with full profiling
 778           // when the load on C2 goes down.
 779           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 780               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 781             next_level = CompLevel_limited_profile;
 782           } else {
 783             next_level = CompLevel_full_profile;
 784           }
 785         }
 786       }
 787       break;
 788     case CompLevel_limited_profile:
 789       if (is_method_profiled(method)) {
 790         // Special case: we got here because this method was fully profiled in the interpreter.
 791         next_level = CompLevel_full_optimization;
 792       } else {
 793         MethodData* mdo = method->method_data();
 794         if (mdo != NULL) {
 795           if (mdo->would_profile()) {
 796             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 797                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 798                                      (this->*p)(i, b, cur_level, method))) {
 799               next_level = CompLevel_full_profile;
 800             }
 801           } else {
 802             next_level = CompLevel_full_optimization;
 803           }
 804         } else {
 805           // If there is no MDO we need to profile
 806           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 807                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 808                                    (this->*p)(i, b, cur_level, method))) {
 809             next_level = CompLevel_full_profile;
 810           }
 811         }
 812       }
 813       break;
 814     case CompLevel_full_profile:
 815       {
 816         MethodData* mdo = method->method_data();
 817         if (mdo != NULL) {
 818           if (mdo->would_profile()) {
 819             int mdo_i = mdo->invocation_count_delta();
 820             int mdo_b = mdo->backedge_count_delta();
 821             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 822               next_level = CompLevel_full_optimization;
 823             }
 824           } else {
 825             next_level = CompLevel_full_optimization;
 826           }
 827         }
 828       }
 829       break;
 830     }
 831   }
 832   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 833 }
 834 
 835 // Determine if a method should be compiled with a normal entry point at a different level.
 836 CompLevel TieredThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
 837   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 838                              common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true));
 839   CompLevel next_level = common(&TieredThresholdPolicy::call_predicate, method, cur_level);
 840 
 841   // If OSR method level is greater than the regular method level, the levels should be
 842   // equalized by raising the regular method level in order to avoid OSRs during each
 843   // invocation of the method.
 844   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 845     MethodData* mdo = method->method_data();
 846     guarantee(mdo != NULL, "MDO should not be NULL");
 847     if (mdo->invocation_count() >= 1) {
 848       next_level = CompLevel_full_optimization;
 849     }
 850   } else {
 851     next_level = MAX2(osr_level, next_level);
 852   }
 853   return next_level;
 854 }
 855 
 856 // Determine if we should do an OSR compilation of a given method.
 857 CompLevel TieredThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread* thread) {
 858   CompLevel next_level = common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true);
 859   if (cur_level == CompLevel_none) {
 860     // If there is a live OSR method that means that we deopted to the interpreter
 861     // for the transition.
 862     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 863     if (osr_level > CompLevel_none) {
 864       return osr_level;
 865     }
 866   }
 867   return next_level;
 868 }
 869 
 870 bool TieredThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
 871   if (UseAOT) {
 872     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
 873       // If the current level is full profile or interpreter and we're switching to any other level,
 874       // activate the AOT code back first so that we won't waste time overprofiling.
 875       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 876       // Fall through for JIT compilation.
 877     }
 878     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
 879       // If the next level is limited profile, use the aot code (if there is any),
 880       // since it's essentially the same thing.
 881       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 882       // Not need to JIT, we're done.
 883       return true;
 884     }
 885   }
 886   return false;
 887 }
 888 
 889 
 890 // Handle the invocation event.
 891 void TieredThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 892                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 893   if (should_create_mdo(mh(), level)) {
 894     create_mdo(mh, thread);
 895   }
 896   CompLevel next_level = call_event(mh(), level, thread);
 897   if (next_level != level) {
 898     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
 899       // No JITting necessary
 900       return;
 901     }
 902     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 903       compile(mh, InvocationEntryBci, next_level, thread);
 904     }
 905   }
 906 }
 907 
 908 // Handle the back branch event. Notice that we can compile the method
 909 // with a regular entry from here.
 910 void TieredThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 911                                                      int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 912   if (should_create_mdo(mh(), level)) {
 913     create_mdo(mh, thread);
 914   }
 915   // Check if MDO should be created for the inlined method
 916   if (should_create_mdo(imh(), level)) {
 917     create_mdo(imh, thread);
 918   }
 919 
 920   if (is_compilation_enabled()) {
 921     CompLevel next_osr_level = loop_event(imh(), level, thread);
 922     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 923     // At the very least compile the OSR version
 924     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 925       compile(imh, bci, next_osr_level, thread);
 926     }
 927 
 928     // Use loop event as an opportunity to also check if there's been
 929     // enough calls.
 930     CompLevel cur_level, next_level;
 931     if (mh() != imh()) { // If there is an enclosing method
 932       if (level == CompLevel_aot) {
 933         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
 934         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
 935           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
 936         }
 937       } else {
 938         // Current loop event level is not AOT
 939         guarantee(nm != NULL, "Should have nmethod here");
 940         cur_level = comp_level(mh());
 941         next_level = call_event(mh(), cur_level, thread);
 942 
 943         if (max_osr_level == CompLevel_full_optimization) {
 944           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 945           bool make_not_entrant = false;
 946           if (nm->is_osr_method()) {
 947             // This is an osr method, just make it not entrant and recompile later if needed
 948             make_not_entrant = true;
 949           } else {
 950             if (next_level != CompLevel_full_optimization) {
 951               // next_level is not full opt, so we need to recompile the
 952               // enclosing method without the inlinee
 953               cur_level = CompLevel_none;
 954               make_not_entrant = true;
 955             }
 956           }
 957           if (make_not_entrant) {
 958             if (PrintTieredEvents) {
 959               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 960               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 961             }
 962             nm->make_not_entrant();
 963           }
 964         }
 965         // Fix up next_level if necessary to avoid deopts
 966         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 967           next_level = CompLevel_full_profile;
 968         }
 969         if (cur_level != next_level) {
 970           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 971             compile(mh, InvocationEntryBci, next_level, thread);
 972           }
 973         }
 974       }
 975     } else {
 976       cur_level = comp_level(mh());
 977       next_level = call_event(mh(), cur_level, thread);
 978       if (next_level != cur_level) {
 979         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 980           compile(mh, InvocationEntryBci, next_level, thread);
 981         }
 982       }
 983     }
 984   }
 985 }
 986 
 987 #endif