/* * Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "code/compiledIC.hpp" #include "compiler/compileBroker.hpp" #include "compiler/disassembler.hpp" #include "oops/oop.inline.hpp" #include "oops/objArrayOop.inline.hpp" #include "runtime/javaCalls.hpp" #include "jvmci/jvmciEnv.hpp" #include "jvmci/jvmciCompiler.hpp" #include "jvmci/jvmciCodeInstaller.hpp" #include "jvmci/jvmciJavaClasses.hpp" #include "jvmci/jvmciCompilerToVM.hpp" #include "jvmci/jvmciRuntime.hpp" #include "asm/register.hpp" #include "classfile/vmSymbols.hpp" #include "code/vmreg.hpp" #ifdef TARGET_ARCH_x86 # include "vmreg_x86.inline.hpp" #endif #ifdef TARGET_ARCH_sparc # include "vmreg_sparc.inline.hpp" #endif #ifdef TARGET_ARCH_zero # include "vmreg_zero.inline.hpp" #endif #ifdef TARGET_ARCH_arm # include "vmreg_arm.inline.hpp" #endif #ifdef TARGET_ARCH_ppc # include "vmreg_ppc.inline.hpp" #endif // frequently used constants // Allocate them with new so they are never destroyed (otherwise, a // forced exit could destroy these objects while they are still in // use). ConstantOopWriteValue* CodeInstaller::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL); ConstantIntValue* CodeInstaller::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1); ConstantIntValue* CodeInstaller::_int_0_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0); ConstantIntValue* CodeInstaller::_int_1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1); ConstantIntValue* CodeInstaller::_int_2_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2); LocationValue* CodeInstaller::_illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location()); Method* getMethodFromHotSpotMethod(oop hotspot_method) { assert(hotspot_method != NULL && hotspot_method->is_a(HotSpotResolvedJavaMethodImpl::klass()), "sanity"); return CompilerToVM::asMethod(hotspot_method); } VMReg getVMRegFromLocation(oop location, int total_frame_size) { oop reg = code_Location::reg(location); jint offset = code_Location::offset(location); if (reg != NULL) { // register jint number = code_Register::number(reg); VMReg vmReg = CodeInstaller::get_hotspot_reg(number); assert(offset % 4 == 0, "must be aligned"); return vmReg->next(offset / 4); } else { // stack slot assert(offset % 4 == 0, "must be aligned"); return VMRegImpl::stack2reg(offset / 4); } } // creates a HotSpot oop map out of the byte arrays provided by DebugInfo OopMap* CodeInstaller::create_oop_map(oop debug_info) { oop reference_map = DebugInfo::referenceMap(debug_info); if (HotSpotReferenceMap::maxRegisterSize(reference_map) > 16) { _has_wide_vector = true; } OopMap* map = new OopMap(_total_frame_size, _parameter_count); objArrayOop objects = HotSpotReferenceMap::objects(reference_map); objArrayOop derivedBase = HotSpotReferenceMap::derivedBase(reference_map); typeArrayOop sizeInBytes = HotSpotReferenceMap::sizeInBytes(reference_map); for (int i = 0; i < objects->length(); i++) { oop location = objects->obj_at(i); oop baseLocation = derivedBase->obj_at(i); int bytes = sizeInBytes->int_at(i); VMReg vmReg = getVMRegFromLocation(location, _total_frame_size); if (baseLocation != NULL) { // derived oop assert(bytes == 8, "derived oop can't be compressed"); VMReg baseReg = getVMRegFromLocation(baseLocation, _total_frame_size); map->set_derived_oop(vmReg, baseReg); } else if (bytes == 8) { // wide oop map->set_oop(vmReg); } else { // narrow oop assert(bytes == 4, "wrong size"); map->set_narrowoop(vmReg); } } oop callee_save_info = (oop) DebugInfo::calleeSaveInfo(debug_info); if (callee_save_info != NULL) { objArrayOop registers = RegisterSaveLayout::registers(callee_save_info); typeArrayOop slots = RegisterSaveLayout::slots(callee_save_info); for (jint i = 0; i < slots->length(); i++) { oop jvmci_reg = registers->obj_at(i); jint jvmci_reg_number = code_Register::number(jvmci_reg); VMReg hotspot_reg = CodeInstaller::get_hotspot_reg(jvmci_reg_number); // HotSpot stack slots are 4 bytes jint jvmci_slot = slots->int_at(i); jint hotspot_slot = jvmci_slot * VMRegImpl::slots_per_word; VMReg hotspot_slot_as_reg = VMRegImpl::stack2reg(hotspot_slot); map->set_callee_saved(hotspot_slot_as_reg, hotspot_reg); #ifdef _LP64 // (copied from generate_oop_map() in c1_Runtime1_x86.cpp) VMReg hotspot_slot_hi_as_reg = VMRegImpl::stack2reg(hotspot_slot + 1); map->set_callee_saved(hotspot_slot_hi_as_reg, hotspot_reg->next()); #endif } } return map; } static void record_metadata_reference(oop obj, jlong prim, jboolean compressed, OopRecorder* oop_recorder) { if (obj->is_a(HotSpotResolvedObjectTypeImpl::klass())) { Klass* klass = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(obj)); if (compressed) { assert(Klass::decode_klass((narrowKlass) prim) == klass, err_msg("%s @ " INTPTR_FORMAT " != " PTR64_FORMAT, klass->name()->as_C_string(), p2i(klass), prim)); } else { assert((Klass*) prim == klass, err_msg("%s @ " INTPTR_FORMAT " != " PTR64_FORMAT, klass->name()->as_C_string(), p2i(klass), prim)); } int index = oop_recorder->find_index(klass); TRACE_jvmci_3("metadata[%d of %d] = %s", index, oop_recorder->metadata_count(), klass->name()->as_C_string()); } else if (obj->is_a(HotSpotResolvedJavaMethodImpl::klass())) { Method* method = (Method*) (address) HotSpotResolvedJavaMethodImpl::metaspaceMethod(obj); assert(!compressed, err_msg("unexpected compressed method pointer %s @ " INTPTR_FORMAT " = " PTR64_FORMAT, method->name()->as_C_string(), p2i(method), prim)); int index = oop_recorder->find_index(method); TRACE_jvmci_3("metadata[%d of %d] = %s", index, oop_recorder->metadata_count(), method->name()->as_C_string()); } else { assert(java_lang_String::is_instance(obj), err_msg("unexpected metadata reference (%s) for constant " JLONG_FORMAT " (" PTR64_FORMAT ")", obj->klass()->name()->as_C_string(), prim, prim)); } } // Records any Metadata values embedded in a Constant (e.g., the value returned by HotSpotResolvedObjectTypeImpl.klass()). static void record_metadata_in_constant(oop constant, OopRecorder* oop_recorder) { if (constant->is_a(HotSpotMetaspaceConstantImpl::klass())) { oop obj = HotSpotMetaspaceConstantImpl::metaspaceObject(constant); jlong prim = HotSpotMetaspaceConstantImpl::primitive(constant); assert(obj != NULL, "must have an object"); assert(prim != 0, "must have a primitive value"); record_metadata_reference(obj, prim, false, oop_recorder); } } static void record_metadata_in_patch(Handle& constant, OopRecorder* oop_recorder) { record_metadata_reference(HotSpotMetaspaceConstantImpl::metaspaceObject(constant), HotSpotMetaspaceConstantImpl::primitive(constant), HotSpotMetaspaceConstantImpl::compressed(constant), oop_recorder); } Location::Type CodeInstaller::get_oop_type(oop value) { oop lirKind = Value::lirKind(value); oop platformKind = LIRKind::platformKind(lirKind); assert(LIRKind::referenceMask(lirKind) == 1, "unexpected referenceMask"); if (platformKind == word_kind()) { return Location::oop; } else { return Location::narrowoop; } } ScopeValue* CodeInstaller::get_scope_value(oop value, BasicType type, GrowableArray* objects, ScopeValue* &second) { second = NULL; if (value == Value::ILLEGAL()) { assert(type == T_ILLEGAL, "expected legal value"); return _illegal_value; } else if (value->is_a(RegisterValue::klass())) { oop reg = RegisterValue::reg(value); jint number = code_Register::number(reg); VMReg hotspotRegister = get_hotspot_reg(number); if (is_general_purpose_reg(hotspotRegister)) { Location::Type locationType; if (type == T_OBJECT) { locationType = get_oop_type(value); } else if (type == T_LONG) { locationType = Location::lng; } else { assert(type == T_INT || type == T_FLOAT || type == T_SHORT || type == T_CHAR || type == T_BYTE || type == T_BOOLEAN, "unexpected type in cpu register"); locationType = Location::int_in_long; } ScopeValue* value = new LocationValue(Location::new_reg_loc(locationType, hotspotRegister)); if (type == T_LONG) { second = value; } return value; } else { assert(type == T_FLOAT || type == T_DOUBLE, "only float and double expected in xmm register"); Location::Type locationType; if (type == T_FLOAT) { // this seems weird, but the same value is used in c1_LinearScan locationType = Location::normal; } else { locationType = Location::dbl; } ScopeValue* value = new LocationValue(Location::new_reg_loc(locationType, hotspotRegister)); if (type == T_DOUBLE) { second = value; } return value; } } else if (value->is_a(StackSlot::klass())) { jint offset = StackSlot::offset(value); if (StackSlot::addFrameSize(value)) { offset += _total_frame_size; } Location::Type locationType; if (type == T_OBJECT) { locationType = get_oop_type(value); } else if (type == T_LONG) { locationType = Location::lng; } else if (type == T_DOUBLE) { locationType = Location::dbl; } else { assert(type == T_INT || type == T_FLOAT || type == T_SHORT || type == T_CHAR || type == T_BYTE || type == T_BOOLEAN, "unexpected type in stack slot"); locationType = Location::normal; } ScopeValue* value = new LocationValue(Location::new_stk_loc(locationType, offset)); if (type == T_DOUBLE || type == T_LONG) { second = value; } return value; } else if (value->is_a(JavaConstant::klass())) { record_metadata_in_constant(value, _oop_recorder); if (value->is_a(PrimitiveConstant::klass())) { if (value->is_a(RawConstant::klass())) { jlong prim = PrimitiveConstant::primitive(value); return new ConstantLongValue(prim); } else { assert(type == JVMCIRuntime::kindToBasicType(JavaKind::typeChar(PrimitiveConstant::kind(value))), "primitive constant type doesn't match"); if (type == T_INT || type == T_FLOAT) { jint prim = (jint)PrimitiveConstant::primitive(value); switch (prim) { case -1: return _int_m1_scope_value; case 0: return _int_0_scope_value; case 1: return _int_1_scope_value; case 2: return _int_2_scope_value; default: return new ConstantIntValue(prim); } } else { assert(type == T_LONG || type == T_DOUBLE, "unexpected primitive constant type"); jlong prim = PrimitiveConstant::primitive(value); second = _int_1_scope_value; return new ConstantLongValue(prim); } } } else { assert(type == T_OBJECT, "unexpected object constant"); if (value->is_a(NullConstant::klass()) || value->is_a(HotSpotCompressedNullConstant::klass())) { return _oop_null_scope_value; } else { assert(value->is_a(HotSpotObjectConstantImpl::klass()), "unexpected constant type"); oop obj = HotSpotObjectConstantImpl::object(value); assert(obj != NULL, "null value must be in NullConstant"); return new ConstantOopWriteValue(JNIHandles::make_local(obj)); } } } else if (value->is_a(VirtualObject::klass())) { assert(type == T_OBJECT, "unexpected virtual object"); int id = VirtualObject::id(value); ScopeValue* object = objects->at(id); assert(object != NULL, "missing value"); return object; } else { value->klass()->print(); value->print(); } ShouldNotReachHere(); return NULL; } void CodeInstaller::record_object_value(ObjectValue* sv, oop value, GrowableArray* objects) { oop type = VirtualObject::type(value); int id = VirtualObject::id(value); oop javaMirror = HotSpotResolvedObjectTypeImpl::javaClass(type); Klass* klass = java_lang_Class::as_Klass(javaMirror); bool isLongArray = klass == Universe::longArrayKlassObj(); objArrayOop values = VirtualObject::values(value); objArrayOop slotKinds = VirtualObject::slotKinds(value); for (jint i = 0; i < values->length(); i++) { ScopeValue* cur_second = NULL; oop object = values->obj_at(i); oop kind = slotKinds->obj_at(i); BasicType type = JVMCIRuntime::kindToBasicType(JavaKind::typeChar(kind)); ScopeValue* value = get_scope_value(object, type, objects, cur_second); if (isLongArray && cur_second == NULL) { // we're trying to put ints into a long array... this isn't really valid, but it's used for some optimizations. // add an int 0 constant cur_second = _int_0_scope_value; } if (cur_second != NULL) { sv->field_values()->append(cur_second); } assert(value != NULL, "missing value"); sv->field_values()->append(value); } } MonitorValue* CodeInstaller::get_monitor_value(oop value, GrowableArray* objects) { guarantee(value->is_a(StackLockValue::klass()), "Monitors must be of type StackLockValue"); ScopeValue* second = NULL; ScopeValue* owner_value = get_scope_value(StackLockValue::owner(value), T_OBJECT, objects, second); assert(second == NULL, "monitor cannot occupy two stack slots"); ScopeValue* lock_data_value = get_scope_value(StackLockValue::slot(value), T_LONG, objects, second); assert(second == lock_data_value, "monitor is LONG value that occupies two stack slots"); assert(lock_data_value->is_location(), "invalid monitor location"); Location lock_data_loc = ((LocationValue*)lock_data_value)->location(); bool eliminated = false; if (StackLockValue::eliminated(value)) { eliminated = true; } return new MonitorValue(owner_value, lock_data_loc, eliminated); } void CodeInstaller::initialize_dependencies(oop compiled_code, OopRecorder* recorder) { JavaThread* thread = JavaThread::current(); CompilerThread* compilerThread = thread->is_Compiler_thread() ? thread->as_CompilerThread() : NULL; _oop_recorder = recorder; _dependencies = new Dependencies(&_arena, _oop_recorder, compilerThread != NULL ? compilerThread->log() : NULL); objArrayHandle assumptions = HotSpotCompiledCode::assumptions(compiled_code); if (!assumptions.is_null()) { int length = assumptions->length(); for (int i = 0; i < length; ++i) { Handle assumption = assumptions->obj_at(i); if (!assumption.is_null()) { if (assumption->klass() == Assumptions_NoFinalizableSubclass::klass()) { assumption_NoFinalizableSubclass(assumption); } else if (assumption->klass() == Assumptions_ConcreteSubtype::klass()) { assumption_ConcreteSubtype(assumption); } else if (assumption->klass() == Assumptions_LeafType::klass()) { assumption_LeafType(assumption); } else if (assumption->klass() == Assumptions_ConcreteMethod::klass()) { assumption_ConcreteMethod(assumption); } else if (assumption->klass() == Assumptions_CallSiteTargetValue::klass()) { assumption_CallSiteTargetValue(assumption); } else { assumption->print(); fatal("unexpected Assumption subclass"); } } } } objArrayHandle methods = HotSpotCompiledCode::methods(compiled_code); if (!methods.is_null()) { int length = methods->length(); for (int i = 0; i < length; ++i) { Handle method_handle = methods->obj_at(i); methodHandle method = getMethodFromHotSpotMethod(method_handle()); _dependencies->assert_evol_method(method()); } } } RelocBuffer::~RelocBuffer() { if (_buffer != NULL) { FREE_C_HEAP_ARRAY(char, _buffer); } } address RelocBuffer::begin() const { if (_buffer != NULL) { return (address) _buffer; } return (address) _static_buffer; } void RelocBuffer::set_size(size_t bytes) { assert(bytes <= _size, "can't grow in size!"); _size = bytes; } void RelocBuffer::ensure_size(size_t bytes) { assert(_buffer == NULL, "can only be used once"); assert(_size == 0, "can only be used once"); if (bytes >= RelocBuffer::stack_size) { _buffer = NEW_C_HEAP_ARRAY(char, bytes, mtInternal); } _size = bytes; } JVMCIEnv::CodeInstallResult CodeInstaller::gather_metadata(Handle target, Handle& compiled_code, CodeMetadata& metadata) { CodeBuffer buffer("JVMCI Compiler CodeBuffer for Metadata"); jobject compiled_code_obj = JNIHandles::make_local(compiled_code()); initialize_dependencies(JNIHandles::resolve(compiled_code_obj), NULL); // Get instructions and constants CodeSections early because we need it. _instructions = buffer.insts(); _constants = buffer.consts(); initialize_fields(target(), JNIHandles::resolve(compiled_code_obj)); if (!initialize_buffer(buffer)) { return JVMCIEnv::code_too_large; } process_exception_handlers(); _debug_recorder->pcs_size(); // ehm, create the sentinel record assert(_debug_recorder->pcs_length() >= 2, "must be at least 2"); metadata.set_pc_desc(_debug_recorder->pcs(), _debug_recorder->pcs_length()); metadata.set_scopes(_debug_recorder->stream()->buffer(), _debug_recorder->data_size()); metadata.set_exception_table(&_exception_handler_table); RelocBuffer* reloc_buffer = metadata.get_reloc_buffer(); reloc_buffer->ensure_size(buffer.total_relocation_size()); size_t size = (size_t) buffer.copy_relocations_to(reloc_buffer->begin(), (CodeBuffer::csize_t) reloc_buffer->size(), true); reloc_buffer->set_size(size); return JVMCIEnv::ok; } // constructor used to create a method JVMCIEnv::CodeInstallResult CodeInstaller::install(JVMCICompiler* compiler, Handle target, Handle& compiled_code, CodeBlob*& cb, Handle installed_code, Handle speculation_log) { CodeBuffer buffer("JVMCI Compiler CodeBuffer"); jobject compiled_code_obj = JNIHandles::make_local(compiled_code()); OopRecorder* recorder = new OopRecorder(&_arena, true); initialize_dependencies(JNIHandles::resolve(compiled_code_obj), recorder); // Get instructions and constants CodeSections early because we need it. _instructions = buffer.insts(); _constants = buffer.consts(); initialize_fields(target(), JNIHandles::resolve(compiled_code_obj)); JVMCIEnv::CodeInstallResult result = initialize_buffer(buffer); if (result != JVMCIEnv::ok) { return result; } process_exception_handlers(); int stack_slots = _total_frame_size / HeapWordSize; // conversion to words if (!compiled_code->is_a(HotSpotCompiledNmethod::klass())) { oop stubName = HotSpotCompiledCode::name(compiled_code_obj); char* name = strdup(java_lang_String::as_utf8_string(stubName)); cb = RuntimeStub::new_runtime_stub(name, &buffer, CodeOffsets::frame_never_safe, stack_slots, _debug_recorder->_oopmaps, false); result = JVMCIEnv::ok; } else { nmethod* nm = NULL; methodHandle method = getMethodFromHotSpotMethod(HotSpotCompiledNmethod::method(compiled_code)); jint entry_bci = HotSpotCompiledNmethod::entryBCI(compiled_code); jint id = HotSpotCompiledNmethod::id(compiled_code); bool has_unsafe_access = HotSpotCompiledNmethod::hasUnsafeAccess(compiled_code) == JNI_TRUE; JVMCIEnv* env = (JVMCIEnv*) (address) HotSpotCompiledNmethod::jvmciEnv(compiled_code); if (id == -1) { // Make sure a valid compile_id is associated with every compile id = CompileBroker::assign_compile_id_unlocked(Thread::current(), method, entry_bci); } result = JVMCIEnv::register_method(method, nm, entry_bci, &_offsets, _custom_stack_area_offset, &buffer, stack_slots, _debug_recorder->_oopmaps, &_exception_handler_table, compiler, _debug_recorder, _dependencies, env, id, has_unsafe_access, _has_wide_vector, installed_code, compiled_code, speculation_log); cb = nm; } if (cb != NULL) { // Make sure the pre-calculated constants section size was correct. guarantee((cb->code_begin() - cb->content_begin()) >= _constants_size, err_msg("%d < %d", (int)(cb->code_begin() - cb->content_begin()), _constants_size)); } return result; } void CodeInstaller::initialize_fields(oop target, oop compiled_code) { if (compiled_code->is_a(HotSpotCompiledNmethod::klass())) { Handle hotspotJavaMethod = HotSpotCompiledNmethod::method(compiled_code); methodHandle method = getMethodFromHotSpotMethod(hotspotJavaMethod()); _parameter_count = method->size_of_parameters(); TRACE_jvmci_2("installing code for %s", method->name_and_sig_as_C_string()); } else { // Must be a HotSpotCompiledRuntimeStub. // Only used in OopMap constructor for non-product builds _parameter_count = 0; } _sites_handle = JNIHandles::make_local(HotSpotCompiledCode::sites(compiled_code)); _exception_handlers_handle = JNIHandles::make_local(HotSpotCompiledCode::exceptionHandlers(compiled_code)); _code_handle = JNIHandles::make_local(HotSpotCompiledCode::targetCode(compiled_code)); _code_size = HotSpotCompiledCode::targetCodeSize(compiled_code); _total_frame_size = HotSpotCompiledCode::totalFrameSize(compiled_code); _custom_stack_area_offset = HotSpotCompiledCode::customStackAreaOffset(compiled_code); // Pre-calculate the constants section size. This is required for PC-relative addressing. _data_section_handle = JNIHandles::make_local(HotSpotCompiledCode::dataSection(compiled_code)); guarantee(HotSpotCompiledCode::dataSectionAlignment(compiled_code) <= _constants->alignment(), "Alignment inside constants section is restricted by alignment of section begin"); _constants_size = data_section()->length(); _data_section_patches_handle = JNIHandles::make_local(HotSpotCompiledCode::dataSectionPatches(compiled_code)); #ifndef PRODUCT _comments_handle = JNIHandles::make_local(HotSpotCompiledCode::comments(compiled_code)); #endif _next_call_type = INVOKE_INVALID; _has_wide_vector = false; oop arch = TargetDescription::arch(target); _word_kind_handle = JNIHandles::make_local(Architecture::wordKind(arch)); } int CodeInstaller::estimate_stubs_size() { // Return size for all stubs. int static_call_stubs = 0; objArrayOop sites = this->sites(); for (int i = 0; i < sites->length(); i++) { oop site = sites->obj_at(i); if (site->is_a(CompilationResult_Mark::klass())) { oop id_obj = CompilationResult_Mark::id(site); if (id_obj != NULL) { assert(java_lang_boxing_object::is_instance(id_obj, T_INT), "Integer id expected"); jint id = id_obj->int_field(java_lang_boxing_object::value_offset_in_bytes(T_INT)); if (id == INVOKESTATIC || id == INVOKESPECIAL) { static_call_stubs++; } } } } return static_call_stubs * CompiledStaticCall::to_interp_stub_size(); } // perform data and call relocation on the CodeBuffer JVMCIEnv::CodeInstallResult CodeInstaller::initialize_buffer(CodeBuffer& buffer) { objArrayHandle sites = this->sites(); int locs_buffer_size = sites->length() * (relocInfo::length_limit + sizeof(relocInfo)); // Allocate enough space in the stub section for the static call // stubs. Stubs have extra relocs but they are managed by the stub // section itself so they don't need to be accounted for in the // locs_buffer above. int stubs_size = estimate_stubs_size(); int total_size = round_to(_code_size, buffer.insts()->alignment()) + round_to(_constants_size, buffer.consts()->alignment()) + round_to(stubs_size, buffer.stubs()->alignment()); if (total_size > JVMCINMethodSizeLimit) { return JVMCIEnv::code_too_large; } buffer.initialize(total_size, locs_buffer_size); if (buffer.blob() == NULL) { return JVMCIEnv::cache_full; } buffer.initialize_stubs_size(stubs_size); buffer.initialize_consts_size(_constants_size); _debug_recorder = new DebugInformationRecorder(_oop_recorder); _debug_recorder->set_oopmaps(new OopMapSet()); buffer.initialize_oop_recorder(_oop_recorder); // copy the constant data into the newly created CodeBuffer address end_data = _constants->start() + _constants_size; memcpy(_constants->start(), data_section()->base(T_BYTE), _constants_size); _constants->set_end(end_data); // copy the code into the newly created CodeBuffer address end_pc = _instructions->start() + _code_size; guarantee(_instructions->allocates2(end_pc), "initialize should have reserved enough space for all the code"); memcpy(_instructions->start(), code()->base(T_BYTE), _code_size); _instructions->set_end(end_pc); for (int i = 0; i < data_section_patches()->length(); i++) { Handle patch = data_section_patches()->obj_at(i); Handle reference = CompilationResult_DataPatch::reference(patch); assert(reference->is_a(CompilationResult_ConstantReference::klass()), err_msg("patch in data section must be a ConstantReference")); Handle constant = CompilationResult_ConstantReference::constant(reference); if (constant->is_a(HotSpotMetaspaceConstantImpl::klass())) { record_metadata_in_patch(constant, _oop_recorder); } else if (constant->is_a(HotSpotObjectConstantImpl::klass())) { Handle obj = HotSpotObjectConstantImpl::object(constant); jobject value = JNIHandles::make_local(obj()); int oop_index = _oop_recorder->find_index(value); address dest = _constants->start() + CompilationResult_Site::pcOffset(patch); if (HotSpotObjectConstantImpl::compressed(constant)) { #ifdef _LP64 _constants->relocate(dest, oop_Relocation::spec(oop_index), relocInfo::narrow_oop_in_const); #else fatal("unexpected compressed oop in 32-bit mode"); #endif } else { _constants->relocate(dest, oop_Relocation::spec(oop_index)); } } else { ShouldNotReachHere(); } } jint last_pc_offset = -1; for (int i = 0; i < sites->length(); i++) { { No_Safepoint_Verifier no_safepoint; oop site = sites->obj_at(i); jint pc_offset = CompilationResult_Site::pcOffset(site); if (site->is_a(CompilationResult_Call::klass())) { TRACE_jvmci_4("call at %i", pc_offset); site_Call(buffer, pc_offset, site); } else if (site->is_a(CompilationResult_Infopoint::klass())) { // three reasons for infopoints denote actual safepoints oop reason = CompilationResult_Infopoint::reason(site); if (InfopointReason::SAFEPOINT() == reason || InfopointReason::CALL() == reason || InfopointReason::IMPLICIT_EXCEPTION() == reason) { TRACE_jvmci_4("safepoint at %i", pc_offset); site_Safepoint(buffer, pc_offset, site); } else { // if the infopoint is not an actual safepoint, it must have one of the other reasons // (safeguard against new safepoint types that require handling above) assert(InfopointReason::METHOD_START() == reason || InfopointReason::METHOD_END() == reason || InfopointReason::LINE_NUMBER() == reason, ""); site_Infopoint(buffer, pc_offset, site); } } else if (site->is_a(CompilationResult_DataPatch::klass())) { TRACE_jvmci_4("datapatch at %i", pc_offset); site_DataPatch(buffer, pc_offset, site); } else if (site->is_a(CompilationResult_Mark::klass())) { TRACE_jvmci_4("mark at %i", pc_offset); site_Mark(buffer, pc_offset, site); } else { fatal("unexpected Site subclass"); } last_pc_offset = pc_offset; } if (CodeInstallSafepointChecks && SafepointSynchronize::do_call_back()) { // this is a hacky way to force a safepoint check but nothing else was jumping out at me. ThreadToNativeFromVM ttnfv(JavaThread::current()); } } #ifndef PRODUCT if (comments() != NULL) { No_Safepoint_Verifier no_safepoint; for (int i = 0; i < comments()->length(); i++) { oop comment = comments()->obj_at(i); assert(comment->is_a(HotSpotCompiledCode_Comment::klass()), "cce"); jint offset = HotSpotCompiledCode_Comment::pcOffset(comment); char* text = java_lang_String::as_utf8_string(HotSpotCompiledCode_Comment::text(comment)); buffer.block_comment(offset, text); } } #endif return JVMCIEnv::ok; } void CodeInstaller::assumption_NoFinalizableSubclass(Handle assumption) { Handle receiverType_handle = Assumptions_NoFinalizableSubclass::receiverType(assumption()); Klass* receiverType = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(receiverType_handle)); _dependencies->assert_has_no_finalizable_subclasses(receiverType); } void CodeInstaller::assumption_ConcreteSubtype(Handle assumption) { Handle context_handle = Assumptions_ConcreteSubtype::context(assumption()); Handle subtype_handle = Assumptions_ConcreteSubtype::subtype(assumption()); Klass* context = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(context_handle)); Klass* subtype = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(subtype_handle)); assert(context->is_abstract(), ""); _dependencies->assert_abstract_with_unique_concrete_subtype(context, subtype); } void CodeInstaller::assumption_LeafType(Handle assumption) { Handle context_handle = Assumptions_LeafType::context(assumption()); Klass* context = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(context_handle)); _dependencies->assert_leaf_type(context); } void CodeInstaller::assumption_ConcreteMethod(Handle assumption) { Handle impl_handle = Assumptions_ConcreteMethod::impl(assumption()); Handle context_handle = Assumptions_ConcreteMethod::context(assumption()); methodHandle impl = getMethodFromHotSpotMethod(impl_handle()); Klass* context = java_lang_Class::as_Klass(HotSpotResolvedObjectTypeImpl::javaClass(context_handle)); _dependencies->assert_unique_concrete_method(context, impl()); } void CodeInstaller::assumption_CallSiteTargetValue(Handle assumption) { Handle callSite = Assumptions_CallSiteTargetValue::callSite(assumption()); Handle methodHandle = Assumptions_CallSiteTargetValue::methodHandle(assumption()); _dependencies->assert_call_site_target_value(callSite(), methodHandle()); } void CodeInstaller::process_exception_handlers() { if (exception_handlers() != NULL) { objArrayOop handlers = exception_handlers(); for (int i = 0; i < handlers->length(); i++) { oop exc = handlers->obj_at(i); jint pc_offset = CompilationResult_Site::pcOffset(exc); jint handler_offset = CompilationResult_ExceptionHandler::handlerPos(exc); // Subtable header _exception_handler_table.add_entry(HandlerTableEntry(1, pc_offset, 0)); // Subtable entry _exception_handler_table.add_entry(HandlerTableEntry(-1, handler_offset, 0)); } } } // If deoptimization happens, the interpreter should reexecute these bytecodes. // This function mainly helps the compilers to set up the reexecute bit. static bool bytecode_should_reexecute(Bytecodes::Code code) { switch (code) { case Bytecodes::_invokedynamic: case Bytecodes::_invokevirtual: case Bytecodes::_invokeinterface: case Bytecodes::_invokespecial: case Bytecodes::_invokestatic: return false; default: return true; } return true; } GrowableArray* CodeInstaller::record_virtual_objects(oop debug_info) { objArrayOop virtualObjects = DebugInfo::virtualObjectMapping(debug_info); if (virtualObjects == NULL) { return NULL; } GrowableArray* objects = new GrowableArray(virtualObjects->length(), virtualObjects->length(), NULL); // Create the unique ObjectValues for (int i = 0; i < virtualObjects->length(); i++) { oop value = virtualObjects->obj_at(i); int id = VirtualObject::id(value); oop type = VirtualObject::type(value); oop javaMirror = HotSpotResolvedObjectTypeImpl::javaClass(type); ObjectValue* sv = new ObjectValue(id, new ConstantOopWriteValue(JNIHandles::make_local(Thread::current(), javaMirror))); assert(objects->at(id) == NULL, "once"); objects->at_put(id, sv); } // All the values which could be referenced by the VirtualObjects // exist, so now describe all the VirtualObjects themselves. for (int i = 0; i < virtualObjects->length(); i++) { oop value = virtualObjects->obj_at(i); int id = VirtualObject::id(value); record_object_value(objects->at(id)->as_ObjectValue(), value, objects); } _debug_recorder->dump_object_pool(objects); return objects; } void CodeInstaller::record_scope(jint pc_offset, oop debug_info) { oop position = DebugInfo::bytecodePosition(debug_info); if (position == NULL) { // Stubs do not record scope info, just oop maps return; } GrowableArray* objectMapping = record_virtual_objects(debug_info); record_scope(pc_offset, position, objectMapping); } void CodeInstaller::record_scope(jint pc_offset, oop position, GrowableArray* objects) { oop frame = NULL; if (position->is_a(BytecodeFrame::klass())) { frame = position; } oop caller_frame = BytecodePosition::caller(position); if (caller_frame != NULL) { record_scope(pc_offset, caller_frame, objects); } oop hotspot_method = BytecodePosition::method(position); Method* method = getMethodFromHotSpotMethod(hotspot_method); jint bci = BytecodePosition::bci(position); if (bci == BytecodeFrame::BEFORE_BCI()) { bci = SynchronizationEntryBCI; } TRACE_jvmci_2("Recording scope pc_offset=%d bci=%d method=%s", pc_offset, bci, method->name_and_sig_as_C_string()); bool reexecute = false; if (frame != NULL) { if (bci == SynchronizationEntryBCI){ reexecute = false; } else { Bytecodes::Code code = Bytecodes::java_code_at(method, method->bcp_from(bci)); reexecute = bytecode_should_reexecute(code); if (frame != NULL) { reexecute = (BytecodeFrame::duringCall(frame) == JNI_FALSE); } } } DebugToken* locals_token = NULL; DebugToken* expressions_token = NULL; DebugToken* monitors_token = NULL; bool throw_exception = false; if (frame != NULL) { jint local_count = BytecodeFrame::numLocals(frame); jint expression_count = BytecodeFrame::numStack(frame); jint monitor_count = BytecodeFrame::numLocks(frame); objArrayOop values = BytecodeFrame::values(frame); objArrayOop slotKinds = BytecodeFrame::slotKinds(frame); assert(local_count + expression_count + monitor_count == values->length(), "unexpected values length"); assert(local_count + expression_count == slotKinds->length(), "unexpected slotKinds length"); GrowableArray* locals = local_count > 0 ? new GrowableArray (local_count) : NULL; GrowableArray* expressions = expression_count > 0 ? new GrowableArray (expression_count) : NULL; GrowableArray* monitors = monitor_count > 0 ? new GrowableArray (monitor_count) : NULL; TRACE_jvmci_2("Scope at bci %d with %d values", bci, values->length()); TRACE_jvmci_2("%d locals %d expressions, %d monitors", local_count, expression_count, monitor_count); for (jint i = 0; i < values->length(); i++) { ScopeValue* second = NULL; oop value = values->obj_at(i); if (i < local_count) { oop kind = slotKinds->obj_at(i); BasicType type = JVMCIRuntime::kindToBasicType(JavaKind::typeChar(kind)); ScopeValue* first = get_scope_value(value, type, objects, second); if (second != NULL) { locals->append(second); } locals->append(first); } else if (i < local_count + expression_count) { oop kind = slotKinds->obj_at(i); BasicType type = JVMCIRuntime::kindToBasicType(JavaKind::typeChar(kind)); ScopeValue* first = get_scope_value(value, type, objects, second); if (second != NULL) { expressions->append(second); } expressions->append(first); } else { monitors->append(get_monitor_value(value, objects)); } if (second != NULL) { i++; assert(i < values->length(), "double-slot value not followed by Value.ILLEGAL"); assert(values->obj_at(i) == Value::ILLEGAL(), "double-slot value not followed by Value.ILLEGAL"); } } locals_token = _debug_recorder->create_scope_values(locals); expressions_token = _debug_recorder->create_scope_values(expressions); monitors_token = _debug_recorder->create_monitor_values(monitors); throw_exception = BytecodeFrame::rethrowException(frame) == JNI_TRUE; } _debug_recorder->describe_scope(pc_offset, method, NULL, bci, reexecute, throw_exception, false, false, locals_token, expressions_token, monitors_token); } void CodeInstaller::site_Safepoint(CodeBuffer& buffer, jint pc_offset, oop site) { oop debug_info = CompilationResult_Infopoint::debugInfo(site); assert(debug_info != NULL, "debug info expected"); // address instruction = _instructions->start() + pc_offset; // jint next_pc_offset = Assembler::locate_next_instruction(instruction) - _instructions->start(); _debug_recorder->add_safepoint(pc_offset, create_oop_map(debug_info)); record_scope(pc_offset, debug_info); _debug_recorder->end_safepoint(pc_offset); } void CodeInstaller::site_Infopoint(CodeBuffer& buffer, jint pc_offset, oop site) { oop debug_info = CompilationResult_Infopoint::debugInfo(site); assert(debug_info != NULL, "debug info expected"); _debug_recorder->add_non_safepoint(pc_offset); record_scope(pc_offset, debug_info); _debug_recorder->end_non_safepoint(pc_offset); } void CodeInstaller::site_Call(CodeBuffer& buffer, jint pc_offset, oop site) { oop target = CompilationResult_Call::target(site); InstanceKlass* target_klass = InstanceKlass::cast(target->klass()); oop hotspot_method = NULL; // JavaMethod oop foreign_call = NULL; if (target_klass->is_subclass_of(SystemDictionary::HotSpotForeignCallTarget_klass())) { foreign_call = target; } else { hotspot_method = target; } oop debug_info = CompilationResult_Call::debugInfo(site); assert(!!hotspot_method ^ !!foreign_call, "Call site needs exactly one type"); NativeInstruction* inst = nativeInstruction_at(_instructions->start() + pc_offset); jint next_pc_offset = CodeInstaller::pd_next_offset(inst, pc_offset, hotspot_method); if (debug_info != NULL) { _debug_recorder->add_safepoint(next_pc_offset, create_oop_map(debug_info)); record_scope(next_pc_offset, debug_info); } if (foreign_call != NULL) { jlong foreign_call_destination = HotSpotForeignCallTarget::address(foreign_call); CodeInstaller::pd_relocate_ForeignCall(inst, foreign_call_destination); } else { // method != NULL assert(hotspot_method != NULL, "unexpected JavaMethod"); assert(debug_info != NULL, "debug info expected"); TRACE_jvmci_3("method call"); CodeInstaller::pd_relocate_JavaMethod(hotspot_method, pc_offset); if (_next_call_type == INVOKESTATIC || _next_call_type == INVOKESPECIAL) { // Need a static call stub for transitions from compiled to interpreted. CompiledStaticCall::emit_to_interp_stub(buffer, _instructions->start() + pc_offset); } } _next_call_type = INVOKE_INVALID; if (debug_info != NULL) { _debug_recorder->end_safepoint(next_pc_offset); } } void CodeInstaller::site_DataPatch(CodeBuffer& buffer, jint pc_offset, oop site) { oop reference = CompilationResult_DataPatch::reference(site); if (reference->is_a(CompilationResult_ConstantReference::klass())) { Handle constant = CompilationResult_ConstantReference::constant(reference); if (constant->is_a(HotSpotObjectConstantImpl::klass())) { pd_patch_OopConstant(pc_offset, constant); } else if (constant->is_a(HotSpotMetaspaceConstantImpl::klass())) { record_metadata_in_patch(constant, _oop_recorder); } else if (constant->is_a(HotSpotSentinelConstant::klass())) { fatal("sentinel constant unsupported"); } else { fatal("unknown constant type in data patch"); } } else if (reference->is_a(CompilationResult_DataSectionReference::klass())) { int data_offset = CompilationResult_DataSectionReference::offset(reference); assert(0 <= data_offset && data_offset < _constants_size, err_msg("data offset 0x%X points outside data section (size 0x%X)", data_offset, _constants_size)); pd_patch_DataSectionReference(pc_offset, data_offset); } else { fatal("unknown data patch type"); } } void CodeInstaller::site_Mark(CodeBuffer& buffer, jint pc_offset, oop site) { oop id_obj = CompilationResult_Mark::id(site); if (id_obj != NULL) { assert(java_lang_boxing_object::is_instance(id_obj, T_INT), "Integer id expected"); jint id = id_obj->int_field(java_lang_boxing_object::value_offset_in_bytes(T_INT)); address pc = _instructions->start() + pc_offset; switch (id) { case UNVERIFIED_ENTRY: _offsets.set_value(CodeOffsets::Entry, pc_offset); break; case VERIFIED_ENTRY: _offsets.set_value(CodeOffsets::Verified_Entry, pc_offset); break; case OSR_ENTRY: _offsets.set_value(CodeOffsets::OSR_Entry, pc_offset); break; case EXCEPTION_HANDLER_ENTRY: _offsets.set_value(CodeOffsets::Exceptions, pc_offset); break; case DEOPT_HANDLER_ENTRY: _offsets.set_value(CodeOffsets::Deopt, pc_offset); break; case INVOKEVIRTUAL: case INVOKEINTERFACE: case INLINE_INVOKE: case INVOKESTATIC: case INVOKESPECIAL: _next_call_type = (MarkId) id; _invoke_mark_pc = pc; break; case POLL_NEAR: case POLL_FAR: case POLL_RETURN_NEAR: case POLL_RETURN_FAR: pd_relocate_poll(pc, id); break; case CARD_TABLE_ADDRESS: case HEAP_TOP_ADDRESS: case HEAP_END_ADDRESS: case NARROW_KLASS_BASE_ADDRESS: case CRC_TABLE_ADDRESS: break; default: ShouldNotReachHere(); break; } } }