1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "gc/shared/gcLocker.hpp"
  29 #include "oops/methodData.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/icache.hpp"
  32 #include "utilities/copy.hpp"
  33 #include "utilities/xmlstream.hpp"
  34 
  35 // The structure of a CodeSection:
  36 //
  37 //    _start ->           +----------------+
  38 //                        | machine code...|
  39 //    _end ->             |----------------|
  40 //                        |                |
  41 //                        |    (empty)     |
  42 //                        |                |
  43 //                        |                |
  44 //                        +----------------+
  45 //    _limit ->           |                |
  46 //
  47 //    _locs_start ->      +----------------+
  48 //                        |reloc records...|
  49 //                        |----------------|
  50 //    _locs_end ->        |                |
  51 //                        |                |
  52 //                        |    (empty)     |
  53 //                        |                |
  54 //                        |                |
  55 //                        +----------------+
  56 //    _locs_limit ->      |                |
  57 // The _end (resp. _limit) pointer refers to the first
  58 // unused (resp. unallocated) byte.
  59 
  60 // The structure of the CodeBuffer while code is being accumulated:
  61 //
  62 //    _total_start ->    \
  63 //    _insts._start ->              +----------------+
  64 //                                  |                |
  65 //                                  |     Code       |
  66 //                                  |                |
  67 //    _stubs._start ->              |----------------|
  68 //                                  |                |
  69 //                                  |    Stubs       | (also handlers for deopt/exception)
  70 //                                  |                |
  71 //    _consts._start ->             |----------------|
  72 //                                  |                |
  73 //                                  |   Constants    |
  74 //                                  |                |
  75 //                                  +----------------+
  76 //    + _total_size ->              |                |
  77 //
  78 // When the code and relocations are copied to the code cache,
  79 // the empty parts of each section are removed, and everything
  80 // is copied into contiguous locations.
  81 
  82 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  83 
  84 // External buffer, in a predefined CodeBlob.
  85 // Important: The code_start must be taken exactly, and not realigned.
  86 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  87   initialize_misc("static buffer");
  88   initialize(blob->content_begin(), blob->content_size());
  89   verify_section_allocation();
  90 }
  91 
  92 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  93   // Compute maximal alignment.
  94   int align = _insts.alignment();
  95   // Always allow for empty slop around each section.
  96   int slop = (int) CodeSection::end_slop();
  97 
  98   assert(blob() == NULL, "only once");
  99   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
 100   if (blob() == NULL) {
 101     // The assembler constructor will throw a fatal on an empty CodeBuffer.
 102     return;  // caller must test this
 103   }
 104 
 105   // Set up various pointers into the blob.
 106   initialize(_total_start, _total_size);
 107 
 108   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 109 
 110   pd_initialize();
 111 
 112   if (locs_size != 0) {
 113     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 114   }
 115 
 116   verify_section_allocation();
 117 }
 118 
 119 
 120 CodeBuffer::~CodeBuffer() {
 121   verify_section_allocation();
 122 
 123   // If we allocate our code buffer from the CodeCache
 124   // via a BufferBlob, and it's not permanent, then
 125   // free the BufferBlob.
 126   // The rest of the memory will be freed when the ResourceObj
 127   // is released.
 128   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 129     // Previous incarnations of this buffer are held live, so that internal
 130     // addresses constructed before expansions will not be confused.
 131     cb->free_blob();
 132   }
 133 
 134   // free any overflow storage
 135   delete _overflow_arena;
 136 
 137   // Claim is that stack allocation ensures resources are cleaned up.
 138   // This is resource clean up, let's hope that all were properly copied out.
 139   free_strings();
 140 
 141 #ifdef ASSERT
 142   // Save allocation type to execute assert in ~ResourceObj()
 143   // which is called after this destructor.
 144   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
 145   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 146   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 147   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 148 #endif
 149 }
 150 
 151 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 152   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 153   DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
 154   _oop_recorder = r;
 155 }
 156 
 157 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 158   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 159   csize_t slop = CodeSection::end_slop();  // margin between sections
 160   int align = cs->alignment();
 161   assert(is_power_of_2(align), "sanity");
 162   address start  = _insts._start;
 163   address limit  = _insts._limit;
 164   address middle = limit - size;
 165   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 166   guarantee(middle - slop > start, "need enough space to divide up");
 167   _insts._limit = middle - slop;  // subtract desired space, plus slop
 168   cs->initialize(middle, limit - middle);
 169   assert(cs->start() == middle, "sanity");
 170   assert(cs->limit() == limit,  "sanity");
 171   // give it some relocations to start with, if the main section has them
 172   if (_insts.has_locs())  cs->initialize_locs(1);
 173 }
 174 
 175 void CodeBuffer::freeze_section(CodeSection* cs) {
 176   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 177   csize_t frozen_size = cs->size();
 178   if (next_cs != NULL) {
 179     frozen_size = next_cs->align_at_start(frozen_size);
 180   }
 181   address old_limit = cs->limit();
 182   address new_limit = cs->start() + frozen_size;
 183   relocInfo* old_locs_limit = cs->locs_limit();
 184   relocInfo* new_locs_limit = cs->locs_end();
 185   // Patch the limits.
 186   cs->_limit = new_limit;
 187   cs->_locs_limit = new_locs_limit;
 188   cs->_frozen = true;
 189   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
 190     // Give remaining buffer space to the following section.
 191     next_cs->initialize(new_limit, old_limit - new_limit);
 192     next_cs->initialize_shared_locs(new_locs_limit,
 193                                     old_locs_limit - new_locs_limit);
 194   }
 195 }
 196 
 197 void CodeBuffer::set_blob(BufferBlob* blob) {
 198   _blob = blob;
 199   if (blob != NULL) {
 200     address start = blob->content_begin();
 201     address end   = blob->content_end();
 202     // Round up the starting address.
 203     int align = _insts.alignment();
 204     start += (-(intptr_t)start) & (align-1);
 205     _total_start = start;
 206     _total_size  = end - start;
 207   } else {
 208 #ifdef ASSERT
 209     // Clean out dangling pointers.
 210     _total_start    = badAddress;
 211     _consts._start  = _consts._end  = badAddress;
 212     _insts._start   = _insts._end   = badAddress;
 213     _stubs._start   = _stubs._end   = badAddress;
 214 #endif //ASSERT
 215   }
 216 }
 217 
 218 void CodeBuffer::free_blob() {
 219   if (_blob != NULL) {
 220     BufferBlob::free(_blob);
 221     set_blob(NULL);
 222   }
 223 }
 224 
 225 const char* CodeBuffer::code_section_name(int n) {
 226 #ifdef PRODUCT
 227   return NULL;
 228 #else //PRODUCT
 229   switch (n) {
 230   case SECT_CONSTS:            return "consts";
 231   case SECT_INSTS:             return "insts";
 232   case SECT_STUBS:             return "stubs";
 233   default:                     return NULL;
 234   }
 235 #endif //PRODUCT
 236 }
 237 
 238 int CodeBuffer::section_index_of(address addr) const {
 239   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 240     const CodeSection* cs = code_section(n);
 241     if (cs->allocates(addr))  return n;
 242   }
 243   return SECT_NONE;
 244 }
 245 
 246 int CodeBuffer::locator(address addr) const {
 247   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 248     const CodeSection* cs = code_section(n);
 249     if (cs->allocates(addr)) {
 250       return locator(addr - cs->start(), n);
 251     }
 252   }
 253   return -1;
 254 }
 255 
 256 address CodeBuffer::locator_address(int locator) const {
 257   if (locator < 0)  return NULL;
 258   address start = code_section(locator_sect(locator))->start();
 259   return start + locator_pos(locator);
 260 }
 261 
 262 bool CodeBuffer::is_backward_branch(Label& L) {
 263   return L.is_bound() && insts_end() <= locator_address(L.loc());
 264 }
 265 
 266 address CodeBuffer::decode_begin() {
 267   address begin = _insts.start();
 268   if (_decode_begin != NULL && _decode_begin > begin)
 269     begin = _decode_begin;
 270   return begin;
 271 }
 272 
 273 
 274 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 275   if (_overflow_arena == NULL) {
 276     _overflow_arena = new (mtCode) Arena(mtCode);
 277   }
 278   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 279 }
 280 
 281 
 282 // Helper function for managing labels and their target addresses.
 283 // Returns a sensible address, and if it is not the label's final
 284 // address, notes the dependency (at 'branch_pc') on the label.
 285 address CodeSection::target(Label& L, address branch_pc) {
 286   if (L.is_bound()) {
 287     int loc = L.loc();
 288     if (index() == CodeBuffer::locator_sect(loc)) {
 289       return start() + CodeBuffer::locator_pos(loc);
 290     } else {
 291       return outer()->locator_address(loc);
 292     }
 293   } else {
 294     assert(allocates2(branch_pc), "sanity");
 295     address base = start();
 296     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 297     L.add_patch_at(outer(), patch_loc);
 298 
 299     // Need to return a pc, doesn't matter what it is since it will be
 300     // replaced during resolution later.
 301     // Don't return NULL or badAddress, since branches shouldn't overflow.
 302     // Don't return base either because that could overflow displacements
 303     // for shorter branches.  It will get checked when bound.
 304     return branch_pc;
 305   }
 306 }
 307 
 308 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 309   Relocation* reloc = spec.reloc();
 310   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 311   if (rtype == relocInfo::none)  return;
 312 
 313   // The assertion below has been adjusted, to also work for
 314   // relocation for fixup.  Sometimes we want to put relocation
 315   // information for the next instruction, since it will be patched
 316   // with a call.
 317   assert(start() <= at && at <= end()+1,
 318          "cannot relocate data outside code boundaries");
 319 
 320   if (!has_locs()) {
 321     // no space for relocation information provided => code cannot be
 322     // relocated.  Make sure that relocate is only called with rtypes
 323     // that can be ignored for this kind of code.
 324     assert(rtype == relocInfo::none              ||
 325            rtype == relocInfo::runtime_call_type ||
 326            rtype == relocInfo::internal_word_type||
 327            rtype == relocInfo::section_word_type ||
 328            rtype == relocInfo::external_word_type,
 329            "code needs relocation information");
 330     // leave behind an indication that we attempted a relocation
 331     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 332     return;
 333   }
 334 
 335   // Advance the point, noting the offset we'll have to record.
 336   csize_t offset = at - locs_point();
 337   set_locs_point(at);
 338 
 339   // Test for a couple of overflow conditions; maybe expand the buffer.
 340   relocInfo* end = locs_end();
 341   relocInfo* req = end + relocInfo::length_limit;
 342   // Check for (potential) overflow
 343   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 344     req += (uint)offset / (uint)relocInfo::offset_limit();
 345     if (req >= locs_limit()) {
 346       // Allocate or reallocate.
 347       expand_locs(locs_count() + (req - end));
 348       // reload pointer
 349       end = locs_end();
 350     }
 351   }
 352 
 353   // If the offset is giant, emit filler relocs, of type 'none', but
 354   // each carrying the largest possible offset, to advance the locs_point.
 355   while (offset >= relocInfo::offset_limit()) {
 356     assert(end < locs_limit(), "adjust previous paragraph of code");
 357     *end++ = filler_relocInfo();
 358     offset -= filler_relocInfo().addr_offset();
 359   }
 360 
 361   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 362   (*end) = relocInfo(rtype, offset, format);
 363 
 364   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 365   end->initialize(this, reloc);
 366 }
 367 
 368 void CodeSection::initialize_locs(int locs_capacity) {
 369   assert(_locs_start == NULL, "only one locs init step, please");
 370   // Apply a priori lower limits to relocation size:
 371   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 372   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 373   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 374   _locs_start    = locs_start;
 375   _locs_end      = locs_start;
 376   _locs_limit    = locs_start + locs_capacity;
 377   _locs_own      = true;
 378 }
 379 
 380 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 381   assert(_locs_start == NULL, "do this before locs are allocated");
 382   // Internal invariant:  locs buf must be fully aligned.
 383   // See copy_relocations_to() below.
 384   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 385     ++buf; --length;
 386   }
 387   if (length > 0) {
 388     _locs_start = buf;
 389     _locs_end   = buf;
 390     _locs_limit = buf + length;
 391     _locs_own   = false;
 392   }
 393 }
 394 
 395 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 396   int lcount = source_cs->locs_count();
 397   if (lcount != 0) {
 398     initialize_shared_locs(source_cs->locs_start(), lcount);
 399     _locs_end = _locs_limit = _locs_start + lcount;
 400     assert(is_allocated(), "must have copied code already");
 401     set_locs_point(start() + source_cs->locs_point_off());
 402   }
 403   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 404 }
 405 
 406 void CodeSection::expand_locs(int new_capacity) {
 407   if (_locs_start == NULL) {
 408     initialize_locs(new_capacity);
 409     return;
 410   } else {
 411     int old_count    = locs_count();
 412     int old_capacity = locs_capacity();
 413     if (new_capacity < old_capacity * 2)
 414       new_capacity = old_capacity * 2;
 415     relocInfo* locs_start;
 416     if (_locs_own) {
 417       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 418     } else {
 419       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 420       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 421       _locs_own = true;
 422     }
 423     _locs_start    = locs_start;
 424     _locs_end      = locs_start + old_count;
 425     _locs_limit    = locs_start + new_capacity;
 426   }
 427 }
 428 
 429 
 430 /// Support for emitting the code to its final location.
 431 /// The pattern is the same for all functions.
 432 /// We iterate over all the sections, padding each to alignment.
 433 
 434 csize_t CodeBuffer::total_content_size() const {
 435   csize_t size_so_far = 0;
 436   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 437     const CodeSection* cs = code_section(n);
 438     if (cs->is_empty())  continue;  // skip trivial section
 439     size_so_far = cs->align_at_start(size_so_far);
 440     size_so_far += cs->size();
 441   }
 442   return size_so_far;
 443 }
 444 
 445 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 446   address buf = dest->_total_start;
 447   csize_t buf_offset = 0;
 448   assert(dest->_total_size >= total_content_size(), "must be big enough");
 449 
 450   {
 451     // not sure why this is here, but why not...
 452     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 453     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 454   }
 455 
 456   const CodeSection* prev_cs      = NULL;
 457   CodeSection*       prev_dest_cs = NULL;
 458 
 459   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 460     // figure compact layout of each section
 461     const CodeSection* cs = code_section(n);
 462     csize_t csize = cs->size();
 463 
 464     CodeSection* dest_cs = dest->code_section(n);
 465     if (!cs->is_empty()) {
 466       // Compute initial padding; assign it to the previous non-empty guy.
 467       // Cf. figure_expanded_capacities.
 468       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 469       if (padding != 0) {
 470         buf_offset += padding;
 471         assert(prev_dest_cs != NULL, "sanity");
 472         prev_dest_cs->_limit += padding;
 473       }
 474       #ifdef ASSERT
 475       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 476         // Make sure the ends still match up.
 477         // This is important because a branch in a frozen section
 478         // might target code in a following section, via a Label,
 479         // and without a relocation record.  See Label::patch_instructions.
 480         address dest_start = buf+buf_offset;
 481         csize_t start2start = cs->start() - prev_cs->start();
 482         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 483         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 484       }
 485       #endif //ASSERT
 486       prev_dest_cs = dest_cs;
 487       prev_cs      = cs;
 488     }
 489 
 490     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 491     dest_cs->initialize(buf+buf_offset, csize);
 492     dest_cs->set_end(buf+buf_offset+csize);
 493     assert(dest_cs->is_allocated(), "must always be allocated");
 494     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 495 
 496     buf_offset += csize;
 497   }
 498 
 499   // Done calculating sections; did it come out to the right end?
 500   assert(buf_offset == total_content_size(), "sanity");
 501   dest->verify_section_allocation();
 502 }
 503 
 504 // Append an oop reference that keeps the class alive.
 505 static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
 506   oop cl = k->klass_holder();
 507   if (cl != NULL && !oops->contains(cl)) {
 508     oops->append(cl);
 509   }
 510 }
 511 
 512 void CodeBuffer::finalize_oop_references(methodHandle mh) {
 513   No_Safepoint_Verifier nsv;
 514 
 515   GrowableArray<oop> oops;
 516 
 517   // Make sure that immediate metadata records something in the OopRecorder
 518   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 519     // pull code out of each section
 520     CodeSection* cs = code_section(n);
 521     if (cs->is_empty())  continue;  // skip trivial section
 522     RelocIterator iter(cs);
 523     while (iter.next()) {
 524       if (iter.type() == relocInfo::metadata_type) {
 525         metadata_Relocation* md = iter.metadata_reloc();
 526         if (md->metadata_is_immediate()) {
 527           Metadata* m = md->metadata_value();
 528           if (oop_recorder()->is_real(m)) {
 529             if (m->is_methodData()) {
 530               m = ((MethodData*)m)->method();
 531             }
 532             if (m->is_method()) {
 533               m = ((Method*)m)->method_holder();
 534             }
 535             if (m->is_klass()) {
 536               append_oop_references(&oops, (Klass*)m);
 537             } else {
 538               // XXX This will currently occur for MDO which don't
 539               // have a backpointer.  This has to be fixed later.
 540               m->print();
 541               ShouldNotReachHere();
 542             }
 543           }
 544         }
 545       }
 546     }
 547   }
 548 
 549   if (!oop_recorder()->is_unused()) {
 550     for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
 551       Metadata* m = oop_recorder()->metadata_at(i);
 552       if (oop_recorder()->is_real(m)) {
 553         if (m->is_methodData()) {
 554           m = ((MethodData*)m)->method();
 555         }
 556         if (m->is_method()) {
 557           m = ((Method*)m)->method_holder();
 558         }
 559         if (m->is_klass()) {
 560           append_oop_references(&oops, (Klass*)m);
 561         } else {
 562           m->print();
 563           ShouldNotReachHere();
 564         }
 565       }
 566     }
 567 
 568   }
 569 
 570   // Add the class loader of Method* for the nmethod itself
 571   append_oop_references(&oops, mh->method_holder());
 572 
 573   // Add any oops that we've found
 574   Thread* thread = Thread::current();
 575   for (int i = 0; i < oops.length(); i++) {
 576     oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
 577   }
 578 }
 579 
 580 
 581 
 582 csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
 583   csize_t size_so_far = 0;
 584   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 585     const CodeSection* cur_cs = code_section(n);
 586     if (!cur_cs->is_empty()) {
 587       size_so_far = cur_cs->align_at_start(size_so_far);
 588     }
 589     if (cur_cs->index() == cs->index()) {
 590       return size_so_far;
 591     }
 592     size_so_far += cur_cs->size();
 593   }
 594   ShouldNotReachHere();
 595   return -1;
 596 }
 597 
 598 csize_t CodeBuffer::total_relocation_size() const {
 599   csize_t lsize = copy_relocations_to(NULL);  // dry run only
 600   csize_t csize = total_content_size();
 601   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
 602   return (csize_t) align_size_up(total, HeapWordSize);
 603 }
 604 
 605 csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const {
 606   csize_t buf_offset = 0;
 607   csize_t code_end_so_far = 0;
 608   csize_t code_point_so_far = 0;
 609 
 610   assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 611   assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 612 
 613   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 614     if (only_inst && (n != (int)SECT_INSTS)) {
 615       // Need only relocation info for code.
 616       continue;
 617     }
 618     // pull relocs out of each section
 619     const CodeSection* cs = code_section(n);
 620     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 621     if (cs->is_empty())  continue;  // skip trivial section
 622     relocInfo* lstart = cs->locs_start();
 623     relocInfo* lend   = cs->locs_end();
 624     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 625     csize_t    csize  = cs->size();
 626     code_end_so_far = cs->align_at_start(code_end_so_far);
 627 
 628     if (lsize > 0) {
 629       // Figure out how to advance the combined relocation point
 630       // first to the beginning of this section.
 631       // We'll insert one or more filler relocs to span that gap.
 632       // (Don't bother to improve this by editing the first reloc's offset.)
 633       csize_t new_code_point = code_end_so_far;
 634       for (csize_t jump;
 635            code_point_so_far < new_code_point;
 636            code_point_so_far += jump) {
 637         jump = new_code_point - code_point_so_far;
 638         relocInfo filler = filler_relocInfo();
 639         if (jump >= filler.addr_offset()) {
 640           jump = filler.addr_offset();
 641         } else {  // else shrink the filler to fit
 642           filler = relocInfo(relocInfo::none, jump);
 643         }
 644         if (buf != NULL) {
 645           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 646           *(relocInfo*)(buf+buf_offset) = filler;
 647         }
 648         buf_offset += sizeof(filler);
 649       }
 650 
 651       // Update code point and end to skip past this section:
 652       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 653       assert(code_point_so_far <= last_code_point, "sanity");
 654       code_point_so_far = last_code_point; // advance past this guy's relocs
 655     }
 656     code_end_so_far += csize;  // advance past this guy's instructions too
 657 
 658     // Done with filler; emit the real relocations:
 659     if (buf != NULL && lsize != 0) {
 660       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 661       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 662       if (buf_offset % HeapWordSize == 0) {
 663         // Use wordwise copies if possible:
 664         Copy::disjoint_words((HeapWord*)lstart,
 665                              (HeapWord*)(buf+buf_offset),
 666                              (lsize + HeapWordSize-1) / HeapWordSize);
 667       } else {
 668         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 669       }
 670     }
 671     buf_offset += lsize;
 672   }
 673 
 674   // Align end of relocation info in target.
 675   while (buf_offset % HeapWordSize != 0) {
 676     if (buf != NULL) {
 677       relocInfo padding = relocInfo(relocInfo::none, 0);
 678       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 679       *(relocInfo*)(buf+buf_offset) = padding;
 680     }
 681     buf_offset += sizeof(relocInfo);
 682   }
 683 
 684   assert(only_inst || code_end_so_far == total_content_size(), "sanity");
 685 
 686   return buf_offset;
 687 }
 688 
 689 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 690   address buf = NULL;
 691   csize_t buf_offset = 0;
 692   csize_t buf_limit = 0;
 693 
 694   if (dest != NULL) {
 695     buf = (address)dest->relocation_begin();
 696     buf_limit = (address)dest->relocation_end() - buf;
 697   }
 698   // if dest == NULL, this is just the sizing pass
 699   //
 700   buf_offset = copy_relocations_to(buf, buf_limit, false);
 701 
 702   // Account for index:
 703   if (buf != NULL) {
 704     RelocIterator::create_index(dest->relocation_begin(),
 705                                 buf_offset / sizeof(relocInfo),
 706                                 dest->relocation_end());
 707   }
 708 
 709   return buf_offset;
 710 }
 711 
 712 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 713 #ifndef PRODUCT
 714   if (PrintNMethods && (WizardMode || Verbose)) {
 715     tty->print("done with CodeBuffer:");
 716     ((CodeBuffer*)this)->print();
 717   }
 718 #endif //PRODUCT
 719 
 720   CodeBuffer dest(dest_blob);
 721   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 722   this->compute_final_layout(&dest);
 723   relocate_code_to(&dest);
 724 
 725   // transfer strings and comments from buffer to blob
 726   dest_blob->set_strings(_code_strings);
 727 
 728   // Done moving code bytes; were they the right size?
 729   assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 730 
 731   // Flush generated code
 732   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 733 }
 734 
 735 // Move all my code into another code buffer.  Consult applicable
 736 // relocs to repair embedded addresses.  The layout in the destination
 737 // CodeBuffer is different to the source CodeBuffer: the destination
 738 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 739 // ascending address).
 740 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 741   address dest_end = dest->_total_start + dest->_total_size;
 742   address dest_filled = NULL;
 743   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 744     // pull code out of each section
 745     const CodeSection* cs = code_section(n);
 746     if (cs->is_empty())  continue;  // skip trivial section
 747     CodeSection* dest_cs = dest->code_section(n);
 748     assert(cs->size() == dest_cs->size(), "sanity");
 749     csize_t usize = dest_cs->size();
 750     csize_t wsize = align_size_up(usize, HeapWordSize);
 751     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 752     // Copy the code as aligned machine words.
 753     // This may also include an uninitialized partial word at the end.
 754     Copy::disjoint_words((HeapWord*)cs->start(),
 755                          (HeapWord*)dest_cs->start(),
 756                          wsize / HeapWordSize);
 757 
 758     if (dest->blob() == NULL) {
 759       // Destination is a final resting place, not just another buffer.
 760       // Normalize uninitialized bytes in the final padding.
 761       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 762                           Assembler::code_fill_byte());
 763     }
 764     // Keep track of the highest filled address
 765     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
 766 
 767     assert(cs->locs_start() != (relocInfo*)badAddress,
 768            "this section carries no reloc storage, but reloc was attempted");
 769 
 770     // Make the new code copy use the old copy's relocations:
 771     dest_cs->initialize_locs_from(cs);
 772   }
 773 
 774   // Do relocation after all sections are copied.
 775   // This is necessary if the code uses constants in stubs, which are
 776   // relocated when the corresponding instruction in the code (e.g., a
 777   // call) is relocated. Stubs are placed behind the main code
 778   // section, so that section has to be copied before relocating.
 779   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 780     // pull code out of each section
 781     const CodeSection* cs = code_section(n);
 782     if (cs->is_empty()) continue;  // skip trivial section
 783     CodeSection* dest_cs = dest->code_section(n);
 784     { // Repair the pc relative information in the code after the move
 785       RelocIterator iter(dest_cs);
 786       while (iter.next()) {
 787         iter.reloc()->fix_relocation_after_move(this, dest);
 788       }
 789     }
 790   }
 791 
 792   if (dest->blob() == NULL && dest_filled != NULL) {
 793     // Destination is a final resting place, not just another buffer.
 794     // Normalize uninitialized bytes in the final padding.
 795     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
 796                         Assembler::code_fill_byte());
 797 
 798   }
 799 }
 800 
 801 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 802                                                csize_t amount,
 803                                                csize_t* new_capacity) {
 804   csize_t new_total_cap = 0;
 805 
 806   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 807     const CodeSection* sect = code_section(n);
 808 
 809     if (!sect->is_empty()) {
 810       // Compute initial padding; assign it to the previous section,
 811       // even if it's empty (e.g. consts section can be empty).
 812       // Cf. compute_final_layout
 813       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 814       if (padding != 0) {
 815         new_total_cap += padding;
 816         assert(n - 1 >= SECT_FIRST, "sanity");
 817         new_capacity[n - 1] += padding;
 818       }
 819     }
 820 
 821     csize_t exp = sect->size();  // 100% increase
 822     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 823     if (sect == which_cs) {
 824       if (exp < amount)  exp = amount;
 825       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 826     } else if (n == SECT_INSTS) {
 827       // scale down inst increases to a more modest 25%
 828       exp = 4*K + ((exp - 4*K) >> 2);
 829       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 830     } else if (sect->is_empty()) {
 831       // do not grow an empty secondary section
 832       exp = 0;
 833     }
 834     // Allow for inter-section slop:
 835     exp += CodeSection::end_slop();
 836     csize_t new_cap = sect->size() + exp;
 837     if (new_cap < sect->capacity()) {
 838       // No need to expand after all.
 839       new_cap = sect->capacity();
 840     }
 841     new_capacity[n] = new_cap;
 842     new_total_cap += new_cap;
 843   }
 844 
 845   return new_total_cap;
 846 }
 847 
 848 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 849 #ifndef PRODUCT
 850   if (PrintNMethods && (WizardMode || Verbose)) {
 851     tty->print("expanding CodeBuffer:");
 852     this->print();
 853   }
 854 
 855   if (StressCodeBuffers && blob() != NULL) {
 856     static int expand_count = 0;
 857     if (expand_count >= 0)  expand_count += 1;
 858     if (expand_count > 100 && is_power_of_2(expand_count)) {
 859       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 860       // simulate an occasional allocation failure:
 861       free_blob();
 862     }
 863   }
 864 #endif //PRODUCT
 865 
 866   // Resizing must be allowed
 867   {
 868     if (blob() == NULL)  return;  // caller must check for blob == NULL
 869     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 870       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 871     }
 872   }
 873 
 874   // Figure new capacity for each section.
 875   csize_t new_capacity[SECT_LIMIT];
 876   csize_t new_total_cap
 877     = figure_expanded_capacities(which_cs, amount, new_capacity);
 878 
 879   // Create a new (temporary) code buffer to hold all the new data
 880   CodeBuffer cb(name(), new_total_cap, 0);
 881   if (cb.blob() == NULL) {
 882     // Failed to allocate in code cache.
 883     free_blob();
 884     return;
 885   }
 886 
 887   // Create an old code buffer to remember which addresses used to go where.
 888   // This will be useful when we do final assembly into the code cache,
 889   // because we will need to know how to warp any internal address that
 890   // has been created at any time in this CodeBuffer's past.
 891   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 892   bxp->take_over_code_from(this);  // remember the old undersized blob
 893   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 894   bxp->_before_expand = this->_before_expand;
 895   this->_before_expand = bxp;
 896 
 897   // Give each section its required (expanded) capacity.
 898   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 899     CodeSection* cb_sect   = cb.code_section(n);
 900     CodeSection* this_sect = code_section(n);
 901     if (new_capacity[n] == 0)  continue;  // already nulled out
 902     if (n != SECT_INSTS) {
 903       cb.initialize_section_size(cb_sect, new_capacity[n]);
 904     }
 905     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 906     address cb_start = cb_sect->start();
 907     cb_sect->set_end(cb_start + this_sect->size());
 908     if (this_sect->mark() == NULL) {
 909       cb_sect->clear_mark();
 910     } else {
 911       cb_sect->set_mark(cb_start + this_sect->mark_off());
 912     }
 913   }
 914 
 915   // Move all the code and relocations to the new blob:
 916   relocate_code_to(&cb);
 917 
 918   // Copy the temporary code buffer into the current code buffer.
 919   // Basically, do {*this = cb}, except for some control information.
 920   this->take_over_code_from(&cb);
 921   cb.set_blob(NULL);
 922 
 923   // Zap the old code buffer contents, to avoid mistakenly using them.
 924   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 925                                  badCodeHeapFreeVal));
 926 
 927   _decode_begin = NULL;  // sanity
 928 
 929   // Make certain that the new sections are all snugly inside the new blob.
 930   verify_section_allocation();
 931 
 932 #ifndef PRODUCT
 933   if (PrintNMethods && (WizardMode || Verbose)) {
 934     tty->print("expanded CodeBuffer:");
 935     this->print();
 936   }
 937 #endif //PRODUCT
 938 }
 939 
 940 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 941   // Must already have disposed of the old blob somehow.
 942   assert(blob() == NULL, "must be empty");
 943   // Take the new blob away from cb.
 944   set_blob(cb->blob());
 945   // Take over all the section pointers.
 946   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 947     CodeSection* cb_sect   = cb->code_section(n);
 948     CodeSection* this_sect = code_section(n);
 949     this_sect->take_over_code_from(cb_sect);
 950   }
 951   _overflow_arena = cb->_overflow_arena;
 952   // Make sure the old cb won't try to use it or free it.
 953   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 954 }
 955 
 956 void CodeBuffer::verify_section_allocation() {
 957   address tstart = _total_start;
 958   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
 959   address tend   = tstart + _total_size;
 960   if (_blob != NULL) {
 961 
 962     guarantee(tstart >= _blob->content_begin(), "sanity");
 963     guarantee(tend   <= _blob->content_end(),   "sanity");
 964   }
 965   // Verify disjointness.
 966   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 967     CodeSection* sect = code_section(n);
 968     if (!sect->is_allocated() || sect->is_empty())  continue;
 969     guarantee((intptr_t)sect->start() % sect->alignment() == 0
 970            || sect->is_empty() || _blob == NULL,
 971            "start is aligned");
 972     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
 973       CodeSection* other = code_section(m);
 974       if (!other->is_allocated() || other == sect)  continue;
 975       guarantee(!other->contains(sect->start()    ), "sanity");
 976       // limit is an exclusive address and can be the start of another
 977       // section.
 978       guarantee(!other->contains(sect->limit() - 1), "sanity");
 979     }
 980     guarantee(sect->end() <= tend, "sanity");
 981     guarantee(sect->end() <= sect->limit(), "sanity");
 982   }
 983 }
 984 
 985 void CodeBuffer::log_section_sizes(const char* name) {
 986   if (xtty != NULL) {
 987     ttyLocker ttyl;
 988     // log info about buffer usage
 989     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
 990     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
 991       CodeSection* sect = code_section(n);
 992       if (!sect->is_allocated() || sect->is_empty())  continue;
 993       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
 994                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
 995     }
 996     xtty->print_cr("</blob>");
 997   }
 998 }
 999 
1000 #ifndef PRODUCT
1001 
1002 void CodeSection::dump() {
1003   address ptr = start();
1004   for (csize_t step; ptr < end(); ptr += step) {
1005     step = end() - ptr;
1006     if (step > jintSize * 4)  step = jintSize * 4;
1007     tty->print(INTPTR_FORMAT ": ", p2i(ptr));
1008     while (step > 0) {
1009       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
1010       ptr += jintSize;
1011     }
1012     tty->cr();
1013   }
1014 }
1015 
1016 
1017 void CodeSection::decode() {
1018   Disassembler::decode(start(), end());
1019 }
1020 
1021 
1022 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1023   _code_strings.add_comment(offset, comment);
1024 }
1025 
1026 const char* CodeBuffer::code_string(const char* str) {
1027   return _code_strings.add_string(str);
1028 }
1029 
1030 class CodeString: public CHeapObj<mtCode> {
1031  private:
1032   friend class CodeStrings;
1033   const char * _string;
1034   CodeString*  _next;
1035   intptr_t     _offset;
1036 
1037   ~CodeString() {
1038     assert(_next == NULL, "wrong interface for freeing list");
1039     os::free((void*)_string);
1040   }
1041 
1042   bool is_comment() const { return _offset >= 0; }
1043 
1044  public:
1045   CodeString(const char * string, intptr_t offset = -1)
1046     : _next(NULL), _offset(offset) {
1047     _string = os::strdup(string, mtCode);
1048   }
1049 
1050   const char * string() const { return _string; }
1051   intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1052   CodeString* next()    const { return _next; }
1053 
1054   void set_next(CodeString* next) { _next = next; }
1055 
1056   CodeString* first_comment() {
1057     if (is_comment()) {
1058       return this;
1059     } else {
1060       return next_comment();
1061     }
1062   }
1063   CodeString* next_comment() const {
1064     CodeString* s = _next;
1065     while (s != NULL && !s->is_comment()) {
1066       s = s->_next;
1067     }
1068     return s;
1069   }
1070 };
1071 
1072 CodeString* CodeStrings::find(intptr_t offset) const {
1073   CodeString* a = _strings->first_comment();
1074   while (a != NULL && a->offset() != offset) {
1075     a = a->next_comment();
1076   }
1077   return a;
1078 }
1079 
1080 // Convenience for add_comment.
1081 CodeString* CodeStrings::find_last(intptr_t offset) const {
1082   CodeString* a = find(offset);
1083   if (a != NULL) {
1084     CodeString* c = NULL;
1085     while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1086       a = c;
1087     }
1088   }
1089   return a;
1090 }
1091 
1092 void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1093   check_valid();
1094   CodeString* c      = new CodeString(comment, offset);
1095   CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1096 
1097   if (inspos) {
1098     // insert after already existing comments with same offset
1099     c->set_next(inspos->next());
1100     inspos->set_next(c);
1101   } else {
1102     // no comments with such offset, yet. Insert before anything else.
1103     c->set_next(_strings);
1104     _strings = c;
1105   }
1106 }
1107 
1108 void CodeStrings::assign(CodeStrings& other) {
1109   other.check_valid();
1110   assert(is_null(), "Cannot assign onto non-empty CodeStrings");
1111   _strings = other._strings;
1112 #ifdef ASSERT
1113   _defunct = false;
1114 #endif
1115   other.set_null_and_invalidate();
1116 }
1117 
1118 // Deep copy of CodeStrings for consistent memory management.
1119 // Only used for actual disassembly so this is cheaper than reference counting
1120 // for the "normal" fastdebug case.
1121 void CodeStrings::copy(CodeStrings& other) {
1122   other.check_valid();
1123   check_valid();
1124   assert(is_null(), "Cannot copy onto non-empty CodeStrings");
1125   CodeString* n = other._strings;
1126   CodeString** ps = &_strings;
1127   while (n != NULL) {
1128     *ps = new CodeString(n->string(),n->offset());
1129     ps = &((*ps)->_next);
1130     n = n->next();
1131   }
1132 }
1133 
1134 const char* CodeStrings::_prefix = " ;; ";  // default: can be changed via set_prefix
1135 
1136 void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1137     check_valid();
1138     if (_strings != NULL) {
1139     CodeString* c = find(offset);
1140     while (c && c->offset() == offset) {
1141       stream->bol();
1142       stream->print("%s", _prefix);
1143       // Don't interpret as format strings since it could contain %
1144       stream->print_raw_cr(c->string());
1145       c = c->next_comment();
1146     }
1147   }
1148 }
1149 
1150 // Also sets isNull()
1151 void CodeStrings::free() {
1152   CodeString* n = _strings;
1153   while (n) {
1154     // unlink the node from the list saving a pointer to the next
1155     CodeString* p = n->next();
1156     n->set_next(NULL);
1157     delete n;
1158     n = p;
1159   }
1160   set_null_and_invalidate();
1161 }
1162 
1163 const char* CodeStrings::add_string(const char * string) {
1164   check_valid();
1165   CodeString* s = new CodeString(string);
1166   s->set_next(_strings);
1167   _strings = s;
1168   assert(s->string() != NULL, "should have a string");
1169   return s->string();
1170 }
1171 
1172 void CodeBuffer::decode() {
1173   ttyLocker ttyl;
1174   Disassembler::decode(decode_begin(), insts_end());
1175   _decode_begin = insts_end();
1176 }
1177 
1178 
1179 void CodeBuffer::skip_decode() {
1180   _decode_begin = insts_end();
1181 }
1182 
1183 
1184 void CodeBuffer::decode_all() {
1185   ttyLocker ttyl;
1186   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1187     // dump contents of each section
1188     CodeSection* cs = code_section(n);
1189     tty->print_cr("! %s:", code_section_name(n));
1190     if (cs != consts())
1191       cs->decode();
1192     else
1193       cs->dump();
1194   }
1195 }
1196 
1197 
1198 void CodeSection::print(const char* name) {
1199   csize_t locs_size = locs_end() - locs_start();
1200   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1201                 name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1202                 is_frozen()? " [frozen]": "");
1203   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1204                 name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1205   if (PrintRelocations) {
1206     RelocIterator iter(this);
1207     iter.print();
1208   }
1209 }
1210 
1211 void CodeBuffer::print() {
1212   if (this == NULL) {
1213     tty->print_cr("NULL CodeBuffer pointer");
1214     return;
1215   }
1216 
1217   tty->print_cr("CodeBuffer:");
1218   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1219     // print each section
1220     CodeSection* cs = code_section(n);
1221     cs->print(code_section_name(n));
1222   }
1223 }
1224 
1225 #endif // PRODUCT