1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              ParallelGCThreads,                   // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 308 
 309   // Generation Counters - generation 1, 1 subspace
 310   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 311       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 312 
 313   _space_counters = new GSpaceCounters(gen_name, 0,
 314                                        _virtual_space.reserved_size(),
 315                                        this, _gen_counters);
 316 }
 317 
 318 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 319   _cms_gen(cms_gen)
 320 {
 321   assert(alpha <= 100, "bad value");
 322   _saved_alpha = alpha;
 323 
 324   // Initialize the alphas to the bootstrap value of 100.
 325   _gc0_alpha = _cms_alpha = 100;
 326 
 327   _cms_begin_time.update();
 328   _cms_end_time.update();
 329 
 330   _gc0_duration = 0.0;
 331   _gc0_period = 0.0;
 332   _gc0_promoted = 0;
 333 
 334   _cms_duration = 0.0;
 335   _cms_period = 0.0;
 336   _cms_allocated = 0;
 337 
 338   _cms_used_at_gc0_begin = 0;
 339   _cms_used_at_gc0_end = 0;
 340   _allow_duty_cycle_reduction = false;
 341   _valid_bits = 0;
 342 }
 343 
 344 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 345   // TBD: CR 6909490
 346   return 1.0;
 347 }
 348 
 349 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 350 }
 351 
 352 // If promotion failure handling is on use
 353 // the padded average size of the promotion for each
 354 // young generation collection.
 355 double CMSStats::time_until_cms_gen_full() const {
 356   size_t cms_free = _cms_gen->cmsSpace()->free();
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 359                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 360   if (cms_free > expected_promotion) {
 361     // Start a cms collection if there isn't enough space to promote
 362     // for the next minor collection.  Use the padded average as
 363     // a safety factor.
 364     cms_free -= expected_promotion;
 365 
 366     // Adjust by the safety factor.
 367     double cms_free_dbl = (double)cms_free;
 368     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 369     // Apply a further correction factor which tries to adjust
 370     // for recent occurance of concurrent mode failures.
 371     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 372     cms_free_dbl = cms_free_dbl * cms_adjustment;
 373 
 374     if (PrintGCDetails && Verbose) {
 375       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 376         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 377         cms_free, expected_promotion);
 378       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 379         cms_free_dbl, cms_consumption_rate() + 1.0);
 380     }
 381     // Add 1 in case the consumption rate goes to zero.
 382     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 383   }
 384   return 0.0;
 385 }
 386 
 387 // Compare the duration of the cms collection to the
 388 // time remaining before the cms generation is empty.
 389 // Note that the time from the start of the cms collection
 390 // to the start of the cms sweep (less than the total
 391 // duration of the cms collection) can be used.  This
 392 // has been tried and some applications experienced
 393 // promotion failures early in execution.  This was
 394 // possibly because the averages were not accurate
 395 // enough at the beginning.
 396 double CMSStats::time_until_cms_start() const {
 397   // We add "gc0_period" to the "work" calculation
 398   // below because this query is done (mostly) at the
 399   // end of a scavenge, so we need to conservatively
 400   // account for that much possible delay
 401   // in the query so as to avoid concurrent mode failures
 402   // due to starting the collection just a wee bit too
 403   // late.
 404   double work = cms_duration() + gc0_period();
 405   double deadline = time_until_cms_gen_full();
 406   // If a concurrent mode failure occurred recently, we want to be
 407   // more conservative and halve our expected time_until_cms_gen_full()
 408   if (work > deadline) {
 409     if (Verbose && PrintGCDetails) {
 410       gclog_or_tty->print(
 411         " CMSCollector: collect because of anticipated promotion "
 412         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 413         gc0_period(), time_until_cms_gen_full());
 414     }
 415     return 0.0;
 416   }
 417   return work - deadline;
 418 }
 419 
 420 #ifndef PRODUCT
 421 void CMSStats::print_on(outputStream *st) const {
 422   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 423   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 424                gc0_duration(), gc0_period(), gc0_promoted());
 425   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 426             cms_duration(), cms_period(), cms_allocated());
 427   st->print(",cms_since_beg=%g,cms_since_end=%g",
 428             cms_time_since_begin(), cms_time_since_end());
 429   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 430             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 431 
 432   if (valid()) {
 433     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 434               promotion_rate(), cms_allocation_rate());
 435     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 436               cms_consumption_rate(), time_until_cms_gen_full());
 437   }
 438   st->print(" ");
 439 }
 440 #endif // #ifndef PRODUCT
 441 
 442 CMSCollector::CollectorState CMSCollector::_collectorState =
 443                              CMSCollector::Idling;
 444 bool CMSCollector::_foregroundGCIsActive = false;
 445 bool CMSCollector::_foregroundGCShouldWait = false;
 446 
 447 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 448                            CardTableRS*                   ct,
 449                            ConcurrentMarkSweepPolicy*     cp):
 450   _cmsGen(cmsGen),
 451   _ct(ct),
 452   _ref_processor(NULL),    // will be set later
 453   _conc_workers(NULL),     // may be set later
 454   _abort_preclean(false),
 455   _start_sampling(false),
 456   _between_prologue_and_epilogue(false),
 457   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 458   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 459                  -1 /* lock-free */, "No_lock" /* dummy */),
 460   _modUnionClosurePar(&_modUnionTable),
 461   // Adjust my span to cover old (cms) gen
 462   _span(cmsGen->reserved()),
 463   // Construct the is_alive_closure with _span & markBitMap
 464   _is_alive_closure(_span, &_markBitMap),
 465   _restart_addr(NULL),
 466   _overflow_list(NULL),
 467   _stats(cmsGen),
 468   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 469                              //verify that this lock should be acquired with safepoint check.
 470                              Monitor::_safepoint_check_sometimes)),
 471   _eden_chunk_array(NULL),     // may be set in ctor body
 472   _eden_chunk_capacity(0),     // -- ditto --
 473   _eden_chunk_index(0),        // -- ditto --
 474   _survivor_plab_array(NULL),  // -- ditto --
 475   _survivor_chunk_array(NULL), // -- ditto --
 476   _survivor_chunk_capacity(0), // -- ditto --
 477   _survivor_chunk_index(0),    // -- ditto --
 478   _ser_pmc_preclean_ovflw(0),
 479   _ser_kac_preclean_ovflw(0),
 480   _ser_pmc_remark_ovflw(0),
 481   _par_pmc_remark_ovflw(0),
 482   _ser_kac_ovflw(0),
 483   _par_kac_ovflw(0),
 484 #ifndef PRODUCT
 485   _num_par_pushes(0),
 486 #endif
 487   _collection_count_start(0),
 488   _verifying(false),
 489   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 490   _completed_initialization(false),
 491   _collector_policy(cp),
 492   _should_unload_classes(CMSClassUnloadingEnabled),
 493   _concurrent_cycles_since_last_unload(0),
 494   _roots_scanning_options(GenCollectedHeap::SO_None),
 495   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 497   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 498   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 499   _cms_start_registered(false)
 500 {
 501   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 502     ExplicitGCInvokesConcurrent = true;
 503   }
 504   // Now expand the span and allocate the collection support structures
 505   // (MUT, marking bit map etc.) to cover both generations subject to
 506   // collection.
 507 
 508   // For use by dirty card to oop closures.
 509   _cmsGen->cmsSpace()->set_collector(this);
 510 
 511   // Allocate MUT and marking bit map
 512   {
 513     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 514     if (!_markBitMap.allocate(_span)) {
 515       warning("Failed to allocate CMS Bit Map");
 516       return;
 517     }
 518     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 519   }
 520   {
 521     _modUnionTable.allocate(_span);
 522     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 523   }
 524 
 525   if (!_markStack.allocate(MarkStackSize)) {
 526     warning("Failed to allocate CMS Marking Stack");
 527     return;
 528   }
 529 
 530   // Support for multi-threaded concurrent phases
 531   if (CMSConcurrentMTEnabled) {
 532     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 533       // just for now
 534       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 535     }
 536     if (ConcGCThreads > 1) {
 537       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 538                                  ConcGCThreads, true);
 539       if (_conc_workers == NULL) {
 540         warning("GC/CMS: _conc_workers allocation failure: "
 541               "forcing -CMSConcurrentMTEnabled");
 542         CMSConcurrentMTEnabled = false;
 543       } else {
 544         _conc_workers->initialize_workers();
 545       }
 546     } else {
 547       CMSConcurrentMTEnabled = false;
 548     }
 549   }
 550   if (!CMSConcurrentMTEnabled) {
 551     ConcGCThreads = 0;
 552   } else {
 553     // Turn off CMSCleanOnEnter optimization temporarily for
 554     // the MT case where it's not fixed yet; see 6178663.
 555     CMSCleanOnEnter = false;
 556   }
 557   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 558          "Inconsistency");
 559 
 560   // Parallel task queues; these are shared for the
 561   // concurrent and stop-world phases of CMS, but
 562   // are not shared with parallel scavenge (ParNew).
 563   {
 564     uint i;
 565     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 566 
 567     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 568          || ParallelRefProcEnabled)
 569         && num_queues > 0) {
 570       _task_queues = new OopTaskQueueSet(num_queues);
 571       if (_task_queues == NULL) {
 572         warning("task_queues allocation failure.");
 573         return;
 574       }
 575       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 576       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 577       for (i = 0; i < num_queues; i++) {
 578         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 579         if (q == NULL) {
 580           warning("work_queue allocation failure.");
 581           return;
 582         }
 583         _task_queues->register_queue(i, q);
 584       }
 585       for (i = 0; i < num_queues; i++) {
 586         _task_queues->queue(i)->initialize();
 587         _hash_seed[i] = 17;  // copied from ParNew
 588       }
 589     }
 590   }
 591 
 592   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 593 
 594   // Clip CMSBootstrapOccupancy between 0 and 100.
 595   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 596 
 597   // Now tell CMS generations the identity of their collector
 598   ConcurrentMarkSweepGeneration::set_collector(this);
 599 
 600   // Create & start a CMS thread for this CMS collector
 601   _cmsThread = ConcurrentMarkSweepThread::start(this);
 602   assert(cmsThread() != NULL, "CMS Thread should have been created");
 603   assert(cmsThread()->collector() == this,
 604          "CMS Thread should refer to this gen");
 605   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 606 
 607   // Support for parallelizing young gen rescan
 608   GenCollectedHeap* gch = GenCollectedHeap::heap();
 609   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 610   _young_gen = (ParNewGeneration*)gch->young_gen();
 611   if (gch->supports_inline_contig_alloc()) {
 612     _top_addr = gch->top_addr();
 613     _end_addr = gch->end_addr();
 614     assert(_young_gen != NULL, "no _young_gen");
 615     _eden_chunk_index = 0;
 616     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 617     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 618   }
 619 
 620   // Support for parallelizing survivor space rescan
 621   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 622     const size_t max_plab_samples =
 623       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 624 
 625     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 626     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 627     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 628     _survivor_chunk_capacity = max_plab_samples;
 629     for (uint i = 0; i < ParallelGCThreads; i++) {
 630       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 631       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 632       assert(cur->end() == 0, "Should be 0");
 633       assert(cur->array() == vec, "Should be vec");
 634       assert(cur->capacity() == max_plab_samples, "Error");
 635     }
 636   }
 637 
 638   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 639   _gc_counters = new CollectorCounters("CMS", 1);
 640   _completed_initialization = true;
 641   _inter_sweep_timer.start();  // start of time
 642 }
 643 
 644 const char* ConcurrentMarkSweepGeneration::name() const {
 645   return "concurrent mark-sweep generation";
 646 }
 647 void ConcurrentMarkSweepGeneration::update_counters() {
 648   if (UsePerfData) {
 649     _space_counters->update_all();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 // this is an optimized version of update_counters(). it takes the
 655 // used value as a parameter rather than computing it.
 656 //
 657 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 658   if (UsePerfData) {
 659     _space_counters->update_used(used);
 660     _space_counters->update_capacity();
 661     _gen_counters->update_all();
 662   }
 663 }
 664 
 665 void ConcurrentMarkSweepGeneration::print() const {
 666   Generation::print();
 667   cmsSpace()->print();
 668 }
 669 
 670 #ifndef PRODUCT
 671 void ConcurrentMarkSweepGeneration::print_statistics() {
 672   cmsSpace()->printFLCensus(0);
 673 }
 674 #endif
 675 
 676 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 677   GenCollectedHeap* gch = GenCollectedHeap::heap();
 678   if (PrintGCDetails) {
 679     // I didn't want to change the logging when removing the level concept,
 680     // but I guess this logging could say "old" or something instead of "1".
 681     assert(gch->is_old_gen(this),
 682            "The CMS generation should be the old generation");
 683     uint level = 1;
 684     if (Verbose) {
 685       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 686         level, short_name(), s, used(), capacity());
 687     } else {
 688       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 689         level, short_name(), s, used() / K, capacity() / K);
 690     }
 691   }
 692   if (Verbose) {
 693     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 694               gch->used(), gch->capacity());
 695   } else {
 696     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 697               gch->used() / K, gch->capacity() / K);
 698   }
 699 }
 700 
 701 size_t
 702 ConcurrentMarkSweepGeneration::contiguous_available() const {
 703   // dld proposes an improvement in precision here. If the committed
 704   // part of the space ends in a free block we should add that to
 705   // uncommitted size in the calculation below. Will make this
 706   // change later, staying with the approximation below for the
 707   // time being. -- ysr.
 708   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 709 }
 710 
 711 size_t
 712 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 713   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 714 }
 715 
 716 size_t ConcurrentMarkSweepGeneration::max_available() const {
 717   return free() + _virtual_space.uncommitted_size();
 718 }
 719 
 720 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 721   size_t available = max_available();
 722   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 723   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 724   if (Verbose && PrintGCDetails) {
 725     gclog_or_tty->print_cr(
 726       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 727       "max_promo(" SIZE_FORMAT ")",
 728       res? "":" not", available, res? ">=":"<",
 729       av_promo, max_promotion_in_bytes);
 730   }
 731   return res;
 732 }
 733 
 734 // At a promotion failure dump information on block layout in heap
 735 // (cms old generation).
 736 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 737   if (CMSDumpAtPromotionFailure) {
 738     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 739   }
 740 }
 741 
 742 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 743   // Clear the promotion information.  These pointers can be adjusted
 744   // along with all the other pointers into the heap but
 745   // compaction is expected to be a rare event with
 746   // a heap using cms so don't do it without seeing the need.
 747   for (uint i = 0; i < ParallelGCThreads; i++) {
 748     _par_gc_thread_states[i]->promo.reset();
 749   }
 750 }
 751 
 752 void ConcurrentMarkSweepGeneration::compute_new_size() {
 753   assert_locked_or_safepoint(Heap_lock);
 754 
 755   // If incremental collection failed, we just want to expand
 756   // to the limit.
 757   if (incremental_collection_failed()) {
 758     clear_incremental_collection_failed();
 759     grow_to_reserved();
 760     return;
 761   }
 762 
 763   // The heap has been compacted but not reset yet.
 764   // Any metric such as free() or used() will be incorrect.
 765 
 766   CardGeneration::compute_new_size();
 767 
 768   // Reset again after a possible resizing
 769   if (did_compact()) {
 770     cmsSpace()->reset_after_compaction();
 771   }
 772 }
 773 
 774 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 775   assert_locked_or_safepoint(Heap_lock);
 776 
 777   // If incremental collection failed, we just want to expand
 778   // to the limit.
 779   if (incremental_collection_failed()) {
 780     clear_incremental_collection_failed();
 781     grow_to_reserved();
 782     return;
 783   }
 784 
 785   double free_percentage = ((double) free()) / capacity();
 786   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 787   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 788 
 789   // compute expansion delta needed for reaching desired free percentage
 790   if (free_percentage < desired_free_percentage) {
 791     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 792     assert(desired_capacity >= capacity(), "invalid expansion size");
 793     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 794     if (PrintGCDetails && Verbose) {
 795       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 796       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 797       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 798       gclog_or_tty->print_cr("  Desired free fraction %f",
 799               desired_free_percentage);
 800       gclog_or_tty->print_cr("  Maximum free fraction %f",
 801               maximum_free_percentage);
 802       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity()/1000);
 803       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT,
 804               desired_capacity/1000);
 805       GenCollectedHeap* gch = GenCollectedHeap::heap();
 806       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 807       size_t young_size = gch->young_gen()->capacity();
 808       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 809       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT,
 810               unsafe_max_alloc_nogc()/1000);
 811       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT,
 812               contiguous_available()/1000);
 813       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)",
 814               expand_bytes);
 815     }
 816     // safe if expansion fails
 817     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 818     if (PrintGCDetails && Verbose) {
 819       gclog_or_tty->print_cr("  Expanded free fraction %f",
 820         ((double) free()) / capacity());
 821     }
 822   } else {
 823     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 824     assert(desired_capacity <= capacity(), "invalid expansion size");
 825     size_t shrink_bytes = capacity() - desired_capacity;
 826     // Don't shrink unless the delta is greater than the minimum shrink we want
 827     if (shrink_bytes >= MinHeapDeltaBytes) {
 828       shrink_free_list_by(shrink_bytes);
 829     }
 830   }
 831 }
 832 
 833 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 834   return cmsSpace()->freelistLock();
 835 }
 836 
 837 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 838                                                   bool   tlab) {
 839   CMSSynchronousYieldRequest yr;
 840   MutexLockerEx x(freelistLock(),
 841                   Mutex::_no_safepoint_check_flag);
 842   return have_lock_and_allocate(size, tlab);
 843 }
 844 
 845 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 846                                                   bool   tlab /* ignored */) {
 847   assert_lock_strong(freelistLock());
 848   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 849   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 850   // Allocate the object live (grey) if the background collector has
 851   // started marking. This is necessary because the marker may
 852   // have passed this address and consequently this object will
 853   // not otherwise be greyed and would be incorrectly swept up.
 854   // Note that if this object contains references, the writing
 855   // of those references will dirty the card containing this object
 856   // allowing the object to be blackened (and its references scanned)
 857   // either during a preclean phase or at the final checkpoint.
 858   if (res != NULL) {
 859     // We may block here with an uninitialized object with
 860     // its mark-bit or P-bits not yet set. Such objects need
 861     // to be safely navigable by block_start().
 862     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 863     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 864     collector()->direct_allocated(res, adjustedSize);
 865     _direct_allocated_words += adjustedSize;
 866     // allocation counters
 867     NOT_PRODUCT(
 868       _numObjectsAllocated++;
 869       _numWordsAllocated += (int)adjustedSize;
 870     )
 871   }
 872   return res;
 873 }
 874 
 875 // In the case of direct allocation by mutators in a generation that
 876 // is being concurrently collected, the object must be allocated
 877 // live (grey) if the background collector has started marking.
 878 // This is necessary because the marker may
 879 // have passed this address and consequently this object will
 880 // not otherwise be greyed and would be incorrectly swept up.
 881 // Note that if this object contains references, the writing
 882 // of those references will dirty the card containing this object
 883 // allowing the object to be blackened (and its references scanned)
 884 // either during a preclean phase or at the final checkpoint.
 885 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 886   assert(_markBitMap.covers(start, size), "Out of bounds");
 887   if (_collectorState >= Marking) {
 888     MutexLockerEx y(_markBitMap.lock(),
 889                     Mutex::_no_safepoint_check_flag);
 890     // [see comments preceding SweepClosure::do_blk() below for details]
 891     //
 892     // Can the P-bits be deleted now?  JJJ
 893     //
 894     // 1. need to mark the object as live so it isn't collected
 895     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 896     // 3. need to mark the end of the object so marking, precleaning or sweeping
 897     //    can skip over uninitialized or unparsable objects. An allocated
 898     //    object is considered uninitialized for our purposes as long as
 899     //    its klass word is NULL.  All old gen objects are parsable
 900     //    as soon as they are initialized.)
 901     _markBitMap.mark(start);          // object is live
 902     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 903     _markBitMap.mark(start + size - 1);
 904                                       // mark end of object
 905   }
 906   // check that oop looks uninitialized
 907   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 908 }
 909 
 910 void CMSCollector::promoted(bool par, HeapWord* start,
 911                             bool is_obj_array, size_t obj_size) {
 912   assert(_markBitMap.covers(start), "Out of bounds");
 913   // See comment in direct_allocated() about when objects should
 914   // be allocated live.
 915   if (_collectorState >= Marking) {
 916     // we already hold the marking bit map lock, taken in
 917     // the prologue
 918     if (par) {
 919       _markBitMap.par_mark(start);
 920     } else {
 921       _markBitMap.mark(start);
 922     }
 923     // We don't need to mark the object as uninitialized (as
 924     // in direct_allocated above) because this is being done with the
 925     // world stopped and the object will be initialized by the
 926     // time the marking, precleaning or sweeping get to look at it.
 927     // But see the code for copying objects into the CMS generation,
 928     // where we need to ensure that concurrent readers of the
 929     // block offset table are able to safely navigate a block that
 930     // is in flux from being free to being allocated (and in
 931     // transition while being copied into) and subsequently
 932     // becoming a bona-fide object when the copy/promotion is complete.
 933     assert(SafepointSynchronize::is_at_safepoint(),
 934            "expect promotion only at safepoints");
 935 
 936     if (_collectorState < Sweeping) {
 937       // Mark the appropriate cards in the modUnionTable, so that
 938       // this object gets scanned before the sweep. If this is
 939       // not done, CMS generation references in the object might
 940       // not get marked.
 941       // For the case of arrays, which are otherwise precisely
 942       // marked, we need to dirty the entire array, not just its head.
 943       if (is_obj_array) {
 944         // The [par_]mark_range() method expects mr.end() below to
 945         // be aligned to the granularity of a bit's representation
 946         // in the heap. In the case of the MUT below, that's a
 947         // card size.
 948         MemRegion mr(start,
 949                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 950                         CardTableModRefBS::card_size /* bytes */));
 951         if (par) {
 952           _modUnionTable.par_mark_range(mr);
 953         } else {
 954           _modUnionTable.mark_range(mr);
 955         }
 956       } else {  // not an obj array; we can just mark the head
 957         if (par) {
 958           _modUnionTable.par_mark(start);
 959         } else {
 960           _modUnionTable.mark(start);
 961         }
 962       }
 963     }
 964   }
 965 }
 966 
 967 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 968   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 969   // allocate, copy and if necessary update promoinfo --
 970   // delegate to underlying space.
 971   assert_lock_strong(freelistLock());
 972 
 973 #ifndef PRODUCT
 974   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 975     return NULL;
 976   }
 977 #endif  // #ifndef PRODUCT
 978 
 979   oop res = _cmsSpace->promote(obj, obj_size);
 980   if (res == NULL) {
 981     // expand and retry
 982     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 983     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 984     // Since this is the old generation, we don't try to promote
 985     // into a more senior generation.
 986     res = _cmsSpace->promote(obj, obj_size);
 987   }
 988   if (res != NULL) {
 989     // See comment in allocate() about when objects should
 990     // be allocated live.
 991     assert(obj->is_oop(), "Will dereference klass pointer below");
 992     collector()->promoted(false,           // Not parallel
 993                           (HeapWord*)res, obj->is_objArray(), obj_size);
 994     // promotion counters
 995     NOT_PRODUCT(
 996       _numObjectsPromoted++;
 997       _numWordsPromoted +=
 998         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 999     )
1000   }
1001   return res;
1002 }
1003 
1004 
1005 // IMPORTANT: Notes on object size recognition in CMS.
1006 // ---------------------------------------------------
1007 // A block of storage in the CMS generation is always in
1008 // one of three states. A free block (FREE), an allocated
1009 // object (OBJECT) whose size() method reports the correct size,
1010 // and an intermediate state (TRANSIENT) in which its size cannot
1011 // be accurately determined.
1012 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1013 // -----------------------------------------------------
1014 // FREE:      klass_word & 1 == 1; mark_word holds block size
1015 //
1016 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1017 //            obj->size() computes correct size
1018 //
1019 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1020 //
1021 // STATE IDENTIFICATION: (64 bit+COOPS)
1022 // ------------------------------------
1023 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1024 //
1025 // OBJECT:    klass_word installed; klass_word != 0;
1026 //            obj->size() computes correct size
1027 //
1028 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1029 //
1030 //
1031 // STATE TRANSITION DIAGRAM
1032 //
1033 //        mut / parnew                     mut  /  parnew
1034 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1035 //  ^                                                                   |
1036 //  |------------------------ DEAD <------------------------------------|
1037 //         sweep                            mut
1038 //
1039 // While a block is in TRANSIENT state its size cannot be determined
1040 // so readers will either need to come back later or stall until
1041 // the size can be determined. Note that for the case of direct
1042 // allocation, P-bits, when available, may be used to determine the
1043 // size of an object that may not yet have been initialized.
1044 
1045 // Things to support parallel young-gen collection.
1046 oop
1047 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1048                                            oop old, markOop m,
1049                                            size_t word_sz) {
1050 #ifndef PRODUCT
1051   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1052     return NULL;
1053   }
1054 #endif  // #ifndef PRODUCT
1055 
1056   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1057   PromotionInfo* promoInfo = &ps->promo;
1058   // if we are tracking promotions, then first ensure space for
1059   // promotion (including spooling space for saving header if necessary).
1060   // then allocate and copy, then track promoted info if needed.
1061   // When tracking (see PromotionInfo::track()), the mark word may
1062   // be displaced and in this case restoration of the mark word
1063   // occurs in the (oop_since_save_marks_)iterate phase.
1064   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1065     // Out of space for allocating spooling buffers;
1066     // try expanding and allocating spooling buffers.
1067     if (!expand_and_ensure_spooling_space(promoInfo)) {
1068       return NULL;
1069     }
1070   }
1071   assert(promoInfo->has_spooling_space(), "Control point invariant");
1072   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1073   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1074   if (obj_ptr == NULL) {
1075      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1076      if (obj_ptr == NULL) {
1077        return NULL;
1078      }
1079   }
1080   oop obj = oop(obj_ptr);
1081   OrderAccess::storestore();
1082   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1083   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1084   // IMPORTANT: See note on object initialization for CMS above.
1085   // Otherwise, copy the object.  Here we must be careful to insert the
1086   // klass pointer last, since this marks the block as an allocated object.
1087   // Except with compressed oops it's the mark word.
1088   HeapWord* old_ptr = (HeapWord*)old;
1089   // Restore the mark word copied above.
1090   obj->set_mark(m);
1091   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1092   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1093   OrderAccess::storestore();
1094 
1095   if (UseCompressedClassPointers) {
1096     // Copy gap missed by (aligned) header size calculation below
1097     obj->set_klass_gap(old->klass_gap());
1098   }
1099   if (word_sz > (size_t)oopDesc::header_size()) {
1100     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1101                                  obj_ptr + oopDesc::header_size(),
1102                                  word_sz - oopDesc::header_size());
1103   }
1104 
1105   // Now we can track the promoted object, if necessary.  We take care
1106   // to delay the transition from uninitialized to full object
1107   // (i.e., insertion of klass pointer) until after, so that it
1108   // atomically becomes a promoted object.
1109   if (promoInfo->tracking()) {
1110     promoInfo->track((PromotedObject*)obj, old->klass());
1111   }
1112   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1113   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1114   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1115 
1116   // Finally, install the klass pointer (this should be volatile).
1117   OrderAccess::storestore();
1118   obj->set_klass(old->klass());
1119   // We should now be able to calculate the right size for this object
1120   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1121 
1122   collector()->promoted(true,          // parallel
1123                         obj_ptr, old->is_objArray(), word_sz);
1124 
1125   NOT_PRODUCT(
1126     Atomic::inc_ptr(&_numObjectsPromoted);
1127     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1128   )
1129 
1130   return obj;
1131 }
1132 
1133 void
1134 ConcurrentMarkSweepGeneration::
1135 par_promote_alloc_done(int thread_num) {
1136   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1137   ps->lab.retire(thread_num);
1138 }
1139 
1140 void
1141 ConcurrentMarkSweepGeneration::
1142 par_oop_since_save_marks_iterate_done(int thread_num) {
1143   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1144   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1145   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1146 }
1147 
1148 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1149                                                    size_t size,
1150                                                    bool   tlab)
1151 {
1152   // We allow a STW collection only if a full
1153   // collection was requested.
1154   return full || should_allocate(size, tlab); // FIX ME !!!
1155   // This and promotion failure handling are connected at the
1156   // hip and should be fixed by untying them.
1157 }
1158 
1159 bool CMSCollector::shouldConcurrentCollect() {
1160   if (_full_gc_requested) {
1161     if (Verbose && PrintGCDetails) {
1162       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1163                              " gc request (or gc_locker)");
1164     }
1165     return true;
1166   }
1167 
1168   FreelistLocker x(this);
1169   // ------------------------------------------------------------------
1170   // Print out lots of information which affects the initiation of
1171   // a collection.
1172   if (PrintCMSInitiationStatistics && stats().valid()) {
1173     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1174     gclog_or_tty->stamp();
1175     gclog_or_tty->cr();
1176     stats().print_on(gclog_or_tty);
1177     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1178       stats().time_until_cms_gen_full());
1179     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1180     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1181                            _cmsGen->contiguous_available());
1182     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1183     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1184     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1185     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1186     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1187     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1188     gclog_or_tty->print_cr("metadata initialized %d",
1189       MetaspaceGC::should_concurrent_collect());
1190   }
1191   // ------------------------------------------------------------------
1192 
1193   // If the estimated time to complete a cms collection (cms_duration())
1194   // is less than the estimated time remaining until the cms generation
1195   // is full, start a collection.
1196   if (!UseCMSInitiatingOccupancyOnly) {
1197     if (stats().valid()) {
1198       if (stats().time_until_cms_start() == 0.0) {
1199         return true;
1200       }
1201     } else {
1202       // We want to conservatively collect somewhat early in order
1203       // to try and "bootstrap" our CMS/promotion statistics;
1204       // this branch will not fire after the first successful CMS
1205       // collection because the stats should then be valid.
1206       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1207         if (Verbose && PrintGCDetails) {
1208           gclog_or_tty->print_cr(
1209             " CMSCollector: collect for bootstrapping statistics:"
1210             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1211             _bootstrap_occupancy);
1212         }
1213         return true;
1214       }
1215     }
1216   }
1217 
1218   // Otherwise, we start a collection cycle if
1219   // old gen want a collection cycle started. Each may use
1220   // an appropriate criterion for making this decision.
1221   // XXX We need to make sure that the gen expansion
1222   // criterion dovetails well with this. XXX NEED TO FIX THIS
1223   if (_cmsGen->should_concurrent_collect()) {
1224     if (Verbose && PrintGCDetails) {
1225       gclog_or_tty->print_cr("CMS old gen initiated");
1226     }
1227     return true;
1228   }
1229 
1230   // We start a collection if we believe an incremental collection may fail;
1231   // this is not likely to be productive in practice because it's probably too
1232   // late anyway.
1233   GenCollectedHeap* gch = GenCollectedHeap::heap();
1234   assert(gch->collector_policy()->is_generation_policy(),
1235          "You may want to check the correctness of the following");
1236   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1237     if (Verbose && PrintGCDetails) {
1238       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1239     }
1240     return true;
1241   }
1242 
1243   if (MetaspaceGC::should_concurrent_collect()) {
1244     if (Verbose && PrintGCDetails) {
1245       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1246     }
1247     return true;
1248   }
1249 
1250   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1251   if (CMSTriggerInterval >= 0) {
1252     if (CMSTriggerInterval == 0) {
1253       // Trigger always
1254       return true;
1255     }
1256 
1257     // Check the CMS time since begin (we do not check the stats validity
1258     // as we want to be able to trigger the first CMS cycle as well)
1259     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1260       if (Verbose && PrintGCDetails) {
1261         if (stats().valid()) {
1262           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1263                                  stats().cms_time_since_begin());
1264         } else {
1265           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1266         }
1267       }
1268       return true;
1269     }
1270   }
1271 
1272   return false;
1273 }
1274 
1275 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1276 
1277 // Clear _expansion_cause fields of constituent generations
1278 void CMSCollector::clear_expansion_cause() {
1279   _cmsGen->clear_expansion_cause();
1280 }
1281 
1282 // We should be conservative in starting a collection cycle.  To
1283 // start too eagerly runs the risk of collecting too often in the
1284 // extreme.  To collect too rarely falls back on full collections,
1285 // which works, even if not optimum in terms of concurrent work.
1286 // As a work around for too eagerly collecting, use the flag
1287 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1288 // giving the user an easily understandable way of controlling the
1289 // collections.
1290 // We want to start a new collection cycle if any of the following
1291 // conditions hold:
1292 // . our current occupancy exceeds the configured initiating occupancy
1293 //   for this generation, or
1294 // . we recently needed to expand this space and have not, since that
1295 //   expansion, done a collection of this generation, or
1296 // . the underlying space believes that it may be a good idea to initiate
1297 //   a concurrent collection (this may be based on criteria such as the
1298 //   following: the space uses linear allocation and linear allocation is
1299 //   going to fail, or there is believed to be excessive fragmentation in
1300 //   the generation, etc... or ...
1301 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1302 //   the case of the old generation; see CR 6543076):
1303 //   we may be approaching a point at which allocation requests may fail because
1304 //   we will be out of sufficient free space given allocation rate estimates.]
1305 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1306 
1307   assert_lock_strong(freelistLock());
1308   if (occupancy() > initiating_occupancy()) {
1309     if (PrintGCDetails && Verbose) {
1310       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1311         short_name(), occupancy(), initiating_occupancy());
1312     }
1313     return true;
1314   }
1315   if (UseCMSInitiatingOccupancyOnly) {
1316     return false;
1317   }
1318   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1319     if (PrintGCDetails && Verbose) {
1320       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1321         short_name());
1322     }
1323     return true;
1324   }
1325   if (_cmsSpace->should_concurrent_collect()) {
1326     if (PrintGCDetails && Verbose) {
1327       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1328         short_name());
1329     }
1330     return true;
1331   }
1332   return false;
1333 }
1334 
1335 void ConcurrentMarkSweepGeneration::collect(bool   full,
1336                                             bool   clear_all_soft_refs,
1337                                             size_t size,
1338                                             bool   tlab)
1339 {
1340   collector()->collect(full, clear_all_soft_refs, size, tlab);
1341 }
1342 
1343 void CMSCollector::collect(bool   full,
1344                            bool   clear_all_soft_refs,
1345                            size_t size,
1346                            bool   tlab)
1347 {
1348   // The following "if" branch is present for defensive reasons.
1349   // In the current uses of this interface, it can be replaced with:
1350   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1351   // But I am not placing that assert here to allow future
1352   // generality in invoking this interface.
1353   if (GC_locker::is_active()) {
1354     // A consistency test for GC_locker
1355     assert(GC_locker::needs_gc(), "Should have been set already");
1356     // Skip this foreground collection, instead
1357     // expanding the heap if necessary.
1358     // Need the free list locks for the call to free() in compute_new_size()
1359     compute_new_size();
1360     return;
1361   }
1362   acquire_control_and_collect(full, clear_all_soft_refs);
1363 }
1364 
1365 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1366   GenCollectedHeap* gch = GenCollectedHeap::heap();
1367   unsigned int gc_count = gch->total_full_collections();
1368   if (gc_count == full_gc_count) {
1369     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1370     _full_gc_requested = true;
1371     _full_gc_cause = cause;
1372     CGC_lock->notify();   // nudge CMS thread
1373   } else {
1374     assert(gc_count > full_gc_count, "Error: causal loop");
1375   }
1376 }
1377 
1378 bool CMSCollector::is_external_interruption() {
1379   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1380   return GCCause::is_user_requested_gc(cause) ||
1381          GCCause::is_serviceability_requested_gc(cause);
1382 }
1383 
1384 void CMSCollector::report_concurrent_mode_interruption() {
1385   if (is_external_interruption()) {
1386     if (PrintGCDetails) {
1387       gclog_or_tty->print(" (concurrent mode interrupted)");
1388     }
1389   } else {
1390     if (PrintGCDetails) {
1391       gclog_or_tty->print(" (concurrent mode failure)");
1392     }
1393     _gc_tracer_cm->report_concurrent_mode_failure();
1394   }
1395 }
1396 
1397 
1398 // The foreground and background collectors need to coordinate in order
1399 // to make sure that they do not mutually interfere with CMS collections.
1400 // When a background collection is active,
1401 // the foreground collector may need to take over (preempt) and
1402 // synchronously complete an ongoing collection. Depending on the
1403 // frequency of the background collections and the heap usage
1404 // of the application, this preemption can be seldom or frequent.
1405 // There are only certain
1406 // points in the background collection that the "collection-baton"
1407 // can be passed to the foreground collector.
1408 //
1409 // The foreground collector will wait for the baton before
1410 // starting any part of the collection.  The foreground collector
1411 // will only wait at one location.
1412 //
1413 // The background collector will yield the baton before starting a new
1414 // phase of the collection (e.g., before initial marking, marking from roots,
1415 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1416 // of the loop which switches the phases. The background collector does some
1417 // of the phases (initial mark, final re-mark) with the world stopped.
1418 // Because of locking involved in stopping the world,
1419 // the foreground collector should not block waiting for the background
1420 // collector when it is doing a stop-the-world phase.  The background
1421 // collector will yield the baton at an additional point just before
1422 // it enters a stop-the-world phase.  Once the world is stopped, the
1423 // background collector checks the phase of the collection.  If the
1424 // phase has not changed, it proceeds with the collection.  If the
1425 // phase has changed, it skips that phase of the collection.  See
1426 // the comments on the use of the Heap_lock in collect_in_background().
1427 //
1428 // Variable used in baton passing.
1429 //   _foregroundGCIsActive - Set to true by the foreground collector when
1430 //      it wants the baton.  The foreground clears it when it has finished
1431 //      the collection.
1432 //   _foregroundGCShouldWait - Set to true by the background collector
1433 //        when it is running.  The foreground collector waits while
1434 //      _foregroundGCShouldWait is true.
1435 //  CGC_lock - monitor used to protect access to the above variables
1436 //      and to notify the foreground and background collectors.
1437 //  _collectorState - current state of the CMS collection.
1438 //
1439 // The foreground collector
1440 //   acquires the CGC_lock
1441 //   sets _foregroundGCIsActive
1442 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1443 //     various locks acquired in preparation for the collection
1444 //     are released so as not to block the background collector
1445 //     that is in the midst of a collection
1446 //   proceeds with the collection
1447 //   clears _foregroundGCIsActive
1448 //   returns
1449 //
1450 // The background collector in a loop iterating on the phases of the
1451 //      collection
1452 //   acquires the CGC_lock
1453 //   sets _foregroundGCShouldWait
1454 //   if _foregroundGCIsActive is set
1455 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1456 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1457 //     and exits the loop.
1458 //   otherwise
1459 //     proceed with that phase of the collection
1460 //     if the phase is a stop-the-world phase,
1461 //       yield the baton once more just before enqueueing
1462 //       the stop-world CMS operation (executed by the VM thread).
1463 //   returns after all phases of the collection are done
1464 //
1465 
1466 void CMSCollector::acquire_control_and_collect(bool full,
1467         bool clear_all_soft_refs) {
1468   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1469   assert(!Thread::current()->is_ConcurrentGC_thread(),
1470          "shouldn't try to acquire control from self!");
1471 
1472   // Start the protocol for acquiring control of the
1473   // collection from the background collector (aka CMS thread).
1474   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1475          "VM thread should have CMS token");
1476   // Remember the possibly interrupted state of an ongoing
1477   // concurrent collection
1478   CollectorState first_state = _collectorState;
1479 
1480   // Signal to a possibly ongoing concurrent collection that
1481   // we want to do a foreground collection.
1482   _foregroundGCIsActive = true;
1483 
1484   // release locks and wait for a notify from the background collector
1485   // releasing the locks in only necessary for phases which
1486   // do yields to improve the granularity of the collection.
1487   assert_lock_strong(bitMapLock());
1488   // We need to lock the Free list lock for the space that we are
1489   // currently collecting.
1490   assert(haveFreelistLocks(), "Must be holding free list locks");
1491   bitMapLock()->unlock();
1492   releaseFreelistLocks();
1493   {
1494     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1495     if (_foregroundGCShouldWait) {
1496       // We are going to be waiting for action for the CMS thread;
1497       // it had better not be gone (for instance at shutdown)!
1498       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1499              "CMS thread must be running");
1500       // Wait here until the background collector gives us the go-ahead
1501       ConcurrentMarkSweepThread::clear_CMS_flag(
1502         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1503       // Get a possibly blocked CMS thread going:
1504       //   Note that we set _foregroundGCIsActive true above,
1505       //   without protection of the CGC_lock.
1506       CGC_lock->notify();
1507       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1508              "Possible deadlock");
1509       while (_foregroundGCShouldWait) {
1510         // wait for notification
1511         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1512         // Possibility of delay/starvation here, since CMS token does
1513         // not know to give priority to VM thread? Actually, i think
1514         // there wouldn't be any delay/starvation, but the proof of
1515         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1516       }
1517       ConcurrentMarkSweepThread::set_CMS_flag(
1518         ConcurrentMarkSweepThread::CMS_vm_has_token);
1519     }
1520   }
1521   // The CMS_token is already held.  Get back the other locks.
1522   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1523          "VM thread should have CMS token");
1524   getFreelistLocks();
1525   bitMapLock()->lock_without_safepoint_check();
1526   if (TraceCMSState) {
1527     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1528       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1529     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1530   }
1531 
1532   // Inform cms gen if this was due to partial collection failing.
1533   // The CMS gen may use this fact to determine its expansion policy.
1534   GenCollectedHeap* gch = GenCollectedHeap::heap();
1535   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1536     assert(!_cmsGen->incremental_collection_failed(),
1537            "Should have been noticed, reacted to and cleared");
1538     _cmsGen->set_incremental_collection_failed();
1539   }
1540 
1541   if (first_state > Idling) {
1542     report_concurrent_mode_interruption();
1543   }
1544 
1545   set_did_compact(true);
1546 
1547   // If the collection is being acquired from the background
1548   // collector, there may be references on the discovered
1549   // references lists.  Abandon those references, since some
1550   // of them may have become unreachable after concurrent
1551   // discovery; the STW compacting collector will redo discovery
1552   // more precisely, without being subject to floating garbage.
1553   // Leaving otherwise unreachable references in the discovered
1554   // lists would require special handling.
1555   ref_processor()->disable_discovery();
1556   ref_processor()->abandon_partial_discovery();
1557   ref_processor()->verify_no_references_recorded();
1558 
1559   if (first_state > Idling) {
1560     save_heap_summary();
1561   }
1562 
1563   do_compaction_work(clear_all_soft_refs);
1564 
1565   // Has the GC time limit been exceeded?
1566   size_t max_eden_size = _young_gen->max_capacity() -
1567                          _young_gen->to()->capacity() -
1568                          _young_gen->from()->capacity();
1569   GCCause::Cause gc_cause = gch->gc_cause();
1570   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1571                                          _young_gen->eden()->used(),
1572                                          _cmsGen->max_capacity(),
1573                                          max_eden_size,
1574                                          full,
1575                                          gc_cause,
1576                                          gch->collector_policy());
1577 
1578   // Reset the expansion cause, now that we just completed
1579   // a collection cycle.
1580   clear_expansion_cause();
1581   _foregroundGCIsActive = false;
1582   return;
1583 }
1584 
1585 // Resize the tenured generation
1586 // after obtaining the free list locks for the
1587 // two generations.
1588 void CMSCollector::compute_new_size() {
1589   assert_locked_or_safepoint(Heap_lock);
1590   FreelistLocker z(this);
1591   MetaspaceGC::compute_new_size();
1592   _cmsGen->compute_new_size_free_list();
1593 }
1594 
1595 // A work method used by the foreground collector to do
1596 // a mark-sweep-compact.
1597 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1598   GenCollectedHeap* gch = GenCollectedHeap::heap();
1599 
1600   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1601   gc_timer->register_gc_start();
1602 
1603   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1604   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1605 
1606   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1607 
1608   // Temporarily widen the span of the weak reference processing to
1609   // the entire heap.
1610   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1611   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1612   // Temporarily, clear the "is_alive_non_header" field of the
1613   // reference processor.
1614   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1615   // Temporarily make reference _processing_ single threaded (non-MT).
1616   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1617   // Temporarily make refs discovery atomic
1618   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1619   // Temporarily make reference _discovery_ single threaded (non-MT)
1620   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1621 
1622   ref_processor()->set_enqueuing_is_done(false);
1623   ref_processor()->enable_discovery();
1624   ref_processor()->setup_policy(clear_all_soft_refs);
1625   // If an asynchronous collection finishes, the _modUnionTable is
1626   // all clear.  If we are assuming the collection from an asynchronous
1627   // collection, clear the _modUnionTable.
1628   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1629     "_modUnionTable should be clear if the baton was not passed");
1630   _modUnionTable.clear_all();
1631   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1632     "mod union for klasses should be clear if the baton was passed");
1633   _ct->klass_rem_set()->clear_mod_union();
1634 
1635   // We must adjust the allocation statistics being maintained
1636   // in the free list space. We do so by reading and clearing
1637   // the sweep timer and updating the block flux rate estimates below.
1638   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1639   if (_inter_sweep_timer.is_active()) {
1640     _inter_sweep_timer.stop();
1641     // Note that we do not use this sample to update the _inter_sweep_estimate.
1642     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1643                                             _inter_sweep_estimate.padded_average(),
1644                                             _intra_sweep_estimate.padded_average());
1645   }
1646 
1647   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1648   #ifdef ASSERT
1649     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1650     size_t free_size = cms_space->free();
1651     assert(free_size ==
1652            pointer_delta(cms_space->end(), cms_space->compaction_top())
1653            * HeapWordSize,
1654       "All the free space should be compacted into one chunk at top");
1655     assert(cms_space->dictionary()->total_chunk_size(
1656                                       debug_only(cms_space->freelistLock())) == 0 ||
1657            cms_space->totalSizeInIndexedFreeLists() == 0,
1658       "All the free space should be in a single chunk");
1659     size_t num = cms_space->totalCount();
1660     assert((free_size == 0 && num == 0) ||
1661            (free_size > 0  && (num == 1 || num == 2)),
1662          "There should be at most 2 free chunks after compaction");
1663   #endif // ASSERT
1664   _collectorState = Resetting;
1665   assert(_restart_addr == NULL,
1666          "Should have been NULL'd before baton was passed");
1667   reset(false /* == !concurrent */);
1668   _cmsGen->reset_after_compaction();
1669   _concurrent_cycles_since_last_unload = 0;
1670 
1671   // Clear any data recorded in the PLAB chunk arrays.
1672   if (_survivor_plab_array != NULL) {
1673     reset_survivor_plab_arrays();
1674   }
1675 
1676   // Adjust the per-size allocation stats for the next epoch.
1677   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1678   // Restart the "inter sweep timer" for the next epoch.
1679   _inter_sweep_timer.reset();
1680   _inter_sweep_timer.start();
1681 
1682   gc_timer->register_gc_end();
1683 
1684   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1685 
1686   // For a mark-sweep-compact, compute_new_size() will be called
1687   // in the heap's do_collection() method.
1688 }
1689 
1690 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1691   ContiguousSpace* eden_space = _young_gen->eden();
1692   ContiguousSpace* from_space = _young_gen->from();
1693   ContiguousSpace* to_space   = _young_gen->to();
1694   // Eden
1695   if (_eden_chunk_array != NULL) {
1696     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1697                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1698                            p2i(eden_space->end()), eden_space->capacity());
1699     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1700                            "_eden_chunk_capacity=" SIZE_FORMAT,
1701                            _eden_chunk_index, _eden_chunk_capacity);
1702     for (size_t i = 0; i < _eden_chunk_index; i++) {
1703       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1704                              i, p2i(_eden_chunk_array[i]));
1705     }
1706   }
1707   // Survivor
1708   if (_survivor_chunk_array != NULL) {
1709     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1710                            p2i(from_space->bottom()), p2i(from_space->top()),
1711                            p2i(from_space->end()), from_space->capacity());
1712     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1713                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1714                            _survivor_chunk_index, _survivor_chunk_capacity);
1715     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1716       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1717                              i, p2i(_survivor_chunk_array[i]));
1718     }
1719   }
1720 }
1721 
1722 void CMSCollector::getFreelistLocks() const {
1723   // Get locks for all free lists in all generations that this
1724   // collector is responsible for
1725   _cmsGen->freelistLock()->lock_without_safepoint_check();
1726 }
1727 
1728 void CMSCollector::releaseFreelistLocks() const {
1729   // Release locks for all free lists in all generations that this
1730   // collector is responsible for
1731   _cmsGen->freelistLock()->unlock();
1732 }
1733 
1734 bool CMSCollector::haveFreelistLocks() const {
1735   // Check locks for all free lists in all generations that this
1736   // collector is responsible for
1737   assert_lock_strong(_cmsGen->freelistLock());
1738   PRODUCT_ONLY(ShouldNotReachHere());
1739   return true;
1740 }
1741 
1742 // A utility class that is used by the CMS collector to
1743 // temporarily "release" the foreground collector from its
1744 // usual obligation to wait for the background collector to
1745 // complete an ongoing phase before proceeding.
1746 class ReleaseForegroundGC: public StackObj {
1747  private:
1748   CMSCollector* _c;
1749  public:
1750   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1751     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1752     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1753     // allow a potentially blocked foreground collector to proceed
1754     _c->_foregroundGCShouldWait = false;
1755     if (_c->_foregroundGCIsActive) {
1756       CGC_lock->notify();
1757     }
1758     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1759            "Possible deadlock");
1760   }
1761 
1762   ~ReleaseForegroundGC() {
1763     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1764     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1765     _c->_foregroundGCShouldWait = true;
1766   }
1767 };
1768 
1769 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1770   assert(Thread::current()->is_ConcurrentGC_thread(),
1771     "A CMS asynchronous collection is only allowed on a CMS thread.");
1772 
1773   GenCollectedHeap* gch = GenCollectedHeap::heap();
1774   {
1775     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1776     MutexLockerEx hl(Heap_lock, safepoint_check);
1777     FreelistLocker fll(this);
1778     MutexLockerEx x(CGC_lock, safepoint_check);
1779     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1780       // The foreground collector is active or we're
1781       // not using asynchronous collections.  Skip this
1782       // background collection.
1783       assert(!_foregroundGCShouldWait, "Should be clear");
1784       return;
1785     } else {
1786       assert(_collectorState == Idling, "Should be idling before start.");
1787       _collectorState = InitialMarking;
1788       register_gc_start(cause);
1789       // Reset the expansion cause, now that we are about to begin
1790       // a new cycle.
1791       clear_expansion_cause();
1792 
1793       // Clear the MetaspaceGC flag since a concurrent collection
1794       // is starting but also clear it after the collection.
1795       MetaspaceGC::set_should_concurrent_collect(false);
1796     }
1797     // Decide if we want to enable class unloading as part of the
1798     // ensuing concurrent GC cycle.
1799     update_should_unload_classes();
1800     _full_gc_requested = false;           // acks all outstanding full gc requests
1801     _full_gc_cause = GCCause::_no_gc;
1802     // Signal that we are about to start a collection
1803     gch->increment_total_full_collections();  // ... starting a collection cycle
1804     _collection_count_start = gch->total_full_collections();
1805   }
1806 
1807   // Used for PrintGC
1808   size_t prev_used;
1809   if (PrintGC && Verbose) {
1810     prev_used = _cmsGen->used();
1811   }
1812 
1813   // The change of the collection state is normally done at this level;
1814   // the exceptions are phases that are executed while the world is
1815   // stopped.  For those phases the change of state is done while the
1816   // world is stopped.  For baton passing purposes this allows the
1817   // background collector to finish the phase and change state atomically.
1818   // The foreground collector cannot wait on a phase that is done
1819   // while the world is stopped because the foreground collector already
1820   // has the world stopped and would deadlock.
1821   while (_collectorState != Idling) {
1822     if (TraceCMSState) {
1823       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1824         p2i(Thread::current()), _collectorState);
1825     }
1826     // The foreground collector
1827     //   holds the Heap_lock throughout its collection.
1828     //   holds the CMS token (but not the lock)
1829     //     except while it is waiting for the background collector to yield.
1830     //
1831     // The foreground collector should be blocked (not for long)
1832     //   if the background collector is about to start a phase
1833     //   executed with world stopped.  If the background
1834     //   collector has already started such a phase, the
1835     //   foreground collector is blocked waiting for the
1836     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1837     //   are executed in the VM thread.
1838     //
1839     // The locking order is
1840     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1841     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1842     //   CMS token  (claimed in
1843     //                stop_world_and_do() -->
1844     //                  safepoint_synchronize() -->
1845     //                    CMSThread::synchronize())
1846 
1847     {
1848       // Check if the FG collector wants us to yield.
1849       CMSTokenSync x(true); // is cms thread
1850       if (waitForForegroundGC()) {
1851         // We yielded to a foreground GC, nothing more to be
1852         // done this round.
1853         assert(_foregroundGCShouldWait == false, "We set it to false in "
1854                "waitForForegroundGC()");
1855         if (TraceCMSState) {
1856           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1857             " exiting collection CMS state %d",
1858             p2i(Thread::current()), _collectorState);
1859         }
1860         return;
1861       } else {
1862         // The background collector can run but check to see if the
1863         // foreground collector has done a collection while the
1864         // background collector was waiting to get the CGC_lock
1865         // above.  If yes, break so that _foregroundGCShouldWait
1866         // is cleared before returning.
1867         if (_collectorState == Idling) {
1868           break;
1869         }
1870       }
1871     }
1872 
1873     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1874       "should be waiting");
1875 
1876     switch (_collectorState) {
1877       case InitialMarking:
1878         {
1879           ReleaseForegroundGC x(this);
1880           stats().record_cms_begin();
1881           VM_CMS_Initial_Mark initial_mark_op(this);
1882           VMThread::execute(&initial_mark_op);
1883         }
1884         // The collector state may be any legal state at this point
1885         // since the background collector may have yielded to the
1886         // foreground collector.
1887         break;
1888       case Marking:
1889         // initial marking in checkpointRootsInitialWork has been completed
1890         if (markFromRoots()) { // we were successful
1891           assert(_collectorState == Precleaning, "Collector state should "
1892             "have changed");
1893         } else {
1894           assert(_foregroundGCIsActive, "Internal state inconsistency");
1895         }
1896         break;
1897       case Precleaning:
1898         // marking from roots in markFromRoots has been completed
1899         preclean();
1900         assert(_collectorState == AbortablePreclean ||
1901                _collectorState == FinalMarking,
1902                "Collector state should have changed");
1903         break;
1904       case AbortablePreclean:
1905         abortable_preclean();
1906         assert(_collectorState == FinalMarking, "Collector state should "
1907           "have changed");
1908         break;
1909       case FinalMarking:
1910         {
1911           ReleaseForegroundGC x(this);
1912 
1913           VM_CMS_Final_Remark final_remark_op(this);
1914           VMThread::execute(&final_remark_op);
1915         }
1916         assert(_foregroundGCShouldWait, "block post-condition");
1917         break;
1918       case Sweeping:
1919         // final marking in checkpointRootsFinal has been completed
1920         sweep();
1921         assert(_collectorState == Resizing, "Collector state change "
1922           "to Resizing must be done under the free_list_lock");
1923 
1924       case Resizing: {
1925         // Sweeping has been completed...
1926         // At this point the background collection has completed.
1927         // Don't move the call to compute_new_size() down
1928         // into code that might be executed if the background
1929         // collection was preempted.
1930         {
1931           ReleaseForegroundGC x(this);   // unblock FG collection
1932           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1933           CMSTokenSync        z(true);   // not strictly needed.
1934           if (_collectorState == Resizing) {
1935             compute_new_size();
1936             save_heap_summary();
1937             _collectorState = Resetting;
1938           } else {
1939             assert(_collectorState == Idling, "The state should only change"
1940                    " because the foreground collector has finished the collection");
1941           }
1942         }
1943         break;
1944       }
1945       case Resetting:
1946         // CMS heap resizing has been completed
1947         reset(true);
1948         assert(_collectorState == Idling, "Collector state should "
1949           "have changed");
1950 
1951         MetaspaceGC::set_should_concurrent_collect(false);
1952 
1953         stats().record_cms_end();
1954         // Don't move the concurrent_phases_end() and compute_new_size()
1955         // calls to here because a preempted background collection
1956         // has it's state set to "Resetting".
1957         break;
1958       case Idling:
1959       default:
1960         ShouldNotReachHere();
1961         break;
1962     }
1963     if (TraceCMSState) {
1964       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1965         p2i(Thread::current()), _collectorState);
1966     }
1967     assert(_foregroundGCShouldWait, "block post-condition");
1968   }
1969 
1970   // Should this be in gc_epilogue?
1971   collector_policy()->counters()->update_counters();
1972 
1973   {
1974     // Clear _foregroundGCShouldWait and, in the event that the
1975     // foreground collector is waiting, notify it, before
1976     // returning.
1977     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1978     _foregroundGCShouldWait = false;
1979     if (_foregroundGCIsActive) {
1980       CGC_lock->notify();
1981     }
1982     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1983            "Possible deadlock");
1984   }
1985   if (TraceCMSState) {
1986     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1987       " exiting collection CMS state %d",
1988       p2i(Thread::current()), _collectorState);
1989   }
1990   if (PrintGC && Verbose) {
1991     _cmsGen->print_heap_change(prev_used);
1992   }
1993 }
1994 
1995 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1996   _cms_start_registered = true;
1997   _gc_timer_cm->register_gc_start();
1998   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1999 }
2000 
2001 void CMSCollector::register_gc_end() {
2002   if (_cms_start_registered) {
2003     report_heap_summary(GCWhen::AfterGC);
2004 
2005     _gc_timer_cm->register_gc_end();
2006     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2007     _cms_start_registered = false;
2008   }
2009 }
2010 
2011 void CMSCollector::save_heap_summary() {
2012   GenCollectedHeap* gch = GenCollectedHeap::heap();
2013   _last_heap_summary = gch->create_heap_summary();
2014   _last_metaspace_summary = gch->create_metaspace_summary();
2015 }
2016 
2017 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2018   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2019   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2020 }
2021 
2022 bool CMSCollector::waitForForegroundGC() {
2023   bool res = false;
2024   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2025          "CMS thread should have CMS token");
2026   // Block the foreground collector until the
2027   // background collectors decides whether to
2028   // yield.
2029   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2030   _foregroundGCShouldWait = true;
2031   if (_foregroundGCIsActive) {
2032     // The background collector yields to the
2033     // foreground collector and returns a value
2034     // indicating that it has yielded.  The foreground
2035     // collector can proceed.
2036     res = true;
2037     _foregroundGCShouldWait = false;
2038     ConcurrentMarkSweepThread::clear_CMS_flag(
2039       ConcurrentMarkSweepThread::CMS_cms_has_token);
2040     ConcurrentMarkSweepThread::set_CMS_flag(
2041       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2042     // Get a possibly blocked foreground thread going
2043     CGC_lock->notify();
2044     if (TraceCMSState) {
2045       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2046         p2i(Thread::current()), _collectorState);
2047     }
2048     while (_foregroundGCIsActive) {
2049       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2050     }
2051     ConcurrentMarkSweepThread::set_CMS_flag(
2052       ConcurrentMarkSweepThread::CMS_cms_has_token);
2053     ConcurrentMarkSweepThread::clear_CMS_flag(
2054       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2055   }
2056   if (TraceCMSState) {
2057     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2058       p2i(Thread::current()), _collectorState);
2059   }
2060   return res;
2061 }
2062 
2063 // Because of the need to lock the free lists and other structures in
2064 // the collector, common to all the generations that the collector is
2065 // collecting, we need the gc_prologues of individual CMS generations
2066 // delegate to their collector. It may have been simpler had the
2067 // current infrastructure allowed one to call a prologue on a
2068 // collector. In the absence of that we have the generation's
2069 // prologue delegate to the collector, which delegates back
2070 // some "local" work to a worker method in the individual generations
2071 // that it's responsible for collecting, while itself doing any
2072 // work common to all generations it's responsible for. A similar
2073 // comment applies to the  gc_epilogue()'s.
2074 // The role of the variable _between_prologue_and_epilogue is to
2075 // enforce the invocation protocol.
2076 void CMSCollector::gc_prologue(bool full) {
2077   // Call gc_prologue_work() for the CMSGen
2078   // we are responsible for.
2079 
2080   // The following locking discipline assumes that we are only called
2081   // when the world is stopped.
2082   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2083 
2084   // The CMSCollector prologue must call the gc_prologues for the
2085   // "generations" that it's responsible
2086   // for.
2087 
2088   assert(   Thread::current()->is_VM_thread()
2089          || (   CMSScavengeBeforeRemark
2090              && Thread::current()->is_ConcurrentGC_thread()),
2091          "Incorrect thread type for prologue execution");
2092 
2093   if (_between_prologue_and_epilogue) {
2094     // We have already been invoked; this is a gc_prologue delegation
2095     // from yet another CMS generation that we are responsible for, just
2096     // ignore it since all relevant work has already been done.
2097     return;
2098   }
2099 
2100   // set a bit saying prologue has been called; cleared in epilogue
2101   _between_prologue_and_epilogue = true;
2102   // Claim locks for common data structures, then call gc_prologue_work()
2103   // for each CMSGen.
2104 
2105   getFreelistLocks();   // gets free list locks on constituent spaces
2106   bitMapLock()->lock_without_safepoint_check();
2107 
2108   // Should call gc_prologue_work() for all cms gens we are responsible for
2109   bool duringMarking =    _collectorState >= Marking
2110                          && _collectorState < Sweeping;
2111 
2112   // The young collections clear the modified oops state, which tells if
2113   // there are any modified oops in the class. The remark phase also needs
2114   // that information. Tell the young collection to save the union of all
2115   // modified klasses.
2116   if (duringMarking) {
2117     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2118   }
2119 
2120   bool registerClosure = duringMarking;
2121 
2122   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2123 
2124   if (!full) {
2125     stats().record_gc0_begin();
2126   }
2127 }
2128 
2129 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2130 
2131   _capacity_at_prologue = capacity();
2132   _used_at_prologue = used();
2133 
2134   // Delegate to CMScollector which knows how to coordinate between
2135   // this and any other CMS generations that it is responsible for
2136   // collecting.
2137   collector()->gc_prologue(full);
2138 }
2139 
2140 // This is a "private" interface for use by this generation's CMSCollector.
2141 // Not to be called directly by any other entity (for instance,
2142 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2143 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2144   bool registerClosure, ModUnionClosure* modUnionClosure) {
2145   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2146   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2147     "Should be NULL");
2148   if (registerClosure) {
2149     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2150   }
2151   cmsSpace()->gc_prologue();
2152   // Clear stat counters
2153   NOT_PRODUCT(
2154     assert(_numObjectsPromoted == 0, "check");
2155     assert(_numWordsPromoted   == 0, "check");
2156     if (Verbose && PrintGC) {
2157       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2158                           SIZE_FORMAT " bytes concurrently",
2159       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2160     }
2161     _numObjectsAllocated = 0;
2162     _numWordsAllocated   = 0;
2163   )
2164 }
2165 
2166 void CMSCollector::gc_epilogue(bool full) {
2167   // The following locking discipline assumes that we are only called
2168   // when the world is stopped.
2169   assert(SafepointSynchronize::is_at_safepoint(),
2170          "world is stopped assumption");
2171 
2172   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2173   // if linear allocation blocks need to be appropriately marked to allow the
2174   // the blocks to be parsable. We also check here whether we need to nudge the
2175   // CMS collector thread to start a new cycle (if it's not already active).
2176   assert(   Thread::current()->is_VM_thread()
2177          || (   CMSScavengeBeforeRemark
2178              && Thread::current()->is_ConcurrentGC_thread()),
2179          "Incorrect thread type for epilogue execution");
2180 
2181   if (!_between_prologue_and_epilogue) {
2182     // We have already been invoked; this is a gc_epilogue delegation
2183     // from yet another CMS generation that we are responsible for, just
2184     // ignore it since all relevant work has already been done.
2185     return;
2186   }
2187   assert(haveFreelistLocks(), "must have freelist locks");
2188   assert_lock_strong(bitMapLock());
2189 
2190   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2191 
2192   _cmsGen->gc_epilogue_work(full);
2193 
2194   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2195     // in case sampling was not already enabled, enable it
2196     _start_sampling = true;
2197   }
2198   // reset _eden_chunk_array so sampling starts afresh
2199   _eden_chunk_index = 0;
2200 
2201   size_t cms_used   = _cmsGen->cmsSpace()->used();
2202 
2203   // update performance counters - this uses a special version of
2204   // update_counters() that allows the utilization to be passed as a
2205   // parameter, avoiding multiple calls to used().
2206   //
2207   _cmsGen->update_counters(cms_used);
2208 
2209   bitMapLock()->unlock();
2210   releaseFreelistLocks();
2211 
2212   if (!CleanChunkPoolAsync) {
2213     Chunk::clean_chunk_pool();
2214   }
2215 
2216   set_did_compact(false);
2217   _between_prologue_and_epilogue = false;  // ready for next cycle
2218 }
2219 
2220 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2221   collector()->gc_epilogue(full);
2222 
2223   // Also reset promotion tracking in par gc thread states.
2224   for (uint i = 0; i < ParallelGCThreads; i++) {
2225     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2226   }
2227 }
2228 
2229 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2230   assert(!incremental_collection_failed(), "Should have been cleared");
2231   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2232   cmsSpace()->gc_epilogue();
2233     // Print stat counters
2234   NOT_PRODUCT(
2235     assert(_numObjectsAllocated == 0, "check");
2236     assert(_numWordsAllocated == 0, "check");
2237     if (Verbose && PrintGC) {
2238       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2239                           SIZE_FORMAT " bytes",
2240                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2241     }
2242     _numObjectsPromoted = 0;
2243     _numWordsPromoted   = 0;
2244   )
2245 
2246   if (PrintGC && Verbose) {
2247     // Call down the chain in contiguous_available needs the freelistLock
2248     // so print this out before releasing the freeListLock.
2249     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2250                         contiguous_available());
2251   }
2252 }
2253 
2254 #ifndef PRODUCT
2255 bool CMSCollector::have_cms_token() {
2256   Thread* thr = Thread::current();
2257   if (thr->is_VM_thread()) {
2258     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2259   } else if (thr->is_ConcurrentGC_thread()) {
2260     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2261   } else if (thr->is_GC_task_thread()) {
2262     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2263            ParGCRareEvent_lock->owned_by_self();
2264   }
2265   return false;
2266 }
2267 #endif
2268 
2269 // Check reachability of the given heap address in CMS generation,
2270 // treating all other generations as roots.
2271 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2272   // We could "guarantee" below, rather than assert, but I'll
2273   // leave these as "asserts" so that an adventurous debugger
2274   // could try this in the product build provided some subset of
2275   // the conditions were met, provided they were interested in the
2276   // results and knew that the computation below wouldn't interfere
2277   // with other concurrent computations mutating the structures
2278   // being read or written.
2279   assert(SafepointSynchronize::is_at_safepoint(),
2280          "Else mutations in object graph will make answer suspect");
2281   assert(have_cms_token(), "Should hold cms token");
2282   assert(haveFreelistLocks(), "must hold free list locks");
2283   assert_lock_strong(bitMapLock());
2284 
2285   // Clear the marking bit map array before starting, but, just
2286   // for kicks, first report if the given address is already marked
2287   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2288                 _markBitMap.isMarked(addr) ? "" : " not");
2289 
2290   if (verify_after_remark()) {
2291     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2292     bool result = verification_mark_bm()->isMarked(addr);
2293     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2294                            result ? "IS" : "is NOT");
2295     return result;
2296   } else {
2297     gclog_or_tty->print_cr("Could not compute result");
2298     return false;
2299   }
2300 }
2301 
2302 
2303 void
2304 CMSCollector::print_on_error(outputStream* st) {
2305   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2306   if (collector != NULL) {
2307     CMSBitMap* bitmap = &collector->_markBitMap;
2308     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2309     bitmap->print_on_error(st, " Bits: ");
2310 
2311     st->cr();
2312 
2313     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2314     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2315     mut_bitmap->print_on_error(st, " Bits: ");
2316   }
2317 }
2318 
2319 ////////////////////////////////////////////////////////
2320 // CMS Verification Support
2321 ////////////////////////////////////////////////////////
2322 // Following the remark phase, the following invariant
2323 // should hold -- each object in the CMS heap which is
2324 // marked in markBitMap() should be marked in the verification_mark_bm().
2325 
2326 class VerifyMarkedClosure: public BitMapClosure {
2327   CMSBitMap* _marks;
2328   bool       _failed;
2329 
2330  public:
2331   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2332 
2333   bool do_bit(size_t offset) {
2334     HeapWord* addr = _marks->offsetToHeapWord(offset);
2335     if (!_marks->isMarked(addr)) {
2336       oop(addr)->print_on(gclog_or_tty);
2337       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2338       _failed = true;
2339     }
2340     return true;
2341   }
2342 
2343   bool failed() { return _failed; }
2344 };
2345 
2346 bool CMSCollector::verify_after_remark(bool silent) {
2347   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2348   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2349   static bool init = false;
2350 
2351   assert(SafepointSynchronize::is_at_safepoint(),
2352          "Else mutations in object graph will make answer suspect");
2353   assert(have_cms_token(),
2354          "Else there may be mutual interference in use of "
2355          " verification data structures");
2356   assert(_collectorState > Marking && _collectorState <= Sweeping,
2357          "Else marking info checked here may be obsolete");
2358   assert(haveFreelistLocks(), "must hold free list locks");
2359   assert_lock_strong(bitMapLock());
2360 
2361 
2362   // Allocate marking bit map if not already allocated
2363   if (!init) { // first time
2364     if (!verification_mark_bm()->allocate(_span)) {
2365       return false;
2366     }
2367     init = true;
2368   }
2369 
2370   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2371 
2372   // Turn off refs discovery -- so we will be tracing through refs.
2373   // This is as intended, because by this time
2374   // GC must already have cleared any refs that need to be cleared,
2375   // and traced those that need to be marked; moreover,
2376   // the marking done here is not going to interfere in any
2377   // way with the marking information used by GC.
2378   NoRefDiscovery no_discovery(ref_processor());
2379 
2380   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2381 
2382   // Clear any marks from a previous round
2383   verification_mark_bm()->clear_all();
2384   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2385   verify_work_stacks_empty();
2386 
2387   GenCollectedHeap* gch = GenCollectedHeap::heap();
2388   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2389   // Update the saved marks which may affect the root scans.
2390   gch->save_marks();
2391 
2392   if (CMSRemarkVerifyVariant == 1) {
2393     // In this first variant of verification, we complete
2394     // all marking, then check if the new marks-vector is
2395     // a subset of the CMS marks-vector.
2396     verify_after_remark_work_1();
2397   } else if (CMSRemarkVerifyVariant == 2) {
2398     // In this second variant of verification, we flag an error
2399     // (i.e. an object reachable in the new marks-vector not reachable
2400     // in the CMS marks-vector) immediately, also indicating the
2401     // identify of an object (A) that references the unmarked object (B) --
2402     // presumably, a mutation to A failed to be picked up by preclean/remark?
2403     verify_after_remark_work_2();
2404   } else {
2405     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2406             CMSRemarkVerifyVariant);
2407   }
2408   if (!silent) gclog_or_tty->print(" done] ");
2409   return true;
2410 }
2411 
2412 void CMSCollector::verify_after_remark_work_1() {
2413   ResourceMark rm;
2414   HandleMark  hm;
2415   GenCollectedHeap* gch = GenCollectedHeap::heap();
2416 
2417   // Get a clear set of claim bits for the roots processing to work with.
2418   ClassLoaderDataGraph::clear_claimed_marks();
2419 
2420   // Mark from roots one level into CMS
2421   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2422   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2423 
2424   {
2425     StrongRootsScope srs(1);
2426 
2427     gch->gen_process_roots(&srs,
2428                            GenCollectedHeap::OldGen,
2429                            true,   // younger gens are roots
2430                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2431                            should_unload_classes(),
2432                            &notOlder,
2433                            NULL,
2434                            NULL);
2435   }
2436 
2437   // Now mark from the roots
2438   MarkFromRootsClosure markFromRootsClosure(this, _span,
2439     verification_mark_bm(), verification_mark_stack(),
2440     false /* don't yield */, true /* verifying */);
2441   assert(_restart_addr == NULL, "Expected pre-condition");
2442   verification_mark_bm()->iterate(&markFromRootsClosure);
2443   while (_restart_addr != NULL) {
2444     // Deal with stack overflow: by restarting at the indicated
2445     // address.
2446     HeapWord* ra = _restart_addr;
2447     markFromRootsClosure.reset(ra);
2448     _restart_addr = NULL;
2449     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2450   }
2451   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2452   verify_work_stacks_empty();
2453 
2454   // Marking completed -- now verify that each bit marked in
2455   // verification_mark_bm() is also marked in markBitMap(); flag all
2456   // errors by printing corresponding objects.
2457   VerifyMarkedClosure vcl(markBitMap());
2458   verification_mark_bm()->iterate(&vcl);
2459   if (vcl.failed()) {
2460     gclog_or_tty->print("Verification failed");
2461     gch->print_on(gclog_or_tty);
2462     fatal("CMS: failed marking verification after remark");
2463   }
2464 }
2465 
2466 class VerifyKlassOopsKlassClosure : public KlassClosure {
2467   class VerifyKlassOopsClosure : public OopClosure {
2468     CMSBitMap* _bitmap;
2469    public:
2470     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2471     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2472     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2473   } _oop_closure;
2474  public:
2475   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2476   void do_klass(Klass* k) {
2477     k->oops_do(&_oop_closure);
2478   }
2479 };
2480 
2481 void CMSCollector::verify_after_remark_work_2() {
2482   ResourceMark rm;
2483   HandleMark  hm;
2484   GenCollectedHeap* gch = GenCollectedHeap::heap();
2485 
2486   // Get a clear set of claim bits for the roots processing to work with.
2487   ClassLoaderDataGraph::clear_claimed_marks();
2488 
2489   // Mark from roots one level into CMS
2490   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2491                                      markBitMap());
2492   CLDToOopClosure cld_closure(&notOlder, true);
2493 
2494   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2495 
2496   {
2497     StrongRootsScope srs(1);
2498 
2499     gch->gen_process_roots(&srs,
2500                            GenCollectedHeap::OldGen,
2501                            true,   // younger gens are roots
2502                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2503                            should_unload_classes(),
2504                            &notOlder,
2505                            NULL,
2506                            &cld_closure);
2507   }
2508 
2509   // Now mark from the roots
2510   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2511     verification_mark_bm(), markBitMap(), verification_mark_stack());
2512   assert(_restart_addr == NULL, "Expected pre-condition");
2513   verification_mark_bm()->iterate(&markFromRootsClosure);
2514   while (_restart_addr != NULL) {
2515     // Deal with stack overflow: by restarting at the indicated
2516     // address.
2517     HeapWord* ra = _restart_addr;
2518     markFromRootsClosure.reset(ra);
2519     _restart_addr = NULL;
2520     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2521   }
2522   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2523   verify_work_stacks_empty();
2524 
2525   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2526   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2527 
2528   // Marking completed -- now verify that each bit marked in
2529   // verification_mark_bm() is also marked in markBitMap(); flag all
2530   // errors by printing corresponding objects.
2531   VerifyMarkedClosure vcl(markBitMap());
2532   verification_mark_bm()->iterate(&vcl);
2533   assert(!vcl.failed(), "Else verification above should not have succeeded");
2534 }
2535 
2536 void ConcurrentMarkSweepGeneration::save_marks() {
2537   // delegate to CMS space
2538   cmsSpace()->save_marks();
2539   for (uint i = 0; i < ParallelGCThreads; i++) {
2540     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2541   }
2542 }
2543 
2544 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2545   return cmsSpace()->no_allocs_since_save_marks();
2546 }
2547 
2548 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2549                                                                 \
2550 void ConcurrentMarkSweepGeneration::                            \
2551 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2552   cl->set_generation(this);                                     \
2553   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2554   cl->reset_generation();                                       \
2555   save_marks();                                                 \
2556 }
2557 
2558 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2559 
2560 void
2561 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2562   if (freelistLock()->owned_by_self()) {
2563     Generation::oop_iterate(cl);
2564   } else {
2565     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2566     Generation::oop_iterate(cl);
2567   }
2568 }
2569 
2570 void
2571 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2572   if (freelistLock()->owned_by_self()) {
2573     Generation::object_iterate(cl);
2574   } else {
2575     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2576     Generation::object_iterate(cl);
2577   }
2578 }
2579 
2580 void
2581 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2582   if (freelistLock()->owned_by_self()) {
2583     Generation::safe_object_iterate(cl);
2584   } else {
2585     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2586     Generation::safe_object_iterate(cl);
2587   }
2588 }
2589 
2590 void
2591 ConcurrentMarkSweepGeneration::post_compact() {
2592 }
2593 
2594 void
2595 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2596   // Fix the linear allocation blocks to look like free blocks.
2597 
2598   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2599   // are not called when the heap is verified during universe initialization and
2600   // at vm shutdown.
2601   if (freelistLock()->owned_by_self()) {
2602     cmsSpace()->prepare_for_verify();
2603   } else {
2604     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2605     cmsSpace()->prepare_for_verify();
2606   }
2607 }
2608 
2609 void
2610 ConcurrentMarkSweepGeneration::verify() {
2611   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2612   // are not called when the heap is verified during universe initialization and
2613   // at vm shutdown.
2614   if (freelistLock()->owned_by_self()) {
2615     cmsSpace()->verify();
2616   } else {
2617     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2618     cmsSpace()->verify();
2619   }
2620 }
2621 
2622 void CMSCollector::verify() {
2623   _cmsGen->verify();
2624 }
2625 
2626 #ifndef PRODUCT
2627 bool CMSCollector::overflow_list_is_empty() const {
2628   assert(_num_par_pushes >= 0, "Inconsistency");
2629   if (_overflow_list == NULL) {
2630     assert(_num_par_pushes == 0, "Inconsistency");
2631   }
2632   return _overflow_list == NULL;
2633 }
2634 
2635 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2636 // merely consolidate assertion checks that appear to occur together frequently.
2637 void CMSCollector::verify_work_stacks_empty() const {
2638   assert(_markStack.isEmpty(), "Marking stack should be empty");
2639   assert(overflow_list_is_empty(), "Overflow list should be empty");
2640 }
2641 
2642 void CMSCollector::verify_overflow_empty() const {
2643   assert(overflow_list_is_empty(), "Overflow list should be empty");
2644   assert(no_preserved_marks(), "No preserved marks");
2645 }
2646 #endif // PRODUCT
2647 
2648 // Decide if we want to enable class unloading as part of the
2649 // ensuing concurrent GC cycle. We will collect and
2650 // unload classes if it's the case that:
2651 // (1) an explicit gc request has been made and the flag
2652 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2653 // (2) (a) class unloading is enabled at the command line, and
2654 //     (b) old gen is getting really full
2655 // NOTE: Provided there is no change in the state of the heap between
2656 // calls to this method, it should have idempotent results. Moreover,
2657 // its results should be monotonically increasing (i.e. going from 0 to 1,
2658 // but not 1 to 0) between successive calls between which the heap was
2659 // not collected. For the implementation below, it must thus rely on
2660 // the property that concurrent_cycles_since_last_unload()
2661 // will not decrease unless a collection cycle happened and that
2662 // _cmsGen->is_too_full() are
2663 // themselves also monotonic in that sense. See check_monotonicity()
2664 // below.
2665 void CMSCollector::update_should_unload_classes() {
2666   _should_unload_classes = false;
2667   // Condition 1 above
2668   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2669     _should_unload_classes = true;
2670   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2671     // Disjuncts 2.b.(i,ii,iii) above
2672     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2673                               CMSClassUnloadingMaxInterval)
2674                            || _cmsGen->is_too_full();
2675   }
2676 }
2677 
2678 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2679   bool res = should_concurrent_collect();
2680   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2681   return res;
2682 }
2683 
2684 void CMSCollector::setup_cms_unloading_and_verification_state() {
2685   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2686                              || VerifyBeforeExit;
2687   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2688 
2689   // We set the proper root for this CMS cycle here.
2690   if (should_unload_classes()) {   // Should unload classes this cycle
2691     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2692     set_verifying(should_verify);    // Set verification state for this cycle
2693     return;                            // Nothing else needs to be done at this time
2694   }
2695 
2696   // Not unloading classes this cycle
2697   assert(!should_unload_classes(), "Inconsistency!");
2698 
2699   // If we are not unloading classes then add SO_AllCodeCache to root
2700   // scanning options.
2701   add_root_scanning_option(rso);
2702 
2703   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2704     set_verifying(true);
2705   } else if (verifying() && !should_verify) {
2706     // We were verifying, but some verification flags got disabled.
2707     set_verifying(false);
2708     // Exclude symbols, strings and code cache elements from root scanning to
2709     // reduce IM and RM pauses.
2710     remove_root_scanning_option(rso);
2711   }
2712 }
2713 
2714 
2715 #ifndef PRODUCT
2716 HeapWord* CMSCollector::block_start(const void* p) const {
2717   const HeapWord* addr = (HeapWord*)p;
2718   if (_span.contains(p)) {
2719     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2720       return _cmsGen->cmsSpace()->block_start(p);
2721     }
2722   }
2723   return NULL;
2724 }
2725 #endif
2726 
2727 HeapWord*
2728 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2729                                                    bool   tlab,
2730                                                    bool   parallel) {
2731   CMSSynchronousYieldRequest yr;
2732   assert(!tlab, "Can't deal with TLAB allocation");
2733   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2734   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2735   if (GCExpandToAllocateDelayMillis > 0) {
2736     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2737   }
2738   return have_lock_and_allocate(word_size, tlab);
2739 }
2740 
2741 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2742     size_t bytes,
2743     size_t expand_bytes,
2744     CMSExpansionCause::Cause cause)
2745 {
2746 
2747   bool success = expand(bytes, expand_bytes);
2748 
2749   // remember why we expanded; this information is used
2750   // by shouldConcurrentCollect() when making decisions on whether to start
2751   // a new CMS cycle.
2752   if (success) {
2753     set_expansion_cause(cause);
2754     if (PrintGCDetails && Verbose) {
2755       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2756         CMSExpansionCause::to_string(cause));
2757     }
2758   }
2759 }
2760 
2761 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2762   HeapWord* res = NULL;
2763   MutexLocker x(ParGCRareEvent_lock);
2764   while (true) {
2765     // Expansion by some other thread might make alloc OK now:
2766     res = ps->lab.alloc(word_sz);
2767     if (res != NULL) return res;
2768     // If there's not enough expansion space available, give up.
2769     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2770       return NULL;
2771     }
2772     // Otherwise, we try expansion.
2773     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2774     // Now go around the loop and try alloc again;
2775     // A competing par_promote might beat us to the expansion space,
2776     // so we may go around the loop again if promotion fails again.
2777     if (GCExpandToAllocateDelayMillis > 0) {
2778       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2779     }
2780   }
2781 }
2782 
2783 
2784 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2785   PromotionInfo* promo) {
2786   MutexLocker x(ParGCRareEvent_lock);
2787   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2788   while (true) {
2789     // Expansion by some other thread might make alloc OK now:
2790     if (promo->ensure_spooling_space()) {
2791       assert(promo->has_spooling_space(),
2792              "Post-condition of successful ensure_spooling_space()");
2793       return true;
2794     }
2795     // If there's not enough expansion space available, give up.
2796     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2797       return false;
2798     }
2799     // Otherwise, we try expansion.
2800     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2801     // Now go around the loop and try alloc again;
2802     // A competing allocation might beat us to the expansion space,
2803     // so we may go around the loop again if allocation fails again.
2804     if (GCExpandToAllocateDelayMillis > 0) {
2805       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2806     }
2807   }
2808 }
2809 
2810 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2811   // Only shrink if a compaction was done so that all the free space
2812   // in the generation is in a contiguous block at the end.
2813   if (did_compact()) {
2814     CardGeneration::shrink(bytes);
2815   }
2816 }
2817 
2818 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2819   assert_locked_or_safepoint(Heap_lock);
2820 }
2821 
2822 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2823   assert_locked_or_safepoint(Heap_lock);
2824   assert_lock_strong(freelistLock());
2825   if (PrintGCDetails && Verbose) {
2826     warning("Shrinking of CMS not yet implemented");
2827   }
2828   return;
2829 }
2830 
2831 
2832 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2833 // phases.
2834 class CMSPhaseAccounting: public StackObj {
2835  public:
2836   CMSPhaseAccounting(CMSCollector *collector,
2837                      const char *phase,
2838                      const GCId gc_id,
2839                      bool print_cr = true);
2840   ~CMSPhaseAccounting();
2841 
2842  private:
2843   CMSCollector *_collector;
2844   const char *_phase;
2845   elapsedTimer _wallclock;
2846   bool _print_cr;
2847   const GCId _gc_id;
2848 
2849  public:
2850   // Not MT-safe; so do not pass around these StackObj's
2851   // where they may be accessed by other threads.
2852   jlong wallclock_millis() {
2853     assert(_wallclock.is_active(), "Wall clock should not stop");
2854     _wallclock.stop();  // to record time
2855     jlong ret = _wallclock.milliseconds();
2856     _wallclock.start(); // restart
2857     return ret;
2858   }
2859 };
2860 
2861 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2862                                        const char *phase,
2863                                        const GCId gc_id,
2864                                        bool print_cr) :
2865   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2866 
2867   if (PrintCMSStatistics != 0) {
2868     _collector->resetYields();
2869   }
2870   if (PrintGCDetails) {
2871     gclog_or_tty->gclog_stamp(_gc_id);
2872     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2873       _collector->cmsGen()->short_name(), _phase);
2874   }
2875   _collector->resetTimer();
2876   _wallclock.start();
2877   _collector->startTimer();
2878 }
2879 
2880 CMSPhaseAccounting::~CMSPhaseAccounting() {
2881   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2882   _collector->stopTimer();
2883   _wallclock.stop();
2884   if (PrintGCDetails) {
2885     gclog_or_tty->gclog_stamp(_gc_id);
2886     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2887                  _collector->cmsGen()->short_name(),
2888                  _phase, _collector->timerValue(), _wallclock.seconds());
2889     if (_print_cr) {
2890       gclog_or_tty->cr();
2891     }
2892     if (PrintCMSStatistics != 0) {
2893       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2894                     _collector->yields());
2895     }
2896   }
2897 }
2898 
2899 // CMS work
2900 
2901 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2902 class CMSParMarkTask : public AbstractGangTask {
2903  protected:
2904   CMSCollector*     _collector;
2905   uint              _n_workers;
2906   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2907       AbstractGangTask(name),
2908       _collector(collector),
2909       _n_workers(n_workers) {}
2910   // Work method in support of parallel rescan ... of young gen spaces
2911   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2912                              ContiguousSpace* space,
2913                              HeapWord** chunk_array, size_t chunk_top);
2914   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2915 };
2916 
2917 // Parallel initial mark task
2918 class CMSParInitialMarkTask: public CMSParMarkTask {
2919   StrongRootsScope* _strong_roots_scope;
2920  public:
2921   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2922       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2923       _strong_roots_scope(strong_roots_scope) {}
2924   void work(uint worker_id);
2925 };
2926 
2927 // Checkpoint the roots into this generation from outside
2928 // this generation. [Note this initial checkpoint need only
2929 // be approximate -- we'll do a catch up phase subsequently.]
2930 void CMSCollector::checkpointRootsInitial() {
2931   assert(_collectorState == InitialMarking, "Wrong collector state");
2932   check_correct_thread_executing();
2933   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2934 
2935   save_heap_summary();
2936   report_heap_summary(GCWhen::BeforeGC);
2937 
2938   ReferenceProcessor* rp = ref_processor();
2939   assert(_restart_addr == NULL, "Control point invariant");
2940   {
2941     // acquire locks for subsequent manipulations
2942     MutexLockerEx x(bitMapLock(),
2943                     Mutex::_no_safepoint_check_flag);
2944     checkpointRootsInitialWork();
2945     // enable ("weak") refs discovery
2946     rp->enable_discovery();
2947     _collectorState = Marking;
2948   }
2949 }
2950 
2951 void CMSCollector::checkpointRootsInitialWork() {
2952   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2953   assert(_collectorState == InitialMarking, "just checking");
2954 
2955   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2956   // precede our marking with a collection of all
2957   // younger generations to keep floating garbage to a minimum.
2958   // XXX: we won't do this for now -- it's an optimization to be done later.
2959 
2960   // already have locks
2961   assert_lock_strong(bitMapLock());
2962   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2963 
2964   // Setup the verification and class unloading state for this
2965   // CMS collection cycle.
2966   setup_cms_unloading_and_verification_state();
2967 
2968   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2969     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2970 
2971   // Reset all the PLAB chunk arrays if necessary.
2972   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2973     reset_survivor_plab_arrays();
2974   }
2975 
2976   ResourceMark rm;
2977   HandleMark  hm;
2978 
2979   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2980   GenCollectedHeap* gch = GenCollectedHeap::heap();
2981 
2982   verify_work_stacks_empty();
2983   verify_overflow_empty();
2984 
2985   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2986   // Update the saved marks which may affect the root scans.
2987   gch->save_marks();
2988 
2989   // weak reference processing has not started yet.
2990   ref_processor()->set_enqueuing_is_done(false);
2991 
2992   // Need to remember all newly created CLDs,
2993   // so that we can guarantee that the remark finds them.
2994   ClassLoaderDataGraph::remember_new_clds(true);
2995 
2996   // Whenever a CLD is found, it will be claimed before proceeding to mark
2997   // the klasses. The claimed marks need to be cleared before marking starts.
2998   ClassLoaderDataGraph::clear_claimed_marks();
2999 
3000   if (CMSPrintEdenSurvivorChunks) {
3001     print_eden_and_survivor_chunk_arrays();
3002   }
3003 
3004   {
3005     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3006     if (CMSParallelInitialMarkEnabled) {
3007       // The parallel version.
3008       WorkGang* workers = gch->workers();
3009       assert(workers != NULL, "Need parallel worker threads.");
3010       uint n_workers = workers->active_workers();
3011 
3012       StrongRootsScope srs(n_workers);
3013 
3014       CMSParInitialMarkTask tsk(this, &srs, n_workers);
3015       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3016       if (n_workers > 1) {
3017         workers->run_task(&tsk);
3018       } else {
3019         tsk.work(0);
3020       }
3021     } else {
3022       // The serial version.
3023       CLDToOopClosure cld_closure(&notOlder, true);
3024       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3025 
3026       StrongRootsScope srs(1);
3027 
3028       gch->gen_process_roots(&srs,
3029                              GenCollectedHeap::OldGen,
3030                              true,   // younger gens are roots
3031                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3032                              should_unload_classes(),
3033                              &notOlder,
3034                              NULL,
3035                              &cld_closure);
3036     }
3037   }
3038 
3039   // Clear mod-union table; it will be dirtied in the prologue of
3040   // CMS generation per each younger generation collection.
3041 
3042   assert(_modUnionTable.isAllClear(),
3043        "Was cleared in most recent final checkpoint phase"
3044        " or no bits are set in the gc_prologue before the start of the next "
3045        "subsequent marking phase.");
3046 
3047   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3048 
3049   // Save the end of the used_region of the constituent generations
3050   // to be used to limit the extent of sweep in each generation.
3051   save_sweep_limits();
3052   verify_overflow_empty();
3053 }
3054 
3055 bool CMSCollector::markFromRoots() {
3056   // we might be tempted to assert that:
3057   // assert(!SafepointSynchronize::is_at_safepoint(),
3058   //        "inconsistent argument?");
3059   // However that wouldn't be right, because it's possible that
3060   // a safepoint is indeed in progress as a younger generation
3061   // stop-the-world GC happens even as we mark in this generation.
3062   assert(_collectorState == Marking, "inconsistent state?");
3063   check_correct_thread_executing();
3064   verify_overflow_empty();
3065 
3066   // Weak ref discovery note: We may be discovering weak
3067   // refs in this generation concurrent (but interleaved) with
3068   // weak ref discovery by a younger generation collector.
3069 
3070   CMSTokenSyncWithLocks ts(true, bitMapLock());
3071   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3072   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3073   bool res = markFromRootsWork();
3074   if (res) {
3075     _collectorState = Precleaning;
3076   } else { // We failed and a foreground collection wants to take over
3077     assert(_foregroundGCIsActive, "internal state inconsistency");
3078     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3079     if (PrintGCDetails) {
3080       gclog_or_tty->print_cr("bailing out to foreground collection");
3081     }
3082   }
3083   verify_overflow_empty();
3084   return res;
3085 }
3086 
3087 bool CMSCollector::markFromRootsWork() {
3088   // iterate over marked bits in bit map, doing a full scan and mark
3089   // from these roots using the following algorithm:
3090   // . if oop is to the right of the current scan pointer,
3091   //   mark corresponding bit (we'll process it later)
3092   // . else (oop is to left of current scan pointer)
3093   //   push oop on marking stack
3094   // . drain the marking stack
3095 
3096   // Note that when we do a marking step we need to hold the
3097   // bit map lock -- recall that direct allocation (by mutators)
3098   // and promotion (by younger generation collectors) is also
3099   // marking the bit map. [the so-called allocate live policy.]
3100   // Because the implementation of bit map marking is not
3101   // robust wrt simultaneous marking of bits in the same word,
3102   // we need to make sure that there is no such interference
3103   // between concurrent such updates.
3104 
3105   // already have locks
3106   assert_lock_strong(bitMapLock());
3107 
3108   verify_work_stacks_empty();
3109   verify_overflow_empty();
3110   bool result = false;
3111   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3112     result = do_marking_mt();
3113   } else {
3114     result = do_marking_st();
3115   }
3116   return result;
3117 }
3118 
3119 // Forward decl
3120 class CMSConcMarkingTask;
3121 
3122 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3123   CMSCollector*       _collector;
3124   CMSConcMarkingTask* _task;
3125  public:
3126   virtual void yield();
3127 
3128   // "n_threads" is the number of threads to be terminated.
3129   // "queue_set" is a set of work queues of other threads.
3130   // "collector" is the CMS collector associated with this task terminator.
3131   // "yield" indicates whether we need the gang as a whole to yield.
3132   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3133     ParallelTaskTerminator(n_threads, queue_set),
3134     _collector(collector) { }
3135 
3136   void set_task(CMSConcMarkingTask* task) {
3137     _task = task;
3138   }
3139 };
3140 
3141 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3142   CMSConcMarkingTask* _task;
3143  public:
3144   bool should_exit_termination();
3145   void set_task(CMSConcMarkingTask* task) {
3146     _task = task;
3147   }
3148 };
3149 
3150 // MT Concurrent Marking Task
3151 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3152   CMSCollector* _collector;
3153   uint          _n_workers;       // requested/desired # workers
3154   bool          _result;
3155   CompactibleFreeListSpace*  _cms_space;
3156   char          _pad_front[64];   // padding to ...
3157   HeapWord*     _global_finger;   // ... avoid sharing cache line
3158   char          _pad_back[64];
3159   HeapWord*     _restart_addr;
3160 
3161   //  Exposed here for yielding support
3162   Mutex* const _bit_map_lock;
3163 
3164   // The per thread work queues, available here for stealing
3165   OopTaskQueueSet*  _task_queues;
3166 
3167   // Termination (and yielding) support
3168   CMSConcMarkingTerminator _term;
3169   CMSConcMarkingTerminatorTerminator _term_term;
3170 
3171  public:
3172   CMSConcMarkingTask(CMSCollector* collector,
3173                  CompactibleFreeListSpace* cms_space,
3174                  YieldingFlexibleWorkGang* workers,
3175                  OopTaskQueueSet* task_queues):
3176     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3177     _collector(collector),
3178     _cms_space(cms_space),
3179     _n_workers(0), _result(true),
3180     _task_queues(task_queues),
3181     _term(_n_workers, task_queues, _collector),
3182     _bit_map_lock(collector->bitMapLock())
3183   {
3184     _requested_size = _n_workers;
3185     _term.set_task(this);
3186     _term_term.set_task(this);
3187     _restart_addr = _global_finger = _cms_space->bottom();
3188   }
3189 
3190 
3191   OopTaskQueueSet* task_queues()  { return _task_queues; }
3192 
3193   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3194 
3195   HeapWord** global_finger_addr() { return &_global_finger; }
3196 
3197   CMSConcMarkingTerminator* terminator() { return &_term; }
3198 
3199   virtual void set_for_termination(uint active_workers) {
3200     terminator()->reset_for_reuse(active_workers);
3201   }
3202 
3203   void work(uint worker_id);
3204   bool should_yield() {
3205     return    ConcurrentMarkSweepThread::should_yield()
3206            && !_collector->foregroundGCIsActive();
3207   }
3208 
3209   virtual void coordinator_yield();  // stuff done by coordinator
3210   bool result() { return _result; }
3211 
3212   void reset(HeapWord* ra) {
3213     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3214     _restart_addr = _global_finger = ra;
3215     _term.reset_for_reuse();
3216   }
3217 
3218   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3219                                            OopTaskQueue* work_q);
3220 
3221  private:
3222   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3223   void do_work_steal(int i);
3224   void bump_global_finger(HeapWord* f);
3225 };
3226 
3227 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3228   assert(_task != NULL, "Error");
3229   return _task->yielding();
3230   // Note that we do not need the disjunct || _task->should_yield() above
3231   // because we want terminating threads to yield only if the task
3232   // is already in the midst of yielding, which happens only after at least one
3233   // thread has yielded.
3234 }
3235 
3236 void CMSConcMarkingTerminator::yield() {
3237   if (_task->should_yield()) {
3238     _task->yield();
3239   } else {
3240     ParallelTaskTerminator::yield();
3241   }
3242 }
3243 
3244 ////////////////////////////////////////////////////////////////
3245 // Concurrent Marking Algorithm Sketch
3246 ////////////////////////////////////////////////////////////////
3247 // Until all tasks exhausted (both spaces):
3248 // -- claim next available chunk
3249 // -- bump global finger via CAS
3250 // -- find first object that starts in this chunk
3251 //    and start scanning bitmap from that position
3252 // -- scan marked objects for oops
3253 // -- CAS-mark target, and if successful:
3254 //    . if target oop is above global finger (volatile read)
3255 //      nothing to do
3256 //    . if target oop is in chunk and above local finger
3257 //        then nothing to do
3258 //    . else push on work-queue
3259 // -- Deal with possible overflow issues:
3260 //    . local work-queue overflow causes stuff to be pushed on
3261 //      global (common) overflow queue
3262 //    . always first empty local work queue
3263 //    . then get a batch of oops from global work queue if any
3264 //    . then do work stealing
3265 // -- When all tasks claimed (both spaces)
3266 //    and local work queue empty,
3267 //    then in a loop do:
3268 //    . check global overflow stack; steal a batch of oops and trace
3269 //    . try to steal from other threads oif GOS is empty
3270 //    . if neither is available, offer termination
3271 // -- Terminate and return result
3272 //
3273 void CMSConcMarkingTask::work(uint worker_id) {
3274   elapsedTimer _timer;
3275   ResourceMark rm;
3276   HandleMark hm;
3277 
3278   DEBUG_ONLY(_collector->verify_overflow_empty();)
3279 
3280   // Before we begin work, our work queue should be empty
3281   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3282   // Scan the bitmap covering _cms_space, tracing through grey objects.
3283   _timer.start();
3284   do_scan_and_mark(worker_id, _cms_space);
3285   _timer.stop();
3286   if (PrintCMSStatistics != 0) {
3287     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3288       worker_id, _timer.seconds());
3289       // XXX: need xxx/xxx type of notation, two timers
3290   }
3291 
3292   // ... do work stealing
3293   _timer.reset();
3294   _timer.start();
3295   do_work_steal(worker_id);
3296   _timer.stop();
3297   if (PrintCMSStatistics != 0) {
3298     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3299       worker_id, _timer.seconds());
3300       // XXX: need xxx/xxx type of notation, two timers
3301   }
3302   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3303   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3304   // Note that under the current task protocol, the
3305   // following assertion is true even of the spaces
3306   // expanded since the completion of the concurrent
3307   // marking. XXX This will likely change under a strict
3308   // ABORT semantics.
3309   // After perm removal the comparison was changed to
3310   // greater than or equal to from strictly greater than.
3311   // Before perm removal the highest address sweep would
3312   // have been at the end of perm gen but now is at the
3313   // end of the tenured gen.
3314   assert(_global_finger >=  _cms_space->end(),
3315          "All tasks have been completed");
3316   DEBUG_ONLY(_collector->verify_overflow_empty();)
3317 }
3318 
3319 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3320   HeapWord* read = _global_finger;
3321   HeapWord* cur  = read;
3322   while (f > read) {
3323     cur = read;
3324     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3325     if (cur == read) {
3326       // our cas succeeded
3327       assert(_global_finger >= f, "protocol consistency");
3328       break;
3329     }
3330   }
3331 }
3332 
3333 // This is really inefficient, and should be redone by
3334 // using (not yet available) block-read and -write interfaces to the
3335 // stack and the work_queue. XXX FIX ME !!!
3336 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3337                                                       OopTaskQueue* work_q) {
3338   // Fast lock-free check
3339   if (ovflw_stk->length() == 0) {
3340     return false;
3341   }
3342   assert(work_q->size() == 0, "Shouldn't steal");
3343   MutexLockerEx ml(ovflw_stk->par_lock(),
3344                    Mutex::_no_safepoint_check_flag);
3345   // Grab up to 1/4 the size of the work queue
3346   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3347                     (size_t)ParGCDesiredObjsFromOverflowList);
3348   num = MIN2(num, ovflw_stk->length());
3349   for (int i = (int) num; i > 0; i--) {
3350     oop cur = ovflw_stk->pop();
3351     assert(cur != NULL, "Counted wrong?");
3352     work_q->push(cur);
3353   }
3354   return num > 0;
3355 }
3356 
3357 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3358   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3359   int n_tasks = pst->n_tasks();
3360   // We allow that there may be no tasks to do here because
3361   // we are restarting after a stack overflow.
3362   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3363   uint nth_task = 0;
3364 
3365   HeapWord* aligned_start = sp->bottom();
3366   if (sp->used_region().contains(_restart_addr)) {
3367     // Align down to a card boundary for the start of 0th task
3368     // for this space.
3369     aligned_start =
3370       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3371                                  CardTableModRefBS::card_size);
3372   }
3373 
3374   size_t chunk_size = sp->marking_task_size();
3375   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3376     // Having claimed the nth task in this space,
3377     // compute the chunk that it corresponds to:
3378     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3379                                aligned_start + (nth_task+1)*chunk_size);
3380     // Try and bump the global finger via a CAS;
3381     // note that we need to do the global finger bump
3382     // _before_ taking the intersection below, because
3383     // the task corresponding to that region will be
3384     // deemed done even if the used_region() expands
3385     // because of allocation -- as it almost certainly will
3386     // during start-up while the threads yield in the
3387     // closure below.
3388     HeapWord* finger = span.end();
3389     bump_global_finger(finger);   // atomically
3390     // There are null tasks here corresponding to chunks
3391     // beyond the "top" address of the space.
3392     span = span.intersection(sp->used_region());
3393     if (!span.is_empty()) {  // Non-null task
3394       HeapWord* prev_obj;
3395       assert(!span.contains(_restart_addr) || nth_task == 0,
3396              "Inconsistency");
3397       if (nth_task == 0) {
3398         // For the 0th task, we'll not need to compute a block_start.
3399         if (span.contains(_restart_addr)) {
3400           // In the case of a restart because of stack overflow,
3401           // we might additionally skip a chunk prefix.
3402           prev_obj = _restart_addr;
3403         } else {
3404           prev_obj = span.start();
3405         }
3406       } else {
3407         // We want to skip the first object because
3408         // the protocol is to scan any object in its entirety
3409         // that _starts_ in this span; a fortiori, any
3410         // object starting in an earlier span is scanned
3411         // as part of an earlier claimed task.
3412         // Below we use the "careful" version of block_start
3413         // so we do not try to navigate uninitialized objects.
3414         prev_obj = sp->block_start_careful(span.start());
3415         // Below we use a variant of block_size that uses the
3416         // Printezis bits to avoid waiting for allocated
3417         // objects to become initialized/parsable.
3418         while (prev_obj < span.start()) {
3419           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3420           if (sz > 0) {
3421             prev_obj += sz;
3422           } else {
3423             // In this case we may end up doing a bit of redundant
3424             // scanning, but that appears unavoidable, short of
3425             // locking the free list locks; see bug 6324141.
3426             break;
3427           }
3428         }
3429       }
3430       if (prev_obj < span.end()) {
3431         MemRegion my_span = MemRegion(prev_obj, span.end());
3432         // Do the marking work within a non-empty span --
3433         // the last argument to the constructor indicates whether the
3434         // iteration should be incremental with periodic yields.
3435         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3436                                     &_collector->_markBitMap,
3437                                     work_queue(i),
3438                                     &_collector->_markStack);
3439         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3440       } // else nothing to do for this task
3441     }   // else nothing to do for this task
3442   }
3443   // We'd be tempted to assert here that since there are no
3444   // more tasks left to claim in this space, the global_finger
3445   // must exceed space->top() and a fortiori space->end(). However,
3446   // that would not quite be correct because the bumping of
3447   // global_finger occurs strictly after the claiming of a task,
3448   // so by the time we reach here the global finger may not yet
3449   // have been bumped up by the thread that claimed the last
3450   // task.
3451   pst->all_tasks_completed();
3452 }
3453 
3454 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3455  private:
3456   CMSCollector* _collector;
3457   CMSConcMarkingTask* _task;
3458   MemRegion     _span;
3459   CMSBitMap*    _bit_map;
3460   CMSMarkStack* _overflow_stack;
3461   OopTaskQueue* _work_queue;
3462  protected:
3463   DO_OOP_WORK_DEFN
3464  public:
3465   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3466                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3467     MetadataAwareOopClosure(collector->ref_processor()),
3468     _collector(collector),
3469     _task(task),
3470     _span(collector->_span),
3471     _work_queue(work_queue),
3472     _bit_map(bit_map),
3473     _overflow_stack(overflow_stack)
3474   { }
3475   virtual void do_oop(oop* p);
3476   virtual void do_oop(narrowOop* p);
3477 
3478   void trim_queue(size_t max);
3479   void handle_stack_overflow(HeapWord* lost);
3480   void do_yield_check() {
3481     if (_task->should_yield()) {
3482       _task->yield();
3483     }
3484   }
3485 };
3486 
3487 // Grey object scanning during work stealing phase --
3488 // the salient assumption here is that any references
3489 // that are in these stolen objects being scanned must
3490 // already have been initialized (else they would not have
3491 // been published), so we do not need to check for
3492 // uninitialized objects before pushing here.
3493 void Par_ConcMarkingClosure::do_oop(oop obj) {
3494   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3495   HeapWord* addr = (HeapWord*)obj;
3496   // Check if oop points into the CMS generation
3497   // and is not marked
3498   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3499     // a white object ...
3500     // If we manage to "claim" the object, by being the
3501     // first thread to mark it, then we push it on our
3502     // marking stack
3503     if (_bit_map->par_mark(addr)) {     // ... now grey
3504       // push on work queue (grey set)
3505       bool simulate_overflow = false;
3506       NOT_PRODUCT(
3507         if (CMSMarkStackOverflowALot &&
3508             _collector->simulate_overflow()) {
3509           // simulate a stack overflow
3510           simulate_overflow = true;
3511         }
3512       )
3513       if (simulate_overflow ||
3514           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3515         // stack overflow
3516         if (PrintCMSStatistics != 0) {
3517           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3518                                  SIZE_FORMAT, _overflow_stack->capacity());
3519         }
3520         // We cannot assert that the overflow stack is full because
3521         // it may have been emptied since.
3522         assert(simulate_overflow ||
3523                _work_queue->size() == _work_queue->max_elems(),
3524               "Else push should have succeeded");
3525         handle_stack_overflow(addr);
3526       }
3527     } // Else, some other thread got there first
3528     do_yield_check();
3529   }
3530 }
3531 
3532 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3533 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3534 
3535 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3536   while (_work_queue->size() > max) {
3537     oop new_oop;
3538     if (_work_queue->pop_local(new_oop)) {
3539       assert(new_oop->is_oop(), "Should be an oop");
3540       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3541       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3542       new_oop->oop_iterate(this);  // do_oop() above
3543       do_yield_check();
3544     }
3545   }
3546 }
3547 
3548 // Upon stack overflow, we discard (part of) the stack,
3549 // remembering the least address amongst those discarded
3550 // in CMSCollector's _restart_address.
3551 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3552   // We need to do this under a mutex to prevent other
3553   // workers from interfering with the work done below.
3554   MutexLockerEx ml(_overflow_stack->par_lock(),
3555                    Mutex::_no_safepoint_check_flag);
3556   // Remember the least grey address discarded
3557   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3558   _collector->lower_restart_addr(ra);
3559   _overflow_stack->reset();  // discard stack contents
3560   _overflow_stack->expand(); // expand the stack if possible
3561 }
3562 
3563 
3564 void CMSConcMarkingTask::do_work_steal(int i) {
3565   OopTaskQueue* work_q = work_queue(i);
3566   oop obj_to_scan;
3567   CMSBitMap* bm = &(_collector->_markBitMap);
3568   CMSMarkStack* ovflw = &(_collector->_markStack);
3569   int* seed = _collector->hash_seed(i);
3570   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3571   while (true) {
3572     cl.trim_queue(0);
3573     assert(work_q->size() == 0, "Should have been emptied above");
3574     if (get_work_from_overflow_stack(ovflw, work_q)) {
3575       // Can't assert below because the work obtained from the
3576       // overflow stack may already have been stolen from us.
3577       // assert(work_q->size() > 0, "Work from overflow stack");
3578       continue;
3579     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3580       assert(obj_to_scan->is_oop(), "Should be an oop");
3581       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3582       obj_to_scan->oop_iterate(&cl);
3583     } else if (terminator()->offer_termination(&_term_term)) {
3584       assert(work_q->size() == 0, "Impossible!");
3585       break;
3586     } else if (yielding() || should_yield()) {
3587       yield();
3588     }
3589   }
3590 }
3591 
3592 // This is run by the CMS (coordinator) thread.
3593 void CMSConcMarkingTask::coordinator_yield() {
3594   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3595          "CMS thread should hold CMS token");
3596   // First give up the locks, then yield, then re-lock
3597   // We should probably use a constructor/destructor idiom to
3598   // do this unlock/lock or modify the MutexUnlocker class to
3599   // serve our purpose. XXX
3600   assert_lock_strong(_bit_map_lock);
3601   _bit_map_lock->unlock();
3602   ConcurrentMarkSweepThread::desynchronize(true);
3603   _collector->stopTimer();
3604   if (PrintCMSStatistics != 0) {
3605     _collector->incrementYields();
3606   }
3607 
3608   // It is possible for whichever thread initiated the yield request
3609   // not to get a chance to wake up and take the bitmap lock between
3610   // this thread releasing it and reacquiring it. So, while the
3611   // should_yield() flag is on, let's sleep for a bit to give the
3612   // other thread a chance to wake up. The limit imposed on the number
3613   // of iterations is defensive, to avoid any unforseen circumstances
3614   // putting us into an infinite loop. Since it's always been this
3615   // (coordinator_yield()) method that was observed to cause the
3616   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3617   // which is by default non-zero. For the other seven methods that
3618   // also perform the yield operation, as are using a different
3619   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3620   // can enable the sleeping for those methods too, if necessary.
3621   // See 6442774.
3622   //
3623   // We really need to reconsider the synchronization between the GC
3624   // thread and the yield-requesting threads in the future and we
3625   // should really use wait/notify, which is the recommended
3626   // way of doing this type of interaction. Additionally, we should
3627   // consolidate the eight methods that do the yield operation and they
3628   // are almost identical into one for better maintainability and
3629   // readability. See 6445193.
3630   //
3631   // Tony 2006.06.29
3632   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3633                    ConcurrentMarkSweepThread::should_yield() &&
3634                    !CMSCollector::foregroundGCIsActive(); ++i) {
3635     os::sleep(Thread::current(), 1, false);
3636   }
3637 
3638   ConcurrentMarkSweepThread::synchronize(true);
3639   _bit_map_lock->lock_without_safepoint_check();
3640   _collector->startTimer();
3641 }
3642 
3643 bool CMSCollector::do_marking_mt() {
3644   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3645   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3646                                                                   conc_workers()->active_workers(),
3647                                                                   Threads::number_of_non_daemon_threads());
3648   conc_workers()->set_active_workers(num_workers);
3649 
3650   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3651 
3652   CMSConcMarkingTask tsk(this,
3653                          cms_space,
3654                          conc_workers(),
3655                          task_queues());
3656 
3657   // Since the actual number of workers we get may be different
3658   // from the number we requested above, do we need to do anything different
3659   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3660   // class?? XXX
3661   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3662 
3663   // Refs discovery is already non-atomic.
3664   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3665   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3666   conc_workers()->start_task(&tsk);
3667   while (tsk.yielded()) {
3668     tsk.coordinator_yield();
3669     conc_workers()->continue_task(&tsk);
3670   }
3671   // If the task was aborted, _restart_addr will be non-NULL
3672   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3673   while (_restart_addr != NULL) {
3674     // XXX For now we do not make use of ABORTED state and have not
3675     // yet implemented the right abort semantics (even in the original
3676     // single-threaded CMS case). That needs some more investigation
3677     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3678     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3679     // If _restart_addr is non-NULL, a marking stack overflow
3680     // occurred; we need to do a fresh marking iteration from the
3681     // indicated restart address.
3682     if (_foregroundGCIsActive) {
3683       // We may be running into repeated stack overflows, having
3684       // reached the limit of the stack size, while making very
3685       // slow forward progress. It may be best to bail out and
3686       // let the foreground collector do its job.
3687       // Clear _restart_addr, so that foreground GC
3688       // works from scratch. This avoids the headache of
3689       // a "rescan" which would otherwise be needed because
3690       // of the dirty mod union table & card table.
3691       _restart_addr = NULL;
3692       return false;
3693     }
3694     // Adjust the task to restart from _restart_addr
3695     tsk.reset(_restart_addr);
3696     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3697                   _restart_addr);
3698     _restart_addr = NULL;
3699     // Get the workers going again
3700     conc_workers()->start_task(&tsk);
3701     while (tsk.yielded()) {
3702       tsk.coordinator_yield();
3703       conc_workers()->continue_task(&tsk);
3704     }
3705   }
3706   assert(tsk.completed(), "Inconsistency");
3707   assert(tsk.result() == true, "Inconsistency");
3708   return true;
3709 }
3710 
3711 bool CMSCollector::do_marking_st() {
3712   ResourceMark rm;
3713   HandleMark   hm;
3714 
3715   // Temporarily make refs discovery single threaded (non-MT)
3716   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3717   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3718     &_markStack, CMSYield);
3719   // the last argument to iterate indicates whether the iteration
3720   // should be incremental with periodic yields.
3721   _markBitMap.iterate(&markFromRootsClosure);
3722   // If _restart_addr is non-NULL, a marking stack overflow
3723   // occurred; we need to do a fresh iteration from the
3724   // indicated restart address.
3725   while (_restart_addr != NULL) {
3726     if (_foregroundGCIsActive) {
3727       // We may be running into repeated stack overflows, having
3728       // reached the limit of the stack size, while making very
3729       // slow forward progress. It may be best to bail out and
3730       // let the foreground collector do its job.
3731       // Clear _restart_addr, so that foreground GC
3732       // works from scratch. This avoids the headache of
3733       // a "rescan" which would otherwise be needed because
3734       // of the dirty mod union table & card table.
3735       _restart_addr = NULL;
3736       return false;  // indicating failure to complete marking
3737     }
3738     // Deal with stack overflow:
3739     // we restart marking from _restart_addr
3740     HeapWord* ra = _restart_addr;
3741     markFromRootsClosure.reset(ra);
3742     _restart_addr = NULL;
3743     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3744   }
3745   return true;
3746 }
3747 
3748 void CMSCollector::preclean() {
3749   check_correct_thread_executing();
3750   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3751   verify_work_stacks_empty();
3752   verify_overflow_empty();
3753   _abort_preclean = false;
3754   if (CMSPrecleaningEnabled) {
3755     if (!CMSEdenChunksRecordAlways) {
3756       _eden_chunk_index = 0;
3757     }
3758     size_t used = get_eden_used();
3759     size_t capacity = get_eden_capacity();
3760     // Don't start sampling unless we will get sufficiently
3761     // many samples.
3762     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3763                 * CMSScheduleRemarkEdenPenetration)) {
3764       _start_sampling = true;
3765     } else {
3766       _start_sampling = false;
3767     }
3768     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3769     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3770     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3771   }
3772   CMSTokenSync x(true); // is cms thread
3773   if (CMSPrecleaningEnabled) {
3774     sample_eden();
3775     _collectorState = AbortablePreclean;
3776   } else {
3777     _collectorState = FinalMarking;
3778   }
3779   verify_work_stacks_empty();
3780   verify_overflow_empty();
3781 }
3782 
3783 // Try and schedule the remark such that young gen
3784 // occupancy is CMSScheduleRemarkEdenPenetration %.
3785 void CMSCollector::abortable_preclean() {
3786   check_correct_thread_executing();
3787   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3788   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3789 
3790   // If Eden's current occupancy is below this threshold,
3791   // immediately schedule the remark; else preclean
3792   // past the next scavenge in an effort to
3793   // schedule the pause as described above. By choosing
3794   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3795   // we will never do an actual abortable preclean cycle.
3796   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3797     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3798     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3799     // We need more smarts in the abortable preclean
3800     // loop below to deal with cases where allocation
3801     // in young gen is very very slow, and our precleaning
3802     // is running a losing race against a horde of
3803     // mutators intent on flooding us with CMS updates
3804     // (dirty cards).
3805     // One, admittedly dumb, strategy is to give up
3806     // after a certain number of abortable precleaning loops
3807     // or after a certain maximum time. We want to make
3808     // this smarter in the next iteration.
3809     // XXX FIX ME!!! YSR
3810     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3811     while (!(should_abort_preclean() ||
3812              ConcurrentMarkSweepThread::should_terminate())) {
3813       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3814       cumworkdone += workdone;
3815       loops++;
3816       // Voluntarily terminate abortable preclean phase if we have
3817       // been at it for too long.
3818       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3819           loops >= CMSMaxAbortablePrecleanLoops) {
3820         if (PrintGCDetails) {
3821           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3822         }
3823         break;
3824       }
3825       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3826         if (PrintGCDetails) {
3827           gclog_or_tty->print(" CMS: abort preclean due to time ");
3828         }
3829         break;
3830       }
3831       // If we are doing little work each iteration, we should
3832       // take a short break.
3833       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3834         // Sleep for some time, waiting for work to accumulate
3835         stopTimer();
3836         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3837         startTimer();
3838         waited++;
3839       }
3840     }
3841     if (PrintCMSStatistics > 0) {
3842       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3843                           loops, waited, cumworkdone);
3844     }
3845   }
3846   CMSTokenSync x(true); // is cms thread
3847   if (_collectorState != Idling) {
3848     assert(_collectorState == AbortablePreclean,
3849            "Spontaneous state transition?");
3850     _collectorState = FinalMarking;
3851   } // Else, a foreground collection completed this CMS cycle.
3852   return;
3853 }
3854 
3855 // Respond to an Eden sampling opportunity
3856 void CMSCollector::sample_eden() {
3857   // Make sure a young gc cannot sneak in between our
3858   // reading and recording of a sample.
3859   assert(Thread::current()->is_ConcurrentGC_thread(),
3860          "Only the cms thread may collect Eden samples");
3861   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3862          "Should collect samples while holding CMS token");
3863   if (!_start_sampling) {
3864     return;
3865   }
3866   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3867   // is populated by the young generation.
3868   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3869     if (_eden_chunk_index < _eden_chunk_capacity) {
3870       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3871       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3872              "Unexpected state of Eden");
3873       // We'd like to check that what we just sampled is an oop-start address;
3874       // however, we cannot do that here since the object may not yet have been
3875       // initialized. So we'll instead do the check when we _use_ this sample
3876       // later.
3877       if (_eden_chunk_index == 0 ||
3878           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3879                          _eden_chunk_array[_eden_chunk_index-1])
3880            >= CMSSamplingGrain)) {
3881         _eden_chunk_index++;  // commit sample
3882       }
3883     }
3884   }
3885   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3886     size_t used = get_eden_used();
3887     size_t capacity = get_eden_capacity();
3888     assert(used <= capacity, "Unexpected state of Eden");
3889     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3890       _abort_preclean = true;
3891     }
3892   }
3893 }
3894 
3895 
3896 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3897   assert(_collectorState == Precleaning ||
3898          _collectorState == AbortablePreclean, "incorrect state");
3899   ResourceMark rm;
3900   HandleMark   hm;
3901 
3902   // Precleaning is currently not MT but the reference processor
3903   // may be set for MT.  Disable it temporarily here.
3904   ReferenceProcessor* rp = ref_processor();
3905   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3906 
3907   // Do one pass of scrubbing the discovered reference lists
3908   // to remove any reference objects with strongly-reachable
3909   // referents.
3910   if (clean_refs) {
3911     CMSPrecleanRefsYieldClosure yield_cl(this);
3912     assert(rp->span().equals(_span), "Spans should be equal");
3913     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3914                                    &_markStack, true /* preclean */);
3915     CMSDrainMarkingStackClosure complete_trace(this,
3916                                    _span, &_markBitMap, &_markStack,
3917                                    &keep_alive, true /* preclean */);
3918 
3919     // We don't want this step to interfere with a young
3920     // collection because we don't want to take CPU
3921     // or memory bandwidth away from the young GC threads
3922     // (which may be as many as there are CPUs).
3923     // Note that we don't need to protect ourselves from
3924     // interference with mutators because they can't
3925     // manipulate the discovered reference lists nor affect
3926     // the computed reachability of the referents, the
3927     // only properties manipulated by the precleaning
3928     // of these reference lists.
3929     stopTimer();
3930     CMSTokenSyncWithLocks x(true /* is cms thread */,
3931                             bitMapLock());
3932     startTimer();
3933     sample_eden();
3934 
3935     // The following will yield to allow foreground
3936     // collection to proceed promptly. XXX YSR:
3937     // The code in this method may need further
3938     // tweaking for better performance and some restructuring
3939     // for cleaner interfaces.
3940     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3941     rp->preclean_discovered_references(
3942           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3943           gc_timer, _gc_tracer_cm->gc_id());
3944   }
3945 
3946   if (clean_survivor) {  // preclean the active survivor space(s)
3947     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3948                              &_markBitMap, &_modUnionTable,
3949                              &_markStack, true /* precleaning phase */);
3950     stopTimer();
3951     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3952                              bitMapLock());
3953     startTimer();
3954     unsigned int before_count =
3955       GenCollectedHeap::heap()->total_collections();
3956     SurvivorSpacePrecleanClosure
3957       sss_cl(this, _span, &_markBitMap, &_markStack,
3958              &pam_cl, before_count, CMSYield);
3959     _young_gen->from()->object_iterate_careful(&sss_cl);
3960     _young_gen->to()->object_iterate_careful(&sss_cl);
3961   }
3962   MarkRefsIntoAndScanClosure
3963     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3964              &_markStack, this, CMSYield,
3965              true /* precleaning phase */);
3966   // CAUTION: The following closure has persistent state that may need to
3967   // be reset upon a decrease in the sequence of addresses it
3968   // processes.
3969   ScanMarkedObjectsAgainCarefullyClosure
3970     smoac_cl(this, _span,
3971       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3972 
3973   // Preclean dirty cards in ModUnionTable and CardTable using
3974   // appropriate convergence criterion;
3975   // repeat CMSPrecleanIter times unless we find that
3976   // we are losing.
3977   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3978   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3979          "Bad convergence multiplier");
3980   assert(CMSPrecleanThreshold >= 100,
3981          "Unreasonably low CMSPrecleanThreshold");
3982 
3983   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3984   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3985        numIter < CMSPrecleanIter;
3986        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3987     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3988     if (Verbose && PrintGCDetails) {
3989       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3990     }
3991     // Either there are very few dirty cards, so re-mark
3992     // pause will be small anyway, or our pre-cleaning isn't
3993     // that much faster than the rate at which cards are being
3994     // dirtied, so we might as well stop and re-mark since
3995     // precleaning won't improve our re-mark time by much.
3996     if (curNumCards <= CMSPrecleanThreshold ||
3997         (numIter > 0 &&
3998          (curNumCards * CMSPrecleanDenominator >
3999          lastNumCards * CMSPrecleanNumerator))) {
4000       numIter++;
4001       cumNumCards += curNumCards;
4002       break;
4003     }
4004   }
4005 
4006   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4007 
4008   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4009   cumNumCards += curNumCards;
4010   if (PrintGCDetails && PrintCMSStatistics != 0) {
4011     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4012                   curNumCards, cumNumCards, numIter);
4013   }
4014   return cumNumCards;   // as a measure of useful work done
4015 }
4016 
4017 // PRECLEANING NOTES:
4018 // Precleaning involves:
4019 // . reading the bits of the modUnionTable and clearing the set bits.
4020 // . For the cards corresponding to the set bits, we scan the
4021 //   objects on those cards. This means we need the free_list_lock
4022 //   so that we can safely iterate over the CMS space when scanning
4023 //   for oops.
4024 // . When we scan the objects, we'll be both reading and setting
4025 //   marks in the marking bit map, so we'll need the marking bit map.
4026 // . For protecting _collector_state transitions, we take the CGC_lock.
4027 //   Note that any races in the reading of of card table entries by the
4028 //   CMS thread on the one hand and the clearing of those entries by the
4029 //   VM thread or the setting of those entries by the mutator threads on the
4030 //   other are quite benign. However, for efficiency it makes sense to keep
4031 //   the VM thread from racing with the CMS thread while the latter is
4032 //   dirty card info to the modUnionTable. We therefore also use the
4033 //   CGC_lock to protect the reading of the card table and the mod union
4034 //   table by the CM thread.
4035 // . We run concurrently with mutator updates, so scanning
4036 //   needs to be done carefully  -- we should not try to scan
4037 //   potentially uninitialized objects.
4038 //
4039 // Locking strategy: While holding the CGC_lock, we scan over and
4040 // reset a maximal dirty range of the mod union / card tables, then lock
4041 // the free_list_lock and bitmap lock to do a full marking, then
4042 // release these locks; and repeat the cycle. This allows for a
4043 // certain amount of fairness in the sharing of these locks between
4044 // the CMS collector on the one hand, and the VM thread and the
4045 // mutators on the other.
4046 
4047 // NOTE: preclean_mod_union_table() and preclean_card_table()
4048 // further below are largely identical; if you need to modify
4049 // one of these methods, please check the other method too.
4050 
4051 size_t CMSCollector::preclean_mod_union_table(
4052   ConcurrentMarkSweepGeneration* gen,
4053   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4054   verify_work_stacks_empty();
4055   verify_overflow_empty();
4056 
4057   // strategy: starting with the first card, accumulate contiguous
4058   // ranges of dirty cards; clear these cards, then scan the region
4059   // covered by these cards.
4060 
4061   // Since all of the MUT is committed ahead, we can just use
4062   // that, in case the generations expand while we are precleaning.
4063   // It might also be fine to just use the committed part of the
4064   // generation, but we might potentially miss cards when the
4065   // generation is rapidly expanding while we are in the midst
4066   // of precleaning.
4067   HeapWord* startAddr = gen->reserved().start();
4068   HeapWord* endAddr   = gen->reserved().end();
4069 
4070   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4071 
4072   size_t numDirtyCards, cumNumDirtyCards;
4073   HeapWord *nextAddr, *lastAddr;
4074   for (cumNumDirtyCards = numDirtyCards = 0,
4075        nextAddr = lastAddr = startAddr;
4076        nextAddr < endAddr;
4077        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4078 
4079     ResourceMark rm;
4080     HandleMark   hm;
4081 
4082     MemRegion dirtyRegion;
4083     {
4084       stopTimer();
4085       // Potential yield point
4086       CMSTokenSync ts(true);
4087       startTimer();
4088       sample_eden();
4089       // Get dirty region starting at nextOffset (inclusive),
4090       // simultaneously clearing it.
4091       dirtyRegion =
4092         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4093       assert(dirtyRegion.start() >= nextAddr,
4094              "returned region inconsistent?");
4095     }
4096     // Remember where the next search should begin.
4097     // The returned region (if non-empty) is a right open interval,
4098     // so lastOffset is obtained from the right end of that
4099     // interval.
4100     lastAddr = dirtyRegion.end();
4101     // Should do something more transparent and less hacky XXX
4102     numDirtyCards =
4103       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4104 
4105     // We'll scan the cards in the dirty region (with periodic
4106     // yields for foreground GC as needed).
4107     if (!dirtyRegion.is_empty()) {
4108       assert(numDirtyCards > 0, "consistency check");
4109       HeapWord* stop_point = NULL;
4110       stopTimer();
4111       // Potential yield point
4112       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4113                                bitMapLock());
4114       startTimer();
4115       {
4116         verify_work_stacks_empty();
4117         verify_overflow_empty();
4118         sample_eden();
4119         stop_point =
4120           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4121       }
4122       if (stop_point != NULL) {
4123         // The careful iteration stopped early either because it found an
4124         // uninitialized object, or because we were in the midst of an
4125         // "abortable preclean", which should now be aborted. Redirty
4126         // the bits corresponding to the partially-scanned or unscanned
4127         // cards. We'll either restart at the next block boundary or
4128         // abort the preclean.
4129         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4130                "Should only be AbortablePreclean.");
4131         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4132         if (should_abort_preclean()) {
4133           break; // out of preclean loop
4134         } else {
4135           // Compute the next address at which preclean should pick up;
4136           // might need bitMapLock in order to read P-bits.
4137           lastAddr = next_card_start_after_block(stop_point);
4138         }
4139       }
4140     } else {
4141       assert(lastAddr == endAddr, "consistency check");
4142       assert(numDirtyCards == 0, "consistency check");
4143       break;
4144     }
4145   }
4146   verify_work_stacks_empty();
4147   verify_overflow_empty();
4148   return cumNumDirtyCards;
4149 }
4150 
4151 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4152 // below are largely identical; if you need to modify
4153 // one of these methods, please check the other method too.
4154 
4155 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4156   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4157   // strategy: it's similar to precleamModUnionTable above, in that
4158   // we accumulate contiguous ranges of dirty cards, mark these cards
4159   // precleaned, then scan the region covered by these cards.
4160   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4161   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4162 
4163   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4164 
4165   size_t numDirtyCards, cumNumDirtyCards;
4166   HeapWord *lastAddr, *nextAddr;
4167 
4168   for (cumNumDirtyCards = numDirtyCards = 0,
4169        nextAddr = lastAddr = startAddr;
4170        nextAddr < endAddr;
4171        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4172 
4173     ResourceMark rm;
4174     HandleMark   hm;
4175 
4176     MemRegion dirtyRegion;
4177     {
4178       // See comments in "Precleaning notes" above on why we
4179       // do this locking. XXX Could the locking overheads be
4180       // too high when dirty cards are sparse? [I don't think so.]
4181       stopTimer();
4182       CMSTokenSync x(true); // is cms thread
4183       startTimer();
4184       sample_eden();
4185       // Get and clear dirty region from card table
4186       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4187                                     MemRegion(nextAddr, endAddr),
4188                                     true,
4189                                     CardTableModRefBS::precleaned_card_val());
4190 
4191       assert(dirtyRegion.start() >= nextAddr,
4192              "returned region inconsistent?");
4193     }
4194     lastAddr = dirtyRegion.end();
4195     numDirtyCards =
4196       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4197 
4198     if (!dirtyRegion.is_empty()) {
4199       stopTimer();
4200       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4201       startTimer();
4202       sample_eden();
4203       verify_work_stacks_empty();
4204       verify_overflow_empty();
4205       HeapWord* stop_point =
4206         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4207       if (stop_point != NULL) {
4208         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4209                "Should only be AbortablePreclean.");
4210         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4211         if (should_abort_preclean()) {
4212           break; // out of preclean loop
4213         } else {
4214           // Compute the next address at which preclean should pick up.
4215           lastAddr = next_card_start_after_block(stop_point);
4216         }
4217       }
4218     } else {
4219       break;
4220     }
4221   }
4222   verify_work_stacks_empty();
4223   verify_overflow_empty();
4224   return cumNumDirtyCards;
4225 }
4226 
4227 class PrecleanKlassClosure : public KlassClosure {
4228   KlassToOopClosure _cm_klass_closure;
4229  public:
4230   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4231   void do_klass(Klass* k) {
4232     if (k->has_accumulated_modified_oops()) {
4233       k->clear_accumulated_modified_oops();
4234 
4235       _cm_klass_closure.do_klass(k);
4236     }
4237   }
4238 };
4239 
4240 // The freelist lock is needed to prevent asserts, is it really needed?
4241 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4242 
4243   cl->set_freelistLock(freelistLock);
4244 
4245   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4246 
4247   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4248   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4249   PrecleanKlassClosure preclean_klass_closure(cl);
4250   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4251 
4252   verify_work_stacks_empty();
4253   verify_overflow_empty();
4254 }
4255 
4256 void CMSCollector::checkpointRootsFinal() {
4257   assert(_collectorState == FinalMarking, "incorrect state transition?");
4258   check_correct_thread_executing();
4259   // world is stopped at this checkpoint
4260   assert(SafepointSynchronize::is_at_safepoint(),
4261          "world should be stopped");
4262   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4263 
4264   verify_work_stacks_empty();
4265   verify_overflow_empty();
4266 
4267   if (PrintGCDetails) {
4268     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4269                         _young_gen->used() / K,
4270                         _young_gen->capacity() / K);
4271   }
4272   {
4273     if (CMSScavengeBeforeRemark) {
4274       GenCollectedHeap* gch = GenCollectedHeap::heap();
4275       // Temporarily set flag to false, GCH->do_collection will
4276       // expect it to be false and set to true
4277       FlagSetting fl(gch->_is_gc_active, false);
4278       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4279         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4280       gch->do_collection(true,                      // full (i.e. force, see below)
4281                          false,                     // !clear_all_soft_refs
4282                          0,                         // size
4283                          false,                     // is_tlab
4284                          GenCollectedHeap::YoungGen // type
4285         );
4286     }
4287     FreelistLocker x(this);
4288     MutexLockerEx y(bitMapLock(),
4289                     Mutex::_no_safepoint_check_flag);
4290     checkpointRootsFinalWork();
4291   }
4292   verify_work_stacks_empty();
4293   verify_overflow_empty();
4294 }
4295 
4296 void CMSCollector::checkpointRootsFinalWork() {
4297   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4298 
4299   assert(haveFreelistLocks(), "must have free list locks");
4300   assert_lock_strong(bitMapLock());
4301 
4302   ResourceMark rm;
4303   HandleMark   hm;
4304 
4305   GenCollectedHeap* gch = GenCollectedHeap::heap();
4306 
4307   if (should_unload_classes()) {
4308     CodeCache::gc_prologue();
4309   }
4310   assert(haveFreelistLocks(), "must have free list locks");
4311   assert_lock_strong(bitMapLock());
4312 
4313   // We might assume that we need not fill TLAB's when
4314   // CMSScavengeBeforeRemark is set, because we may have just done
4315   // a scavenge which would have filled all TLAB's -- and besides
4316   // Eden would be empty. This however may not always be the case --
4317   // for instance although we asked for a scavenge, it may not have
4318   // happened because of a JNI critical section. We probably need
4319   // a policy for deciding whether we can in that case wait until
4320   // the critical section releases and then do the remark following
4321   // the scavenge, and skip it here. In the absence of that policy,
4322   // or of an indication of whether the scavenge did indeed occur,
4323   // we cannot rely on TLAB's having been filled and must do
4324   // so here just in case a scavenge did not happen.
4325   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4326   // Update the saved marks which may affect the root scans.
4327   gch->save_marks();
4328 
4329   if (CMSPrintEdenSurvivorChunks) {
4330     print_eden_and_survivor_chunk_arrays();
4331   }
4332 
4333   {
4334     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4335 
4336     // Note on the role of the mod union table:
4337     // Since the marker in "markFromRoots" marks concurrently with
4338     // mutators, it is possible for some reachable objects not to have been
4339     // scanned. For instance, an only reference to an object A was
4340     // placed in object B after the marker scanned B. Unless B is rescanned,
4341     // A would be collected. Such updates to references in marked objects
4342     // are detected via the mod union table which is the set of all cards
4343     // dirtied since the first checkpoint in this GC cycle and prior to
4344     // the most recent young generation GC, minus those cleaned up by the
4345     // concurrent precleaning.
4346     if (CMSParallelRemarkEnabled) {
4347       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4348       do_remark_parallel();
4349     } else {
4350       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4351                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4352       do_remark_non_parallel();
4353     }
4354   }
4355   verify_work_stacks_empty();
4356   verify_overflow_empty();
4357 
4358   {
4359     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4360     refProcessingWork();
4361   }
4362   verify_work_stacks_empty();
4363   verify_overflow_empty();
4364 
4365   if (should_unload_classes()) {
4366     CodeCache::gc_epilogue();
4367   }
4368   JvmtiExport::gc_epilogue();
4369 
4370   // If we encountered any (marking stack / work queue) overflow
4371   // events during the current CMS cycle, take appropriate
4372   // remedial measures, where possible, so as to try and avoid
4373   // recurrence of that condition.
4374   assert(_markStack.isEmpty(), "No grey objects");
4375   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4376                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4377   if (ser_ovflw > 0) {
4378     if (PrintCMSStatistics != 0) {
4379       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4380         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4381         ", kac_preclean=" SIZE_FORMAT ")",
4382         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4383         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4384     }
4385     _markStack.expand();
4386     _ser_pmc_remark_ovflw = 0;
4387     _ser_pmc_preclean_ovflw = 0;
4388     _ser_kac_preclean_ovflw = 0;
4389     _ser_kac_ovflw = 0;
4390   }
4391   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4392     if (PrintCMSStatistics != 0) {
4393       gclog_or_tty->print_cr("Work queue overflow (benign) "
4394         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4395         _par_pmc_remark_ovflw, _par_kac_ovflw);
4396     }
4397     _par_pmc_remark_ovflw = 0;
4398     _par_kac_ovflw = 0;
4399   }
4400   if (PrintCMSStatistics != 0) {
4401      if (_markStack._hit_limit > 0) {
4402        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4403                               _markStack._hit_limit);
4404      }
4405      if (_markStack._failed_double > 0) {
4406        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4407                               " current capacity " SIZE_FORMAT,
4408                               _markStack._failed_double,
4409                               _markStack.capacity());
4410      }
4411   }
4412   _markStack._hit_limit = 0;
4413   _markStack._failed_double = 0;
4414 
4415   if ((VerifyAfterGC || VerifyDuringGC) &&
4416       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4417     verify_after_remark();
4418   }
4419 
4420   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4421 
4422   // Change under the freelistLocks.
4423   _collectorState = Sweeping;
4424   // Call isAllClear() under bitMapLock
4425   assert(_modUnionTable.isAllClear(),
4426       "Should be clear by end of the final marking");
4427   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4428       "Should be clear by end of the final marking");
4429 }
4430 
4431 void CMSParInitialMarkTask::work(uint worker_id) {
4432   elapsedTimer _timer;
4433   ResourceMark rm;
4434   HandleMark   hm;
4435 
4436   // ---------- scan from roots --------------
4437   _timer.start();
4438   GenCollectedHeap* gch = GenCollectedHeap::heap();
4439   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4440 
4441   // ---------- young gen roots --------------
4442   {
4443     work_on_young_gen_roots(worker_id, &par_mri_cl);
4444     _timer.stop();
4445     if (PrintCMSStatistics != 0) {
4446       gclog_or_tty->print_cr(
4447         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4448         worker_id, _timer.seconds());
4449     }
4450   }
4451 
4452   // ---------- remaining roots --------------
4453   _timer.reset();
4454   _timer.start();
4455 
4456   CLDToOopClosure cld_closure(&par_mri_cl, true);
4457 
4458   gch->gen_process_roots(_strong_roots_scope,
4459                          GenCollectedHeap::OldGen,
4460                          false,     // yg was scanned above
4461                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4462                          _collector->should_unload_classes(),
4463                          &par_mri_cl,
4464                          NULL,
4465                          &cld_closure);
4466   assert(_collector->should_unload_classes()
4467          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4468          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4469   _timer.stop();
4470   if (PrintCMSStatistics != 0) {
4471     gclog_or_tty->print_cr(
4472       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4473       worker_id, _timer.seconds());
4474   }
4475 }
4476 
4477 // Parallel remark task
4478 class CMSParRemarkTask: public CMSParMarkTask {
4479   CompactibleFreeListSpace* _cms_space;
4480 
4481   // The per-thread work queues, available here for stealing.
4482   OopTaskQueueSet*       _task_queues;
4483   ParallelTaskTerminator _term;
4484   StrongRootsScope*      _strong_roots_scope;
4485 
4486  public:
4487   // A value of 0 passed to n_workers will cause the number of
4488   // workers to be taken from the active workers in the work gang.
4489   CMSParRemarkTask(CMSCollector* collector,
4490                    CompactibleFreeListSpace* cms_space,
4491                    uint n_workers, WorkGang* workers,
4492                    OopTaskQueueSet* task_queues,
4493                    StrongRootsScope* strong_roots_scope):
4494     CMSParMarkTask("Rescan roots and grey objects in parallel",
4495                    collector, n_workers),
4496     _cms_space(cms_space),
4497     _task_queues(task_queues),
4498     _term(n_workers, task_queues),
4499     _strong_roots_scope(strong_roots_scope) { }
4500 
4501   OopTaskQueueSet* task_queues() { return _task_queues; }
4502 
4503   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4504 
4505   ParallelTaskTerminator* terminator() { return &_term; }
4506   uint n_workers() { return _n_workers; }
4507 
4508   void work(uint worker_id);
4509 
4510  private:
4511   // ... of  dirty cards in old space
4512   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4513                                   Par_MarkRefsIntoAndScanClosure* cl);
4514 
4515   // ... work stealing for the above
4516   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4517 };
4518 
4519 class RemarkKlassClosure : public KlassClosure {
4520   KlassToOopClosure _cm_klass_closure;
4521  public:
4522   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4523   void do_klass(Klass* k) {
4524     // Check if we have modified any oops in the Klass during the concurrent marking.
4525     if (k->has_accumulated_modified_oops()) {
4526       k->clear_accumulated_modified_oops();
4527 
4528       // We could have transfered the current modified marks to the accumulated marks,
4529       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4530     } else if (k->has_modified_oops()) {
4531       // Don't clear anything, this info is needed by the next young collection.
4532     } else {
4533       // No modified oops in the Klass.
4534       return;
4535     }
4536 
4537     // The klass has modified fields, need to scan the klass.
4538     _cm_klass_closure.do_klass(k);
4539   }
4540 };
4541 
4542 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4543   ParNewGeneration* young_gen = _collector->_young_gen;
4544   ContiguousSpace* eden_space = young_gen->eden();
4545   ContiguousSpace* from_space = young_gen->from();
4546   ContiguousSpace* to_space   = young_gen->to();
4547 
4548   HeapWord** eca = _collector->_eden_chunk_array;
4549   size_t     ect = _collector->_eden_chunk_index;
4550   HeapWord** sca = _collector->_survivor_chunk_array;
4551   size_t     sct = _collector->_survivor_chunk_index;
4552 
4553   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4554   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4555 
4556   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4557   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4558   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4559 }
4560 
4561 // work_queue(i) is passed to the closure
4562 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4563 // also is passed to do_dirty_card_rescan_tasks() and to
4564 // do_work_steal() to select the i-th task_queue.
4565 
4566 void CMSParRemarkTask::work(uint worker_id) {
4567   elapsedTimer _timer;
4568   ResourceMark rm;
4569   HandleMark   hm;
4570 
4571   // ---------- rescan from roots --------------
4572   _timer.start();
4573   GenCollectedHeap* gch = GenCollectedHeap::heap();
4574   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4575     _collector->_span, _collector->ref_processor(),
4576     &(_collector->_markBitMap),
4577     work_queue(worker_id));
4578 
4579   // Rescan young gen roots first since these are likely
4580   // coarsely partitioned and may, on that account, constitute
4581   // the critical path; thus, it's best to start off that
4582   // work first.
4583   // ---------- young gen roots --------------
4584   {
4585     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4586     _timer.stop();
4587     if (PrintCMSStatistics != 0) {
4588       gclog_or_tty->print_cr(
4589         "Finished young gen rescan work in %dth thread: %3.3f sec",
4590         worker_id, _timer.seconds());
4591     }
4592   }
4593 
4594   // ---------- remaining roots --------------
4595   _timer.reset();
4596   _timer.start();
4597   gch->gen_process_roots(_strong_roots_scope,
4598                          GenCollectedHeap::OldGen,
4599                          false,     // yg was scanned above
4600                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4601                          _collector->should_unload_classes(),
4602                          &par_mrias_cl,
4603                          NULL,
4604                          NULL);     // The dirty klasses will be handled below
4605 
4606   assert(_collector->should_unload_classes()
4607          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4608          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4609   _timer.stop();
4610   if (PrintCMSStatistics != 0) {
4611     gclog_or_tty->print_cr(
4612       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4613       worker_id, _timer.seconds());
4614   }
4615 
4616   // ---------- unhandled CLD scanning ----------
4617   if (worker_id == 0) { // Single threaded at the moment.
4618     _timer.reset();
4619     _timer.start();
4620 
4621     // Scan all new class loader data objects and new dependencies that were
4622     // introduced during concurrent marking.
4623     ResourceMark rm;
4624     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4625     for (int i = 0; i < array->length(); i++) {
4626       par_mrias_cl.do_class_loader_data(array->at(i));
4627     }
4628 
4629     // We don't need to keep track of new CLDs anymore.
4630     ClassLoaderDataGraph::remember_new_clds(false);
4631 
4632     _timer.stop();
4633     if (PrintCMSStatistics != 0) {
4634       gclog_or_tty->print_cr(
4635           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4636           worker_id, _timer.seconds());
4637     }
4638   }
4639 
4640   // ---------- dirty klass scanning ----------
4641   if (worker_id == 0) { // Single threaded at the moment.
4642     _timer.reset();
4643     _timer.start();
4644 
4645     // Scan all classes that was dirtied during the concurrent marking phase.
4646     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4647     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4648 
4649     _timer.stop();
4650     if (PrintCMSStatistics != 0) {
4651       gclog_or_tty->print_cr(
4652           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4653           worker_id, _timer.seconds());
4654     }
4655   }
4656 
4657   // We might have added oops to ClassLoaderData::_handles during the
4658   // concurrent marking phase. These oops point to newly allocated objects
4659   // that are guaranteed to be kept alive. Either by the direct allocation
4660   // code, or when the young collector processes the roots. Hence,
4661   // we don't have to revisit the _handles block during the remark phase.
4662 
4663   // ---------- rescan dirty cards ------------
4664   _timer.reset();
4665   _timer.start();
4666 
4667   // Do the rescan tasks for each of the two spaces
4668   // (cms_space) in turn.
4669   // "worker_id" is passed to select the task_queue for "worker_id"
4670   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4671   _timer.stop();
4672   if (PrintCMSStatistics != 0) {
4673     gclog_or_tty->print_cr(
4674       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4675       worker_id, _timer.seconds());
4676   }
4677 
4678   // ---------- steal work from other threads ...
4679   // ---------- ... and drain overflow list.
4680   _timer.reset();
4681   _timer.start();
4682   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4683   _timer.stop();
4684   if (PrintCMSStatistics != 0) {
4685     gclog_or_tty->print_cr(
4686       "Finished work stealing in %dth thread: %3.3f sec",
4687       worker_id, _timer.seconds());
4688   }
4689 }
4690 
4691 // Note that parameter "i" is not used.
4692 void
4693 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4694   OopsInGenClosure* cl, ContiguousSpace* space,
4695   HeapWord** chunk_array, size_t chunk_top) {
4696   // Until all tasks completed:
4697   // . claim an unclaimed task
4698   // . compute region boundaries corresponding to task claimed
4699   //   using chunk_array
4700   // . par_oop_iterate(cl) over that region
4701 
4702   ResourceMark rm;
4703   HandleMark   hm;
4704 
4705   SequentialSubTasksDone* pst = space->par_seq_tasks();
4706 
4707   uint nth_task = 0;
4708   uint n_tasks  = pst->n_tasks();
4709 
4710   if (n_tasks > 0) {
4711     assert(pst->valid(), "Uninitialized use?");
4712     HeapWord *start, *end;
4713     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4714       // We claimed task # nth_task; compute its boundaries.
4715       if (chunk_top == 0) {  // no samples were taken
4716         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4717         start = space->bottom();
4718         end   = space->top();
4719       } else if (nth_task == 0) {
4720         start = space->bottom();
4721         end   = chunk_array[nth_task];
4722       } else if (nth_task < (uint)chunk_top) {
4723         assert(nth_task >= 1, "Control point invariant");
4724         start = chunk_array[nth_task - 1];
4725         end   = chunk_array[nth_task];
4726       } else {
4727         assert(nth_task == (uint)chunk_top, "Control point invariant");
4728         start = chunk_array[chunk_top - 1];
4729         end   = space->top();
4730       }
4731       MemRegion mr(start, end);
4732       // Verify that mr is in space
4733       assert(mr.is_empty() || space->used_region().contains(mr),
4734              "Should be in space");
4735       // Verify that "start" is an object boundary
4736       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4737              "Should be an oop");
4738       space->par_oop_iterate(mr, cl);
4739     }
4740     pst->all_tasks_completed();
4741   }
4742 }
4743 
4744 void
4745 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4746   CompactibleFreeListSpace* sp, int i,
4747   Par_MarkRefsIntoAndScanClosure* cl) {
4748   // Until all tasks completed:
4749   // . claim an unclaimed task
4750   // . compute region boundaries corresponding to task claimed
4751   // . transfer dirty bits ct->mut for that region
4752   // . apply rescanclosure to dirty mut bits for that region
4753 
4754   ResourceMark rm;
4755   HandleMark   hm;
4756 
4757   OopTaskQueue* work_q = work_queue(i);
4758   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4759   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4760   // CAUTION: This closure has state that persists across calls to
4761   // the work method dirty_range_iterate_clear() in that it has
4762   // embedded in it a (subtype of) UpwardsObjectClosure. The
4763   // use of that state in the embedded UpwardsObjectClosure instance
4764   // assumes that the cards are always iterated (even if in parallel
4765   // by several threads) in monotonically increasing order per each
4766   // thread. This is true of the implementation below which picks
4767   // card ranges (chunks) in monotonically increasing order globally
4768   // and, a-fortiori, in monotonically increasing order per thread
4769   // (the latter order being a subsequence of the former).
4770   // If the work code below is ever reorganized into a more chaotic
4771   // work-partitioning form than the current "sequential tasks"
4772   // paradigm, the use of that persistent state will have to be
4773   // revisited and modified appropriately. See also related
4774   // bug 4756801 work on which should examine this code to make
4775   // sure that the changes there do not run counter to the
4776   // assumptions made here and necessary for correctness and
4777   // efficiency. Note also that this code might yield inefficient
4778   // behavior in the case of very large objects that span one or
4779   // more work chunks. Such objects would potentially be scanned
4780   // several times redundantly. Work on 4756801 should try and
4781   // address that performance anomaly if at all possible. XXX
4782   MemRegion  full_span  = _collector->_span;
4783   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4784   MarkFromDirtyCardsClosure
4785     greyRescanClosure(_collector, full_span, // entire span of interest
4786                       sp, bm, work_q, cl);
4787 
4788   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4789   assert(pst->valid(), "Uninitialized use?");
4790   uint nth_task = 0;
4791   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4792   MemRegion span = sp->used_region();
4793   HeapWord* start_addr = span.start();
4794   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4795                                            alignment);
4796   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4797   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4798          start_addr, "Check alignment");
4799   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4800          chunk_size, "Check alignment");
4801 
4802   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4803     // Having claimed the nth_task, compute corresponding mem-region,
4804     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4805     // The alignment restriction ensures that we do not need any
4806     // synchronization with other gang-workers while setting or
4807     // clearing bits in thus chunk of the MUT.
4808     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4809                                     start_addr + (nth_task+1)*chunk_size);
4810     // The last chunk's end might be way beyond end of the
4811     // used region. In that case pull back appropriately.
4812     if (this_span.end() > end_addr) {
4813       this_span.set_end(end_addr);
4814       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4815     }
4816     // Iterate over the dirty cards covering this chunk, marking them
4817     // precleaned, and setting the corresponding bits in the mod union
4818     // table. Since we have been careful to partition at Card and MUT-word
4819     // boundaries no synchronization is needed between parallel threads.
4820     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4821                                                  &modUnionClosure);
4822 
4823     // Having transferred these marks into the modUnionTable,
4824     // rescan the marked objects on the dirty cards in the modUnionTable.
4825     // Even if this is at a synchronous collection, the initial marking
4826     // may have been done during an asynchronous collection so there
4827     // may be dirty bits in the mod-union table.
4828     _collector->_modUnionTable.dirty_range_iterate_clear(
4829                   this_span, &greyRescanClosure);
4830     _collector->_modUnionTable.verifyNoOneBitsInRange(
4831                                  this_span.start(),
4832                                  this_span.end());
4833   }
4834   pst->all_tasks_completed();  // declare that i am done
4835 }
4836 
4837 // . see if we can share work_queues with ParNew? XXX
4838 void
4839 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4840                                 int* seed) {
4841   OopTaskQueue* work_q = work_queue(i);
4842   NOT_PRODUCT(int num_steals = 0;)
4843   oop obj_to_scan;
4844   CMSBitMap* bm = &(_collector->_markBitMap);
4845 
4846   while (true) {
4847     // Completely finish any left over work from (an) earlier round(s)
4848     cl->trim_queue(0);
4849     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4850                                          (size_t)ParGCDesiredObjsFromOverflowList);
4851     // Now check if there's any work in the overflow list
4852     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4853     // only affects the number of attempts made to get work from the
4854     // overflow list and does not affect the number of workers.  Just
4855     // pass ParallelGCThreads so this behavior is unchanged.
4856     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4857                                                 work_q,
4858                                                 ParallelGCThreads)) {
4859       // found something in global overflow list;
4860       // not yet ready to go stealing work from others.
4861       // We'd like to assert(work_q->size() != 0, ...)
4862       // because we just took work from the overflow list,
4863       // but of course we can't since all of that could have
4864       // been already stolen from us.
4865       // "He giveth and He taketh away."
4866       continue;
4867     }
4868     // Verify that we have no work before we resort to stealing
4869     assert(work_q->size() == 0, "Have work, shouldn't steal");
4870     // Try to steal from other queues that have work
4871     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4872       NOT_PRODUCT(num_steals++;)
4873       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4874       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4875       // Do scanning work
4876       obj_to_scan->oop_iterate(cl);
4877       // Loop around, finish this work, and try to steal some more
4878     } else if (terminator()->offer_termination()) {
4879         break;  // nirvana from the infinite cycle
4880     }
4881   }
4882   NOT_PRODUCT(
4883     if (PrintCMSStatistics != 0) {
4884       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4885     }
4886   )
4887   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4888          "Else our work is not yet done");
4889 }
4890 
4891 // Record object boundaries in _eden_chunk_array by sampling the eden
4892 // top in the slow-path eden object allocation code path and record
4893 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4894 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4895 // sampling in sample_eden() that activates during the part of the
4896 // preclean phase.
4897 void CMSCollector::sample_eden_chunk() {
4898   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4899     if (_eden_chunk_lock->try_lock()) {
4900       // Record a sample. This is the critical section. The contents
4901       // of the _eden_chunk_array have to be non-decreasing in the
4902       // address order.
4903       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4904       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4905              "Unexpected state of Eden");
4906       if (_eden_chunk_index == 0 ||
4907           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4908            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4909                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4910         _eden_chunk_index++;  // commit sample
4911       }
4912       _eden_chunk_lock->unlock();
4913     }
4914   }
4915 }
4916 
4917 // Return a thread-local PLAB recording array, as appropriate.
4918 void* CMSCollector::get_data_recorder(int thr_num) {
4919   if (_survivor_plab_array != NULL &&
4920       (CMSPLABRecordAlways ||
4921        (_collectorState > Marking && _collectorState < FinalMarking))) {
4922     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4923     ChunkArray* ca = &_survivor_plab_array[thr_num];
4924     ca->reset();   // clear it so that fresh data is recorded
4925     return (void*) ca;
4926   } else {
4927     return NULL;
4928   }
4929 }
4930 
4931 // Reset all the thread-local PLAB recording arrays
4932 void CMSCollector::reset_survivor_plab_arrays() {
4933   for (uint i = 0; i < ParallelGCThreads; i++) {
4934     _survivor_plab_array[i].reset();
4935   }
4936 }
4937 
4938 // Merge the per-thread plab arrays into the global survivor chunk
4939 // array which will provide the partitioning of the survivor space
4940 // for CMS initial scan and rescan.
4941 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4942                                               int no_of_gc_threads) {
4943   assert(_survivor_plab_array  != NULL, "Error");
4944   assert(_survivor_chunk_array != NULL, "Error");
4945   assert(_collectorState == FinalMarking ||
4946          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4947   for (int j = 0; j < no_of_gc_threads; j++) {
4948     _cursor[j] = 0;
4949   }
4950   HeapWord* top = surv->top();
4951   size_t i;
4952   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4953     HeapWord* min_val = top;          // Higher than any PLAB address
4954     uint      min_tid = 0;            // position of min_val this round
4955     for (int j = 0; j < no_of_gc_threads; j++) {
4956       ChunkArray* cur_sca = &_survivor_plab_array[j];
4957       if (_cursor[j] == cur_sca->end()) {
4958         continue;
4959       }
4960       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4961       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4962       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4963       if (cur_val < min_val) {
4964         min_tid = j;
4965         min_val = cur_val;
4966       } else {
4967         assert(cur_val < top, "All recorded addresses should be less");
4968       }
4969     }
4970     // At this point min_val and min_tid are respectively
4971     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4972     // and the thread (j) that witnesses that address.
4973     // We record this address in the _survivor_chunk_array[i]
4974     // and increment _cursor[min_tid] prior to the next round i.
4975     if (min_val == top) {
4976       break;
4977     }
4978     _survivor_chunk_array[i] = min_val;
4979     _cursor[min_tid]++;
4980   }
4981   // We are all done; record the size of the _survivor_chunk_array
4982   _survivor_chunk_index = i; // exclusive: [0, i)
4983   if (PrintCMSStatistics > 0) {
4984     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4985   }
4986   // Verify that we used up all the recorded entries
4987   #ifdef ASSERT
4988     size_t total = 0;
4989     for (int j = 0; j < no_of_gc_threads; j++) {
4990       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4991       total += _cursor[j];
4992     }
4993     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4994     // Check that the merged array is in sorted order
4995     if (total > 0) {
4996       for (size_t i = 0; i < total - 1; i++) {
4997         if (PrintCMSStatistics > 0) {
4998           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4999                               i, p2i(_survivor_chunk_array[i]));
5000         }
5001         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5002                "Not sorted");
5003       }
5004     }
5005   #endif // ASSERT
5006 }
5007 
5008 // Set up the space's par_seq_tasks structure for work claiming
5009 // for parallel initial scan and rescan of young gen.
5010 // See ParRescanTask where this is currently used.
5011 void
5012 CMSCollector::
5013 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5014   assert(n_threads > 0, "Unexpected n_threads argument");
5015 
5016   // Eden space
5017   if (!_young_gen->eden()->is_empty()) {
5018     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5019     assert(!pst->valid(), "Clobbering existing data?");
5020     // Each valid entry in [0, _eden_chunk_index) represents a task.
5021     size_t n_tasks = _eden_chunk_index + 1;
5022     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5023     // Sets the condition for completion of the subtask (how many threads
5024     // need to finish in order to be done).
5025     pst->set_n_threads(n_threads);
5026     pst->set_n_tasks((int)n_tasks);
5027   }
5028 
5029   // Merge the survivor plab arrays into _survivor_chunk_array
5030   if (_survivor_plab_array != NULL) {
5031     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5032   } else {
5033     assert(_survivor_chunk_index == 0, "Error");
5034   }
5035 
5036   // To space
5037   {
5038     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5039     assert(!pst->valid(), "Clobbering existing data?");
5040     // Sets the condition for completion of the subtask (how many threads
5041     // need to finish in order to be done).
5042     pst->set_n_threads(n_threads);
5043     pst->set_n_tasks(1);
5044     assert(pst->valid(), "Error");
5045   }
5046 
5047   // From space
5048   {
5049     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5050     assert(!pst->valid(), "Clobbering existing data?");
5051     size_t n_tasks = _survivor_chunk_index + 1;
5052     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5053     // Sets the condition for completion of the subtask (how many threads
5054     // need to finish in order to be done).
5055     pst->set_n_threads(n_threads);
5056     pst->set_n_tasks((int)n_tasks);
5057     assert(pst->valid(), "Error");
5058   }
5059 }
5060 
5061 // Parallel version of remark
5062 void CMSCollector::do_remark_parallel() {
5063   GenCollectedHeap* gch = GenCollectedHeap::heap();
5064   WorkGang* workers = gch->workers();
5065   assert(workers != NULL, "Need parallel worker threads.");
5066   // Choose to use the number of GC workers most recently set
5067   // into "active_workers".
5068   uint n_workers = workers->active_workers();
5069 
5070   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5071 
5072   StrongRootsScope srs(n_workers);
5073 
5074   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5075 
5076   // We won't be iterating over the cards in the card table updating
5077   // the younger_gen cards, so we shouldn't call the following else
5078   // the verification code as well as subsequent younger_refs_iterate
5079   // code would get confused. XXX
5080   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5081 
5082   // The young gen rescan work will not be done as part of
5083   // process_roots (which currently doesn't know how to
5084   // parallelize such a scan), but rather will be broken up into
5085   // a set of parallel tasks (via the sampling that the [abortable]
5086   // preclean phase did of eden, plus the [two] tasks of
5087   // scanning the [two] survivor spaces. Further fine-grain
5088   // parallelization of the scanning of the survivor spaces
5089   // themselves, and of precleaning of the younger gen itself
5090   // is deferred to the future.
5091   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5092 
5093   // The dirty card rescan work is broken up into a "sequence"
5094   // of parallel tasks (per constituent space) that are dynamically
5095   // claimed by the parallel threads.
5096   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5097 
5098   // It turns out that even when we're using 1 thread, doing the work in a
5099   // separate thread causes wide variance in run times.  We can't help this
5100   // in the multi-threaded case, but we special-case n=1 here to get
5101   // repeatable measurements of the 1-thread overhead of the parallel code.
5102   if (n_workers > 1) {
5103     // Make refs discovery MT-safe, if it isn't already: it may not
5104     // necessarily be so, since it's possible that we are doing
5105     // ST marking.
5106     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5107     workers->run_task(&tsk);
5108   } else {
5109     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5110     tsk.work(0);
5111   }
5112 
5113   // restore, single-threaded for now, any preserved marks
5114   // as a result of work_q overflow
5115   restore_preserved_marks_if_any();
5116 }
5117 
5118 // Non-parallel version of remark
5119 void CMSCollector::do_remark_non_parallel() {
5120   ResourceMark rm;
5121   HandleMark   hm;
5122   GenCollectedHeap* gch = GenCollectedHeap::heap();
5123   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5124 
5125   MarkRefsIntoAndScanClosure
5126     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5127              &_markStack, this,
5128              false /* should_yield */, false /* not precleaning */);
5129   MarkFromDirtyCardsClosure
5130     markFromDirtyCardsClosure(this, _span,
5131                               NULL,  // space is set further below
5132                               &_markBitMap, &_markStack, &mrias_cl);
5133   {
5134     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5135     // Iterate over the dirty cards, setting the corresponding bits in the
5136     // mod union table.
5137     {
5138       ModUnionClosure modUnionClosure(&_modUnionTable);
5139       _ct->ct_bs()->dirty_card_iterate(
5140                       _cmsGen->used_region(),
5141                       &modUnionClosure);
5142     }
5143     // Having transferred these marks into the modUnionTable, we just need
5144     // to rescan the marked objects on the dirty cards in the modUnionTable.
5145     // The initial marking may have been done during an asynchronous
5146     // collection so there may be dirty bits in the mod-union table.
5147     const int alignment =
5148       CardTableModRefBS::card_size * BitsPerWord;
5149     {
5150       // ... First handle dirty cards in CMS gen
5151       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5152       MemRegion ur = _cmsGen->used_region();
5153       HeapWord* lb = ur.start();
5154       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5155       MemRegion cms_span(lb, ub);
5156       _modUnionTable.dirty_range_iterate_clear(cms_span,
5157                                                &markFromDirtyCardsClosure);
5158       verify_work_stacks_empty();
5159       if (PrintCMSStatistics != 0) {
5160         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5161           markFromDirtyCardsClosure.num_dirty_cards());
5162       }
5163     }
5164   }
5165   if (VerifyDuringGC &&
5166       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5167     HandleMark hm;  // Discard invalid handles created during verification
5168     Universe::verify();
5169   }
5170   {
5171     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5172 
5173     verify_work_stacks_empty();
5174 
5175     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5176     StrongRootsScope srs(1);
5177 
5178     gch->gen_process_roots(&srs,
5179                            GenCollectedHeap::OldGen,
5180                            true,  // younger gens as roots
5181                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5182                            should_unload_classes(),
5183                            &mrias_cl,
5184                            NULL,
5185                            NULL); // The dirty klasses will be handled below
5186 
5187     assert(should_unload_classes()
5188            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5189            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5190   }
5191 
5192   {
5193     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5194 
5195     verify_work_stacks_empty();
5196 
5197     // Scan all class loader data objects that might have been introduced
5198     // during concurrent marking.
5199     ResourceMark rm;
5200     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5201     for (int i = 0; i < array->length(); i++) {
5202       mrias_cl.do_class_loader_data(array->at(i));
5203     }
5204 
5205     // We don't need to keep track of new CLDs anymore.
5206     ClassLoaderDataGraph::remember_new_clds(false);
5207 
5208     verify_work_stacks_empty();
5209   }
5210 
5211   {
5212     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5213 
5214     verify_work_stacks_empty();
5215 
5216     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5217     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5218 
5219     verify_work_stacks_empty();
5220   }
5221 
5222   // We might have added oops to ClassLoaderData::_handles during the
5223   // concurrent marking phase. These oops point to newly allocated objects
5224   // that are guaranteed to be kept alive. Either by the direct allocation
5225   // code, or when the young collector processes the roots. Hence,
5226   // we don't have to revisit the _handles block during the remark phase.
5227 
5228   verify_work_stacks_empty();
5229   // Restore evacuated mark words, if any, used for overflow list links
5230   if (!CMSOverflowEarlyRestoration) {
5231     restore_preserved_marks_if_any();
5232   }
5233   verify_overflow_empty();
5234 }
5235 
5236 ////////////////////////////////////////////////////////
5237 // Parallel Reference Processing Task Proxy Class
5238 ////////////////////////////////////////////////////////
5239 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5240   OopTaskQueueSet*       _queues;
5241   ParallelTaskTerminator _terminator;
5242  public:
5243   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5244     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5245   ParallelTaskTerminator* terminator() { return &_terminator; }
5246   OopTaskQueueSet* queues() { return _queues; }
5247 };
5248 
5249 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5250   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5251   CMSCollector*          _collector;
5252   CMSBitMap*             _mark_bit_map;
5253   const MemRegion        _span;
5254   ProcessTask&           _task;
5255 
5256 public:
5257   CMSRefProcTaskProxy(ProcessTask&     task,
5258                       CMSCollector*    collector,
5259                       const MemRegion& span,
5260                       CMSBitMap*       mark_bit_map,
5261                       AbstractWorkGang* workers,
5262                       OopTaskQueueSet* task_queues):
5263     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5264       task_queues,
5265       workers->active_workers()),
5266     _task(task),
5267     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5268   {
5269     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5270            "Inconsistency in _span");
5271   }
5272 
5273   OopTaskQueueSet* task_queues() { return queues(); }
5274 
5275   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5276 
5277   void do_work_steal(int i,
5278                      CMSParDrainMarkingStackClosure* drain,
5279                      CMSParKeepAliveClosure* keep_alive,
5280                      int* seed);
5281 
5282   virtual void work(uint worker_id);
5283 };
5284 
5285 void CMSRefProcTaskProxy::work(uint worker_id) {
5286   ResourceMark rm;
5287   HandleMark hm;
5288   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5289   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5290                                         _mark_bit_map,
5291                                         work_queue(worker_id));
5292   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5293                                                  _mark_bit_map,
5294                                                  work_queue(worker_id));
5295   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5296   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5297   if (_task.marks_oops_alive()) {
5298     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5299                   _collector->hash_seed(worker_id));
5300   }
5301   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5302   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5303 }
5304 
5305 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5306   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5307   EnqueueTask& _task;
5308 
5309 public:
5310   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5311     : AbstractGangTask("Enqueue reference objects in parallel"),
5312       _task(task)
5313   { }
5314 
5315   virtual void work(uint worker_id)
5316   {
5317     _task.work(worker_id);
5318   }
5319 };
5320 
5321 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5322   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5323    _span(span),
5324    _bit_map(bit_map),
5325    _work_queue(work_queue),
5326    _mark_and_push(collector, span, bit_map, work_queue),
5327    _low_water_mark(MIN2((work_queue->max_elems()/4),
5328                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5329 { }
5330 
5331 // . see if we can share work_queues with ParNew? XXX
5332 void CMSRefProcTaskProxy::do_work_steal(int i,
5333   CMSParDrainMarkingStackClosure* drain,
5334   CMSParKeepAliveClosure* keep_alive,
5335   int* seed) {
5336   OopTaskQueue* work_q = work_queue(i);
5337   NOT_PRODUCT(int num_steals = 0;)
5338   oop obj_to_scan;
5339 
5340   while (true) {
5341     // Completely finish any left over work from (an) earlier round(s)
5342     drain->trim_queue(0);
5343     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5344                                          (size_t)ParGCDesiredObjsFromOverflowList);
5345     // Now check if there's any work in the overflow list
5346     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5347     // only affects the number of attempts made to get work from the
5348     // overflow list and does not affect the number of workers.  Just
5349     // pass ParallelGCThreads so this behavior is unchanged.
5350     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5351                                                 work_q,
5352                                                 ParallelGCThreads)) {
5353       // Found something in global overflow list;
5354       // not yet ready to go stealing work from others.
5355       // We'd like to assert(work_q->size() != 0, ...)
5356       // because we just took work from the overflow list,
5357       // but of course we can't, since all of that might have
5358       // been already stolen from us.
5359       continue;
5360     }
5361     // Verify that we have no work before we resort to stealing
5362     assert(work_q->size() == 0, "Have work, shouldn't steal");
5363     // Try to steal from other queues that have work
5364     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5365       NOT_PRODUCT(num_steals++;)
5366       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5367       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5368       // Do scanning work
5369       obj_to_scan->oop_iterate(keep_alive);
5370       // Loop around, finish this work, and try to steal some more
5371     } else if (terminator()->offer_termination()) {
5372       break;  // nirvana from the infinite cycle
5373     }
5374   }
5375   NOT_PRODUCT(
5376     if (PrintCMSStatistics != 0) {
5377       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5378     }
5379   )
5380 }
5381 
5382 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5383 {
5384   GenCollectedHeap* gch = GenCollectedHeap::heap();
5385   WorkGang* workers = gch->workers();
5386   assert(workers != NULL, "Need parallel worker threads.");
5387   CMSRefProcTaskProxy rp_task(task, &_collector,
5388                               _collector.ref_processor()->span(),
5389                               _collector.markBitMap(),
5390                               workers, _collector.task_queues());
5391   workers->run_task(&rp_task);
5392 }
5393 
5394 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5395 {
5396 
5397   GenCollectedHeap* gch = GenCollectedHeap::heap();
5398   WorkGang* workers = gch->workers();
5399   assert(workers != NULL, "Need parallel worker threads.");
5400   CMSRefEnqueueTaskProxy enq_task(task);
5401   workers->run_task(&enq_task);
5402 }
5403 
5404 void CMSCollector::refProcessingWork() {
5405   ResourceMark rm;
5406   HandleMark   hm;
5407 
5408   ReferenceProcessor* rp = ref_processor();
5409   assert(rp->span().equals(_span), "Spans should be equal");
5410   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5411   // Process weak references.
5412   rp->setup_policy(false);
5413   verify_work_stacks_empty();
5414 
5415   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5416                                           &_markStack, false /* !preclean */);
5417   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5418                                 _span, &_markBitMap, &_markStack,
5419                                 &cmsKeepAliveClosure, false /* !preclean */);
5420   {
5421     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5422 
5423     ReferenceProcessorStats stats;
5424     if (rp->processing_is_mt()) {
5425       // Set the degree of MT here.  If the discovery is done MT, there
5426       // may have been a different number of threads doing the discovery
5427       // and a different number of discovered lists may have Ref objects.
5428       // That is OK as long as the Reference lists are balanced (see
5429       // balance_all_queues() and balance_queues()).
5430       GenCollectedHeap* gch = GenCollectedHeap::heap();
5431       uint active_workers = ParallelGCThreads;
5432       WorkGang* workers = gch->workers();
5433       if (workers != NULL) {
5434         active_workers = workers->active_workers();
5435         // The expectation is that active_workers will have already
5436         // been set to a reasonable value.  If it has not been set,
5437         // investigate.
5438         assert(active_workers > 0, "Should have been set during scavenge");
5439       }
5440       rp->set_active_mt_degree(active_workers);
5441       CMSRefProcTaskExecutor task_executor(*this);
5442       stats = rp->process_discovered_references(&_is_alive_closure,
5443                                         &cmsKeepAliveClosure,
5444                                         &cmsDrainMarkingStackClosure,
5445                                         &task_executor,
5446                                         _gc_timer_cm,
5447                                         _gc_tracer_cm->gc_id());
5448     } else {
5449       stats = rp->process_discovered_references(&_is_alive_closure,
5450                                         &cmsKeepAliveClosure,
5451                                         &cmsDrainMarkingStackClosure,
5452                                         NULL,
5453                                         _gc_timer_cm,
5454                                         _gc_tracer_cm->gc_id());
5455     }
5456     _gc_tracer_cm->report_gc_reference_stats(stats);
5457 
5458   }
5459 
5460   // This is the point where the entire marking should have completed.
5461   verify_work_stacks_empty();
5462 
5463   if (should_unload_classes()) {
5464     {
5465       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5466 
5467       // Unload classes and purge the SystemDictionary.
5468       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5469 
5470       // Unload nmethods.
5471       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5472 
5473       // Prune dead klasses from subklass/sibling/implementor lists.
5474       Klass::clean_weak_klass_links(&_is_alive_closure);
5475     }
5476 
5477     {
5478       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5479       // Clean up unreferenced symbols in symbol table.
5480       SymbolTable::unlink();
5481     }
5482 
5483     {
5484       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5485       // Delete entries for dead interned strings.
5486       StringTable::unlink(&_is_alive_closure);
5487     }
5488   }
5489 
5490 
5491   // Restore any preserved marks as a result of mark stack or
5492   // work queue overflow
5493   restore_preserved_marks_if_any();  // done single-threaded for now
5494 
5495   rp->set_enqueuing_is_done(true);
5496   if (rp->processing_is_mt()) {
5497     rp->balance_all_queues();
5498     CMSRefProcTaskExecutor task_executor(*this);
5499     rp->enqueue_discovered_references(&task_executor);
5500   } else {
5501     rp->enqueue_discovered_references(NULL);
5502   }
5503   rp->verify_no_references_recorded();
5504   assert(!rp->discovery_enabled(), "should have been disabled");
5505 }
5506 
5507 #ifndef PRODUCT
5508 void CMSCollector::check_correct_thread_executing() {
5509   Thread* t = Thread::current();
5510   // Only the VM thread or the CMS thread should be here.
5511   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5512          "Unexpected thread type");
5513   // If this is the vm thread, the foreground process
5514   // should not be waiting.  Note that _foregroundGCIsActive is
5515   // true while the foreground collector is waiting.
5516   if (_foregroundGCShouldWait) {
5517     // We cannot be the VM thread
5518     assert(t->is_ConcurrentGC_thread(),
5519            "Should be CMS thread");
5520   } else {
5521     // We can be the CMS thread only if we are in a stop-world
5522     // phase of CMS collection.
5523     if (t->is_ConcurrentGC_thread()) {
5524       assert(_collectorState == InitialMarking ||
5525              _collectorState == FinalMarking,
5526              "Should be a stop-world phase");
5527       // The CMS thread should be holding the CMS_token.
5528       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5529              "Potential interference with concurrently "
5530              "executing VM thread");
5531     }
5532   }
5533 }
5534 #endif
5535 
5536 void CMSCollector::sweep() {
5537   assert(_collectorState == Sweeping, "just checking");
5538   check_correct_thread_executing();
5539   verify_work_stacks_empty();
5540   verify_overflow_empty();
5541   increment_sweep_count();
5542   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5543 
5544   _inter_sweep_timer.stop();
5545   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5546 
5547   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5548   _intra_sweep_timer.reset();
5549   _intra_sweep_timer.start();
5550   {
5551     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5552     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5553     // First sweep the old gen
5554     {
5555       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5556                                bitMapLock());
5557       sweepWork(_cmsGen);
5558     }
5559 
5560     // Update Universe::_heap_*_at_gc figures.
5561     // We need all the free list locks to make the abstract state
5562     // transition from Sweeping to Resetting. See detailed note
5563     // further below.
5564     {
5565       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5566       // Update heap occupancy information which is used as
5567       // input to soft ref clearing policy at the next gc.
5568       Universe::update_heap_info_at_gc();
5569       _collectorState = Resizing;
5570     }
5571   }
5572   verify_work_stacks_empty();
5573   verify_overflow_empty();
5574 
5575   if (should_unload_classes()) {
5576     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5577     // requires that the virtual spaces are stable and not deleted.
5578     ClassLoaderDataGraph::set_should_purge(true);
5579   }
5580 
5581   _intra_sweep_timer.stop();
5582   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5583 
5584   _inter_sweep_timer.reset();
5585   _inter_sweep_timer.start();
5586 
5587   // We need to use a monotonically non-decreasing time in ms
5588   // or we will see time-warp warnings and os::javaTimeMillis()
5589   // does not guarantee monotonicity.
5590   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5591   update_time_of_last_gc(now);
5592 
5593   // NOTE on abstract state transitions:
5594   // Mutators allocate-live and/or mark the mod-union table dirty
5595   // based on the state of the collection.  The former is done in
5596   // the interval [Marking, Sweeping] and the latter in the interval
5597   // [Marking, Sweeping).  Thus the transitions into the Marking state
5598   // and out of the Sweeping state must be synchronously visible
5599   // globally to the mutators.
5600   // The transition into the Marking state happens with the world
5601   // stopped so the mutators will globally see it.  Sweeping is
5602   // done asynchronously by the background collector so the transition
5603   // from the Sweeping state to the Resizing state must be done
5604   // under the freelistLock (as is the check for whether to
5605   // allocate-live and whether to dirty the mod-union table).
5606   assert(_collectorState == Resizing, "Change of collector state to"
5607     " Resizing must be done under the freelistLocks (plural)");
5608 
5609   // Now that sweeping has been completed, we clear
5610   // the incremental_collection_failed flag,
5611   // thus inviting a younger gen collection to promote into
5612   // this generation. If such a promotion may still fail,
5613   // the flag will be set again when a young collection is
5614   // attempted.
5615   GenCollectedHeap* gch = GenCollectedHeap::heap();
5616   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5617   gch->update_full_collections_completed(_collection_count_start);
5618 }
5619 
5620 // FIX ME!!! Looks like this belongs in CFLSpace, with
5621 // CMSGen merely delegating to it.
5622 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5623   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5624   HeapWord*  minAddr        = _cmsSpace->bottom();
5625   HeapWord*  largestAddr    =
5626     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5627   if (largestAddr == NULL) {
5628     // The dictionary appears to be empty.  In this case
5629     // try to coalesce at the end of the heap.
5630     largestAddr = _cmsSpace->end();
5631   }
5632   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5633   size_t nearLargestOffset =
5634     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5635   if (PrintFLSStatistics != 0) {
5636     gclog_or_tty->print_cr(
5637       "CMS: Large Block: " PTR_FORMAT ";"
5638       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5639       p2i(largestAddr),
5640       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5641   }
5642   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5643 }
5644 
5645 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5646   return addr >= _cmsSpace->nearLargestChunk();
5647 }
5648 
5649 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5650   return _cmsSpace->find_chunk_at_end();
5651 }
5652 
5653 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5654                                                     bool full) {
5655   // If the young generation has been collected, gather any statistics
5656   // that are of interest at this point.
5657   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5658   if (!full && current_is_young) {
5659     // Gather statistics on the young generation collection.
5660     collector()->stats().record_gc0_end(used());
5661   }
5662 }
5663 
5664 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5665   // We iterate over the space(s) underlying this generation,
5666   // checking the mark bit map to see if the bits corresponding
5667   // to specific blocks are marked or not. Blocks that are
5668   // marked are live and are not swept up. All remaining blocks
5669   // are swept up, with coalescing on-the-fly as we sweep up
5670   // contiguous free and/or garbage blocks:
5671   // We need to ensure that the sweeper synchronizes with allocators
5672   // and stop-the-world collectors. In particular, the following
5673   // locks are used:
5674   // . CMS token: if this is held, a stop the world collection cannot occur
5675   // . freelistLock: if this is held no allocation can occur from this
5676   //                 generation by another thread
5677   // . bitMapLock: if this is held, no other thread can access or update
5678   //
5679 
5680   // Note that we need to hold the freelistLock if we use
5681   // block iterate below; else the iterator might go awry if
5682   // a mutator (or promotion) causes block contents to change
5683   // (for instance if the allocator divvies up a block).
5684   // If we hold the free list lock, for all practical purposes
5685   // young generation GC's can't occur (they'll usually need to
5686   // promote), so we might as well prevent all young generation
5687   // GC's while we do a sweeping step. For the same reason, we might
5688   // as well take the bit map lock for the entire duration
5689 
5690   // check that we hold the requisite locks
5691   assert(have_cms_token(), "Should hold cms token");
5692   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5693   assert_lock_strong(gen->freelistLock());
5694   assert_lock_strong(bitMapLock());
5695 
5696   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5697   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5698   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5699                                       _inter_sweep_estimate.padded_average(),
5700                                       _intra_sweep_estimate.padded_average());
5701   gen->setNearLargestChunk();
5702 
5703   {
5704     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5705     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5706     // We need to free-up/coalesce garbage/blocks from a
5707     // co-terminal free run. This is done in the SweepClosure
5708     // destructor; so, do not remove this scope, else the
5709     // end-of-sweep-census below will be off by a little bit.
5710   }
5711   gen->cmsSpace()->sweep_completed();
5712   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5713   if (should_unload_classes()) {                // unloaded classes this cycle,
5714     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5715   } else {                                      // did not unload classes,
5716     _concurrent_cycles_since_last_unload++;     // ... increment count
5717   }
5718 }
5719 
5720 // Reset CMS data structures (for now just the marking bit map)
5721 // preparatory for the next cycle.
5722 void CMSCollector::reset(bool concurrent) {
5723   if (concurrent) {
5724     CMSTokenSyncWithLocks ts(true, bitMapLock());
5725 
5726     // If the state is not "Resetting", the foreground  thread
5727     // has done a collection and the resetting.
5728     if (_collectorState != Resetting) {
5729       assert(_collectorState == Idling, "The state should only change"
5730         " because the foreground collector has finished the collection");
5731       return;
5732     }
5733 
5734     // Clear the mark bitmap (no grey objects to start with)
5735     // for the next cycle.
5736     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5737     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5738 
5739     HeapWord* curAddr = _markBitMap.startWord();
5740     while (curAddr < _markBitMap.endWord()) {
5741       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5742       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5743       _markBitMap.clear_large_range(chunk);
5744       if (ConcurrentMarkSweepThread::should_yield() &&
5745           !foregroundGCIsActive() &&
5746           CMSYield) {
5747         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5748                "CMS thread should hold CMS token");
5749         assert_lock_strong(bitMapLock());
5750         bitMapLock()->unlock();
5751         ConcurrentMarkSweepThread::desynchronize(true);
5752         stopTimer();
5753         if (PrintCMSStatistics != 0) {
5754           incrementYields();
5755         }
5756 
5757         // See the comment in coordinator_yield()
5758         for (unsigned i = 0; i < CMSYieldSleepCount &&
5759                          ConcurrentMarkSweepThread::should_yield() &&
5760                          !CMSCollector::foregroundGCIsActive(); ++i) {
5761           os::sleep(Thread::current(), 1, false);
5762         }
5763 
5764         ConcurrentMarkSweepThread::synchronize(true);
5765         bitMapLock()->lock_without_safepoint_check();
5766         startTimer();
5767       }
5768       curAddr = chunk.end();
5769     }
5770     // A successful mostly concurrent collection has been done.
5771     // Because only the full (i.e., concurrent mode failure) collections
5772     // are being measured for gc overhead limits, clean the "near" flag
5773     // and count.
5774     size_policy()->reset_gc_overhead_limit_count();
5775     _collectorState = Idling;
5776   } else {
5777     // already have the lock
5778     assert(_collectorState == Resetting, "just checking");
5779     assert_lock_strong(bitMapLock());
5780     _markBitMap.clear_all();
5781     _collectorState = Idling;
5782   }
5783 
5784   register_gc_end();
5785 }
5786 
5787 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5788   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5789   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5790   TraceCollectorStats tcs(counters());
5791 
5792   switch (op) {
5793     case CMS_op_checkpointRootsInitial: {
5794       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5795       checkpointRootsInitial();
5796       if (PrintGC) {
5797         _cmsGen->printOccupancy("initial-mark");
5798       }
5799       break;
5800     }
5801     case CMS_op_checkpointRootsFinal: {
5802       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5803       checkpointRootsFinal();
5804       if (PrintGC) {
5805         _cmsGen->printOccupancy("remark");
5806       }
5807       break;
5808     }
5809     default:
5810       fatal("No such CMS_op");
5811   }
5812 }
5813 
5814 #ifndef PRODUCT
5815 size_t const CMSCollector::skip_header_HeapWords() {
5816   return FreeChunk::header_size();
5817 }
5818 
5819 // Try and collect here conditions that should hold when
5820 // CMS thread is exiting. The idea is that the foreground GC
5821 // thread should not be blocked if it wants to terminate
5822 // the CMS thread and yet continue to run the VM for a while
5823 // after that.
5824 void CMSCollector::verify_ok_to_terminate() const {
5825   assert(Thread::current()->is_ConcurrentGC_thread(),
5826          "should be called by CMS thread");
5827   assert(!_foregroundGCShouldWait, "should be false");
5828   // We could check here that all the various low-level locks
5829   // are not held by the CMS thread, but that is overkill; see
5830   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5831   // is checked.
5832 }
5833 #endif
5834 
5835 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5836    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5837           "missing Printezis mark?");
5838   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5839   size_t size = pointer_delta(nextOneAddr + 1, addr);
5840   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5841          "alignment problem");
5842   assert(size >= 3, "Necessary for Printezis marks to work");
5843   return size;
5844 }
5845 
5846 // A variant of the above (block_size_using_printezis_bits()) except
5847 // that we return 0 if the P-bits are not yet set.
5848 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5849   if (_markBitMap.isMarked(addr + 1)) {
5850     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5851     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5852     size_t size = pointer_delta(nextOneAddr + 1, addr);
5853     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5854            "alignment problem");
5855     assert(size >= 3, "Necessary for Printezis marks to work");
5856     return size;
5857   }
5858   return 0;
5859 }
5860 
5861 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5862   size_t sz = 0;
5863   oop p = (oop)addr;
5864   if (p->klass_or_null() != NULL) {
5865     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5866   } else {
5867     sz = block_size_using_printezis_bits(addr);
5868   }
5869   assert(sz > 0, "size must be nonzero");
5870   HeapWord* next_block = addr + sz;
5871   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5872                                              CardTableModRefBS::card_size);
5873   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5874          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5875          "must be different cards");
5876   return next_card;
5877 }
5878 
5879 
5880 // CMS Bit Map Wrapper /////////////////////////////////////////
5881 
5882 // Construct a CMS bit map infrastructure, but don't create the
5883 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5884 // further below.
5885 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5886   _bm(),
5887   _shifter(shifter),
5888   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5889                                     Monitor::_safepoint_check_sometimes) : NULL)
5890 {
5891   _bmStartWord = 0;
5892   _bmWordSize  = 0;
5893 }
5894 
5895 bool CMSBitMap::allocate(MemRegion mr) {
5896   _bmStartWord = mr.start();
5897   _bmWordSize  = mr.word_size();
5898   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5899                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5900   if (!brs.is_reserved()) {
5901     warning("CMS bit map allocation failure");
5902     return false;
5903   }
5904   // For now we'll just commit all of the bit map up front.
5905   // Later on we'll try to be more parsimonious with swap.
5906   if (!_virtual_space.initialize(brs, brs.size())) {
5907     warning("CMS bit map backing store failure");
5908     return false;
5909   }
5910   assert(_virtual_space.committed_size() == brs.size(),
5911          "didn't reserve backing store for all of CMS bit map?");
5912   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5913   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5914          _bmWordSize, "inconsistency in bit map sizing");
5915   _bm.set_size(_bmWordSize >> _shifter);
5916 
5917   // bm.clear(); // can we rely on getting zero'd memory? verify below
5918   assert(isAllClear(),
5919          "Expected zero'd memory from ReservedSpace constructor");
5920   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5921          "consistency check");
5922   return true;
5923 }
5924 
5925 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5926   HeapWord *next_addr, *end_addr, *last_addr;
5927   assert_locked();
5928   assert(covers(mr), "out-of-range error");
5929   // XXX assert that start and end are appropriately aligned
5930   for (next_addr = mr.start(), end_addr = mr.end();
5931        next_addr < end_addr; next_addr = last_addr) {
5932     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5933     last_addr = dirty_region.end();
5934     if (!dirty_region.is_empty()) {
5935       cl->do_MemRegion(dirty_region);
5936     } else {
5937       assert(last_addr == end_addr, "program logic");
5938       return;
5939     }
5940   }
5941 }
5942 
5943 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5944   _bm.print_on_error(st, prefix);
5945 }
5946 
5947 #ifndef PRODUCT
5948 void CMSBitMap::assert_locked() const {
5949   CMSLockVerifier::assert_locked(lock());
5950 }
5951 
5952 bool CMSBitMap::covers(MemRegion mr) const {
5953   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5954   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5955          "size inconsistency");
5956   return (mr.start() >= _bmStartWord) &&
5957          (mr.end()   <= endWord());
5958 }
5959 
5960 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5961     return (start >= _bmStartWord && (start + size) <= endWord());
5962 }
5963 
5964 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5965   // verify that there are no 1 bits in the interval [left, right)
5966   FalseBitMapClosure falseBitMapClosure;
5967   iterate(&falseBitMapClosure, left, right);
5968 }
5969 
5970 void CMSBitMap::region_invariant(MemRegion mr)
5971 {
5972   assert_locked();
5973   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5974   assert(!mr.is_empty(), "unexpected empty region");
5975   assert(covers(mr), "mr should be covered by bit map");
5976   // convert address range into offset range
5977   size_t start_ofs = heapWordToOffset(mr.start());
5978   // Make sure that end() is appropriately aligned
5979   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5980                         (1 << (_shifter+LogHeapWordSize))),
5981          "Misaligned mr.end()");
5982   size_t end_ofs   = heapWordToOffset(mr.end());
5983   assert(end_ofs > start_ofs, "Should mark at least one bit");
5984 }
5985 
5986 #endif
5987 
5988 bool CMSMarkStack::allocate(size_t size) {
5989   // allocate a stack of the requisite depth
5990   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5991                    size * sizeof(oop)));
5992   if (!rs.is_reserved()) {
5993     warning("CMSMarkStack allocation failure");
5994     return false;
5995   }
5996   if (!_virtual_space.initialize(rs, rs.size())) {
5997     warning("CMSMarkStack backing store failure");
5998     return false;
5999   }
6000   assert(_virtual_space.committed_size() == rs.size(),
6001          "didn't reserve backing store for all of CMS stack?");
6002   _base = (oop*)(_virtual_space.low());
6003   _index = 0;
6004   _capacity = size;
6005   NOT_PRODUCT(_max_depth = 0);
6006   return true;
6007 }
6008 
6009 // XXX FIX ME !!! In the MT case we come in here holding a
6010 // leaf lock. For printing we need to take a further lock
6011 // which has lower rank. We need to recalibrate the two
6012 // lock-ranks involved in order to be able to print the
6013 // messages below. (Or defer the printing to the caller.
6014 // For now we take the expedient path of just disabling the
6015 // messages for the problematic case.)
6016 void CMSMarkStack::expand() {
6017   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6018   if (_capacity == MarkStackSizeMax) {
6019     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6020       // We print a warning message only once per CMS cycle.
6021       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6022     }
6023     return;
6024   }
6025   // Double capacity if possible
6026   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6027   // Do not give up existing stack until we have managed to
6028   // get the double capacity that we desired.
6029   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6030                    new_capacity * sizeof(oop)));
6031   if (rs.is_reserved()) {
6032     // Release the backing store associated with old stack
6033     _virtual_space.release();
6034     // Reinitialize virtual space for new stack
6035     if (!_virtual_space.initialize(rs, rs.size())) {
6036       fatal("Not enough swap for expanded marking stack");
6037     }
6038     _base = (oop*)(_virtual_space.low());
6039     _index = 0;
6040     _capacity = new_capacity;
6041   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6042     // Failed to double capacity, continue;
6043     // we print a detail message only once per CMS cycle.
6044     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6045             SIZE_FORMAT "K",
6046             _capacity / K, new_capacity / K);
6047   }
6048 }
6049 
6050 
6051 // Closures
6052 // XXX: there seems to be a lot of code  duplication here;
6053 // should refactor and consolidate common code.
6054 
6055 // This closure is used to mark refs into the CMS generation in
6056 // the CMS bit map. Called at the first checkpoint. This closure
6057 // assumes that we do not need to re-mark dirty cards; if the CMS
6058 // generation on which this is used is not an oldest
6059 // generation then this will lose younger_gen cards!
6060 
6061 MarkRefsIntoClosure::MarkRefsIntoClosure(
6062   MemRegion span, CMSBitMap* bitMap):
6063     _span(span),
6064     _bitMap(bitMap)
6065 {
6066     assert(_ref_processor == NULL, "deliberately left NULL");
6067     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6068 }
6069 
6070 void MarkRefsIntoClosure::do_oop(oop obj) {
6071   // if p points into _span, then mark corresponding bit in _markBitMap
6072   assert(obj->is_oop(), "expected an oop");
6073   HeapWord* addr = (HeapWord*)obj;
6074   if (_span.contains(addr)) {
6075     // this should be made more efficient
6076     _bitMap->mark(addr);
6077   }
6078 }
6079 
6080 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6081 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6082 
6083 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6084   MemRegion span, CMSBitMap* bitMap):
6085     _span(span),
6086     _bitMap(bitMap)
6087 {
6088     assert(_ref_processor == NULL, "deliberately left NULL");
6089     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6090 }
6091 
6092 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6093   // if p points into _span, then mark corresponding bit in _markBitMap
6094   assert(obj->is_oop(), "expected an oop");
6095   HeapWord* addr = (HeapWord*)obj;
6096   if (_span.contains(addr)) {
6097     // this should be made more efficient
6098     _bitMap->par_mark(addr);
6099   }
6100 }
6101 
6102 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6103 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6104 
6105 // A variant of the above, used for CMS marking verification.
6106 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6107   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6108     _span(span),
6109     _verification_bm(verification_bm),
6110     _cms_bm(cms_bm)
6111 {
6112     assert(_ref_processor == NULL, "deliberately left NULL");
6113     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6114 }
6115 
6116 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6117   // if p points into _span, then mark corresponding bit in _markBitMap
6118   assert(obj->is_oop(), "expected an oop");
6119   HeapWord* addr = (HeapWord*)obj;
6120   if (_span.contains(addr)) {
6121     _verification_bm->mark(addr);
6122     if (!_cms_bm->isMarked(addr)) {
6123       oop(addr)->print();
6124       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6125       fatal("... aborting");
6126     }
6127   }
6128 }
6129 
6130 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6131 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6132 
6133 //////////////////////////////////////////////////
6134 // MarkRefsIntoAndScanClosure
6135 //////////////////////////////////////////////////
6136 
6137 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6138                                                        ReferenceProcessor* rp,
6139                                                        CMSBitMap* bit_map,
6140                                                        CMSBitMap* mod_union_table,
6141                                                        CMSMarkStack*  mark_stack,
6142                                                        CMSCollector* collector,
6143                                                        bool should_yield,
6144                                                        bool concurrent_precleaning):
6145   _collector(collector),
6146   _span(span),
6147   _bit_map(bit_map),
6148   _mark_stack(mark_stack),
6149   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6150                       mark_stack, concurrent_precleaning),
6151   _yield(should_yield),
6152   _concurrent_precleaning(concurrent_precleaning),
6153   _freelistLock(NULL)
6154 {
6155   _ref_processor = rp;
6156   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6157 }
6158 
6159 // This closure is used to mark refs into the CMS generation at the
6160 // second (final) checkpoint, and to scan and transitively follow
6161 // the unmarked oops. It is also used during the concurrent precleaning
6162 // phase while scanning objects on dirty cards in the CMS generation.
6163 // The marks are made in the marking bit map and the marking stack is
6164 // used for keeping the (newly) grey objects during the scan.
6165 // The parallel version (Par_...) appears further below.
6166 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6167   if (obj != NULL) {
6168     assert(obj->is_oop(), "expected an oop");
6169     HeapWord* addr = (HeapWord*)obj;
6170     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6171     assert(_collector->overflow_list_is_empty(),
6172            "overflow list should be empty");
6173     if (_span.contains(addr) &&
6174         !_bit_map->isMarked(addr)) {
6175       // mark bit map (object is now grey)
6176       _bit_map->mark(addr);
6177       // push on marking stack (stack should be empty), and drain the
6178       // stack by applying this closure to the oops in the oops popped
6179       // from the stack (i.e. blacken the grey objects)
6180       bool res = _mark_stack->push(obj);
6181       assert(res, "Should have space to push on empty stack");
6182       do {
6183         oop new_oop = _mark_stack->pop();
6184         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6185         assert(_bit_map->isMarked((HeapWord*)new_oop),
6186                "only grey objects on this stack");
6187         // iterate over the oops in this oop, marking and pushing
6188         // the ones in CMS heap (i.e. in _span).
6189         new_oop->oop_iterate(&_pushAndMarkClosure);
6190         // check if it's time to yield
6191         do_yield_check();
6192       } while (!_mark_stack->isEmpty() ||
6193                (!_concurrent_precleaning && take_from_overflow_list()));
6194         // if marking stack is empty, and we are not doing this
6195         // during precleaning, then check the overflow list
6196     }
6197     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6198     assert(_collector->overflow_list_is_empty(),
6199            "overflow list was drained above");
6200     // We could restore evacuated mark words, if any, used for
6201     // overflow list links here because the overflow list is
6202     // provably empty here. That would reduce the maximum
6203     // size requirements for preserved_{oop,mark}_stack.
6204     // But we'll just postpone it until we are all done
6205     // so we can just stream through.
6206     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6207       _collector->restore_preserved_marks_if_any();
6208       assert(_collector->no_preserved_marks(), "No preserved marks");
6209     }
6210     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6211            "All preserved marks should have been restored above");
6212   }
6213 }
6214 
6215 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6216 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6217 
6218 void MarkRefsIntoAndScanClosure::do_yield_work() {
6219   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6220          "CMS thread should hold CMS token");
6221   assert_lock_strong(_freelistLock);
6222   assert_lock_strong(_bit_map->lock());
6223   // relinquish the free_list_lock and bitMaplock()
6224   _bit_map->lock()->unlock();
6225   _freelistLock->unlock();
6226   ConcurrentMarkSweepThread::desynchronize(true);
6227   _collector->stopTimer();
6228   if (PrintCMSStatistics != 0) {
6229     _collector->incrementYields();
6230   }
6231 
6232   // See the comment in coordinator_yield()
6233   for (unsigned i = 0;
6234        i < CMSYieldSleepCount &&
6235        ConcurrentMarkSweepThread::should_yield() &&
6236        !CMSCollector::foregroundGCIsActive();
6237        ++i) {
6238     os::sleep(Thread::current(), 1, false);
6239   }
6240 
6241   ConcurrentMarkSweepThread::synchronize(true);
6242   _freelistLock->lock_without_safepoint_check();
6243   _bit_map->lock()->lock_without_safepoint_check();
6244   _collector->startTimer();
6245 }
6246 
6247 ///////////////////////////////////////////////////////////
6248 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6249 //                                 MarkRefsIntoAndScanClosure
6250 ///////////////////////////////////////////////////////////
6251 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6252   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6253   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6254   _span(span),
6255   _bit_map(bit_map),
6256   _work_queue(work_queue),
6257   _low_water_mark(MIN2((work_queue->max_elems()/4),
6258                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6259   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6260 {
6261   _ref_processor = rp;
6262   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6263 }
6264 
6265 // This closure is used to mark refs into the CMS generation at the
6266 // second (final) checkpoint, and to scan and transitively follow
6267 // the unmarked oops. The marks are made in the marking bit map and
6268 // the work_queue is used for keeping the (newly) grey objects during
6269 // the scan phase whence they are also available for stealing by parallel
6270 // threads. Since the marking bit map is shared, updates are
6271 // synchronized (via CAS).
6272 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6273   if (obj != NULL) {
6274     // Ignore mark word because this could be an already marked oop
6275     // that may be chained at the end of the overflow list.
6276     assert(obj->is_oop(true), "expected an oop");
6277     HeapWord* addr = (HeapWord*)obj;
6278     if (_span.contains(addr) &&
6279         !_bit_map->isMarked(addr)) {
6280       // mark bit map (object will become grey):
6281       // It is possible for several threads to be
6282       // trying to "claim" this object concurrently;
6283       // the unique thread that succeeds in marking the
6284       // object first will do the subsequent push on
6285       // to the work queue (or overflow list).
6286       if (_bit_map->par_mark(addr)) {
6287         // push on work_queue (which may not be empty), and trim the
6288         // queue to an appropriate length by applying this closure to
6289         // the oops in the oops popped from the stack (i.e. blacken the
6290         // grey objects)
6291         bool res = _work_queue->push(obj);
6292         assert(res, "Low water mark should be less than capacity?");
6293         trim_queue(_low_water_mark);
6294       } // Else, another thread claimed the object
6295     }
6296   }
6297 }
6298 
6299 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6300 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6301 
6302 // This closure is used to rescan the marked objects on the dirty cards
6303 // in the mod union table and the card table proper.
6304 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6305   oop p, MemRegion mr) {
6306 
6307   size_t size = 0;
6308   HeapWord* addr = (HeapWord*)p;
6309   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6310   assert(_span.contains(addr), "we are scanning the CMS generation");
6311   // check if it's time to yield
6312   if (do_yield_check()) {
6313     // We yielded for some foreground stop-world work,
6314     // and we have been asked to abort this ongoing preclean cycle.
6315     return 0;
6316   }
6317   if (_bitMap->isMarked(addr)) {
6318     // it's marked; is it potentially uninitialized?
6319     if (p->klass_or_null() != NULL) {
6320         // an initialized object; ignore mark word in verification below
6321         // since we are running concurrent with mutators
6322         assert(p->is_oop(true), "should be an oop");
6323         if (p->is_objArray()) {
6324           // objArrays are precisely marked; restrict scanning
6325           // to dirty cards only.
6326           size = CompactibleFreeListSpace::adjustObjectSize(
6327                    p->oop_iterate(_scanningClosure, mr));
6328         } else {
6329           // A non-array may have been imprecisely marked; we need
6330           // to scan object in its entirety.
6331           size = CompactibleFreeListSpace::adjustObjectSize(
6332                    p->oop_iterate(_scanningClosure));
6333         }
6334         #ifdef ASSERT
6335           size_t direct_size =
6336             CompactibleFreeListSpace::adjustObjectSize(p->size());
6337           assert(size == direct_size, "Inconsistency in size");
6338           assert(size >= 3, "Necessary for Printezis marks to work");
6339           if (!_bitMap->isMarked(addr+1)) {
6340             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6341           } else {
6342             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6343             assert(_bitMap->isMarked(addr+size-1),
6344                    "inconsistent Printezis mark");
6345           }
6346         #endif // ASSERT
6347     } else {
6348       // An uninitialized object.
6349       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6350       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6351       size = pointer_delta(nextOneAddr + 1, addr);
6352       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6353              "alignment problem");
6354       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6355       // will dirty the card when the klass pointer is installed in the
6356       // object (signaling the completion of initialization).
6357     }
6358   } else {
6359     // Either a not yet marked object or an uninitialized object
6360     if (p->klass_or_null() == NULL) {
6361       // An uninitialized object, skip to the next card, since
6362       // we may not be able to read its P-bits yet.
6363       assert(size == 0, "Initial value");
6364     } else {
6365       // An object not (yet) reached by marking: we merely need to
6366       // compute its size so as to go look at the next block.
6367       assert(p->is_oop(true), "should be an oop");
6368       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6369     }
6370   }
6371   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6372   return size;
6373 }
6374 
6375 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6376   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6377          "CMS thread should hold CMS token");
6378   assert_lock_strong(_freelistLock);
6379   assert_lock_strong(_bitMap->lock());
6380   // relinquish the free_list_lock and bitMaplock()
6381   _bitMap->lock()->unlock();
6382   _freelistLock->unlock();
6383   ConcurrentMarkSweepThread::desynchronize(true);
6384   _collector->stopTimer();
6385   if (PrintCMSStatistics != 0) {
6386     _collector->incrementYields();
6387   }
6388 
6389   // See the comment in coordinator_yield()
6390   for (unsigned i = 0; i < CMSYieldSleepCount &&
6391                    ConcurrentMarkSweepThread::should_yield() &&
6392                    !CMSCollector::foregroundGCIsActive(); ++i) {
6393     os::sleep(Thread::current(), 1, false);
6394   }
6395 
6396   ConcurrentMarkSweepThread::synchronize(true);
6397   _freelistLock->lock_without_safepoint_check();
6398   _bitMap->lock()->lock_without_safepoint_check();
6399   _collector->startTimer();
6400 }
6401 
6402 
6403 //////////////////////////////////////////////////////////////////
6404 // SurvivorSpacePrecleanClosure
6405 //////////////////////////////////////////////////////////////////
6406 // This (single-threaded) closure is used to preclean the oops in
6407 // the survivor spaces.
6408 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6409 
6410   HeapWord* addr = (HeapWord*)p;
6411   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6412   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6413   assert(p->klass_or_null() != NULL, "object should be initialized");
6414   // an initialized object; ignore mark word in verification below
6415   // since we are running concurrent with mutators
6416   assert(p->is_oop(true), "should be an oop");
6417   // Note that we do not yield while we iterate over
6418   // the interior oops of p, pushing the relevant ones
6419   // on our marking stack.
6420   size_t size = p->oop_iterate(_scanning_closure);
6421   do_yield_check();
6422   // Observe that below, we do not abandon the preclean
6423   // phase as soon as we should; rather we empty the
6424   // marking stack before returning. This is to satisfy
6425   // some existing assertions. In general, it may be a
6426   // good idea to abort immediately and complete the marking
6427   // from the grey objects at a later time.
6428   while (!_mark_stack->isEmpty()) {
6429     oop new_oop = _mark_stack->pop();
6430     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6431     assert(_bit_map->isMarked((HeapWord*)new_oop),
6432            "only grey objects on this stack");
6433     // iterate over the oops in this oop, marking and pushing
6434     // the ones in CMS heap (i.e. in _span).
6435     new_oop->oop_iterate(_scanning_closure);
6436     // check if it's time to yield
6437     do_yield_check();
6438   }
6439   unsigned int after_count =
6440     GenCollectedHeap::heap()->total_collections();
6441   bool abort = (_before_count != after_count) ||
6442                _collector->should_abort_preclean();
6443   return abort ? 0 : size;
6444 }
6445 
6446 void SurvivorSpacePrecleanClosure::do_yield_work() {
6447   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6448          "CMS thread should hold CMS token");
6449   assert_lock_strong(_bit_map->lock());
6450   // Relinquish the bit map lock
6451   _bit_map->lock()->unlock();
6452   ConcurrentMarkSweepThread::desynchronize(true);
6453   _collector->stopTimer();
6454   if (PrintCMSStatistics != 0) {
6455     _collector->incrementYields();
6456   }
6457 
6458   // See the comment in coordinator_yield()
6459   for (unsigned i = 0; i < CMSYieldSleepCount &&
6460                        ConcurrentMarkSweepThread::should_yield() &&
6461                        !CMSCollector::foregroundGCIsActive(); ++i) {
6462     os::sleep(Thread::current(), 1, false);
6463   }
6464 
6465   ConcurrentMarkSweepThread::synchronize(true);
6466   _bit_map->lock()->lock_without_safepoint_check();
6467   _collector->startTimer();
6468 }
6469 
6470 // This closure is used to rescan the marked objects on the dirty cards
6471 // in the mod union table and the card table proper. In the parallel
6472 // case, although the bitMap is shared, we do a single read so the
6473 // isMarked() query is "safe".
6474 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6475   // Ignore mark word because we are running concurrent with mutators
6476   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6477   HeapWord* addr = (HeapWord*)p;
6478   assert(_span.contains(addr), "we are scanning the CMS generation");
6479   bool is_obj_array = false;
6480   #ifdef ASSERT
6481     if (!_parallel) {
6482       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6483       assert(_collector->overflow_list_is_empty(),
6484              "overflow list should be empty");
6485 
6486     }
6487   #endif // ASSERT
6488   if (_bit_map->isMarked(addr)) {
6489     // Obj arrays are precisely marked, non-arrays are not;
6490     // so we scan objArrays precisely and non-arrays in their
6491     // entirety.
6492     if (p->is_objArray()) {
6493       is_obj_array = true;
6494       if (_parallel) {
6495         p->oop_iterate(_par_scan_closure, mr);
6496       } else {
6497         p->oop_iterate(_scan_closure, mr);
6498       }
6499     } else {
6500       if (_parallel) {
6501         p->oop_iterate(_par_scan_closure);
6502       } else {
6503         p->oop_iterate(_scan_closure);
6504       }
6505     }
6506   }
6507   #ifdef ASSERT
6508     if (!_parallel) {
6509       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6510       assert(_collector->overflow_list_is_empty(),
6511              "overflow list should be empty");
6512 
6513     }
6514   #endif // ASSERT
6515   return is_obj_array;
6516 }
6517 
6518 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6519                         MemRegion span,
6520                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6521                         bool should_yield, bool verifying):
6522   _collector(collector),
6523   _span(span),
6524   _bitMap(bitMap),
6525   _mut(&collector->_modUnionTable),
6526   _markStack(markStack),
6527   _yield(should_yield),
6528   _skipBits(0)
6529 {
6530   assert(_markStack->isEmpty(), "stack should be empty");
6531   _finger = _bitMap->startWord();
6532   _threshold = _finger;
6533   assert(_collector->_restart_addr == NULL, "Sanity check");
6534   assert(_span.contains(_finger), "Out of bounds _finger?");
6535   DEBUG_ONLY(_verifying = verifying;)
6536 }
6537 
6538 void MarkFromRootsClosure::reset(HeapWord* addr) {
6539   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6540   assert(_span.contains(addr), "Out of bounds _finger?");
6541   _finger = addr;
6542   _threshold = (HeapWord*)round_to(
6543                  (intptr_t)_finger, CardTableModRefBS::card_size);
6544 }
6545 
6546 // Should revisit to see if this should be restructured for
6547 // greater efficiency.
6548 bool MarkFromRootsClosure::do_bit(size_t offset) {
6549   if (_skipBits > 0) {
6550     _skipBits--;
6551     return true;
6552   }
6553   // convert offset into a HeapWord*
6554   HeapWord* addr = _bitMap->startWord() + offset;
6555   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6556          "address out of range");
6557   assert(_bitMap->isMarked(addr), "tautology");
6558   if (_bitMap->isMarked(addr+1)) {
6559     // this is an allocated but not yet initialized object
6560     assert(_skipBits == 0, "tautology");
6561     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6562     oop p = oop(addr);
6563     if (p->klass_or_null() == NULL) {
6564       DEBUG_ONLY(if (!_verifying) {)
6565         // We re-dirty the cards on which this object lies and increase
6566         // the _threshold so that we'll come back to scan this object
6567         // during the preclean or remark phase. (CMSCleanOnEnter)
6568         if (CMSCleanOnEnter) {
6569           size_t sz = _collector->block_size_using_printezis_bits(addr);
6570           HeapWord* end_card_addr   = (HeapWord*)round_to(
6571                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6572           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6573           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6574           // Bump _threshold to end_card_addr; note that
6575           // _threshold cannot possibly exceed end_card_addr, anyhow.
6576           // This prevents future clearing of the card as the scan proceeds
6577           // to the right.
6578           assert(_threshold <= end_card_addr,
6579                  "Because we are just scanning into this object");
6580           if (_threshold < end_card_addr) {
6581             _threshold = end_card_addr;
6582           }
6583           if (p->klass_or_null() != NULL) {
6584             // Redirty the range of cards...
6585             _mut->mark_range(redirty_range);
6586           } // ...else the setting of klass will dirty the card anyway.
6587         }
6588       DEBUG_ONLY(})
6589       return true;
6590     }
6591   }
6592   scanOopsInOop(addr);
6593   return true;
6594 }
6595 
6596 // We take a break if we've been at this for a while,
6597 // so as to avoid monopolizing the locks involved.
6598 void MarkFromRootsClosure::do_yield_work() {
6599   // First give up the locks, then yield, then re-lock
6600   // We should probably use a constructor/destructor idiom to
6601   // do this unlock/lock or modify the MutexUnlocker class to
6602   // serve our purpose. XXX
6603   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6604          "CMS thread should hold CMS token");
6605   assert_lock_strong(_bitMap->lock());
6606   _bitMap->lock()->unlock();
6607   ConcurrentMarkSweepThread::desynchronize(true);
6608   _collector->stopTimer();
6609   if (PrintCMSStatistics != 0) {
6610     _collector->incrementYields();
6611   }
6612 
6613   // See the comment in coordinator_yield()
6614   for (unsigned i = 0; i < CMSYieldSleepCount &&
6615                        ConcurrentMarkSweepThread::should_yield() &&
6616                        !CMSCollector::foregroundGCIsActive(); ++i) {
6617     os::sleep(Thread::current(), 1, false);
6618   }
6619 
6620   ConcurrentMarkSweepThread::synchronize(true);
6621   _bitMap->lock()->lock_without_safepoint_check();
6622   _collector->startTimer();
6623 }
6624 
6625 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6626   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6627   assert(_markStack->isEmpty(),
6628          "should drain stack to limit stack usage");
6629   // convert ptr to an oop preparatory to scanning
6630   oop obj = oop(ptr);
6631   // Ignore mark word in verification below, since we
6632   // may be running concurrent with mutators.
6633   assert(obj->is_oop(true), "should be an oop");
6634   assert(_finger <= ptr, "_finger runneth ahead");
6635   // advance the finger to right end of this object
6636   _finger = ptr + obj->size();
6637   assert(_finger > ptr, "we just incremented it above");
6638   // On large heaps, it may take us some time to get through
6639   // the marking phase. During
6640   // this time it's possible that a lot of mutations have
6641   // accumulated in the card table and the mod union table --
6642   // these mutation records are redundant until we have
6643   // actually traced into the corresponding card.
6644   // Here, we check whether advancing the finger would make
6645   // us cross into a new card, and if so clear corresponding
6646   // cards in the MUT (preclean them in the card-table in the
6647   // future).
6648 
6649   DEBUG_ONLY(if (!_verifying) {)
6650     // The clean-on-enter optimization is disabled by default,
6651     // until we fix 6178663.
6652     if (CMSCleanOnEnter && (_finger > _threshold)) {
6653       // [_threshold, _finger) represents the interval
6654       // of cards to be cleared  in MUT (or precleaned in card table).
6655       // The set of cards to be cleared is all those that overlap
6656       // with the interval [_threshold, _finger); note that
6657       // _threshold is always kept card-aligned but _finger isn't
6658       // always card-aligned.
6659       HeapWord* old_threshold = _threshold;
6660       assert(old_threshold == (HeapWord*)round_to(
6661               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6662              "_threshold should always be card-aligned");
6663       _threshold = (HeapWord*)round_to(
6664                      (intptr_t)_finger, CardTableModRefBS::card_size);
6665       MemRegion mr(old_threshold, _threshold);
6666       assert(!mr.is_empty(), "Control point invariant");
6667       assert(_span.contains(mr), "Should clear within span");
6668       _mut->clear_range(mr);
6669     }
6670   DEBUG_ONLY(})
6671   // Note: the finger doesn't advance while we drain
6672   // the stack below.
6673   PushOrMarkClosure pushOrMarkClosure(_collector,
6674                                       _span, _bitMap, _markStack,
6675                                       _finger, this);
6676   bool res = _markStack->push(obj);
6677   assert(res, "Empty non-zero size stack should have space for single push");
6678   while (!_markStack->isEmpty()) {
6679     oop new_oop = _markStack->pop();
6680     // Skip verifying header mark word below because we are
6681     // running concurrent with mutators.
6682     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6683     // now scan this oop's oops
6684     new_oop->oop_iterate(&pushOrMarkClosure);
6685     do_yield_check();
6686   }
6687   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6688 }
6689 
6690 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6691                        CMSCollector* collector, MemRegion span,
6692                        CMSBitMap* bit_map,
6693                        OopTaskQueue* work_queue,
6694                        CMSMarkStack*  overflow_stack):
6695   _collector(collector),
6696   _whole_span(collector->_span),
6697   _span(span),
6698   _bit_map(bit_map),
6699   _mut(&collector->_modUnionTable),
6700   _work_queue(work_queue),
6701   _overflow_stack(overflow_stack),
6702   _skip_bits(0),
6703   _task(task)
6704 {
6705   assert(_work_queue->size() == 0, "work_queue should be empty");
6706   _finger = span.start();
6707   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6708   assert(_span.contains(_finger), "Out of bounds _finger?");
6709 }
6710 
6711 // Should revisit to see if this should be restructured for
6712 // greater efficiency.
6713 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6714   if (_skip_bits > 0) {
6715     _skip_bits--;
6716     return true;
6717   }
6718   // convert offset into a HeapWord*
6719   HeapWord* addr = _bit_map->startWord() + offset;
6720   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6721          "address out of range");
6722   assert(_bit_map->isMarked(addr), "tautology");
6723   if (_bit_map->isMarked(addr+1)) {
6724     // this is an allocated object that might not yet be initialized
6725     assert(_skip_bits == 0, "tautology");
6726     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6727     oop p = oop(addr);
6728     if (p->klass_or_null() == NULL) {
6729       // in the case of Clean-on-Enter optimization, redirty card
6730       // and avoid clearing card by increasing  the threshold.
6731       return true;
6732     }
6733   }
6734   scan_oops_in_oop(addr);
6735   return true;
6736 }
6737 
6738 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6739   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6740   // Should we assert that our work queue is empty or
6741   // below some drain limit?
6742   assert(_work_queue->size() == 0,
6743          "should drain stack to limit stack usage");
6744   // convert ptr to an oop preparatory to scanning
6745   oop obj = oop(ptr);
6746   // Ignore mark word in verification below, since we
6747   // may be running concurrent with mutators.
6748   assert(obj->is_oop(true), "should be an oop");
6749   assert(_finger <= ptr, "_finger runneth ahead");
6750   // advance the finger to right end of this object
6751   _finger = ptr + obj->size();
6752   assert(_finger > ptr, "we just incremented it above");
6753   // On large heaps, it may take us some time to get through
6754   // the marking phase. During
6755   // this time it's possible that a lot of mutations have
6756   // accumulated in the card table and the mod union table --
6757   // these mutation records are redundant until we have
6758   // actually traced into the corresponding card.
6759   // Here, we check whether advancing the finger would make
6760   // us cross into a new card, and if so clear corresponding
6761   // cards in the MUT (preclean them in the card-table in the
6762   // future).
6763 
6764   // The clean-on-enter optimization is disabled by default,
6765   // until we fix 6178663.
6766   if (CMSCleanOnEnter && (_finger > _threshold)) {
6767     // [_threshold, _finger) represents the interval
6768     // of cards to be cleared  in MUT (or precleaned in card table).
6769     // The set of cards to be cleared is all those that overlap
6770     // with the interval [_threshold, _finger); note that
6771     // _threshold is always kept card-aligned but _finger isn't
6772     // always card-aligned.
6773     HeapWord* old_threshold = _threshold;
6774     assert(old_threshold == (HeapWord*)round_to(
6775             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6776            "_threshold should always be card-aligned");
6777     _threshold = (HeapWord*)round_to(
6778                    (intptr_t)_finger, CardTableModRefBS::card_size);
6779     MemRegion mr(old_threshold, _threshold);
6780     assert(!mr.is_empty(), "Control point invariant");
6781     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6782     _mut->clear_range(mr);
6783   }
6784 
6785   // Note: the local finger doesn't advance while we drain
6786   // the stack below, but the global finger sure can and will.
6787   HeapWord** gfa = _task->global_finger_addr();
6788   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6789                                       _span, _bit_map,
6790                                       _work_queue,
6791                                       _overflow_stack,
6792                                       _finger,
6793                                       gfa, this);
6794   bool res = _work_queue->push(obj);   // overflow could occur here
6795   assert(res, "Will hold once we use workqueues");
6796   while (true) {
6797     oop new_oop;
6798     if (!_work_queue->pop_local(new_oop)) {
6799       // We emptied our work_queue; check if there's stuff that can
6800       // be gotten from the overflow stack.
6801       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6802             _overflow_stack, _work_queue)) {
6803         do_yield_check();
6804         continue;
6805       } else {  // done
6806         break;
6807       }
6808     }
6809     // Skip verifying header mark word below because we are
6810     // running concurrent with mutators.
6811     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6812     // now scan this oop's oops
6813     new_oop->oop_iterate(&pushOrMarkClosure);
6814     do_yield_check();
6815   }
6816   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6817 }
6818 
6819 // Yield in response to a request from VM Thread or
6820 // from mutators.
6821 void Par_MarkFromRootsClosure::do_yield_work() {
6822   assert(_task != NULL, "sanity");
6823   _task->yield();
6824 }
6825 
6826 // A variant of the above used for verifying CMS marking work.
6827 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6828                         MemRegion span,
6829                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6830                         CMSMarkStack*  mark_stack):
6831   _collector(collector),
6832   _span(span),
6833   _verification_bm(verification_bm),
6834   _cms_bm(cms_bm),
6835   _mark_stack(mark_stack),
6836   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6837                       mark_stack)
6838 {
6839   assert(_mark_stack->isEmpty(), "stack should be empty");
6840   _finger = _verification_bm->startWord();
6841   assert(_collector->_restart_addr == NULL, "Sanity check");
6842   assert(_span.contains(_finger), "Out of bounds _finger?");
6843 }
6844 
6845 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6846   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6847   assert(_span.contains(addr), "Out of bounds _finger?");
6848   _finger = addr;
6849 }
6850 
6851 // Should revisit to see if this should be restructured for
6852 // greater efficiency.
6853 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6854   // convert offset into a HeapWord*
6855   HeapWord* addr = _verification_bm->startWord() + offset;
6856   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6857          "address out of range");
6858   assert(_verification_bm->isMarked(addr), "tautology");
6859   assert(_cms_bm->isMarked(addr), "tautology");
6860 
6861   assert(_mark_stack->isEmpty(),
6862          "should drain stack to limit stack usage");
6863   // convert addr to an oop preparatory to scanning
6864   oop obj = oop(addr);
6865   assert(obj->is_oop(), "should be an oop");
6866   assert(_finger <= addr, "_finger runneth ahead");
6867   // advance the finger to right end of this object
6868   _finger = addr + obj->size();
6869   assert(_finger > addr, "we just incremented it above");
6870   // Note: the finger doesn't advance while we drain
6871   // the stack below.
6872   bool res = _mark_stack->push(obj);
6873   assert(res, "Empty non-zero size stack should have space for single push");
6874   while (!_mark_stack->isEmpty()) {
6875     oop new_oop = _mark_stack->pop();
6876     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6877     // now scan this oop's oops
6878     new_oop->oop_iterate(&_pam_verify_closure);
6879   }
6880   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6881   return true;
6882 }
6883 
6884 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6885   CMSCollector* collector, MemRegion span,
6886   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6887   CMSMarkStack*  mark_stack):
6888   MetadataAwareOopClosure(collector->ref_processor()),
6889   _collector(collector),
6890   _span(span),
6891   _verification_bm(verification_bm),
6892   _cms_bm(cms_bm),
6893   _mark_stack(mark_stack)
6894 { }
6895 
6896 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6897 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6898 
6899 // Upon stack overflow, we discard (part of) the stack,
6900 // remembering the least address amongst those discarded
6901 // in CMSCollector's _restart_address.
6902 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6903   // Remember the least grey address discarded
6904   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6905   _collector->lower_restart_addr(ra);
6906   _mark_stack->reset();  // discard stack contents
6907   _mark_stack->expand(); // expand the stack if possible
6908 }
6909 
6910 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6911   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6912   HeapWord* addr = (HeapWord*)obj;
6913   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6914     // Oop lies in _span and isn't yet grey or black
6915     _verification_bm->mark(addr);            // now grey
6916     if (!_cms_bm->isMarked(addr)) {
6917       oop(addr)->print();
6918       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6919                              p2i(addr));
6920       fatal("... aborting");
6921     }
6922 
6923     if (!_mark_stack->push(obj)) { // stack overflow
6924       if (PrintCMSStatistics != 0) {
6925         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6926                                SIZE_FORMAT, _mark_stack->capacity());
6927       }
6928       assert(_mark_stack->isFull(), "Else push should have succeeded");
6929       handle_stack_overflow(addr);
6930     }
6931     // anything including and to the right of _finger
6932     // will be scanned as we iterate over the remainder of the
6933     // bit map
6934   }
6935 }
6936 
6937 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6938                      MemRegion span,
6939                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6940                      HeapWord* finger, MarkFromRootsClosure* parent) :
6941   MetadataAwareOopClosure(collector->ref_processor()),
6942   _collector(collector),
6943   _span(span),
6944   _bitMap(bitMap),
6945   _markStack(markStack),
6946   _finger(finger),
6947   _parent(parent)
6948 { }
6949 
6950 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6951                      MemRegion span,
6952                      CMSBitMap* bit_map,
6953                      OopTaskQueue* work_queue,
6954                      CMSMarkStack*  overflow_stack,
6955                      HeapWord* finger,
6956                      HeapWord** global_finger_addr,
6957                      Par_MarkFromRootsClosure* parent) :
6958   MetadataAwareOopClosure(collector->ref_processor()),
6959   _collector(collector),
6960   _whole_span(collector->_span),
6961   _span(span),
6962   _bit_map(bit_map),
6963   _work_queue(work_queue),
6964   _overflow_stack(overflow_stack),
6965   _finger(finger),
6966   _global_finger_addr(global_finger_addr),
6967   _parent(parent)
6968 { }
6969 
6970 // Assumes thread-safe access by callers, who are
6971 // responsible for mutual exclusion.
6972 void CMSCollector::lower_restart_addr(HeapWord* low) {
6973   assert(_span.contains(low), "Out of bounds addr");
6974   if (_restart_addr == NULL) {
6975     _restart_addr = low;
6976   } else {
6977     _restart_addr = MIN2(_restart_addr, low);
6978   }
6979 }
6980 
6981 // Upon stack overflow, we discard (part of) the stack,
6982 // remembering the least address amongst those discarded
6983 // in CMSCollector's _restart_address.
6984 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6985   // Remember the least grey address discarded
6986   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6987   _collector->lower_restart_addr(ra);
6988   _markStack->reset();  // discard stack contents
6989   _markStack->expand(); // expand the stack if possible
6990 }
6991 
6992 // Upon stack overflow, we discard (part of) the stack,
6993 // remembering the least address amongst those discarded
6994 // in CMSCollector's _restart_address.
6995 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6996   // We need to do this under a mutex to prevent other
6997   // workers from interfering with the work done below.
6998   MutexLockerEx ml(_overflow_stack->par_lock(),
6999                    Mutex::_no_safepoint_check_flag);
7000   // Remember the least grey address discarded
7001   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7002   _collector->lower_restart_addr(ra);
7003   _overflow_stack->reset();  // discard stack contents
7004   _overflow_stack->expand(); // expand the stack if possible
7005 }
7006 
7007 void PushOrMarkClosure::do_oop(oop obj) {
7008   // Ignore mark word because we are running concurrent with mutators.
7009   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7010   HeapWord* addr = (HeapWord*)obj;
7011   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7012     // Oop lies in _span and isn't yet grey or black
7013     _bitMap->mark(addr);            // now grey
7014     if (addr < _finger) {
7015       // the bit map iteration has already either passed, or
7016       // sampled, this bit in the bit map; we'll need to
7017       // use the marking stack to scan this oop's oops.
7018       bool simulate_overflow = false;
7019       NOT_PRODUCT(
7020         if (CMSMarkStackOverflowALot &&
7021             _collector->simulate_overflow()) {
7022           // simulate a stack overflow
7023           simulate_overflow = true;
7024         }
7025       )
7026       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7027         if (PrintCMSStatistics != 0) {
7028           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7029                                  SIZE_FORMAT, _markStack->capacity());
7030         }
7031         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7032         handle_stack_overflow(addr);
7033       }
7034     }
7035     // anything including and to the right of _finger
7036     // will be scanned as we iterate over the remainder of the
7037     // bit map
7038     do_yield_check();
7039   }
7040 }
7041 
7042 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7043 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7044 
7045 void Par_PushOrMarkClosure::do_oop(oop obj) {
7046   // Ignore mark word because we are running concurrent with mutators.
7047   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7048   HeapWord* addr = (HeapWord*)obj;
7049   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7050     // Oop lies in _span and isn't yet grey or black
7051     // We read the global_finger (volatile read) strictly after marking oop
7052     bool res = _bit_map->par_mark(addr);    // now grey
7053     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7054     // Should we push this marked oop on our stack?
7055     // -- if someone else marked it, nothing to do
7056     // -- if target oop is above global finger nothing to do
7057     // -- if target oop is in chunk and above local finger
7058     //      then nothing to do
7059     // -- else push on work queue
7060     if (   !res       // someone else marked it, they will deal with it
7061         || (addr >= *gfa)  // will be scanned in a later task
7062         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7063       return;
7064     }
7065     // the bit map iteration has already either passed, or
7066     // sampled, this bit in the bit map; we'll need to
7067     // use the marking stack to scan this oop's oops.
7068     bool simulate_overflow = false;
7069     NOT_PRODUCT(
7070       if (CMSMarkStackOverflowALot &&
7071           _collector->simulate_overflow()) {
7072         // simulate a stack overflow
7073         simulate_overflow = true;
7074       }
7075     )
7076     if (simulate_overflow ||
7077         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7078       // stack overflow
7079       if (PrintCMSStatistics != 0) {
7080         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7081                                SIZE_FORMAT, _overflow_stack->capacity());
7082       }
7083       // We cannot assert that the overflow stack is full because
7084       // it may have been emptied since.
7085       assert(simulate_overflow ||
7086              _work_queue->size() == _work_queue->max_elems(),
7087             "Else push should have succeeded");
7088       handle_stack_overflow(addr);
7089     }
7090     do_yield_check();
7091   }
7092 }
7093 
7094 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7095 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7096 
7097 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7098                                        MemRegion span,
7099                                        ReferenceProcessor* rp,
7100                                        CMSBitMap* bit_map,
7101                                        CMSBitMap* mod_union_table,
7102                                        CMSMarkStack*  mark_stack,
7103                                        bool           concurrent_precleaning):
7104   MetadataAwareOopClosure(rp),
7105   _collector(collector),
7106   _span(span),
7107   _bit_map(bit_map),
7108   _mod_union_table(mod_union_table),
7109   _mark_stack(mark_stack),
7110   _concurrent_precleaning(concurrent_precleaning)
7111 {
7112   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7113 }
7114 
7115 // Grey object rescan during pre-cleaning and second checkpoint phases --
7116 // the non-parallel version (the parallel version appears further below.)
7117 void PushAndMarkClosure::do_oop(oop obj) {
7118   // Ignore mark word verification. If during concurrent precleaning,
7119   // the object monitor may be locked. If during the checkpoint
7120   // phases, the object may already have been reached by a  different
7121   // path and may be at the end of the global overflow list (so
7122   // the mark word may be NULL).
7123   assert(obj->is_oop_or_null(true /* ignore mark word */),
7124          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7125   HeapWord* addr = (HeapWord*)obj;
7126   // Check if oop points into the CMS generation
7127   // and is not marked
7128   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7129     // a white object ...
7130     _bit_map->mark(addr);         // ... now grey
7131     // push on the marking stack (grey set)
7132     bool simulate_overflow = false;
7133     NOT_PRODUCT(
7134       if (CMSMarkStackOverflowALot &&
7135           _collector->simulate_overflow()) {
7136         // simulate a stack overflow
7137         simulate_overflow = true;
7138       }
7139     )
7140     if (simulate_overflow || !_mark_stack->push(obj)) {
7141       if (_concurrent_precleaning) {
7142          // During precleaning we can just dirty the appropriate card(s)
7143          // in the mod union table, thus ensuring that the object remains
7144          // in the grey set  and continue. In the case of object arrays
7145          // we need to dirty all of the cards that the object spans,
7146          // since the rescan of object arrays will be limited to the
7147          // dirty cards.
7148          // Note that no one can be interfering with us in this action
7149          // of dirtying the mod union table, so no locking or atomics
7150          // are required.
7151          if (obj->is_objArray()) {
7152            size_t sz = obj->size();
7153            HeapWord* end_card_addr = (HeapWord*)round_to(
7154                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7155            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7156            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7157            _mod_union_table->mark_range(redirty_range);
7158          } else {
7159            _mod_union_table->mark(addr);
7160          }
7161          _collector->_ser_pmc_preclean_ovflw++;
7162       } else {
7163          // During the remark phase, we need to remember this oop
7164          // in the overflow list.
7165          _collector->push_on_overflow_list(obj);
7166          _collector->_ser_pmc_remark_ovflw++;
7167       }
7168     }
7169   }
7170 }
7171 
7172 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7173                                                MemRegion span,
7174                                                ReferenceProcessor* rp,
7175                                                CMSBitMap* bit_map,
7176                                                OopTaskQueue* work_queue):
7177   MetadataAwareOopClosure(rp),
7178   _collector(collector),
7179   _span(span),
7180   _bit_map(bit_map),
7181   _work_queue(work_queue)
7182 {
7183   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7184 }
7185 
7186 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7187 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7188 
7189 // Grey object rescan during second checkpoint phase --
7190 // the parallel version.
7191 void Par_PushAndMarkClosure::do_oop(oop obj) {
7192   // In the assert below, we ignore the mark word because
7193   // this oop may point to an already visited object that is
7194   // on the overflow stack (in which case the mark word has
7195   // been hijacked for chaining into the overflow stack --
7196   // if this is the last object in the overflow stack then
7197   // its mark word will be NULL). Because this object may
7198   // have been subsequently popped off the global overflow
7199   // stack, and the mark word possibly restored to the prototypical
7200   // value, by the time we get to examined this failing assert in
7201   // the debugger, is_oop_or_null(false) may subsequently start
7202   // to hold.
7203   assert(obj->is_oop_or_null(true),
7204          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7205   HeapWord* addr = (HeapWord*)obj;
7206   // Check if oop points into the CMS generation
7207   // and is not marked
7208   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7209     // a white object ...
7210     // If we manage to "claim" the object, by being the
7211     // first thread to mark it, then we push it on our
7212     // marking stack
7213     if (_bit_map->par_mark(addr)) {     // ... now grey
7214       // push on work queue (grey set)
7215       bool simulate_overflow = false;
7216       NOT_PRODUCT(
7217         if (CMSMarkStackOverflowALot &&
7218             _collector->par_simulate_overflow()) {
7219           // simulate a stack overflow
7220           simulate_overflow = true;
7221         }
7222       )
7223       if (simulate_overflow || !_work_queue->push(obj)) {
7224         _collector->par_push_on_overflow_list(obj);
7225         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7226       }
7227     } // Else, some other thread got there first
7228   }
7229 }
7230 
7231 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7232 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7233 
7234 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7235   Mutex* bml = _collector->bitMapLock();
7236   assert_lock_strong(bml);
7237   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7238          "CMS thread should hold CMS token");
7239 
7240   bml->unlock();
7241   ConcurrentMarkSweepThread::desynchronize(true);
7242 
7243   _collector->stopTimer();
7244   if (PrintCMSStatistics != 0) {
7245     _collector->incrementYields();
7246   }
7247 
7248   // See the comment in coordinator_yield()
7249   for (unsigned i = 0; i < CMSYieldSleepCount &&
7250                        ConcurrentMarkSweepThread::should_yield() &&
7251                        !CMSCollector::foregroundGCIsActive(); ++i) {
7252     os::sleep(Thread::current(), 1, false);
7253   }
7254 
7255   ConcurrentMarkSweepThread::synchronize(true);
7256   bml->lock();
7257 
7258   _collector->startTimer();
7259 }
7260 
7261 bool CMSPrecleanRefsYieldClosure::should_return() {
7262   if (ConcurrentMarkSweepThread::should_yield()) {
7263     do_yield_work();
7264   }
7265   return _collector->foregroundGCIsActive();
7266 }
7267 
7268 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7269   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7270          "mr should be aligned to start at a card boundary");
7271   // We'd like to assert:
7272   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7273   //        "mr should be a range of cards");
7274   // However, that would be too strong in one case -- the last
7275   // partition ends at _unallocated_block which, in general, can be
7276   // an arbitrary boundary, not necessarily card aligned.
7277   if (PrintCMSStatistics != 0) {
7278     _num_dirty_cards +=
7279          mr.word_size()/CardTableModRefBS::card_size_in_words;
7280   }
7281   _space->object_iterate_mem(mr, &_scan_cl);
7282 }
7283 
7284 SweepClosure::SweepClosure(CMSCollector* collector,
7285                            ConcurrentMarkSweepGeneration* g,
7286                            CMSBitMap* bitMap, bool should_yield) :
7287   _collector(collector),
7288   _g(g),
7289   _sp(g->cmsSpace()),
7290   _limit(_sp->sweep_limit()),
7291   _freelistLock(_sp->freelistLock()),
7292   _bitMap(bitMap),
7293   _yield(should_yield),
7294   _inFreeRange(false),           // No free range at beginning of sweep
7295   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7296   _lastFreeRangeCoalesced(false),
7297   _freeFinger(g->used_region().start())
7298 {
7299   NOT_PRODUCT(
7300     _numObjectsFreed = 0;
7301     _numWordsFreed   = 0;
7302     _numObjectsLive = 0;
7303     _numWordsLive = 0;
7304     _numObjectsAlreadyFree = 0;
7305     _numWordsAlreadyFree = 0;
7306     _last_fc = NULL;
7307 
7308     _sp->initializeIndexedFreeListArrayReturnedBytes();
7309     _sp->dictionary()->initialize_dict_returned_bytes();
7310   )
7311   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7312          "sweep _limit out of bounds");
7313   if (CMSTraceSweeper) {
7314     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7315                         p2i(_limit));
7316   }
7317 }
7318 
7319 void SweepClosure::print_on(outputStream* st) const {
7320   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7321                 p2i(_sp->bottom()), p2i(_sp->end()));
7322   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7323   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7324   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7325   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7326                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7327 }
7328 
7329 #ifndef PRODUCT
7330 // Assertion checking only:  no useful work in product mode --
7331 // however, if any of the flags below become product flags,
7332 // you may need to review this code to see if it needs to be
7333 // enabled in product mode.
7334 SweepClosure::~SweepClosure() {
7335   assert_lock_strong(_freelistLock);
7336   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7337          "sweep _limit out of bounds");
7338   if (inFreeRange()) {
7339     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7340     print();
7341     ShouldNotReachHere();
7342   }
7343   if (Verbose && PrintGC) {
7344     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7345                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7346     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7347                            SIZE_FORMAT " bytes  "
7348       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7349       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7350       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7351     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7352                         * sizeof(HeapWord);
7353     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7354 
7355     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7356       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7357       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7358       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7359       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7360       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7361         indexListReturnedBytes);
7362       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7363         dict_returned_bytes);
7364     }
7365   }
7366   if (CMSTraceSweeper) {
7367     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7368                            p2i(_limit));
7369   }
7370 }
7371 #endif  // PRODUCT
7372 
7373 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7374     bool freeRangeInFreeLists) {
7375   if (CMSTraceSweeper) {
7376     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7377                p2i(freeFinger), freeRangeInFreeLists);
7378   }
7379   assert(!inFreeRange(), "Trampling existing free range");
7380   set_inFreeRange(true);
7381   set_lastFreeRangeCoalesced(false);
7382 
7383   set_freeFinger(freeFinger);
7384   set_freeRangeInFreeLists(freeRangeInFreeLists);
7385   if (CMSTestInFreeList) {
7386     if (freeRangeInFreeLists) {
7387       FreeChunk* fc = (FreeChunk*) freeFinger;
7388       assert(fc->is_free(), "A chunk on the free list should be free.");
7389       assert(fc->size() > 0, "Free range should have a size");
7390       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7391     }
7392   }
7393 }
7394 
7395 // Note that the sweeper runs concurrently with mutators. Thus,
7396 // it is possible for direct allocation in this generation to happen
7397 // in the middle of the sweep. Note that the sweeper also coalesces
7398 // contiguous free blocks. Thus, unless the sweeper and the allocator
7399 // synchronize appropriately freshly allocated blocks may get swept up.
7400 // This is accomplished by the sweeper locking the free lists while
7401 // it is sweeping. Thus blocks that are determined to be free are
7402 // indeed free. There is however one additional complication:
7403 // blocks that have been allocated since the final checkpoint and
7404 // mark, will not have been marked and so would be treated as
7405 // unreachable and swept up. To prevent this, the allocator marks
7406 // the bit map when allocating during the sweep phase. This leads,
7407 // however, to a further complication -- objects may have been allocated
7408 // but not yet initialized -- in the sense that the header isn't yet
7409 // installed. The sweeper can not then determine the size of the block
7410 // in order to skip over it. To deal with this case, we use a technique
7411 // (due to Printezis) to encode such uninitialized block sizes in the
7412 // bit map. Since the bit map uses a bit per every HeapWord, but the
7413 // CMS generation has a minimum object size of 3 HeapWords, it follows
7414 // that "normal marks" won't be adjacent in the bit map (there will
7415 // always be at least two 0 bits between successive 1 bits). We make use
7416 // of these "unused" bits to represent uninitialized blocks -- the bit
7417 // corresponding to the start of the uninitialized object and the next
7418 // bit are both set. Finally, a 1 bit marks the end of the object that
7419 // started with the two consecutive 1 bits to indicate its potentially
7420 // uninitialized state.
7421 
7422 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7423   FreeChunk* fc = (FreeChunk*)addr;
7424   size_t res;
7425 
7426   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7427   // than "addr == _limit" because although _limit was a block boundary when
7428   // we started the sweep, it may no longer be one because heap expansion
7429   // may have caused us to coalesce the block ending at the address _limit
7430   // with a newly expanded chunk (this happens when _limit was set to the
7431   // previous _end of the space), so we may have stepped past _limit:
7432   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7433   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7434     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7435            "sweep _limit out of bounds");
7436     assert(addr < _sp->end(), "addr out of bounds");
7437     // Flush any free range we might be holding as a single
7438     // coalesced chunk to the appropriate free list.
7439     if (inFreeRange()) {
7440       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7441              err_msg("freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger())));
7442       flush_cur_free_chunk(freeFinger(),
7443                            pointer_delta(addr, freeFinger()));
7444       if (CMSTraceSweeper) {
7445         gclog_or_tty->print("Sweep: last chunk: ");
7446         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7447                    "[coalesced:%d]\n",
7448                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7449                    lastFreeRangeCoalesced() ? 1 : 0);
7450       }
7451     }
7452 
7453     // help the iterator loop finish
7454     return pointer_delta(_sp->end(), addr);
7455   }
7456 
7457   assert(addr < _limit, "sweep invariant");
7458   // check if we should yield
7459   do_yield_check(addr);
7460   if (fc->is_free()) {
7461     // Chunk that is already free
7462     res = fc->size();
7463     do_already_free_chunk(fc);
7464     debug_only(_sp->verifyFreeLists());
7465     // If we flush the chunk at hand in lookahead_and_flush()
7466     // and it's coalesced with a preceding chunk, then the
7467     // process of "mangling" the payload of the coalesced block
7468     // will cause erasure of the size information from the
7469     // (erstwhile) header of all the coalesced blocks but the
7470     // first, so the first disjunct in the assert will not hold
7471     // in that specific case (in which case the second disjunct
7472     // will hold).
7473     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7474            "Otherwise the size info doesn't change at this step");
7475     NOT_PRODUCT(
7476       _numObjectsAlreadyFree++;
7477       _numWordsAlreadyFree += res;
7478     )
7479     NOT_PRODUCT(_last_fc = fc;)
7480   } else if (!_bitMap->isMarked(addr)) {
7481     // Chunk is fresh garbage
7482     res = do_garbage_chunk(fc);
7483     debug_only(_sp->verifyFreeLists());
7484     NOT_PRODUCT(
7485       _numObjectsFreed++;
7486       _numWordsFreed += res;
7487     )
7488   } else {
7489     // Chunk that is alive.
7490     res = do_live_chunk(fc);
7491     debug_only(_sp->verifyFreeLists());
7492     NOT_PRODUCT(
7493         _numObjectsLive++;
7494         _numWordsLive += res;
7495     )
7496   }
7497   return res;
7498 }
7499 
7500 // For the smart allocation, record following
7501 //  split deaths - a free chunk is removed from its free list because
7502 //      it is being split into two or more chunks.
7503 //  split birth - a free chunk is being added to its free list because
7504 //      a larger free chunk has been split and resulted in this free chunk.
7505 //  coal death - a free chunk is being removed from its free list because
7506 //      it is being coalesced into a large free chunk.
7507 //  coal birth - a free chunk is being added to its free list because
7508 //      it was created when two or more free chunks where coalesced into
7509 //      this free chunk.
7510 //
7511 // These statistics are used to determine the desired number of free
7512 // chunks of a given size.  The desired number is chosen to be relative
7513 // to the end of a CMS sweep.  The desired number at the end of a sweep
7514 // is the
7515 //      count-at-end-of-previous-sweep (an amount that was enough)
7516 //              - count-at-beginning-of-current-sweep  (the excess)
7517 //              + split-births  (gains in this size during interval)
7518 //              - split-deaths  (demands on this size during interval)
7519 // where the interval is from the end of one sweep to the end of the
7520 // next.
7521 //
7522 // When sweeping the sweeper maintains an accumulated chunk which is
7523 // the chunk that is made up of chunks that have been coalesced.  That
7524 // will be termed the left-hand chunk.  A new chunk of garbage that
7525 // is being considered for coalescing will be referred to as the
7526 // right-hand chunk.
7527 //
7528 // When making a decision on whether to coalesce a right-hand chunk with
7529 // the current left-hand chunk, the current count vs. the desired count
7530 // of the left-hand chunk is considered.  Also if the right-hand chunk
7531 // is near the large chunk at the end of the heap (see
7532 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7533 // left-hand chunk is coalesced.
7534 //
7535 // When making a decision about whether to split a chunk, the desired count
7536 // vs. the current count of the candidate to be split is also considered.
7537 // If the candidate is underpopulated (currently fewer chunks than desired)
7538 // a chunk of an overpopulated (currently more chunks than desired) size may
7539 // be chosen.  The "hint" associated with a free list, if non-null, points
7540 // to a free list which may be overpopulated.
7541 //
7542 
7543 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7544   const size_t size = fc->size();
7545   // Chunks that cannot be coalesced are not in the
7546   // free lists.
7547   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7548     assert(_sp->verify_chunk_in_free_list(fc),
7549       "free chunk should be in free lists");
7550   }
7551   // a chunk that is already free, should not have been
7552   // marked in the bit map
7553   HeapWord* const addr = (HeapWord*) fc;
7554   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7555   // Verify that the bit map has no bits marked between
7556   // addr and purported end of this block.
7557   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7558 
7559   // Some chunks cannot be coalesced under any circumstances.
7560   // See the definition of cantCoalesce().
7561   if (!fc->cantCoalesce()) {
7562     // This chunk can potentially be coalesced.
7563     if (_sp->adaptive_freelists()) {
7564       // All the work is done in
7565       do_post_free_or_garbage_chunk(fc, size);
7566     } else {  // Not adaptive free lists
7567       // this is a free chunk that can potentially be coalesced by the sweeper;
7568       if (!inFreeRange()) {
7569         // if the next chunk is a free block that can't be coalesced
7570         // it doesn't make sense to remove this chunk from the free lists
7571         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7572         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7573         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7574             nextChunk->is_free()               &&     // ... which is free...
7575             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7576           // nothing to do
7577         } else {
7578           // Potentially the start of a new free range:
7579           // Don't eagerly remove it from the free lists.
7580           // No need to remove it if it will just be put
7581           // back again.  (Also from a pragmatic point of view
7582           // if it is a free block in a region that is beyond
7583           // any allocated blocks, an assertion will fail)
7584           // Remember the start of a free run.
7585           initialize_free_range(addr, true);
7586           // end - can coalesce with next chunk
7587         }
7588       } else {
7589         // the midst of a free range, we are coalescing
7590         print_free_block_coalesced(fc);
7591         if (CMSTraceSweeper) {
7592           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7593         }
7594         // remove it from the free lists
7595         _sp->removeFreeChunkFromFreeLists(fc);
7596         set_lastFreeRangeCoalesced(true);
7597         // If the chunk is being coalesced and the current free range is
7598         // in the free lists, remove the current free range so that it
7599         // will be returned to the free lists in its entirety - all
7600         // the coalesced pieces included.
7601         if (freeRangeInFreeLists()) {
7602           FreeChunk* ffc = (FreeChunk*) freeFinger();
7603           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7604             "Size of free range is inconsistent with chunk size.");
7605           if (CMSTestInFreeList) {
7606             assert(_sp->verify_chunk_in_free_list(ffc),
7607               "free range is not in free lists");
7608           }
7609           _sp->removeFreeChunkFromFreeLists(ffc);
7610           set_freeRangeInFreeLists(false);
7611         }
7612       }
7613     }
7614     // Note that if the chunk is not coalescable (the else arm
7615     // below), we unconditionally flush, without needing to do
7616     // a "lookahead," as we do below.
7617     if (inFreeRange()) lookahead_and_flush(fc, size);
7618   } else {
7619     // Code path common to both original and adaptive free lists.
7620 
7621     // cant coalesce with previous block; this should be treated
7622     // as the end of a free run if any
7623     if (inFreeRange()) {
7624       // we kicked some butt; time to pick up the garbage
7625       assert(freeFinger() < addr, "freeFinger points too high");
7626       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7627     }
7628     // else, nothing to do, just continue
7629   }
7630 }
7631 
7632 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7633   // This is a chunk of garbage.  It is not in any free list.
7634   // Add it to a free list or let it possibly be coalesced into
7635   // a larger chunk.
7636   HeapWord* const addr = (HeapWord*) fc;
7637   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7638 
7639   if (_sp->adaptive_freelists()) {
7640     // Verify that the bit map has no bits marked between
7641     // addr and purported end of just dead object.
7642     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7643 
7644     do_post_free_or_garbage_chunk(fc, size);
7645   } else {
7646     if (!inFreeRange()) {
7647       // start of a new free range
7648       assert(size > 0, "A free range should have a size");
7649       initialize_free_range(addr, false);
7650     } else {
7651       // this will be swept up when we hit the end of the
7652       // free range
7653       if (CMSTraceSweeper) {
7654         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7655       }
7656       // If the chunk is being coalesced and the current free range is
7657       // in the free lists, remove the current free range so that it
7658       // will be returned to the free lists in its entirety - all
7659       // the coalesced pieces included.
7660       if (freeRangeInFreeLists()) {
7661         FreeChunk* ffc = (FreeChunk*)freeFinger();
7662         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7663           "Size of free range is inconsistent with chunk size.");
7664         if (CMSTestInFreeList) {
7665           assert(_sp->verify_chunk_in_free_list(ffc),
7666             "free range is not in free lists");
7667         }
7668         _sp->removeFreeChunkFromFreeLists(ffc);
7669         set_freeRangeInFreeLists(false);
7670       }
7671       set_lastFreeRangeCoalesced(true);
7672     }
7673     // this will be swept up when we hit the end of the free range
7674 
7675     // Verify that the bit map has no bits marked between
7676     // addr and purported end of just dead object.
7677     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7678   }
7679   assert(_limit >= addr + size,
7680          "A freshly garbage chunk can't possibly straddle over _limit");
7681   if (inFreeRange()) lookahead_and_flush(fc, size);
7682   return size;
7683 }
7684 
7685 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7686   HeapWord* addr = (HeapWord*) fc;
7687   // The sweeper has just found a live object. Return any accumulated
7688   // left hand chunk to the free lists.
7689   if (inFreeRange()) {
7690     assert(freeFinger() < addr, "freeFinger points too high");
7691     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7692   }
7693 
7694   // This object is live: we'd normally expect this to be
7695   // an oop, and like to assert the following:
7696   // assert(oop(addr)->is_oop(), "live block should be an oop");
7697   // However, as we commented above, this may be an object whose
7698   // header hasn't yet been initialized.
7699   size_t size;
7700   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7701   if (_bitMap->isMarked(addr + 1)) {
7702     // Determine the size from the bit map, rather than trying to
7703     // compute it from the object header.
7704     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7705     size = pointer_delta(nextOneAddr + 1, addr);
7706     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7707            "alignment problem");
7708 
7709 #ifdef ASSERT
7710       if (oop(addr)->klass_or_null() != NULL) {
7711         // Ignore mark word because we are running concurrent with mutators
7712         assert(oop(addr)->is_oop(true), "live block should be an oop");
7713         assert(size ==
7714                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7715                "P-mark and computed size do not agree");
7716       }
7717 #endif
7718 
7719   } else {
7720     // This should be an initialized object that's alive.
7721     assert(oop(addr)->klass_or_null() != NULL,
7722            "Should be an initialized object");
7723     // Ignore mark word because we are running concurrent with mutators
7724     assert(oop(addr)->is_oop(true), "live block should be an oop");
7725     // Verify that the bit map has no bits marked between
7726     // addr and purported end of this block.
7727     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7728     assert(size >= 3, "Necessary for Printezis marks to work");
7729     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7730     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7731   }
7732   return size;
7733 }
7734 
7735 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7736                                                  size_t chunkSize) {
7737   // do_post_free_or_garbage_chunk() should only be called in the case
7738   // of the adaptive free list allocator.
7739   const bool fcInFreeLists = fc->is_free();
7740   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7741   assert((HeapWord*)fc <= _limit, "sweep invariant");
7742   if (CMSTestInFreeList && fcInFreeLists) {
7743     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7744   }
7745 
7746   if (CMSTraceSweeper) {
7747     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7748   }
7749 
7750   HeapWord* const fc_addr = (HeapWord*) fc;
7751 
7752   bool coalesce;
7753   const size_t left  = pointer_delta(fc_addr, freeFinger());
7754   const size_t right = chunkSize;
7755   switch (FLSCoalescePolicy) {
7756     // numeric value forms a coalition aggressiveness metric
7757     case 0:  { // never coalesce
7758       coalesce = false;
7759       break;
7760     }
7761     case 1: { // coalesce if left & right chunks on overpopulated lists
7762       coalesce = _sp->coalOverPopulated(left) &&
7763                  _sp->coalOverPopulated(right);
7764       break;
7765     }
7766     case 2: { // coalesce if left chunk on overpopulated list (default)
7767       coalesce = _sp->coalOverPopulated(left);
7768       break;
7769     }
7770     case 3: { // coalesce if left OR right chunk on overpopulated list
7771       coalesce = _sp->coalOverPopulated(left) ||
7772                  _sp->coalOverPopulated(right);
7773       break;
7774     }
7775     case 4: { // always coalesce
7776       coalesce = true;
7777       break;
7778     }
7779     default:
7780      ShouldNotReachHere();
7781   }
7782 
7783   // Should the current free range be coalesced?
7784   // If the chunk is in a free range and either we decided to coalesce above
7785   // or the chunk is near the large block at the end of the heap
7786   // (isNearLargestChunk() returns true), then coalesce this chunk.
7787   const bool doCoalesce = inFreeRange()
7788                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7789   if (doCoalesce) {
7790     // Coalesce the current free range on the left with the new
7791     // chunk on the right.  If either is on a free list,
7792     // it must be removed from the list and stashed in the closure.
7793     if (freeRangeInFreeLists()) {
7794       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7795       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7796         "Size of free range is inconsistent with chunk size.");
7797       if (CMSTestInFreeList) {
7798         assert(_sp->verify_chunk_in_free_list(ffc),
7799           "Chunk is not in free lists");
7800       }
7801       _sp->coalDeath(ffc->size());
7802       _sp->removeFreeChunkFromFreeLists(ffc);
7803       set_freeRangeInFreeLists(false);
7804     }
7805     if (fcInFreeLists) {
7806       _sp->coalDeath(chunkSize);
7807       assert(fc->size() == chunkSize,
7808         "The chunk has the wrong size or is not in the free lists");
7809       _sp->removeFreeChunkFromFreeLists(fc);
7810     }
7811     set_lastFreeRangeCoalesced(true);
7812     print_free_block_coalesced(fc);
7813   } else {  // not in a free range and/or should not coalesce
7814     // Return the current free range and start a new one.
7815     if (inFreeRange()) {
7816       // In a free range but cannot coalesce with the right hand chunk.
7817       // Put the current free range into the free lists.
7818       flush_cur_free_chunk(freeFinger(),
7819                            pointer_delta(fc_addr, freeFinger()));
7820     }
7821     // Set up for new free range.  Pass along whether the right hand
7822     // chunk is in the free lists.
7823     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7824   }
7825 }
7826 
7827 // Lookahead flush:
7828 // If we are tracking a free range, and this is the last chunk that
7829 // we'll look at because its end crosses past _limit, we'll preemptively
7830 // flush it along with any free range we may be holding on to. Note that
7831 // this can be the case only for an already free or freshly garbage
7832 // chunk. If this block is an object, it can never straddle
7833 // over _limit. The "straddling" occurs when _limit is set at
7834 // the previous end of the space when this cycle started, and
7835 // a subsequent heap expansion caused the previously co-terminal
7836 // free block to be coalesced with the newly expanded portion,
7837 // thus rendering _limit a non-block-boundary making it dangerous
7838 // for the sweeper to step over and examine.
7839 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7840   assert(inFreeRange(), "Should only be called if currently in a free range.");
7841   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7842   assert(_sp->used_region().contains(eob - 1),
7843          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7844                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7845                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7846                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7847   if (eob >= _limit) {
7848     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7849     if (CMSTraceSweeper) {
7850       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7851                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7852                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7853                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7854     }
7855     // Return the storage we are tracking back into the free lists.
7856     if (CMSTraceSweeper) {
7857       gclog_or_tty->print_cr("Flushing ... ");
7858     }
7859     assert(freeFinger() < eob, "Error");
7860     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7861   }
7862 }
7863 
7864 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7865   assert(inFreeRange(), "Should only be called if currently in a free range.");
7866   assert(size > 0,
7867     "A zero sized chunk cannot be added to the free lists.");
7868   if (!freeRangeInFreeLists()) {
7869     if (CMSTestInFreeList) {
7870       FreeChunk* fc = (FreeChunk*) chunk;
7871       fc->set_size(size);
7872       assert(!_sp->verify_chunk_in_free_list(fc),
7873         "chunk should not be in free lists yet");
7874     }
7875     if (CMSTraceSweeper) {
7876       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7877                     p2i(chunk), size);
7878     }
7879     // A new free range is going to be starting.  The current
7880     // free range has not been added to the free lists yet or
7881     // was removed so add it back.
7882     // If the current free range was coalesced, then the death
7883     // of the free range was recorded.  Record a birth now.
7884     if (lastFreeRangeCoalesced()) {
7885       _sp->coalBirth(size);
7886     }
7887     _sp->addChunkAndRepairOffsetTable(chunk, size,
7888             lastFreeRangeCoalesced());
7889   } else if (CMSTraceSweeper) {
7890     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7891   }
7892   set_inFreeRange(false);
7893   set_freeRangeInFreeLists(false);
7894 }
7895 
7896 // We take a break if we've been at this for a while,
7897 // so as to avoid monopolizing the locks involved.
7898 void SweepClosure::do_yield_work(HeapWord* addr) {
7899   // Return current free chunk being used for coalescing (if any)
7900   // to the appropriate freelist.  After yielding, the next
7901   // free block encountered will start a coalescing range of
7902   // free blocks.  If the next free block is adjacent to the
7903   // chunk just flushed, they will need to wait for the next
7904   // sweep to be coalesced.
7905   if (inFreeRange()) {
7906     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7907   }
7908 
7909   // First give up the locks, then yield, then re-lock.
7910   // We should probably use a constructor/destructor idiom to
7911   // do this unlock/lock or modify the MutexUnlocker class to
7912   // serve our purpose. XXX
7913   assert_lock_strong(_bitMap->lock());
7914   assert_lock_strong(_freelistLock);
7915   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7916          "CMS thread should hold CMS token");
7917   _bitMap->lock()->unlock();
7918   _freelistLock->unlock();
7919   ConcurrentMarkSweepThread::desynchronize(true);
7920   _collector->stopTimer();
7921   if (PrintCMSStatistics != 0) {
7922     _collector->incrementYields();
7923   }
7924 
7925   // See the comment in coordinator_yield()
7926   for (unsigned i = 0; i < CMSYieldSleepCount &&
7927                        ConcurrentMarkSweepThread::should_yield() &&
7928                        !CMSCollector::foregroundGCIsActive(); ++i) {
7929     os::sleep(Thread::current(), 1, false);
7930   }
7931 
7932   ConcurrentMarkSweepThread::synchronize(true);
7933   _freelistLock->lock();
7934   _bitMap->lock()->lock_without_safepoint_check();
7935   _collector->startTimer();
7936 }
7937 
7938 #ifndef PRODUCT
7939 // This is actually very useful in a product build if it can
7940 // be called from the debugger.  Compile it into the product
7941 // as needed.
7942 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7943   return debug_cms_space->verify_chunk_in_free_list(fc);
7944 }
7945 #endif
7946 
7947 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7948   if (CMSTraceSweeper) {
7949     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7950                            p2i(fc), fc->size());
7951   }
7952 }
7953 
7954 // CMSIsAliveClosure
7955 bool CMSIsAliveClosure::do_object_b(oop obj) {
7956   HeapWord* addr = (HeapWord*)obj;
7957   return addr != NULL &&
7958          (!_span.contains(addr) || _bit_map->isMarked(addr));
7959 }
7960 
7961 
7962 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7963                       MemRegion span,
7964                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7965                       bool cpc):
7966   _collector(collector),
7967   _span(span),
7968   _bit_map(bit_map),
7969   _mark_stack(mark_stack),
7970   _concurrent_precleaning(cpc) {
7971   assert(!_span.is_empty(), "Empty span could spell trouble");
7972 }
7973 
7974 
7975 // CMSKeepAliveClosure: the serial version
7976 void CMSKeepAliveClosure::do_oop(oop obj) {
7977   HeapWord* addr = (HeapWord*)obj;
7978   if (_span.contains(addr) &&
7979       !_bit_map->isMarked(addr)) {
7980     _bit_map->mark(addr);
7981     bool simulate_overflow = false;
7982     NOT_PRODUCT(
7983       if (CMSMarkStackOverflowALot &&
7984           _collector->simulate_overflow()) {
7985         // simulate a stack overflow
7986         simulate_overflow = true;
7987       }
7988     )
7989     if (simulate_overflow || !_mark_stack->push(obj)) {
7990       if (_concurrent_precleaning) {
7991         // We dirty the overflown object and let the remark
7992         // phase deal with it.
7993         assert(_collector->overflow_list_is_empty(), "Error");
7994         // In the case of object arrays, we need to dirty all of
7995         // the cards that the object spans. No locking or atomics
7996         // are needed since no one else can be mutating the mod union
7997         // table.
7998         if (obj->is_objArray()) {
7999           size_t sz = obj->size();
8000           HeapWord* end_card_addr =
8001             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8002           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8003           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8004           _collector->_modUnionTable.mark_range(redirty_range);
8005         } else {
8006           _collector->_modUnionTable.mark(addr);
8007         }
8008         _collector->_ser_kac_preclean_ovflw++;
8009       } else {
8010         _collector->push_on_overflow_list(obj);
8011         _collector->_ser_kac_ovflw++;
8012       }
8013     }
8014   }
8015 }
8016 
8017 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8018 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8019 
8020 // CMSParKeepAliveClosure: a parallel version of the above.
8021 // The work queues are private to each closure (thread),
8022 // but (may be) available for stealing by other threads.
8023 void CMSParKeepAliveClosure::do_oop(oop obj) {
8024   HeapWord* addr = (HeapWord*)obj;
8025   if (_span.contains(addr) &&
8026       !_bit_map->isMarked(addr)) {
8027     // In general, during recursive tracing, several threads
8028     // may be concurrently getting here; the first one to
8029     // "tag" it, claims it.
8030     if (_bit_map->par_mark(addr)) {
8031       bool res = _work_queue->push(obj);
8032       assert(res, "Low water mark should be much less than capacity");
8033       // Do a recursive trim in the hope that this will keep
8034       // stack usage lower, but leave some oops for potential stealers
8035       trim_queue(_low_water_mark);
8036     } // Else, another thread got there first
8037   }
8038 }
8039 
8040 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8041 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8042 
8043 void CMSParKeepAliveClosure::trim_queue(uint max) {
8044   while (_work_queue->size() > max) {
8045     oop new_oop;
8046     if (_work_queue->pop_local(new_oop)) {
8047       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8048       assert(_bit_map->isMarked((HeapWord*)new_oop),
8049              "no white objects on this stack!");
8050       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8051       // iterate over the oops in this oop, marking and pushing
8052       // the ones in CMS heap (i.e. in _span).
8053       new_oop->oop_iterate(&_mark_and_push);
8054     }
8055   }
8056 }
8057 
8058 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8059                                 CMSCollector* collector,
8060                                 MemRegion span, CMSBitMap* bit_map,
8061                                 OopTaskQueue* work_queue):
8062   _collector(collector),
8063   _span(span),
8064   _bit_map(bit_map),
8065   _work_queue(work_queue) { }
8066 
8067 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8068   HeapWord* addr = (HeapWord*)obj;
8069   if (_span.contains(addr) &&
8070       !_bit_map->isMarked(addr)) {
8071     if (_bit_map->par_mark(addr)) {
8072       bool simulate_overflow = false;
8073       NOT_PRODUCT(
8074         if (CMSMarkStackOverflowALot &&
8075             _collector->par_simulate_overflow()) {
8076           // simulate a stack overflow
8077           simulate_overflow = true;
8078         }
8079       )
8080       if (simulate_overflow || !_work_queue->push(obj)) {
8081         _collector->par_push_on_overflow_list(obj);
8082         _collector->_par_kac_ovflw++;
8083       }
8084     } // Else another thread got there already
8085   }
8086 }
8087 
8088 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8089 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8090 
8091 //////////////////////////////////////////////////////////////////
8092 //  CMSExpansionCause                /////////////////////////////
8093 //////////////////////////////////////////////////////////////////
8094 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8095   switch (cause) {
8096     case _no_expansion:
8097       return "No expansion";
8098     case _satisfy_free_ratio:
8099       return "Free ratio";
8100     case _satisfy_promotion:
8101       return "Satisfy promotion";
8102     case _satisfy_allocation:
8103       return "allocation";
8104     case _allocate_par_lab:
8105       return "Par LAB";
8106     case _allocate_par_spooling_space:
8107       return "Par Spooling Space";
8108     case _adaptive_size_policy:
8109       return "Ergonomics";
8110     default:
8111       return "unknown";
8112   }
8113 }
8114 
8115 void CMSDrainMarkingStackClosure::do_void() {
8116   // the max number to take from overflow list at a time
8117   const size_t num = _mark_stack->capacity()/4;
8118   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8119          "Overflow list should be NULL during concurrent phases");
8120   while (!_mark_stack->isEmpty() ||
8121          // if stack is empty, check the overflow list
8122          _collector->take_from_overflow_list(num, _mark_stack)) {
8123     oop obj = _mark_stack->pop();
8124     HeapWord* addr = (HeapWord*)obj;
8125     assert(_span.contains(addr), "Should be within span");
8126     assert(_bit_map->isMarked(addr), "Should be marked");
8127     assert(obj->is_oop(), "Should be an oop");
8128     obj->oop_iterate(_keep_alive);
8129   }
8130 }
8131 
8132 void CMSParDrainMarkingStackClosure::do_void() {
8133   // drain queue
8134   trim_queue(0);
8135 }
8136 
8137 // Trim our work_queue so its length is below max at return
8138 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8139   while (_work_queue->size() > max) {
8140     oop new_oop;
8141     if (_work_queue->pop_local(new_oop)) {
8142       assert(new_oop->is_oop(), "Expected an oop");
8143       assert(_bit_map->isMarked((HeapWord*)new_oop),
8144              "no white objects on this stack!");
8145       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8146       // iterate over the oops in this oop, marking and pushing
8147       // the ones in CMS heap (i.e. in _span).
8148       new_oop->oop_iterate(&_mark_and_push);
8149     }
8150   }
8151 }
8152 
8153 ////////////////////////////////////////////////////////////////////
8154 // Support for Marking Stack Overflow list handling and related code
8155 ////////////////////////////////////////////////////////////////////
8156 // Much of the following code is similar in shape and spirit to the
8157 // code used in ParNewGC. We should try and share that code
8158 // as much as possible in the future.
8159 
8160 #ifndef PRODUCT
8161 // Debugging support for CMSStackOverflowALot
8162 
8163 // It's OK to call this multi-threaded;  the worst thing
8164 // that can happen is that we'll get a bunch of closely
8165 // spaced simulated overflows, but that's OK, in fact
8166 // probably good as it would exercise the overflow code
8167 // under contention.
8168 bool CMSCollector::simulate_overflow() {
8169   if (_overflow_counter-- <= 0) { // just being defensive
8170     _overflow_counter = CMSMarkStackOverflowInterval;
8171     return true;
8172   } else {
8173     return false;
8174   }
8175 }
8176 
8177 bool CMSCollector::par_simulate_overflow() {
8178   return simulate_overflow();
8179 }
8180 #endif
8181 
8182 // Single-threaded
8183 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8184   assert(stack->isEmpty(), "Expected precondition");
8185   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8186   size_t i = num;
8187   oop  cur = _overflow_list;
8188   const markOop proto = markOopDesc::prototype();
8189   NOT_PRODUCT(ssize_t n = 0;)
8190   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8191     next = oop(cur->mark());
8192     cur->set_mark(proto);   // until proven otherwise
8193     assert(cur->is_oop(), "Should be an oop");
8194     bool res = stack->push(cur);
8195     assert(res, "Bit off more than can chew?");
8196     NOT_PRODUCT(n++;)
8197   }
8198   _overflow_list = cur;
8199 #ifndef PRODUCT
8200   assert(_num_par_pushes >= n, "Too many pops?");
8201   _num_par_pushes -=n;
8202 #endif
8203   return !stack->isEmpty();
8204 }
8205 
8206 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8207 // (MT-safe) Get a prefix of at most "num" from the list.
8208 // The overflow list is chained through the mark word of
8209 // each object in the list. We fetch the entire list,
8210 // break off a prefix of the right size and return the
8211 // remainder. If other threads try to take objects from
8212 // the overflow list at that time, they will wait for
8213 // some time to see if data becomes available. If (and
8214 // only if) another thread places one or more object(s)
8215 // on the global list before we have returned the suffix
8216 // to the global list, we will walk down our local list
8217 // to find its end and append the global list to
8218 // our suffix before returning it. This suffix walk can
8219 // prove to be expensive (quadratic in the amount of traffic)
8220 // when there are many objects in the overflow list and
8221 // there is much producer-consumer contention on the list.
8222 // *NOTE*: The overflow list manipulation code here and
8223 // in ParNewGeneration:: are very similar in shape,
8224 // except that in the ParNew case we use the old (from/eden)
8225 // copy of the object to thread the list via its klass word.
8226 // Because of the common code, if you make any changes in
8227 // the code below, please check the ParNew version to see if
8228 // similar changes might be needed.
8229 // CR 6797058 has been filed to consolidate the common code.
8230 bool CMSCollector::par_take_from_overflow_list(size_t num,
8231                                                OopTaskQueue* work_q,
8232                                                int no_of_gc_threads) {
8233   assert(work_q->size() == 0, "First empty local work queue");
8234   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8235   if (_overflow_list == NULL) {
8236     return false;
8237   }
8238   // Grab the entire list; we'll put back a suffix
8239   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8240   Thread* tid = Thread::current();
8241   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8242   // set to ParallelGCThreads.
8243   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8244   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8245   // If the list is busy, we spin for a short while,
8246   // sleeping between attempts to get the list.
8247   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8248     os::sleep(tid, sleep_time_millis, false);
8249     if (_overflow_list == NULL) {
8250       // Nothing left to take
8251       return false;
8252     } else if (_overflow_list != BUSY) {
8253       // Try and grab the prefix
8254       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8255     }
8256   }
8257   // If the list was found to be empty, or we spun long
8258   // enough, we give up and return empty-handed. If we leave
8259   // the list in the BUSY state below, it must be the case that
8260   // some other thread holds the overflow list and will set it
8261   // to a non-BUSY state in the future.
8262   if (prefix == NULL || prefix == BUSY) {
8263      // Nothing to take or waited long enough
8264      if (prefix == NULL) {
8265        // Write back the NULL in case we overwrote it with BUSY above
8266        // and it is still the same value.
8267        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8268      }
8269      return false;
8270   }
8271   assert(prefix != NULL && prefix != BUSY, "Error");
8272   size_t i = num;
8273   oop cur = prefix;
8274   // Walk down the first "num" objects, unless we reach the end.
8275   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8276   if (cur->mark() == NULL) {
8277     // We have "num" or fewer elements in the list, so there
8278     // is nothing to return to the global list.
8279     // Write back the NULL in lieu of the BUSY we wrote
8280     // above, if it is still the same value.
8281     if (_overflow_list == BUSY) {
8282       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8283     }
8284   } else {
8285     // Chop off the suffix and return it to the global list.
8286     assert(cur->mark() != BUSY, "Error");
8287     oop suffix_head = cur->mark(); // suffix will be put back on global list
8288     cur->set_mark(NULL);           // break off suffix
8289     // It's possible that the list is still in the empty(busy) state
8290     // we left it in a short while ago; in that case we may be
8291     // able to place back the suffix without incurring the cost
8292     // of a walk down the list.
8293     oop observed_overflow_list = _overflow_list;
8294     oop cur_overflow_list = observed_overflow_list;
8295     bool attached = false;
8296     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8297       observed_overflow_list =
8298         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8299       if (cur_overflow_list == observed_overflow_list) {
8300         attached = true;
8301         break;
8302       } else cur_overflow_list = observed_overflow_list;
8303     }
8304     if (!attached) {
8305       // Too bad, someone else sneaked in (at least) an element; we'll need
8306       // to do a splice. Find tail of suffix so we can prepend suffix to global
8307       // list.
8308       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8309       oop suffix_tail = cur;
8310       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8311              "Tautology");
8312       observed_overflow_list = _overflow_list;
8313       do {
8314         cur_overflow_list = observed_overflow_list;
8315         if (cur_overflow_list != BUSY) {
8316           // Do the splice ...
8317           suffix_tail->set_mark(markOop(cur_overflow_list));
8318         } else { // cur_overflow_list == BUSY
8319           suffix_tail->set_mark(NULL);
8320         }
8321         // ... and try to place spliced list back on overflow_list ...
8322         observed_overflow_list =
8323           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8324       } while (cur_overflow_list != observed_overflow_list);
8325       // ... until we have succeeded in doing so.
8326     }
8327   }
8328 
8329   // Push the prefix elements on work_q
8330   assert(prefix != NULL, "control point invariant");
8331   const markOop proto = markOopDesc::prototype();
8332   oop next;
8333   NOT_PRODUCT(ssize_t n = 0;)
8334   for (cur = prefix; cur != NULL; cur = next) {
8335     next = oop(cur->mark());
8336     cur->set_mark(proto);   // until proven otherwise
8337     assert(cur->is_oop(), "Should be an oop");
8338     bool res = work_q->push(cur);
8339     assert(res, "Bit off more than we can chew?");
8340     NOT_PRODUCT(n++;)
8341   }
8342 #ifndef PRODUCT
8343   assert(_num_par_pushes >= n, "Too many pops?");
8344   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8345 #endif
8346   return true;
8347 }
8348 
8349 // Single-threaded
8350 void CMSCollector::push_on_overflow_list(oop p) {
8351   NOT_PRODUCT(_num_par_pushes++;)
8352   assert(p->is_oop(), "Not an oop");
8353   preserve_mark_if_necessary(p);
8354   p->set_mark((markOop)_overflow_list);
8355   _overflow_list = p;
8356 }
8357 
8358 // Multi-threaded; use CAS to prepend to overflow list
8359 void CMSCollector::par_push_on_overflow_list(oop p) {
8360   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8361   assert(p->is_oop(), "Not an oop");
8362   par_preserve_mark_if_necessary(p);
8363   oop observed_overflow_list = _overflow_list;
8364   oop cur_overflow_list;
8365   do {
8366     cur_overflow_list = observed_overflow_list;
8367     if (cur_overflow_list != BUSY) {
8368       p->set_mark(markOop(cur_overflow_list));
8369     } else {
8370       p->set_mark(NULL);
8371     }
8372     observed_overflow_list =
8373       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8374   } while (cur_overflow_list != observed_overflow_list);
8375 }
8376 #undef BUSY
8377 
8378 // Single threaded
8379 // General Note on GrowableArray: pushes may silently fail
8380 // because we are (temporarily) out of C-heap for expanding
8381 // the stack. The problem is quite ubiquitous and affects
8382 // a lot of code in the JVM. The prudent thing for GrowableArray
8383 // to do (for now) is to exit with an error. However, that may
8384 // be too draconian in some cases because the caller may be
8385 // able to recover without much harm. For such cases, we
8386 // should probably introduce a "soft_push" method which returns
8387 // an indication of success or failure with the assumption that
8388 // the caller may be able to recover from a failure; code in
8389 // the VM can then be changed, incrementally, to deal with such
8390 // failures where possible, thus, incrementally hardening the VM
8391 // in such low resource situations.
8392 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8393   _preserved_oop_stack.push(p);
8394   _preserved_mark_stack.push(m);
8395   assert(m == p->mark(), "Mark word changed");
8396   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8397          "bijection");
8398 }
8399 
8400 // Single threaded
8401 void CMSCollector::preserve_mark_if_necessary(oop p) {
8402   markOop m = p->mark();
8403   if (m->must_be_preserved(p)) {
8404     preserve_mark_work(p, m);
8405   }
8406 }
8407 
8408 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8409   markOop m = p->mark();
8410   if (m->must_be_preserved(p)) {
8411     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8412     // Even though we read the mark word without holding
8413     // the lock, we are assured that it will not change
8414     // because we "own" this oop, so no other thread can
8415     // be trying to push it on the overflow list; see
8416     // the assertion in preserve_mark_work() that checks
8417     // that m == p->mark().
8418     preserve_mark_work(p, m);
8419   }
8420 }
8421 
8422 // We should be able to do this multi-threaded,
8423 // a chunk of stack being a task (this is
8424 // correct because each oop only ever appears
8425 // once in the overflow list. However, it's
8426 // not very easy to completely overlap this with
8427 // other operations, so will generally not be done
8428 // until all work's been completed. Because we
8429 // expect the preserved oop stack (set) to be small,
8430 // it's probably fine to do this single-threaded.
8431 // We can explore cleverer concurrent/overlapped/parallel
8432 // processing of preserved marks if we feel the
8433 // need for this in the future. Stack overflow should
8434 // be so rare in practice and, when it happens, its
8435 // effect on performance so great that this will
8436 // likely just be in the noise anyway.
8437 void CMSCollector::restore_preserved_marks_if_any() {
8438   assert(SafepointSynchronize::is_at_safepoint(),
8439          "world should be stopped");
8440   assert(Thread::current()->is_ConcurrentGC_thread() ||
8441          Thread::current()->is_VM_thread(),
8442          "should be single-threaded");
8443   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8444          "bijection");
8445 
8446   while (!_preserved_oop_stack.is_empty()) {
8447     oop p = _preserved_oop_stack.pop();
8448     assert(p->is_oop(), "Should be an oop");
8449     assert(_span.contains(p), "oop should be in _span");
8450     assert(p->mark() == markOopDesc::prototype(),
8451            "Set when taken from overflow list");
8452     markOop m = _preserved_mark_stack.pop();
8453     p->set_mark(m);
8454   }
8455   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8456          "stacks were cleared above");
8457 }
8458 
8459 #ifndef PRODUCT
8460 bool CMSCollector::no_preserved_marks() const {
8461   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8462 }
8463 #endif
8464 
8465 // Transfer some number of overflown objects to usual marking
8466 // stack. Return true if some objects were transferred.
8467 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8468   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8469                     (size_t)ParGCDesiredObjsFromOverflowList);
8470 
8471   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8472   assert(_collector->overflow_list_is_empty() || res,
8473          "If list is not empty, we should have taken something");
8474   assert(!res || !_mark_stack->isEmpty(),
8475          "If we took something, it should now be on our stack");
8476   return res;
8477 }
8478 
8479 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8480   size_t res = _sp->block_size_no_stall(addr, _collector);
8481   if (_sp->block_is_obj(addr)) {
8482     if (_live_bit_map->isMarked(addr)) {
8483       // It can't have been dead in a previous cycle
8484       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8485     } else {
8486       _dead_bit_map->mark(addr);      // mark the dead object
8487     }
8488   }
8489   // Could be 0, if the block size could not be computed without stalling.
8490   return res;
8491 }
8492 
8493 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8494 
8495   switch (phase) {
8496     case CMSCollector::InitialMarking:
8497       initialize(true  /* fullGC */ ,
8498                  cause /* cause of the GC */,
8499                  true  /* recordGCBeginTime */,
8500                  true  /* recordPreGCUsage */,
8501                  false /* recordPeakUsage */,
8502                  false /* recordPostGCusage */,
8503                  true  /* recordAccumulatedGCTime */,
8504                  false /* recordGCEndTime */,
8505                  false /* countCollection */  );
8506       break;
8507 
8508     case CMSCollector::FinalMarking:
8509       initialize(true  /* fullGC */ ,
8510                  cause /* cause of the GC */,
8511                  false /* recordGCBeginTime */,
8512                  false /* recordPreGCUsage */,
8513                  false /* recordPeakUsage */,
8514                  false /* recordPostGCusage */,
8515                  true  /* recordAccumulatedGCTime */,
8516                  false /* recordGCEndTime */,
8517                  false /* countCollection */  );
8518       break;
8519 
8520     case CMSCollector::Sweeping:
8521       initialize(true  /* fullGC */ ,
8522                  cause /* cause of the GC */,
8523                  false /* recordGCBeginTime */,
8524                  false /* recordPreGCUsage */,
8525                  true  /* recordPeakUsage */,
8526                  true  /* recordPostGCusage */,
8527                  false /* recordAccumulatedGCTime */,
8528                  true  /* recordGCEndTime */,
8529                  true  /* countCollection */  );
8530       break;
8531 
8532     default:
8533       ShouldNotReachHere();
8534   }
8535 }