1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "utilities/globalDefinitions.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  74 
  75 // turn it on so that the contents of the young list (scan-only /
  76 // to-be-collected) are printed at "strategic" points before / during
  77 // / after the collection --- this is useful for debugging
  78 #define YOUNG_LIST_VERBOSE 0
  79 // CURRENT STATUS
  80 // This file is under construction.  Search for "FIXME".
  81 
  82 // INVARIANTS/NOTES
  83 //
  84 // All allocation activity covered by the G1CollectedHeap interface is
  85 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  86 // and allocate_new_tlab, which are the "entry" points to the
  87 // allocation code from the rest of the JVM.  (Note that this does not
  88 // apply to TLAB allocation, which is not part of this interface: it
  89 // is done by clients of this interface.)
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   bool _concurrent;
  95 public:
  96   RefineCardTableEntryClosure() : _concurrent(true) { }
  97 
  98   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  99     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112 
 113   void set_concurrent(bool b) { _concurrent = b; }
 114 };
 115 
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 118  private:
 119   size_t _num_processed;
 120 
 121  public:
 122   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 123 
 124   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 125     *card_ptr = CardTableModRefBS::dirty_card_val();
 126     _num_processed++;
 127     return true;
 128   }
 129 
 130   size_t num_processed() const { return _num_processed; }
 131 };
 132 
 133 YoungList::YoungList(G1CollectedHeap* g1h) :
 134     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 135     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 136   guarantee(check_list_empty(false), "just making sure...");
 137 }
 138 
 139 void YoungList::push_region(HeapRegion *hr) {
 140   assert(!hr->is_young(), "should not already be young");
 141   assert(hr->get_next_young_region() == NULL, "cause it should!");
 142 
 143   hr->set_next_young_region(_head);
 144   _head = hr;
 145 
 146   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 147   ++_length;
 148 }
 149 
 150 void YoungList::add_survivor_region(HeapRegion* hr) {
 151   assert(hr->is_survivor(), "should be flagged as survivor region");
 152   assert(hr->get_next_young_region() == NULL, "cause it should!");
 153 
 154   hr->set_next_young_region(_survivor_head);
 155   if (_survivor_head == NULL) {
 156     _survivor_tail = hr;
 157   }
 158   _survivor_head = hr;
 159   ++_survivor_length;
 160 }
 161 
 162 void YoungList::empty_list(HeapRegion* list) {
 163   while (list != NULL) {
 164     HeapRegion* next = list->get_next_young_region();
 165     list->set_next_young_region(NULL);
 166     list->uninstall_surv_rate_group();
 167     // This is called before a Full GC and all the non-empty /
 168     // non-humongous regions at the end of the Full GC will end up as
 169     // old anyway.
 170     list->set_old();
 171     list = next;
 172   }
 173 }
 174 
 175 void YoungList::empty_list() {
 176   assert(check_list_well_formed(), "young list should be well formed");
 177 
 178   empty_list(_head);
 179   _head = NULL;
 180   _length = 0;
 181 
 182   empty_list(_survivor_head);
 183   _survivor_head = NULL;
 184   _survivor_tail = NULL;
 185   _survivor_length = 0;
 186 
 187   _last_sampled_rs_lengths = 0;
 188 
 189   assert(check_list_empty(false), "just making sure...");
 190 }
 191 
 192 bool YoungList::check_list_well_formed() {
 193   bool ret = true;
 194 
 195   uint length = 0;
 196   HeapRegion* curr = _head;
 197   HeapRegion* last = NULL;
 198   while (curr != NULL) {
 199     if (!curr->is_young()) {
 200       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 201                              "incorrectly tagged (y: %d, surv: %d)",
 202                              p2i(curr->bottom()), p2i(curr->end()),
 203                              curr->is_young(), curr->is_survivor());
 204       ret = false;
 205     }
 206     ++length;
 207     last = curr;
 208     curr = curr->get_next_young_region();
 209   }
 210   ret = ret && (length == _length);
 211 
 212   if (!ret) {
 213     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 214     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 215                            length, _length);
 216   }
 217 
 218   return ret;
 219 }
 220 
 221 bool YoungList::check_list_empty(bool check_sample) {
 222   bool ret = true;
 223 
 224   if (_length != 0) {
 225     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 226                   _length);
 227     ret = false;
 228   }
 229   if (check_sample && _last_sampled_rs_lengths != 0) {
 230     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 231     ret = false;
 232   }
 233   if (_head != NULL) {
 234     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 235     ret = false;
 236   }
 237   if (!ret) {
 238     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 239   }
 240 
 241   return ret;
 242 }
 243 
 244 void
 245 YoungList::rs_length_sampling_init() {
 246   _sampled_rs_lengths = 0;
 247   _curr               = _head;
 248 }
 249 
 250 bool
 251 YoungList::rs_length_sampling_more() {
 252   return _curr != NULL;
 253 }
 254 
 255 void
 256 YoungList::rs_length_sampling_next() {
 257   assert( _curr != NULL, "invariant" );
 258   size_t rs_length = _curr->rem_set()->occupied();
 259 
 260   _sampled_rs_lengths += rs_length;
 261 
 262   // The current region may not yet have been added to the
 263   // incremental collection set (it gets added when it is
 264   // retired as the current allocation region).
 265   if (_curr->in_collection_set()) {
 266     // Update the collection set policy information for this region
 267     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 268   }
 269 
 270   _curr = _curr->get_next_young_region();
 271   if (_curr == NULL) {
 272     _last_sampled_rs_lengths = _sampled_rs_lengths;
 273     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 274   }
 275 }
 276 
 277 void
 278 YoungList::reset_auxilary_lists() {
 279   guarantee( is_empty(), "young list should be empty" );
 280   assert(check_list_well_formed(), "young list should be well formed");
 281 
 282   // Add survivor regions to SurvRateGroup.
 283   _g1h->g1_policy()->note_start_adding_survivor_regions();
 284   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 285 
 286   int young_index_in_cset = 0;
 287   for (HeapRegion* curr = _survivor_head;
 288        curr != NULL;
 289        curr = curr->get_next_young_region()) {
 290     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 291 
 292     // The region is a non-empty survivor so let's add it to
 293     // the incremental collection set for the next evacuation
 294     // pause.
 295     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 296     young_index_in_cset += 1;
 297   }
 298   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 299   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 300 
 301   _head   = _survivor_head;
 302   _length = _survivor_length;
 303   if (_survivor_head != NULL) {
 304     assert(_survivor_tail != NULL, "cause it shouldn't be");
 305     assert(_survivor_length > 0, "invariant");
 306     _survivor_tail->set_next_young_region(NULL);
 307   }
 308 
 309   // Don't clear the survivor list handles until the start of
 310   // the next evacuation pause - we need it in order to re-tag
 311   // the survivor regions from this evacuation pause as 'young'
 312   // at the start of the next.
 313 
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 315 
 316   assert(check_list_well_formed(), "young list should be well formed");
 317 }
 318 
 319 void YoungList::print() {
 320   HeapRegion* lists[] = {_head,   _survivor_head};
 321   const char* names[] = {"YOUNG", "SURVIVOR"};
 322 
 323   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 324     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 325     HeapRegion *curr = lists[list];
 326     if (curr == NULL)
 327       gclog_or_tty->print_cr("  empty");
 328     while (curr != NULL) {
 329       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 330                              HR_FORMAT_PARAMS(curr),
 331                              p2i(curr->prev_top_at_mark_start()),
 332                              p2i(curr->next_top_at_mark_start()),
 333                              curr->age_in_surv_rate_group_cond());
 334       curr = curr->get_next_young_region();
 335     }
 336   }
 337 
 338   gclog_or_tty->cr();
 339 }
 340 
 341 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 342   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 343 }
 344 
 345 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 346   // The from card cache is not the memory that is actually committed. So we cannot
 347   // take advantage of the zero_filled parameter.
 348   reset_from_card_cache(start_idx, num_regions);
 349 }
 350 
 351 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 352 {
 353   // Claim the right to put the region on the dirty cards region list
 354   // by installing a self pointer.
 355   HeapRegion* next = hr->get_next_dirty_cards_region();
 356   if (next == NULL) {
 357     HeapRegion* res = (HeapRegion*)
 358       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 359                           NULL);
 360     if (res == NULL) {
 361       HeapRegion* head;
 362       do {
 363         // Put the region to the dirty cards region list.
 364         head = _dirty_cards_region_list;
 365         next = (HeapRegion*)
 366           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 367         if (next == head) {
 368           assert(hr->get_next_dirty_cards_region() == hr,
 369                  "hr->get_next_dirty_cards_region() != hr");
 370           if (next == NULL) {
 371             // The last region in the list points to itself.
 372             hr->set_next_dirty_cards_region(hr);
 373           } else {
 374             hr->set_next_dirty_cards_region(next);
 375           }
 376         }
 377       } while (next != head);
 378     }
 379   }
 380 }
 381 
 382 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 383 {
 384   HeapRegion* head;
 385   HeapRegion* hr;
 386   do {
 387     head = _dirty_cards_region_list;
 388     if (head == NULL) {
 389       return NULL;
 390     }
 391     HeapRegion* new_head = head->get_next_dirty_cards_region();
 392     if (head == new_head) {
 393       // The last region.
 394       new_head = NULL;
 395     }
 396     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 397                                           head);
 398   } while (hr != head);
 399   assert(hr != NULL, "invariant");
 400   hr->set_next_dirty_cards_region(NULL);
 401   return hr;
 402 }
 403 
 404 // Returns true if the reference points to an object that
 405 // can move in an incremental collection.
 406 bool G1CollectedHeap::is_scavengable(const void* p) {
 407   HeapRegion* hr = heap_region_containing(p);
 408   return !hr->is_pinned();
 409 }
 410 
 411 // Private methods.
 412 
 413 HeapRegion*
 414 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 415   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 416   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 417     if (!_secondary_free_list.is_empty()) {
 418       if (G1ConcRegionFreeingVerbose) {
 419         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 420                                "secondary_free_list has %u entries",
 421                                _secondary_free_list.length());
 422       }
 423       // It looks as if there are free regions available on the
 424       // secondary_free_list. Let's move them to the free_list and try
 425       // again to allocate from it.
 426       append_secondary_free_list();
 427 
 428       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 429              "empty we should have moved at least one entry to the free_list");
 430       HeapRegion* res = _hrm.allocate_free_region(is_old);
 431       if (G1ConcRegionFreeingVerbose) {
 432         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 433                                "allocated " HR_FORMAT " from secondary_free_list",
 434                                HR_FORMAT_PARAMS(res));
 435       }
 436       return res;
 437     }
 438 
 439     // Wait here until we get notified either when (a) there are no
 440     // more free regions coming or (b) some regions have been moved on
 441     // the secondary_free_list.
 442     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 443   }
 444 
 445   if (G1ConcRegionFreeingVerbose) {
 446     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 447                            "could not allocate from secondary_free_list");
 448   }
 449   return NULL;
 450 }
 451 
 452 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 453   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 454          "the only time we use this to allocate a humongous region is "
 455          "when we are allocating a single humongous region");
 456 
 457   HeapRegion* res;
 458   if (G1StressConcRegionFreeing) {
 459     if (!_secondary_free_list.is_empty()) {
 460       if (G1ConcRegionFreeingVerbose) {
 461         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 462                                "forced to look at the secondary_free_list");
 463       }
 464       res = new_region_try_secondary_free_list(is_old);
 465       if (res != NULL) {
 466         return res;
 467       }
 468     }
 469   }
 470 
 471   res = _hrm.allocate_free_region(is_old);
 472 
 473   if (res == NULL) {
 474     if (G1ConcRegionFreeingVerbose) {
 475       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 476                              "res == NULL, trying the secondary_free_list");
 477     }
 478     res = new_region_try_secondary_free_list(is_old);
 479   }
 480   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 481     // Currently, only attempts to allocate GC alloc regions set
 482     // do_expand to true. So, we should only reach here during a
 483     // safepoint. If this assumption changes we might have to
 484     // reconsider the use of _expand_heap_after_alloc_failure.
 485     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 486 
 487     ergo_verbose1(ErgoHeapSizing,
 488                   "attempt heap expansion",
 489                   ergo_format_reason("region allocation request failed")
 490                   ergo_format_byte("allocation request"),
 491                   word_size * HeapWordSize);
 492     if (expand(word_size * HeapWordSize)) {
 493       // Given that expand() succeeded in expanding the heap, and we
 494       // always expand the heap by an amount aligned to the heap
 495       // region size, the free list should in theory not be empty.
 496       // In either case allocate_free_region() will check for NULL.
 497       res = _hrm.allocate_free_region(is_old);
 498     } else {
 499       _expand_heap_after_alloc_failure = false;
 500     }
 501   }
 502   return res;
 503 }
 504 
 505 HeapWord*
 506 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 507                                                            uint num_regions,
 508                                                            size_t word_size,
 509                                                            AllocationContext_t context) {
 510   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 511   assert(is_humongous(word_size), "word_size should be humongous");
 512   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 513 
 514   // Index of last region in the series + 1.
 515   uint last = first + num_regions;
 516 
 517   // We need to initialize the region(s) we just discovered. This is
 518   // a bit tricky given that it can happen concurrently with
 519   // refinement threads refining cards on these regions and
 520   // potentially wanting to refine the BOT as they are scanning
 521   // those cards (this can happen shortly after a cleanup; see CR
 522   // 6991377). So we have to set up the region(s) carefully and in
 523   // a specific order.
 524 
 525   // The word size sum of all the regions we will allocate.
 526   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 527   assert(word_size <= word_size_sum, "sanity");
 528 
 529   // This will be the "starts humongous" region.
 530   HeapRegion* first_hr = region_at(first);
 531   // The header of the new object will be placed at the bottom of
 532   // the first region.
 533   HeapWord* new_obj = first_hr->bottom();
 534   // This will be the new end of the first region in the series that
 535   // should also match the end of the last region in the series.
 536   HeapWord* new_end = new_obj + word_size_sum;
 537   // This will be the new top of the first region that will reflect
 538   // this allocation.
 539   HeapWord* new_top = new_obj + word_size;
 540 
 541   // First, we need to zero the header of the space that we will be
 542   // allocating. When we update top further down, some refinement
 543   // threads might try to scan the region. By zeroing the header we
 544   // ensure that any thread that will try to scan the region will
 545   // come across the zero klass word and bail out.
 546   //
 547   // NOTE: It would not have been correct to have used
 548   // CollectedHeap::fill_with_object() and make the space look like
 549   // an int array. The thread that is doing the allocation will
 550   // later update the object header to a potentially different array
 551   // type and, for a very short period of time, the klass and length
 552   // fields will be inconsistent. This could cause a refinement
 553   // thread to calculate the object size incorrectly.
 554   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 555 
 556   // We will set up the first region as "starts humongous". This
 557   // will also update the BOT covering all the regions to reflect
 558   // that there is a single object that starts at the bottom of the
 559   // first region.
 560   first_hr->set_starts_humongous(new_top, new_end);
 561   first_hr->set_allocation_context(context);
 562   // Then, if there are any, we will set up the "continues
 563   // humongous" regions.
 564   HeapRegion* hr = NULL;
 565   for (uint i = first + 1; i < last; ++i) {
 566     hr = region_at(i);
 567     hr->set_continues_humongous(first_hr);
 568     hr->set_allocation_context(context);
 569   }
 570   // If we have "continues humongous" regions (hr != NULL), then the
 571   // end of the last one should match new_end.
 572   assert(hr == NULL || hr->end() == new_end, "sanity");
 573 
 574   // Up to this point no concurrent thread would have been able to
 575   // do any scanning on any region in this series. All the top
 576   // fields still point to bottom, so the intersection between
 577   // [bottom,top] and [card_start,card_end] will be empty. Before we
 578   // update the top fields, we'll do a storestore to make sure that
 579   // no thread sees the update to top before the zeroing of the
 580   // object header and the BOT initialization.
 581   OrderAccess::storestore();
 582 
 583   // Now that the BOT and the object header have been initialized,
 584   // we can update top of the "starts humongous" region.
 585   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 586          "new_top should be in this region");
 587   first_hr->set_top(new_top);
 588   if (_hr_printer.is_active()) {
 589     HeapWord* bottom = first_hr->bottom();
 590     HeapWord* end = first_hr->orig_end();
 591     if ((first + 1) == last) {
 592       // the series has a single humongous region
 593       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 594     } else {
 595       // the series has more than one humongous regions
 596       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 597     }
 598   }
 599 
 600   // Now, we will update the top fields of the "continues humongous"
 601   // regions. The reason we need to do this is that, otherwise,
 602   // these regions would look empty and this will confuse parts of
 603   // G1. For example, the code that looks for a consecutive number
 604   // of empty regions will consider them empty and try to
 605   // re-allocate them. We can extend is_empty() to also include
 606   // !is_continues_humongous(), but it is easier to just update the top
 607   // fields here. The way we set top for all regions (i.e., top ==
 608   // end for all regions but the last one, top == new_top for the
 609   // last one) is actually used when we will free up the humongous
 610   // region in free_humongous_region().
 611   hr = NULL;
 612   for (uint i = first + 1; i < last; ++i) {
 613     hr = region_at(i);
 614     if ((i + 1) == last) {
 615       // last continues humongous region
 616       assert(hr->bottom() < new_top && new_top <= hr->end(),
 617              "new_top should fall on this region");
 618       hr->set_top(new_top);
 619       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 620     } else {
 621       // not last one
 622       assert(new_top > hr->end(), "new_top should be above this region");
 623       hr->set_top(hr->end());
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 625     }
 626   }
 627   // If we have continues humongous regions (hr != NULL), then the
 628   // end of the last one should match new_end and its top should
 629   // match new_top.
 630   assert(hr == NULL ||
 631          (hr->end() == new_end && hr->top() == new_top), "sanity");
 632   check_bitmaps("Humongous Region Allocation", first_hr);
 633 
 634   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 635   increase_used(first_hr->used());
 636   _humongous_set.add(first_hr);
 637 
 638   return new_obj;
 639 }
 640 
 641 // If could fit into free regions w/o expansion, try.
 642 // Otherwise, if can expand, do so.
 643 // Otherwise, if using ex regions might help, try with ex given back.
 644 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 645   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 646 
 647   verify_region_sets_optional();
 648 
 649   uint first = G1_NO_HRM_INDEX;
 650   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 651 
 652   if (obj_regions == 1) {
 653     // Only one region to allocate, try to use a fast path by directly allocating
 654     // from the free lists. Do not try to expand here, we will potentially do that
 655     // later.
 656     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 657     if (hr != NULL) {
 658       first = hr->hrm_index();
 659     }
 660   } else {
 661     // We can't allocate humongous regions spanning more than one region while
 662     // cleanupComplete() is running, since some of the regions we find to be
 663     // empty might not yet be added to the free list. It is not straightforward
 664     // to know in which list they are on so that we can remove them. We only
 665     // need to do this if we need to allocate more than one region to satisfy the
 666     // current humongous allocation request. If we are only allocating one region
 667     // we use the one-region region allocation code (see above), that already
 668     // potentially waits for regions from the secondary free list.
 669     wait_while_free_regions_coming();
 670     append_secondary_free_list_if_not_empty_with_lock();
 671 
 672     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 673     // are lucky enough to find some.
 674     first = _hrm.find_contiguous_only_empty(obj_regions);
 675     if (first != G1_NO_HRM_INDEX) {
 676       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 677     }
 678   }
 679 
 680   if (first == G1_NO_HRM_INDEX) {
 681     // Policy: We could not find enough regions for the humongous object in the
 682     // free list. Look through the heap to find a mix of free and uncommitted regions.
 683     // If so, try expansion.
 684     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 685     if (first != G1_NO_HRM_INDEX) {
 686       // We found something. Make sure these regions are committed, i.e. expand
 687       // the heap. Alternatively we could do a defragmentation GC.
 688       ergo_verbose1(ErgoHeapSizing,
 689                     "attempt heap expansion",
 690                     ergo_format_reason("humongous allocation request failed")
 691                     ergo_format_byte("allocation request"),
 692                     word_size * HeapWordSize);
 693 
 694       _hrm.expand_at(first, obj_regions);
 695       g1_policy()->record_new_heap_size(num_regions());
 696 
 697 #ifdef ASSERT
 698       for (uint i = first; i < first + obj_regions; ++i) {
 699         HeapRegion* hr = region_at(i);
 700         assert(hr->is_free(), "sanity");
 701         assert(hr->is_empty(), "sanity");
 702         assert(is_on_master_free_list(hr), "sanity");
 703       }
 704 #endif
 705       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 706     } else {
 707       // Policy: Potentially trigger a defragmentation GC.
 708     }
 709   }
 710 
 711   HeapWord* result = NULL;
 712   if (first != G1_NO_HRM_INDEX) {
 713     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 714                                                        word_size, context);
 715     assert(result != NULL, "it should always return a valid result");
 716 
 717     // A successful humongous object allocation changes the used space
 718     // information of the old generation so we need to recalculate the
 719     // sizes and update the jstat counters here.
 720     g1mm()->update_sizes();
 721   }
 722 
 723   verify_region_sets_optional();
 724 
 725   return result;
 726 }
 727 
 728 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 729   assert_heap_not_locked_and_not_at_safepoint();
 730   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 731 
 732   uint dummy_gc_count_before;
 733   uint dummy_gclocker_retry_count = 0;
 734   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 735 }
 736 
 737 HeapWord*
 738 G1CollectedHeap::mem_allocate(size_t word_size,
 739                               bool*  gc_overhead_limit_was_exceeded) {
 740   assert_heap_not_locked_and_not_at_safepoint();
 741 
 742   // Loop until the allocation is satisfied, or unsatisfied after GC.
 743   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 744     uint gc_count_before;
 745 
 746     HeapWord* result = NULL;
 747     if (!is_humongous(word_size)) {
 748       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 749     } else {
 750       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 751     }
 752     if (result != NULL) {
 753       return result;
 754     }
 755 
 756     // Create the garbage collection operation...
 757     VM_G1CollectForAllocation op(gc_count_before, word_size);
 758     op.set_allocation_context(AllocationContext::current());
 759 
 760     // ...and get the VM thread to execute it.
 761     VMThread::execute(&op);
 762 
 763     if (op.prologue_succeeded() && op.pause_succeeded()) {
 764       // If the operation was successful we'll return the result even
 765       // if it is NULL. If the allocation attempt failed immediately
 766       // after a Full GC, it's unlikely we'll be able to allocate now.
 767       HeapWord* result = op.result();
 768       if (result != NULL && !is_humongous(word_size)) {
 769         // Allocations that take place on VM operations do not do any
 770         // card dirtying and we have to do it here. We only have to do
 771         // this for non-humongous allocations, though.
 772         dirty_young_block(result, word_size);
 773       }
 774       return result;
 775     } else {
 776       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 777         return NULL;
 778       }
 779       assert(op.result() == NULL,
 780              "the result should be NULL if the VM op did not succeed");
 781     }
 782 
 783     // Give a warning if we seem to be looping forever.
 784     if ((QueuedAllocationWarningCount > 0) &&
 785         (try_count % QueuedAllocationWarningCount == 0)) {
 786       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 787     }
 788   }
 789 
 790   ShouldNotReachHere();
 791   return NULL;
 792 }
 793 
 794 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 795                                                    AllocationContext_t context,
 796                                                    uint* gc_count_before_ret,
 797                                                    uint* gclocker_retry_count_ret) {
 798   // Make sure you read the note in attempt_allocation_humongous().
 799 
 800   assert_heap_not_locked_and_not_at_safepoint();
 801   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 802          "be called for humongous allocation requests");
 803 
 804   // We should only get here after the first-level allocation attempt
 805   // (attempt_allocation()) failed to allocate.
 806 
 807   // We will loop until a) we manage to successfully perform the
 808   // allocation or b) we successfully schedule a collection which
 809   // fails to perform the allocation. b) is the only case when we'll
 810   // return NULL.
 811   HeapWord* result = NULL;
 812   for (int try_count = 1; /* we'll return */; try_count += 1) {
 813     bool should_try_gc;
 814     uint gc_count_before;
 815 
 816     {
 817       MutexLockerEx x(Heap_lock);
 818       result = _allocator->attempt_allocation_locked(word_size, context);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       if (GC_locker::is_active_and_needs_gc()) {
 824         if (g1_policy()->can_expand_young_list()) {
 825           // No need for an ergo verbose message here,
 826           // can_expand_young_list() does this when it returns true.
 827           result = _allocator->attempt_allocation_force(word_size, context);
 828           if (result != NULL) {
 829             return result;
 830           }
 831         }
 832         should_try_gc = false;
 833       } else {
 834         // The GCLocker may not be active but the GCLocker initiated
 835         // GC may not yet have been performed (GCLocker::needs_gc()
 836         // returns true). In this case we do not try this GC and
 837         // wait until the GCLocker initiated GC is performed, and
 838         // then retry the allocation.
 839         if (GC_locker::needs_gc()) {
 840           should_try_gc = false;
 841         } else {
 842           // Read the GC count while still holding the Heap_lock.
 843           gc_count_before = total_collections();
 844           should_try_gc = true;
 845         }
 846       }
 847     }
 848 
 849     if (should_try_gc) {
 850       bool succeeded;
 851       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 852                                    GCCause::_g1_inc_collection_pause);
 853       if (result != NULL) {
 854         assert(succeeded, "only way to get back a non-NULL result");
 855         return result;
 856       }
 857 
 858       if (succeeded) {
 859         // If we get here we successfully scheduled a collection which
 860         // failed to allocate. No point in trying to allocate
 861         // further. We'll just return NULL.
 862         MutexLockerEx x(Heap_lock);
 863         *gc_count_before_ret = total_collections();
 864         return NULL;
 865       }
 866     } else {
 867       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 868         MutexLockerEx x(Heap_lock);
 869         *gc_count_before_ret = total_collections();
 870         return NULL;
 871       }
 872       // The GCLocker is either active or the GCLocker initiated
 873       // GC has not yet been performed. Stall until it is and
 874       // then retry the allocation.
 875       GC_locker::stall_until_clear();
 876       (*gclocker_retry_count_ret) += 1;
 877     }
 878 
 879     // We can reach here if we were unsuccessful in scheduling a
 880     // collection (because another thread beat us to it) or if we were
 881     // stalled due to the GC locker. In either can we should retry the
 882     // allocation attempt in case another thread successfully
 883     // performed a collection and reclaimed enough space. We do the
 884     // first attempt (without holding the Heap_lock) here and the
 885     // follow-on attempt will be at the start of the next loop
 886     // iteration (after taking the Heap_lock).
 887     result = _allocator->attempt_allocation(word_size, context);
 888     if (result != NULL) {
 889       return result;
 890     }
 891 
 892     // Give a warning if we seem to be looping forever.
 893     if ((QueuedAllocationWarningCount > 0) &&
 894         (try_count % QueuedAllocationWarningCount == 0)) {
 895       warning("G1CollectedHeap::attempt_allocation_slow() "
 896               "retries %d times", try_count);
 897     }
 898   }
 899 
 900   ShouldNotReachHere();
 901   return NULL;
 902 }
 903 
 904 void G1CollectedHeap::begin_archive_alloc_range() {
 905   assert_at_safepoint(true /* should_be_vm_thread */);
 906   if (_archive_allocator == NULL) {
 907     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 908   }
 909 }
 910 
 911 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 912   // Allocations in archive regions cannot be of a size that would be considered
 913   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 914   // may be different at archive-restore time.
 915   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 916 }
 917 
 918 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 919   assert_at_safepoint(true /* should_be_vm_thread */);
 920   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 921   if (is_archive_alloc_too_large(word_size)) {
 922     return NULL;
 923   }
 924   return _archive_allocator->archive_mem_allocate(word_size);
 925 }
 926 
 927 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 928                                               size_t end_alignment_in_bytes) {
 929   assert_at_safepoint(true /* should_be_vm_thread */);
 930   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 931 
 932   // Call complete_archive to do the real work, filling in the MemRegion
 933   // array with the archive regions.
 934   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 935   delete _archive_allocator;
 936   _archive_allocator = NULL;
 937 }
 938 
 939 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 940   assert(ranges != NULL, "MemRegion array NULL");
 941   assert(count != 0, "No MemRegions provided");
 942   MemRegion reserved = _hrm.reserved();
 943   for (size_t i = 0; i < count; i++) {
 944     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 945       return false;
 946     }
 947   }
 948   return true;
 949 }
 950 
 951 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 952   assert(ranges != NULL, "MemRegion array NULL");
 953   assert(count != 0, "No MemRegions provided");
 954   MutexLockerEx x(Heap_lock);
 955 
 956   MemRegion reserved = _hrm.reserved();
 957   HeapWord* prev_last_addr = NULL;
 958   HeapRegion* prev_last_region = NULL;
 959 
 960   // Temporarily disable pretouching of heap pages. This interface is used
 961   // when mmap'ing archived heap data in, so pre-touching is wasted.
 962   FlagSetting fs(AlwaysPreTouch, false);
 963 
 964   // Enable archive object checking in G1MarkSweep. We have to let it know
 965   // about each archive range, so that objects in those ranges aren't marked.
 966   G1MarkSweep::enable_archive_object_check();
 967 
 968   // For each specified MemRegion range, allocate the corresponding G1
 969   // regions and mark them as archive regions. We expect the ranges in
 970   // ascending starting address order, without overlap.
 971   for (size_t i = 0; i < count; i++) {
 972     MemRegion curr_range = ranges[i];
 973     HeapWord* start_address = curr_range.start();
 974     size_t word_size = curr_range.word_size();
 975     HeapWord* last_address = curr_range.last();
 976     size_t commits = 0;
 977 
 978     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 979               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 980               p2i(start_address), p2i(last_address)));
 981     guarantee(start_address > prev_last_addr,
 982               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 983               p2i(start_address), p2i(prev_last_addr)));
 984     prev_last_addr = last_address;
 985 
 986     // Check for ranges that start in the same G1 region in which the previous
 987     // range ended, and adjust the start address so we don't try to allocate
 988     // the same region again. If the current range is entirely within that
 989     // region, skip it, just adjusting the recorded top.
 990     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 991     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 992       start_address = start_region->end();
 993       if (start_address > last_address) {
 994         increase_used(word_size * HeapWordSize);
 995         start_region->set_top(last_address + 1);
 996         continue;
 997       }
 998       start_region->set_top(start_address);
 999       curr_range = MemRegion(start_address, last_address + 1);
1000       start_region = _hrm.addr_to_region(start_address);
1001     }
1002 
1003     // Perform the actual region allocation, exiting if it fails.
1004     // Then note how much new space we have allocated.
1005     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1006       return false;
1007     }
1008     increase_used(word_size * HeapWordSize);
1009     if (commits != 0) {
1010       ergo_verbose1(ErgoHeapSizing,
1011                     "attempt heap expansion",
1012                     ergo_format_reason("allocate archive regions")
1013                     ergo_format_byte("total size"),
1014                     HeapRegion::GrainWords * HeapWordSize * commits);
1015     }
1016 
1017     // Mark each G1 region touched by the range as archive, add it to the old set,
1018     // and set the allocation context and top.
1019     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1020     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1021     prev_last_region = last_region;
1022 
1023     while (curr_region != NULL) {
1024       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1025              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1026       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1027       curr_region->set_allocation_context(AllocationContext::system());
1028       curr_region->set_archive();
1029       _old_set.add(curr_region);
1030       if (curr_region != last_region) {
1031         curr_region->set_top(curr_region->end());
1032         curr_region = _hrm.next_region_in_heap(curr_region);
1033       } else {
1034         curr_region->set_top(last_address + 1);
1035         curr_region = NULL;
1036       }
1037     }
1038 
1039     // Notify mark-sweep of the archive range.
1040     G1MarkSweep::mark_range_archive(curr_range);
1041   }
1042   return true;
1043 }
1044 
1045 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1046   assert(ranges != NULL, "MemRegion array NULL");
1047   assert(count != 0, "No MemRegions provided");
1048   MemRegion reserved = _hrm.reserved();
1049   HeapWord *prev_last_addr = NULL;
1050   HeapRegion* prev_last_region = NULL;
1051 
1052   // For each MemRegion, create filler objects, if needed, in the G1 regions
1053   // that contain the address range. The address range actually within the
1054   // MemRegion will not be modified. That is assumed to have been initialized
1055   // elsewhere, probably via an mmap of archived heap data.
1056   MutexLockerEx x(Heap_lock);
1057   for (size_t i = 0; i < count; i++) {
1058     HeapWord* start_address = ranges[i].start();
1059     HeapWord* last_address = ranges[i].last();
1060 
1061     assert(reserved.contains(start_address) && reserved.contains(last_address),
1062            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1063                    p2i(start_address), p2i(last_address)));
1064     assert(start_address > prev_last_addr,
1065            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1066                    p2i(start_address), p2i(prev_last_addr)));
1067 
1068     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1069     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1070     HeapWord* bottom_address = start_region->bottom();
1071 
1072     // Check for a range beginning in the same region in which the
1073     // previous one ended.
1074     if (start_region == prev_last_region) {
1075       bottom_address = prev_last_addr + 1;
1076     }
1077 
1078     // Verify that the regions were all marked as archive regions by
1079     // alloc_archive_regions.
1080     HeapRegion* curr_region = start_region;
1081     while (curr_region != NULL) {
1082       guarantee(curr_region->is_archive(),
1083                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1084       if (curr_region != last_region) {
1085         curr_region = _hrm.next_region_in_heap(curr_region);
1086       } else {
1087         curr_region = NULL;
1088       }
1089     }
1090 
1091     prev_last_addr = last_address;
1092     prev_last_region = last_region;
1093 
1094     // Fill the memory below the allocated range with dummy object(s),
1095     // if the region bottom does not match the range start, or if the previous
1096     // range ended within the same G1 region, and there is a gap.
1097     if (start_address != bottom_address) {
1098       size_t fill_size = pointer_delta(start_address, bottom_address);
1099       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1100       increase_used(fill_size * HeapWordSize);
1101     }
1102   }
1103 }
1104 
1105 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
1106                                                      uint* gc_count_before_ret,
1107                                                      uint* gclocker_retry_count_ret) {
1108   assert_heap_not_locked_and_not_at_safepoint();
1109   assert(!is_humongous(word_size), "attempt_allocation() should not "
1110          "be called for humongous allocation requests");
1111 
1112   AllocationContext_t context = AllocationContext::current();
1113   HeapWord* result = _allocator->attempt_allocation(word_size, context);
1114 
1115   if (result == NULL) {
1116     result = attempt_allocation_slow(word_size,
1117                                      context,
1118                                      gc_count_before_ret,
1119                                      gclocker_retry_count_ret);
1120   }
1121   assert_heap_not_locked();
1122   if (result != NULL) {
1123     dirty_young_block(result, word_size);
1124   }
1125   return result;
1126 }
1127 
1128 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1129                                                         uint* gc_count_before_ret,
1130                                                         uint* gclocker_retry_count_ret) {
1131   // The structure of this method has a lot of similarities to
1132   // attempt_allocation_slow(). The reason these two were not merged
1133   // into a single one is that such a method would require several "if
1134   // allocation is not humongous do this, otherwise do that"
1135   // conditional paths which would obscure its flow. In fact, an early
1136   // version of this code did use a unified method which was harder to
1137   // follow and, as a result, it had subtle bugs that were hard to
1138   // track down. So keeping these two methods separate allows each to
1139   // be more readable. It will be good to keep these two in sync as
1140   // much as possible.
1141 
1142   assert_heap_not_locked_and_not_at_safepoint();
1143   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1144          "should only be called for humongous allocations");
1145 
1146   // Humongous objects can exhaust the heap quickly, so we should check if we
1147   // need to start a marking cycle at each humongous object allocation. We do
1148   // the check before we do the actual allocation. The reason for doing it
1149   // before the allocation is that we avoid having to keep track of the newly
1150   // allocated memory while we do a GC.
1151   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1152                                            word_size)) {
1153     collect(GCCause::_g1_humongous_allocation);
1154   }
1155 
1156   // We will loop until a) we manage to successfully perform the
1157   // allocation or b) we successfully schedule a collection which
1158   // fails to perform the allocation. b) is the only case when we'll
1159   // return NULL.
1160   HeapWord* result = NULL;
1161   for (int try_count = 1; /* we'll return */; try_count += 1) {
1162     bool should_try_gc;
1163     uint gc_count_before;
1164 
1165     {
1166       MutexLockerEx x(Heap_lock);
1167 
1168       // Given that humongous objects are not allocated in young
1169       // regions, we'll first try to do the allocation without doing a
1170       // collection hoping that there's enough space in the heap.
1171       result = humongous_obj_allocate(word_size, AllocationContext::current());
1172       if (result != NULL) {
1173         return result;
1174       }
1175 
1176       if (GC_locker::is_active_and_needs_gc()) {
1177         should_try_gc = false;
1178       } else {
1179          // The GCLocker may not be active but the GCLocker initiated
1180         // GC may not yet have been performed (GCLocker::needs_gc()
1181         // returns true). In this case we do not try this GC and
1182         // wait until the GCLocker initiated GC is performed, and
1183         // then retry the allocation.
1184         if (GC_locker::needs_gc()) {
1185           should_try_gc = false;
1186         } else {
1187           // Read the GC count while still holding the Heap_lock.
1188           gc_count_before = total_collections();
1189           should_try_gc = true;
1190         }
1191       }
1192     }
1193 
1194     if (should_try_gc) {
1195       // If we failed to allocate the humongous object, we should try to
1196       // do a collection pause (if we're allowed) in case it reclaims
1197       // enough space for the allocation to succeed after the pause.
1198 
1199       bool succeeded;
1200       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1201                                    GCCause::_g1_humongous_allocation);
1202       if (result != NULL) {
1203         assert(succeeded, "only way to get back a non-NULL result");
1204         return result;
1205       }
1206 
1207       if (succeeded) {
1208         // If we get here we successfully scheduled a collection which
1209         // failed to allocate. No point in trying to allocate
1210         // further. We'll just return NULL.
1211         MutexLockerEx x(Heap_lock);
1212         *gc_count_before_ret = total_collections();
1213         return NULL;
1214       }
1215     } else {
1216       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1217         MutexLockerEx x(Heap_lock);
1218         *gc_count_before_ret = total_collections();
1219         return NULL;
1220       }
1221       // The GCLocker is either active or the GCLocker initiated
1222       // GC has not yet been performed. Stall until it is and
1223       // then retry the allocation.
1224       GC_locker::stall_until_clear();
1225       (*gclocker_retry_count_ret) += 1;
1226     }
1227 
1228     // We can reach here if we were unsuccessful in scheduling a
1229     // collection (because another thread beat us to it) or if we were
1230     // stalled due to the GC locker. In either can we should retry the
1231     // allocation attempt in case another thread successfully
1232     // performed a collection and reclaimed enough space.  Give a
1233     // warning if we seem to be looping forever.
1234 
1235     if ((QueuedAllocationWarningCount > 0) &&
1236         (try_count % QueuedAllocationWarningCount == 0)) {
1237       warning("G1CollectedHeap::attempt_allocation_humongous() "
1238               "retries %d times", try_count);
1239     }
1240   }
1241 
1242   ShouldNotReachHere();
1243   return NULL;
1244 }
1245 
1246 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1247                                                            AllocationContext_t context,
1248                                                            bool expect_null_mutator_alloc_region) {
1249   assert_at_safepoint(true /* should_be_vm_thread */);
1250   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1251          "the current alloc region was unexpectedly found to be non-NULL");
1252 
1253   if (!is_humongous(word_size)) {
1254     return _allocator->attempt_allocation_locked(word_size, context);
1255   } else {
1256     HeapWord* result = humongous_obj_allocate(word_size, context);
1257     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1258       collector_state()->set_initiate_conc_mark_if_possible(true);
1259     }
1260     return result;
1261   }
1262 
1263   ShouldNotReachHere();
1264 }
1265 
1266 class PostMCRemSetClearClosure: public HeapRegionClosure {
1267   G1CollectedHeap* _g1h;
1268   ModRefBarrierSet* _mr_bs;
1269 public:
1270   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1271     _g1h(g1h), _mr_bs(mr_bs) {}
1272 
1273   bool doHeapRegion(HeapRegion* r) {
1274     HeapRegionRemSet* hrrs = r->rem_set();
1275 
1276     if (r->is_continues_humongous()) {
1277       // We'll assert that the strong code root list and RSet is empty
1278       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1279       assert(hrrs->occupied() == 0, "RSet should be empty");
1280       return false;
1281     }
1282 
1283     _g1h->reset_gc_time_stamps(r);
1284     hrrs->clear();
1285     // You might think here that we could clear just the cards
1286     // corresponding to the used region.  But no: if we leave a dirty card
1287     // in a region we might allocate into, then it would prevent that card
1288     // from being enqueued, and cause it to be missed.
1289     // Re: the performance cost: we shouldn't be doing full GC anyway!
1290     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1291 
1292     return false;
1293   }
1294 };
1295 
1296 void G1CollectedHeap::clear_rsets_post_compaction() {
1297   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1298   heap_region_iterate(&rs_clear);
1299 }
1300 
1301 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1302   G1CollectedHeap*   _g1h;
1303   UpdateRSOopClosure _cl;
1304 public:
1305   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1306     _cl(g1->g1_rem_set(), worker_i),
1307     _g1h(g1)
1308   { }
1309 
1310   bool doHeapRegion(HeapRegion* r) {
1311     if (!r->is_continues_humongous()) {
1312       _cl.set_from(r);
1313       r->oop_iterate(&_cl);
1314     }
1315     return false;
1316   }
1317 };
1318 
1319 class ParRebuildRSTask: public AbstractGangTask {
1320   G1CollectedHeap* _g1;
1321   HeapRegionClaimer _hrclaimer;
1322 
1323 public:
1324   ParRebuildRSTask(G1CollectedHeap* g1) :
1325       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1326 
1327   void work(uint worker_id) {
1328     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1329     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1330   }
1331 };
1332 
1333 class PostCompactionPrinterClosure: public HeapRegionClosure {
1334 private:
1335   G1HRPrinter* _hr_printer;
1336 public:
1337   bool doHeapRegion(HeapRegion* hr) {
1338     assert(!hr->is_young(), "not expecting to find young regions");
1339     if (hr->is_free()) {
1340       // We only generate output for non-empty regions.
1341     } else if (hr->is_starts_humongous()) {
1342       if (hr->region_num() == 1) {
1343         // single humongous region
1344         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1345       } else {
1346         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1347       }
1348     } else if (hr->is_continues_humongous()) {
1349       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1350     } else if (hr->is_archive()) {
1351       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1352     } else if (hr->is_old()) {
1353       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1354     } else {
1355       ShouldNotReachHere();
1356     }
1357     return false;
1358   }
1359 
1360   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1361     : _hr_printer(hr_printer) { }
1362 };
1363 
1364 void G1CollectedHeap::print_hrm_post_compaction() {
1365   PostCompactionPrinterClosure cl(hr_printer());
1366   heap_region_iterate(&cl);
1367 }
1368 
1369 bool G1CollectedHeap::do_collection(bool explicit_gc,
1370                                     bool clear_all_soft_refs,
1371                                     size_t word_size) {
1372   assert_at_safepoint(true /* should_be_vm_thread */);
1373 
1374   if (GC_locker::check_active_before_gc()) {
1375     return false;
1376   }
1377 
1378   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1379   gc_timer->register_gc_start();
1380 
1381   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1382   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1383 
1384   SvcGCMarker sgcm(SvcGCMarker::FULL);
1385   ResourceMark rm;
1386 
1387   G1Log::update_level();
1388   print_heap_before_gc();
1389   trace_heap_before_gc(gc_tracer);
1390 
1391   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1392 
1393   verify_region_sets_optional();
1394 
1395   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1396                            collector_policy()->should_clear_all_soft_refs();
1397 
1398   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1399 
1400   {
1401     IsGCActiveMark x;
1402 
1403     // Timing
1404     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1405     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1406 
1407     {
1408       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1409       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1410       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1411 
1412       g1_policy()->record_full_collection_start();
1413 
1414       // Note: When we have a more flexible GC logging framework that
1415       // allows us to add optional attributes to a GC log record we
1416       // could consider timing and reporting how long we wait in the
1417       // following two methods.
1418       wait_while_free_regions_coming();
1419       // If we start the compaction before the CM threads finish
1420       // scanning the root regions we might trip them over as we'll
1421       // be moving objects / updating references. So let's wait until
1422       // they are done. By telling them to abort, they should complete
1423       // early.
1424       _cm->root_regions()->abort();
1425       _cm->root_regions()->wait_until_scan_finished();
1426       append_secondary_free_list_if_not_empty_with_lock();
1427 
1428       gc_prologue(true);
1429       increment_total_collections(true /* full gc */);
1430       increment_old_marking_cycles_started();
1431 
1432       assert(used() == recalculate_used(), "Should be equal");
1433 
1434       verify_before_gc();
1435 
1436       check_bitmaps("Full GC Start");
1437       pre_full_gc_dump(gc_timer);
1438 
1439 #if defined(COMPILER2) || INCLUDE_JVMCI
1440       DerivedPointerTable::clear();
1441 #endif
1442 
1443       // Disable discovery and empty the discovered lists
1444       // for the CM ref processor.
1445       ref_processor_cm()->disable_discovery();
1446       ref_processor_cm()->abandon_partial_discovery();
1447       ref_processor_cm()->verify_no_references_recorded();
1448 
1449       // Abandon current iterations of concurrent marking and concurrent
1450       // refinement, if any are in progress. We have to do this before
1451       // wait_until_scan_finished() below.
1452       concurrent_mark()->abort();
1453 
1454       // Make sure we'll choose a new allocation region afterwards.
1455       _allocator->release_mutator_alloc_region();
1456       _allocator->abandon_gc_alloc_regions();
1457       g1_rem_set()->cleanupHRRS();
1458 
1459       // We should call this after we retire any currently active alloc
1460       // regions so that all the ALLOC / RETIRE events are generated
1461       // before the start GC event.
1462       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1463 
1464       // We may have added regions to the current incremental collection
1465       // set between the last GC or pause and now. We need to clear the
1466       // incremental collection set and then start rebuilding it afresh
1467       // after this full GC.
1468       abandon_collection_set(g1_policy()->inc_cset_head());
1469       g1_policy()->clear_incremental_cset();
1470       g1_policy()->stop_incremental_cset_building();
1471 
1472       tear_down_region_sets(false /* free_list_only */);
1473       collector_state()->set_gcs_are_young(true);
1474 
1475       // See the comments in g1CollectedHeap.hpp and
1476       // G1CollectedHeap::ref_processing_init() about
1477       // how reference processing currently works in G1.
1478 
1479       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1480       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1481 
1482       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1483       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1484 
1485       ref_processor_stw()->enable_discovery();
1486       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1487 
1488       // Do collection work
1489       {
1490         HandleMark hm;  // Discard invalid handles created during gc
1491         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1492       }
1493 
1494       assert(num_free_regions() == 0, "we should not have added any free regions");
1495       rebuild_region_sets(false /* free_list_only */);
1496 
1497       // Enqueue any discovered reference objects that have
1498       // not been removed from the discovered lists.
1499       ref_processor_stw()->enqueue_discovered_references();
1500 
1501 #if defined(COMPILER2) || INCLUDE_JVMCI
1502       DerivedPointerTable::update_pointers();
1503 #endif
1504 
1505       MemoryService::track_memory_usage();
1506 
1507       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1508       ref_processor_stw()->verify_no_references_recorded();
1509 
1510       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1511       ClassLoaderDataGraph::purge();
1512       MetaspaceAux::verify_metrics();
1513 
1514       // Note: since we've just done a full GC, concurrent
1515       // marking is no longer active. Therefore we need not
1516       // re-enable reference discovery for the CM ref processor.
1517       // That will be done at the start of the next marking cycle.
1518       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1519       ref_processor_cm()->verify_no_references_recorded();
1520 
1521       reset_gc_time_stamp();
1522       // Since everything potentially moved, we will clear all remembered
1523       // sets, and clear all cards.  Later we will rebuild remembered
1524       // sets. We will also reset the GC time stamps of the regions.
1525       clear_rsets_post_compaction();
1526       check_gc_time_stamps();
1527 
1528       // Resize the heap if necessary.
1529       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1530 
1531       if (_hr_printer.is_active()) {
1532         // We should do this after we potentially resize the heap so
1533         // that all the COMMIT / UNCOMMIT events are generated before
1534         // the end GC event.
1535 
1536         print_hrm_post_compaction();
1537         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1538       }
1539 
1540       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1541       if (hot_card_cache->use_cache()) {
1542         hot_card_cache->reset_card_counts();
1543         hot_card_cache->reset_hot_cache();
1544       }
1545 
1546       // Rebuild remembered sets of all regions.
1547       uint n_workers =
1548         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1549                                                 workers()->active_workers(),
1550                                                 Threads::number_of_non_daemon_threads());
1551       workers()->set_active_workers(n_workers);
1552 
1553       ParRebuildRSTask rebuild_rs_task(this);
1554       workers()->run_task(&rebuild_rs_task);
1555 
1556       // Rebuild the strong code root lists for each region
1557       rebuild_strong_code_roots();
1558 
1559       if (true) { // FIXME
1560         MetaspaceGC::compute_new_size();
1561       }
1562 
1563 #ifdef TRACESPINNING
1564       ParallelTaskTerminator::print_termination_counts();
1565 #endif
1566 
1567       // Discard all rset updates
1568       JavaThread::dirty_card_queue_set().abandon_logs();
1569       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1570 
1571       _young_list->reset_sampled_info();
1572       // At this point there should be no regions in the
1573       // entire heap tagged as young.
1574       assert(check_young_list_empty(true /* check_heap */),
1575              "young list should be empty at this point");
1576 
1577       // Update the number of full collections that have been completed.
1578       increment_old_marking_cycles_completed(false /* concurrent */);
1579 
1580       _hrm.verify_optional();
1581       verify_region_sets_optional();
1582 
1583       verify_after_gc();
1584 
1585       // Clear the previous marking bitmap, if needed for bitmap verification.
1586       // Note we cannot do this when we clear the next marking bitmap in
1587       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1588       // objects marked during a full GC against the previous bitmap.
1589       // But we need to clear it before calling check_bitmaps below since
1590       // the full GC has compacted objects and updated TAMS but not updated
1591       // the prev bitmap.
1592       if (G1VerifyBitmaps) {
1593         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1594       }
1595       check_bitmaps("Full GC End");
1596 
1597       // Start a new incremental collection set for the next pause
1598       assert(g1_policy()->collection_set() == NULL, "must be");
1599       g1_policy()->start_incremental_cset_building();
1600 
1601       clear_cset_fast_test();
1602 
1603       _allocator->init_mutator_alloc_region();
1604 
1605       g1_policy()->record_full_collection_end();
1606 
1607       if (G1Log::fine()) {
1608         g1_policy()->print_heap_transition();
1609       }
1610 
1611       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1612       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1613       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1614       // before any GC notifications are raised.
1615       g1mm()->update_sizes();
1616 
1617       gc_epilogue(true);
1618     }
1619 
1620     if (G1Log::finer()) {
1621       g1_policy()->print_detailed_heap_transition(true /* full */);
1622     }
1623 
1624     print_heap_after_gc();
1625     trace_heap_after_gc(gc_tracer);
1626 
1627     post_full_gc_dump(gc_timer);
1628 
1629     gc_timer->register_gc_end();
1630     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1631   }
1632 
1633   return true;
1634 }
1635 
1636 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1637   // do_collection() will return whether it succeeded in performing
1638   // the GC. Currently, there is no facility on the
1639   // do_full_collection() API to notify the caller than the collection
1640   // did not succeed (e.g., because it was locked out by the GC
1641   // locker). So, right now, we'll ignore the return value.
1642   bool dummy = do_collection(true,                /* explicit_gc */
1643                              clear_all_soft_refs,
1644                              0                    /* word_size */);
1645 }
1646 
1647 // This code is mostly copied from TenuredGeneration.
1648 void
1649 G1CollectedHeap::
1650 resize_if_necessary_after_full_collection(size_t word_size) {
1651   // Include the current allocation, if any, and bytes that will be
1652   // pre-allocated to support collections, as "used".
1653   const size_t used_after_gc = used();
1654   const size_t capacity_after_gc = capacity();
1655   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1656 
1657   // This is enforced in arguments.cpp.
1658   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1659          "otherwise the code below doesn't make sense");
1660 
1661   // We don't have floating point command-line arguments
1662   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1663   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1664   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1665   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1666 
1667   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1668   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1669 
1670   // We have to be careful here as these two calculations can overflow
1671   // 32-bit size_t's.
1672   double used_after_gc_d = (double) used_after_gc;
1673   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1674   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1675 
1676   // Let's make sure that they are both under the max heap size, which
1677   // by default will make them fit into a size_t.
1678   double desired_capacity_upper_bound = (double) max_heap_size;
1679   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1680                                     desired_capacity_upper_bound);
1681   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1682                                     desired_capacity_upper_bound);
1683 
1684   // We can now safely turn them into size_t's.
1685   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1686   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1687 
1688   // This assert only makes sense here, before we adjust them
1689   // with respect to the min and max heap size.
1690   assert(minimum_desired_capacity <= maximum_desired_capacity,
1691          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1692                  "maximum_desired_capacity = " SIZE_FORMAT,
1693                  minimum_desired_capacity, maximum_desired_capacity));
1694 
1695   // Should not be greater than the heap max size. No need to adjust
1696   // it with respect to the heap min size as it's a lower bound (i.e.,
1697   // we'll try to make the capacity larger than it, not smaller).
1698   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1699   // Should not be less than the heap min size. No need to adjust it
1700   // with respect to the heap max size as it's an upper bound (i.e.,
1701   // we'll try to make the capacity smaller than it, not greater).
1702   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1703 
1704   if (capacity_after_gc < minimum_desired_capacity) {
1705     // Don't expand unless it's significant
1706     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1707     ergo_verbose4(ErgoHeapSizing,
1708                   "attempt heap expansion",
1709                   ergo_format_reason("capacity lower than "
1710                                      "min desired capacity after Full GC")
1711                   ergo_format_byte("capacity")
1712                   ergo_format_byte("occupancy")
1713                   ergo_format_byte_perc("min desired capacity"),
1714                   capacity_after_gc, used_after_gc,
1715                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1716     expand(expand_bytes);
1717 
1718     // No expansion, now see if we want to shrink
1719   } else if (capacity_after_gc > maximum_desired_capacity) {
1720     // Capacity too large, compute shrinking size
1721     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1722     ergo_verbose4(ErgoHeapSizing,
1723                   "attempt heap shrinking",
1724                   ergo_format_reason("capacity higher than "
1725                                      "max desired capacity after Full GC")
1726                   ergo_format_byte("capacity")
1727                   ergo_format_byte("occupancy")
1728                   ergo_format_byte_perc("max desired capacity"),
1729                   capacity_after_gc, used_after_gc,
1730                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1731     shrink(shrink_bytes);
1732   }
1733 }
1734 
1735 
1736 HeapWord*
1737 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1738                                            AllocationContext_t context,
1739                                            bool* succeeded) {
1740   assert_at_safepoint(true /* should_be_vm_thread */);
1741 
1742   *succeeded = true;
1743   // Let's attempt the allocation first.
1744   HeapWord* result =
1745     attempt_allocation_at_safepoint(word_size,
1746                                     context,
1747                                     false /* expect_null_mutator_alloc_region */);
1748   if (result != NULL) {
1749     assert(*succeeded, "sanity");
1750     return result;
1751   }
1752 
1753   // In a G1 heap, we're supposed to keep allocation from failing by
1754   // incremental pauses.  Therefore, at least for now, we'll favor
1755   // expansion over collection.  (This might change in the future if we can
1756   // do something smarter than full collection to satisfy a failed alloc.)
1757   result = expand_and_allocate(word_size, context);
1758   if (result != NULL) {
1759     assert(*succeeded, "sanity");
1760     return result;
1761   }
1762 
1763   // Expansion didn't work, we'll try to do a Full GC.
1764   bool gc_succeeded = do_collection(false, /* explicit_gc */
1765                                     false, /* clear_all_soft_refs */
1766                                     word_size);
1767   if (!gc_succeeded) {
1768     *succeeded = false;
1769     return NULL;
1770   }
1771 
1772   // Retry the allocation
1773   result = attempt_allocation_at_safepoint(word_size,
1774                                            context,
1775                                            true /* expect_null_mutator_alloc_region */);
1776   if (result != NULL) {
1777     assert(*succeeded, "sanity");
1778     return result;
1779   }
1780 
1781   // Then, try a Full GC that will collect all soft references.
1782   gc_succeeded = do_collection(false, /* explicit_gc */
1783                                true,  /* clear_all_soft_refs */
1784                                word_size);
1785   if (!gc_succeeded) {
1786     *succeeded = false;
1787     return NULL;
1788   }
1789 
1790   // Retry the allocation once more
1791   result = attempt_allocation_at_safepoint(word_size,
1792                                            context,
1793                                            true /* expect_null_mutator_alloc_region */);
1794   if (result != NULL) {
1795     assert(*succeeded, "sanity");
1796     return result;
1797   }
1798 
1799   assert(!collector_policy()->should_clear_all_soft_refs(),
1800          "Flag should have been handled and cleared prior to this point");
1801 
1802   // What else?  We might try synchronous finalization later.  If the total
1803   // space available is large enough for the allocation, then a more
1804   // complete compaction phase than we've tried so far might be
1805   // appropriate.
1806   assert(*succeeded, "sanity");
1807   return NULL;
1808 }
1809 
1810 // Attempting to expand the heap sufficiently
1811 // to support an allocation of the given "word_size".  If
1812 // successful, perform the allocation and return the address of the
1813 // allocated block, or else "NULL".
1814 
1815 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1816   assert_at_safepoint(true /* should_be_vm_thread */);
1817 
1818   verify_region_sets_optional();
1819 
1820   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1821   ergo_verbose1(ErgoHeapSizing,
1822                 "attempt heap expansion",
1823                 ergo_format_reason("allocation request failed")
1824                 ergo_format_byte("allocation request"),
1825                 word_size * HeapWordSize);
1826   if (expand(expand_bytes)) {
1827     _hrm.verify_optional();
1828     verify_region_sets_optional();
1829     return attempt_allocation_at_safepoint(word_size,
1830                                            context,
1831                                            false /* expect_null_mutator_alloc_region */);
1832   }
1833   return NULL;
1834 }
1835 
1836 bool G1CollectedHeap::expand(size_t expand_bytes) {
1837   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1838   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1839                                        HeapRegion::GrainBytes);
1840   ergo_verbose2(ErgoHeapSizing,
1841                 "expand the heap",
1842                 ergo_format_byte("requested expansion amount")
1843                 ergo_format_byte("attempted expansion amount"),
1844                 expand_bytes, aligned_expand_bytes);
1845 
1846   if (is_maximal_no_gc()) {
1847     ergo_verbose0(ErgoHeapSizing,
1848                       "did not expand the heap",
1849                       ergo_format_reason("heap already fully expanded"));
1850     return false;
1851   }
1852 
1853   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1854   assert(regions_to_expand > 0, "Must expand by at least one region");
1855 
1856   uint expanded_by = _hrm.expand_by(regions_to_expand);
1857 
1858   if (expanded_by > 0) {
1859     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1860     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1861     g1_policy()->record_new_heap_size(num_regions());
1862   } else {
1863     ergo_verbose0(ErgoHeapSizing,
1864                   "did not expand the heap",
1865                   ergo_format_reason("heap expansion operation failed"));
1866     // The expansion of the virtual storage space was unsuccessful.
1867     // Let's see if it was because we ran out of swap.
1868     if (G1ExitOnExpansionFailure &&
1869         _hrm.available() >= regions_to_expand) {
1870       // We had head room...
1871       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1872     }
1873   }
1874   return regions_to_expand > 0;
1875 }
1876 
1877 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1878   size_t aligned_shrink_bytes =
1879     ReservedSpace::page_align_size_down(shrink_bytes);
1880   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1881                                          HeapRegion::GrainBytes);
1882   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1883 
1884   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1885   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1886 
1887   ergo_verbose3(ErgoHeapSizing,
1888                 "shrink the heap",
1889                 ergo_format_byte("requested shrinking amount")
1890                 ergo_format_byte("aligned shrinking amount")
1891                 ergo_format_byte("attempted shrinking amount"),
1892                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1893   if (num_regions_removed > 0) {
1894     g1_policy()->record_new_heap_size(num_regions());
1895   } else {
1896     ergo_verbose0(ErgoHeapSizing,
1897                   "did not shrink the heap",
1898                   ergo_format_reason("heap shrinking operation failed"));
1899   }
1900 }
1901 
1902 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1903   verify_region_sets_optional();
1904 
1905   // We should only reach here at the end of a Full GC which means we
1906   // should not not be holding to any GC alloc regions. The method
1907   // below will make sure of that and do any remaining clean up.
1908   _allocator->abandon_gc_alloc_regions();
1909 
1910   // Instead of tearing down / rebuilding the free lists here, we
1911   // could instead use the remove_all_pending() method on free_list to
1912   // remove only the ones that we need to remove.
1913   tear_down_region_sets(true /* free_list_only */);
1914   shrink_helper(shrink_bytes);
1915   rebuild_region_sets(true /* free_list_only */);
1916 
1917   _hrm.verify_optional();
1918   verify_region_sets_optional();
1919 }
1920 
1921 // Public methods.
1922 
1923 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1924 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1925 #endif // _MSC_VER
1926 
1927 
1928 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1929   CollectedHeap(),
1930   _g1_policy(policy_),
1931   _dirty_card_queue_set(false),
1932   _into_cset_dirty_card_queue_set(false),
1933   _is_alive_closure_cm(this),
1934   _is_alive_closure_stw(this),
1935   _ref_processor_cm(NULL),
1936   _ref_processor_stw(NULL),
1937   _bot_shared(NULL),
1938   _cg1r(NULL),
1939   _g1mm(NULL),
1940   _refine_cte_cl(NULL),
1941   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1942   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1943   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1944   _humongous_reclaim_candidates(),
1945   _has_humongous_reclaim_candidates(false),
1946   _archive_allocator(NULL),
1947   _free_regions_coming(false),
1948   _young_list(new YoungList(this)),
1949   _gc_time_stamp(0),
1950   _summary_bytes_used(0),
1951   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1952   _old_evac_stats(OldPLABSize, PLABWeight),
1953   _expand_heap_after_alloc_failure(true),
1954   _surviving_young_words(NULL),
1955   _old_marking_cycles_started(0),
1956   _old_marking_cycles_completed(0),
1957   _heap_summary_sent(false),
1958   _in_cset_fast_test(),
1959   _dirty_cards_region_list(NULL),
1960   _worker_cset_start_region(NULL),
1961   _worker_cset_start_region_time_stamp(NULL),
1962   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1963   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1964   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1965   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1966 
1967   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1968                           /* are_GC_task_threads */true,
1969                           /* are_ConcurrentGC_threads */false);
1970   _workers->initialize_workers();
1971 
1972   _allocator = G1Allocator::create_allocator(this);
1973   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1974 
1975   // Override the default _filler_array_max_size so that no humongous filler
1976   // objects are created.
1977   _filler_array_max_size = _humongous_object_threshold_in_words;
1978 
1979   uint n_queues = ParallelGCThreads;
1980   _task_queues = new RefToScanQueueSet(n_queues);
1981 
1982   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1983   assert(n_rem_sets > 0, "Invariant.");
1984 
1985   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1986   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1987   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1988 
1989   for (uint i = 0; i < n_queues; i++) {
1990     RefToScanQueue* q = new RefToScanQueue();
1991     q->initialize();
1992     _task_queues->register_queue(i, q);
1993     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1994   }
1995   clear_cset_start_regions();
1996 
1997   // Initialize the G1EvacuationFailureALot counters and flags.
1998   NOT_PRODUCT(reset_evacuation_should_fail();)
1999 
2000   guarantee(_task_queues != NULL, "task_queues allocation failure.");
2001 }
2002 
2003 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
2004                                                                  size_t size,
2005                                                                  size_t translation_factor) {
2006   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
2007   // Allocate a new reserved space, preferring to use large pages.
2008   ReservedSpace rs(size, preferred_page_size);
2009   G1RegionToSpaceMapper* result  =
2010     G1RegionToSpaceMapper::create_mapper(rs,
2011                                          size,
2012                                          rs.alignment(),
2013                                          HeapRegion::GrainBytes,
2014                                          translation_factor,
2015                                          mtGC);
2016   if (TracePageSizes) {
2017     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2018                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2019   }
2020   return result;
2021 }
2022 
2023 jint G1CollectedHeap::initialize() {
2024   CollectedHeap::pre_initialize();
2025   os::enable_vtime();
2026 
2027   G1Log::init();
2028 
2029   // Necessary to satisfy locking discipline assertions.
2030 
2031   MutexLocker x(Heap_lock);
2032 
2033   // We have to initialize the printer before committing the heap, as
2034   // it will be used then.
2035   _hr_printer.set_active(G1PrintHeapRegions);
2036 
2037   // While there are no constraints in the GC code that HeapWordSize
2038   // be any particular value, there are multiple other areas in the
2039   // system which believe this to be true (e.g. oop->object_size in some
2040   // cases incorrectly returns the size in wordSize units rather than
2041   // HeapWordSize).
2042   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2043 
2044   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2045   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2046   size_t heap_alignment = collector_policy()->heap_alignment();
2047 
2048   // Ensure that the sizes are properly aligned.
2049   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2050   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2051   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2052 
2053   _refine_cte_cl = new RefineCardTableEntryClosure();
2054 
2055   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2056 
2057   // Reserve the maximum.
2058 
2059   // When compressed oops are enabled, the preferred heap base
2060   // is calculated by subtracting the requested size from the
2061   // 32Gb boundary and using the result as the base address for
2062   // heap reservation. If the requested size is not aligned to
2063   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2064   // into the ReservedHeapSpace constructor) then the actual
2065   // base of the reserved heap may end up differing from the
2066   // address that was requested (i.e. the preferred heap base).
2067   // If this happens then we could end up using a non-optimal
2068   // compressed oops mode.
2069 
2070   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2071                                                  heap_alignment);
2072 
2073   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2074 
2075   // Create the barrier set for the entire reserved region.
2076   G1SATBCardTableLoggingModRefBS* bs
2077     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2078   bs->initialize();
2079   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2080   set_barrier_set(bs);
2081 
2082   // Also create a G1 rem set.
2083   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2084 
2085   // Carve out the G1 part of the heap.
2086 
2087   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2088   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2089   G1RegionToSpaceMapper* heap_storage =
2090     G1RegionToSpaceMapper::create_mapper(g1_rs,
2091                                          g1_rs.size(),
2092                                          page_size,
2093                                          HeapRegion::GrainBytes,
2094                                          1,
2095                                          mtJavaHeap);
2096   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2097                        max_byte_size, page_size,
2098                        heap_rs.base(),
2099                        heap_rs.size());
2100   heap_storage->set_mapping_changed_listener(&_listener);
2101 
2102   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2103   G1RegionToSpaceMapper* bot_storage =
2104     create_aux_memory_mapper("Block offset table",
2105                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2106                              G1BlockOffsetSharedArray::heap_map_factor());
2107 
2108   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2109   G1RegionToSpaceMapper* cardtable_storage =
2110     create_aux_memory_mapper("Card table",
2111                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2112                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2113 
2114   G1RegionToSpaceMapper* card_counts_storage =
2115     create_aux_memory_mapper("Card counts table",
2116                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2117                              G1CardCounts::heap_map_factor());
2118 
2119   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2120   G1RegionToSpaceMapper* prev_bitmap_storage =
2121     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2122   G1RegionToSpaceMapper* next_bitmap_storage =
2123     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2124 
2125   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2126   g1_barrier_set()->initialize(cardtable_storage);
2127    // Do later initialization work for concurrent refinement.
2128   _cg1r->init(card_counts_storage);
2129 
2130   // 6843694 - ensure that the maximum region index can fit
2131   // in the remembered set structures.
2132   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2133   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2134 
2135   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2136   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2137   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2138             "too many cards per region");
2139 
2140   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2141 
2142   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2143 
2144   {
2145     HeapWord* start = _hrm.reserved().start();
2146     HeapWord* end = _hrm.reserved().end();
2147     size_t granularity = HeapRegion::GrainBytes;
2148 
2149     _in_cset_fast_test.initialize(start, end, granularity);
2150     _humongous_reclaim_candidates.initialize(start, end, granularity);
2151   }
2152 
2153   // Create the ConcurrentMark data structure and thread.
2154   // (Must do this late, so that "max_regions" is defined.)
2155   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2156   if (_cm == NULL || !_cm->completed_initialization()) {
2157     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2158     return JNI_ENOMEM;
2159   }
2160   _cmThread = _cm->cmThread();
2161 
2162   // Initialize the from_card cache structure of HeapRegionRemSet.
2163   HeapRegionRemSet::init_heap(max_regions());
2164 
2165   // Now expand into the initial heap size.
2166   if (!expand(init_byte_size)) {
2167     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2168     return JNI_ENOMEM;
2169   }
2170 
2171   // Perform any initialization actions delegated to the policy.
2172   g1_policy()->init();
2173 
2174   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2175                                                SATB_Q_FL_lock,
2176                                                G1SATBProcessCompletedThreshold,
2177                                                Shared_SATB_Q_lock);
2178 
2179   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2180                                                 DirtyCardQ_CBL_mon,
2181                                                 DirtyCardQ_FL_lock,
2182                                                 concurrent_g1_refine()->yellow_zone(),
2183                                                 concurrent_g1_refine()->red_zone(),
2184                                                 Shared_DirtyCardQ_lock);
2185 
2186   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2187                                     DirtyCardQ_CBL_mon,
2188                                     DirtyCardQ_FL_lock,
2189                                     -1, // never trigger processing
2190                                     -1, // no limit on length
2191                                     Shared_DirtyCardQ_lock,
2192                                     &JavaThread::dirty_card_queue_set());
2193 
2194   // Initialize the card queue set used to hold cards containing
2195   // references into the collection set.
2196   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2197                                              DirtyCardQ_CBL_mon,
2198                                              DirtyCardQ_FL_lock,
2199                                              -1, // never trigger processing
2200                                              -1, // no limit on length
2201                                              Shared_DirtyCardQ_lock,
2202                                              &JavaThread::dirty_card_queue_set());
2203 
2204   // Here we allocate the dummy HeapRegion that is required by the
2205   // G1AllocRegion class.
2206   HeapRegion* dummy_region = _hrm.get_dummy_region();
2207 
2208   // We'll re-use the same region whether the alloc region will
2209   // require BOT updates or not and, if it doesn't, then a non-young
2210   // region will complain that it cannot support allocations without
2211   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2212   dummy_region->set_eden();
2213   // Make sure it's full.
2214   dummy_region->set_top(dummy_region->end());
2215   G1AllocRegion::setup(this, dummy_region);
2216 
2217   _allocator->init_mutator_alloc_region();
2218 
2219   // Do create of the monitoring and management support so that
2220   // values in the heap have been properly initialized.
2221   _g1mm = new G1MonitoringSupport(this);
2222 
2223   G1StringDedup::initialize();
2224 
2225   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2226   for (uint i = 0; i < ParallelGCThreads; i++) {
2227     new (&_preserved_objs[i]) OopAndMarkOopStack();
2228   }
2229 
2230   return JNI_OK;
2231 }
2232 
2233 void G1CollectedHeap::stop() {
2234   // Stop all concurrent threads. We do this to make sure these threads
2235   // do not continue to execute and access resources (e.g. gclog_or_tty)
2236   // that are destroyed during shutdown.
2237   _cg1r->stop();
2238   _cmThread->stop();
2239   if (G1StringDedup::is_enabled()) {
2240     G1StringDedup::stop();
2241   }
2242 }
2243 
2244 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2245   return HeapRegion::max_region_size();
2246 }
2247 
2248 void G1CollectedHeap::post_initialize() {
2249   CollectedHeap::post_initialize();
2250   ref_processing_init();
2251 }
2252 
2253 void G1CollectedHeap::ref_processing_init() {
2254   // Reference processing in G1 currently works as follows:
2255   //
2256   // * There are two reference processor instances. One is
2257   //   used to record and process discovered references
2258   //   during concurrent marking; the other is used to
2259   //   record and process references during STW pauses
2260   //   (both full and incremental).
2261   // * Both ref processors need to 'span' the entire heap as
2262   //   the regions in the collection set may be dotted around.
2263   //
2264   // * For the concurrent marking ref processor:
2265   //   * Reference discovery is enabled at initial marking.
2266   //   * Reference discovery is disabled and the discovered
2267   //     references processed etc during remarking.
2268   //   * Reference discovery is MT (see below).
2269   //   * Reference discovery requires a barrier (see below).
2270   //   * Reference processing may or may not be MT
2271   //     (depending on the value of ParallelRefProcEnabled
2272   //     and ParallelGCThreads).
2273   //   * A full GC disables reference discovery by the CM
2274   //     ref processor and abandons any entries on it's
2275   //     discovered lists.
2276   //
2277   // * For the STW processor:
2278   //   * Non MT discovery is enabled at the start of a full GC.
2279   //   * Processing and enqueueing during a full GC is non-MT.
2280   //   * During a full GC, references are processed after marking.
2281   //
2282   //   * Discovery (may or may not be MT) is enabled at the start
2283   //     of an incremental evacuation pause.
2284   //   * References are processed near the end of a STW evacuation pause.
2285   //   * For both types of GC:
2286   //     * Discovery is atomic - i.e. not concurrent.
2287   //     * Reference discovery will not need a barrier.
2288 
2289   MemRegion mr = reserved_region();
2290 
2291   // Concurrent Mark ref processor
2292   _ref_processor_cm =
2293     new ReferenceProcessor(mr,    // span
2294                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2295                                 // mt processing
2296                            ParallelGCThreads,
2297                                 // degree of mt processing
2298                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2299                                 // mt discovery
2300                            MAX2(ParallelGCThreads, ConcGCThreads),
2301                                 // degree of mt discovery
2302                            false,
2303                                 // Reference discovery is not atomic
2304                            &_is_alive_closure_cm);
2305                                 // is alive closure
2306                                 // (for efficiency/performance)
2307 
2308   // STW ref processor
2309   _ref_processor_stw =
2310     new ReferenceProcessor(mr,    // span
2311                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2312                                 // mt processing
2313                            ParallelGCThreads,
2314                                 // degree of mt processing
2315                            (ParallelGCThreads > 1),
2316                                 // mt discovery
2317                            ParallelGCThreads,
2318                                 // degree of mt discovery
2319                            true,
2320                                 // Reference discovery is atomic
2321                            &_is_alive_closure_stw);
2322                                 // is alive closure
2323                                 // (for efficiency/performance)
2324 }
2325 
2326 size_t G1CollectedHeap::capacity() const {
2327   return _hrm.length() * HeapRegion::GrainBytes;
2328 }
2329 
2330 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2331   assert(!hr->is_continues_humongous(), "pre-condition");
2332   hr->reset_gc_time_stamp();
2333   if (hr->is_starts_humongous()) {
2334     uint first_index = hr->hrm_index() + 1;
2335     uint last_index = hr->last_hc_index();
2336     for (uint i = first_index; i < last_index; i += 1) {
2337       HeapRegion* chr = region_at(i);
2338       assert(chr->is_continues_humongous(), "sanity");
2339       chr->reset_gc_time_stamp();
2340     }
2341   }
2342 }
2343 
2344 #ifndef PRODUCT
2345 
2346 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2347 private:
2348   unsigned _gc_time_stamp;
2349   bool _failures;
2350 
2351 public:
2352   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2353     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2354 
2355   virtual bool doHeapRegion(HeapRegion* hr) {
2356     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2357     if (_gc_time_stamp != region_gc_time_stamp) {
2358       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2359                              "expected %d", HR_FORMAT_PARAMS(hr),
2360                              region_gc_time_stamp, _gc_time_stamp);
2361       _failures = true;
2362     }
2363     return false;
2364   }
2365 
2366   bool failures() { return _failures; }
2367 };
2368 
2369 void G1CollectedHeap::check_gc_time_stamps() {
2370   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2371   heap_region_iterate(&cl);
2372   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2373 }
2374 #endif // PRODUCT
2375 
2376 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2377                                                  DirtyCardQueue* into_cset_dcq,
2378                                                  bool concurrent,
2379                                                  uint worker_i) {
2380   // Clean cards in the hot card cache
2381   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2382   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2383 
2384   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2385   size_t n_completed_buffers = 0;
2386   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2387     n_completed_buffers++;
2388   }
2389   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2390   dcqs.clear_n_completed_buffers();
2391   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2392 }
2393 
2394 // Computes the sum of the storage used by the various regions.
2395 size_t G1CollectedHeap::used() const {
2396   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2397   if (_archive_allocator != NULL) {
2398     result += _archive_allocator->used();
2399   }
2400   return result;
2401 }
2402 
2403 size_t G1CollectedHeap::used_unlocked() const {
2404   return _summary_bytes_used;
2405 }
2406 
2407 class SumUsedClosure: public HeapRegionClosure {
2408   size_t _used;
2409 public:
2410   SumUsedClosure() : _used(0) {}
2411   bool doHeapRegion(HeapRegion* r) {
2412     if (!r->is_continues_humongous()) {
2413       _used += r->used();
2414     }
2415     return false;
2416   }
2417   size_t result() { return _used; }
2418 };
2419 
2420 size_t G1CollectedHeap::recalculate_used() const {
2421   double recalculate_used_start = os::elapsedTime();
2422 
2423   SumUsedClosure blk;
2424   heap_region_iterate(&blk);
2425 
2426   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2427   return blk.result();
2428 }
2429 
2430 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2431   switch (cause) {
2432     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2433     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2434     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2435     case GCCause::_g1_humongous_allocation: return true;
2436     case GCCause::_update_allocation_context_stats_inc: return true;
2437     case GCCause::_wb_conc_mark:            return true;
2438     default:                                return false;
2439   }
2440 }
2441 
2442 #ifndef PRODUCT
2443 void G1CollectedHeap::allocate_dummy_regions() {
2444   // Let's fill up most of the region
2445   size_t word_size = HeapRegion::GrainWords - 1024;
2446   // And as a result the region we'll allocate will be humongous.
2447   guarantee(is_humongous(word_size), "sanity");
2448 
2449   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2450     // Let's use the existing mechanism for the allocation
2451     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2452                                                  AllocationContext::system());
2453     if (dummy_obj != NULL) {
2454       MemRegion mr(dummy_obj, word_size);
2455       CollectedHeap::fill_with_object(mr);
2456     } else {
2457       // If we can't allocate once, we probably cannot allocate
2458       // again. Let's get out of the loop.
2459       break;
2460     }
2461   }
2462 }
2463 #endif // !PRODUCT
2464 
2465 void G1CollectedHeap::increment_old_marking_cycles_started() {
2466   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2467     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2468     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2469     _old_marking_cycles_started, _old_marking_cycles_completed));
2470 
2471   _old_marking_cycles_started++;
2472 }
2473 
2474 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2475   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2476 
2477   // We assume that if concurrent == true, then the caller is a
2478   // concurrent thread that was joined the Suspendible Thread
2479   // Set. If there's ever a cheap way to check this, we should add an
2480   // assert here.
2481 
2482   // Given that this method is called at the end of a Full GC or of a
2483   // concurrent cycle, and those can be nested (i.e., a Full GC can
2484   // interrupt a concurrent cycle), the number of full collections
2485   // completed should be either one (in the case where there was no
2486   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2487   // behind the number of full collections started.
2488 
2489   // This is the case for the inner caller, i.e. a Full GC.
2490   assert(concurrent ||
2491          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2492          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2493          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2494                  "is inconsistent with _old_marking_cycles_completed = %u",
2495                  _old_marking_cycles_started, _old_marking_cycles_completed));
2496 
2497   // This is the case for the outer caller, i.e. the concurrent cycle.
2498   assert(!concurrent ||
2499          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2500          err_msg("for outer caller (concurrent cycle): "
2501                  "_old_marking_cycles_started = %u "
2502                  "is inconsistent with _old_marking_cycles_completed = %u",
2503                  _old_marking_cycles_started, _old_marking_cycles_completed));
2504 
2505   _old_marking_cycles_completed += 1;
2506 
2507   // We need to clear the "in_progress" flag in the CM thread before
2508   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2509   // is set) so that if a waiter requests another System.gc() it doesn't
2510   // incorrectly see that a marking cycle is still in progress.
2511   if (concurrent) {
2512     _cmThread->set_idle();
2513   }
2514 
2515   // This notify_all() will ensure that a thread that called
2516   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2517   // and it's waiting for a full GC to finish will be woken up. It is
2518   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2519   FullGCCount_lock->notify_all();
2520 }
2521 
2522 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2523   collector_state()->set_concurrent_cycle_started(true);
2524   _gc_timer_cm->register_gc_start(start_time);
2525 
2526   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2527   trace_heap_before_gc(_gc_tracer_cm);
2528 }
2529 
2530 void G1CollectedHeap::register_concurrent_cycle_end() {
2531   if (collector_state()->concurrent_cycle_started()) {
2532     if (_cm->has_aborted()) {
2533       _gc_tracer_cm->report_concurrent_mode_failure();
2534     }
2535 
2536     _gc_timer_cm->register_gc_end();
2537     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2538 
2539     // Clear state variables to prepare for the next concurrent cycle.
2540      collector_state()->set_concurrent_cycle_started(false);
2541     _heap_summary_sent = false;
2542   }
2543 }
2544 
2545 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2546   if (collector_state()->concurrent_cycle_started()) {
2547     // This function can be called when:
2548     //  the cleanup pause is run
2549     //  the concurrent cycle is aborted before the cleanup pause.
2550     //  the concurrent cycle is aborted after the cleanup pause,
2551     //   but before the concurrent cycle end has been registered.
2552     // Make sure that we only send the heap information once.
2553     if (!_heap_summary_sent) {
2554       trace_heap_after_gc(_gc_tracer_cm);
2555       _heap_summary_sent = true;
2556     }
2557   }
2558 }
2559 
2560 void G1CollectedHeap::collect(GCCause::Cause cause) {
2561   assert_heap_not_locked();
2562 
2563   uint gc_count_before;
2564   uint old_marking_count_before;
2565   uint full_gc_count_before;
2566   bool retry_gc;
2567 
2568   do {
2569     retry_gc = false;
2570 
2571     {
2572       MutexLocker ml(Heap_lock);
2573 
2574       // Read the GC count while holding the Heap_lock
2575       gc_count_before = total_collections();
2576       full_gc_count_before = total_full_collections();
2577       old_marking_count_before = _old_marking_cycles_started;
2578     }
2579 
2580     if (should_do_concurrent_full_gc(cause)) {
2581       // Schedule an initial-mark evacuation pause that will start a
2582       // concurrent cycle. We're setting word_size to 0 which means that
2583       // we are not requesting a post-GC allocation.
2584       VM_G1IncCollectionPause op(gc_count_before,
2585                                  0,     /* word_size */
2586                                  true,  /* should_initiate_conc_mark */
2587                                  g1_policy()->max_pause_time_ms(),
2588                                  cause);
2589       op.set_allocation_context(AllocationContext::current());
2590 
2591       VMThread::execute(&op);
2592       if (!op.pause_succeeded()) {
2593         if (old_marking_count_before == _old_marking_cycles_started) {
2594           retry_gc = op.should_retry_gc();
2595         } else {
2596           // A Full GC happened while we were trying to schedule the
2597           // initial-mark GC. No point in starting a new cycle given
2598           // that the whole heap was collected anyway.
2599         }
2600 
2601         if (retry_gc) {
2602           if (GC_locker::is_active_and_needs_gc()) {
2603             GC_locker::stall_until_clear();
2604           }
2605         }
2606       }
2607     } else {
2608       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2609           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2610 
2611         // Schedule a standard evacuation pause. We're setting word_size
2612         // to 0 which means that we are not requesting a post-GC allocation.
2613         VM_G1IncCollectionPause op(gc_count_before,
2614                                    0,     /* word_size */
2615                                    false, /* should_initiate_conc_mark */
2616                                    g1_policy()->max_pause_time_ms(),
2617                                    cause);
2618         VMThread::execute(&op);
2619       } else {
2620         // Schedule a Full GC.
2621         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2622         VMThread::execute(&op);
2623       }
2624     }
2625   } while (retry_gc);
2626 }
2627 
2628 bool G1CollectedHeap::is_in(const void* p) const {
2629   if (_hrm.reserved().contains(p)) {
2630     // Given that we know that p is in the reserved space,
2631     // heap_region_containing_raw() should successfully
2632     // return the containing region.
2633     HeapRegion* hr = heap_region_containing_raw(p);
2634     return hr->is_in(p);
2635   } else {
2636     return false;
2637   }
2638 }
2639 
2640 #ifdef ASSERT
2641 bool G1CollectedHeap::is_in_exact(const void* p) const {
2642   bool contains = reserved_region().contains(p);
2643   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2644   if (contains && available) {
2645     return true;
2646   } else {
2647     return false;
2648   }
2649 }
2650 #endif
2651 
2652 bool G1CollectedHeap::obj_in_cs(oop obj) {
2653   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2654   return r != NULL && r->in_collection_set();
2655 }
2656 
2657 // Iteration functions.
2658 
2659 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2660 
2661 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2662   ExtendedOopClosure* _cl;
2663 public:
2664   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2665   bool doHeapRegion(HeapRegion* r) {
2666     if (!r->is_continues_humongous()) {
2667       r->oop_iterate(_cl);
2668     }
2669     return false;
2670   }
2671 };
2672 
2673 // Iterates an ObjectClosure over all objects within a HeapRegion.
2674 
2675 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2676   ObjectClosure* _cl;
2677 public:
2678   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2679   bool doHeapRegion(HeapRegion* r) {
2680     if (!r->is_continues_humongous()) {
2681       r->object_iterate(_cl);
2682     }
2683     return false;
2684   }
2685 };
2686 
2687 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2688   IterateObjectClosureRegionClosure blk(cl);
2689   heap_region_iterate(&blk);
2690 }
2691 
2692 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2693   _hrm.iterate(cl);
2694 }
2695 
2696 void
2697 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2698                                          uint worker_id,
2699                                          HeapRegionClaimer *hrclaimer,
2700                                          bool concurrent) const {
2701   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2702 }
2703 
2704 // Clear the cached CSet starting regions and (more importantly)
2705 // the time stamps. Called when we reset the GC time stamp.
2706 void G1CollectedHeap::clear_cset_start_regions() {
2707   assert(_worker_cset_start_region != NULL, "sanity");
2708   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2709 
2710   for (uint i = 0; i < ParallelGCThreads; i++) {
2711     _worker_cset_start_region[i] = NULL;
2712     _worker_cset_start_region_time_stamp[i] = 0;
2713   }
2714 }
2715 
2716 // Given the id of a worker, obtain or calculate a suitable
2717 // starting region for iterating over the current collection set.
2718 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2719   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2720 
2721   HeapRegion* result = NULL;
2722   unsigned gc_time_stamp = get_gc_time_stamp();
2723 
2724   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2725     // Cached starting region for current worker was set
2726     // during the current pause - so it's valid.
2727     // Note: the cached starting heap region may be NULL
2728     // (when the collection set is empty).
2729     result = _worker_cset_start_region[worker_i];
2730     assert(result == NULL || result->in_collection_set(), "sanity");
2731     return result;
2732   }
2733 
2734   // The cached entry was not valid so let's calculate
2735   // a suitable starting heap region for this worker.
2736 
2737   // We want the parallel threads to start their collection
2738   // set iteration at different collection set regions to
2739   // avoid contention.
2740   // If we have:
2741   //          n collection set regions
2742   //          p threads
2743   // Then thread t will start at region floor ((t * n) / p)
2744 
2745   result = g1_policy()->collection_set();
2746   uint cs_size = g1_policy()->cset_region_length();
2747   uint active_workers = workers()->active_workers();
2748 
2749   uint end_ind   = (cs_size * worker_i) / active_workers;
2750   uint start_ind = 0;
2751 
2752   if (worker_i > 0 &&
2753       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2754     // Previous workers starting region is valid
2755     // so let's iterate from there
2756     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2757     result = _worker_cset_start_region[worker_i - 1];
2758   }
2759 
2760   for (uint i = start_ind; i < end_ind; i++) {
2761     result = result->next_in_collection_set();
2762   }
2763 
2764   // Note: the calculated starting heap region may be NULL
2765   // (when the collection set is empty).
2766   assert(result == NULL || result->in_collection_set(), "sanity");
2767   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2768          "should be updated only once per pause");
2769   _worker_cset_start_region[worker_i] = result;
2770   OrderAccess::storestore();
2771   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2772   return result;
2773 }
2774 
2775 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2776   HeapRegion* r = g1_policy()->collection_set();
2777   while (r != NULL) {
2778     HeapRegion* next = r->next_in_collection_set();
2779     if (cl->doHeapRegion(r)) {
2780       cl->incomplete();
2781       return;
2782     }
2783     r = next;
2784   }
2785 }
2786 
2787 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2788                                                   HeapRegionClosure *cl) {
2789   if (r == NULL) {
2790     // The CSet is empty so there's nothing to do.
2791     return;
2792   }
2793 
2794   assert(r->in_collection_set(),
2795          "Start region must be a member of the collection set.");
2796   HeapRegion* cur = r;
2797   while (cur != NULL) {
2798     HeapRegion* next = cur->next_in_collection_set();
2799     if (cl->doHeapRegion(cur) && false) {
2800       cl->incomplete();
2801       return;
2802     }
2803     cur = next;
2804   }
2805   cur = g1_policy()->collection_set();
2806   while (cur != r) {
2807     HeapRegion* next = cur->next_in_collection_set();
2808     if (cl->doHeapRegion(cur) && false) {
2809       cl->incomplete();
2810       return;
2811     }
2812     cur = next;
2813   }
2814 }
2815 
2816 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2817   HeapRegion* result = _hrm.next_region_in_heap(from);
2818   while (result != NULL && result->is_pinned()) {
2819     result = _hrm.next_region_in_heap(result);
2820   }
2821   return result;
2822 }
2823 
2824 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2825   HeapRegion* hr = heap_region_containing(addr);
2826   return hr->block_start(addr);
2827 }
2828 
2829 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2830   HeapRegion* hr = heap_region_containing(addr);
2831   return hr->block_size(addr);
2832 }
2833 
2834 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2835   HeapRegion* hr = heap_region_containing(addr);
2836   return hr->block_is_obj(addr);
2837 }
2838 
2839 bool G1CollectedHeap::supports_tlab_allocation() const {
2840   return true;
2841 }
2842 
2843 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2844   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2845 }
2846 
2847 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2848   return young_list()->eden_used_bytes();
2849 }
2850 
2851 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2852 // must be smaller than the humongous object limit.
2853 size_t G1CollectedHeap::max_tlab_size() const {
2854   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2855 }
2856 
2857 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2858   AllocationContext_t context = AllocationContext::current();
2859   return _allocator->unsafe_max_tlab_alloc(context);
2860 }
2861 
2862 size_t G1CollectedHeap::max_capacity() const {
2863   return _hrm.reserved().byte_size();
2864 }
2865 
2866 jlong G1CollectedHeap::millis_since_last_gc() {
2867   // assert(false, "NYI");
2868   return 0;
2869 }
2870 
2871 void G1CollectedHeap::prepare_for_verify() {
2872   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2873     ensure_parsability(false);
2874   }
2875   g1_rem_set()->prepare_for_verify();
2876 }
2877 
2878 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2879                                               VerifyOption vo) {
2880   switch (vo) {
2881   case VerifyOption_G1UsePrevMarking:
2882     return hr->obj_allocated_since_prev_marking(obj);
2883   case VerifyOption_G1UseNextMarking:
2884     return hr->obj_allocated_since_next_marking(obj);
2885   case VerifyOption_G1UseMarkWord:
2886     return false;
2887   default:
2888     ShouldNotReachHere();
2889   }
2890   return false; // keep some compilers happy
2891 }
2892 
2893 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2894   switch (vo) {
2895   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2896   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2897   case VerifyOption_G1UseMarkWord:    return NULL;
2898   default:                            ShouldNotReachHere();
2899   }
2900   return NULL; // keep some compilers happy
2901 }
2902 
2903 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2904   switch (vo) {
2905   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2906   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2907   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2908   default:                            ShouldNotReachHere();
2909   }
2910   return false; // keep some compilers happy
2911 }
2912 
2913 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2914   switch (vo) {
2915   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2916   case VerifyOption_G1UseNextMarking: return "NTAMS";
2917   case VerifyOption_G1UseMarkWord:    return "NONE";
2918   default:                            ShouldNotReachHere();
2919   }
2920   return NULL; // keep some compilers happy
2921 }
2922 
2923 class VerifyRootsClosure: public OopClosure {
2924 private:
2925   G1CollectedHeap* _g1h;
2926   VerifyOption     _vo;
2927   bool             _failures;
2928 public:
2929   // _vo == UsePrevMarking -> use "prev" marking information,
2930   // _vo == UseNextMarking -> use "next" marking information,
2931   // _vo == UseMarkWord    -> use mark word from object header.
2932   VerifyRootsClosure(VerifyOption vo) :
2933     _g1h(G1CollectedHeap::heap()),
2934     _vo(vo),
2935     _failures(false) { }
2936 
2937   bool failures() { return _failures; }
2938 
2939   template <class T> void do_oop_nv(T* p) {
2940     T heap_oop = oopDesc::load_heap_oop(p);
2941     if (!oopDesc::is_null(heap_oop)) {
2942       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2943       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2944         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2945                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2946         if (_vo == VerifyOption_G1UseMarkWord) {
2947           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2948         }
2949         obj->print_on(gclog_or_tty);
2950         _failures = true;
2951       }
2952     }
2953   }
2954 
2955   void do_oop(oop* p)       { do_oop_nv(p); }
2956   void do_oop(narrowOop* p) { do_oop_nv(p); }
2957 };
2958 
2959 class G1VerifyCodeRootOopClosure: public OopClosure {
2960   G1CollectedHeap* _g1h;
2961   OopClosure* _root_cl;
2962   nmethod* _nm;
2963   VerifyOption _vo;
2964   bool _failures;
2965 
2966   template <class T> void do_oop_work(T* p) {
2967     // First verify that this root is live
2968     _root_cl->do_oop(p);
2969 
2970     if (!G1VerifyHeapRegionCodeRoots) {
2971       // We're not verifying the code roots attached to heap region.
2972       return;
2973     }
2974 
2975     // Don't check the code roots during marking verification in a full GC
2976     if (_vo == VerifyOption_G1UseMarkWord) {
2977       return;
2978     }
2979 
2980     // Now verify that the current nmethod (which contains p) is
2981     // in the code root list of the heap region containing the
2982     // object referenced by p.
2983 
2984     T heap_oop = oopDesc::load_heap_oop(p);
2985     if (!oopDesc::is_null(heap_oop)) {
2986       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2987 
2988       // Now fetch the region containing the object
2989       HeapRegion* hr = _g1h->heap_region_containing(obj);
2990       HeapRegionRemSet* hrrs = hr->rem_set();
2991       // Verify that the strong code root list for this region
2992       // contains the nmethod
2993       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2994         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2995                                "from nmethod " PTR_FORMAT " not in strong "
2996                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2997                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2998         _failures = true;
2999       }
3000     }
3001   }
3002 
3003 public:
3004   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3005     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3006 
3007   void do_oop(oop* p) { do_oop_work(p); }
3008   void do_oop(narrowOop* p) { do_oop_work(p); }
3009 
3010   void set_nmethod(nmethod* nm) { _nm = nm; }
3011   bool failures() { return _failures; }
3012 };
3013 
3014 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3015   G1VerifyCodeRootOopClosure* _oop_cl;
3016 
3017 public:
3018   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3019     _oop_cl(oop_cl) {}
3020 
3021   void do_code_blob(CodeBlob* cb) {
3022     nmethod* nm = cb->as_nmethod_or_null();
3023     if (nm != NULL) {
3024       _oop_cl->set_nmethod(nm);
3025       nm->oops_do(_oop_cl);
3026     }
3027   }
3028 };
3029 
3030 class YoungRefCounterClosure : public OopClosure {
3031   G1CollectedHeap* _g1h;
3032   int              _count;
3033  public:
3034   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3035   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3036   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3037 
3038   int count() { return _count; }
3039   void reset_count() { _count = 0; };
3040 };
3041 
3042 class VerifyKlassClosure: public KlassClosure {
3043   YoungRefCounterClosure _young_ref_counter_closure;
3044   OopClosure *_oop_closure;
3045  public:
3046   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3047   void do_klass(Klass* k) {
3048     k->oops_do(_oop_closure);
3049 
3050     _young_ref_counter_closure.reset_count();
3051     k->oops_do(&_young_ref_counter_closure);
3052     if (_young_ref_counter_closure.count() > 0) {
3053       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3054     }
3055   }
3056 };
3057 
3058 class VerifyLivenessOopClosure: public OopClosure {
3059   G1CollectedHeap* _g1h;
3060   VerifyOption _vo;
3061 public:
3062   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3063     _g1h(g1h), _vo(vo)
3064   { }
3065   void do_oop(narrowOop *p) { do_oop_work(p); }
3066   void do_oop(      oop *p) { do_oop_work(p); }
3067 
3068   template <class T> void do_oop_work(T *p) {
3069     oop obj = oopDesc::load_decode_heap_oop(p);
3070     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3071               "Dead object referenced by a not dead object");
3072   }
3073 };
3074 
3075 class VerifyObjsInRegionClosure: public ObjectClosure {
3076 private:
3077   G1CollectedHeap* _g1h;
3078   size_t _live_bytes;
3079   HeapRegion *_hr;
3080   VerifyOption _vo;
3081 public:
3082   // _vo == UsePrevMarking -> use "prev" marking information,
3083   // _vo == UseNextMarking -> use "next" marking information,
3084   // _vo == UseMarkWord    -> use mark word from object header.
3085   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3086     : _live_bytes(0), _hr(hr), _vo(vo) {
3087     _g1h = G1CollectedHeap::heap();
3088   }
3089   void do_object(oop o) {
3090     VerifyLivenessOopClosure isLive(_g1h, _vo);
3091     assert(o != NULL, "Huh?");
3092     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3093       // If the object is alive according to the mark word,
3094       // then verify that the marking information agrees.
3095       // Note we can't verify the contra-positive of the
3096       // above: if the object is dead (according to the mark
3097       // word), it may not be marked, or may have been marked
3098       // but has since became dead, or may have been allocated
3099       // since the last marking.
3100       if (_vo == VerifyOption_G1UseMarkWord) {
3101         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3102       }
3103 
3104       o->oop_iterate_no_header(&isLive);
3105       if (!_hr->obj_allocated_since_prev_marking(o)) {
3106         size_t obj_size = o->size();    // Make sure we don't overflow
3107         _live_bytes += (obj_size * HeapWordSize);
3108       }
3109     }
3110   }
3111   size_t live_bytes() { return _live_bytes; }
3112 };
3113 
3114 class VerifyArchiveOopClosure: public OopClosure {
3115 public:
3116   VerifyArchiveOopClosure(HeapRegion *hr) { }
3117   void do_oop(narrowOop *p) { do_oop_work(p); }
3118   void do_oop(      oop *p) { do_oop_work(p); }
3119 
3120   template <class T> void do_oop_work(T *p) {
3121     oop obj = oopDesc::load_decode_heap_oop(p);
3122     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3123               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3124                       p2i(p), p2i(obj)));
3125   }
3126 };
3127 
3128 class VerifyArchiveRegionClosure: public ObjectClosure {
3129 public:
3130   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3131   // Verify that all object pointers are to archive regions.
3132   void do_object(oop o) {
3133     VerifyArchiveOopClosure checkOop(NULL);
3134     assert(o != NULL, "Should not be here for NULL oops");
3135     o->oop_iterate_no_header(&checkOop);
3136   }
3137 };
3138 
3139 class VerifyRegionClosure: public HeapRegionClosure {
3140 private:
3141   bool             _par;
3142   VerifyOption     _vo;
3143   bool             _failures;
3144 public:
3145   // _vo == UsePrevMarking -> use "prev" marking information,
3146   // _vo == UseNextMarking -> use "next" marking information,
3147   // _vo == UseMarkWord    -> use mark word from object header.
3148   VerifyRegionClosure(bool par, VerifyOption vo)
3149     : _par(par),
3150       _vo(vo),
3151       _failures(false) {}
3152 
3153   bool failures() {
3154     return _failures;
3155   }
3156 
3157   bool doHeapRegion(HeapRegion* r) {
3158     // For archive regions, verify there are no heap pointers to
3159     // non-pinned regions. For all others, verify liveness info.
3160     if (r->is_archive()) {
3161       VerifyArchiveRegionClosure verify_oop_pointers(r);
3162       r->object_iterate(&verify_oop_pointers);
3163       return true;
3164     }
3165     if (!r->is_continues_humongous()) {
3166       bool failures = false;
3167       r->verify(_vo, &failures);
3168       if (failures) {
3169         _failures = true;
3170       } else {
3171         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3172         r->object_iterate(&not_dead_yet_cl);
3173         if (_vo != VerifyOption_G1UseNextMarking) {
3174           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3175             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3176                                    "max_live_bytes " SIZE_FORMAT " "
3177                                    "< calculated " SIZE_FORMAT,
3178                                    p2i(r->bottom()), p2i(r->end()),
3179                                    r->max_live_bytes(),
3180                                  not_dead_yet_cl.live_bytes());
3181             _failures = true;
3182           }
3183         } else {
3184           // When vo == UseNextMarking we cannot currently do a sanity
3185           // check on the live bytes as the calculation has not been
3186           // finalized yet.
3187         }
3188       }
3189     }
3190     return false; // stop the region iteration if we hit a failure
3191   }
3192 };
3193 
3194 // This is the task used for parallel verification of the heap regions
3195 
3196 class G1ParVerifyTask: public AbstractGangTask {
3197 private:
3198   G1CollectedHeap*  _g1h;
3199   VerifyOption      _vo;
3200   bool              _failures;
3201   HeapRegionClaimer _hrclaimer;
3202 
3203 public:
3204   // _vo == UsePrevMarking -> use "prev" marking information,
3205   // _vo == UseNextMarking -> use "next" marking information,
3206   // _vo == UseMarkWord    -> use mark word from object header.
3207   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3208       AbstractGangTask("Parallel verify task"),
3209       _g1h(g1h),
3210       _vo(vo),
3211       _failures(false),
3212       _hrclaimer(g1h->workers()->active_workers()) {}
3213 
3214   bool failures() {
3215     return _failures;
3216   }
3217 
3218   void work(uint worker_id) {
3219     HandleMark hm;
3220     VerifyRegionClosure blk(true, _vo);
3221     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3222     if (blk.failures()) {
3223       _failures = true;
3224     }
3225   }
3226 };
3227 
3228 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3229   if (SafepointSynchronize::is_at_safepoint()) {
3230     assert(Thread::current()->is_VM_thread(),
3231            "Expected to be executed serially by the VM thread at this point");
3232 
3233     if (!silent) { gclog_or_tty->print("Roots "); }
3234     VerifyRootsClosure rootsCl(vo);
3235     VerifyKlassClosure klassCl(this, &rootsCl);
3236     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3237 
3238     // We apply the relevant closures to all the oops in the
3239     // system dictionary, class loader data graph, the string table
3240     // and the nmethods in the code cache.
3241     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3242     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3243 
3244     {
3245       G1RootProcessor root_processor(this, 1);
3246       root_processor.process_all_roots(&rootsCl,
3247                                        &cldCl,
3248                                        &blobsCl);
3249     }
3250 
3251     bool failures = rootsCl.failures() || codeRootsCl.failures();
3252 
3253     if (vo != VerifyOption_G1UseMarkWord) {
3254       // If we're verifying during a full GC then the region sets
3255       // will have been torn down at the start of the GC. Therefore
3256       // verifying the region sets will fail. So we only verify
3257       // the region sets when not in a full GC.
3258       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3259       verify_region_sets();
3260     }
3261 
3262     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3263     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3264 
3265       G1ParVerifyTask task(this, vo);
3266       workers()->run_task(&task);
3267       if (task.failures()) {
3268         failures = true;
3269       }
3270 
3271     } else {
3272       VerifyRegionClosure blk(false, vo);
3273       heap_region_iterate(&blk);
3274       if (blk.failures()) {
3275         failures = true;
3276       }
3277     }
3278 
3279     if (G1StringDedup::is_enabled()) {
3280       if (!silent) gclog_or_tty->print("StrDedup ");
3281       G1StringDedup::verify();
3282     }
3283 
3284     if (failures) {
3285       gclog_or_tty->print_cr("Heap:");
3286       // It helps to have the per-region information in the output to
3287       // help us track down what went wrong. This is why we call
3288       // print_extended_on() instead of print_on().
3289       print_extended_on(gclog_or_tty);
3290       gclog_or_tty->cr();
3291       gclog_or_tty->flush();
3292     }
3293     guarantee(!failures, "there should not have been any failures");
3294   } else {
3295     if (!silent) {
3296       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3297       if (G1StringDedup::is_enabled()) {
3298         gclog_or_tty->print(", StrDedup");
3299       }
3300       gclog_or_tty->print(") ");
3301     }
3302   }
3303 }
3304 
3305 void G1CollectedHeap::verify(bool silent) {
3306   verify(silent, VerifyOption_G1UsePrevMarking);
3307 }
3308 
3309 double G1CollectedHeap::verify(bool guard, const char* msg) {
3310   double verify_time_ms = 0.0;
3311 
3312   if (guard && total_collections() >= VerifyGCStartAt) {
3313     double verify_start = os::elapsedTime();
3314     HandleMark hm;  // Discard invalid handles created during verification
3315     prepare_for_verify();
3316     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3317     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3318   }
3319 
3320   return verify_time_ms;
3321 }
3322 
3323 void G1CollectedHeap::verify_before_gc() {
3324   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3325   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3326 }
3327 
3328 void G1CollectedHeap::verify_after_gc() {
3329   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3330   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3331 }
3332 
3333 class PrintRegionClosure: public HeapRegionClosure {
3334   outputStream* _st;
3335 public:
3336   PrintRegionClosure(outputStream* st) : _st(st) {}
3337   bool doHeapRegion(HeapRegion* r) {
3338     r->print_on(_st);
3339     return false;
3340   }
3341 };
3342 
3343 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3344                                        const HeapRegion* hr,
3345                                        const VerifyOption vo) const {
3346   switch (vo) {
3347   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3348   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3349   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3350   default:                            ShouldNotReachHere();
3351   }
3352   return false; // keep some compilers happy
3353 }
3354 
3355 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3356                                        const VerifyOption vo) const {
3357   switch (vo) {
3358   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3359   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3360   case VerifyOption_G1UseMarkWord: {
3361     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3362     return !obj->is_gc_marked() && !hr->is_archive();
3363   }
3364   default:                            ShouldNotReachHere();
3365   }
3366   return false; // keep some compilers happy
3367 }
3368 
3369 void G1CollectedHeap::print_on(outputStream* st) const {
3370   st->print(" %-20s", "garbage-first heap");
3371   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3372             capacity()/K, used_unlocked()/K);
3373   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3374             p2i(_hrm.reserved().start()),
3375             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3376             p2i(_hrm.reserved().end()));
3377   st->cr();
3378   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3379   uint young_regions = _young_list->length();
3380   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3381             (size_t) young_regions * HeapRegion::GrainBytes / K);
3382   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3383   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3384             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3385   st->cr();
3386   MetaspaceAux::print_on(st);
3387 }
3388 
3389 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3390   print_on(st);
3391 
3392   // Print the per-region information.
3393   st->cr();
3394   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3395                "HS=humongous(starts), HC=humongous(continues), "
3396                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3397                "PTAMS=previous top-at-mark-start, "
3398                "NTAMS=next top-at-mark-start)");
3399   PrintRegionClosure blk(st);
3400   heap_region_iterate(&blk);
3401 }
3402 
3403 void G1CollectedHeap::print_on_error(outputStream* st) const {
3404   this->CollectedHeap::print_on_error(st);
3405 
3406   if (_cm != NULL) {
3407     st->cr();
3408     _cm->print_on_error(st);
3409   }
3410 }
3411 
3412 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3413   workers()->print_worker_threads_on(st);
3414   _cmThread->print_on(st);
3415   st->cr();
3416   _cm->print_worker_threads_on(st);
3417   _cg1r->print_worker_threads_on(st);
3418   if (G1StringDedup::is_enabled()) {
3419     G1StringDedup::print_worker_threads_on(st);
3420   }
3421 }
3422 
3423 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3424   workers()->threads_do(tc);
3425   tc->do_thread(_cmThread);
3426   _cg1r->threads_do(tc);
3427   if (G1StringDedup::is_enabled()) {
3428     G1StringDedup::threads_do(tc);
3429   }
3430 }
3431 
3432 void G1CollectedHeap::print_tracing_info() const {
3433   // We'll overload this to mean "trace GC pause statistics."
3434   if (TraceYoungGenTime || TraceOldGenTime) {
3435     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3436     // to that.
3437     g1_policy()->print_tracing_info();
3438   }
3439   if (G1SummarizeRSetStats) {
3440     g1_rem_set()->print_summary_info();
3441   }
3442   if (G1SummarizeConcMark) {
3443     concurrent_mark()->print_summary_info();
3444   }
3445   g1_policy()->print_yg_surv_rate_info();
3446 }
3447 
3448 #ifndef PRODUCT
3449 // Helpful for debugging RSet issues.
3450 
3451 class PrintRSetsClosure : public HeapRegionClosure {
3452 private:
3453   const char* _msg;
3454   size_t _occupied_sum;
3455 
3456 public:
3457   bool doHeapRegion(HeapRegion* r) {
3458     HeapRegionRemSet* hrrs = r->rem_set();
3459     size_t occupied = hrrs->occupied();
3460     _occupied_sum += occupied;
3461 
3462     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3463                            HR_FORMAT_PARAMS(r));
3464     if (occupied == 0) {
3465       gclog_or_tty->print_cr("  RSet is empty");
3466     } else {
3467       hrrs->print();
3468     }
3469     gclog_or_tty->print_cr("----------");
3470     return false;
3471   }
3472 
3473   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3474     gclog_or_tty->cr();
3475     gclog_or_tty->print_cr("========================================");
3476     gclog_or_tty->print_cr("%s", msg);
3477     gclog_or_tty->cr();
3478   }
3479 
3480   ~PrintRSetsClosure() {
3481     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3482     gclog_or_tty->print_cr("========================================");
3483     gclog_or_tty->cr();
3484   }
3485 };
3486 
3487 void G1CollectedHeap::print_cset_rsets() {
3488   PrintRSetsClosure cl("Printing CSet RSets");
3489   collection_set_iterate(&cl);
3490 }
3491 
3492 void G1CollectedHeap::print_all_rsets() {
3493   PrintRSetsClosure cl("Printing All RSets");;
3494   heap_region_iterate(&cl);
3495 }
3496 #endif // PRODUCT
3497 
3498 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3499   YoungList* young_list = heap()->young_list();
3500 
3501   size_t eden_used_bytes = young_list->eden_used_bytes();
3502   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3503 
3504   size_t eden_capacity_bytes =
3505     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3506 
3507   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3508   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3509 }
3510 
3511 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3512   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3513                        stats->unused(), stats->used(), stats->region_end_waste(),
3514                        stats->regions_filled(), stats->direct_allocated(),
3515                        stats->failure_used(), stats->failure_waste());
3516 }
3517 
3518 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3519   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3520   gc_tracer->report_gc_heap_summary(when, heap_summary);
3521 
3522   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3523   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3524 }
3525 
3526 
3527 G1CollectedHeap* G1CollectedHeap::heap() {
3528   CollectedHeap* heap = Universe::heap();
3529   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3530   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3531   return (G1CollectedHeap*)heap;
3532 }
3533 
3534 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3535   // always_do_update_barrier = false;
3536   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3537   // Fill TLAB's and such
3538   accumulate_statistics_all_tlabs();
3539   ensure_parsability(true);
3540 
3541   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3542       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3543     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3544   }
3545 }
3546 
3547 void G1CollectedHeap::gc_epilogue(bool full) {
3548 
3549   if (G1SummarizeRSetStats &&
3550       (G1SummarizeRSetStatsPeriod > 0) &&
3551       // we are at the end of the GC. Total collections has already been increased.
3552       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3553     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3554   }
3555 
3556   // FIXME: what is this about?
3557   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3558   // is set.
3559 #if defined(COMPILER2) || INCLUDE_JVMCI
3560   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3561 #endif
3562   // always_do_update_barrier = true;
3563 
3564   resize_all_tlabs();
3565   allocation_context_stats().update(full);
3566 
3567   // We have just completed a GC. Update the soft reference
3568   // policy with the new heap occupancy
3569   Universe::update_heap_info_at_gc();
3570 }
3571 
3572 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3573                                                uint gc_count_before,
3574                                                bool* succeeded,
3575                                                GCCause::Cause gc_cause) {
3576   assert_heap_not_locked_and_not_at_safepoint();
3577   g1_policy()->record_stop_world_start();
3578   VM_G1IncCollectionPause op(gc_count_before,
3579                              word_size,
3580                              false, /* should_initiate_conc_mark */
3581                              g1_policy()->max_pause_time_ms(),
3582                              gc_cause);
3583 
3584   op.set_allocation_context(AllocationContext::current());
3585   VMThread::execute(&op);
3586 
3587   HeapWord* result = op.result();
3588   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3589   assert(result == NULL || ret_succeeded,
3590          "the result should be NULL if the VM did not succeed");
3591   *succeeded = ret_succeeded;
3592 
3593   assert_heap_not_locked();
3594   return result;
3595 }
3596 
3597 void
3598 G1CollectedHeap::doConcurrentMark() {
3599   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3600   if (!_cmThread->in_progress()) {
3601     _cmThread->set_started();
3602     CGC_lock->notify();
3603   }
3604 }
3605 
3606 size_t G1CollectedHeap::pending_card_num() {
3607   size_t extra_cards = 0;
3608   JavaThread *curr = Threads::first();
3609   while (curr != NULL) {
3610     DirtyCardQueue& dcq = curr->dirty_card_queue();
3611     extra_cards += dcq.size();
3612     curr = curr->next();
3613   }
3614   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3615   size_t buffer_size = dcqs.buffer_size();
3616   size_t buffer_num = dcqs.completed_buffers_num();
3617 
3618   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3619   // in bytes - not the number of 'entries'. We need to convert
3620   // into a number of cards.
3621   return (buffer_size * buffer_num + extra_cards) / oopSize;
3622 }
3623 
3624 size_t G1CollectedHeap::cards_scanned() {
3625   return g1_rem_set()->cardsScanned();
3626 }
3627 
3628 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3629  private:
3630   size_t _total_humongous;
3631   size_t _candidate_humongous;
3632 
3633   DirtyCardQueue _dcq;
3634 
3635   // We don't nominate objects with many remembered set entries, on
3636   // the assumption that such objects are likely still live.
3637   bool is_remset_small(HeapRegion* region) const {
3638     HeapRegionRemSet* const rset = region->rem_set();
3639     return G1EagerReclaimHumongousObjectsWithStaleRefs
3640       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3641       : rset->is_empty();
3642   }
3643 
3644   bool is_typeArray_region(HeapRegion* region) const {
3645     return oop(region->bottom())->is_typeArray();
3646   }
3647 
3648   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3649     assert(region->is_starts_humongous(), "Must start a humongous object");
3650 
3651     // Candidate selection must satisfy the following constraints
3652     // while concurrent marking is in progress:
3653     //
3654     // * In order to maintain SATB invariants, an object must not be
3655     // reclaimed if it was allocated before the start of marking and
3656     // has not had its references scanned.  Such an object must have
3657     // its references (including type metadata) scanned to ensure no
3658     // live objects are missed by the marking process.  Objects
3659     // allocated after the start of concurrent marking don't need to
3660     // be scanned.
3661     //
3662     // * An object must not be reclaimed if it is on the concurrent
3663     // mark stack.  Objects allocated after the start of concurrent
3664     // marking are never pushed on the mark stack.
3665     //
3666     // Nominating only objects allocated after the start of concurrent
3667     // marking is sufficient to meet both constraints.  This may miss
3668     // some objects that satisfy the constraints, but the marking data
3669     // structures don't support efficiently performing the needed
3670     // additional tests or scrubbing of the mark stack.
3671     //
3672     // However, we presently only nominate is_typeArray() objects.
3673     // A humongous object containing references induces remembered
3674     // set entries on other regions.  In order to reclaim such an
3675     // object, those remembered sets would need to be cleaned up.
3676     //
3677     // We also treat is_typeArray() objects specially, allowing them
3678     // to be reclaimed even if allocated before the start of
3679     // concurrent mark.  For this we rely on mark stack insertion to
3680     // exclude is_typeArray() objects, preventing reclaiming an object
3681     // that is in the mark stack.  We also rely on the metadata for
3682     // such objects to be built-in and so ensured to be kept live.
3683     // Frequent allocation and drop of large binary blobs is an
3684     // important use case for eager reclaim, and this special handling
3685     // may reduce needed headroom.
3686 
3687     return is_typeArray_region(region) && is_remset_small(region);
3688   }
3689 
3690  public:
3691   RegisterHumongousWithInCSetFastTestClosure()
3692   : _total_humongous(0),
3693     _candidate_humongous(0),
3694     _dcq(&JavaThread::dirty_card_queue_set()) {
3695   }
3696 
3697   virtual bool doHeapRegion(HeapRegion* r) {
3698     if (!r->is_starts_humongous()) {
3699       return false;
3700     }
3701     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3702 
3703     bool is_candidate = humongous_region_is_candidate(g1h, r);
3704     uint rindex = r->hrm_index();
3705     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3706     if (is_candidate) {
3707       _candidate_humongous++;
3708       g1h->register_humongous_region_with_cset(rindex);
3709       // Is_candidate already filters out humongous object with large remembered sets.
3710       // If we have a humongous object with a few remembered sets, we simply flush these
3711       // remembered set entries into the DCQS. That will result in automatic
3712       // re-evaluation of their remembered set entries during the following evacuation
3713       // phase.
3714       if (!r->rem_set()->is_empty()) {
3715         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3716                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3717         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3718         HeapRegionRemSetIterator hrrs(r->rem_set());
3719         size_t card_index;
3720         while (hrrs.has_next(card_index)) {
3721           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3722           // The remembered set might contain references to already freed
3723           // regions. Filter out such entries to avoid failing card table
3724           // verification.
3725           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3726             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3727               *card_ptr = CardTableModRefBS::dirty_card_val();
3728               _dcq.enqueue(card_ptr);
3729             }
3730           }
3731         }
3732         r->rem_set()->clear_locked();
3733       }
3734       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3735     }
3736     _total_humongous++;
3737 
3738     return false;
3739   }
3740 
3741   size_t total_humongous() const { return _total_humongous; }
3742   size_t candidate_humongous() const { return _candidate_humongous; }
3743 
3744   void flush_rem_set_entries() { _dcq.flush(); }
3745 };
3746 
3747 void G1CollectedHeap::register_humongous_regions_with_cset() {
3748   if (!G1EagerReclaimHumongousObjects) {
3749     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3750     return;
3751   }
3752   double time = os::elapsed_counter();
3753 
3754   // Collect reclaim candidate information and register candidates with cset.
3755   RegisterHumongousWithInCSetFastTestClosure cl;
3756   heap_region_iterate(&cl);
3757 
3758   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3759   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3760                                                                   cl.total_humongous(),
3761                                                                   cl.candidate_humongous());
3762   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3763 
3764   // Finally flush all remembered set entries to re-check into the global DCQS.
3765   cl.flush_rem_set_entries();
3766 }
3767 
3768 void G1CollectedHeap::setup_surviving_young_words() {
3769   assert(_surviving_young_words == NULL, "pre-condition");
3770   uint array_length = g1_policy()->young_cset_region_length();
3771   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3772   if (_surviving_young_words == NULL) {
3773     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3774                           "Not enough space for young surv words summary.");
3775   }
3776   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3777 #ifdef ASSERT
3778   for (uint i = 0;  i < array_length; ++i) {
3779     assert( _surviving_young_words[i] == 0, "memset above" );
3780   }
3781 #endif // !ASSERT
3782 }
3783 
3784 void G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3785   assert_at_safepoint(true);
3786   uint array_length = g1_policy()->young_cset_region_length();
3787   for (uint i = 0; i < array_length; ++i) {
3788     _surviving_young_words[i] += surv_young_words[i];
3789   }
3790 }
3791 
3792 void G1CollectedHeap::cleanup_surviving_young_words() {
3793   guarantee( _surviving_young_words != NULL, "pre-condition" );
3794   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3795   _surviving_young_words = NULL;
3796 }
3797 
3798 #ifdef ASSERT
3799 class VerifyCSetClosure: public HeapRegionClosure {
3800 public:
3801   bool doHeapRegion(HeapRegion* hr) {
3802     // Here we check that the CSet region's RSet is ready for parallel
3803     // iteration. The fields that we'll verify are only manipulated
3804     // when the region is part of a CSet and is collected. Afterwards,
3805     // we reset these fields when we clear the region's RSet (when the
3806     // region is freed) so they are ready when the region is
3807     // re-allocated. The only exception to this is if there's an
3808     // evacuation failure and instead of freeing the region we leave
3809     // it in the heap. In that case, we reset these fields during
3810     // evacuation failure handling.
3811     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3812 
3813     // Here's a good place to add any other checks we'd like to
3814     // perform on CSet regions.
3815     return false;
3816   }
3817 };
3818 #endif // ASSERT
3819 
3820 uint G1CollectedHeap::num_task_queues() const {
3821   return _task_queues->size();
3822 }
3823 
3824 #if TASKQUEUE_STATS
3825 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3826   st->print_raw_cr("GC Task Stats");
3827   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3828   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3829 }
3830 
3831 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3832   print_taskqueue_stats_hdr(st);
3833 
3834   TaskQueueStats totals;
3835   const uint n = num_task_queues();
3836   for (uint i = 0; i < n; ++i) {
3837     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3838     totals += task_queue(i)->stats;
3839   }
3840   st->print_raw("tot "); totals.print(st); st->cr();
3841 
3842   DEBUG_ONLY(totals.verify());
3843 }
3844 
3845 void G1CollectedHeap::reset_taskqueue_stats() {
3846   const uint n = num_task_queues();
3847   for (uint i = 0; i < n; ++i) {
3848     task_queue(i)->stats.reset();
3849   }
3850 }
3851 #endif // TASKQUEUE_STATS
3852 
3853 void G1CollectedHeap::log_gc_header() {
3854   if (!G1Log::fine()) {
3855     return;
3856   }
3857 
3858   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3859 
3860   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3861     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3862     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3863 
3864   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3865 }
3866 
3867 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3868   if (!G1Log::fine()) {
3869     return;
3870   }
3871 
3872   if (G1Log::finer()) {
3873     if (evacuation_failed()) {
3874       gclog_or_tty->print(" (to-space exhausted)");
3875     }
3876     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3877     g1_policy()->phase_times()->note_gc_end();
3878     g1_policy()->phase_times()->print(pause_time_sec);
3879     g1_policy()->print_detailed_heap_transition();
3880   } else {
3881     if (evacuation_failed()) {
3882       gclog_or_tty->print("--");
3883     }
3884     g1_policy()->print_heap_transition();
3885     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3886   }
3887   gclog_or_tty->flush();
3888 }
3889 
3890 void G1CollectedHeap::wait_for_root_region_scanning() {
3891   double scan_wait_start = os::elapsedTime();
3892   // We have to wait until the CM threads finish scanning the
3893   // root regions as it's the only way to ensure that all the
3894   // objects on them have been correctly scanned before we start
3895   // moving them during the GC.
3896   bool waited = _cm->root_regions()->wait_until_scan_finished();
3897   double wait_time_ms = 0.0;
3898   if (waited) {
3899     double scan_wait_end = os::elapsedTime();
3900     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3901   }
3902   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3903 }
3904 
3905 bool
3906 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3907   assert_at_safepoint(true /* should_be_vm_thread */);
3908   guarantee(!is_gc_active(), "collection is not reentrant");
3909 
3910   if (GC_locker::check_active_before_gc()) {
3911     return false;
3912   }
3913 
3914   _gc_timer_stw->register_gc_start();
3915 
3916   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3917 
3918   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3919   ResourceMark rm;
3920 
3921   wait_for_root_region_scanning();
3922 
3923   G1Log::update_level();
3924   print_heap_before_gc();
3925   trace_heap_before_gc(_gc_tracer_stw);
3926 
3927   verify_region_sets_optional();
3928   verify_dirty_young_regions();
3929 
3930   // This call will decide whether this pause is an initial-mark
3931   // pause. If it is, during_initial_mark_pause() will return true
3932   // for the duration of this pause.
3933   g1_policy()->decide_on_conc_mark_initiation();
3934 
3935   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3936   assert(!collector_state()->during_initial_mark_pause() ||
3937           collector_state()->gcs_are_young(), "sanity");
3938 
3939   // We also do not allow mixed GCs during marking.
3940   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3941 
3942   // Record whether this pause is an initial mark. When the current
3943   // thread has completed its logging output and it's safe to signal
3944   // the CM thread, the flag's value in the policy has been reset.
3945   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3946 
3947   // Inner scope for scope based logging, timers, and stats collection
3948   {
3949     EvacuationInfo evacuation_info;
3950 
3951     if (collector_state()->during_initial_mark_pause()) {
3952       // We are about to start a marking cycle, so we increment the
3953       // full collection counter.
3954       increment_old_marking_cycles_started();
3955       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3956     }
3957 
3958     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3959 
3960     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3961 
3962     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3963                                                                   workers()->active_workers(),
3964                                                                   Threads::number_of_non_daemon_threads());
3965     workers()->set_active_workers(active_workers);
3966 
3967     double pause_start_sec = os::elapsedTime();
3968     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
3969     log_gc_header();
3970 
3971     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3972     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3973 
3974     // If the secondary_free_list is not empty, append it to the
3975     // free_list. No need to wait for the cleanup operation to finish;
3976     // the region allocation code will check the secondary_free_list
3977     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3978     // set, skip this step so that the region allocation code has to
3979     // get entries from the secondary_free_list.
3980     if (!G1StressConcRegionFreeing) {
3981       append_secondary_free_list_if_not_empty_with_lock();
3982     }
3983 
3984     assert(check_young_list_well_formed(), "young list should be well formed");
3985 
3986     // Don't dynamically change the number of GC threads this early.  A value of
3987     // 0 is used to indicate serial work.  When parallel work is done,
3988     // it will be set.
3989 
3990     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3991       IsGCActiveMark x;
3992 
3993       gc_prologue(false);
3994       increment_total_collections(false /* full gc */);
3995       increment_gc_time_stamp();
3996 
3997       verify_before_gc();
3998 
3999       check_bitmaps("GC Start");
4000 
4001 #if defined(COMPILER2) || INCLUDE_JVMCI
4002       DerivedPointerTable::clear();
4003 #endif
4004 
4005       // Please see comment in g1CollectedHeap.hpp and
4006       // G1CollectedHeap::ref_processing_init() to see how
4007       // reference processing currently works in G1.
4008 
4009       // Enable discovery in the STW reference processor
4010       ref_processor_stw()->enable_discovery();
4011 
4012       {
4013         // We want to temporarily turn off discovery by the
4014         // CM ref processor, if necessary, and turn it back on
4015         // on again later if we do. Using a scoped
4016         // NoRefDiscovery object will do this.
4017         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4018 
4019         // Forget the current alloc region (we might even choose it to be part
4020         // of the collection set!).
4021         _allocator->release_mutator_alloc_region();
4022 
4023         // We should call this after we retire the mutator alloc
4024         // region(s) so that all the ALLOC / RETIRE events are generated
4025         // before the start GC event.
4026         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4027 
4028         // This timing is only used by the ergonomics to handle our pause target.
4029         // It is unclear why this should not include the full pause. We will
4030         // investigate this in CR 7178365.
4031         //
4032         // Preserving the old comment here if that helps the investigation:
4033         //
4034         // The elapsed time induced by the start time below deliberately elides
4035         // the possible verification above.
4036         double sample_start_time_sec = os::elapsedTime();
4037 
4038 #if YOUNG_LIST_VERBOSE
4039         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4040         _young_list->print();
4041         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4042 #endif // YOUNG_LIST_VERBOSE
4043 
4044         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4045 
4046 #if YOUNG_LIST_VERBOSE
4047         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4048         _young_list->print();
4049 #endif // YOUNG_LIST_VERBOSE
4050 
4051         if (collector_state()->during_initial_mark_pause()) {
4052           concurrent_mark()->checkpointRootsInitialPre();
4053         }
4054 
4055 #if YOUNG_LIST_VERBOSE
4056         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4057         _young_list->print();
4058         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4059 #endif // YOUNG_LIST_VERBOSE
4060 
4061         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4062 
4063         register_humongous_regions_with_cset();
4064 
4065         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4066 
4067         _cm->note_start_of_gc();
4068         // We call this after finalize_cset() to
4069         // ensure that the CSet has been finalized.
4070         _cm->verify_no_cset_oops();
4071 
4072         if (_hr_printer.is_active()) {
4073           HeapRegion* hr = g1_policy()->collection_set();
4074           while (hr != NULL) {
4075             _hr_printer.cset(hr);
4076             hr = hr->next_in_collection_set();
4077           }
4078         }
4079 
4080 #ifdef ASSERT
4081         VerifyCSetClosure cl;
4082         collection_set_iterate(&cl);
4083 #endif // ASSERT
4084 
4085         setup_surviving_young_words();
4086 
4087         // Initialize the GC alloc regions.
4088         _allocator->init_gc_alloc_regions(evacuation_info);
4089 
4090         // Actually do the work...
4091         evacuate_collection_set(evacuation_info);
4092 
4093         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4094 
4095         eagerly_reclaim_humongous_regions();
4096 
4097         g1_policy()->clear_collection_set();
4098 
4099         cleanup_surviving_young_words();
4100 
4101         // Start a new incremental collection set for the next pause.
4102         g1_policy()->start_incremental_cset_building();
4103 
4104         clear_cset_fast_test();
4105 
4106         _young_list->reset_sampled_info();
4107 
4108         // Don't check the whole heap at this point as the
4109         // GC alloc regions from this pause have been tagged
4110         // as survivors and moved on to the survivor list.
4111         // Survivor regions will fail the !is_young() check.
4112         assert(check_young_list_empty(false /* check_heap */),
4113           "young list should be empty");
4114 
4115 #if YOUNG_LIST_VERBOSE
4116         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4117         _young_list->print();
4118 #endif // YOUNG_LIST_VERBOSE
4119 
4120         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4121                                              _young_list->first_survivor_region(),
4122                                              _young_list->last_survivor_region());
4123 
4124         _young_list->reset_auxilary_lists();
4125 
4126         if (evacuation_failed()) {
4127           set_used(recalculate_used());
4128           if (_archive_allocator != NULL) {
4129             _archive_allocator->clear_used();
4130           }
4131           for (uint i = 0; i < ParallelGCThreads; i++) {
4132             if (_evacuation_failed_info_array[i].has_failed()) {
4133               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4134             }
4135           }
4136         } else {
4137           // The "used" of the the collection set have already been subtracted
4138           // when they were freed.  Add in the bytes evacuated.
4139           increase_used(g1_policy()->bytes_copied_during_gc());
4140         }
4141 
4142         if (collector_state()->during_initial_mark_pause()) {
4143           // We have to do this before we notify the CM threads that
4144           // they can start working to make sure that all the
4145           // appropriate initialization is done on the CM object.
4146           concurrent_mark()->checkpointRootsInitialPost();
4147           collector_state()->set_mark_in_progress(true);
4148           // Note that we don't actually trigger the CM thread at
4149           // this point. We do that later when we're sure that
4150           // the current thread has completed its logging output.
4151         }
4152 
4153         allocate_dummy_regions();
4154 
4155 #if YOUNG_LIST_VERBOSE
4156         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4157         _young_list->print();
4158         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4159 #endif // YOUNG_LIST_VERBOSE
4160 
4161         _allocator->init_mutator_alloc_region();
4162 
4163         {
4164           size_t expand_bytes = g1_policy()->expansion_amount();
4165           if (expand_bytes > 0) {
4166             size_t bytes_before = capacity();
4167             // No need for an ergo verbose message here,
4168             // expansion_amount() does this when it returns a value > 0.
4169             if (!expand(expand_bytes)) {
4170               // We failed to expand the heap. Cannot do anything about it.
4171             }
4172           }
4173         }
4174 
4175         // We redo the verification but now wrt to the new CSet which
4176         // has just got initialized after the previous CSet was freed.
4177         _cm->verify_no_cset_oops();
4178         _cm->note_end_of_gc();
4179 
4180         // This timing is only used by the ergonomics to handle our pause target.
4181         // It is unclear why this should not include the full pause. We will
4182         // investigate this in CR 7178365.
4183         double sample_end_time_sec = os::elapsedTime();
4184         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4185         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4186 
4187         MemoryService::track_memory_usage();
4188 
4189         // In prepare_for_verify() below we'll need to scan the deferred
4190         // update buffers to bring the RSets up-to-date if
4191         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4192         // the update buffers we'll probably need to scan cards on the
4193         // regions we just allocated to (i.e., the GC alloc
4194         // regions). However, during the last GC we called
4195         // set_saved_mark() on all the GC alloc regions, so card
4196         // scanning might skip the [saved_mark_word()...top()] area of
4197         // those regions (i.e., the area we allocated objects into
4198         // during the last GC). But it shouldn't. Given that
4199         // saved_mark_word() is conditional on whether the GC time stamp
4200         // on the region is current or not, by incrementing the GC time
4201         // stamp here we invalidate all the GC time stamps on all the
4202         // regions and saved_mark_word() will simply return top() for
4203         // all the regions. This is a nicer way of ensuring this rather
4204         // than iterating over the regions and fixing them. In fact, the
4205         // GC time stamp increment here also ensures that
4206         // saved_mark_word() will return top() between pauses, i.e.,
4207         // during concurrent refinement. So we don't need the
4208         // is_gc_active() check to decided which top to use when
4209         // scanning cards (see CR 7039627).
4210         increment_gc_time_stamp();
4211 
4212         verify_after_gc();
4213         check_bitmaps("GC End");
4214 
4215         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4216         ref_processor_stw()->verify_no_references_recorded();
4217 
4218         // CM reference discovery will be re-enabled if necessary.
4219       }
4220 
4221       // We should do this after we potentially expand the heap so
4222       // that all the COMMIT events are generated before the end GC
4223       // event, and after we retire the GC alloc regions so that all
4224       // RETIRE events are generated before the end GC event.
4225       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4226 
4227 #ifdef TRACESPINNING
4228       ParallelTaskTerminator::print_termination_counts();
4229 #endif
4230 
4231       gc_epilogue(false);
4232     }
4233 
4234     // Print the remainder of the GC log output.
4235     log_gc_footer(os::elapsedTime() - pause_start_sec);
4236 
4237     // It is not yet to safe to tell the concurrent mark to
4238     // start as we have some optional output below. We don't want the
4239     // output from the concurrent mark thread interfering with this
4240     // logging output either.
4241 
4242     _hrm.verify_optional();
4243     verify_region_sets_optional();
4244 
4245     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4246     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4247 
4248     print_heap_after_gc();
4249     trace_heap_after_gc(_gc_tracer_stw);
4250 
4251     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4252     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4253     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4254     // before any GC notifications are raised.
4255     g1mm()->update_sizes();
4256 
4257     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4258     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4259     _gc_timer_stw->register_gc_end();
4260     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4261   }
4262   // It should now be safe to tell the concurrent mark thread to start
4263   // without its logging output interfering with the logging output
4264   // that came from the pause.
4265 
4266   if (should_start_conc_mark) {
4267     // CAUTION: after the doConcurrentMark() call below,
4268     // the concurrent marking thread(s) could be running
4269     // concurrently with us. Make sure that anything after
4270     // this point does not assume that we are the only GC thread
4271     // running. Note: of course, the actual marking work will
4272     // not start until the safepoint itself is released in
4273     // SuspendibleThreadSet::desynchronize().
4274     doConcurrentMark();
4275   }
4276 
4277   return true;
4278 }
4279 
4280 void G1CollectedHeap::remove_self_forwarding_pointers() {
4281   double remove_self_forwards_start = os::elapsedTime();
4282 
4283   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4284   workers()->run_task(&rsfp_task);
4285 
4286   // Now restore saved marks, if any.
4287   for (uint i = 0; i < ParallelGCThreads; i++) {
4288     OopAndMarkOopStack& cur = _preserved_objs[i];
4289     while (!cur.is_empty()) {
4290       OopAndMarkOop elem = cur.pop();
4291       elem.set_mark();
4292     }
4293     cur.clear(true);
4294   }
4295 
4296   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4297 }
4298 
4299 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4300   if (!_evacuation_failed) {
4301     _evacuation_failed = true;
4302   }
4303 
4304   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4305 
4306   // We want to call the "for_promotion_failure" version only in the
4307   // case of a promotion failure.
4308   if (m->must_be_preserved_for_promotion_failure(obj)) {
4309     OopAndMarkOop elem(obj, m);
4310     _preserved_objs[worker_id].push(elem);
4311   }
4312 }
4313 
4314 void G1ParCopyHelper::mark_object(oop obj) {
4315   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4316 
4317   // We know that the object is not moving so it's safe to read its size.
4318   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4319 }
4320 
4321 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4322   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4323   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4324   assert(from_obj != to_obj, "should not be self-forwarded");
4325 
4326   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4327   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4328 
4329   // The object might be in the process of being copied by another
4330   // worker so we cannot trust that its to-space image is
4331   // well-formed. So we have to read its size from its from-space
4332   // image which we know should not be changing.
4333   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4334 }
4335 
4336 template <class T>
4337 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4338   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4339     _scanned_klass->record_modified_oops();
4340   }
4341 }
4342 
4343 template <G1Barrier barrier, G1Mark do_mark_object>
4344 template <class T>
4345 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4346   T heap_oop = oopDesc::load_heap_oop(p);
4347 
4348   if (oopDesc::is_null(heap_oop)) {
4349     return;
4350   }
4351 
4352   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4353 
4354   assert(_worker_id == _par_scan_state->worker_id(), "sanity");
4355 
4356   const InCSetState state = _g1->in_cset_state(obj);
4357   if (state.is_in_cset()) {
4358     oop forwardee;
4359     markOop m = obj->mark();
4360     if (m->is_marked()) {
4361       forwardee = (oop) m->decode_pointer();
4362     } else {
4363       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4364     }
4365     assert(forwardee != NULL, "forwardee should not be NULL");
4366     oopDesc::encode_store_heap_oop(p, forwardee);
4367     if (do_mark_object != G1MarkNone && forwardee != obj) {
4368       // If the object is self-forwarded we don't need to explicitly
4369       // mark it, the evacuation failure protocol will do so.
4370       mark_forwarded_object(obj, forwardee);
4371     }
4372 
4373     if (barrier == G1BarrierKlass) {
4374       do_klass_barrier(p, forwardee);
4375     }
4376   } else {
4377     if (state.is_humongous()) {
4378       _g1->set_humongous_is_live(obj);
4379     }
4380     // The object is not in collection set. If we're a root scanning
4381     // closure during an initial mark pause then attempt to mark the object.
4382     if (do_mark_object == G1MarkFromRoot) {
4383       mark_object(obj);
4384     }
4385   }
4386 }
4387 
4388 class G1ParEvacuateFollowersClosure : public VoidClosure {
4389 private:
4390   double _start_term;
4391   double _term_time;
4392   size_t _term_attempts;
4393 
4394   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4395   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4396 protected:
4397   G1CollectedHeap*              _g1h;
4398   G1ParScanThreadState*         _par_scan_state;
4399   RefToScanQueueSet*            _queues;
4400   ParallelTaskTerminator*       _terminator;
4401 
4402   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4403   RefToScanQueueSet*      queues()         { return _queues; }
4404   ParallelTaskTerminator* terminator()     { return _terminator; }
4405 
4406 public:
4407   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4408                                 G1ParScanThreadState* par_scan_state,
4409                                 RefToScanQueueSet* queues,
4410                                 ParallelTaskTerminator* terminator)
4411     : _g1h(g1h), _par_scan_state(par_scan_state),
4412       _queues(queues), _terminator(terminator),
4413       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4414 
4415   void do_void();
4416 
4417   double term_time() const { return _term_time; }
4418   size_t term_attempts() const { return _term_attempts; }
4419 
4420 private:
4421   inline bool offer_termination();
4422 };
4423 
4424 bool G1ParEvacuateFollowersClosure::offer_termination() {
4425   G1ParScanThreadState* const pss = par_scan_state();
4426   start_term_time();
4427   const bool res = terminator()->offer_termination();
4428   end_term_time();
4429   return res;
4430 }
4431 
4432 void G1ParEvacuateFollowersClosure::do_void() {
4433   G1ParScanThreadState* const pss = par_scan_state();
4434   pss->trim_queue();
4435   do {
4436     pss->steal_and_trim_queue(queues());
4437   } while (!offer_termination());
4438 }
4439 
4440 class G1KlassScanClosure : public KlassClosure {
4441  G1ParCopyHelper* _closure;
4442  bool             _process_only_dirty;
4443  int              _count;
4444  public:
4445   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4446       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4447   void do_klass(Klass* klass) {
4448     // If the klass has not been dirtied we know that there's
4449     // no references into  the young gen and we can skip it.
4450    if (!_process_only_dirty || klass->has_modified_oops()) {
4451       // Clean the klass since we're going to scavenge all the metadata.
4452       klass->clear_modified_oops();
4453 
4454       // Tell the closure that this klass is the Klass to scavenge
4455       // and is the one to dirty if oops are left pointing into the young gen.
4456       _closure->set_scanned_klass(klass);
4457 
4458       klass->oops_do(_closure);
4459 
4460       _closure->set_scanned_klass(NULL);
4461     }
4462     _count++;
4463   }
4464 };
4465 
4466 class G1ParTask : public AbstractGangTask {
4467 protected:
4468   G1CollectedHeap*       _g1h;
4469   G1ParScanThreadState** _pss;
4470   RefToScanQueueSet*     _queues;
4471   G1RootProcessor*       _root_processor;
4472   ParallelTaskTerminator _terminator;
4473   uint _n_workers;
4474 
4475 public:
4476   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadState** per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4477     : AbstractGangTask("G1 collection"),
4478       _g1h(g1h),
4479       _pss(per_thread_states),
4480       _queues(task_queues),
4481       _root_processor(root_processor),
4482       _terminator(n_workers, _queues),
4483       _n_workers(n_workers)
4484   {}
4485 
4486   RefToScanQueueSet* queues() { return _queues; }
4487 
4488   RefToScanQueue *work_queue(int i) {
4489     return queues()->queue(i);
4490   }
4491 
4492   ParallelTaskTerminator* terminator() { return &_terminator; }
4493 
4494   // Helps out with CLD processing.
4495   //
4496   // During InitialMark we need to:
4497   // 1) Scavenge all CLDs for the young GC.
4498   // 2) Mark all objects directly reachable from strong CLDs.
4499   template <G1Mark do_mark_object>
4500   class G1CLDClosure : public CLDClosure {
4501     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4502     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4503     G1KlassScanClosure                                _klass_in_cld_closure;
4504     bool                                              _claim;
4505 
4506    public:
4507     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4508                  bool only_young, bool claim)
4509         : _oop_closure(oop_closure),
4510           _oop_in_klass_closure(oop_closure->g1(),
4511                                 oop_closure->pss(),
4512                                 oop_closure->rp()),
4513           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4514           _claim(claim) {
4515 
4516     }
4517 
4518     void do_cld(ClassLoaderData* cld) {
4519       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4520     }
4521   };
4522 
4523   void work(uint worker_id) {
4524     if (worker_id >= _n_workers) return;  // no work needed this round
4525 
4526     double start_sec = os::elapsedTime();
4527     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4528 
4529     {
4530       ResourceMark rm;
4531       HandleMark   hm;
4532 
4533       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4534 
4535       G1ParScanThreadState*           pss = _pss[worker_id];
4536       pss->set_ref_processor(rp);
4537 
4538       bool only_young = _g1h->collector_state()->gcs_are_young();
4539 
4540       // Non-IM young GC.
4541       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, pss, rp);
4542       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4543                                                                                only_young, // Only process dirty klasses.
4544                                                                                false);     // No need to claim CLDs.
4545       // IM young GC.
4546       //    Strong roots closures.
4547       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, pss, rp);
4548       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4549                                                                                false, // Process all klasses.
4550                                                                                true); // Need to claim CLDs.
4551       //    Weak roots closures.
4552       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, pss, rp);
4553       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4554                                                                                     false, // Process all klasses.
4555                                                                                     true); // Need to claim CLDs.
4556 
4557       OopClosure* strong_root_cl;
4558       OopClosure* weak_root_cl;
4559       CLDClosure* strong_cld_cl;
4560       CLDClosure* weak_cld_cl;
4561 
4562       bool trace_metadata = false;
4563 
4564       if (_g1h->collector_state()->during_initial_mark_pause()) {
4565         // We also need to mark copied objects.
4566         strong_root_cl = &scan_mark_root_cl;
4567         strong_cld_cl  = &scan_mark_cld_cl;
4568         if (ClassUnloadingWithConcurrentMark) {
4569           weak_root_cl = &scan_mark_weak_root_cl;
4570           weak_cld_cl  = &scan_mark_weak_cld_cl;
4571           trace_metadata = true;
4572         } else {
4573           weak_root_cl = &scan_mark_root_cl;
4574           weak_cld_cl  = &scan_mark_cld_cl;
4575         }
4576       } else {
4577         strong_root_cl = &scan_only_root_cl;
4578         weak_root_cl   = &scan_only_root_cl;
4579         strong_cld_cl  = &scan_only_cld_cl;
4580         weak_cld_cl    = &scan_only_cld_cl;
4581       }
4582 
4583       double start_strong_roots_sec = os::elapsedTime();
4584       _root_processor->evacuate_roots(strong_root_cl,
4585                                       weak_root_cl,
4586                                       strong_cld_cl,
4587                                       weak_cld_cl,
4588                                       trace_metadata,
4589                                       worker_id);
4590 
4591       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4592       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4593                                             weak_root_cl,
4594                                             worker_id);
4595       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4596 
4597       double term_sec = 0.0;
4598       size_t evac_term_attempts = 0;
4599       {
4600         double start = os::elapsedTime();
4601         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4602         evac.do_void();
4603 
4604         evac_term_attempts = evac.term_attempts();
4605         term_sec = evac.term_time();
4606         double elapsed_sec = os::elapsedTime() - start;
4607         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4608         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4609         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4610       }
4611 
4612       assert(pss->queue_is_empty(), "should be empty");
4613 
4614       if (PrintTerminationStats) {
4615         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4616         size_t lab_waste;
4617         size_t lab_undo_waste;
4618         pss->waste(lab_waste, lab_undo_waste);
4619         _g1h->print_termination_stats(gclog_or_tty,
4620                                       worker_id,
4621                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4622                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4623                                       term_sec * 1000.0,                          /* evac term time */
4624                                       evac_term_attempts,                         /* evac term attempts */
4625                                       lab_waste,                                  /* alloc buffer waste */
4626                                       lab_undo_waste                              /* undo waste */
4627                                       );
4628       }
4629 
4630       // Close the inner scope so that the ResourceMark and HandleMark
4631       // destructors are executed here and are included as part of the
4632       // "GC Worker Time".
4633     }
4634     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4635   }
4636 };
4637 
4638 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4639   st->print_raw_cr("GC Termination Stats");
4640   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4641   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4642   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4643 }
4644 
4645 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4646                                               uint worker_id,
4647                                               double elapsed_ms,
4648                                               double strong_roots_ms,
4649                                               double term_ms,
4650                                               size_t term_attempts,
4651                                               size_t alloc_buffer_waste,
4652                                               size_t undo_waste) const {
4653   st->print_cr("%3d %9.2f %9.2f %6.2f "
4654                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4655                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4656                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4657                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4658                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4659                alloc_buffer_waste * HeapWordSize / K,
4660                undo_waste * HeapWordSize / K);
4661 }
4662 
4663 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4664 private:
4665   BoolObjectClosure* _is_alive;
4666   int _initial_string_table_size;
4667   int _initial_symbol_table_size;
4668 
4669   bool  _process_strings;
4670   int _strings_processed;
4671   int _strings_removed;
4672 
4673   bool  _process_symbols;
4674   int _symbols_processed;
4675   int _symbols_removed;
4676 
4677 public:
4678   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4679     AbstractGangTask("String/Symbol Unlinking"),
4680     _is_alive(is_alive),
4681     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4682     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4683 
4684     _initial_string_table_size = StringTable::the_table()->table_size();
4685     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4686     if (process_strings) {
4687       StringTable::clear_parallel_claimed_index();
4688     }
4689     if (process_symbols) {
4690       SymbolTable::clear_parallel_claimed_index();
4691     }
4692   }
4693 
4694   ~G1StringSymbolTableUnlinkTask() {
4695     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4696               err_msg("claim value %d after unlink less than initial string table size %d",
4697                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4698     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4699               err_msg("claim value %d after unlink less than initial symbol table size %d",
4700                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4701 
4702     if (G1TraceStringSymbolTableScrubbing) {
4703       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4704                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4705                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4706                              strings_processed(), strings_removed(),
4707                              symbols_processed(), symbols_removed());
4708     }
4709   }
4710 
4711   void work(uint worker_id) {
4712     int strings_processed = 0;
4713     int strings_removed = 0;
4714     int symbols_processed = 0;
4715     int symbols_removed = 0;
4716     if (_process_strings) {
4717       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4718       Atomic::add(strings_processed, &_strings_processed);
4719       Atomic::add(strings_removed, &_strings_removed);
4720     }
4721     if (_process_symbols) {
4722       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4723       Atomic::add(symbols_processed, &_symbols_processed);
4724       Atomic::add(symbols_removed, &_symbols_removed);
4725     }
4726   }
4727 
4728   size_t strings_processed() const { return (size_t)_strings_processed; }
4729   size_t strings_removed()   const { return (size_t)_strings_removed; }
4730 
4731   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4732   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4733 };
4734 
4735 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4736 private:
4737   static Monitor* _lock;
4738 
4739   BoolObjectClosure* const _is_alive;
4740   const bool               _unloading_occurred;
4741   const uint               _num_workers;
4742 
4743   // Variables used to claim nmethods.
4744   nmethod* _first_nmethod;
4745   volatile nmethod* _claimed_nmethod;
4746 
4747   // The list of nmethods that need to be processed by the second pass.
4748   volatile nmethod* _postponed_list;
4749   volatile uint     _num_entered_barrier;
4750 
4751  public:
4752   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4753       _is_alive(is_alive),
4754       _unloading_occurred(unloading_occurred),
4755       _num_workers(num_workers),
4756       _first_nmethod(NULL),
4757       _claimed_nmethod(NULL),
4758       _postponed_list(NULL),
4759       _num_entered_barrier(0)
4760   {
4761     nmethod::increase_unloading_clock();
4762     // Get first alive nmethod
4763     NMethodIterator iter = NMethodIterator();
4764     if(iter.next_alive()) {
4765       _first_nmethod = iter.method();
4766     }
4767     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4768   }
4769 
4770   ~G1CodeCacheUnloadingTask() {
4771     CodeCache::verify_clean_inline_caches();
4772 
4773     CodeCache::set_needs_cache_clean(false);
4774     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4775 
4776     CodeCache::verify_icholder_relocations();
4777   }
4778 
4779  private:
4780   void add_to_postponed_list(nmethod* nm) {
4781       nmethod* old;
4782       do {
4783         old = (nmethod*)_postponed_list;
4784         nm->set_unloading_next(old);
4785       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4786   }
4787 
4788   void clean_nmethod(nmethod* nm) {
4789     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4790 
4791     if (postponed) {
4792       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4793       add_to_postponed_list(nm);
4794     }
4795 
4796     // Mark that this thread has been cleaned/unloaded.
4797     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4798     nm->set_unloading_clock(nmethod::global_unloading_clock());
4799   }
4800 
4801   void clean_nmethod_postponed(nmethod* nm) {
4802     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4803   }
4804 
4805   static const int MaxClaimNmethods = 16;
4806 
4807   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4808     nmethod* first;
4809     NMethodIterator last;
4810 
4811     do {
4812       *num_claimed_nmethods = 0;
4813 
4814       first = (nmethod*)_claimed_nmethod;
4815       last = NMethodIterator(first);
4816 
4817       if (first != NULL) {
4818 
4819         for (int i = 0; i < MaxClaimNmethods; i++) {
4820           if (!last.next_alive()) {
4821             break;
4822           }
4823           claimed_nmethods[i] = last.method();
4824           (*num_claimed_nmethods)++;
4825         }
4826       }
4827 
4828     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4829   }
4830 
4831   nmethod* claim_postponed_nmethod() {
4832     nmethod* claim;
4833     nmethod* next;
4834 
4835     do {
4836       claim = (nmethod*)_postponed_list;
4837       if (claim == NULL) {
4838         return NULL;
4839       }
4840 
4841       next = claim->unloading_next();
4842 
4843     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4844 
4845     return claim;
4846   }
4847 
4848  public:
4849   // Mark that we're done with the first pass of nmethod cleaning.
4850   void barrier_mark(uint worker_id) {
4851     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4852     _num_entered_barrier++;
4853     if (_num_entered_barrier == _num_workers) {
4854       ml.notify_all();
4855     }
4856   }
4857 
4858   // See if we have to wait for the other workers to
4859   // finish their first-pass nmethod cleaning work.
4860   void barrier_wait(uint worker_id) {
4861     if (_num_entered_barrier < _num_workers) {
4862       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4863       while (_num_entered_barrier < _num_workers) {
4864           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4865       }
4866     }
4867   }
4868 
4869   // Cleaning and unloading of nmethods. Some work has to be postponed
4870   // to the second pass, when we know which nmethods survive.
4871   void work_first_pass(uint worker_id) {
4872     // The first nmethods is claimed by the first worker.
4873     if (worker_id == 0 && _first_nmethod != NULL) {
4874       clean_nmethod(_first_nmethod);
4875       _first_nmethod = NULL;
4876     }
4877 
4878     int num_claimed_nmethods;
4879     nmethod* claimed_nmethods[MaxClaimNmethods];
4880 
4881     while (true) {
4882       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4883 
4884       if (num_claimed_nmethods == 0) {
4885         break;
4886       }
4887 
4888       for (int i = 0; i < num_claimed_nmethods; i++) {
4889         clean_nmethod(claimed_nmethods[i]);
4890       }
4891     }
4892   }
4893 
4894   void work_second_pass(uint worker_id) {
4895     nmethod* nm;
4896     // Take care of postponed nmethods.
4897     while ((nm = claim_postponed_nmethod()) != NULL) {
4898       clean_nmethod_postponed(nm);
4899     }
4900   }
4901 };
4902 
4903 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4904 
4905 class G1KlassCleaningTask : public StackObj {
4906   BoolObjectClosure*                      _is_alive;
4907   volatile jint                           _clean_klass_tree_claimed;
4908   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4909 
4910  public:
4911   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4912       _is_alive(is_alive),
4913       _clean_klass_tree_claimed(0),
4914       _klass_iterator() {
4915   }
4916 
4917  private:
4918   bool claim_clean_klass_tree_task() {
4919     if (_clean_klass_tree_claimed) {
4920       return false;
4921     }
4922 
4923     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4924   }
4925 
4926   InstanceKlass* claim_next_klass() {
4927     Klass* klass;
4928     do {
4929       klass =_klass_iterator.next_klass();
4930     } while (klass != NULL && !klass->oop_is_instance());
4931 
4932     return (InstanceKlass*)klass;
4933   }
4934 
4935 public:
4936 
4937   void clean_klass(InstanceKlass* ik) {
4938     ik->clean_implementors_list(_is_alive);
4939     ik->clean_method_data(_is_alive);
4940 
4941     // G1 specific cleanup work that has
4942     // been moved here to be done in parallel.
4943     ik->clean_dependent_nmethods();
4944   }
4945 
4946   void work() {
4947     ResourceMark rm;
4948 
4949     // One worker will clean the subklass/sibling klass tree.
4950     if (claim_clean_klass_tree_task()) {
4951       Klass::clean_subklass_tree(_is_alive);
4952     }
4953 
4954     // All workers will help cleaning the classes,
4955     InstanceKlass* klass;
4956     while ((klass = claim_next_klass()) != NULL) {
4957       clean_klass(klass);
4958     }
4959   }
4960 };
4961 
4962 // To minimize the remark pause times, the tasks below are done in parallel.
4963 class G1ParallelCleaningTask : public AbstractGangTask {
4964 private:
4965   G1StringSymbolTableUnlinkTask _string_symbol_task;
4966   G1CodeCacheUnloadingTask      _code_cache_task;
4967   G1KlassCleaningTask           _klass_cleaning_task;
4968 
4969 public:
4970   // The constructor is run in the VMThread.
4971   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4972       AbstractGangTask("Parallel Cleaning"),
4973       _string_symbol_task(is_alive, process_strings, process_symbols),
4974       _code_cache_task(num_workers, is_alive, unloading_occurred),
4975       _klass_cleaning_task(is_alive) {
4976   }
4977 
4978   // The parallel work done by all worker threads.
4979   void work(uint worker_id) {
4980     // Do first pass of code cache cleaning.
4981     _code_cache_task.work_first_pass(worker_id);
4982 
4983     // Let the threads mark that the first pass is done.
4984     _code_cache_task.barrier_mark(worker_id);
4985 
4986     // Clean the Strings and Symbols.
4987     _string_symbol_task.work(worker_id);
4988 
4989     // Wait for all workers to finish the first code cache cleaning pass.
4990     _code_cache_task.barrier_wait(worker_id);
4991 
4992     // Do the second code cache cleaning work, which realize on
4993     // the liveness information gathered during the first pass.
4994     _code_cache_task.work_second_pass(worker_id);
4995 
4996     // Clean all klasses that were not unloaded.
4997     _klass_cleaning_task.work();
4998   }
4999 };
5000 
5001 
5002 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5003                                         bool process_strings,
5004                                         bool process_symbols,
5005                                         bool class_unloading_occurred) {
5006   uint n_workers = workers()->active_workers();
5007 
5008   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5009                                         n_workers, class_unloading_occurred);
5010   workers()->run_task(&g1_unlink_task);
5011 }
5012 
5013 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5014                                                      bool process_strings, bool process_symbols) {
5015   {
5016     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5017     workers()->run_task(&g1_unlink_task);
5018   }
5019 
5020   if (G1StringDedup::is_enabled()) {
5021     G1StringDedup::unlink(is_alive);
5022   }
5023 }
5024 
5025 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5026  private:
5027   DirtyCardQueueSet* _queue;
5028  public:
5029   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5030 
5031   virtual void work(uint worker_id) {
5032     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5033     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5034 
5035     RedirtyLoggedCardTableEntryClosure cl;
5036     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5037 
5038     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5039   }
5040 };
5041 
5042 void G1CollectedHeap::redirty_logged_cards() {
5043   double redirty_logged_cards_start = os::elapsedTime();
5044 
5045   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5046   dirty_card_queue_set().reset_for_par_iteration();
5047   workers()->run_task(&redirty_task);
5048 
5049   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5050   dcq.merge_bufferlists(&dirty_card_queue_set());
5051   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5052 
5053   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5054 }
5055 
5056 // Weak Reference Processing support
5057 
5058 // An always "is_alive" closure that is used to preserve referents.
5059 // If the object is non-null then it's alive.  Used in the preservation
5060 // of referent objects that are pointed to by reference objects
5061 // discovered by the CM ref processor.
5062 class G1AlwaysAliveClosure: public BoolObjectClosure {
5063   G1CollectedHeap* _g1;
5064 public:
5065   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5066   bool do_object_b(oop p) {
5067     if (p != NULL) {
5068       return true;
5069     }
5070     return false;
5071   }
5072 };
5073 
5074 bool G1STWIsAliveClosure::do_object_b(oop p) {
5075   // An object is reachable if it is outside the collection set,
5076   // or is inside and copied.
5077   return !_g1->is_in_cset(p) || p->is_forwarded();
5078 }
5079 
5080 // Non Copying Keep Alive closure
5081 class G1KeepAliveClosure: public OopClosure {
5082   G1CollectedHeap* _g1;
5083 public:
5084   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5085   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5086   void do_oop(oop* p) {
5087     oop obj = *p;
5088     assert(obj != NULL, "the caller should have filtered out NULL values");
5089 
5090     const InCSetState cset_state = _g1->in_cset_state(obj);
5091     if (!cset_state.is_in_cset_or_humongous()) {
5092       return;
5093     }
5094     if (cset_state.is_in_cset()) {
5095       assert( obj->is_forwarded(), "invariant" );
5096       *p = obj->forwardee();
5097     } else {
5098       assert(!obj->is_forwarded(), "invariant" );
5099       assert(cset_state.is_humongous(),
5100              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5101       _g1->set_humongous_is_live(obj);
5102     }
5103   }
5104 };
5105 
5106 // Copying Keep Alive closure - can be called from both
5107 // serial and parallel code as long as different worker
5108 // threads utilize different G1ParScanThreadState instances
5109 // and different queues.
5110 
5111 class G1CopyingKeepAliveClosure: public OopClosure {
5112   G1CollectedHeap*         _g1h;
5113   OopClosure*              _copy_non_heap_obj_cl;
5114   G1ParScanThreadState*    _par_scan_state;
5115 
5116 public:
5117   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5118                             OopClosure* non_heap_obj_cl,
5119                             G1ParScanThreadState* pss):
5120     _g1h(g1h),
5121     _copy_non_heap_obj_cl(non_heap_obj_cl),
5122     _par_scan_state(pss)
5123   {}
5124 
5125   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5126   virtual void do_oop(      oop* p) { do_oop_work(p); }
5127 
5128   template <class T> void do_oop_work(T* p) {
5129     oop obj = oopDesc::load_decode_heap_oop(p);
5130 
5131     if (_g1h->is_in_cset_or_humongous(obj)) {
5132       // If the referent object has been forwarded (either copied
5133       // to a new location or to itself in the event of an
5134       // evacuation failure) then we need to update the reference
5135       // field and, if both reference and referent are in the G1
5136       // heap, update the RSet for the referent.
5137       //
5138       // If the referent has not been forwarded then we have to keep
5139       // it alive by policy. Therefore we have copy the referent.
5140       //
5141       // If the reference field is in the G1 heap then we can push
5142       // on the PSS queue. When the queue is drained (after each
5143       // phase of reference processing) the object and it's followers
5144       // will be copied, the reference field set to point to the
5145       // new location, and the RSet updated. Otherwise we need to
5146       // use the the non-heap or metadata closures directly to copy
5147       // the referent object and update the pointer, while avoiding
5148       // updating the RSet.
5149 
5150       if (_g1h->is_in_g1_reserved(p)) {
5151         _par_scan_state->push_on_queue(p);
5152       } else {
5153         assert(!Metaspace::contains((const void*)p),
5154                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5155         _copy_non_heap_obj_cl->do_oop(p);
5156       }
5157     }
5158   }
5159 };
5160 
5161 // Serial drain queue closure. Called as the 'complete_gc'
5162 // closure for each discovered list in some of the
5163 // reference processing phases.
5164 
5165 class G1STWDrainQueueClosure: public VoidClosure {
5166 protected:
5167   G1CollectedHeap* _g1h;
5168   G1ParScanThreadState* _par_scan_state;
5169 
5170   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5171 
5172 public:
5173   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5174     _g1h(g1h),
5175     _par_scan_state(pss)
5176   { }
5177 
5178   void do_void() {
5179     G1ParScanThreadState* const pss = par_scan_state();
5180     pss->trim_queue();
5181   }
5182 };
5183 
5184 // Parallel Reference Processing closures
5185 
5186 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5187 // processing during G1 evacuation pauses.
5188 
5189 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5190 private:
5191   G1CollectedHeap*        _g1h;
5192   G1ParScanThreadState**  _pss;
5193   RefToScanQueueSet*      _queues;
5194   WorkGang*               _workers;
5195   uint                    _active_workers;
5196 
5197 public:
5198   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5199                            G1ParScanThreadState** per_thread_states,
5200                            WorkGang* workers,
5201                            RefToScanQueueSet *task_queues,
5202                            uint n_workers) :
5203     _g1h(g1h),
5204     _pss(per_thread_states),
5205     _queues(task_queues),
5206     _workers(workers),
5207     _active_workers(n_workers)
5208   {
5209     assert(n_workers > 0, "shouldn't call this otherwise");
5210   }
5211 
5212   // Executes the given task using concurrent marking worker threads.
5213   virtual void execute(ProcessTask& task);
5214   virtual void execute(EnqueueTask& task);
5215 };
5216 
5217 // Gang task for possibly parallel reference processing
5218 
5219 class G1STWRefProcTaskProxy: public AbstractGangTask {
5220   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5221   ProcessTask&     _proc_task;
5222   G1CollectedHeap* _g1h;
5223   G1ParScanThreadState** _pss;
5224   RefToScanQueueSet* _task_queues;
5225   ParallelTaskTerminator* _terminator;
5226 
5227 public:
5228   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5229                         G1CollectedHeap* g1h,
5230                         G1ParScanThreadState** per_thread_states,
5231                         RefToScanQueueSet *task_queues,
5232                         ParallelTaskTerminator* terminator) :
5233     AbstractGangTask("Process reference objects in parallel"),
5234     _proc_task(proc_task),
5235     _g1h(g1h),
5236     _pss(per_thread_states),
5237     _task_queues(task_queues),
5238     _terminator(terminator)
5239   {}
5240 
5241   virtual void work(uint worker_id) {
5242     // The reference processing task executed by a single worker.
5243     ResourceMark rm;
5244     HandleMark   hm;
5245 
5246     G1STWIsAliveClosure is_alive(_g1h);
5247 
5248     G1ParScanThreadState*           pss = _pss[worker_id];
5249     pss->set_ref_processor(NULL);
5250 
5251     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, pss, NULL);
5252 
5253     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, pss, NULL);
5254 
5255     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5256 
5257     if (_g1h->collector_state()->during_initial_mark_pause()) {
5258       // We also need to mark copied objects.
5259       copy_non_heap_cl = &copy_mark_non_heap_cl;
5260     }
5261 
5262     // Keep alive closure.
5263     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, pss);
5264 
5265     // Complete GC closure
5266     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
5267 
5268     // Call the reference processing task's work routine.
5269     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5270 
5271     // Note we cannot assert that the refs array is empty here as not all
5272     // of the processing tasks (specifically phase2 - pp2_work) execute
5273     // the complete_gc closure (which ordinarily would drain the queue) so
5274     // the queue may not be empty.
5275   }
5276 };
5277 
5278 // Driver routine for parallel reference processing.
5279 // Creates an instance of the ref processing gang
5280 // task and has the worker threads execute it.
5281 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5282   assert(_workers != NULL, "Need parallel worker threads.");
5283 
5284   ParallelTaskTerminator terminator(_active_workers, _queues);
5285   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
5286 
5287   _workers->run_task(&proc_task_proxy);
5288 }
5289 
5290 // Gang task for parallel reference enqueueing.
5291 
5292 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5293   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5294   EnqueueTask& _enq_task;
5295 
5296 public:
5297   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5298     AbstractGangTask("Enqueue reference objects in parallel"),
5299     _enq_task(enq_task)
5300   { }
5301 
5302   virtual void work(uint worker_id) {
5303     _enq_task.work(worker_id);
5304   }
5305 };
5306 
5307 // Driver routine for parallel reference enqueueing.
5308 // Creates an instance of the ref enqueueing gang
5309 // task and has the worker threads execute it.
5310 
5311 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5312   assert(_workers != NULL, "Need parallel worker threads.");
5313 
5314   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5315 
5316   _workers->run_task(&enq_task_proxy);
5317 }
5318 
5319 // End of weak reference support closures
5320 
5321 // Abstract task used to preserve (i.e. copy) any referent objects
5322 // that are in the collection set and are pointed to by reference
5323 // objects discovered by the CM ref processor.
5324 
5325 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5326 protected:
5327   G1CollectedHeap*       _g1h;
5328   G1ParScanThreadState** _pss;
5329   RefToScanQueueSet*     _queues;
5330   ParallelTaskTerminator _terminator;
5331   uint _n_workers;
5332 
5333 public:
5334   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadState** per_thread_states, int workers, RefToScanQueueSet *task_queues) :
5335     AbstractGangTask("ParPreserveCMReferents"),
5336     _g1h(g1h),
5337     _pss(per_thread_states),
5338     _queues(task_queues),
5339     _terminator(workers, _queues),
5340     _n_workers(workers)
5341   { }
5342 
5343   void work(uint worker_id) {
5344     ResourceMark rm;
5345     HandleMark   hm;
5346 
5347     G1ParScanThreadState*          pss = _pss[worker_id];
5348     pss->set_ref_processor(NULL);
5349     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5350 
5351     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, pss, NULL);
5352 
5353     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, pss, NULL);
5354 
5355     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5356 
5357     if (_g1h->collector_state()->during_initial_mark_pause()) {
5358       // We also need to mark copied objects.
5359       copy_non_heap_cl = &copy_mark_non_heap_cl;
5360     }
5361 
5362     // Is alive closure
5363     G1AlwaysAliveClosure always_alive(_g1h);
5364 
5365     // Copying keep alive closure. Applied to referent objects that need
5366     // to be copied.
5367     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, pss);
5368 
5369     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5370 
5371     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5372     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5373 
5374     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5375     // So this must be true - but assert just in case someone decides to
5376     // change the worker ids.
5377     assert(worker_id < limit, "sanity");
5378     assert(!rp->discovery_is_atomic(), "check this code");
5379 
5380     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5381     for (uint idx = worker_id; idx < limit; idx += stride) {
5382       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5383 
5384       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5385       while (iter.has_next()) {
5386         // Since discovery is not atomic for the CM ref processor, we
5387         // can see some null referent objects.
5388         iter.load_ptrs(DEBUG_ONLY(true));
5389         oop ref = iter.obj();
5390 
5391         // This will filter nulls.
5392         if (iter.is_referent_alive()) {
5393           iter.make_referent_alive();
5394         }
5395         iter.move_to_next();
5396       }
5397     }
5398 
5399     // Drain the queue - which may cause stealing
5400     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5401     drain_queue.do_void();
5402     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5403     assert(pss->queue_is_empty(), "should be");
5404   }
5405 };
5406 
5407 // Weak Reference processing during an evacuation pause (part 1).
5408 void G1CollectedHeap::process_discovered_references(G1ParScanThreadState** per_thread_states) {
5409   double ref_proc_start = os::elapsedTime();
5410 
5411   ReferenceProcessor* rp = _ref_processor_stw;
5412   assert(rp->discovery_enabled(), "should have been enabled");
5413 
5414   // Any reference objects, in the collection set, that were 'discovered'
5415   // by the CM ref processor should have already been copied (either by
5416   // applying the external root copy closure to the discovered lists, or
5417   // by following an RSet entry).
5418   //
5419   // But some of the referents, that are in the collection set, that these
5420   // reference objects point to may not have been copied: the STW ref
5421   // processor would have seen that the reference object had already
5422   // been 'discovered' and would have skipped discovering the reference,
5423   // but would not have treated the reference object as a regular oop.
5424   // As a result the copy closure would not have been applied to the
5425   // referent object.
5426   //
5427   // We need to explicitly copy these referent objects - the references
5428   // will be processed at the end of remarking.
5429   //
5430   // We also need to do this copying before we process the reference
5431   // objects discovered by the STW ref processor in case one of these
5432   // referents points to another object which is also referenced by an
5433   // object discovered by the STW ref processor.
5434 
5435   uint no_of_gc_workers = workers()->active_workers();
5436 
5437   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5438                                                  per_thread_states,
5439                                                  no_of_gc_workers,
5440                                                  _task_queues);
5441 
5442   workers()->run_task(&keep_cm_referents);
5443 
5444   // Closure to test whether a referent is alive.
5445   G1STWIsAliveClosure is_alive(this);
5446 
5447   // Even when parallel reference processing is enabled, the processing
5448   // of JNI refs is serial and performed serially by the current thread
5449   // rather than by a worker. The following PSS will be used for processing
5450   // JNI refs.
5451 
5452   // Use only a single queue for this PSS.
5453   G1ParScanThreadState*           pss = per_thread_states[0];
5454   pss->set_ref_processor(NULL);
5455   assert(pss->queue_is_empty(), "pre-condition");
5456 
5457   // We do not embed a reference processor in the copying/scanning
5458   // closures while we're actually processing the discovered
5459   // reference objects.
5460 
5461   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, pss, NULL);
5462 
5463   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, pss, NULL);
5464 
5465   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5466 
5467   if (collector_state()->during_initial_mark_pause()) {
5468     // We also need to mark copied objects.
5469     copy_non_heap_cl = &copy_mark_non_heap_cl;
5470   }
5471 
5472   // Keep alive closure.
5473   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, pss);
5474 
5475   // Serial Complete GC closure
5476   G1STWDrainQueueClosure drain_queue(this, pss);
5477 
5478   // Setup the soft refs policy...
5479   rp->setup_policy(false);
5480 
5481   ReferenceProcessorStats stats;
5482   if (!rp->processing_is_mt()) {
5483     // Serial reference processing...
5484     stats = rp->process_discovered_references(&is_alive,
5485                                               &keep_alive,
5486                                               &drain_queue,
5487                                               NULL,
5488                                               _gc_timer_stw,
5489                                               _gc_tracer_stw->gc_id());
5490   } else {
5491     // Parallel reference processing
5492     assert(rp->num_q() == no_of_gc_workers, "sanity");
5493     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5494 
5495     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5496     stats = rp->process_discovered_references(&is_alive,
5497                                               &keep_alive,
5498                                               &drain_queue,
5499                                               &par_task_executor,
5500                                               _gc_timer_stw,
5501                                               _gc_tracer_stw->gc_id());
5502   }
5503 
5504   _gc_tracer_stw->report_gc_reference_stats(stats);
5505 
5506   // We have completed copying any necessary live referent objects.
5507   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5508 
5509   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5510   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5511 }
5512 
5513 // Weak Reference processing during an evacuation pause (part 2).
5514 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadState** per_thread_states) {
5515   double ref_enq_start = os::elapsedTime();
5516 
5517   ReferenceProcessor* rp = _ref_processor_stw;
5518   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5519 
5520   // Now enqueue any remaining on the discovered lists on to
5521   // the pending list.
5522   if (!rp->processing_is_mt()) {
5523     // Serial reference processing...
5524     rp->enqueue_discovered_references();
5525   } else {
5526     // Parallel reference enqueueing
5527 
5528     uint n_workers = workers()->active_workers();
5529 
5530     assert(rp->num_q() == n_workers, "sanity");
5531     assert(n_workers <= rp->max_num_q(), "sanity");
5532 
5533     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5534     rp->enqueue_discovered_references(&par_task_executor);
5535   }
5536 
5537   rp->verify_no_references_recorded();
5538   assert(!rp->discovery_enabled(), "should have been disabled");
5539 
5540   // FIXME
5541   // CM's reference processing also cleans up the string and symbol tables.
5542   // Should we do that here also? We could, but it is a serial operation
5543   // and could significantly increase the pause time.
5544 
5545   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5546   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5547 }
5548 
5549 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5550   _expand_heap_after_alloc_failure = true;
5551   _evacuation_failed = false;
5552 
5553   // Should G1EvacuationFailureALot be in effect for this GC?
5554   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5555 
5556   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5557 
5558   // Disable the hot card cache.
5559   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5560   hot_card_cache->reset_hot_cache_claimed_index();
5561   hot_card_cache->set_use_cache(false);
5562 
5563   const uint n_workers = workers()->active_workers();
5564 
5565   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5566   double start_par_time_sec = os::elapsedTime();
5567   double end_par_time_sec;
5568 
5569   G1ParScanThreadState** per_thread_states = NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC);
5570   for (uint i = 0; i < n_workers; i++) {
5571     per_thread_states[i] = new_par_scan_state(i);
5572   }
5573 
5574   {
5575     G1RootProcessor root_processor(this, n_workers);
5576     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5577     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5578     if (collector_state()->during_initial_mark_pause()) {
5579       ClassLoaderDataGraph::clear_claimed_marks();
5580     }
5581 
5582     // The individual threads will set their evac-failure closures.
5583     if (PrintTerminationStats) {
5584       print_termination_stats_hdr(gclog_or_tty);
5585     }
5586 
5587     workers()->run_task(&g1_par_task);
5588     end_par_time_sec = os::elapsedTime();
5589 
5590     // Closing the inner scope will execute the destructor
5591     // for the G1RootProcessor object. We record the current
5592     // elapsed time before closing the scope so that time
5593     // taken for the destructor is NOT included in the
5594     // reported parallel time.
5595   }
5596 
5597   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5598 
5599   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5600   phase_times->record_par_time(par_time_ms);
5601 
5602   double code_root_fixup_time_ms =
5603         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5604   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5605 
5606   // Process any discovered reference objects - we have
5607   // to do this _before_ we retire the GC alloc regions
5608   // as we may have to copy some 'reachable' referent
5609   // objects (and their reachable sub-graphs) that were
5610   // not copied during the pause.
5611   process_discovered_references(per_thread_states);
5612 
5613   if (G1StringDedup::is_enabled()) {
5614     double fixup_start = os::elapsedTime();
5615 
5616     G1STWIsAliveClosure is_alive(this);
5617     G1KeepAliveClosure keep_alive(this);
5618     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5619 
5620     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5621     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5622   }
5623 
5624   _allocator->release_gc_alloc_regions(evacuation_info);
5625   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5626 
5627   for (uint i = 0; i < n_workers; i++) {
5628     G1ParScanThreadState* pss = per_thread_states[i];
5629     delete pss;
5630   }
5631   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, per_thread_states);
5632 
5633   record_obj_copy_mem_stats();
5634 
5635   // Reset and re-enable the hot card cache.
5636   // Note the counts for the cards in the regions in the
5637   // collection set are reset when the collection set is freed.
5638   hot_card_cache->reset_hot_cache();
5639   hot_card_cache->set_use_cache(true);
5640 
5641   purge_code_root_memory();
5642 
5643   if (evacuation_failed()) {
5644     remove_self_forwarding_pointers();
5645 
5646     // Reset the G1EvacuationFailureALot counters and flags
5647     // Note: the values are reset only when an actual
5648     // evacuation failure occurs.
5649     NOT_PRODUCT(reset_evacuation_should_fail();)
5650   }
5651 
5652   // Enqueue any remaining references remaining on the STW
5653   // reference processor's discovered lists. We need to do
5654   // this after the card table is cleaned (and verified) as
5655   // the act of enqueueing entries on to the pending list
5656   // will log these updates (and dirty their associated
5657   // cards). We need these updates logged to update any
5658   // RSets.
5659   enqueue_discovered_references(per_thread_states);
5660 
5661   redirty_logged_cards();
5662 #if defined(COMPILER2) || INCLUDE_JVMCI
5663   DerivedPointerTable::update_pointers();
5664 #endif
5665 }
5666 
5667 void G1CollectedHeap::record_obj_copy_mem_stats() {
5668   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5669                                                create_g1_evac_summary(&_old_evac_stats));
5670 }
5671 
5672 void G1CollectedHeap::free_region(HeapRegion* hr,
5673                                   FreeRegionList* free_list,
5674                                   bool par,
5675                                   bool locked) {
5676   assert(!hr->is_free(), "the region should not be free");
5677   assert(!hr->is_empty(), "the region should not be empty");
5678   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5679   assert(free_list != NULL, "pre-condition");
5680 
5681   if (G1VerifyBitmaps) {
5682     MemRegion mr(hr->bottom(), hr->end());
5683     concurrent_mark()->clearRangePrevBitmap(mr);
5684   }
5685 
5686   // Clear the card counts for this region.
5687   // Note: we only need to do this if the region is not young
5688   // (since we don't refine cards in young regions).
5689   if (!hr->is_young()) {
5690     _cg1r->hot_card_cache()->reset_card_counts(hr);
5691   }
5692   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5693   free_list->add_ordered(hr);
5694 }
5695 
5696 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5697                                      FreeRegionList* free_list,
5698                                      bool par) {
5699   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5700   assert(free_list != NULL, "pre-condition");
5701 
5702   size_t hr_capacity = hr->capacity();
5703   // We need to read this before we make the region non-humongous,
5704   // otherwise the information will be gone.
5705   uint last_index = hr->last_hc_index();
5706   hr->clear_humongous();
5707   free_region(hr, free_list, par);
5708 
5709   uint i = hr->hrm_index() + 1;
5710   while (i < last_index) {
5711     HeapRegion* curr_hr = region_at(i);
5712     assert(curr_hr->is_continues_humongous(), "invariant");
5713     curr_hr->clear_humongous();
5714     free_region(curr_hr, free_list, par);
5715     i += 1;
5716   }
5717 }
5718 
5719 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5720                                        const HeapRegionSetCount& humongous_regions_removed) {
5721   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5722     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5723     _old_set.bulk_remove(old_regions_removed);
5724     _humongous_set.bulk_remove(humongous_regions_removed);
5725   }
5726 
5727 }
5728 
5729 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5730   assert(list != NULL, "list can't be null");
5731   if (!list->is_empty()) {
5732     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5733     _hrm.insert_list_into_free_list(list);
5734   }
5735 }
5736 
5737 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5738   decrease_used(bytes);
5739 }
5740 
5741 class G1ParCleanupCTTask : public AbstractGangTask {
5742   G1SATBCardTableModRefBS* _ct_bs;
5743   G1CollectedHeap* _g1h;
5744   HeapRegion* volatile _su_head;
5745 public:
5746   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5747                      G1CollectedHeap* g1h) :
5748     AbstractGangTask("G1 Par Cleanup CT Task"),
5749     _ct_bs(ct_bs), _g1h(g1h) { }
5750 
5751   void work(uint worker_id) {
5752     HeapRegion* r;
5753     while (r = _g1h->pop_dirty_cards_region()) {
5754       clear_cards(r);
5755     }
5756   }
5757 
5758   void clear_cards(HeapRegion* r) {
5759     // Cards of the survivors should have already been dirtied.
5760     if (!r->is_survivor()) {
5761       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5762     }
5763   }
5764 };
5765 
5766 #ifndef PRODUCT
5767 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5768   G1CollectedHeap* _g1h;
5769   G1SATBCardTableModRefBS* _ct_bs;
5770 public:
5771   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5772     : _g1h(g1h), _ct_bs(ct_bs) { }
5773   virtual bool doHeapRegion(HeapRegion* r) {
5774     if (r->is_survivor()) {
5775       _g1h->verify_dirty_region(r);
5776     } else {
5777       _g1h->verify_not_dirty_region(r);
5778     }
5779     return false;
5780   }
5781 };
5782 
5783 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5784   // All of the region should be clean.
5785   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5786   MemRegion mr(hr->bottom(), hr->end());
5787   ct_bs->verify_not_dirty_region(mr);
5788 }
5789 
5790 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5791   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5792   // dirty allocated blocks as they allocate them. The thread that
5793   // retires each region and replaces it with a new one will do a
5794   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5795   // not dirty that area (one less thing to have to do while holding
5796   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5797   // is dirty.
5798   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5799   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5800   if (hr->is_young()) {
5801     ct_bs->verify_g1_young_region(mr);
5802   } else {
5803     ct_bs->verify_dirty_region(mr);
5804   }
5805 }
5806 
5807 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5808   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5809   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5810     verify_dirty_region(hr);
5811   }
5812 }
5813 
5814 void G1CollectedHeap::verify_dirty_young_regions() {
5815   verify_dirty_young_list(_young_list->first_region());
5816 }
5817 
5818 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5819                                                HeapWord* tams, HeapWord* end) {
5820   guarantee(tams <= end,
5821             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5822   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5823   if (result < end) {
5824     gclog_or_tty->cr();
5825     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5826                            bitmap_name, p2i(result));
5827     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5828                            bitmap_name, p2i(tams), p2i(end));
5829     return false;
5830   }
5831   return true;
5832 }
5833 
5834 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5835   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5836   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5837 
5838   HeapWord* bottom = hr->bottom();
5839   HeapWord* ptams  = hr->prev_top_at_mark_start();
5840   HeapWord* ntams  = hr->next_top_at_mark_start();
5841   HeapWord* end    = hr->end();
5842 
5843   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5844 
5845   bool res_n = true;
5846   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5847   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5848   // if we happen to be in that state.
5849   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5850     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5851   }
5852   if (!res_p || !res_n) {
5853     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5854                            HR_FORMAT_PARAMS(hr));
5855     gclog_or_tty->print_cr("#### Caller: %s", caller);
5856     return false;
5857   }
5858   return true;
5859 }
5860 
5861 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5862   if (!G1VerifyBitmaps) return;
5863 
5864   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5865 }
5866 
5867 class G1VerifyBitmapClosure : public HeapRegionClosure {
5868 private:
5869   const char* _caller;
5870   G1CollectedHeap* _g1h;
5871   bool _failures;
5872 
5873 public:
5874   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5875     _caller(caller), _g1h(g1h), _failures(false) { }
5876 
5877   bool failures() { return _failures; }
5878 
5879   virtual bool doHeapRegion(HeapRegion* hr) {
5880     if (hr->is_continues_humongous()) return false;
5881 
5882     bool result = _g1h->verify_bitmaps(_caller, hr);
5883     if (!result) {
5884       _failures = true;
5885     }
5886     return false;
5887   }
5888 };
5889 
5890 void G1CollectedHeap::check_bitmaps(const char* caller) {
5891   if (!G1VerifyBitmaps) return;
5892 
5893   G1VerifyBitmapClosure cl(caller, this);
5894   heap_region_iterate(&cl);
5895   guarantee(!cl.failures(), "bitmap verification");
5896 }
5897 
5898 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5899  private:
5900   bool _failures;
5901  public:
5902   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5903 
5904   virtual bool doHeapRegion(HeapRegion* hr) {
5905     uint i = hr->hrm_index();
5906     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5907     if (hr->is_humongous()) {
5908       if (hr->in_collection_set()) {
5909         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5910         _failures = true;
5911         return true;
5912       }
5913       if (cset_state.is_in_cset()) {
5914         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5915         _failures = true;
5916         return true;
5917       }
5918       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5919         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5920         _failures = true;
5921         return true;
5922       }
5923     } else {
5924       if (cset_state.is_humongous()) {
5925         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5926         _failures = true;
5927         return true;
5928       }
5929       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5930         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5931                                hr->in_collection_set(), cset_state.value(), i);
5932         _failures = true;
5933         return true;
5934       }
5935       if (cset_state.is_in_cset()) {
5936         if (hr->is_young() != (cset_state.is_young())) {
5937           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5938                                  hr->is_young(), cset_state.value(), i);
5939           _failures = true;
5940           return true;
5941         }
5942         if (hr->is_old() != (cset_state.is_old())) {
5943           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5944                                  hr->is_old(), cset_state.value(), i);
5945           _failures = true;
5946           return true;
5947         }
5948       }
5949     }
5950     return false;
5951   }
5952 
5953   bool failures() const { return _failures; }
5954 };
5955 
5956 bool G1CollectedHeap::check_cset_fast_test() {
5957   G1CheckCSetFastTableClosure cl;
5958   _hrm.iterate(&cl);
5959   return !cl.failures();
5960 }
5961 #endif // PRODUCT
5962 
5963 void G1CollectedHeap::cleanUpCardTable() {
5964   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5965   double start = os::elapsedTime();
5966 
5967   {
5968     // Iterate over the dirty cards region list.
5969     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5970 
5971     workers()->run_task(&cleanup_task);
5972 #ifndef PRODUCT
5973     if (G1VerifyCTCleanup || VerifyAfterGC) {
5974       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5975       heap_region_iterate(&cleanup_verifier);
5976     }
5977 #endif
5978   }
5979 
5980   double elapsed = os::elapsedTime() - start;
5981   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5982 }
5983 
5984 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5985   size_t pre_used = 0;
5986   FreeRegionList local_free_list("Local List for CSet Freeing");
5987 
5988   double young_time_ms     = 0.0;
5989   double non_young_time_ms = 0.0;
5990 
5991   // Since the collection set is a superset of the the young list,
5992   // all we need to do to clear the young list is clear its
5993   // head and length, and unlink any young regions in the code below
5994   _young_list->clear();
5995 
5996   G1CollectorPolicy* policy = g1_policy();
5997 
5998   double start_sec = os::elapsedTime();
5999   bool non_young = true;
6000 
6001   HeapRegion* cur = cs_head;
6002   int age_bound = -1;
6003   size_t rs_lengths = 0;
6004 
6005   while (cur != NULL) {
6006     assert(!is_on_master_free_list(cur), "sanity");
6007     if (non_young) {
6008       if (cur->is_young()) {
6009         double end_sec = os::elapsedTime();
6010         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6011         non_young_time_ms += elapsed_ms;
6012 
6013         start_sec = os::elapsedTime();
6014         non_young = false;
6015       }
6016     } else {
6017       if (!cur->is_young()) {
6018         double end_sec = os::elapsedTime();
6019         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6020         young_time_ms += elapsed_ms;
6021 
6022         start_sec = os::elapsedTime();
6023         non_young = true;
6024       }
6025     }
6026 
6027     rs_lengths += cur->rem_set()->occupied_locked();
6028 
6029     HeapRegion* next = cur->next_in_collection_set();
6030     assert(cur->in_collection_set(), "bad CS");
6031     cur->set_next_in_collection_set(NULL);
6032     clear_in_cset(cur);
6033 
6034     if (cur->is_young()) {
6035       int index = cur->young_index_in_cset();
6036       assert(index != -1, "invariant");
6037       assert((uint) index < policy->young_cset_region_length(), "invariant");
6038       size_t words_survived = _surviving_young_words[index];
6039       cur->record_surv_words_in_group(words_survived);
6040 
6041       // At this point the we have 'popped' cur from the collection set
6042       // (linked via next_in_collection_set()) but it is still in the
6043       // young list (linked via next_young_region()). Clear the
6044       // _next_young_region field.
6045       cur->set_next_young_region(NULL);
6046     } else {
6047       int index = cur->young_index_in_cset();
6048       assert(index == -1, "invariant");
6049     }
6050 
6051     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6052             (!cur->is_young() && cur->young_index_in_cset() == -1),
6053             "invariant" );
6054 
6055     if (!cur->evacuation_failed()) {
6056       MemRegion used_mr = cur->used_region();
6057 
6058       // And the region is empty.
6059       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6060       pre_used += cur->used();
6061       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6062     } else {
6063       cur->uninstall_surv_rate_group();
6064       if (cur->is_young()) {
6065         cur->set_young_index_in_cset(-1);
6066       }
6067       cur->set_evacuation_failed(false);
6068       // The region is now considered to be old.
6069       cur->set_old();
6070       // Do some allocation statistics accounting. Regions that failed evacuation
6071       // are always made old, so there is no need to update anything in the young
6072       // gen statistics, but we need to update old gen statistics.
6073       size_t used_words = cur->marked_bytes() / HeapWordSize;
6074       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
6075       _old_set.add(cur);
6076       evacuation_info.increment_collectionset_used_after(cur->used());
6077     }
6078     cur = next;
6079   }
6080 
6081   evacuation_info.set_regions_freed(local_free_list.length());
6082   policy->record_max_rs_lengths(rs_lengths);
6083   policy->cset_regions_freed();
6084 
6085   double end_sec = os::elapsedTime();
6086   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6087 
6088   if (non_young) {
6089     non_young_time_ms += elapsed_ms;
6090   } else {
6091     young_time_ms += elapsed_ms;
6092   }
6093 
6094   prepend_to_freelist(&local_free_list);
6095   decrement_summary_bytes(pre_used);
6096   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6097   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6098 }
6099 
6100 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6101  private:
6102   FreeRegionList* _free_region_list;
6103   HeapRegionSet* _proxy_set;
6104   HeapRegionSetCount _humongous_regions_removed;
6105   size_t _freed_bytes;
6106  public:
6107 
6108   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6109     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6110   }
6111 
6112   virtual bool doHeapRegion(HeapRegion* r) {
6113     if (!r->is_starts_humongous()) {
6114       return false;
6115     }
6116 
6117     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6118 
6119     oop obj = (oop)r->bottom();
6120     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6121 
6122     // The following checks whether the humongous object is live are sufficient.
6123     // The main additional check (in addition to having a reference from the roots
6124     // or the young gen) is whether the humongous object has a remembered set entry.
6125     //
6126     // A humongous object cannot be live if there is no remembered set for it
6127     // because:
6128     // - there can be no references from within humongous starts regions referencing
6129     // the object because we never allocate other objects into them.
6130     // (I.e. there are no intra-region references that may be missed by the
6131     // remembered set)
6132     // - as soon there is a remembered set entry to the humongous starts region
6133     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6134     // until the end of a concurrent mark.
6135     //
6136     // It is not required to check whether the object has been found dead by marking
6137     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6138     // all objects allocated during that time are considered live.
6139     // SATB marking is even more conservative than the remembered set.
6140     // So if at this point in the collection there is no remembered set entry,
6141     // nobody has a reference to it.
6142     // At the start of collection we flush all refinement logs, and remembered sets
6143     // are completely up-to-date wrt to references to the humongous object.
6144     //
6145     // Other implementation considerations:
6146     // - never consider object arrays at this time because they would pose
6147     // considerable effort for cleaning up the the remembered sets. This is
6148     // required because stale remembered sets might reference locations that
6149     // are currently allocated into.
6150     uint region_idx = r->hrm_index();
6151     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6152         !r->rem_set()->is_empty()) {
6153 
6154       if (G1TraceEagerReclaimHumongousObjects) {
6155         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6156                                region_idx,
6157                                (size_t)obj->size() * HeapWordSize,
6158                                p2i(r->bottom()),
6159                                r->region_num(),
6160                                r->rem_set()->occupied(),
6161                                r->rem_set()->strong_code_roots_list_length(),
6162                                next_bitmap->isMarked(r->bottom()),
6163                                g1h->is_humongous_reclaim_candidate(region_idx),
6164                                obj->is_typeArray()
6165                               );
6166       }
6167 
6168       return false;
6169     }
6170 
6171     guarantee(obj->is_typeArray(),
6172               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6173                       PTR_FORMAT " is not.",
6174                       p2i(r->bottom())));
6175 
6176     if (G1TraceEagerReclaimHumongousObjects) {
6177       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6178                              region_idx,
6179                              (size_t)obj->size() * HeapWordSize,
6180                              p2i(r->bottom()),
6181                              r->region_num(),
6182                              r->rem_set()->occupied(),
6183                              r->rem_set()->strong_code_roots_list_length(),
6184                              next_bitmap->isMarked(r->bottom()),
6185                              g1h->is_humongous_reclaim_candidate(region_idx),
6186                              obj->is_typeArray()
6187                             );
6188     }
6189     // Need to clear mark bit of the humongous object if already set.
6190     if (next_bitmap->isMarked(r->bottom())) {
6191       next_bitmap->clear(r->bottom());
6192     }
6193     _freed_bytes += r->used();
6194     r->set_containing_set(NULL);
6195     _humongous_regions_removed.increment(1u, r->capacity());
6196     g1h->free_humongous_region(r, _free_region_list, false);
6197 
6198     return false;
6199   }
6200 
6201   HeapRegionSetCount& humongous_free_count() {
6202     return _humongous_regions_removed;
6203   }
6204 
6205   size_t bytes_freed() const {
6206     return _freed_bytes;
6207   }
6208 
6209   size_t humongous_reclaimed() const {
6210     return _humongous_regions_removed.length();
6211   }
6212 };
6213 
6214 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6215   assert_at_safepoint(true);
6216 
6217   if (!G1EagerReclaimHumongousObjects ||
6218       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6219     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6220     return;
6221   }
6222 
6223   double start_time = os::elapsedTime();
6224 
6225   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6226 
6227   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6228   heap_region_iterate(&cl);
6229 
6230   HeapRegionSetCount empty_set;
6231   remove_from_old_sets(empty_set, cl.humongous_free_count());
6232 
6233   G1HRPrinter* hrp = hr_printer();
6234   if (hrp->is_active()) {
6235     FreeRegionListIterator iter(&local_cleanup_list);
6236     while (iter.more_available()) {
6237       HeapRegion* hr = iter.get_next();
6238       hrp->cleanup(hr);
6239     }
6240   }
6241 
6242   prepend_to_freelist(&local_cleanup_list);
6243   decrement_summary_bytes(cl.bytes_freed());
6244 
6245   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6246                                                                     cl.humongous_reclaimed());
6247 }
6248 
6249 // This routine is similar to the above but does not record
6250 // any policy statistics or update free lists; we are abandoning
6251 // the current incremental collection set in preparation of a
6252 // full collection. After the full GC we will start to build up
6253 // the incremental collection set again.
6254 // This is only called when we're doing a full collection
6255 // and is immediately followed by the tearing down of the young list.
6256 
6257 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6258   HeapRegion* cur = cs_head;
6259 
6260   while (cur != NULL) {
6261     HeapRegion* next = cur->next_in_collection_set();
6262     assert(cur->in_collection_set(), "bad CS");
6263     cur->set_next_in_collection_set(NULL);
6264     clear_in_cset(cur);
6265     cur->set_young_index_in_cset(-1);
6266     cur = next;
6267   }
6268 }
6269 
6270 void G1CollectedHeap::set_free_regions_coming() {
6271   if (G1ConcRegionFreeingVerbose) {
6272     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6273                            "setting free regions coming");
6274   }
6275 
6276   assert(!free_regions_coming(), "pre-condition");
6277   _free_regions_coming = true;
6278 }
6279 
6280 void G1CollectedHeap::reset_free_regions_coming() {
6281   assert(free_regions_coming(), "pre-condition");
6282 
6283   {
6284     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6285     _free_regions_coming = false;
6286     SecondaryFreeList_lock->notify_all();
6287   }
6288 
6289   if (G1ConcRegionFreeingVerbose) {
6290     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6291                            "reset free regions coming");
6292   }
6293 }
6294 
6295 void G1CollectedHeap::wait_while_free_regions_coming() {
6296   // Most of the time we won't have to wait, so let's do a quick test
6297   // first before we take the lock.
6298   if (!free_regions_coming()) {
6299     return;
6300   }
6301 
6302   if (G1ConcRegionFreeingVerbose) {
6303     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6304                            "waiting for free regions");
6305   }
6306 
6307   {
6308     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6309     while (free_regions_coming()) {
6310       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6311     }
6312   }
6313 
6314   if (G1ConcRegionFreeingVerbose) {
6315     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6316                            "done waiting for free regions");
6317   }
6318 }
6319 
6320 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
6321   return _allocator->is_retained_old_region(hr);
6322 }
6323 
6324 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6325   _young_list->push_region(hr);
6326 }
6327 
6328 class NoYoungRegionsClosure: public HeapRegionClosure {
6329 private:
6330   bool _success;
6331 public:
6332   NoYoungRegionsClosure() : _success(true) { }
6333   bool doHeapRegion(HeapRegion* r) {
6334     if (r->is_young()) {
6335       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6336                              p2i(r->bottom()), p2i(r->end()));
6337       _success = false;
6338     }
6339     return false;
6340   }
6341   bool success() { return _success; }
6342 };
6343 
6344 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6345   bool ret = _young_list->check_list_empty(check_sample);
6346 
6347   if (check_heap) {
6348     NoYoungRegionsClosure closure;
6349     heap_region_iterate(&closure);
6350     ret = ret && closure.success();
6351   }
6352 
6353   return ret;
6354 }
6355 
6356 class TearDownRegionSetsClosure : public HeapRegionClosure {
6357 private:
6358   HeapRegionSet *_old_set;
6359 
6360 public:
6361   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6362 
6363   bool doHeapRegion(HeapRegion* r) {
6364     if (r->is_old()) {
6365       _old_set->remove(r);
6366     } else {
6367       // We ignore free regions, we'll empty the free list afterwards.
6368       // We ignore young regions, we'll empty the young list afterwards.
6369       // We ignore humongous regions, we're not tearing down the
6370       // humongous regions set.
6371       assert(r->is_free() || r->is_young() || r->is_humongous(),
6372              "it cannot be another type");
6373     }
6374     return false;
6375   }
6376 
6377   ~TearDownRegionSetsClosure() {
6378     assert(_old_set->is_empty(), "post-condition");
6379   }
6380 };
6381 
6382 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6383   assert_at_safepoint(true /* should_be_vm_thread */);
6384 
6385   if (!free_list_only) {
6386     TearDownRegionSetsClosure cl(&_old_set);
6387     heap_region_iterate(&cl);
6388 
6389     // Note that emptying the _young_list is postponed and instead done as
6390     // the first step when rebuilding the regions sets again. The reason for
6391     // this is that during a full GC string deduplication needs to know if
6392     // a collected region was young or old when the full GC was initiated.
6393   }
6394   _hrm.remove_all_free_regions();
6395 }
6396 
6397 void G1CollectedHeap::increase_used(size_t bytes) {
6398   _summary_bytes_used += bytes;
6399 }
6400 
6401 void G1CollectedHeap::decrease_used(size_t bytes) {
6402   assert(_summary_bytes_used >= bytes,
6403          err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6404                  _summary_bytes_used, bytes));
6405   _summary_bytes_used -= bytes;
6406 }
6407 
6408 void G1CollectedHeap::set_used(size_t bytes) {
6409   _summary_bytes_used = bytes;
6410 }
6411 
6412 class RebuildRegionSetsClosure : public HeapRegionClosure {
6413 private:
6414   bool            _free_list_only;
6415   HeapRegionSet*   _old_set;
6416   HeapRegionManager*   _hrm;
6417   size_t          _total_used;
6418 
6419 public:
6420   RebuildRegionSetsClosure(bool free_list_only,
6421                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6422     _free_list_only(free_list_only),
6423     _old_set(old_set), _hrm(hrm), _total_used(0) {
6424     assert(_hrm->num_free_regions() == 0, "pre-condition");
6425     if (!free_list_only) {
6426       assert(_old_set->is_empty(), "pre-condition");
6427     }
6428   }
6429 
6430   bool doHeapRegion(HeapRegion* r) {
6431     if (r->is_continues_humongous()) {
6432       return false;
6433     }
6434 
6435     if (r->is_empty()) {
6436       // Add free regions to the free list
6437       r->set_free();
6438       r->set_allocation_context(AllocationContext::system());
6439       _hrm->insert_into_free_list(r);
6440     } else if (!_free_list_only) {
6441       assert(!r->is_young(), "we should not come across young regions");
6442 
6443       if (r->is_humongous()) {
6444         // We ignore humongous regions. We left the humongous set unchanged.
6445       } else {
6446         // Objects that were compacted would have ended up on regions
6447         // that were previously old or free.  Archive regions (which are
6448         // old) will not have been touched.
6449         assert(r->is_free() || r->is_old(), "invariant");
6450         // We now consider them old, so register as such. Leave
6451         // archive regions set that way, however, while still adding
6452         // them to the old set.
6453         if (!r->is_archive()) {
6454           r->set_old();
6455         }
6456         _old_set->add(r);
6457       }
6458       _total_used += r->used();
6459     }
6460 
6461     return false;
6462   }
6463 
6464   size_t total_used() {
6465     return _total_used;
6466   }
6467 };
6468 
6469 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6470   assert_at_safepoint(true /* should_be_vm_thread */);
6471 
6472   if (!free_list_only) {
6473     _young_list->empty_list();
6474   }
6475 
6476   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6477   heap_region_iterate(&cl);
6478 
6479   if (!free_list_only) {
6480     set_used(cl.total_used());
6481     if (_archive_allocator != NULL) {
6482       _archive_allocator->clear_used();
6483     }
6484   }
6485   assert(used_unlocked() == recalculate_used(),
6486          err_msg("inconsistent used_unlocked(), "
6487                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6488                  used_unlocked(), recalculate_used()));
6489 }
6490 
6491 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6492   _refine_cte_cl->set_concurrent(concurrent);
6493 }
6494 
6495 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6496   HeapRegion* hr = heap_region_containing(p);
6497   return hr->is_in(p);
6498 }
6499 
6500 // Methods for the mutator alloc region
6501 
6502 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6503                                                       bool force) {
6504   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6505   assert(!force || g1_policy()->can_expand_young_list(),
6506          "if force is true we should be able to expand the young list");
6507   bool young_list_full = g1_policy()->is_young_list_full();
6508   if (force || !young_list_full) {
6509     HeapRegion* new_alloc_region = new_region(word_size,
6510                                               false /* is_old */,
6511                                               false /* do_expand */);
6512     if (new_alloc_region != NULL) {
6513       set_region_short_lived_locked(new_alloc_region);
6514       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6515       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6516       return new_alloc_region;
6517     }
6518   }
6519   return NULL;
6520 }
6521 
6522 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6523                                                   size_t allocated_bytes) {
6524   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6525   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6526 
6527   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6528   increase_used(allocated_bytes);
6529   _hr_printer.retire(alloc_region);
6530   // We update the eden sizes here, when the region is retired,
6531   // instead of when it's allocated, since this is the point that its
6532   // used space has been recored in _summary_bytes_used.
6533   g1mm()->update_eden_size();
6534 }
6535 
6536 // Methods for the GC alloc regions
6537 
6538 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6539                                                  uint count,
6540                                                  InCSetState dest) {
6541   assert(FreeList_lock->owned_by_self(), "pre-condition");
6542 
6543   if (count < g1_policy()->max_regions(dest)) {
6544     const bool is_survivor = (dest.is_young());
6545     HeapRegion* new_alloc_region = new_region(word_size,
6546                                               !is_survivor,
6547                                               true /* do_expand */);
6548     if (new_alloc_region != NULL) {
6549       // We really only need to do this for old regions given that we
6550       // should never scan survivors. But it doesn't hurt to do it
6551       // for survivors too.
6552       new_alloc_region->record_timestamp();
6553       if (is_survivor) {
6554         new_alloc_region->set_survivor();
6555         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6556         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6557       } else {
6558         new_alloc_region->set_old();
6559         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6560         check_bitmaps("Old Region Allocation", new_alloc_region);
6561       }
6562       bool during_im = collector_state()->during_initial_mark_pause();
6563       new_alloc_region->note_start_of_copying(during_im);
6564       return new_alloc_region;
6565     }
6566   }
6567   return NULL;
6568 }
6569 
6570 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6571                                              size_t allocated_bytes,
6572                                              InCSetState dest) {
6573   bool during_im = collector_state()->during_initial_mark_pause();
6574   alloc_region->note_end_of_copying(during_im);
6575   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6576   if (dest.is_young()) {
6577     young_list()->add_survivor_region(alloc_region);
6578   } else {
6579     _old_set.add(alloc_region);
6580   }
6581   _hr_printer.retire(alloc_region);
6582 }
6583 
6584 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6585   bool expanded = false;
6586   uint index = _hrm.find_highest_free(&expanded);
6587 
6588   if (index != G1_NO_HRM_INDEX) {
6589     if (expanded) {
6590       ergo_verbose1(ErgoHeapSizing,
6591                     "attempt heap expansion",
6592                     ergo_format_reason("requested address range outside heap bounds")
6593                     ergo_format_byte("region size"),
6594                     HeapRegion::GrainWords * HeapWordSize);
6595     }
6596     _hrm.allocate_free_regions_starting_at(index, 1);
6597     return region_at(index);
6598   }
6599   return NULL;
6600 }
6601 
6602 // Heap region set verification
6603 
6604 class VerifyRegionListsClosure : public HeapRegionClosure {
6605 private:
6606   HeapRegionSet*   _old_set;
6607   HeapRegionSet*   _humongous_set;
6608   HeapRegionManager*   _hrm;
6609 
6610 public:
6611   HeapRegionSetCount _old_count;
6612   HeapRegionSetCount _humongous_count;
6613   HeapRegionSetCount _free_count;
6614 
6615   VerifyRegionListsClosure(HeapRegionSet* old_set,
6616                            HeapRegionSet* humongous_set,
6617                            HeapRegionManager* hrm) :
6618     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6619     _old_count(), _humongous_count(), _free_count(){ }
6620 
6621   bool doHeapRegion(HeapRegion* hr) {
6622     if (hr->is_continues_humongous()) {
6623       return false;
6624     }
6625 
6626     if (hr->is_young()) {
6627       // TODO
6628     } else if (hr->is_starts_humongous()) {
6629       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6630       _humongous_count.increment(1u, hr->capacity());
6631     } else if (hr->is_empty()) {
6632       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6633       _free_count.increment(1u, hr->capacity());
6634     } else if (hr->is_old()) {
6635       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6636       _old_count.increment(1u, hr->capacity());
6637     } else {
6638       // There are no other valid region types. Check for one invalid
6639       // one we can identify: pinned without old or humongous set.
6640       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6641       ShouldNotReachHere();
6642     }
6643     return false;
6644   }
6645 
6646   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6647     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6648     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6649         old_set->total_capacity_bytes(), _old_count.capacity()));
6650 
6651     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6652     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6653         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6654 
6655     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6656     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6657         free_list->total_capacity_bytes(), _free_count.capacity()));
6658   }
6659 };
6660 
6661 void G1CollectedHeap::verify_region_sets() {
6662   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6663 
6664   // First, check the explicit lists.
6665   _hrm.verify();
6666   {
6667     // Given that a concurrent operation might be adding regions to
6668     // the secondary free list we have to take the lock before
6669     // verifying it.
6670     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6671     _secondary_free_list.verify_list();
6672   }
6673 
6674   // If a concurrent region freeing operation is in progress it will
6675   // be difficult to correctly attributed any free regions we come
6676   // across to the correct free list given that they might belong to
6677   // one of several (free_list, secondary_free_list, any local lists,
6678   // etc.). So, if that's the case we will skip the rest of the
6679   // verification operation. Alternatively, waiting for the concurrent
6680   // operation to complete will have a non-trivial effect on the GC's
6681   // operation (no concurrent operation will last longer than the
6682   // interval between two calls to verification) and it might hide
6683   // any issues that we would like to catch during testing.
6684   if (free_regions_coming()) {
6685     return;
6686   }
6687 
6688   // Make sure we append the secondary_free_list on the free_list so
6689   // that all free regions we will come across can be safely
6690   // attributed to the free_list.
6691   append_secondary_free_list_if_not_empty_with_lock();
6692 
6693   // Finally, make sure that the region accounting in the lists is
6694   // consistent with what we see in the heap.
6695 
6696   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6697   heap_region_iterate(&cl);
6698   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6699 }
6700 
6701 // Optimized nmethod scanning
6702 
6703 class RegisterNMethodOopClosure: public OopClosure {
6704   G1CollectedHeap* _g1h;
6705   nmethod* _nm;
6706 
6707   template <class T> void do_oop_work(T* p) {
6708     T heap_oop = oopDesc::load_heap_oop(p);
6709     if (!oopDesc::is_null(heap_oop)) {
6710       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6711       HeapRegion* hr = _g1h->heap_region_containing(obj);
6712       assert(!hr->is_continues_humongous(),
6713              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6714                      " starting at " HR_FORMAT,
6715                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6716 
6717       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6718       hr->add_strong_code_root_locked(_nm);
6719     }
6720   }
6721 
6722 public:
6723   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6724     _g1h(g1h), _nm(nm) {}
6725 
6726   void do_oop(oop* p)       { do_oop_work(p); }
6727   void do_oop(narrowOop* p) { do_oop_work(p); }
6728 };
6729 
6730 class UnregisterNMethodOopClosure: public OopClosure {
6731   G1CollectedHeap* _g1h;
6732   nmethod* _nm;
6733 
6734   template <class T> void do_oop_work(T* p) {
6735     T heap_oop = oopDesc::load_heap_oop(p);
6736     if (!oopDesc::is_null(heap_oop)) {
6737       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6738       HeapRegion* hr = _g1h->heap_region_containing(obj);
6739       assert(!hr->is_continues_humongous(),
6740              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6741                      " starting at " HR_FORMAT,
6742                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6743 
6744       hr->remove_strong_code_root(_nm);
6745     }
6746   }
6747 
6748 public:
6749   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6750     _g1h(g1h), _nm(nm) {}
6751 
6752   void do_oop(oop* p)       { do_oop_work(p); }
6753   void do_oop(narrowOop* p) { do_oop_work(p); }
6754 };
6755 
6756 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6757   CollectedHeap::register_nmethod(nm);
6758 
6759   guarantee(nm != NULL, "sanity");
6760   RegisterNMethodOopClosure reg_cl(this, nm);
6761   nm->oops_do(&reg_cl);
6762 }
6763 
6764 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6765   CollectedHeap::unregister_nmethod(nm);
6766 
6767   guarantee(nm != NULL, "sanity");
6768   UnregisterNMethodOopClosure reg_cl(this, nm);
6769   nm->oops_do(&reg_cl, true);
6770 }
6771 
6772 void G1CollectedHeap::purge_code_root_memory() {
6773   double purge_start = os::elapsedTime();
6774   G1CodeRootSet::purge();
6775   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6776   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6777 }
6778 
6779 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6780   G1CollectedHeap* _g1h;
6781 
6782 public:
6783   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6784     _g1h(g1h) {}
6785 
6786   void do_code_blob(CodeBlob* cb) {
6787     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6788     if (nm == NULL) {
6789       return;
6790     }
6791 
6792     if (ScavengeRootsInCode) {
6793       _g1h->register_nmethod(nm);
6794     }
6795   }
6796 };
6797 
6798 void G1CollectedHeap::rebuild_strong_code_roots() {
6799   RebuildStrongCodeRootClosure blob_cl(this);
6800   CodeCache::blobs_do(&blob_cl);
6801 }