1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/vmreg.inline.hpp"
  28 #include "interpreter/bytecode.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.inline.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/monitorChunk.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/vframe.hpp"
  40 #include "runtime/vframeArray.hpp"
  41 #include "runtime/vframe_hp.hpp"
  42 #include "utilities/events.hpp"
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #endif
  46 
  47 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  48 
  49 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
  50 
  51 void vframeArrayElement::free_monitors(JavaThread* jt) {
  52   if (_monitors != NULL) {
  53      MonitorChunk* chunk = _monitors;
  54      _monitors = NULL;
  55      jt->remove_monitor_chunk(chunk);
  56      delete chunk;
  57   }
  58 }
  59 
  60 void vframeArrayElement::fill_in(compiledVFrame* vf, bool realloc_failures) {
  61 
  62 // Copy the information from the compiled vframe to the
  63 // interpreter frame we will be creating to replace vf
  64 
  65   _method = vf->method();
  66   _bci    = vf->raw_bci();
  67   _reexecute = vf->should_reexecute();
  68 #ifdef ASSERT
  69   _removed_monitors = false;
  70 #endif
  71 
  72   int index;
  73 
  74   // Get the monitors off-stack
  75 
  76   GrowableArray<MonitorInfo*>* list = vf->monitors();
  77   if (list->is_empty()) {
  78     _monitors = NULL;
  79   } else {
  80 
  81     // Allocate monitor chunk
  82     _monitors = new MonitorChunk(list->length());
  83     vf->thread()->add_monitor_chunk(_monitors);
  84 
  85     // Migrate the BasicLocks from the stack to the monitor chunk
  86     for (index = 0; index < list->length(); index++) {
  87       MonitorInfo* monitor = list->at(index);
  88       assert(!monitor->owner_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
  89       BasicObjectLock* dest = _monitors->at(index);
  90       if (monitor->owner_is_scalar_replaced()) {
  91         dest->set_obj(NULL);
  92       } else {
  93         assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
  94         dest->set_obj(monitor->owner());
  95         monitor->lock()->move_to(monitor->owner(), dest->lock());
  96       }
  97     }
  98   }
  99 
 100   // Convert the vframe locals and expressions to off stack
 101   // values. Because we will not gc all oops can be converted to
 102   // intptr_t (i.e. a stack slot) and we are fine. This is
 103   // good since we are inside a HandleMark and the oops in our
 104   // collection would go away between packing them here and
 105   // unpacking them in unpack_on_stack.
 106 
 107   // First the locals go off-stack
 108 
 109   // FIXME this seems silly it creates a StackValueCollection
 110   // in order to get the size to then copy them and
 111   // convert the types to intptr_t size slots. Seems like it
 112   // could do it in place... Still uses less memory than the
 113   // old way though
 114 
 115   StackValueCollection *locs = vf->locals();
 116   _locals = new StackValueCollection(locs->size());
 117   for(index = 0; index < locs->size(); index++) {
 118     StackValue* value = locs->at(index);
 119     switch(value->type()) {
 120       case T_OBJECT:
 121         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 122         // preserve object type
 123         _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 124         break;
 125       case T_CONFLICT:
 126         // A dead local.  Will be initialized to null/zero.
 127         _locals->add( new StackValue());
 128         break;
 129       case T_INT:
 130         _locals->add( new StackValue(value->get_int()));
 131         break;
 132       default:
 133         ShouldNotReachHere();
 134     }
 135   }
 136 
 137   // Now the expressions off-stack
 138   // Same silliness as above
 139 
 140   StackValueCollection *exprs = vf->expressions();
 141   _expressions = new StackValueCollection(exprs->size());
 142   for(index = 0; index < exprs->size(); index++) {
 143     StackValue* value = exprs->at(index);
 144     switch(value->type()) {
 145       case T_OBJECT:
 146         assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
 147         // preserve object type
 148         _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 149         break;
 150       case T_CONFLICT:
 151         // A dead stack element.  Will be initialized to null/zero.
 152         // This can occur when the compiler emits a state in which stack
 153         // elements are known to be dead (because of an imminent exception).
 154         _expressions->add( new StackValue());
 155         break;
 156       case T_INT:
 157         _expressions->add( new StackValue(value->get_int()));
 158         break;
 159       default:
 160         ShouldNotReachHere();
 161     }
 162   }
 163 }
 164 
 165 int unpack_counter = 0;
 166 
 167 void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
 168                                          int callee_parameters,
 169                                          int callee_locals,
 170                                          frame* caller,
 171                                          bool is_top_frame,
 172                                          bool is_bottom_frame,
 173                                          int exec_mode) {
 174   JavaThread* thread = (JavaThread*) Thread::current();
 175 
 176   // Look at bci and decide on bcp and continuation pc
 177   address bcp;
 178   // C++ interpreter doesn't need a pc since it will figure out what to do when it
 179   // begins execution
 180   address pc;
 181   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
 182                              // rather than the one associated with bcp
 183   if (raw_bci() == SynchronizationEntryBCI) {
 184     // We are deoptimizing while hanging in prologue code for synchronized method
 185     bcp = method()->bcp_from(0); // first byte code
 186     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
 187   } else if (should_reexecute()) { //reexecute this bytecode
 188     assert(is_top_frame, "reexecute allowed only for the top frame");
 189     bcp = method()->bcp_from(bci());
 190     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
 191   } else {
 192     bcp = method()->bcp_from(bci());
 193     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
 194     use_next_mdp = true;
 195   }
 196   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
 197 
 198   // Monitorenter and pending exceptions:
 199   //
 200   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
 201   // because there is no safepoint at the null pointer check (it is either handled explicitly
 202   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
 203   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
 204   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
 205   // the monitorenter to place it in the proper exception range.
 206   //
 207   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
 208   // in which case bcp should point to the monitorenter since it is within the exception's range.
 209 
 210   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
 211   assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
 212   guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
 213               *bcp == Bytecodes::_monitorenter             &&
 214               exec_mode == Deoptimization::Unpack_exception),
 215             "shouldn't get exception during monitorenter");
 216 
 217   int popframe_preserved_args_size_in_bytes = 0;
 218   int popframe_preserved_args_size_in_words = 0;
 219   if (is_top_frame) {
 220     JvmtiThreadState *state = thread->jvmti_thread_state();
 221     if (JvmtiExport::can_pop_frame() &&
 222         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
 223       if (thread->has_pending_popframe()) {
 224         // Pop top frame after deoptimization
 225 #ifndef CC_INTERP
 226         pc = Interpreter::remove_activation_preserving_args_entry();
 227 #else
 228         // Do an uncommon trap type entry. c++ interpreter will know
 229         // to pop frame and preserve the args
 230         pc = Interpreter::deopt_entry(vtos, 0);
 231         use_next_mdp = false;
 232 #endif
 233       } else {
 234         // Reexecute invoke in top frame
 235         pc = Interpreter::deopt_entry(vtos, 0);
 236         use_next_mdp = false;
 237         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
 238         // Note: the PopFrame-related extension of the expression stack size is done in
 239         // Deoptimization::fetch_unroll_info_helper
 240         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
 241       }
 242     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 243       // Force early return from top frame after deoptimization
 244 #ifndef CC_INTERP
 245       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
 246 #endif
 247     } else {
 248       // Possibly override the previous pc computation of the top (youngest) frame
 249       switch (exec_mode) {
 250       case Deoptimization::Unpack_deopt:
 251         // use what we've got
 252         break;
 253       case Deoptimization::Unpack_exception:
 254         // exception is pending
 255         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
 256         // [phh] We're going to end up in some handler or other, so it doesn't
 257         // matter what mdp we point to.  See exception_handler_for_exception()
 258         // in interpreterRuntime.cpp.
 259         break;
 260       case Deoptimization::Unpack_uncommon_trap:
 261       case Deoptimization::Unpack_reexecute:
 262         // redo last byte code
 263         pc  = Interpreter::deopt_entry(vtos, 0);
 264         use_next_mdp = false;
 265         break;
 266       default:
 267         ShouldNotReachHere();
 268       }
 269     }
 270   }
 271 
 272   // Setup the interpreter frame
 273 
 274   assert(method() != NULL, "method must exist");
 275   int temps = expressions()->size();
 276 
 277   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 278 
 279   Interpreter::layout_activation(method(),
 280                                  temps + callee_parameters,
 281                                  popframe_preserved_args_size_in_words,
 282                                  locks,
 283                                  caller_actual_parameters,
 284                                  callee_parameters,
 285                                  callee_locals,
 286                                  caller,
 287                                  iframe(),
 288                                  is_top_frame,
 289                                  is_bottom_frame);
 290 
 291   // Update the pc in the frame object and overwrite the temporary pc
 292   // we placed in the skeletal frame now that we finally know the
 293   // exact interpreter address we should use.
 294 
 295   _frame.patch_pc(thread, pc);
 296 
 297   assert (!method()->is_synchronized() || locks > 0 || _removed_monitors || raw_bci() == SynchronizationEntryBCI, "synchronized methods must have monitors");
 298 
 299   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
 300   for (int index = 0; index < locks; index++) {
 301     top = iframe()->previous_monitor_in_interpreter_frame(top);
 302     BasicObjectLock* src = _monitors->at(index);
 303     top->set_obj(src->obj());
 304     src->lock()->move_to(src->obj(), top->lock());
 305   }
 306   if (ProfileInterpreter) {
 307     iframe()->interpreter_frame_set_mdp(0); // clear out the mdp.
 308   }
 309   iframe()->interpreter_frame_set_bcp(bcp);
 310   if (ProfileInterpreter) {
 311     MethodData* mdo = method()->method_data();
 312     if (mdo != NULL) {
 313       int bci = iframe()->interpreter_frame_bci();
 314       if (use_next_mdp) ++bci;
 315       address mdp = mdo->bci_to_dp(bci);
 316       iframe()->interpreter_frame_set_mdp(mdp);
 317     }
 318   }
 319 
 320   if (PrintDeoptimizationDetails) {
 321     tty->print_cr("Expressions size: %d", expressions()->size());
 322   }
 323 
 324   // Unpack expression stack
 325   // If this is an intermediate frame (i.e. not top frame) then this
 326   // only unpacks the part of the expression stack not used by callee
 327   // as parameters. The callee parameters are unpacked as part of the
 328   // callee locals.
 329   int i;
 330   for(i = 0; i < expressions()->size(); i++) {
 331     StackValue *value = expressions()->at(i);
 332     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
 333     switch(value->type()) {
 334       case T_INT:
 335         *addr = value->get_int();
 336 #ifndef PRODUCT
 337         if (PrintDeoptimizationDetails) {
 338           tty->print_cr("Reconstructed expression %d (INT): %d", i, (int)(*addr));
 339         }
 340 #endif
 341         break;
 342       case T_OBJECT:
 343         *addr = value->get_int(T_OBJECT);
 344 #ifndef PRODUCT
 345         if (PrintDeoptimizationDetails) {
 346           tty->print("Reconstructed expression %d (OBJECT): ", i);
 347           oop o = (oop)(address)(*addr);
 348           if (o == NULL) {
 349             tty->print_cr("NULL");
 350           } else {
 351             ResourceMark rm;
 352             tty->print_raw_cr(o->klass()->name()->as_C_string());
 353           }
 354         }
 355 #endif
 356         break;
 357       case T_CONFLICT:
 358         // A dead stack slot.  Initialize to null in case it is an oop.
 359         *addr = NULL_WORD;
 360         break;
 361       default:
 362         ShouldNotReachHere();
 363     }
 364   }
 365 
 366 
 367   // Unpack the locals
 368   for(i = 0; i < locals()->size(); i++) {
 369     StackValue *value = locals()->at(i);
 370     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
 371     switch(value->type()) {
 372       case T_INT:
 373         *addr = value->get_int();
 374 #ifndef PRODUCT
 375         if (PrintDeoptimizationDetails) {
 376           tty->print_cr("Reconstructed local %d (INT): %d", i, (int)(*addr));
 377         }
 378 #endif
 379         break;
 380       case T_OBJECT:
 381         *addr = value->get_int(T_OBJECT);
 382 #ifndef PRODUCT
 383         if (PrintDeoptimizationDetails) {
 384           tty->print("Reconstructed local %d (OBJECT): ", i);
 385           oop o = (oop)(address)(*addr);
 386           if (o == NULL) {
 387             tty->print_cr("NULL");
 388           } else {
 389             ResourceMark rm;
 390             tty->print_raw_cr(o->klass()->name()->as_C_string());
 391           }
 392         }
 393 #endif
 394         break;
 395       case T_CONFLICT:
 396         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
 397         *addr = NULL_WORD;
 398         break;
 399       default:
 400         ShouldNotReachHere();
 401     }
 402   }
 403 
 404   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 405     // An interpreted frame was popped but it returns to a deoptimized
 406     // frame. The incoming arguments to the interpreted activation
 407     // were preserved in thread-local storage by the
 408     // remove_activation_preserving_args_entry in the interpreter; now
 409     // we put them back into the just-unpacked interpreter frame.
 410     // Note that this assumes that the locals arena grows toward lower
 411     // addresses.
 412     if (popframe_preserved_args_size_in_words != 0) {
 413       void* saved_args = thread->popframe_preserved_args();
 414       assert(saved_args != NULL, "must have been saved by interpreter");
 415 #ifdef ASSERT
 416       assert(popframe_preserved_args_size_in_words <=
 417              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
 418              "expression stack size should have been extended");
 419 #endif // ASSERT
 420       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
 421       intptr_t* base;
 422       if (frame::interpreter_frame_expression_stack_direction() < 0) {
 423         base = iframe()->interpreter_frame_expression_stack_at(top_element);
 424       } else {
 425         base = iframe()->interpreter_frame_expression_stack();
 426       }
 427       Copy::conjoint_jbytes(saved_args,
 428                             base,
 429                             popframe_preserved_args_size_in_bytes);
 430       thread->popframe_free_preserved_args();
 431     }
 432   }
 433 
 434 #ifndef PRODUCT
 435   if (PrintDeoptimizationDetails) {
 436     ttyLocker ttyl;
 437     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
 438     iframe()->print_on(tty);
 439     RegisterMap map(thread);
 440     vframe* f = vframe::new_vframe(iframe(), &map, thread);
 441     f->print();
 442 
 443     tty->print_cr("locals size     %d", locals()->size());
 444     tty->print_cr("expression size %d", expressions()->size());
 445 
 446     method()->print_value();
 447     tty->cr();
 448     // method()->print_codes();
 449   } else if (TraceDeoptimization) {
 450     tty->print("     ");
 451     method()->print_value();
 452     Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
 453     int bci = method()->bci_from(bcp);
 454     tty->print(" - %s", Bytecodes::name(code));
 455     tty->print(" @ bci %d ", bci);
 456     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
 457   }
 458 #endif // PRODUCT
 459 
 460   // The expression stack and locals are in the resource area don't leave
 461   // a dangling pointer in the vframeArray we leave around for debug
 462   // purposes
 463 
 464   _locals = _expressions = NULL;
 465 
 466 }
 467 
 468 int vframeArrayElement::on_stack_size(int callee_parameters,
 469                                       int callee_locals,
 470                                       bool is_top_frame,
 471                                       int popframe_extra_stack_expression_els) const {
 472   assert(method()->max_locals() == locals()->size(), "just checking");
 473   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 474   int temps = expressions()->size();
 475   return Interpreter::size_activation(method()->max_stack(),
 476                                       temps + callee_parameters,
 477                                       popframe_extra_stack_expression_els,
 478                                       locks,
 479                                       callee_parameters,
 480                                       callee_locals,
 481                                       is_top_frame);
 482 }
 483 
 484 
 485 
 486 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
 487                                    RegisterMap *reg_map, frame sender, frame caller, frame self,
 488                                    bool realloc_failures) {
 489 
 490   // Allocate the vframeArray
 491   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
 492                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
 493                                                      mtCompiler);
 494   result->_frames = chunk->length();
 495   result->_owner_thread = thread;
 496   result->_sender = sender;
 497   result->_caller = caller;
 498   result->_original = self;
 499   result->set_unroll_block(NULL); // initialize it
 500   result->fill_in(thread, frame_size, chunk, reg_map, realloc_failures);
 501   return result;
 502 }
 503 
 504 void vframeArray::fill_in(JavaThread* thread,
 505                           int frame_size,
 506                           GrowableArray<compiledVFrame*>* chunk,
 507                           const RegisterMap *reg_map,
 508                           bool realloc_failures) {
 509   // Set owner first, it is used when adding monitor chunks
 510 
 511   _frame_size = frame_size;
 512   for(int i = 0; i < chunk->length(); i++) {
 513     element(i)->fill_in(chunk->at(i), realloc_failures);
 514   }
 515 
 516   // Copy registers for callee-saved registers
 517   if (reg_map != NULL) {
 518     for(int i = 0; i < RegisterMap::reg_count; i++) {
 519 #ifdef AMD64
 520       // The register map has one entry for every int (32-bit value), so
 521       // 64-bit physical registers have two entries in the map, one for
 522       // each half.  Ignore the high halves of 64-bit registers, just like
 523       // frame::oopmapreg_to_location does.
 524       //
 525       // [phh] FIXME: this is a temporary hack!  This code *should* work
 526       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
 527       // in frame_amd64.cpp and the values of the phantom high half registers
 528       // in amd64.ad.
 529       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
 530         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
 531         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 532         //      } else {
 533         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
 534         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 535         //      }
 536 #else
 537       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
 538       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 539 #endif
 540       if (src == NULL) {
 541         set_location_valid(i, false);
 542       } else {
 543         set_location_valid(i, true);
 544         jint* dst = (jint*) register_location(i);
 545         *dst = *src;
 546       }
 547     }
 548   }
 549 }
 550 
 551 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
 552   // stack picture
 553   //   unpack_frame
 554   //   [new interpreter frames ] (frames are skeletal but walkable)
 555   //   caller_frame
 556   //
 557   //  This routine fills in the missing data for the skeletal interpreter frames
 558   //  in the above picture.
 559 
 560   // Find the skeletal interpreter frames to unpack into
 561   JavaThread* THREAD = JavaThread::current();
 562   RegisterMap map(THREAD, false);
 563   // Get the youngest frame we will unpack (last to be unpacked)
 564   frame me = unpack_frame.sender(&map);
 565   int index;
 566   for (index = 0; index < frames(); index++ ) {
 567     *element(index)->iframe() = me;
 568     // Get the caller frame (possibly skeletal)
 569     me = me.sender(&map);
 570   }
 571 
 572   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
 573   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
 574   frame* caller_frame = &me;
 575   for (index = frames() - 1; index >= 0 ; index--) {
 576     vframeArrayElement* elem = element(index);  // caller
 577     int callee_parameters, callee_locals;
 578     if (index == 0) {
 579       callee_parameters = callee_locals = 0;
 580     } else {
 581       methodHandle caller = elem->method();
 582       methodHandle callee = element(index - 1)->method();
 583       Bytecode_invoke inv(caller, elem->bci());
 584       // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
 585       // NOTE:  Use machinery here that avoids resolving of any kind.
 586       const bool has_member_arg =
 587           !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
 588       callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
 589       callee_locals     = callee->max_locals();
 590     }
 591     elem->unpack_on_stack(caller_actual_parameters,
 592                           callee_parameters,
 593                           callee_locals,
 594                           caller_frame,
 595                           index == 0,
 596                           index == frames() - 1,
 597                           exec_mode);
 598     if (index == frames() - 1) {
 599       Deoptimization::unwind_callee_save_values(elem->iframe(), this);
 600     }
 601     caller_frame = elem->iframe();
 602     caller_actual_parameters = callee_parameters;
 603   }
 604   deallocate_monitor_chunks();
 605 }
 606 
 607 void vframeArray::deallocate_monitor_chunks() {
 608   JavaThread* jt = JavaThread::current();
 609   for (int index = 0; index < frames(); index++ ) {
 610      element(index)->free_monitors(jt);
 611   }
 612 }
 613 
 614 #ifndef PRODUCT
 615 
 616 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
 617   if (owner_thread() != thread) return false;
 618   int index = 0;
 619 #if 0 // FIXME can't do this comparison
 620 
 621   // Compare only within vframe array.
 622   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
 623     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
 624     index++;
 625   }
 626   if (index != chunk->length()) return false;
 627 #endif
 628 
 629   return true;
 630 }
 631 
 632 #endif
 633 
 634 address vframeArray::register_location(int i) const {
 635   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
 636   return (address) & _callee_registers[i];
 637 }
 638 
 639 
 640 #ifndef PRODUCT
 641 
 642 // Printing
 643 
 644 // Note: we cannot have print_on as const, as we allocate inside the method
 645 void vframeArray::print_on_2(outputStream* st)  {
 646   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
 647   st->print(" - thread: ");
 648   Thread::current()->print();
 649   st->print_cr(" - frame size: %d", frame_size());
 650   for (int index = 0; index < frames() ; index++ ) {
 651     element(index)->print(st);
 652   }
 653 }
 654 
 655 void vframeArrayElement::print(outputStream* st) {
 656   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
 657 }
 658 
 659 void vframeArray::print_value_on(outputStream* st) const {
 660   st->print_cr("vframeArray [%d] ", frames());
 661 }
 662 
 663 
 664 #endif