src/share/vm/runtime/advancedThresholdPolicy.cpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File hotspot Sdiff src/share/vm/runtime

src/share/vm/runtime/advancedThresholdPolicy.cpp

Print this page




   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "compiler/compileTask.hpp"
  28 #include "runtime/advancedThresholdPolicy.hpp"
  29 #include "runtime/simpleThresholdPolicy.inline.hpp"
  30 #if INCLUDE_JVMCI
  31 #include "jvmci/jvmciRuntime.hpp"
  32 #endif
  33 
  34 #ifdef TIERED
  35 // Print an event.
  36 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  37                                              int bci, CompLevel level) {
  38   tty->print(" rate=");
  39   if (mh->prev_time() == 0) tty->print("n/a");
  40   else tty->print("%f", mh->rate());
  41 
  42   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  43                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  44 
  45 }
  46 
  47 void AdvancedThresholdPolicy::initialize() {


 189 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 190   CompileTask *max_blocking_task = NULL;
 191   CompileTask *max_task = NULL;
 192   Method* max_method = NULL;
 193   jlong t = os::javaTimeMillis();
 194   // Iterate through the queue and find a method with a maximum rate.
 195   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 196     CompileTask* next_task = task->next();
 197     Method* method = task->method();
 198     update_rate(t, method);
 199     if (max_task == NULL) {
 200       max_task = task;
 201       max_method = method;
 202     } else {
 203       // If a method has been stale for some time, remove it from the queue.
 204       // Blocking tasks and tasks submitted from whitebox API don't become stale
 205       if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 206         if (PrintTieredEvents) {
 207           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 208         }
 209         task->log_task_dequeued("stale");
 210         compile_queue->remove_and_mark_stale(task);
 211         method->clear_queued_for_compilation();
 212         task = next_task;
 213         continue;
 214       }
 215 
 216       // Select a method with a higher rate
 217       if (compare_methods(method, max_method)) {
 218         max_task = task;
 219         max_method = method;
 220       }
 221     }
 222 
 223     if (task->is_blocking()) {
 224       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 225         max_blocking_task = task;
 226       }
 227     }
 228 
 229     task = next_task;


 259   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 260   // The main intention is to keep enough free space for C2 compiled code
 261   // to achieve peak performance if the code cache is under stress.
 262   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 263     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 264     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 265       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 266     }
 267   }
 268   return k;
 269 }
 270 
 271 // Call and loop predicates determine whether a transition to a higher
 272 // compilation level should be performed (pointers to predicate functions
 273 // are passed to common()).
 274 // Tier?LoadFeedback is basically a coefficient that determines of
 275 // how many methods per compiler thread can be in the queue before
 276 // the threshold values double.
 277 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 278   switch(cur_level) {




 279   case CompLevel_none:
 280   case CompLevel_limited_profile: {
 281     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 282     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 283   }
 284   case CompLevel_full_profile: {
 285     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 286     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 287   }
 288   default:
 289     return true;
 290   }
 291 }
 292 
 293 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 294   switch(cur_level) {




 295   case CompLevel_none:
 296   case CompLevel_limited_profile: {
 297     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 298     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 299   }
 300   case CompLevel_full_profile: {
 301     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 302     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 303   }
 304   default:
 305     return true;
 306   }
 307 }
 308 
 309 // If a method is old enough and is still in the interpreter we would want to
 310 // start profiling without waiting for the compiled method to arrive.
 311 // We also take the load on compilers into the account.
 312 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 313   if (cur_level == CompLevel_none &&
 314       CompileBroker::queue_size(CompLevel_full_optimization) <=


 377  * e. 0 -> 4.
 378  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 379  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 380  *    the compiled version already exists).
 381  *
 382  * Note that since state 0 can be reached from any other state via deoptimization different loops
 383  * are possible.
 384  *
 385  */
 386 
 387 // Common transition function. Given a predicate determines if a method should transition to another level.
 388 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 389   CompLevel next_level = cur_level;
 390   int i = method->invocation_count();
 391   int b = method->backedge_count();
 392 
 393   if (is_trivial(method)) {
 394     next_level = CompLevel_simple;
 395   } else {
 396     switch(cur_level) {











 397     case CompLevel_none:
 398       // If we were at full profile level, would we switch to full opt?
 399       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 400         next_level = CompLevel_full_optimization;
 401       } else if ((this->*p)(i, b, cur_level, method)) {
 402 #if INCLUDE_JVMCI
 403         if (UseJVMCICompiler) {
 404           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 405           // early VM execution.






 406           next_level = CompLevel_full_profile;
 407           break;
 408         }
 409 #endif

 410         // C1-generated fully profiled code is about 30% slower than the limited profile
 411         // code that has only invocation and backedge counters. The observation is that
 412         // if C2 queue is large enough we can spend too much time in the fully profiled code
 413         // while waiting for C2 to pick the method from the queue. To alleviate this problem
 414         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 415         // we choose to compile a limited profiled version and then recompile with full profiling
 416         // when the load on C2 goes down.
 417         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 418             Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 419           next_level = CompLevel_limited_profile;
 420         } else {
 421           next_level = CompLevel_full_profile;
 422         }
 423       }

 424       break;
 425     case CompLevel_limited_profile:
 426       if (is_method_profiled(method)) {
 427         // Special case: we got here because this method was fully profiled in the interpreter.
 428         next_level = CompLevel_full_optimization;
 429       } else {
 430         MethodData* mdo = method->method_data();
 431         if (mdo != NULL) {
 432           if (mdo->would_profile()) {
 433             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 434                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 435                                      (this->*p)(i, b, cur_level, method))) {
 436               next_level = CompLevel_full_profile;
 437             }
 438           } else {
 439             next_level = CompLevel_full_optimization;
 440           }







 441         }
 442       }
 443       break;
 444     case CompLevel_full_profile:
 445       {
 446         MethodData* mdo = method->method_data();
 447         if (mdo != NULL) {
 448           if (mdo->would_profile()) {
 449             int mdo_i = mdo->invocation_count_delta();
 450             int mdo_b = mdo->backedge_count_delta();
 451             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 452               next_level = CompLevel_full_optimization;
 453             }
 454           } else {
 455             next_level = CompLevel_full_optimization;
 456           }
 457         }
 458       }
 459       break;
 460     }


 497     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 498     if (osr_level > CompLevel_none) {
 499       return osr_level;
 500     }
 501   }
 502 #if INCLUDE_JVMCI
 503   if (UseJVMCICompiler) {
 504     next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
 505   }
 506 #endif
 507   return next_level;
 508 }
 509 
 510 // Update the rate and submit compile
 511 void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 512   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 513   update_rate(os::javaTimeMillis(), mh());
 514   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
 515 }
 516 




















 517 // Handle the invocation event.
 518 void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 519                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 520   if (should_create_mdo(mh(), level)) {
 521     create_mdo(mh, thread);
 522   }
 523   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 524     CompLevel next_level = call_event(mh(), level, thread);
 525     if (next_level != level) {





 526       compile(mh, InvocationEntryBci, next_level, thread);
 527     }
 528   }
 529 }
 530 
 531 // Handle the back branch event. Notice that we can compile the method
 532 // with a regular entry from here.
 533 void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 534                                                        int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 535   if (should_create_mdo(mh(), level)) {
 536     create_mdo(mh, thread);
 537   }
 538   // Check if MDO should be created for the inlined method
 539   if (should_create_mdo(imh(), level)) {
 540     create_mdo(imh, thread);
 541   }
 542 
 543   if (is_compilation_enabled()) {
 544     CompLevel next_osr_level = loop_event(imh(), level, thread);
 545     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 546     // At the very least compile the OSR version
 547     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 548       compile(imh, bci, next_osr_level, thread);
 549     }
 550 
 551     // Use loop event as an opportunity to also check if there's been
 552     // enough calls.
 553     CompLevel cur_level, next_level;
 554     if (mh() != imh()) { // If there is an enclosing method







 555       guarantee(nm != NULL, "Should have nmethod here");
 556       cur_level = comp_level(mh());
 557       next_level = call_event(mh(), cur_level, thread);
 558 
 559       if (max_osr_level == CompLevel_full_optimization) {
 560         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 561         bool make_not_entrant = false;
 562         if (nm->is_osr_method()) {
 563           // This is an osr method, just make it not entrant and recompile later if needed
 564           make_not_entrant = true;
 565         } else {
 566           if (next_level != CompLevel_full_optimization) {
 567             // next_level is not full opt, so we need to recompile the
 568             // enclosing method without the inlinee
 569             cur_level = CompLevel_none;
 570             make_not_entrant = true;
 571           }
 572         }
 573         if (make_not_entrant) {
 574           if (PrintTieredEvents) {
 575             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 576             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 577           }
 578           nm->make_not_entrant();
 579         }
 580       }
 581       if (!CompileBroker::compilation_is_in_queue(mh)) {
 582         // Fix up next_level if necessary to avoid deopts
 583         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 584           next_level = CompLevel_full_profile;
 585         }
 586         if (cur_level != next_level) {

 587           compile(mh, InvocationEntryBci, next_level, thread);
 588         }
 589       }

 590     } else {
 591       cur_level = comp_level(imh());
 592       next_level = call_event(imh(), cur_level, thread);
 593       if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
 594         compile(imh, InvocationEntryBci, next_level, thread);


 595       }
 596     }
 597   }
 598 }
 599 
 600 #endif // TIERED


   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"

  27 #include "runtime/advancedThresholdPolicy.hpp"
  28 #include "runtime/simpleThresholdPolicy.inline.hpp"
  29 #if INCLUDE_JVMCI
  30 #include "jvmci/jvmciRuntime.hpp"
  31 #endif
  32 
  33 #ifdef TIERED
  34 // Print an event.
  35 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  36                                              int bci, CompLevel level) {
  37   tty->print(" rate=");
  38   if (mh->prev_time() == 0) tty->print("n/a");
  39   else tty->print("%f", mh->rate());
  40 
  41   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  42                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  43 
  44 }
  45 
  46 void AdvancedThresholdPolicy::initialize() {


 188 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 189   CompileTask *max_blocking_task = NULL;
 190   CompileTask *max_task = NULL;
 191   Method* max_method = NULL;
 192   jlong t = os::javaTimeMillis();
 193   // Iterate through the queue and find a method with a maximum rate.
 194   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 195     CompileTask* next_task = task->next();
 196     Method* method = task->method();
 197     update_rate(t, method);
 198     if (max_task == NULL) {
 199       max_task = task;
 200       max_method = method;
 201     } else {
 202       // If a method has been stale for some time, remove it from the queue.
 203       // Blocking tasks and tasks submitted from whitebox API don't become stale
 204       if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 205         if (PrintTieredEvents) {
 206           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 207         }

 208         compile_queue->remove_and_mark_stale(task);
 209         method->clear_queued_for_compilation();
 210         task = next_task;
 211         continue;
 212       }
 213 
 214       // Select a method with a higher rate
 215       if (compare_methods(method, max_method)) {
 216         max_task = task;
 217         max_method = method;
 218       }
 219     }
 220 
 221     if (task->is_blocking()) {
 222       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 223         max_blocking_task = task;
 224       }
 225     }
 226 
 227     task = next_task;


 257   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 258   // The main intention is to keep enough free space for C2 compiled code
 259   // to achieve peak performance if the code cache is under stress.
 260   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 261     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 262     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 263       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 264     }
 265   }
 266   return k;
 267 }
 268 
 269 // Call and loop predicates determine whether a transition to a higher
 270 // compilation level should be performed (pointers to predicate functions
 271 // are passed to common()).
 272 // Tier?LoadFeedback is basically a coefficient that determines of
 273 // how many methods per compiler thread can be in the queue before
 274 // the threshold values double.
 275 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 276   switch(cur_level) {
 277   case CompLevel_aot: {
 278     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 279     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
 280   }
 281   case CompLevel_none:
 282   case CompLevel_limited_profile: {
 283     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 284     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 285   }
 286   case CompLevel_full_profile: {
 287     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 288     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 289   }
 290   default:
 291     return true;
 292   }
 293 }
 294 
 295 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 296   switch(cur_level) {
 297   case CompLevel_aot: {
 298     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 299     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
 300   }
 301   case CompLevel_none:
 302   case CompLevel_limited_profile: {
 303     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 304     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 305   }
 306   case CompLevel_full_profile: {
 307     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 308     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 309   }
 310   default:
 311     return true;
 312   }
 313 }
 314 
 315 // If a method is old enough and is still in the interpreter we would want to
 316 // start profiling without waiting for the compiled method to arrive.
 317 // We also take the load on compilers into the account.
 318 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 319   if (cur_level == CompLevel_none &&
 320       CompileBroker::queue_size(CompLevel_full_optimization) <=


 383  * e. 0 -> 4.
 384  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 385  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 386  *    the compiled version already exists).
 387  *
 388  * Note that since state 0 can be reached from any other state via deoptimization different loops
 389  * are possible.
 390  *
 391  */
 392 
 393 // Common transition function. Given a predicate determines if a method should transition to another level.
 394 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 395   CompLevel next_level = cur_level;
 396   int i = method->invocation_count();
 397   int b = method->backedge_count();
 398 
 399   if (is_trivial(method)) {
 400     next_level = CompLevel_simple;
 401   } else {
 402     switch(cur_level) {
 403     case CompLevel_aot: {
 404       // If we were at full profile level, would we switch to full opt?
 405       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 406         next_level = CompLevel_full_optimization;
 407       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 408                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 409                                (this->*p)(i, b, cur_level, method))) {
 410         next_level = CompLevel_full_profile;
 411       }
 412     }
 413     break;
 414     case CompLevel_none:
 415       // If we were at full profile level, would we switch to full opt?
 416       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 417         next_level = CompLevel_full_optimization;
 418       } else if ((this->*p)(i, b, cur_level, method)) {
 419 #if INCLUDE_JVMCI
 420         if (EnableJVMCI && UseJVMCICompiler) {
 421           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 422           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
 423           // compilation method and all potential inlinees have mature profiles (which
 424           // includes type profiling). If it sees immature profiles, JVMCI's inliner
 425           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
 426           // exploring/inlining too many graphs). Since a rewrite of the inliner is
 427           // in progress, we simply disable the dialing back heuristic for now and will
 428           // revisit this decision once the new inliner is completed.
 429           next_level = CompLevel_full_profile;
 430         } else

 431 #endif
 432         {
 433           // C1-generated fully profiled code is about 30% slower than the limited profile
 434           // code that has only invocation and backedge counters. The observation is that
 435           // if C2 queue is large enough we can spend too much time in the fully profiled code
 436           // while waiting for C2 to pick the method from the queue. To alleviate this problem
 437           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 438           // we choose to compile a limited profiled version and then recompile with full profiling
 439           // when the load on C2 goes down.
 440           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 441               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 442             next_level = CompLevel_limited_profile;
 443           } else {
 444             next_level = CompLevel_full_profile;
 445           }
 446         }
 447       }
 448       break;
 449     case CompLevel_limited_profile:
 450       if (is_method_profiled(method)) {
 451         // Special case: we got here because this method was fully profiled in the interpreter.
 452         next_level = CompLevel_full_optimization;
 453       } else {
 454         MethodData* mdo = method->method_data();
 455         if (mdo != NULL) {
 456           if (mdo->would_profile()) {
 457             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 458                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 459                                      (this->*p)(i, b, cur_level, method))) {
 460               next_level = CompLevel_full_profile;
 461             }
 462           } else {
 463             next_level = CompLevel_full_optimization;
 464           }
 465         } else {
 466           // If there is no MDO we need to profile
 467           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 468                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 469                                    (this->*p)(i, b, cur_level, method))) {
 470             next_level = CompLevel_full_profile;
 471           }
 472         }
 473       }
 474       break;
 475     case CompLevel_full_profile:
 476       {
 477         MethodData* mdo = method->method_data();
 478         if (mdo != NULL) {
 479           if (mdo->would_profile()) {
 480             int mdo_i = mdo->invocation_count_delta();
 481             int mdo_b = mdo->backedge_count_delta();
 482             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 483               next_level = CompLevel_full_optimization;
 484             }
 485           } else {
 486             next_level = CompLevel_full_optimization;
 487           }
 488         }
 489       }
 490       break;
 491     }


 528     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 529     if (osr_level > CompLevel_none) {
 530       return osr_level;
 531     }
 532   }
 533 #if INCLUDE_JVMCI
 534   if (UseJVMCICompiler) {
 535     next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
 536   }
 537 #endif
 538   return next_level;
 539 }
 540 
 541 // Update the rate and submit compile
 542 void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 543   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 544   update_rate(os::javaTimeMillis(), mh());
 545   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
 546 }
 547 
 548 bool AdvancedThresholdPolicy::maybe_switch_to_aot(methodHandle mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
 549   if (UseAOT && !delay_compilation_during_startup()) {
 550     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
 551       // If the current level is full profile or interpreter and we're switching to any other level,
 552       // activate the AOT code back first so that we won't waste time overprofiling.
 553       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 554       // Fall through for JIT compilation.
 555     }
 556     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
 557       // If the next level is limited profile, use the aot code (if there is any),
 558       // since it's essentially the same thing.
 559       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 560       // Not need to JIT, we're done.
 561       return true;
 562     }
 563   }
 564   return false;
 565 }
 566 
 567 
 568 // Handle the invocation event.
 569 void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 570                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 571   if (should_create_mdo(mh(), level)) {
 572     create_mdo(mh, thread);
 573   }

 574   CompLevel next_level = call_event(mh(), level, thread);
 575   if (next_level != level) {
 576     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
 577       // No JITting necessary
 578       return;
 579     }
 580     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 581       compile(mh, InvocationEntryBci, next_level, thread);
 582     }
 583   }
 584 }
 585 
 586 // Handle the back branch event. Notice that we can compile the method
 587 // with a regular entry from here.
 588 void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 589                                                        int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 590   if (should_create_mdo(mh(), level)) {
 591     create_mdo(mh, thread);
 592   }
 593   // Check if MDO should be created for the inlined method
 594   if (should_create_mdo(imh(), level)) {
 595     create_mdo(imh, thread);
 596   }
 597 
 598   if (is_compilation_enabled()) {
 599     CompLevel next_osr_level = loop_event(imh(), level, thread);
 600     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 601     // At the very least compile the OSR version
 602     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 603       compile(imh, bci, next_osr_level, thread);
 604     }
 605 
 606     // Use loop event as an opportunity to also check if there's been
 607     // enough calls.
 608     CompLevel cur_level, next_level;
 609     if (mh() != imh()) { // If there is an enclosing method
 610       if (level == CompLevel_aot) {
 611         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
 612         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
 613           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
 614         }
 615       } else {
 616         // Current loop event level is not AOT
 617         guarantee(nm != NULL, "Should have nmethod here");
 618         cur_level = comp_level(mh());
 619         next_level = call_event(mh(), cur_level, thread);
 620 
 621         if (max_osr_level == CompLevel_full_optimization) {
 622           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 623           bool make_not_entrant = false;
 624           if (nm->is_osr_method()) {
 625             // This is an osr method, just make it not entrant and recompile later if needed
 626             make_not_entrant = true;
 627           } else {
 628             if (next_level != CompLevel_full_optimization) {
 629               // next_level is not full opt, so we need to recompile the
 630               // enclosing method without the inlinee
 631               cur_level = CompLevel_none;
 632               make_not_entrant = true;
 633             }
 634           }
 635           if (make_not_entrant) {
 636             if (PrintTieredEvents) {
 637               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 638               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 639             }
 640             nm->make_not_entrant();
 641           }
 642         }

 643         // Fix up next_level if necessary to avoid deopts
 644         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 645           next_level = CompLevel_full_profile;
 646         }
 647         if (cur_level != next_level) {
 648           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 649             compile(mh, InvocationEntryBci, next_level, thread);
 650           }
 651         }
 652       }
 653     } else {
 654       cur_level = comp_level(mh());
 655       next_level = call_event(mh(), cur_level, thread);
 656       if (next_level != cur_level) {
 657         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 658           compile(mh, InvocationEntryBci, next_level, thread);
 659         }
 660       }
 661     }
 662   }
 663 }
 664 
 665 #endif // TIERED
src/share/vm/runtime/advancedThresholdPolicy.cpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File