1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/interpreterRuntime.hpp"
  41 #include "logging/log.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/klass.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "prims/forte.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/methodHandles.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/vframe.hpp"
  63 #include "runtime/vframeArray.hpp"
  64 #include "trace/tracing.hpp"
  65 #include "utilities/copy.hpp"
  66 #include "utilities/dtrace.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/hashtable.inline.hpp"
  69 #include "utilities/macros.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 #ifdef COMPILER1
  72 #include "c1/c1_Runtime1.hpp"
  73 #endif
  74 
  75 // Shared stub locations
  76 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  77 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  78 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  79 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  82 address             SharedRuntime::_resolve_static_call_entry;
  83 
  84 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  85 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  88 
  89 #ifdef COMPILER2
  90 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  91 #endif // COMPILER2
  92 
  93 
  94 //----------------------------generate_stubs-----------------------------------
  95 void SharedRuntime::generate_stubs() {
  96   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  97   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  98   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  99   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 100   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 101   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 102   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 103 
 104 #if defined(COMPILER2) || INCLUDE_JVMCI
 105   // Vectors are generated only by C2 and JVMCI.
 106   bool support_wide = is_wide_vector(MaxVectorSize);
 107   if (support_wide) {
 108     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 109   }
 110 #endif // COMPILER2 || INCLUDE_JVMCI
 111   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 112   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 113 
 114   generate_deopt_blob();
 115 
 116 #ifdef COMPILER2
 117   generate_uncommon_trap_blob();
 118 #endif // COMPILER2
 119 }
 120 
 121 #include <math.h>
 122 
 123 // Implementation of SharedRuntime
 124 
 125 #ifndef PRODUCT
 126 // For statistics
 127 int SharedRuntime::_ic_miss_ctr = 0;
 128 int SharedRuntime::_wrong_method_ctr = 0;
 129 int SharedRuntime::_resolve_static_ctr = 0;
 130 int SharedRuntime::_resolve_virtual_ctr = 0;
 131 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 132 int SharedRuntime::_implicit_null_throws = 0;
 133 int SharedRuntime::_implicit_div0_throws = 0;
 134 int SharedRuntime::_throw_null_ctr = 0;
 135 
 136 int SharedRuntime::_nof_normal_calls = 0;
 137 int SharedRuntime::_nof_optimized_calls = 0;
 138 int SharedRuntime::_nof_inlined_calls = 0;
 139 int SharedRuntime::_nof_megamorphic_calls = 0;
 140 int SharedRuntime::_nof_static_calls = 0;
 141 int SharedRuntime::_nof_inlined_static_calls = 0;
 142 int SharedRuntime::_nof_interface_calls = 0;
 143 int SharedRuntime::_nof_optimized_interface_calls = 0;
 144 int SharedRuntime::_nof_inlined_interface_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 146 int SharedRuntime::_nof_removable_exceptions = 0;
 147 
 148 int SharedRuntime::_new_instance_ctr=0;
 149 int SharedRuntime::_new_array_ctr=0;
 150 int SharedRuntime::_multi1_ctr=0;
 151 int SharedRuntime::_multi2_ctr=0;
 152 int SharedRuntime::_multi3_ctr=0;
 153 int SharedRuntime::_multi4_ctr=0;
 154 int SharedRuntime::_multi5_ctr=0;
 155 int SharedRuntime::_mon_enter_stub_ctr=0;
 156 int SharedRuntime::_mon_exit_stub_ctr=0;
 157 int SharedRuntime::_mon_enter_ctr=0;
 158 int SharedRuntime::_mon_exit_ctr=0;
 159 int SharedRuntime::_partial_subtype_ctr=0;
 160 int SharedRuntime::_jbyte_array_copy_ctr=0;
 161 int SharedRuntime::_jshort_array_copy_ctr=0;
 162 int SharedRuntime::_jint_array_copy_ctr=0;
 163 int SharedRuntime::_jlong_array_copy_ctr=0;
 164 int SharedRuntime::_oop_array_copy_ctr=0;
 165 int SharedRuntime::_checkcast_array_copy_ctr=0;
 166 int SharedRuntime::_unsafe_array_copy_ctr=0;
 167 int SharedRuntime::_generic_array_copy_ctr=0;
 168 int SharedRuntime::_slow_array_copy_ctr=0;
 169 int SharedRuntime::_find_handler_ctr=0;
 170 int SharedRuntime::_rethrow_ctr=0;
 171 
 172 int     SharedRuntime::_ICmiss_index                    = 0;
 173 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 174 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 175 
 176 
 177 void SharedRuntime::trace_ic_miss(address at) {
 178   for (int i = 0; i < _ICmiss_index; i++) {
 179     if (_ICmiss_at[i] == at) {
 180       _ICmiss_count[i]++;
 181       return;
 182     }
 183   }
 184   int index = _ICmiss_index++;
 185   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 186   _ICmiss_at[index] = at;
 187   _ICmiss_count[index] = 1;
 188 }
 189 
 190 void SharedRuntime::print_ic_miss_histogram() {
 191   if (ICMissHistogram) {
 192     tty->print_cr("IC Miss Histogram:");
 193     int tot_misses = 0;
 194     for (int i = 0; i < _ICmiss_index; i++) {
 195       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 196       tot_misses += _ICmiss_count[i];
 197     }
 198     tty->print_cr("Total IC misses: %7d", tot_misses);
 199   }
 200 }
 201 #endif // PRODUCT
 202 
 203 #if INCLUDE_ALL_GCS
 204 
 205 // G1 write-barrier pre: executed before a pointer store.
 206 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 207   if (orig == NULL) {
 208     assert(false, "should be optimized out");
 209     return;
 210   }
 211   assert(orig->is_oop(true /* ignore mark word */), "Error");
 212   // store the original value that was in the field reference
 213   thread->satb_mark_queue().enqueue(orig);
 214 JRT_END
 215 
 216 // G1 write-barrier post: executed after a pointer store.
 217 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 218   thread->dirty_card_queue().enqueue(card_addr);
 219 JRT_END
 220 
 221 #endif // INCLUDE_ALL_GCS
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 225   return x * y;
 226 JRT_END
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 230   if (x == min_jlong && y == CONST64(-1)) {
 231     return x;
 232   } else {
 233     return x / y;
 234   }
 235 JRT_END
 236 
 237 
 238 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 239   if (x == min_jlong && y == CONST64(-1)) {
 240     return 0;
 241   } else {
 242     return x % y;
 243   }
 244 JRT_END
 245 
 246 
 247 const juint  float_sign_mask  = 0x7FFFFFFF;
 248 const juint  float_infinity   = 0x7F800000;
 249 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 250 const julong double_infinity  = CONST64(0x7FF0000000000000);
 251 
 252 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 253 #ifdef _WIN64
 254   // 64-bit Windows on amd64 returns the wrong values for
 255   // infinity operands.
 256   union { jfloat f; juint i; } xbits, ybits;
 257   xbits.f = x;
 258   ybits.f = y;
 259   // x Mod Infinity == x unless x is infinity
 260   if (((xbits.i & float_sign_mask) != float_infinity) &&
 261        ((ybits.i & float_sign_mask) == float_infinity) ) {
 262     return x;
 263   }
 264   return ((jfloat)fmod_winx64((double)x, (double)y));
 265 #else
 266   return ((jfloat)fmod((double)x,(double)y));
 267 #endif
 268 JRT_END
 269 
 270 
 271 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 272 #ifdef _WIN64
 273   union { jdouble d; julong l; } xbits, ybits;
 274   xbits.d = x;
 275   ybits.d = y;
 276   // x Mod Infinity == x unless x is infinity
 277   if (((xbits.l & double_sign_mask) != double_infinity) &&
 278        ((ybits.l & double_sign_mask) == double_infinity) ) {
 279     return x;
 280   }
 281   return ((jdouble)fmod_winx64((double)x, (double)y));
 282 #else
 283   return ((jdouble)fmod((double)x,(double)y));
 284 #endif
 285 JRT_END
 286 
 287 #ifdef __SOFTFP__
 288 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 289   return x + y;
 290 JRT_END
 291 
 292 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 293   return x - y;
 294 JRT_END
 295 
 296 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 297   return x * y;
 298 JRT_END
 299 
 300 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 301   return x / y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 305   return x + y;
 306 JRT_END
 307 
 308 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 309   return x - y;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 313   return x * y;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 317   return x / y;
 318 JRT_END
 319 
 320 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 321   return (jfloat)x;
 322 JRT_END
 323 
 324 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 325   return (jdouble)x;
 326 JRT_END
 327 
 328 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 329   return (jdouble)x;
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 333   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 334 JRT_END
 335 
 336 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 337   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 338 JRT_END
 339 
 340 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 341   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 342 JRT_END
 343 
 344 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 345   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 346 JRT_END
 347 
 348 // Functions to return the opposite of the aeabi functions for nan.
 349 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 350   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 354   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 358   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 362   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 366   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 370   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 374   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 375 JRT_END
 376 
 377 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 378   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 379 JRT_END
 380 
 381 // Intrinsics make gcc generate code for these.
 382 float  SharedRuntime::fneg(float f)   {
 383   return -f;
 384 }
 385 
 386 double SharedRuntime::dneg(double f)  {
 387   return -f;
 388 }
 389 
 390 #endif // __SOFTFP__
 391 
 392 #if defined(__SOFTFP__) || defined(E500V2)
 393 // Intrinsics make gcc generate code for these.
 394 double SharedRuntime::dabs(double f)  {
 395   return (f <= (double)0.0) ? (double)0.0 - f : f;
 396 }
 397 
 398 #endif
 399 
 400 #if defined(__SOFTFP__) || defined(PPC)
 401 double SharedRuntime::dsqrt(double f) {
 402   return sqrt(f);
 403 }
 404 #endif
 405 
 406 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jint)
 410     return max_jint;
 411   if (x <= (jfloat) min_jint)
 412     return min_jint;
 413   return (jint) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jfloat) max_jlong)
 421     return max_jlong;
 422   if (x <= (jfloat) min_jlong)
 423     return min_jlong;
 424   return (jlong) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jint)
 432     return max_jint;
 433   if (x <= (jdouble) min_jint)
 434     return min_jint;
 435   return (jint) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 440   if (g_isnan(x))
 441     return 0;
 442   if (x >= (jdouble) max_jlong)
 443     return max_jlong;
 444   if (x <= (jdouble) min_jlong)
 445     return min_jlong;
 446   return (jlong) x;
 447 JRT_END
 448 
 449 
 450 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 451   return (jfloat)x;
 452 JRT_END
 453 
 454 
 455 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 456   return (jfloat)x;
 457 JRT_END
 458 
 459 
 460 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 461   return (jdouble)x;
 462 JRT_END
 463 
 464 // Exception handling across interpreter/compiler boundaries
 465 //
 466 // exception_handler_for_return_address(...) returns the continuation address.
 467 // The continuation address is the entry point of the exception handler of the
 468 // previous frame depending on the return address.
 469 
 470 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 471   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 472   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 473 
 474   // Reset method handle flag.
 475   thread->set_is_method_handle_return(false);
 476 
 477 #if INCLUDE_JVMCI
 478   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 479   // and other exception handler continuations do not read it
 480   thread->set_exception_pc(NULL);
 481 #endif // INCLUDE_JVMCI
 482 
 483   // The fastest case first
 484   CodeBlob* blob = CodeCache::find_blob(return_address);
 485   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 486   if (nm != NULL) {
 487     // Set flag if return address is a method handle call site.
 488     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 489     // native nmethods don't have exception handlers
 490     assert(!nm->is_native_method(), "no exception handler");
 491     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 492     if (nm->is_deopt_pc(return_address)) {
 493       // If we come here because of a stack overflow, the stack may be
 494       // unguarded. Reguard the stack otherwise if we return to the
 495       // deopt blob and the stack bang causes a stack overflow we
 496       // crash.
 497       bool guard_pages_enabled = thread->stack_guards_enabled();
 498       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 499       if (thread->reserved_stack_activation() != thread->stack_base()) {
 500         thread->set_reserved_stack_activation(thread->stack_base());
 501       }
 502       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 503       return SharedRuntime::deopt_blob()->unpack_with_exception();
 504     } else {
 505       return nm->exception_begin();
 506     }
 507   }
 508 
 509 #if INCLUDE_AOT
 510   if (UseAOT && blob->is_aot()) {
 511     // AOT Compiled code
 512     return AOTLoader::exception_begin(thread, blob, return_address);
 513   }
 514 #endif
 515 
 516   // Entry code
 517   if (StubRoutines::returns_to_call_stub(return_address)) {
 518     return StubRoutines::catch_exception_entry();
 519   }
 520   // Interpreted code
 521   if (Interpreter::contains(return_address)) {
 522     return Interpreter::rethrow_exception_entry();
 523   }
 524 
 525   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 526   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 527 
 528 #ifndef PRODUCT
 529   { ResourceMark rm;
 530     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 531     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 532     tty->print_cr("b) other problem");
 533   }
 534 #endif // PRODUCT
 535 
 536   ShouldNotReachHere();
 537   return NULL;
 538 }
 539 
 540 
 541 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 542   return raw_exception_handler_for_return_address(thread, return_address);
 543 JRT_END
 544 
 545 
 546 address SharedRuntime::get_poll_stub(address pc) {
 547   address stub;
 548   // Look up the code blob
 549   CodeBlob *cb = CodeCache::find_blob(pc);
 550 
 551   // Should be an nmethod
 552   assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 553 
 554   // Look up the relocation information
 555   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 556     "safepoint polling: type must be poll");
 557 
 558 #ifdef ASSERT
 559   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 560     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 561     Disassembler::decode(cb);
 562     fatal("Only polling locations are used for safepoint");
 563   }
 564 #endif
 565 
 566   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 567   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 568   if (at_poll_return) {
 569     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 570            "polling page return stub not created yet");
 571     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 572   } else if (has_wide_vectors) {
 573     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 574            "polling page vectors safepoint stub not created yet");
 575     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 576   } else {
 577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 578            "polling page safepoint stub not created yet");
 579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 580   }
 581   log_debug(safepoint)("... found polling page %s exception at pc = "
 582                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 583                        at_poll_return ? "return" : "loop",
 584                        (intptr_t)pc, (intptr_t)stub);
 585   return stub;
 586 }
 587 
 588 
 589 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 590   assert(caller.is_interpreted_frame(), "");
 591   int args_size = ArgumentSizeComputer(sig).size() + 1;
 592   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 593   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 594   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 595   return result;
 596 }
 597 
 598 
 599 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 600   if (JvmtiExport::can_post_on_exceptions()) {
 601     vframeStream vfst(thread, true);
 602     methodHandle method = methodHandle(thread, vfst.method());
 603     address bcp = method()->bcp_from(vfst.bci());
 604     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 605   }
 606   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 607 }
 608 
 609 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 610   Handle h_exception = Exceptions::new_exception(thread, name, message);
 611   throw_and_post_jvmti_exception(thread, h_exception);
 612 }
 613 
 614 // The interpreter code to call this tracing function is only
 615 // called/generated when UL is on for redefine, class and has the right level
 616 // and tags. Since obsolete methods are never compiled, we don't have
 617 // to modify the compilers to generate calls to this function.
 618 //
 619 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 620     JavaThread* thread, Method* method))
 621   if (method->is_obsolete()) {
 622     // We are calling an obsolete method, but this is not necessarily
 623     // an error. Our method could have been redefined just after we
 624     // fetched the Method* from the constant pool.
 625     ResourceMark rm;
 626     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 627   }
 628   return 0;
 629 JRT_END
 630 
 631 // ret_pc points into caller; we are returning caller's exception handler
 632 // for given exception
 633 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 634                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 635   assert(cm != NULL, "must exist");
 636   ResourceMark rm;
 637 
 638 #if INCLUDE_JVMCI
 639   if (cm->is_compiled_by_jvmci()) {
 640     // lookup exception handler for this pc
 641     int catch_pco = ret_pc - cm->code_begin();
 642     ExceptionHandlerTable table(cm);
 643     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 644     if (t != NULL) {
 645       return cm->code_begin() + t->pco();
 646     } else {
 647       // there is no exception handler for this pc => deoptimize
 648       cm->make_not_entrant();
 649 
 650       // Use Deoptimization::deoptimize for all of its side-effects:
 651       // revoking biases of monitors, gathering traps statistics, logging...
 652       // it also patches the return pc but we do not care about that
 653       // since we return a continuation to the deopt_blob below.
 654       JavaThread* thread = JavaThread::current();
 655       RegisterMap reg_map(thread, UseBiasedLocking);
 656       frame runtime_frame = thread->last_frame();
 657       frame caller_frame = runtime_frame.sender(&reg_map);
 658       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 659 
 660       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 661     }
 662   }
 663 #endif // INCLUDE_JVMCI
 664 
 665   nmethod* nm = cm->as_nmethod();
 666   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 667   // determine handler bci, if any
 668   EXCEPTION_MARK;
 669 
 670   int handler_bci = -1;
 671   int scope_depth = 0;
 672   if (!force_unwind) {
 673     int bci = sd->bci();
 674     bool recursive_exception = false;
 675     do {
 676       bool skip_scope_increment = false;
 677       // exception handler lookup
 678       KlassHandle ek (THREAD, exception->klass());
 679       methodHandle mh(THREAD, sd->method());
 680       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 681       if (HAS_PENDING_EXCEPTION) {
 682         recursive_exception = true;
 683         // We threw an exception while trying to find the exception handler.
 684         // Transfer the new exception to the exception handle which will
 685         // be set into thread local storage, and do another lookup for an
 686         // exception handler for this exception, this time starting at the
 687         // BCI of the exception handler which caused the exception to be
 688         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 689         // argument to ensure that the correct exception is thrown (4870175).
 690         recursive_exception_occurred = true;
 691         exception = Handle(THREAD, PENDING_EXCEPTION);
 692         CLEAR_PENDING_EXCEPTION;
 693         if (handler_bci >= 0) {
 694           bci = handler_bci;
 695           handler_bci = -1;
 696           skip_scope_increment = true;
 697         }
 698       }
 699       else {
 700         recursive_exception = false;
 701       }
 702       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 703         sd = sd->sender();
 704         if (sd != NULL) {
 705           bci = sd->bci();
 706         }
 707         ++scope_depth;
 708       }
 709     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 710   }
 711 
 712   // found handling method => lookup exception handler
 713   int catch_pco = ret_pc - nm->code_begin();
 714 
 715   ExceptionHandlerTable table(nm);
 716   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 717   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 718     // Allow abbreviated catch tables.  The idea is to allow a method
 719     // to materialize its exceptions without committing to the exact
 720     // routing of exceptions.  In particular this is needed for adding
 721     // a synthetic handler to unlock monitors when inlining
 722     // synchronized methods since the unlock path isn't represented in
 723     // the bytecodes.
 724     t = table.entry_for(catch_pco, -1, 0);
 725   }
 726 
 727 #ifdef COMPILER1
 728   if (t == NULL && nm->is_compiled_by_c1()) {
 729     assert(nm->unwind_handler_begin() != NULL, "");
 730     return nm->unwind_handler_begin();
 731   }
 732 #endif
 733 
 734   if (t == NULL) {
 735     ttyLocker ttyl;
 736     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 737     tty->print_cr("   Exception:");
 738     exception->print();
 739     tty->cr();
 740     tty->print_cr(" Compiled exception table :");
 741     table.print();
 742     nm->print_code();
 743     guarantee(false, "missing exception handler");
 744     return NULL;
 745   }
 746 
 747   return nm->code_begin() + t->pco();
 748 }
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 751   // These errors occur only at call sites
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 756   // These errors occur only at call sites
 757   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 758 JRT_END
 759 
 760 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 761   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 762 JRT_END
 763 
 764 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 765   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 766 JRT_END
 767 
 768 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 769   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 770   // cache sites (when the callee activation is not yet set up) so we are at a call site
 771   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 772 JRT_END
 773 
 774 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 775   throw_StackOverflowError_common(thread, false);
 776 JRT_END
 777 
 778 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 779   throw_StackOverflowError_common(thread, true);
 780 JRT_END
 781 
 782 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 783   // We avoid using the normal exception construction in this case because
 784   // it performs an upcall to Java, and we're already out of stack space.
 785   Thread* THREAD = thread;
 786   Klass* k = SystemDictionary::StackOverflowError_klass();
 787   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 788   if (delayed) {
 789     java_lang_Throwable::set_message(exception_oop,
 790                                      Universe::delayed_stack_overflow_error_message());
 791   }
 792   Handle exception (thread, exception_oop);
 793   if (StackTraceInThrowable) {
 794     java_lang_Throwable::fill_in_stack_trace(exception);
 795   }
 796   // Increment counter for hs_err file reporting
 797   Atomic::inc(&Exceptions::_stack_overflow_errors);
 798   throw_and_post_jvmti_exception(thread, exception);
 799 }
 800 
 801 #if INCLUDE_JVMCI
 802 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 803   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 804   thread->set_jvmci_implicit_exception_pc(pc);
 805   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 806   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 807 }
 808 #endif // INCLUDE_JVMCI
 809 
 810 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 811                                                            address pc,
 812                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 813 {
 814   address target_pc = NULL;
 815 
 816   if (Interpreter::contains(pc)) {
 817 #ifdef CC_INTERP
 818     // C++ interpreter doesn't throw implicit exceptions
 819     ShouldNotReachHere();
 820 #else
 821     switch (exception_kind) {
 822       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 823       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 824       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 825       default:                      ShouldNotReachHere();
 826     }
 827 #endif // !CC_INTERP
 828   } else {
 829     switch (exception_kind) {
 830       case STACK_OVERFLOW: {
 831         // Stack overflow only occurs upon frame setup; the callee is
 832         // going to be unwound. Dispatch to a shared runtime stub
 833         // which will cause the StackOverflowError to be fabricated
 834         // and processed.
 835         // Stack overflow should never occur during deoptimization:
 836         // the compiled method bangs the stack by as much as the
 837         // interpreter would need in case of a deoptimization. The
 838         // deoptimization blob and uncommon trap blob bang the stack
 839         // in a debug VM to verify the correctness of the compiled
 840         // method stack banging.
 841         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 842         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 843         return StubRoutines::throw_StackOverflowError_entry();
 844       }
 845 
 846       case IMPLICIT_NULL: {
 847         if (VtableStubs::contains(pc)) {
 848           // We haven't yet entered the callee frame. Fabricate an
 849           // exception and begin dispatching it in the caller. Since
 850           // the caller was at a call site, it's safe to destroy all
 851           // caller-saved registers, as these entry points do.
 852           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 853 
 854           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 855           if (vt_stub == NULL) return NULL;
 856 
 857           if (vt_stub->is_abstract_method_error(pc)) {
 858             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 859             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 860             return StubRoutines::throw_AbstractMethodError_entry();
 861           } else {
 862             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 863             return StubRoutines::throw_NullPointerException_at_call_entry();
 864           }
 865         } else {
 866           CodeBlob* cb = CodeCache::find_blob(pc);
 867 
 868           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 869           if (cb == NULL) return NULL;
 870 
 871           // Exception happened in CodeCache. Must be either:
 872           // 1. Inline-cache check in C2I handler blob,
 873           // 2. Inline-cache check in nmethod, or
 874           // 3. Implicit null exception in nmethod
 875 
 876           if (!cb->is_compiled()) {
 877             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 878             if (!is_in_blob) {
 879               // Allow normal crash reporting to handle this
 880               return NULL;
 881             }
 882             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 883             // There is no handler here, so we will simply unwind.
 884             return StubRoutines::throw_NullPointerException_at_call_entry();
 885           }
 886 
 887           // Otherwise, it's a compiled method.  Consult its exception handlers.
 888           CompiledMethod* cm = (CompiledMethod*)cb;
 889           if (cm->inlinecache_check_contains(pc)) {
 890             // exception happened inside inline-cache check code
 891             // => the nmethod is not yet active (i.e., the frame
 892             // is not set up yet) => use return address pushed by
 893             // caller => don't push another return address
 894             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 895             return StubRoutines::throw_NullPointerException_at_call_entry();
 896           }
 897 
 898           if (cm->method()->is_method_handle_intrinsic()) {
 899             // exception happened inside MH dispatch code, similar to a vtable stub
 900             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 901             return StubRoutines::throw_NullPointerException_at_call_entry();
 902           }
 903 
 904 #ifndef PRODUCT
 905           _implicit_null_throws++;
 906 #endif
 907 #if INCLUDE_JVMCI
 908           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 909             // If there's no PcDesc then we'll die way down inside of
 910             // deopt instead of just getting normal error reporting,
 911             // so only go there if it will succeed.
 912             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 913           } else {
 914 #endif // INCLUDE_JVMCI
 915           assert (cm->is_nmethod(), "Expect nmethod");
 916           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 917 #if INCLUDE_JVMCI
 918           }
 919 #endif // INCLUDE_JVMCI
 920           // If there's an unexpected fault, target_pc might be NULL,
 921           // in which case we want to fall through into the normal
 922           // error handling code.
 923         }
 924 
 925         break; // fall through
 926       }
 927 
 928 
 929       case IMPLICIT_DIVIDE_BY_ZERO: {
 930         CompiledMethod* cm = CodeCache::find_compiled(pc);
 931         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 932 #ifndef PRODUCT
 933         _implicit_div0_throws++;
 934 #endif
 935 #if INCLUDE_JVMCI
 936         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 937           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 938         } else {
 939 #endif // INCLUDE_JVMCI
 940         target_pc = cm->continuation_for_implicit_exception(pc);
 941 #if INCLUDE_JVMCI
 942         }
 943 #endif // INCLUDE_JVMCI
 944         // If there's an unexpected fault, target_pc might be NULL,
 945         // in which case we want to fall through into the normal
 946         // error handling code.
 947         break; // fall through
 948       }
 949 
 950       default: ShouldNotReachHere();
 951     }
 952 
 953     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 954 
 955     if (exception_kind == IMPLICIT_NULL) {
 956 #ifndef PRODUCT
 957       // for AbortVMOnException flag
 958       Exceptions::debug_check_abort("java.lang.NullPointerException");
 959 #endif //PRODUCT
 960       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 961     } else {
 962 #ifndef PRODUCT
 963       // for AbortVMOnException flag
 964       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 965 #endif //PRODUCT
 966       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 967     }
 968     return target_pc;
 969   }
 970 
 971   ShouldNotReachHere();
 972   return NULL;
 973 }
 974 
 975 
 976 /**
 977  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 978  * installed in the native function entry of all native Java methods before
 979  * they get linked to their actual native methods.
 980  *
 981  * \note
 982  * This method actually never gets called!  The reason is because
 983  * the interpreter's native entries call NativeLookup::lookup() which
 984  * throws the exception when the lookup fails.  The exception is then
 985  * caught and forwarded on the return from NativeLookup::lookup() call
 986  * before the call to the native function.  This might change in the future.
 987  */
 988 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 989 {
 990   // We return a bad value here to make sure that the exception is
 991   // forwarded before we look at the return value.
 992   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 993 }
 994 JNI_END
 995 
 996 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 997   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 998 }
 999 
1000 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1001 #if INCLUDE_JVMCI
1002   if (!obj->klass()->has_finalizer()) {
1003     return;
1004   }
1005 #endif // INCLUDE_JVMCI
1006   assert(obj->is_oop(), "must be a valid oop");
1007   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1008   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1009 JRT_END
1010 
1011 
1012 jlong SharedRuntime::get_java_tid(Thread* thread) {
1013   if (thread != NULL) {
1014     if (thread->is_Java_thread()) {
1015       oop obj = ((JavaThread*)thread)->threadObj();
1016       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1017     }
1018   }
1019   return 0;
1020 }
1021 
1022 /**
1023  * This function ought to be a void function, but cannot be because
1024  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1025  * 6254741.  Once that is fixed we can remove the dummy return value.
1026  */
1027 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1028   return dtrace_object_alloc_base(Thread::current(), o, size);
1029 }
1030 
1031 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1032   assert(DTraceAllocProbes, "wrong call");
1033   Klass* klass = o->klass();
1034   Symbol* name = klass->name();
1035   HOTSPOT_OBJECT_ALLOC(
1036                    get_java_tid(thread),
1037                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1038   return 0;
1039 }
1040 
1041 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1042     JavaThread* thread, Method* method))
1043   assert(DTraceMethodProbes, "wrong call");
1044   Symbol* kname = method->klass_name();
1045   Symbol* name = method->name();
1046   Symbol* sig = method->signature();
1047   HOTSPOT_METHOD_ENTRY(
1048       get_java_tid(thread),
1049       (char *) kname->bytes(), kname->utf8_length(),
1050       (char *) name->bytes(), name->utf8_length(),
1051       (char *) sig->bytes(), sig->utf8_length());
1052   return 0;
1053 JRT_END
1054 
1055 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1056     JavaThread* thread, Method* method))
1057   assert(DTraceMethodProbes, "wrong call");
1058   Symbol* kname = method->klass_name();
1059   Symbol* name = method->name();
1060   Symbol* sig = method->signature();
1061   HOTSPOT_METHOD_RETURN(
1062       get_java_tid(thread),
1063       (char *) kname->bytes(), kname->utf8_length(),
1064       (char *) name->bytes(), name->utf8_length(),
1065       (char *) sig->bytes(), sig->utf8_length());
1066   return 0;
1067 JRT_END
1068 
1069 
1070 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1071 // for a call current in progress, i.e., arguments has been pushed on stack
1072 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1073 // vtable updates, etc.  Caller frame must be compiled.
1074 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1075   ResourceMark rm(THREAD);
1076 
1077   // last java frame on stack (which includes native call frames)
1078   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1079 
1080   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1081 }
1082 
1083 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1084   CompiledMethod* caller = vfst.nm();
1085 
1086   nmethodLocker caller_lock(caller);
1087 
1088   address pc = vfst.frame_pc();
1089   { // Get call instruction under lock because another thread may be busy patching it.
1090     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1091     return caller->attached_method_before_pc(pc);
1092   }
1093   return NULL;
1094 }
1095 
1096 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1097 // for a call current in progress, i.e., arguments has been pushed on stack
1098 // but callee has not been invoked yet.  Caller frame must be compiled.
1099 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1100                                               vframeStream& vfst,
1101                                               Bytecodes::Code& bc,
1102                                               CallInfo& callinfo, TRAPS) {
1103   Handle receiver;
1104   Handle nullHandle;  //create a handy null handle for exception returns
1105 
1106   assert(!vfst.at_end(), "Java frame must exist");
1107 
1108   // Find caller and bci from vframe
1109   methodHandle caller(THREAD, vfst.method());
1110   int          bci   = vfst.bci();
1111 
1112   Bytecode_invoke bytecode(caller, bci);
1113   int bytecode_index = bytecode.index();
1114 
1115   methodHandle attached_method = extract_attached_method(vfst);
1116   if (attached_method.not_null()) {
1117     methodHandle callee = bytecode.static_target(CHECK_NH);
1118     vmIntrinsics::ID id = callee->intrinsic_id();
1119     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1120     // it attaches statically resolved method to the call site.
1121     if (MethodHandles::is_signature_polymorphic(id) &&
1122         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1123       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1124 
1125       // Adjust invocation mode according to the attached method.
1126       switch (bc) {
1127         case Bytecodes::_invokeinterface:
1128           if (!attached_method->method_holder()->is_interface()) {
1129             bc = Bytecodes::_invokevirtual;
1130           }
1131           break;
1132         case Bytecodes::_invokehandle:
1133           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1134             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1135                                               : Bytecodes::_invokevirtual;
1136           }
1137           break;
1138       }
1139     }
1140   } else {
1141     bc = bytecode.invoke_code();
1142   }
1143 
1144   bool has_receiver = bc != Bytecodes::_invokestatic &&
1145                       bc != Bytecodes::_invokedynamic &&
1146                       bc != Bytecodes::_invokehandle;
1147 
1148   // Find receiver for non-static call
1149   if (has_receiver) {
1150     // This register map must be update since we need to find the receiver for
1151     // compiled frames. The receiver might be in a register.
1152     RegisterMap reg_map2(thread);
1153     frame stubFrame   = thread->last_frame();
1154     // Caller-frame is a compiled frame
1155     frame callerFrame = stubFrame.sender(&reg_map2);
1156 
1157     if (attached_method.is_null()) {
1158       methodHandle callee = bytecode.static_target(CHECK_NH);
1159       if (callee.is_null()) {
1160         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1161       }
1162     }
1163 
1164     // Retrieve from a compiled argument list
1165     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1166 
1167     if (receiver.is_null()) {
1168       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1169     }
1170   }
1171 
1172   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1173 
1174   // Resolve method
1175   if (attached_method.not_null()) {
1176     // Parameterized by attached method.
1177     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1178   } else {
1179     // Parameterized by bytecode.
1180     constantPoolHandle constants(THREAD, caller->constants());
1181     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1182   }
1183 
1184 #ifdef ASSERT
1185   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1186   if (has_receiver) {
1187     assert(receiver.not_null(), "should have thrown exception");
1188     KlassHandle receiver_klass(THREAD, receiver->klass());
1189     Klass* rk = NULL;
1190     if (attached_method.not_null()) {
1191       // In case there's resolved method attached, use its holder during the check.
1192       rk = attached_method->method_holder();
1193     } else {
1194       // Klass is already loaded.
1195       constantPoolHandle constants(THREAD, caller->constants());
1196       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1197     }
1198     KlassHandle static_receiver_klass(THREAD, rk);
1199     methodHandle callee = callinfo.selected_method();
1200     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1201            "actual receiver must be subclass of static receiver klass");
1202     if (receiver_klass->is_instance_klass()) {
1203       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1204         tty->print_cr("ERROR: Klass not yet initialized!!");
1205         receiver_klass()->print();
1206       }
1207       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1208     }
1209   }
1210 #endif
1211 
1212   return receiver;
1213 }
1214 
1215 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1216   ResourceMark rm(THREAD);
1217   // We need first to check if any Java activations (compiled, interpreted)
1218   // exist on the stack since last JavaCall.  If not, we need
1219   // to get the target method from the JavaCall wrapper.
1220   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1221   methodHandle callee_method;
1222   if (vfst.at_end()) {
1223     // No Java frames were found on stack since we did the JavaCall.
1224     // Hence the stack can only contain an entry_frame.  We need to
1225     // find the target method from the stub frame.
1226     RegisterMap reg_map(thread, false);
1227     frame fr = thread->last_frame();
1228     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1229     fr = fr.sender(&reg_map);
1230     assert(fr.is_entry_frame(), "must be");
1231     // fr is now pointing to the entry frame.
1232     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1233   } else {
1234     Bytecodes::Code bc;
1235     CallInfo callinfo;
1236     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1237     callee_method = callinfo.selected_method();
1238   }
1239   assert(callee_method()->is_method(), "must be");
1240   return callee_method;
1241 }
1242 
1243 // Resolves a call.
1244 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1245                                            bool is_virtual,
1246                                            bool is_optimized, TRAPS) {
1247   methodHandle callee_method;
1248   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1249   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1250     int retry_count = 0;
1251     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1252            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1253       // If has a pending exception then there is no need to re-try to
1254       // resolve this method.
1255       // If the method has been redefined, we need to try again.
1256       // Hack: we have no way to update the vtables of arrays, so don't
1257       // require that java.lang.Object has been updated.
1258 
1259       // It is very unlikely that method is redefined more than 100 times
1260       // in the middle of resolve. If it is looping here more than 100 times
1261       // means then there could be a bug here.
1262       guarantee((retry_count++ < 100),
1263                 "Could not resolve to latest version of redefined method");
1264       // method is redefined in the middle of resolve so re-try.
1265       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1266     }
1267   }
1268   return callee_method;
1269 }
1270 
1271 // Resolves a call.  The compilers generate code for calls that go here
1272 // and are patched with the real destination of the call.
1273 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1274                                            bool is_virtual,
1275                                            bool is_optimized, TRAPS) {
1276 
1277   ResourceMark rm(thread);
1278   RegisterMap cbl_map(thread, false);
1279   frame caller_frame = thread->last_frame().sender(&cbl_map);
1280 
1281   CodeBlob* caller_cb = caller_frame.cb();
1282   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1283   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1284 
1285   // make sure caller is not getting deoptimized
1286   // and removed before we are done with it.
1287   // CLEANUP - with lazy deopt shouldn't need this lock
1288   nmethodLocker caller_lock(caller_nm);
1289 
1290   // determine call info & receiver
1291   // note: a) receiver is NULL for static calls
1292   //       b) an exception is thrown if receiver is NULL for non-static calls
1293   CallInfo call_info;
1294   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1295   Handle receiver = find_callee_info(thread, invoke_code,
1296                                      call_info, CHECK_(methodHandle()));
1297   methodHandle callee_method = call_info.selected_method();
1298 
1299   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1300          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1301          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1302          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1303          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1304 
1305   assert(caller_nm->is_alive(), "It should be alive");
1306 
1307 #ifndef PRODUCT
1308   // tracing/debugging/statistics
1309   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1310                 (is_virtual) ? (&_resolve_virtual_ctr) :
1311                                (&_resolve_static_ctr);
1312   Atomic::inc(addr);
1313 
1314   if (TraceCallFixup) {
1315     ResourceMark rm(thread);
1316     tty->print("resolving %s%s (%s) call to",
1317       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1318       Bytecodes::name(invoke_code));
1319     callee_method->print_short_name(tty);
1320     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1321                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1322   }
1323 #endif
1324 
1325   // JSR 292 key invariant:
1326   // If the resolved method is a MethodHandle invoke target, the call
1327   // site must be a MethodHandle call site, because the lambda form might tail-call
1328   // leaving the stack in a state unknown to either caller or callee
1329   // TODO detune for now but we might need it again
1330 //  assert(!callee_method->is_compiled_lambda_form() ||
1331 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1332 
1333   // Compute entry points. This might require generation of C2I converter
1334   // frames, so we cannot be holding any locks here. Furthermore, the
1335   // computation of the entry points is independent of patching the call.  We
1336   // always return the entry-point, but we only patch the stub if the call has
1337   // not been deoptimized.  Return values: For a virtual call this is an
1338   // (cached_oop, destination address) pair. For a static call/optimized
1339   // virtual this is just a destination address.
1340 
1341   StaticCallInfo static_call_info;
1342   CompiledICInfo virtual_call_info;
1343 
1344   // Make sure the callee nmethod does not get deoptimized and removed before
1345   // we are done patching the code.
1346   CompiledMethod* callee = callee_method->code();
1347 
1348   if (callee != NULL) {
1349     assert(callee->is_compiled(), "must be nmethod for patching");
1350   }
1351 
1352   if (callee != NULL && !callee->is_in_use()) {
1353     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1354     callee = NULL;
1355   }
1356   nmethodLocker nl_callee(callee);
1357 #ifdef ASSERT
1358   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1359 #endif
1360 
1361   bool is_nmethod = caller_nm->is_nmethod();
1362 
1363   if (is_virtual) {
1364     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1365     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1366     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1367     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1368                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1369                      CHECK_(methodHandle()));
1370   } else {
1371     // static call
1372     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1373   }
1374 
1375   // grab lock, check for deoptimization and potentially patch caller
1376   {
1377     MutexLocker ml_patch(CompiledIC_lock);
1378 
1379     // Lock blocks for safepoint during which both nmethods can change state.
1380 
1381     // Now that we are ready to patch if the Method* was redefined then
1382     // don't update call site and let the caller retry.
1383     // Don't update call site if callee nmethod was unloaded or deoptimized.
1384     // Don't update call site if callee nmethod was replaced by an other nmethod
1385     // which may happen when multiply alive nmethod (tiered compilation)
1386     // will be supported.
1387     if (!callee_method->is_old() &&
1388         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1389 #ifdef ASSERT
1390       // We must not try to patch to jump to an already unloaded method.
1391       if (dest_entry_point != 0) {
1392         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1393         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1394                "should not call unloaded nmethod");
1395       }
1396 #endif
1397       if (is_virtual) {
1398         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1399         if (inline_cache->is_clean()) {
1400           inline_cache->set_to_monomorphic(virtual_call_info);
1401         }
1402       } else {
1403         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1404         if (ssc->is_clean()) ssc->set(static_call_info);
1405       }
1406     }
1407 
1408   } // unlock CompiledIC_lock
1409 
1410   return callee_method;
1411 }
1412 
1413 
1414 // Inline caches exist only in compiled code
1415 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1416 #ifdef ASSERT
1417   RegisterMap reg_map(thread, false);
1418   frame stub_frame = thread->last_frame();
1419   assert(stub_frame.is_runtime_frame(), "sanity check");
1420   frame caller_frame = stub_frame.sender(&reg_map);
1421   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1422 #endif /* ASSERT */
1423 
1424   methodHandle callee_method;
1425   JRT_BLOCK
1426     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1427     // Return Method* through TLS
1428     thread->set_vm_result_2(callee_method());
1429   JRT_BLOCK_END
1430   // return compiled code entry point after potential safepoints
1431   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1432   return callee_method->verified_code_entry();
1433 JRT_END
1434 
1435 
1436 // Handle call site that has been made non-entrant
1437 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1438   // 6243940 We might end up in here if the callee is deoptimized
1439   // as we race to call it.  We don't want to take a safepoint if
1440   // the caller was interpreted because the caller frame will look
1441   // interpreted to the stack walkers and arguments are now
1442   // "compiled" so it is much better to make this transition
1443   // invisible to the stack walking code. The i2c path will
1444   // place the callee method in the callee_target. It is stashed
1445   // there because if we try and find the callee by normal means a
1446   // safepoint is possible and have trouble gc'ing the compiled args.
1447   RegisterMap reg_map(thread, false);
1448   frame stub_frame = thread->last_frame();
1449   assert(stub_frame.is_runtime_frame(), "sanity check");
1450   frame caller_frame = stub_frame.sender(&reg_map);
1451 
1452   if (caller_frame.is_interpreted_frame() ||
1453       caller_frame.is_entry_frame()) {
1454     Method* callee = thread->callee_target();
1455     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1456     thread->set_vm_result_2(callee);
1457     thread->set_callee_target(NULL);
1458     return callee->get_c2i_entry();
1459   }
1460 
1461   // Must be compiled to compiled path which is safe to stackwalk
1462   methodHandle callee_method;
1463   JRT_BLOCK
1464     // Force resolving of caller (if we called from compiled frame)
1465     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1466     thread->set_vm_result_2(callee_method());
1467   JRT_BLOCK_END
1468   // return compiled code entry point after potential safepoints
1469   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1470   return callee_method->verified_code_entry();
1471 JRT_END
1472 
1473 // Handle abstract method call
1474 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1475   return StubRoutines::throw_AbstractMethodError_entry();
1476 JRT_END
1477 
1478 
1479 // resolve a static call and patch code
1480 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1481   methodHandle callee_method;
1482   JRT_BLOCK
1483     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1484     thread->set_vm_result_2(callee_method());
1485   JRT_BLOCK_END
1486   // return compiled code entry point after potential safepoints
1487   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1488   return callee_method->verified_code_entry();
1489 JRT_END
1490 
1491 
1492 // resolve virtual call and update inline cache to monomorphic
1493 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1494   methodHandle callee_method;
1495   JRT_BLOCK
1496     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1497     thread->set_vm_result_2(callee_method());
1498   JRT_BLOCK_END
1499   // return compiled code entry point after potential safepoints
1500   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1501   return callee_method->verified_code_entry();
1502 JRT_END
1503 
1504 
1505 // Resolve a virtual call that can be statically bound (e.g., always
1506 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1507 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1508   methodHandle callee_method;
1509   JRT_BLOCK
1510     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1511     thread->set_vm_result_2(callee_method());
1512   JRT_BLOCK_END
1513   // return compiled code entry point after potential safepoints
1514   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1515   return callee_method->verified_code_entry();
1516 JRT_END
1517 
1518 
1519 
1520 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1521   ResourceMark rm(thread);
1522   CallInfo call_info;
1523   Bytecodes::Code bc;
1524 
1525   // receiver is NULL for static calls. An exception is thrown for NULL
1526   // receivers for non-static calls
1527   Handle receiver = find_callee_info(thread, bc, call_info,
1528                                      CHECK_(methodHandle()));
1529   // Compiler1 can produce virtual call sites that can actually be statically bound
1530   // If we fell thru to below we would think that the site was going megamorphic
1531   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1532   // we'd try and do a vtable dispatch however methods that can be statically bound
1533   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1534   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1535   // plain ic_miss) and the site will be converted to an optimized virtual call site
1536   // never to miss again. I don't believe C2 will produce code like this but if it
1537   // did this would still be the correct thing to do for it too, hence no ifdef.
1538   //
1539   if (call_info.resolved_method()->can_be_statically_bound()) {
1540     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1541     if (TraceCallFixup) {
1542       RegisterMap reg_map(thread, false);
1543       frame caller_frame = thread->last_frame().sender(&reg_map);
1544       ResourceMark rm(thread);
1545       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1546       callee_method->print_short_name(tty);
1547       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1548       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1549     }
1550     return callee_method;
1551   }
1552 
1553   methodHandle callee_method = call_info.selected_method();
1554 
1555   bool should_be_mono = false;
1556 
1557 #ifndef PRODUCT
1558   Atomic::inc(&_ic_miss_ctr);
1559 
1560   // Statistics & Tracing
1561   if (TraceCallFixup) {
1562     ResourceMark rm(thread);
1563     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1564     callee_method->print_short_name(tty);
1565     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1566   }
1567 
1568   if (ICMissHistogram) {
1569     MutexLocker m(VMStatistic_lock);
1570     RegisterMap reg_map(thread, false);
1571     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1572     // produce statistics under the lock
1573     trace_ic_miss(f.pc());
1574   }
1575 #endif
1576 
1577   // install an event collector so that when a vtable stub is created the
1578   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1579   // event can't be posted when the stub is created as locks are held
1580   // - instead the event will be deferred until the event collector goes
1581   // out of scope.
1582   JvmtiDynamicCodeEventCollector event_collector;
1583 
1584   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1585   { MutexLocker ml_patch (CompiledIC_lock);
1586     RegisterMap reg_map(thread, false);
1587     frame caller_frame = thread->last_frame().sender(&reg_map);
1588     CodeBlob* cb = caller_frame.cb();
1589     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1590     if (cb->is_compiled()) {
1591       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1592       bool should_be_mono = false;
1593       if (inline_cache->is_optimized()) {
1594         if (TraceCallFixup) {
1595           ResourceMark rm(thread);
1596           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1597           callee_method->print_short_name(tty);
1598           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1599         }
1600         should_be_mono = true;
1601       } else if (inline_cache->is_icholder_call()) {
1602         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1603         if (ic_oop != NULL) {
1604 
1605           if (receiver()->klass() == ic_oop->holder_klass()) {
1606             // This isn't a real miss. We must have seen that compiled code
1607             // is now available and we want the call site converted to a
1608             // monomorphic compiled call site.
1609             // We can't assert for callee_method->code() != NULL because it
1610             // could have been deoptimized in the meantime
1611             if (TraceCallFixup) {
1612               ResourceMark rm(thread);
1613               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1614               callee_method->print_short_name(tty);
1615               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1616             }
1617             should_be_mono = true;
1618           }
1619         }
1620       }
1621 
1622       if (should_be_mono) {
1623 
1624         // We have a path that was monomorphic but was going interpreted
1625         // and now we have (or had) a compiled entry. We correct the IC
1626         // by using a new icBuffer.
1627         CompiledICInfo info;
1628         KlassHandle receiver_klass(THREAD, receiver()->klass());
1629         inline_cache->compute_monomorphic_entry(callee_method,
1630                                                 receiver_klass,
1631                                                 inline_cache->is_optimized(),
1632                                                 false, caller_nm->is_nmethod(),
1633                                                 info, CHECK_(methodHandle()));
1634         inline_cache->set_to_monomorphic(info);
1635       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1636         // Potential change to megamorphic
1637         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1638         if (!successful) {
1639           inline_cache->set_to_clean();
1640         }
1641       } else {
1642         // Either clean or megamorphic
1643       }
1644     } else {
1645       fatal("Unimplemented");
1646     }
1647   } // Release CompiledIC_lock
1648 
1649   return callee_method;
1650 }
1651 
1652 //
1653 // Resets a call-site in compiled code so it will get resolved again.
1654 // This routines handles both virtual call sites, optimized virtual call
1655 // sites, and static call sites. Typically used to change a call sites
1656 // destination from compiled to interpreted.
1657 //
1658 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1659   ResourceMark rm(thread);
1660   RegisterMap reg_map(thread, false);
1661   frame stub_frame = thread->last_frame();
1662   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1663   frame caller = stub_frame.sender(&reg_map);
1664 
1665   // Do nothing if the frame isn't a live compiled frame.
1666   // nmethod could be deoptimized by the time we get here
1667   // so no update to the caller is needed.
1668 
1669   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1670 
1671     address pc = caller.pc();
1672 
1673     // Check for static or virtual call
1674     bool is_static_call = false;
1675     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1676 
1677     // Default call_addr is the location of the "basic" call.
1678     // Determine the address of the call we a reresolving. With
1679     // Inline Caches we will always find a recognizable call.
1680     // With Inline Caches disabled we may or may not find a
1681     // recognizable call. We will always find a call for static
1682     // calls and for optimized virtual calls. For vanilla virtual
1683     // calls it depends on the state of the UseInlineCaches switch.
1684     //
1685     // With Inline Caches disabled we can get here for a virtual call
1686     // for two reasons:
1687     //   1 - calling an abstract method. The vtable for abstract methods
1688     //       will run us thru handle_wrong_method and we will eventually
1689     //       end up in the interpreter to throw the ame.
1690     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1691     //       call and between the time we fetch the entry address and
1692     //       we jump to it the target gets deoptimized. Similar to 1
1693     //       we will wind up in the interprter (thru a c2i with c2).
1694     //
1695     address call_addr = NULL;
1696     {
1697       // Get call instruction under lock because another thread may be
1698       // busy patching it.
1699       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1700       // Location of call instruction
1701       call_addr = caller_nm->call_instruction_address(pc);
1702     }
1703     // Make sure nmethod doesn't get deoptimized and removed until
1704     // this is done with it.
1705     // CLEANUP - with lazy deopt shouldn't need this lock
1706     nmethodLocker nmlock(caller_nm);
1707 
1708     if (call_addr != NULL) {
1709       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1710       int ret = iter.next(); // Get item
1711       if (ret) {
1712         assert(iter.addr() == call_addr, "must find call");
1713         if (iter.type() == relocInfo::static_call_type) {
1714           is_static_call = true;
1715         } else {
1716           assert(iter.type() == relocInfo::virtual_call_type ||
1717                  iter.type() == relocInfo::opt_virtual_call_type
1718                 , "unexpected relocInfo. type");
1719         }
1720       } else {
1721         assert(!UseInlineCaches, "relocation info. must exist for this address");
1722       }
1723 
1724       // Cleaning the inline cache will force a new resolve. This is more robust
1725       // than directly setting it to the new destination, since resolving of calls
1726       // is always done through the same code path. (experience shows that it
1727       // leads to very hard to track down bugs, if an inline cache gets updated
1728       // to a wrong method). It should not be performance critical, since the
1729       // resolve is only done once.
1730 
1731       bool is_nmethod = caller_nm->is_nmethod();
1732       MutexLocker ml(CompiledIC_lock);
1733       if (is_static_call) {
1734         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1735         ssc->set_to_clean();
1736       } else {
1737         // compiled, dispatched call (which used to call an interpreted method)
1738         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1739         inline_cache->set_to_clean();
1740       }
1741     }
1742   }
1743 
1744   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1745 
1746 
1747 #ifndef PRODUCT
1748   Atomic::inc(&_wrong_method_ctr);
1749 
1750   if (TraceCallFixup) {
1751     ResourceMark rm(thread);
1752     tty->print("handle_wrong_method reresolving call to");
1753     callee_method->print_short_name(tty);
1754     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1755   }
1756 #endif
1757 
1758   return callee_method;
1759 }
1760 
1761 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1762   // The faulting unsafe accesses should be changed to throw the error
1763   // synchronously instead. Meanwhile the faulting instruction will be
1764   // skipped over (effectively turning it into a no-op) and an
1765   // asynchronous exception will be raised which the thread will
1766   // handle at a later point. If the instruction is a load it will
1767   // return garbage.
1768 
1769   // Request an async exception.
1770   thread->set_pending_unsafe_access_error();
1771 
1772   // Return address of next instruction to execute.
1773   return next_pc;
1774 }
1775 
1776 #ifdef ASSERT
1777 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1778                                                                 const BasicType* sig_bt,
1779                                                                 const VMRegPair* regs) {
1780   ResourceMark rm;
1781   const int total_args_passed = method->size_of_parameters();
1782   const VMRegPair*    regs_with_member_name = regs;
1783         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1784 
1785   const int member_arg_pos = total_args_passed - 1;
1786   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1787   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1788 
1789   const bool is_outgoing = method->is_method_handle_intrinsic();
1790   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1791 
1792   for (int i = 0; i < member_arg_pos; i++) {
1793     VMReg a =    regs_with_member_name[i].first();
1794     VMReg b = regs_without_member_name[i].first();
1795     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1796   }
1797   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1798 }
1799 #endif
1800 
1801 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1802   if (destination != entry_point) {
1803     CodeBlob* callee = CodeCache::find_blob(destination);
1804     // callee == cb seems weird. It means calling interpreter thru stub.
1805     if (callee == cb || callee->is_adapter_blob()) {
1806       // static call or optimized virtual
1807       if (TraceCallFixup) {
1808         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1809         moop->print_short_name(tty);
1810         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1811       }
1812       return true;
1813     } else {
1814       if (TraceCallFixup) {
1815         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1816         moop->print_short_name(tty);
1817         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1818       }
1819       // assert is too strong could also be resolve destinations.
1820       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1821     }
1822   } else {
1823     if (TraceCallFixup) {
1824       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1825       moop->print_short_name(tty);
1826       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1827     }
1828   }
1829   return false;
1830 }
1831 
1832 // ---------------------------------------------------------------------------
1833 // We are calling the interpreter via a c2i. Normally this would mean that
1834 // we were called by a compiled method. However we could have lost a race
1835 // where we went int -> i2c -> c2i and so the caller could in fact be
1836 // interpreted. If the caller is compiled we attempt to patch the caller
1837 // so he no longer calls into the interpreter.
1838 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1839   Method* moop(method);
1840 
1841   address entry_point = moop->from_compiled_entry_no_trampoline();
1842 
1843   // It's possible that deoptimization can occur at a call site which hasn't
1844   // been resolved yet, in which case this function will be called from
1845   // an nmethod that has been patched for deopt and we can ignore the
1846   // request for a fixup.
1847   // Also it is possible that we lost a race in that from_compiled_entry
1848   // is now back to the i2c in that case we don't need to patch and if
1849   // we did we'd leap into space because the callsite needs to use
1850   // "to interpreter" stub in order to load up the Method*. Don't
1851   // ask me how I know this...
1852 
1853   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1854   if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1855     return;
1856   }
1857 
1858   // The check above makes sure this is a nmethod.
1859   CompiledMethod* nm = cb->as_compiled_method_or_null();
1860   assert(nm, "must be");
1861 
1862   // Get the return PC for the passed caller PC.
1863   address return_pc = caller_pc + frame::pc_return_offset;
1864 
1865   // There is a benign race here. We could be attempting to patch to a compiled
1866   // entry point at the same time the callee is being deoptimized. If that is
1867   // the case then entry_point may in fact point to a c2i and we'd patch the
1868   // call site with the same old data. clear_code will set code() to NULL
1869   // at the end of it. If we happen to see that NULL then we can skip trying
1870   // to patch. If we hit the window where the callee has a c2i in the
1871   // from_compiled_entry and the NULL isn't present yet then we lose the race
1872   // and patch the code with the same old data. Asi es la vida.
1873 
1874   if (moop->code() == NULL) return;
1875 
1876   if (nm->is_in_use()) {
1877 
1878     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1879     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1880     if (NativeCall::is_call_before(return_pc)) {
1881       ResourceMark mark;
1882       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1883       //
1884       // bug 6281185. We might get here after resolving a call site to a vanilla
1885       // virtual call. Because the resolvee uses the verified entry it may then
1886       // see compiled code and attempt to patch the site by calling us. This would
1887       // then incorrectly convert the call site to optimized and its downhill from
1888       // there. If you're lucky you'll get the assert in the bugid, if not you've
1889       // just made a call site that could be megamorphic into a monomorphic site
1890       // for the rest of its life! Just another racing bug in the life of
1891       // fixup_callers_callsite ...
1892       //
1893       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1894       iter.next();
1895       assert(iter.has_current(), "must have a reloc at java call site");
1896       relocInfo::relocType typ = iter.reloc()->type();
1897       if (typ != relocInfo::static_call_type &&
1898            typ != relocInfo::opt_virtual_call_type &&
1899            typ != relocInfo::static_stub_type) {
1900         return;
1901       }
1902       address destination = call->destination();
1903       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1904         call->set_destination_mt_safe(entry_point);
1905       }
1906     }
1907   }
1908 IRT_END
1909 
1910 
1911 // same as JVM_Arraycopy, but called directly from compiled code
1912 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1913                                                 oopDesc* dest, jint dest_pos,
1914                                                 jint length,
1915                                                 JavaThread* thread)) {
1916 #ifndef PRODUCT
1917   _slow_array_copy_ctr++;
1918 #endif
1919   // Check if we have null pointers
1920   if (src == NULL || dest == NULL) {
1921     THROW(vmSymbols::java_lang_NullPointerException());
1922   }
1923   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1924   // even though the copy_array API also performs dynamic checks to ensure
1925   // that src and dest are truly arrays (and are conformable).
1926   // The copy_array mechanism is awkward and could be removed, but
1927   // the compilers don't call this function except as a last resort,
1928   // so it probably doesn't matter.
1929   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1930                                         (arrayOopDesc*)dest, dest_pos,
1931                                         length, thread);
1932 }
1933 JRT_END
1934 
1935 // The caller of generate_class_cast_message() (or one of its callers)
1936 // must use a ResourceMark in order to correctly free the result.
1937 char* SharedRuntime::generate_class_cast_message(
1938     JavaThread* thread, Klass* caster_klass) {
1939 
1940   // Get target class name from the checkcast instruction
1941   vframeStream vfst(thread, true);
1942   assert(!vfst.at_end(), "Java frame must exist");
1943   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1944   Klass* target_klass = vfst.method()->constants()->klass_at(
1945     cc.index(), thread);
1946   return generate_class_cast_message(caster_klass, target_klass);
1947 }
1948 
1949 char* SharedRuntime::generate_class_cast_message(
1950     Klass* caster_klass, Klass* target_klass) {
1951 
1952   const char* caster_klass_name = caster_klass->external_name();
1953   Klass* c_klass = caster_klass->is_objArray_klass() ?
1954     ObjArrayKlass::cast(caster_klass)->bottom_klass() : caster_klass;
1955   ModuleEntry* caster_module;
1956   const char* caster_module_name;
1957   if (c_klass->is_instance_klass()) {
1958     caster_module = InstanceKlass::cast(c_klass)->module();
1959     caster_module_name = caster_module->is_named() ?
1960       caster_module->name()->as_C_string() : UNNAMED_MODULE;
1961   } else {
1962     caster_module_name = "java.base";
1963   }
1964   const char* target_klass_name = target_klass->external_name();
1965   Klass* t_klass = target_klass->is_objArray_klass() ?
1966     ObjArrayKlass::cast(target_klass)->bottom_klass() : target_klass;
1967   ModuleEntry* target_module;
1968   const char* target_module_name;
1969   if (t_klass->is_instance_klass()) {
1970     target_module = InstanceKlass::cast(t_klass)->module();
1971     target_module_name = target_module->is_named() ?
1972       target_module->name()->as_C_string(): UNNAMED_MODULE;
1973   } else {
1974     target_module_name = "java.base";
1975   }
1976 
1977   size_t msglen = strlen(caster_klass_name) + strlen(caster_module_name) +
1978      strlen(target_klass_name) + strlen(target_module_name) + 50;
1979 
1980   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1981   if (NULL == message) {
1982     // Shouldn't happen, but don't cause even more problems if it does
1983     message = const_cast<char*>(caster_klass_name);
1984   } else {
1985     jio_snprintf(message, msglen, "%s (in module: %s) cannot be cast to %s (in module: %s)",
1986       caster_klass_name, caster_module_name, target_klass_name, target_module_name);
1987   }
1988   return message;
1989 }
1990 
1991 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1992   (void) JavaThread::current()->reguard_stack();
1993 JRT_END
1994 
1995 
1996 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1997 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1998   // Disable ObjectSynchronizer::quick_enter() in default config
1999   // on AARCH64 until JDK-8153107 is resolved.
2000   if (AARCH64_ONLY((SyncFlags & 256) != 0 &&) !SafepointSynchronize::is_synchronizing()) {
2001     // Only try quick_enter() if we're not trying to reach a safepoint
2002     // so that the calling thread reaches the safepoint more quickly.
2003     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2004   }
2005   // NO_ASYNC required because an async exception on the state transition destructor
2006   // would leave you with the lock held and it would never be released.
2007   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2008   // and the model is that an exception implies the method failed.
2009   JRT_BLOCK_NO_ASYNC
2010   oop obj(_obj);
2011   if (PrintBiasedLockingStatistics) {
2012     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2013   }
2014   Handle h_obj(THREAD, obj);
2015   if (UseBiasedLocking) {
2016     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2017     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2018   } else {
2019     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2020   }
2021   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2022   JRT_BLOCK_END
2023 JRT_END
2024 
2025 // Handles the uncommon cases of monitor unlocking in compiled code
2026 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2027    oop obj(_obj);
2028   assert(JavaThread::current() == THREAD, "invariant");
2029   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2030   // testing was unable to ever fire the assert that guarded it so I have removed it.
2031   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2032 #undef MIGHT_HAVE_PENDING
2033 #ifdef MIGHT_HAVE_PENDING
2034   // Save and restore any pending_exception around the exception mark.
2035   // While the slow_exit must not throw an exception, we could come into
2036   // this routine with one set.
2037   oop pending_excep = NULL;
2038   const char* pending_file;
2039   int pending_line;
2040   if (HAS_PENDING_EXCEPTION) {
2041     pending_excep = PENDING_EXCEPTION;
2042     pending_file  = THREAD->exception_file();
2043     pending_line  = THREAD->exception_line();
2044     CLEAR_PENDING_EXCEPTION;
2045   }
2046 #endif /* MIGHT_HAVE_PENDING */
2047 
2048   {
2049     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2050     EXCEPTION_MARK;
2051     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2052   }
2053 
2054 #ifdef MIGHT_HAVE_PENDING
2055   if (pending_excep != NULL) {
2056     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2057   }
2058 #endif /* MIGHT_HAVE_PENDING */
2059 JRT_END
2060 
2061 #ifndef PRODUCT
2062 
2063 void SharedRuntime::print_statistics() {
2064   ttyLocker ttyl;
2065   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2066 
2067   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2068 
2069   SharedRuntime::print_ic_miss_histogram();
2070 
2071   if (CountRemovableExceptions) {
2072     if (_nof_removable_exceptions > 0) {
2073       Unimplemented(); // this counter is not yet incremented
2074       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2075     }
2076   }
2077 
2078   // Dump the JRT_ENTRY counters
2079   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2080   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2081   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2082   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2083   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2084   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2085   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2086 
2087   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2088   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2089   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2090   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2091   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2092 
2093   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2094   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2095   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2096   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2097   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2098   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2099   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2100   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2101   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2102   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2103   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2104   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2105   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2106   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2107   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2108   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2109 
2110   AdapterHandlerLibrary::print_statistics();
2111 
2112   if (xtty != NULL)  xtty->tail("statistics");
2113 }
2114 
2115 inline double percent(int x, int y) {
2116   return 100.0 * x / MAX2(y, 1);
2117 }
2118 
2119 class MethodArityHistogram {
2120  public:
2121   enum { MAX_ARITY = 256 };
2122  private:
2123   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2124   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2125   static int _max_arity;                      // max. arity seen
2126   static int _max_size;                       // max. arg size seen
2127 
2128   static void add_method_to_histogram(nmethod* nm) {
2129     Method* m = nm->method();
2130     ArgumentCount args(m->signature());
2131     int arity   = args.size() + (m->is_static() ? 0 : 1);
2132     int argsize = m->size_of_parameters();
2133     arity   = MIN2(arity, MAX_ARITY-1);
2134     argsize = MIN2(argsize, MAX_ARITY-1);
2135     int count = nm->method()->compiled_invocation_count();
2136     _arity_histogram[arity]  += count;
2137     _size_histogram[argsize] += count;
2138     _max_arity = MAX2(_max_arity, arity);
2139     _max_size  = MAX2(_max_size, argsize);
2140   }
2141 
2142   void print_histogram_helper(int n, int* histo, const char* name) {
2143     const int N = MIN2(5, n);
2144     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2145     double sum = 0;
2146     double weighted_sum = 0;
2147     int i;
2148     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2149     double rest = sum;
2150     double percent = sum / 100;
2151     for (i = 0; i <= N; i++) {
2152       rest -= histo[i];
2153       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2154     }
2155     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2156     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2157   }
2158 
2159   void print_histogram() {
2160     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2161     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2162     tty->print_cr("\nSame for parameter size (in words):");
2163     print_histogram_helper(_max_size, _size_histogram, "size");
2164     tty->cr();
2165   }
2166 
2167  public:
2168   MethodArityHistogram() {
2169     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2170     _max_arity = _max_size = 0;
2171     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2172     CodeCache::nmethods_do(add_method_to_histogram);
2173     print_histogram();
2174   }
2175 };
2176 
2177 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2178 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2179 int MethodArityHistogram::_max_arity;
2180 int MethodArityHistogram::_max_size;
2181 
2182 void SharedRuntime::print_call_statistics(int comp_total) {
2183   tty->print_cr("Calls from compiled code:");
2184   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2185   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2186   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2187   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2188   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2189   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2190   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2191   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2192   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2193   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2194   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2195   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2196   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2197   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2198   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2199   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2200   tty->cr();
2201   tty->print_cr("Note 1: counter updates are not MT-safe.");
2202   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2203   tty->print_cr("        %% in nested categories are relative to their category");
2204   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2205   tty->cr();
2206 
2207   MethodArityHistogram h;
2208 }
2209 #endif
2210 
2211 
2212 // A simple wrapper class around the calling convention information
2213 // that allows sharing of adapters for the same calling convention.
2214 class AdapterFingerPrint : public CHeapObj<mtCode> {
2215  private:
2216   enum {
2217     _basic_type_bits = 4,
2218     _basic_type_mask = right_n_bits(_basic_type_bits),
2219     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2220     _compact_int_count = 3
2221   };
2222   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2223   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2224 
2225   union {
2226     int  _compact[_compact_int_count];
2227     int* _fingerprint;
2228   } _value;
2229   int _length; // A negative length indicates the fingerprint is in the compact form,
2230                // Otherwise _value._fingerprint is the array.
2231 
2232   // Remap BasicTypes that are handled equivalently by the adapters.
2233   // These are correct for the current system but someday it might be
2234   // necessary to make this mapping platform dependent.
2235   static int adapter_encoding(BasicType in) {
2236     switch (in) {
2237       case T_BOOLEAN:
2238       case T_BYTE:
2239       case T_SHORT:
2240       case T_CHAR:
2241         // There are all promoted to T_INT in the calling convention
2242         return T_INT;
2243 
2244       case T_OBJECT:
2245       case T_ARRAY:
2246         // In other words, we assume that any register good enough for
2247         // an int or long is good enough for a managed pointer.
2248 #ifdef _LP64
2249         return T_LONG;
2250 #else
2251         return T_INT;
2252 #endif
2253 
2254       case T_INT:
2255       case T_LONG:
2256       case T_FLOAT:
2257       case T_DOUBLE:
2258       case T_VOID:
2259         return in;
2260 
2261       default:
2262         ShouldNotReachHere();
2263         return T_CONFLICT;
2264     }
2265   }
2266 
2267  public:
2268   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2269     // The fingerprint is based on the BasicType signature encoded
2270     // into an array of ints with eight entries per int.
2271     int* ptr;
2272     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2273     if (len <= _compact_int_count) {
2274       assert(_compact_int_count == 3, "else change next line");
2275       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2276       // Storing the signature encoded as signed chars hits about 98%
2277       // of the time.
2278       _length = -len;
2279       ptr = _value._compact;
2280     } else {
2281       _length = len;
2282       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2283       ptr = _value._fingerprint;
2284     }
2285 
2286     // Now pack the BasicTypes with 8 per int
2287     int sig_index = 0;
2288     for (int index = 0; index < len; index++) {
2289       int value = 0;
2290       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2291         int bt = ((sig_index < total_args_passed)
2292                   ? adapter_encoding(sig_bt[sig_index++])
2293                   : 0);
2294         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2295         value = (value << _basic_type_bits) | bt;
2296       }
2297       ptr[index] = value;
2298     }
2299   }
2300 
2301   ~AdapterFingerPrint() {
2302     if (_length > 0) {
2303       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2304     }
2305   }
2306 
2307   int value(int index) {
2308     if (_length < 0) {
2309       return _value._compact[index];
2310     }
2311     return _value._fingerprint[index];
2312   }
2313   int length() {
2314     if (_length < 0) return -_length;
2315     return _length;
2316   }
2317 
2318   bool is_compact() {
2319     return _length <= 0;
2320   }
2321 
2322   unsigned int compute_hash() {
2323     int hash = 0;
2324     for (int i = 0; i < length(); i++) {
2325       int v = value(i);
2326       hash = (hash << 8) ^ v ^ (hash >> 5);
2327     }
2328     return (unsigned int)hash;
2329   }
2330 
2331   const char* as_string() {
2332     stringStream st;
2333     st.print("0x");
2334     for (int i = 0; i < length(); i++) {
2335       st.print("%08x", value(i));
2336     }
2337     return st.as_string();
2338   }
2339 
2340   bool equals(AdapterFingerPrint* other) {
2341     if (other->_length != _length) {
2342       return false;
2343     }
2344     if (_length < 0) {
2345       assert(_compact_int_count == 3, "else change next line");
2346       return _value._compact[0] == other->_value._compact[0] &&
2347              _value._compact[1] == other->_value._compact[1] &&
2348              _value._compact[2] == other->_value._compact[2];
2349     } else {
2350       for (int i = 0; i < _length; i++) {
2351         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2352           return false;
2353         }
2354       }
2355     }
2356     return true;
2357   }
2358 };
2359 
2360 
2361 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2362 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2363   friend class AdapterHandlerTableIterator;
2364 
2365  private:
2366 
2367 #ifndef PRODUCT
2368   static int _lookups; // number of calls to lookup
2369   static int _buckets; // number of buckets checked
2370   static int _equals;  // number of buckets checked with matching hash
2371   static int _hits;    // number of successful lookups
2372   static int _compact; // number of equals calls with compact signature
2373 #endif
2374 
2375   AdapterHandlerEntry* bucket(int i) {
2376     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2377   }
2378 
2379  public:
2380   AdapterHandlerTable()
2381     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2382 
2383   // Create a new entry suitable for insertion in the table
2384   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2385     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2386     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2387     if (DumpSharedSpaces) {
2388       ((CDSAdapterHandlerEntry*)entry)->init();
2389     }
2390     return entry;
2391   }
2392 
2393   // Insert an entry into the table
2394   void add(AdapterHandlerEntry* entry) {
2395     int index = hash_to_index(entry->hash());
2396     add_entry(index, entry);
2397   }
2398 
2399   void free_entry(AdapterHandlerEntry* entry) {
2400     entry->deallocate();
2401     BasicHashtable<mtCode>::free_entry(entry);
2402   }
2403 
2404   // Find a entry with the same fingerprint if it exists
2405   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2406     NOT_PRODUCT(_lookups++);
2407     AdapterFingerPrint fp(total_args_passed, sig_bt);
2408     unsigned int hash = fp.compute_hash();
2409     int index = hash_to_index(hash);
2410     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2411       NOT_PRODUCT(_buckets++);
2412       if (e->hash() == hash) {
2413         NOT_PRODUCT(_equals++);
2414         if (fp.equals(e->fingerprint())) {
2415 #ifndef PRODUCT
2416           if (fp.is_compact()) _compact++;
2417           _hits++;
2418 #endif
2419           return e;
2420         }
2421       }
2422     }
2423     return NULL;
2424   }
2425 
2426 #ifndef PRODUCT
2427   void print_statistics() {
2428     ResourceMark rm;
2429     int longest = 0;
2430     int empty = 0;
2431     int total = 0;
2432     int nonempty = 0;
2433     for (int index = 0; index < table_size(); index++) {
2434       int count = 0;
2435       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2436         count++;
2437       }
2438       if (count != 0) nonempty++;
2439       if (count == 0) empty++;
2440       if (count > longest) longest = count;
2441       total += count;
2442     }
2443     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2444                   empty, longest, total, total / (double)nonempty);
2445     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2446                   _lookups, _buckets, _equals, _hits, _compact);
2447   }
2448 #endif
2449 };
2450 
2451 
2452 #ifndef PRODUCT
2453 
2454 int AdapterHandlerTable::_lookups;
2455 int AdapterHandlerTable::_buckets;
2456 int AdapterHandlerTable::_equals;
2457 int AdapterHandlerTable::_hits;
2458 int AdapterHandlerTable::_compact;
2459 
2460 #endif
2461 
2462 class AdapterHandlerTableIterator : public StackObj {
2463  private:
2464   AdapterHandlerTable* _table;
2465   int _index;
2466   AdapterHandlerEntry* _current;
2467 
2468   void scan() {
2469     while (_index < _table->table_size()) {
2470       AdapterHandlerEntry* a = _table->bucket(_index);
2471       _index++;
2472       if (a != NULL) {
2473         _current = a;
2474         return;
2475       }
2476     }
2477   }
2478 
2479  public:
2480   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2481     scan();
2482   }
2483   bool has_next() {
2484     return _current != NULL;
2485   }
2486   AdapterHandlerEntry* next() {
2487     if (_current != NULL) {
2488       AdapterHandlerEntry* result = _current;
2489       _current = _current->next();
2490       if (_current == NULL) scan();
2491       return result;
2492     } else {
2493       return NULL;
2494     }
2495   }
2496 };
2497 
2498 
2499 // ---------------------------------------------------------------------------
2500 // Implementation of AdapterHandlerLibrary
2501 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2502 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2503 const int AdapterHandlerLibrary_size = 16*K;
2504 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2505 
2506 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2507   // Should be called only when AdapterHandlerLibrary_lock is active.
2508   if (_buffer == NULL) // Initialize lazily
2509       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2510   return _buffer;
2511 }
2512 
2513 extern "C" void unexpected_adapter_call() {
2514   ShouldNotCallThis();
2515 }
2516 
2517 void AdapterHandlerLibrary::initialize() {
2518   if (_adapters != NULL) return;
2519   _adapters = new AdapterHandlerTable();
2520 
2521   if (!CodeCacheExtensions::skip_compiler_support()) {
2522     // Create a special handler for abstract methods.  Abstract methods
2523     // are never compiled so an i2c entry is somewhat meaningless, but
2524     // throw AbstractMethodError just in case.
2525     // Pass wrong_method_abstract for the c2i transitions to return
2526     // AbstractMethodError for invalid invocations.
2527     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2528     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2529                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2530                                                                 wrong_method_abstract, wrong_method_abstract);
2531   } else {
2532     // Adapters are not supposed to be used.
2533     // Generate a special one to cause an error if used (and store this
2534     // singleton in place of the useless _abstract_method_error adapter).
2535     address entry = (address) &unexpected_adapter_call;
2536     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2537                                                                 entry,
2538                                                                 entry,
2539                                                                 entry);
2540 
2541   }
2542 }
2543 
2544 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2545                                                       address i2c_entry,
2546                                                       address c2i_entry,
2547                                                       address c2i_unverified_entry) {
2548   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2549 }
2550 
2551 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2552   AdapterHandlerEntry* entry = get_adapter0(method);
2553   if (method->is_shared()) {
2554     MutexLocker mu(AdapterHandlerLibrary_lock);
2555     if (method->adapter() == NULL) {
2556       method->update_adapter_trampoline(entry);
2557     }
2558     address trampoline = method->from_compiled_entry();
2559     if (*(int*)trampoline == 0) {
2560       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2561       MacroAssembler _masm(&buffer);
2562       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2563 
2564       if (PrintInterpreter) {
2565         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2566       }
2567     }
2568   }
2569 
2570   return entry;
2571 }
2572 
2573 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2574   // Use customized signature handler.  Need to lock around updates to
2575   // the AdapterHandlerTable (it is not safe for concurrent readers
2576   // and a single writer: this could be fixed if it becomes a
2577   // problem).
2578 
2579   ResourceMark rm;
2580 
2581   NOT_PRODUCT(int insts_size);
2582   AdapterBlob* new_adapter = NULL;
2583   AdapterHandlerEntry* entry = NULL;
2584   AdapterFingerPrint* fingerprint = NULL;
2585   {
2586     MutexLocker mu(AdapterHandlerLibrary_lock);
2587     // make sure data structure is initialized
2588     initialize();
2589 
2590     // during dump time, always generate adapters, even if the
2591     // compiler has been turned off.
2592     if (!DumpSharedSpaces && CodeCacheExtensions::skip_compiler_support()) {
2593       // adapters are useless and should not be used, including the
2594       // abstract_method_handler. However, some callers check that
2595       // an adapter was installed.
2596       // Return the singleton adapter, stored into _abstract_method_handler
2597       // and modified to cause an error if we ever call it.
2598       return _abstract_method_handler;
2599     }
2600 
2601     if (method->is_abstract()) {
2602       return _abstract_method_handler;
2603     }
2604 
2605     // Fill in the signature array, for the calling-convention call.
2606     int total_args_passed = method->size_of_parameters(); // All args on stack
2607 
2608     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2609     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2610     int i = 0;
2611     if (!method->is_static())  // Pass in receiver first
2612       sig_bt[i++] = T_OBJECT;
2613     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2614       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2615       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2616         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2617     }
2618     assert(i == total_args_passed, "");
2619 
2620     // Lookup method signature's fingerprint
2621     entry = _adapters->lookup(total_args_passed, sig_bt);
2622 
2623 #ifdef ASSERT
2624     AdapterHandlerEntry* shared_entry = NULL;
2625     // Start adapter sharing verification only after the VM is booted.
2626     if (VerifyAdapterSharing && (entry != NULL)) {
2627       shared_entry = entry;
2628       entry = NULL;
2629     }
2630 #endif
2631 
2632     if (entry != NULL) {
2633       return entry;
2634     }
2635 
2636     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2637     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2638 
2639     // Make a C heap allocated version of the fingerprint to store in the adapter
2640     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2641 
2642     // StubRoutines::code2() is initialized after this function can be called. As a result,
2643     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2644     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2645     // stub that ensure that an I2C stub is called from an interpreter frame.
2646     bool contains_all_checks = StubRoutines::code2() != NULL;
2647 
2648     // Create I2C & C2I handlers
2649     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2650     if (buf != NULL) {
2651       CodeBuffer buffer(buf);
2652       short buffer_locs[20];
2653       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2654                                              sizeof(buffer_locs)/sizeof(relocInfo));
2655 
2656       MacroAssembler _masm(&buffer);
2657       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2658                                                      total_args_passed,
2659                                                      comp_args_on_stack,
2660                                                      sig_bt,
2661                                                      regs,
2662                                                      fingerprint);
2663 #ifdef ASSERT
2664       if (VerifyAdapterSharing) {
2665         if (shared_entry != NULL) {
2666           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2667           // Release the one just created and return the original
2668           _adapters->free_entry(entry);
2669           return shared_entry;
2670         } else  {
2671           entry->save_code(buf->code_begin(), buffer.insts_size());
2672         }
2673       }
2674 #endif
2675 
2676       new_adapter = AdapterBlob::create(&buffer);
2677       NOT_PRODUCT(insts_size = buffer.insts_size());
2678     }
2679     if (new_adapter == NULL) {
2680       // CodeCache is full, disable compilation
2681       // Ought to log this but compile log is only per compile thread
2682       // and we're some non descript Java thread.
2683       return NULL; // Out of CodeCache space
2684     }
2685     entry->relocate(new_adapter->content_begin());
2686 #ifndef PRODUCT
2687     // debugging suppport
2688     if (PrintAdapterHandlers || PrintStubCode) {
2689       ttyLocker ttyl;
2690       entry->print_adapter_on(tty);
2691       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2692                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2693                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2694       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2695       if (Verbose || PrintStubCode) {
2696         address first_pc = entry->base_address();
2697         if (first_pc != NULL) {
2698           Disassembler::decode(first_pc, first_pc + insts_size);
2699           tty->cr();
2700         }
2701       }
2702     }
2703 #endif
2704     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2705     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2706     if (contains_all_checks || !VerifyAdapterCalls) {
2707       _adapters->add(entry);
2708     }
2709   }
2710   // Outside of the lock
2711   if (new_adapter != NULL) {
2712     char blob_id[256];
2713     jio_snprintf(blob_id,
2714                  sizeof(blob_id),
2715                  "%s(%s)@" PTR_FORMAT,
2716                  new_adapter->name(),
2717                  fingerprint->as_string(),
2718                  new_adapter->content_begin());
2719     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2720 
2721     if (JvmtiExport::should_post_dynamic_code_generated()) {
2722       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2723     }
2724   }
2725   return entry;
2726 }
2727 
2728 address AdapterHandlerEntry::base_address() {
2729   address base = _i2c_entry;
2730   if (base == NULL)  base = _c2i_entry;
2731   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2732   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2733   return base;
2734 }
2735 
2736 void AdapterHandlerEntry::relocate(address new_base) {
2737   address old_base = base_address();
2738   assert(old_base != NULL, "");
2739   ptrdiff_t delta = new_base - old_base;
2740   if (_i2c_entry != NULL)
2741     _i2c_entry += delta;
2742   if (_c2i_entry != NULL)
2743     _c2i_entry += delta;
2744   if (_c2i_unverified_entry != NULL)
2745     _c2i_unverified_entry += delta;
2746   assert(base_address() == new_base, "");
2747 }
2748 
2749 
2750 void AdapterHandlerEntry::deallocate() {
2751   delete _fingerprint;
2752 #ifdef ASSERT
2753   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2754 #endif
2755 }
2756 
2757 
2758 #ifdef ASSERT
2759 // Capture the code before relocation so that it can be compared
2760 // against other versions.  If the code is captured after relocation
2761 // then relative instructions won't be equivalent.
2762 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2763   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2764   _saved_code_length = length;
2765   memcpy(_saved_code, buffer, length);
2766 }
2767 
2768 
2769 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2770   if (length != _saved_code_length) {
2771     return false;
2772   }
2773 
2774   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2775 }
2776 #endif
2777 
2778 
2779 /**
2780  * Create a native wrapper for this native method.  The wrapper converts the
2781  * Java-compiled calling convention to the native convention, handles
2782  * arguments, and transitions to native.  On return from the native we transition
2783  * back to java blocking if a safepoint is in progress.
2784  */
2785 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2786   ResourceMark rm;
2787   nmethod* nm = NULL;
2788 
2789   assert(method->is_native(), "must be native");
2790   assert(method->is_method_handle_intrinsic() ||
2791          method->has_native_function(), "must have something valid to call!");
2792 
2793   {
2794     // Perform the work while holding the lock, but perform any printing outside the lock
2795     MutexLocker mu(AdapterHandlerLibrary_lock);
2796     // See if somebody beat us to it
2797     if (method->code() != NULL) {
2798       return;
2799     }
2800 
2801     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2802     assert(compile_id > 0, "Must generate native wrapper");
2803 
2804 
2805     ResourceMark rm;
2806     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2807     if (buf != NULL) {
2808       CodeBuffer buffer(buf);
2809       double locs_buf[20];
2810       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2811       MacroAssembler _masm(&buffer);
2812 
2813       // Fill in the signature array, for the calling-convention call.
2814       const int total_args_passed = method->size_of_parameters();
2815 
2816       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2817       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2818       int i=0;
2819       if (!method->is_static())  // Pass in receiver first
2820         sig_bt[i++] = T_OBJECT;
2821       SignatureStream ss(method->signature());
2822       for (; !ss.at_return_type(); ss.next()) {
2823         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2824         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2825           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2826       }
2827       assert(i == total_args_passed, "");
2828       BasicType ret_type = ss.type();
2829 
2830       // Now get the compiled-Java layout as input (or output) arguments.
2831       // NOTE: Stubs for compiled entry points of method handle intrinsics
2832       // are just trampolines so the argument registers must be outgoing ones.
2833       const bool is_outgoing = method->is_method_handle_intrinsic();
2834       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2835 
2836       // Generate the compiled-to-native wrapper code
2837       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2838 
2839       if (nm != NULL) {
2840         method->set_code(method, nm);
2841 
2842         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2843         if (directive->PrintAssemblyOption) {
2844           nm->print_code();
2845         }
2846         DirectivesStack::release(directive);
2847       }
2848     }
2849   } // Unlock AdapterHandlerLibrary_lock
2850 
2851 
2852   // Install the generated code.
2853   if (nm != NULL) {
2854     if (PrintCompilation) {
2855       ttyLocker ttyl;
2856       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2857     }
2858     nm->post_compiled_method_load_event();
2859   }
2860 }
2861 
2862 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2863   assert(thread == JavaThread::current(), "must be");
2864   // The code is about to enter a JNI lazy critical native method and
2865   // _needs_gc is true, so if this thread is already in a critical
2866   // section then just return, otherwise this thread should block
2867   // until needs_gc has been cleared.
2868   if (thread->in_critical()) {
2869     return;
2870   }
2871   // Lock and unlock a critical section to give the system a chance to block
2872   GCLocker::lock_critical(thread);
2873   GCLocker::unlock_critical(thread);
2874 JRT_END
2875 
2876 // -------------------------------------------------------------------------
2877 // Java-Java calling convention
2878 // (what you use when Java calls Java)
2879 
2880 //------------------------------name_for_receiver----------------------------------
2881 // For a given signature, return the VMReg for parameter 0.
2882 VMReg SharedRuntime::name_for_receiver() {
2883   VMRegPair regs;
2884   BasicType sig_bt = T_OBJECT;
2885   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2886   // Return argument 0 register.  In the LP64 build pointers
2887   // take 2 registers, but the VM wants only the 'main' name.
2888   return regs.first();
2889 }
2890 
2891 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2892   // This method is returning a data structure allocating as a
2893   // ResourceObject, so do not put any ResourceMarks in here.
2894   char *s = sig->as_C_string();
2895   int len = (int)strlen(s);
2896   s++; len--;                   // Skip opening paren
2897 
2898   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2899   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2900   int cnt = 0;
2901   if (has_receiver) {
2902     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2903   }
2904 
2905   while (*s != ')') {          // Find closing right paren
2906     switch (*s++) {            // Switch on signature character
2907     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2908     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2909     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2910     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2911     case 'I': sig_bt[cnt++] = T_INT;     break;
2912     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2913     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2914     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2915     case 'V': sig_bt[cnt++] = T_VOID;    break;
2916     case 'L':                   // Oop
2917       while (*s++ != ';');   // Skip signature
2918       sig_bt[cnt++] = T_OBJECT;
2919       break;
2920     case '[': {                 // Array
2921       do {                      // Skip optional size
2922         while (*s >= '0' && *s <= '9') s++;
2923       } while (*s++ == '[');   // Nested arrays?
2924       // Skip element type
2925       if (s[-1] == 'L')
2926         while (*s++ != ';'); // Skip signature
2927       sig_bt[cnt++] = T_ARRAY;
2928       break;
2929     }
2930     default : ShouldNotReachHere();
2931     }
2932   }
2933 
2934   if (has_appendix) {
2935     sig_bt[cnt++] = T_OBJECT;
2936   }
2937 
2938   assert(cnt < 256, "grow table size");
2939 
2940   int comp_args_on_stack;
2941   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2942 
2943   // the calling convention doesn't count out_preserve_stack_slots so
2944   // we must add that in to get "true" stack offsets.
2945 
2946   if (comp_args_on_stack) {
2947     for (int i = 0; i < cnt; i++) {
2948       VMReg reg1 = regs[i].first();
2949       if (reg1->is_stack()) {
2950         // Yuck
2951         reg1 = reg1->bias(out_preserve_stack_slots());
2952       }
2953       VMReg reg2 = regs[i].second();
2954       if (reg2->is_stack()) {
2955         // Yuck
2956         reg2 = reg2->bias(out_preserve_stack_slots());
2957       }
2958       regs[i].set_pair(reg2, reg1);
2959     }
2960   }
2961 
2962   // results
2963   *arg_size = cnt;
2964   return regs;
2965 }
2966 
2967 // OSR Migration Code
2968 //
2969 // This code is used convert interpreter frames into compiled frames.  It is
2970 // called from very start of a compiled OSR nmethod.  A temp array is
2971 // allocated to hold the interesting bits of the interpreter frame.  All
2972 // active locks are inflated to allow them to move.  The displaced headers and
2973 // active interpreter locals are copied into the temp buffer.  Then we return
2974 // back to the compiled code.  The compiled code then pops the current
2975 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2976 // copies the interpreter locals and displaced headers where it wants.
2977 // Finally it calls back to free the temp buffer.
2978 //
2979 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2980 
2981 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2982 
2983   //
2984   // This code is dependent on the memory layout of the interpreter local
2985   // array and the monitors. On all of our platforms the layout is identical
2986   // so this code is shared. If some platform lays the their arrays out
2987   // differently then this code could move to platform specific code or
2988   // the code here could be modified to copy items one at a time using
2989   // frame accessor methods and be platform independent.
2990 
2991   frame fr = thread->last_frame();
2992   assert(fr.is_interpreted_frame(), "");
2993   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2994 
2995   // Figure out how many monitors are active.
2996   int active_monitor_count = 0;
2997   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2998        kptr < fr.interpreter_frame_monitor_begin();
2999        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3000     if (kptr->obj() != NULL) active_monitor_count++;
3001   }
3002 
3003   // QQQ we could place number of active monitors in the array so that compiled code
3004   // could double check it.
3005 
3006   Method* moop = fr.interpreter_frame_method();
3007   int max_locals = moop->max_locals();
3008   // Allocate temp buffer, 1 word per local & 2 per active monitor
3009   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3010   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3011 
3012   // Copy the locals.  Order is preserved so that loading of longs works.
3013   // Since there's no GC I can copy the oops blindly.
3014   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3015   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3016                        (HeapWord*)&buf[0],
3017                        max_locals);
3018 
3019   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3020   int i = max_locals;
3021   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3022        kptr2 < fr.interpreter_frame_monitor_begin();
3023        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3024     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3025       BasicLock *lock = kptr2->lock();
3026       // Inflate so the displaced header becomes position-independent
3027       if (lock->displaced_header()->is_unlocked())
3028         ObjectSynchronizer::inflate_helper(kptr2->obj());
3029       // Now the displaced header is free to move
3030       buf[i++] = (intptr_t)lock->displaced_header();
3031       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3032     }
3033   }
3034   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3035 
3036   return buf;
3037 JRT_END
3038 
3039 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3040   FREE_C_HEAP_ARRAY(intptr_t, buf);
3041 JRT_END
3042 
3043 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3044   AdapterHandlerTableIterator iter(_adapters);
3045   while (iter.has_next()) {
3046     AdapterHandlerEntry* a = iter.next();
3047     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3048   }
3049   return false;
3050 }
3051 
3052 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3053   AdapterHandlerTableIterator iter(_adapters);
3054   while (iter.has_next()) {
3055     AdapterHandlerEntry* a = iter.next();
3056     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3057       st->print("Adapter for signature: ");
3058       a->print_adapter_on(tty);
3059       return;
3060     }
3061   }
3062   assert(false, "Should have found handler");
3063 }
3064 
3065 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3066   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3067                p2i(this), fingerprint()->as_string(),
3068                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3069 
3070 }
3071 
3072 #if INCLUDE_CDS
3073 
3074 void CDSAdapterHandlerEntry::init() {
3075   assert(DumpSharedSpaces, "used during dump time only");
3076   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3077   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3078 };
3079 
3080 #endif // INCLUDE_CDS
3081 
3082 
3083 #ifndef PRODUCT
3084 
3085 void AdapterHandlerLibrary::print_statistics() {
3086   _adapters->print_statistics();
3087 }
3088 
3089 #endif /* PRODUCT */
3090 
3091 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3092   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3093   thread->enable_stack_reserved_zone();
3094   thread->set_reserved_stack_activation(thread->stack_base());
3095 JRT_END
3096 
3097 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3098   frame activation;
3099   CompiledMethod* nm = NULL;
3100   int count = 1;
3101 
3102   assert(fr.is_java_frame(), "Must start on Java frame");
3103 
3104   while (true) {
3105     Method* method = NULL;
3106     if (fr.is_interpreted_frame()) {
3107       method = fr.interpreter_frame_method();
3108     } else {
3109       CodeBlob* cb = fr.cb();
3110       if (cb != NULL && cb->is_compiled()) {
3111         nm = cb->as_compiled_method();
3112         method = nm->method();
3113       }
3114     }
3115     if ((method != NULL) && method->has_reserved_stack_access()) {
3116       ResourceMark rm(thread);
3117       activation = fr;
3118       warning("Potentially dangerous stack overflow in "
3119               "ReservedStackAccess annotated method %s [%d]",
3120               method->name_and_sig_as_C_string(), count++);
3121       EventReservedStackActivation event;
3122       if (event.should_commit()) {
3123         event.set_method(method);
3124         event.commit();
3125       }
3126     }
3127     if (fr.is_first_java_frame()) {
3128       break;
3129     } else {
3130       fr = fr.java_sender();
3131     }
3132   }
3133   return activation;
3134 }
3135