src/cpu/x86/vm/nativeInst_x86.hpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File hotspot Sdiff src/cpu/x86/vm

src/cpu/x86/vm/nativeInst_x86.hpp

Print this page




  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_NATIVEINST_X86_HPP
  26 #define CPU_X86_VM_NATIVEINST_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "runtime/icache.hpp"
  31 #include "runtime/os.hpp"
  32 
  33 // We have interfaces for the following instructions:
  34 // - NativeInstruction
  35 // - - NativeCall
  36 // - - NativeMovConstReg
  37 // - - NativeMovConstRegPatching
  38 // - - NativeMovRegMem
  39 // - - NativeMovRegMemPatching
  40 // - - NativeJump

  41 // - - NativeIllegalOpCode
  42 // - - NativeGeneralJump
  43 // - - NativeReturn
  44 // - - NativeReturnX (return with argument)
  45 // - - NativePushConst
  46 // - - NativeTstRegMem
  47 
  48 // The base class for different kinds of native instruction abstractions.
  49 // Provides the primitive operations to manipulate code relative to this.
  50 
  51 class NativeInstruction VALUE_OBJ_CLASS_SPEC {
  52   friend class Relocation;
  53 
  54  public:
  55   enum Intel_specific_constants {
  56     nop_instruction_code        = 0x90,
  57     nop_instruction_size        =    1
  58   };
  59 
  60   bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }
  61   inline bool is_call();
  62   inline bool is_call_reg();
  63   inline bool is_illegal();
  64   inline bool is_return();
  65   inline bool is_jump();


  66   inline bool is_cond_jump();
  67   inline bool is_safepoint_poll();
  68   inline bool is_mov_literal64();
  69 
  70  protected:
  71   address addr_at(int offset) const    { return address(this) + offset; }
  72 
  73   s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
  74   u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }
  75 
  76   jint int_at(int offset) const         { return *(jint*) addr_at(offset); }
  77 
  78   intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }
  79 
  80   oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }
  81 
  82 
  83   void set_char_at(int offset, char c)        { *addr_at(offset) = (u_char)c; wrote(offset); }
  84   void set_int_at(int offset, jint  i)        { *(jint*)addr_at(offset) = i;  wrote(offset); }
  85   void set_ptr_at (int offset, intptr_t  ptr) { *(intptr_t*) addr_at(offset) = ptr;  wrote(offset); }


  88   // This doesn't really do anything on Intel, but it is the place where
  89   // cache invalidation belongs, generically:
  90   void wrote(int offset);
  91 
  92  public:
  93 
  94   // unit test stuff
  95   static void test() {}                 // override for testing
  96 
  97   inline friend NativeInstruction* nativeInstruction_at(address address);
  98 };
  99 
 100 inline NativeInstruction* nativeInstruction_at(address address) {
 101   NativeInstruction* inst = (NativeInstruction*)address;
 102 #ifdef ASSERT
 103   //inst->verify();
 104 #endif
 105   return inst;
 106 }
 107 









































 108 inline NativeCall* nativeCall_at(address address);
 109 // The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
 110 // instructions (used to manipulate inline caches, primitive & dll calls, etc.).
 111 
 112 class NativeCall: public NativeInstruction {
 113  public:
 114   enum Intel_specific_constants {
 115     instruction_code            = 0xE8,
 116     instruction_size            =    5,
 117     instruction_offset          =    0,
 118     displacement_offset         =    1,
 119     return_address_offset       =    5
 120   };
 121 
 122   enum { cache_line_size = BytesPerWord };  // conservative estimate!
 123 
 124   address instruction_address() const       { return addr_at(instruction_offset); }
 125   address next_instruction_address() const  { return addr_at(return_address_offset); }
 126   int   displacement() const                { return (jint) int_at(displacement_offset); }
 127   address displacement_address() const      { return addr_at(displacement_offset); }
 128   address return_address() const            { return addr_at(return_address_offset); }
 129   address destination() const;
 130   void  set_destination(address dest)       {
 131 #ifdef AMD64
 132     assert((labs((intptr_t) dest - (intptr_t) return_address())  &
 133             0xFFFFFFFF00000000) == 0,
 134            "must be 32bit offset");
 135 #endif // AMD64
 136     set_int_at(displacement_offset, dest - return_address());
 137   }
 138   void  set_destination_mt_safe(address dest);
 139 
 140   void  verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
 141   void  verify();
 142   void  print();
 143 
 144   // Creation
 145   inline friend NativeCall* nativeCall_at(address address);
 146   inline friend NativeCall* nativeCall_before(address return_address);
 147 
 148   static bool is_call_at(address instr) {
 149     return ((*instr) & 0xFF) == NativeCall::instruction_code;
 150   }
 151 
 152   static bool is_call_before(address return_address) {
 153     return is_call_at(return_address - NativeCall::return_address_offset);
 154   }
 155 
 156   static bool is_call_to(address instr, address target) {
 157     return nativeInstruction_at(instr)->is_call() &&
 158       nativeCall_at(instr)->destination() == target;
 159   }
 160 







 161   // MT-safe patching of a call instruction.
 162   static void insert(address code_pos, address entry);
 163 
 164   static void replace_mt_safe(address instr_addr, address code_buffer);
 165 };
 166 
 167 inline NativeCall* nativeCall_at(address address) {
 168   NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
 169 #ifdef ASSERT
 170   call->verify();
 171 #endif
 172   return call;
 173 }
 174 
 175 inline NativeCall* nativeCall_before(address return_address) {
 176   NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
 177 #ifdef ASSERT
 178   call->verify();
 179 #endif
 180   return call;


 363     lea_instruction_code                = 0x8D,
 364     mov64_instruction_code              = 0xB8
 365   };
 366 
 367   void verify();
 368   void print ();
 369 
 370   // unit test stuff
 371   static void test() {}
 372 
 373  private:
 374   friend NativeLoadAddress* nativeLoadAddress_at (address address) {
 375     NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
 376     #ifdef ASSERT
 377       test->verify();
 378     #endif
 379     return test;
 380   }
 381 };
 382 













































 383 // jump rel32off
 384 
 385 class NativeJump: public NativeInstruction {
 386  public:
 387   enum Intel_specific_constants {
 388     instruction_code            = 0xe9,
 389     instruction_size            =    5,
 390     instruction_offset          =    0,
 391     data_offset                 =    1,
 392     next_instruction_offset     =    5
 393   };
 394 
 395   address instruction_address() const       { return addr_at(instruction_offset); }
 396   address next_instruction_address() const  { return addr_at(next_instruction_offset); }
 397   address jump_destination() const          {
 398      address dest = (int_at(data_offset)+next_instruction_address());
 399      // 32bit used to encode unresolved jmp as jmp -1
 400      // 64bit can't produce this so it used jump to self.
 401      // Now 32bit and 64bit use jump to self as the unresolved address
 402      // which the inline cache code (and relocs) know about


 423   void verify();
 424 
 425   // Unit testing stuff
 426   static void test() {}
 427 
 428   // Insertion of native jump instruction
 429   static void insert(address code_pos, address entry);
 430   // MT-safe insertion of native jump at verified method entry
 431   static void check_verified_entry_alignment(address entry, address verified_entry);
 432   static void patch_verified_entry(address entry, address verified_entry, address dest);
 433 };
 434 
 435 inline NativeJump* nativeJump_at(address address) {
 436   NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
 437 #ifdef ASSERT
 438   jump->verify();
 439 #endif
 440   return jump;
 441 }
 442 























 443 // Handles all kinds of jump on Intel. Long/far, conditional/unconditional
 444 class NativeGeneralJump: public NativeInstruction {
 445  public:
 446   enum Intel_specific_constants {
 447     // Constants does not apply, since the lengths and offsets depends on the actual jump
 448     // used
 449     // Instruction codes:
 450     //   Unconditional jumps: 0xE9    (rel32off), 0xEB (rel8off)
 451     //   Conditional jumps:   0x0F8x  (rel32off), 0x7x (rel8off)
 452     unconditional_long_jump  = 0xe9,
 453     unconditional_short_jump = 0xeb,
 454     instruction_size = 5
 455   };
 456 
 457   address instruction_address() const       { return addr_at(0); }
 458   address jump_destination()    const;
 459 
 460   // Creation
 461   inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
 462 
 463   // Insertion of native general jump instruction
 464   static void insert_unconditional(address code_pos, address entry);
 465   static void replace_mt_safe(address instr_addr, address code_buffer);
 466 
 467   void verify();
 468 };
 469 
 470 inline NativeGeneralJump* nativeGeneralJump_at(address address) {
 471   NativeGeneralJump* jump = (NativeGeneralJump*)(address);
 472   debug_only(jump->verify();)
 473   return jump;
 474 }
 475 






























 476 class NativePopReg : public NativeInstruction {
 477  public:
 478   enum Intel_specific_constants {
 479     instruction_code            = 0x58,
 480     instruction_size            =    1,
 481     instruction_offset          =    0,
 482     data_offset                 =    1,
 483     next_instruction_offset     =    1
 484   };
 485 
 486   // Insert a pop instruction
 487   static void insert(address code_pos, Register reg);
 488 };
 489 
 490 
 491 class NativeIllegalInstruction: public NativeInstruction {
 492  public:
 493   enum Intel_specific_constants {
 494     instruction_code            = 0x0B0F,    // Real byte order is: 0x0F, 0x0B
 495     instruction_size            =    2,


 527 class NativeTstRegMem: public NativeInstruction {
 528  public:
 529   enum Intel_specific_constants {
 530     instruction_rex_prefix_mask = 0xF0,
 531     instruction_rex_prefix      = Assembler::REX,
 532     instruction_code_memXregl   = 0x85,
 533     modrm_mask                  = 0x38, // select reg from the ModRM byte
 534     modrm_reg                   = 0x00  // rax
 535   };
 536 };
 537 
 538 inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
 539 inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
 540 inline bool NativeInstruction::is_call_reg()     { return ubyte_at(0) == NativeCallReg::instruction_code ||
 541                                                           (ubyte_at(1) == NativeCallReg::instruction_code &&
 542                                                            (ubyte_at(0) == Assembler::REX || ubyte_at(0) == Assembler::REX_B)); }
 543 inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
 544                                                           ubyte_at(0) == NativeReturnX::instruction_code; }
 545 inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
 546                                                           ubyte_at(0) == 0xEB; /* short jump */ }






 547 inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
 548                                                           (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
 549 inline bool NativeInstruction::is_safepoint_poll() {
 550 #ifdef AMD64
 551   // Try decoding a near safepoint first:
 552   if (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
 553       ubyte_at(1) == 0x05) { // 00 rax 101
 554     address fault = addr_at(6) + int_at(2);
 555     NOT_JVMCI(assert(!Assembler::is_polling_page_far(), "unexpected poll encoding");)
 556     return os::is_poll_address(fault);
 557   }
 558   // Now try decoding a far safepoint:
 559   // two cases, depending on the choice of the base register in the address.
 560   if (((ubyte_at(0) & NativeTstRegMem::instruction_rex_prefix_mask) == NativeTstRegMem::instruction_rex_prefix &&
 561        ubyte_at(1) == NativeTstRegMem::instruction_code_memXregl &&
 562        (ubyte_at(2) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) ||
 563       ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
 564       (ubyte_at(1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) {
 565     NOT_JVMCI(assert(Assembler::is_polling_page_far(), "unexpected poll encoding");)
 566     return true;


  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_NATIVEINST_X86_HPP
  26 #define CPU_X86_VM_NATIVEINST_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "runtime/icache.hpp"
  31 #include "runtime/os.hpp"
  32 
  33 // We have interfaces for the following instructions:
  34 // - NativeInstruction
  35 // - - NativeCall
  36 // - - NativeMovConstReg
  37 // - - NativeMovConstRegPatching
  38 // - - NativeMovRegMem
  39 // - - NativeMovRegMemPatching
  40 // - - NativeJump
  41 // - - NativeFarJump
  42 // - - NativeIllegalOpCode
  43 // - - NativeGeneralJump
  44 // - - NativeReturn
  45 // - - NativeReturnX (return with argument)
  46 // - - NativePushConst
  47 // - - NativeTstRegMem
  48 
  49 // The base class for different kinds of native instruction abstractions.
  50 // Provides the primitive operations to manipulate code relative to this.
  51 
  52 class NativeInstruction VALUE_OBJ_CLASS_SPEC {
  53   friend class Relocation;
  54 
  55  public:
  56   enum Intel_specific_constants {
  57     nop_instruction_code        = 0x90,
  58     nop_instruction_size        =    1
  59   };
  60 
  61   bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }
  62   inline bool is_call();
  63   inline bool is_call_reg();
  64   inline bool is_illegal();
  65   inline bool is_return();
  66   inline bool is_jump();
  67   inline bool is_jump_reg();
  68   inline bool is_far_jump();
  69   inline bool is_cond_jump();
  70   inline bool is_safepoint_poll();
  71   inline bool is_mov_literal64();
  72 
  73  protected:
  74   address addr_at(int offset) const    { return address(this) + offset; }
  75 
  76   s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
  77   u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }
  78 
  79   jint int_at(int offset) const         { return *(jint*) addr_at(offset); }
  80 
  81   intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }
  82 
  83   oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }
  84 
  85 
  86   void set_char_at(int offset, char c)        { *addr_at(offset) = (u_char)c; wrote(offset); }
  87   void set_int_at(int offset, jint  i)        { *(jint*)addr_at(offset) = i;  wrote(offset); }
  88   void set_ptr_at (int offset, intptr_t  ptr) { *(intptr_t*) addr_at(offset) = ptr;  wrote(offset); }


  91   // This doesn't really do anything on Intel, but it is the place where
  92   // cache invalidation belongs, generically:
  93   void wrote(int offset);
  94 
  95  public:
  96 
  97   // unit test stuff
  98   static void test() {}                 // override for testing
  99 
 100   inline friend NativeInstruction* nativeInstruction_at(address address);
 101 };
 102 
 103 inline NativeInstruction* nativeInstruction_at(address address) {
 104   NativeInstruction* inst = (NativeInstruction*)address;
 105 #ifdef ASSERT
 106   //inst->verify();
 107 #endif
 108   return inst;
 109 }
 110 
 111 class NativePltCall: public NativeInstruction {
 112 public:
 113   enum Intel_specific_constants {
 114     instruction_code           = 0xE8,
 115     instruction_size           =    5,
 116     instruction_offset         =    0,
 117     displacement_offset        =    1,
 118     return_address_offset      =    5
 119   };
 120   address instruction_address() const { return addr_at(instruction_offset); }
 121   address next_instruction_address() const { return addr_at(return_address_offset); }
 122   address displacement_address() const { return addr_at(displacement_offset); }
 123   int displacement() const { return (jint) int_at(displacement_offset); }
 124   address return_address() const { return addr_at(return_address_offset); }
 125   address destination() const;
 126   address plt_entry() const;
 127   address plt_jump() const;
 128   address plt_load_got() const;
 129   address plt_resolve_call() const;
 130   address plt_c2i_stub() const;
 131   void set_stub_to_clean();
 132 
 133   void  reset_to_plt_resolve_call();
 134   void  set_destination_mt_safe(address dest);
 135 
 136   void verify() const;
 137 };
 138 
 139 inline NativePltCall* nativePltCall_at(address address) {
 140   NativePltCall* call = (NativePltCall*) address;
 141 #ifdef ASSERT
 142   call->verify();
 143 #endif
 144   return call;
 145 }
 146 
 147 inline NativePltCall* nativePltCall_before(address addr) {
 148   address at = addr - NativePltCall::instruction_size;
 149   return nativePltCall_at(at);
 150 }
 151 
 152 inline NativeCall* nativeCall_at(address address);
 153 // The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off
 154 // instructions (used to manipulate inline caches, primitive & dll calls, etc.).
 155 
 156 class NativeCall: public NativeInstruction {
 157  public:
 158   enum Intel_specific_constants {
 159     instruction_code            = 0xE8,
 160     instruction_size            =    5,
 161     instruction_offset          =    0,
 162     displacement_offset         =    1,
 163     return_address_offset       =    5
 164   };
 165 
 166   enum { cache_line_size = BytesPerWord };  // conservative estimate!
 167 
 168   address instruction_address() const       { return addr_at(instruction_offset); }
 169   address next_instruction_address() const  { return addr_at(return_address_offset); }
 170   int   displacement() const                { return (jint) int_at(displacement_offset); }
 171   address displacement_address() const      { return addr_at(displacement_offset); }
 172   address return_address() const            { return addr_at(return_address_offset); }
 173   address destination() const;
 174   void  set_destination(address dest)       {
 175 #ifdef AMD64
 176     intptr_t disp = dest - return_address();
 177     guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");

 178 #endif // AMD64
 179     set_int_at(displacement_offset, dest - return_address());
 180   }
 181   void  set_destination_mt_safe(address dest);
 182 
 183   void  verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned"); }
 184   void  verify();
 185   void  print();
 186 
 187   // Creation
 188   inline friend NativeCall* nativeCall_at(address address);
 189   inline friend NativeCall* nativeCall_before(address return_address);
 190 
 191   static bool is_call_at(address instr) {
 192     return ((*instr) & 0xFF) == NativeCall::instruction_code;
 193   }
 194 
 195   static bool is_call_before(address return_address) {
 196     return is_call_at(return_address - NativeCall::return_address_offset);
 197   }
 198 
 199   static bool is_call_to(address instr, address target) {
 200     return nativeInstruction_at(instr)->is_call() &&
 201       nativeCall_at(instr)->destination() == target;
 202   }
 203 
 204 #if INCLUDE_AOT
 205   static bool is_far_call(address instr, address target) {
 206     intptr_t disp = target - (instr + sizeof(int32_t));
 207     return !Assembler::is_simm32(disp);
 208   }
 209 #endif
 210 
 211   // MT-safe patching of a call instruction.
 212   static void insert(address code_pos, address entry);
 213 
 214   static void replace_mt_safe(address instr_addr, address code_buffer);
 215 };
 216 
 217 inline NativeCall* nativeCall_at(address address) {
 218   NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset);
 219 #ifdef ASSERT
 220   call->verify();
 221 #endif
 222   return call;
 223 }
 224 
 225 inline NativeCall* nativeCall_before(address return_address) {
 226   NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
 227 #ifdef ASSERT
 228   call->verify();
 229 #endif
 230   return call;


 413     lea_instruction_code                = 0x8D,
 414     mov64_instruction_code              = 0xB8
 415   };
 416 
 417   void verify();
 418   void print ();
 419 
 420   // unit test stuff
 421   static void test() {}
 422 
 423  private:
 424   friend NativeLoadAddress* nativeLoadAddress_at (address address) {
 425     NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
 426     #ifdef ASSERT
 427       test->verify();
 428     #endif
 429     return test;
 430   }
 431 };
 432 
 433 // destination is rbx or rax
 434 // mov rbx, [rip + offset]
 435 class NativeLoadGot: public NativeInstruction {
 436 #ifdef AMD64
 437   static const bool has_rex = true;
 438   static const int rex_size = 1;
 439 #else
 440   static const bool has_rex = false;
 441   static const int rex_size = 0;
 442 #endif
 443 public:
 444   enum Intel_specific_constants {
 445     rex_prefix = 0x48,
 446     instruction_code = 0x8b,
 447     modrm_rbx_code = 0x1d,
 448     modrm_rax_code = 0x05,
 449     instruction_length = 6 + rex_size,
 450     offset_offset = 2 + rex_size
 451   };
 452 
 453   address instruction_address() const { return addr_at(0); }
 454   address rip_offset_address() const { return addr_at(offset_offset); }
 455   int rip_offset() const { return int_at(offset_offset); }
 456   address return_address() const { return addr_at(instruction_length); }
 457   address got_address() const { return return_address() + rip_offset(); }
 458   address next_instruction_address() const { return return_address(); }
 459   intptr_t data() const;
 460   void set_data(intptr_t data) {
 461     intptr_t *addr = (intptr_t *) got_address();
 462     *addr = data;
 463   }
 464 
 465   void verify() const;
 466 private:
 467   void report_and_fail() const;
 468 };
 469 
 470 inline NativeLoadGot* nativeLoadGot_at(address addr) {
 471   NativeLoadGot* load = (NativeLoadGot*) addr;
 472 #ifdef ASSERT
 473   load->verify();
 474 #endif
 475   return load;
 476 }
 477 
 478 // jump rel32off
 479 
 480 class NativeJump: public NativeInstruction {
 481  public:
 482   enum Intel_specific_constants {
 483     instruction_code            = 0xe9,
 484     instruction_size            =    5,
 485     instruction_offset          =    0,
 486     data_offset                 =    1,
 487     next_instruction_offset     =    5
 488   };
 489 
 490   address instruction_address() const       { return addr_at(instruction_offset); }
 491   address next_instruction_address() const  { return addr_at(next_instruction_offset); }
 492   address jump_destination() const          {
 493      address dest = (int_at(data_offset)+next_instruction_address());
 494      // 32bit used to encode unresolved jmp as jmp -1
 495      // 64bit can't produce this so it used jump to self.
 496      // Now 32bit and 64bit use jump to self as the unresolved address
 497      // which the inline cache code (and relocs) know about


 518   void verify();
 519 
 520   // Unit testing stuff
 521   static void test() {}
 522 
 523   // Insertion of native jump instruction
 524   static void insert(address code_pos, address entry);
 525   // MT-safe insertion of native jump at verified method entry
 526   static void check_verified_entry_alignment(address entry, address verified_entry);
 527   static void patch_verified_entry(address entry, address verified_entry, address dest);
 528 };
 529 
 530 inline NativeJump* nativeJump_at(address address) {
 531   NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset);
 532 #ifdef ASSERT
 533   jump->verify();
 534 #endif
 535   return jump;
 536 }
 537 
 538 // far jump reg
 539 class NativeFarJump: public NativeInstruction {
 540  public:
 541   address jump_destination() const;
 542 
 543   // Creation
 544   inline friend NativeFarJump* nativeFarJump_at(address address);
 545 
 546   void verify();
 547 
 548   // Unit testing stuff
 549   static void test() {}
 550 
 551 };
 552 
 553 inline NativeFarJump* nativeFarJump_at(address address) {
 554   NativeFarJump* jump = (NativeFarJump*)(address);
 555 #ifdef ASSERT
 556   jump->verify();
 557 #endif
 558   return jump;
 559 }
 560 
 561 // Handles all kinds of jump on Intel. Long/far, conditional/unconditional
 562 class NativeGeneralJump: public NativeInstruction {
 563  public:
 564   enum Intel_specific_constants {
 565     // Constants does not apply, since the lengths and offsets depends on the actual jump
 566     // used
 567     // Instruction codes:
 568     //   Unconditional jumps: 0xE9    (rel32off), 0xEB (rel8off)
 569     //   Conditional jumps:   0x0F8x  (rel32off), 0x7x (rel8off)
 570     unconditional_long_jump  = 0xe9,
 571     unconditional_short_jump = 0xeb,
 572     instruction_size = 5
 573   };
 574 
 575   address instruction_address() const       { return addr_at(0); }
 576   address jump_destination()    const;
 577 
 578   // Creation
 579   inline friend NativeGeneralJump* nativeGeneralJump_at(address address);
 580 
 581   // Insertion of native general jump instruction
 582   static void insert_unconditional(address code_pos, address entry);
 583   static void replace_mt_safe(address instr_addr, address code_buffer);
 584 
 585   void verify();
 586 };
 587 
 588 inline NativeGeneralJump* nativeGeneralJump_at(address address) {
 589   NativeGeneralJump* jump = (NativeGeneralJump*)(address);
 590   debug_only(jump->verify();)
 591   return jump;
 592 }
 593 
 594 class NativeGotJump: public NativeInstruction {
 595 public:
 596   enum Intel_specific_constants {
 597     instruction_code = 0xff,
 598     instruction_offset = 0,
 599     instruction_size = 6,
 600     rip_offset = 2
 601   };
 602 
 603   void verify() const;
 604   address instruction_address() const { return addr_at(instruction_offset); }
 605   address destination() const;
 606   address return_address() const { return addr_at(instruction_size); }
 607   int got_offset() const { return (jint) int_at(rip_offset); }
 608   address got_address() const { return return_address() + got_offset(); }
 609   address next_instruction_address() const { return addr_at(instruction_size); }
 610   bool is_GotJump() const { return ubyte_at(0) == instruction_code; }
 611 
 612   void set_jump_destination(address dest)  {
 613     address *got_entry = (address *) got_address();
 614     *got_entry = dest;
 615   }
 616 };
 617 
 618 inline NativeGotJump* nativeGotJump_at(address addr) {
 619   NativeGotJump* jump = (NativeGotJump*)(addr);
 620   debug_only(jump->verify());
 621   return jump;
 622 }
 623 
 624 class NativePopReg : public NativeInstruction {
 625  public:
 626   enum Intel_specific_constants {
 627     instruction_code            = 0x58,
 628     instruction_size            =    1,
 629     instruction_offset          =    0,
 630     data_offset                 =    1,
 631     next_instruction_offset     =    1
 632   };
 633 
 634   // Insert a pop instruction
 635   static void insert(address code_pos, Register reg);
 636 };
 637 
 638 
 639 class NativeIllegalInstruction: public NativeInstruction {
 640  public:
 641   enum Intel_specific_constants {
 642     instruction_code            = 0x0B0F,    // Real byte order is: 0x0F, 0x0B
 643     instruction_size            =    2,


 675 class NativeTstRegMem: public NativeInstruction {
 676  public:
 677   enum Intel_specific_constants {
 678     instruction_rex_prefix_mask = 0xF0,
 679     instruction_rex_prefix      = Assembler::REX,
 680     instruction_code_memXregl   = 0x85,
 681     modrm_mask                  = 0x38, // select reg from the ModRM byte
 682     modrm_reg                   = 0x00  // rax
 683   };
 684 };
 685 
 686 inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
 687 inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
 688 inline bool NativeInstruction::is_call_reg()     { return ubyte_at(0) == NativeCallReg::instruction_code ||
 689                                                           (ubyte_at(1) == NativeCallReg::instruction_code &&
 690                                                            (ubyte_at(0) == Assembler::REX || ubyte_at(0) == Assembler::REX_B)); }
 691 inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
 692                                                           ubyte_at(0) == NativeReturnX::instruction_code; }
 693 inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
 694                                                           ubyte_at(0) == 0xEB; /* short jump */ }
 695 inline bool NativeInstruction::is_jump_reg()     {
 696   int pos = 0;
 697   if (ubyte_at(0) == Assembler::REX_B) pos = 1;
 698   return ubyte_at(pos) == 0xFF && (ubyte_at(pos + 1) & 0xF0) == 0xE0;
 699 }
 700 inline bool NativeInstruction::is_far_jump()     { return is_mov_literal64(); }
 701 inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
 702                                                           (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
 703 inline bool NativeInstruction::is_safepoint_poll() {
 704 #ifdef AMD64
 705   // Try decoding a near safepoint first:
 706   if (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
 707       ubyte_at(1) == 0x05) { // 00 rax 101
 708     address fault = addr_at(6) + int_at(2);
 709     NOT_JVMCI(assert(!Assembler::is_polling_page_far(), "unexpected poll encoding");)
 710     return os::is_poll_address(fault);
 711   }
 712   // Now try decoding a far safepoint:
 713   // two cases, depending on the choice of the base register in the address.
 714   if (((ubyte_at(0) & NativeTstRegMem::instruction_rex_prefix_mask) == NativeTstRegMem::instruction_rex_prefix &&
 715        ubyte_at(1) == NativeTstRegMem::instruction_code_memXregl &&
 716        (ubyte_at(2) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) ||
 717       ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
 718       (ubyte_at(1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) {
 719     NOT_JVMCI(assert(Assembler::is_polling_page_far(), "unexpected poll encoding");)
 720     return true;
src/cpu/x86/vm/nativeInst_x86.hpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File