1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1HeapRegionTraceType.hpp"
  30 #include "gc/g1/g1OopClosures.inline.hpp"
  31 #include "gc/g1/heapRegion.inline.hpp"
  32 #include "gc/g1/heapRegionBounds.inline.hpp"
  33 #include "gc/g1/heapRegionManager.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/g1/heapRegionTracer.hpp"
  36 #include "gc/shared/genOopClosures.inline.hpp"
  37 #include "gc/shared/space.inline.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/orderAccess.inline.hpp"
  44 
  45 int    HeapRegion::LogOfHRGrainBytes = 0;
  46 int    HeapRegion::LogOfHRGrainWords = 0;
  47 size_t HeapRegion::GrainBytes        = 0;
  48 size_t HeapRegion::GrainWords        = 0;
  49 size_t HeapRegion::CardsPerRegion    = 0;
  50 
  51 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  52                                  HeapRegion* hr,
  53                                  G1ParPushHeapRSClosure* cl,
  54                                  CardTableModRefBS::PrecisionStyle precision) :
  55   DirtyCardToOopClosure(hr, cl, precision, NULL),
  56   _hr(hr), _rs_scan(cl), _g1(g1) { }
  57 
  58 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  59                                                    OopClosure* oc) :
  60   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  61 
  62 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  63                                       HeapWord* bottom,
  64                                       HeapWord* top) {
  65   G1CollectedHeap* g1h = _g1;
  66   size_t oop_size;
  67   HeapWord* cur = bottom;
  68 
  69   // Start filtering what we add to the remembered set. If the object is
  70   // not considered dead, either because it is marked (in the mark bitmap)
  71   // or it was allocated after marking finished, then we add it. Otherwise
  72   // we can safely ignore the object.
  73   if (!g1h->is_obj_dead(oop(cur))) {
  74     oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
  75   } else {
  76     oop_size = _hr->block_size(cur);
  77   }
  78 
  79   cur += oop_size;
  80 
  81   if (cur < top) {
  82     oop cur_oop = oop(cur);
  83     oop_size = _hr->block_size(cur);
  84     HeapWord* next_obj = cur + oop_size;
  85     while (next_obj < top) {
  86       // Keep filtering the remembered set.
  87       if (!g1h->is_obj_dead(cur_oop)) {
  88         // Bottom lies entirely below top, so we can call the
  89         // non-memRegion version of oop_iterate below.
  90         cur_oop->oop_iterate(_rs_scan);
  91       }
  92       cur = next_obj;
  93       cur_oop = oop(cur);
  94       oop_size = _hr->block_size(cur);
  95       next_obj = cur + oop_size;
  96     }
  97 
  98     // Last object. Need to do dead-obj filtering here too.
  99     if (!g1h->is_obj_dead(oop(cur))) {
 100       oop(cur)->oop_iterate(_rs_scan, mr);
 101     }
 102   }
 103 }
 104 
 105 size_t HeapRegion::max_region_size() {
 106   return HeapRegionBounds::max_size();
 107 }
 108 
 109 size_t HeapRegion::min_region_size_in_words() {
 110   return HeapRegionBounds::min_size() >> LogHeapWordSize;
 111 }
 112 
 113 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 114   size_t region_size = G1HeapRegionSize;
 115   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 116     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 117     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 118                        HeapRegionBounds::min_size());
 119   }
 120 
 121   int region_size_log = log2_long((jlong) region_size);
 122   // Recalculate the region size to make sure it's a power of
 123   // 2. This means that region_size is the largest power of 2 that's
 124   // <= what we've calculated so far.
 125   region_size = ((size_t)1 << region_size_log);
 126 
 127   // Now make sure that we don't go over or under our limits.
 128   if (region_size < HeapRegionBounds::min_size()) {
 129     region_size = HeapRegionBounds::min_size();
 130   } else if (region_size > HeapRegionBounds::max_size()) {
 131     region_size = HeapRegionBounds::max_size();
 132   }
 133 
 134   // And recalculate the log.
 135   region_size_log = log2_long((jlong) region_size);
 136 
 137   // Now, set up the globals.
 138   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 139   LogOfHRGrainBytes = region_size_log;
 140 
 141   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 142   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 143 
 144   guarantee(GrainBytes == 0, "we should only set it once");
 145   // The cast to int is safe, given that we've bounded region_size by
 146   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 147   GrainBytes = region_size;
 148   log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);
 149 
 150   guarantee(GrainWords == 0, "we should only set it once");
 151   GrainWords = GrainBytes >> LogHeapWordSize;
 152   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 153 
 154   guarantee(CardsPerRegion == 0, "we should only set it once");
 155   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 156 
 157   if (G1HeapRegionSize != GrainBytes) {
 158     FLAG_SET_ERGO(size_t, G1HeapRegionSize, GrainBytes);
 159   }
 160 }
 161 
 162 void HeapRegion::reset_after_compaction() {
 163   G1ContiguousSpace::reset_after_compaction();
 164   // After a compaction the mark bitmap is invalid, so we must
 165   // treat all objects as being inside the unmarked area.
 166   zero_marked_bytes();
 167   init_top_at_mark_start();
 168 }
 169 
 170 void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) {
 171   assert(_humongous_start_region == NULL,
 172          "we should have already filtered out humongous regions");
 173   assert(!in_collection_set(),
 174          "Should not clear heap region %u in the collection set", hrm_index());
 175 
 176   set_allocation_context(AllocationContext::system());
 177   set_young_index_in_cset(-1);
 178   uninstall_surv_rate_group();
 179   set_free();
 180   reset_pre_dummy_top();
 181 
 182   if (!keep_remset) {
 183     if (locked) {
 184       rem_set()->clear_locked();
 185     } else {
 186       rem_set()->clear();
 187     }
 188   }
 189 
 190   zero_marked_bytes();
 191 
 192   init_top_at_mark_start();
 193   _gc_time_stamp = G1CollectedHeap::heap()->get_gc_time_stamp();
 194   if (clear_space) clear(SpaceDecorator::Mangle);
 195 }
 196 
 197 void HeapRegion::par_clear() {
 198   assert(used() == 0, "the region should have been already cleared");
 199   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 200   HeapRegionRemSet* hrrs = rem_set();
 201   hrrs->clear();
 202   CardTableModRefBS* ct_bs =
 203     barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
 204   ct_bs->clear(MemRegion(bottom(), end()));
 205 }
 206 
 207 void HeapRegion::calc_gc_efficiency() {
 208   // GC efficiency is the ratio of how much space would be
 209   // reclaimed over how long we predict it would take to reclaim it.
 210   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 211   G1Policy* g1p = g1h->g1_policy();
 212 
 213   // Retrieve a prediction of the elapsed time for this region for
 214   // a mixed gc because the region will only be evacuated during a
 215   // mixed gc.
 216   double region_elapsed_time_ms =
 217     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 218   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 219 }
 220 
 221 void HeapRegion::set_free() {
 222   report_region_type_change(G1HeapRegionTraceType::Free);
 223   _type.set_free();
 224 }
 225 
 226 void HeapRegion::set_eden() {
 227   report_region_type_change(G1HeapRegionTraceType::Eden);
 228   _type.set_eden();
 229 }
 230 
 231 void HeapRegion::set_eden_pre_gc() {
 232   report_region_type_change(G1HeapRegionTraceType::Eden);
 233   _type.set_eden_pre_gc();
 234 }
 235 
 236 void HeapRegion::set_survivor() {
 237   report_region_type_change(G1HeapRegionTraceType::Survivor);
 238   _type.set_survivor();
 239 }
 240 
 241 void HeapRegion::set_old() {
 242   report_region_type_change(G1HeapRegionTraceType::Old);
 243   _type.set_old();
 244 }
 245 
 246 void HeapRegion::set_archive() {
 247   report_region_type_change(G1HeapRegionTraceType::Archive);
 248   _type.set_archive();
 249 }
 250 
 251 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
 252   assert(!is_humongous(), "sanity / pre-condition");
 253   assert(top() == bottom(), "should be empty");
 254 
 255   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
 256   _type.set_starts_humongous();
 257   _humongous_start_region = this;
 258 
 259   _bot_part.set_for_starts_humongous(obj_top, fill_size);
 260 }
 261 
 262 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 263   assert(!is_humongous(), "sanity / pre-condition");
 264   assert(top() == bottom(), "should be empty");
 265   assert(first_hr->is_starts_humongous(), "pre-condition");
 266 
 267   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
 268   _type.set_continues_humongous();
 269   _humongous_start_region = first_hr;
 270 }
 271 
 272 void HeapRegion::clear_humongous() {
 273   assert(is_humongous(), "pre-condition");
 274 
 275   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 276   _humongous_start_region = NULL;
 277 }
 278 
 279 HeapRegion::HeapRegion(uint hrm_index,
 280                        G1BlockOffsetTable* bot,
 281                        MemRegion mr) :
 282     G1ContiguousSpace(bot),
 283     _hrm_index(hrm_index),
 284     _allocation_context(AllocationContext::system()),
 285     _humongous_start_region(NULL),
 286     _evacuation_failed(false),
 287     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 288     _next(NULL), _prev(NULL),
 289 #ifdef ASSERT
 290     _containing_set(NULL),
 291 #endif // ASSERT
 292      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 293     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 294     _predicted_bytes_to_copy(0)
 295 {
 296   _rem_set = new HeapRegionRemSet(bot, this);
 297 
 298   initialize(mr);
 299 }
 300 
 301 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 302   assert(_rem_set->is_empty(), "Remembered set must be empty");
 303 
 304   G1ContiguousSpace::initialize(mr, clear_space, mangle_space);
 305 
 306   hr_clear(false /*par*/, false /*clear_space*/);
 307   set_top(bottom());
 308   record_timestamp();
 309 }
 310 
 311 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
 312   HeapRegionTracer::send_region_type_change(_hrm_index,
 313                                             get_trace_type(),
 314                                             to,
 315                                             (uintptr_t)bottom(),
 316                                             used(),
 317                                             (uint)allocation_context());
 318 }
 319 
 320 CompactibleSpace* HeapRegion::next_compaction_space() const {
 321   return G1CollectedHeap::heap()->next_compaction_region(this);
 322 }
 323 
 324 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 325                                                     bool during_conc_mark) {
 326   // We always recreate the prev marking info and we'll explicitly
 327   // mark all objects we find to be self-forwarded on the prev
 328   // bitmap. So all objects need to be below PTAMS.
 329   _prev_marked_bytes = 0;
 330 
 331   if (during_initial_mark) {
 332     // During initial-mark, we'll also explicitly mark all objects
 333     // we find to be self-forwarded on the next bitmap. So all
 334     // objects need to be below NTAMS.
 335     _next_top_at_mark_start = top();
 336     _next_marked_bytes = 0;
 337   } else if (during_conc_mark) {
 338     // During concurrent mark, all objects in the CSet (including
 339     // the ones we find to be self-forwarded) are implicitly live.
 340     // So all objects need to be above NTAMS.
 341     _next_top_at_mark_start = bottom();
 342     _next_marked_bytes = 0;
 343   }
 344 }
 345 
 346 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 347                                                   bool during_conc_mark,
 348                                                   size_t marked_bytes) {
 349   assert(marked_bytes <= used(),
 350          "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
 351   _prev_top_at_mark_start = top();
 352   _prev_marked_bytes = marked_bytes;
 353 }
 354 
 355 bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr,
 356                                                   FilterOutOfRegionClosure* cl,
 357                                                   jbyte* card_ptr) {
 358   assert(card_ptr != NULL, "pre-condition");
 359   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 360 
 361   // If we're within a stop-world GC, then we might look at a card in a
 362   // GC alloc region that extends onto a GC LAB, which may not be
 363   // parseable.  Stop such at the "scan_top" of the region.
 364   if (g1h->is_gc_active()) {
 365     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 366   } else {
 367     mr = mr.intersection(used_region());
 368   }
 369   if (mr.is_empty()) {
 370     return true;
 371   }
 372   // Otherwise, find the obj that extends onto mr.start().
 373 
 374   // The intersection of the incoming mr (for the card) and the
 375   // allocated part of the region is non-empty. This implies that
 376   // we have actually allocated into this region. The code in
 377   // G1CollectedHeap.cpp that allocates a new region sets the
 378   // is_young tag on the region before allocating. Thus we
 379   // safely know if this region is young.
 380   if (is_young()) {
 381     return true;
 382   }
 383 
 384   // We can only clean the card here, after we make the decision that
 385   // the card is not young.
 386   *card_ptr = CardTableModRefBS::clean_card_val();
 387   // We must complete this write before we do any of the reads below.
 388   OrderAccess::storeload();
 389 
 390   // Cache the boundaries of the memory region in some const locals
 391   HeapWord* const start = mr.start();
 392   HeapWord* const end = mr.end();
 393 
 394   // Update BOT as needed while finding start of (potential) object.
 395   HeapWord* cur = block_start(start);
 396   assert(cur <= start, "Postcondition");
 397 
 398   oop obj;
 399 
 400   HeapWord* next = cur;
 401   do {
 402     cur = next;
 403     obj = oop(cur);
 404     if (obj->klass_or_null() == NULL) {
 405       // Ran into an unparseable point.
 406       assert(!g1h->is_gc_active(),
 407              "Unparsable heap during GC at " PTR_FORMAT, p2i(cur));
 408       return false;
 409     }
 410     // Otherwise...
 411     next = cur + block_size(cur);
 412   } while (next <= start);
 413 
 414   // If we finish the above loop...We have a parseable object that
 415   // begins on or before the start of the memory region, and ends
 416   // inside or spans the entire region.
 417   assert(cur <= start, "Loop postcondition");
 418   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 419 
 420   do {
 421     obj = oop(cur);
 422     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
 423     if (obj->klass_or_null() == NULL) {
 424       // Ran into an unparseable point.
 425       assert(!g1h->is_gc_active(),
 426              "Unparsable heap during GC at " PTR_FORMAT, p2i(cur));
 427       return false;
 428     }
 429 
 430     // Advance the current pointer. "obj" still points to the object to iterate.
 431     cur = cur + block_size(cur);
 432 
 433     if (!g1h->is_obj_dead(obj)) {
 434       // Non-objArrays are sometimes marked imprecise at the object start. We
 435       // always need to iterate over them in full.
 436       // We only iterate over object arrays in full if they are completely contained
 437       // in the memory region.
 438       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 439         obj->oop_iterate(cl);
 440       } else {
 441         obj->oop_iterate(cl, mr);
 442       }
 443     }
 444   } while (cur < end);
 445 
 446   return true;
 447 }
 448 
 449 // Code roots support
 450 
 451 void HeapRegion::add_strong_code_root(nmethod* nm) {
 452   HeapRegionRemSet* hrrs = rem_set();
 453   hrrs->add_strong_code_root(nm);
 454 }
 455 
 456 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 457   assert_locked_or_safepoint(CodeCache_lock);
 458   HeapRegionRemSet* hrrs = rem_set();
 459   hrrs->add_strong_code_root_locked(nm);
 460 }
 461 
 462 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 463   HeapRegionRemSet* hrrs = rem_set();
 464   hrrs->remove_strong_code_root(nm);
 465 }
 466 
 467 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 468   HeapRegionRemSet* hrrs = rem_set();
 469   hrrs->strong_code_roots_do(blk);
 470 }
 471 
 472 class VerifyStrongCodeRootOopClosure: public OopClosure {
 473   const HeapRegion* _hr;
 474   nmethod* _nm;
 475   bool _failures;
 476   bool _has_oops_in_region;
 477 
 478   template <class T> void do_oop_work(T* p) {
 479     T heap_oop = oopDesc::load_heap_oop(p);
 480     if (!oopDesc::is_null(heap_oop)) {
 481       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 482 
 483       // Note: not all the oops embedded in the nmethod are in the
 484       // current region. We only look at those which are.
 485       if (_hr->is_in(obj)) {
 486         // Object is in the region. Check that its less than top
 487         if (_hr->top() <= (HeapWord*)obj) {
 488           // Object is above top
 489           log_error(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT,
 490                                p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
 491           _failures = true;
 492           return;
 493         }
 494         // Nmethod has at least one oop in the current region
 495         _has_oops_in_region = true;
 496       }
 497     }
 498   }
 499 
 500 public:
 501   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 502     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 503 
 504   void do_oop(narrowOop* p) { do_oop_work(p); }
 505   void do_oop(oop* p)       { do_oop_work(p); }
 506 
 507   bool failures()           { return _failures; }
 508   bool has_oops_in_region() { return _has_oops_in_region; }
 509 };
 510 
 511 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 512   const HeapRegion* _hr;
 513   bool _failures;
 514 public:
 515   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 516     _hr(hr), _failures(false) {}
 517 
 518   void do_code_blob(CodeBlob* cb) {
 519     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 520     if (nm != NULL) {
 521       // Verify that the nemthod is live
 522       if (!nm->is_alive()) {
 523         log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
 524                               p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 525         _failures = true;
 526       } else {
 527         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 528         nm->oops_do(&oop_cl);
 529         if (!oop_cl.has_oops_in_region()) {
 530           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
 531                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 532           _failures = true;
 533         } else if (oop_cl.failures()) {
 534           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
 535                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 536           _failures = true;
 537         }
 538       }
 539     }
 540   }
 541 
 542   bool failures()       { return _failures; }
 543 };
 544 
 545 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 546   if (!G1VerifyHeapRegionCodeRoots) {
 547     // We're not verifying code roots.
 548     return;
 549   }
 550   if (vo == VerifyOption_G1UseMarkWord) {
 551     // Marking verification during a full GC is performed after class
 552     // unloading, code cache unloading, etc so the strong code roots
 553     // attached to each heap region are in an inconsistent state. They won't
 554     // be consistent until the strong code roots are rebuilt after the
 555     // actual GC. Skip verifying the strong code roots in this particular
 556     // time.
 557     assert(VerifyDuringGC, "only way to get here");
 558     return;
 559   }
 560 
 561   HeapRegionRemSet* hrrs = rem_set();
 562   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 563 
 564   // if this region is empty then there should be no entries
 565   // on its strong code root list
 566   if (is_empty()) {
 567     if (strong_code_roots_length > 0) {
 568       log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries",
 569                             p2i(bottom()), p2i(end()), strong_code_roots_length);
 570       *failures = true;
 571     }
 572     return;
 573   }
 574 
 575   if (is_continues_humongous()) {
 576     if (strong_code_roots_length > 0) {
 577       log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
 578                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
 579       *failures = true;
 580     }
 581     return;
 582   }
 583 
 584   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 585   strong_code_roots_do(&cb_cl);
 586 
 587   if (cb_cl.failures()) {
 588     *failures = true;
 589   }
 590 }
 591 
 592 void HeapRegion::print() const { print_on(tty); }
 593 void HeapRegion::print_on(outputStream* st) const {
 594   st->print("|%4u", this->_hrm_index);
 595   st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
 596             p2i(bottom()), p2i(top()), p2i(end()));
 597   st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
 598   st->print("|%2s", get_short_type_str());
 599   if (in_collection_set()) {
 600     st->print("|CS");
 601   } else {
 602     st->print("|  ");
 603   }
 604   st->print("|TS%3u", _gc_time_stamp);
 605   st->print("|AC%3u", allocation_context());
 606   st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "|",
 607                p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
 608 }
 609 
 610 class G1VerificationClosure : public OopClosure {
 611 protected:
 612   G1CollectedHeap* _g1h;
 613   CardTableModRefBS* _bs;
 614   oop _containing_obj;
 615   bool _failures;
 616   int _n_failures;
 617   VerifyOption _vo;
 618 public:
 619   // _vo == UsePrevMarking -> use "prev" marking information,
 620   // _vo == UseNextMarking -> use "next" marking information,
 621   // _vo == UseMarkWord    -> use mark word from object header.
 622   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 623     _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
 624     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
 625   }
 626 
 627   void set_containing_obj(oop obj) {
 628     _containing_obj = obj;
 629   }
 630 
 631   bool failures() { return _failures; }
 632   int n_failures() { return _n_failures; }
 633 
 634   void print_object(outputStream* out, oop obj) {
 635 #ifdef PRODUCT
 636     Klass* k = obj->klass();
 637     const char* class_name = k->external_name();
 638     out->print_cr("class name %s", class_name);
 639 #else // PRODUCT
 640     obj->print_on(out);
 641 #endif // PRODUCT
 642   }
 643 };
 644 
 645 class VerifyLiveClosure : public G1VerificationClosure {
 646 public:
 647   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 648   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 649   virtual void do_oop(oop* p) { do_oop_work(p); }
 650 
 651   template <class T>
 652   void do_oop_work(T* p) {
 653     assert(_containing_obj != NULL, "Precondition");
 654     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 655       "Precondition");
 656     verify_liveness(p);
 657   }
 658 
 659   template <class T>
 660   void verify_liveness(T* p) {
 661     T heap_oop = oopDesc::load_heap_oop(p);
 662     Log(gc, verify) log;
 663     if (!oopDesc::is_null(heap_oop)) {
 664       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 665       bool failed = false;
 666       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 667         MutexLockerEx x(ParGCRareEvent_lock,
 668           Mutex::_no_safepoint_check_flag);
 669 
 670         if (!_failures) {
 671           log.error("----------");
 672         }
 673         ResourceMark rm;
 674         if (!_g1h->is_in_closed_subset(obj)) {
 675           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 676           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 677             p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 678           print_object(log.error_stream(), _containing_obj);
 679           log.error("points to obj " PTR_FORMAT " not in the heap", p2i(obj));
 680         } else {
 681           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 682           HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
 683           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 684             p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 685           print_object(log.error_stream(), _containing_obj);
 686           log.error("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 687             p2i(obj), p2i(to->bottom()), p2i(to->end()));
 688           print_object(log.error_stream(), obj);
 689         }
 690         log.error("----------");
 691         _failures = true;
 692         failed = true;
 693         _n_failures++;
 694       }
 695     }
 696   }
 697 };
 698 
 699 class VerifyRemSetClosure : public G1VerificationClosure {
 700 public:
 701   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 702   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 703   virtual void do_oop(oop* p) { do_oop_work(p); }
 704 
 705   template <class T>
 706   void do_oop_work(T* p) {
 707     assert(_containing_obj != NULL, "Precondition");
 708     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 709       "Precondition");
 710     verify_remembered_set(p);
 711   }
 712 
 713   template <class T>
 714   void verify_remembered_set(T* p) {
 715     T heap_oop = oopDesc::load_heap_oop(p);
 716     Log(gc, verify) log;
 717     if (!oopDesc::is_null(heap_oop)) {
 718       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 719       bool failed = false;
 720       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 721       HeapRegion* to = _g1h->heap_region_containing(obj);
 722       if (from != NULL && to != NULL &&
 723         from != to &&
 724         !to->is_pinned()) {
 725         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 726         jbyte cv_field = *_bs->byte_for_const(p);
 727         const jbyte dirty = CardTableModRefBS::dirty_card_val();
 728 
 729         bool is_bad = !(from->is_young()
 730           || to->rem_set()->contains_reference(p)
 731           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 732           (_containing_obj->is_objArray() ?
 733           cv_field == dirty
 734           : cv_obj == dirty || cv_field == dirty));
 735         if (is_bad) {
 736           MutexLockerEx x(ParGCRareEvent_lock,
 737             Mutex::_no_safepoint_check_flag);
 738 
 739           if (!_failures) {
 740             log.error("----------");
 741           }
 742           log.error("Missing rem set entry:");
 743           log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT,
 744             p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 745           ResourceMark rm;
 746           _containing_obj->print_on(log.error_stream());
 747           log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to));
 748           if (obj->is_oop()) {
 749             obj->print_on(log.error_stream());
 750           }
 751           log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
 752           log.error("----------");
 753           _failures = true;
 754           if (!failed) _n_failures++;
 755         }
 756       }
 757     }
 758   }
 759 };
 760 
 761 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 762 // We would need a mechanism to make that code skip dead objects.
 763 
 764 void HeapRegion::verify(VerifyOption vo,
 765                         bool* failures) const {
 766   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 767   *failures = false;
 768   HeapWord* p = bottom();
 769   HeapWord* prev_p = NULL;
 770   VerifyLiveClosure vl_cl(g1, vo);
 771   VerifyRemSetClosure vr_cl(g1, vo);
 772   bool is_region_humongous = is_humongous();
 773   size_t object_num = 0;
 774   while (p < top()) {
 775     oop obj = oop(p);
 776     size_t obj_size = block_size(p);
 777     object_num += 1;
 778 
 779     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 780       if (obj->is_oop()) {
 781         Klass* klass = obj->klass();
 782         bool is_metaspace_object = Metaspace::contains(klass) ||
 783                                    (vo == VerifyOption_G1UsePrevMarking &&
 784                                    ClassLoaderDataGraph::unload_list_contains(klass));
 785         if (!is_metaspace_object) {
 786           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 787                                 "not metadata", p2i(klass), p2i(obj));
 788           *failures = true;
 789           return;
 790         } else if (!klass->is_klass()) {
 791           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 792                                 "not a klass", p2i(klass), p2i(obj));
 793           *failures = true;
 794           return;
 795         } else {
 796           vl_cl.set_containing_obj(obj);
 797           if (!g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
 798             // verify liveness and rem_set
 799             vr_cl.set_containing_obj(obj);
 800             G1Mux2Closure mux(&vl_cl, &vr_cl);
 801             obj->oop_iterate_no_header(&mux);
 802 
 803             if (vr_cl.failures()) {
 804               *failures = true;
 805             }
 806             if (G1MaxVerifyFailures >= 0 &&
 807               vr_cl.n_failures() >= G1MaxVerifyFailures) {
 808               return;
 809             }
 810           } else {
 811             // verify only liveness
 812             obj->oop_iterate_no_header(&vl_cl);
 813           }
 814           if (vl_cl.failures()) {
 815             *failures = true;
 816           }
 817           if (G1MaxVerifyFailures >= 0 &&
 818               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 819             return;
 820           }
 821         }
 822       } else {
 823         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 824         *failures = true;
 825         return;
 826       }
 827     }
 828     prev_p = p;
 829     p += obj_size;
 830   }
 831 
 832   if (!is_young() && !is_empty()) {
 833     _bot_part.verify();
 834   }
 835 
 836   if (is_region_humongous) {
 837     oop obj = oop(this->humongous_start_region()->bottom());
 838     if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
 839       log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
 840       *failures = true;
 841       return;
 842     }
 843   }
 844 
 845   if (!is_region_humongous && p != top()) {
 846     log_error(gc, verify)("end of last object " PTR_FORMAT " "
 847                           "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 848     *failures = true;
 849     return;
 850   }
 851 
 852   HeapWord* the_end = end();
 853   // Do some extra BOT consistency checking for addresses in the
 854   // range [top, end). BOT look-ups in this range should yield
 855   // top. No point in doing that if top == end (there's nothing there).
 856   if (p < the_end) {
 857     // Look up top
 858     HeapWord* addr_1 = p;
 859     HeapWord* b_start_1 = _bot_part.block_start_const(addr_1);
 860     if (b_start_1 != p) {
 861       log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
 862                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 863                             p2i(addr_1), p2i(b_start_1), p2i(p));
 864       *failures = true;
 865       return;
 866     }
 867 
 868     // Look up top + 1
 869     HeapWord* addr_2 = p + 1;
 870     if (addr_2 < the_end) {
 871       HeapWord* b_start_2 = _bot_part.block_start_const(addr_2);
 872       if (b_start_2 != p) {
 873         log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
 874                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 875                               p2i(addr_2), p2i(b_start_2), p2i(p));
 876         *failures = true;
 877         return;
 878       }
 879     }
 880 
 881     // Look up an address between top and end
 882     size_t diff = pointer_delta(the_end, p) / 2;
 883     HeapWord* addr_3 = p + diff;
 884     if (addr_3 < the_end) {
 885       HeapWord* b_start_3 = _bot_part.block_start_const(addr_3);
 886       if (b_start_3 != p) {
 887         log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
 888                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 889                               p2i(addr_3), p2i(b_start_3), p2i(p));
 890         *failures = true;
 891         return;
 892       }
 893     }
 894 
 895     // Look up end - 1
 896     HeapWord* addr_4 = the_end - 1;
 897     HeapWord* b_start_4 = _bot_part.block_start_const(addr_4);
 898     if (b_start_4 != p) {
 899       log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
 900                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 901                             p2i(addr_4), p2i(b_start_4), p2i(p));
 902       *failures = true;
 903       return;
 904     }
 905   }
 906 
 907   verify_strong_code_roots(vo, failures);
 908 }
 909 
 910 void HeapRegion::verify() const {
 911   bool dummy = false;
 912   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 913 }
 914 
 915 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
 916   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 917   *failures = false;
 918   HeapWord* p = bottom();
 919   HeapWord* prev_p = NULL;
 920   VerifyRemSetClosure vr_cl(g1, vo);
 921   while (p < top()) {
 922     oop obj = oop(p);
 923     size_t obj_size = block_size(p);
 924 
 925     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 926       if (obj->is_oop()) {
 927         vr_cl.set_containing_obj(obj);
 928         obj->oop_iterate_no_header(&vr_cl);
 929 
 930         if (vr_cl.failures()) {
 931           *failures = true;
 932         }
 933         if (G1MaxVerifyFailures >= 0 &&
 934           vr_cl.n_failures() >= G1MaxVerifyFailures) {
 935           return;
 936         }
 937       } else {
 938         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 939         *failures = true;
 940         return;
 941       }
 942     }
 943 
 944     prev_p = p;
 945     p += obj_size;
 946   }
 947 }
 948 
 949 void HeapRegion::verify_rem_set() const {
 950   bool failures = false;
 951   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
 952   guarantee(!failures, "HeapRegion RemSet verification failed");
 953 }
 954 
 955 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 956   scan_and_forward(this, cp);
 957 }
 958 
 959 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 960 // away eventually.
 961 
 962 void G1ContiguousSpace::clear(bool mangle_space) {
 963   set_top(bottom());
 964   _scan_top = bottom();
 965   CompactibleSpace::clear(mangle_space);
 966   reset_bot();
 967 }
 968 
 969 #ifndef PRODUCT
 970 void G1ContiguousSpace::mangle_unused_area() {
 971   mangle_unused_area_complete();
 972 }
 973 
 974 void G1ContiguousSpace::mangle_unused_area_complete() {
 975   SpaceMangler::mangle_region(MemRegion(top(), end()));
 976 }
 977 #endif
 978 
 979 void G1ContiguousSpace::print() const {
 980   print_short();
 981   tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 982                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 983                 p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end()));
 984 }
 985 
 986 HeapWord* G1ContiguousSpace::initialize_threshold() {
 987   return _bot_part.initialize_threshold();
 988 }
 989 
 990 HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start,
 991                                                     HeapWord* end) {
 992   _bot_part.alloc_block(start, end);
 993   return _bot_part.threshold();
 994 }
 995 
 996 HeapWord* G1ContiguousSpace::scan_top() const {
 997   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 998   HeapWord* local_top = top();
 999   OrderAccess::loadload();
1000   const unsigned local_time_stamp = _gc_time_stamp;
1001   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1002   if (local_time_stamp < g1h->get_gc_time_stamp()) {
1003     return local_top;
1004   } else {
1005     return _scan_top;
1006   }
1007 }
1008 
1009 void G1ContiguousSpace::record_timestamp() {
1010   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1011   uint curr_gc_time_stamp = g1h->get_gc_time_stamp();
1012 
1013   if (_gc_time_stamp < curr_gc_time_stamp) {
1014     // Setting the time stamp here tells concurrent readers to look at
1015     // scan_top to know the maximum allowed address to look at.
1016 
1017     // scan_top should be bottom for all regions except for the
1018     // retained old alloc region which should have scan_top == top
1019     HeapWord* st = _scan_top;
1020     guarantee(st == _bottom || st == _top, "invariant");
1021 
1022     _gc_time_stamp = curr_gc_time_stamp;
1023   }
1024 }
1025 
1026 void G1ContiguousSpace::record_retained_region() {
1027   // scan_top is the maximum address where it's safe for the next gc to
1028   // scan this region.
1029   _scan_top = top();
1030 }
1031 
1032 void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
1033   object_iterate(blk);
1034 }
1035 
1036 void G1ContiguousSpace::object_iterate(ObjectClosure* blk) {
1037   HeapWord* p = bottom();
1038   while (p < top()) {
1039     if (block_is_obj(p)) {
1040       blk->do_object(oop(p));
1041     }
1042     p += block_size(p);
1043   }
1044 }
1045 
1046 G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) :
1047   _bot_part(bot, this),
1048   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1049   _gc_time_stamp(0)
1050 {
1051 }
1052 
1053 void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1054   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1055   _top = bottom();
1056   _scan_top = bottom();
1057   set_saved_mark_word(NULL);
1058   reset_bot();
1059 }
1060