1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/klass.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "aot/aotLoader.hpp"
  48 #include "prims/forte.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/methodHandles.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/vframe.hpp"
  63 #include "runtime/vframeArray.hpp"
  64 #include "trace/tracing.hpp"
  65 #include "utilities/copy.hpp"
  66 #include "utilities/dtrace.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/hashtable.inline.hpp"
  69 #include "utilities/macros.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 #ifdef COMPILER1
  72 #include "c1/c1_Runtime1.hpp"
  73 #endif
  74 
  75 // Shared stub locations
  76 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  77 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  78 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  79 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  82 address             SharedRuntime::_resolve_static_call_entry;
  83 
  84 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  85 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  88 
  89 #ifdef COMPILER2
  90 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  91 #endif // COMPILER2
  92 
  93 
  94 //----------------------------generate_stubs-----------------------------------
  95 void SharedRuntime::generate_stubs() {
  96   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  97   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  98   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  99   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 100   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 101   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 102   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 103 
 104 #if defined(COMPILER2) || INCLUDE_JVMCI
 105   // Vectors are generated only by C2 and JVMCI.
 106   bool support_wide = is_wide_vector(MaxVectorSize);
 107   if (support_wide) {
 108     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 109   }
 110 #endif // COMPILER2 || INCLUDE_JVMCI
 111   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 112   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 113 
 114   generate_deopt_blob();
 115 
 116 #ifdef COMPILER2
 117   generate_uncommon_trap_blob();
 118 #endif // COMPILER2
 119 }
 120 
 121 #include <math.h>
 122 
 123 // Implementation of SharedRuntime
 124 
 125 #ifndef PRODUCT
 126 // For statistics
 127 int SharedRuntime::_ic_miss_ctr = 0;
 128 int SharedRuntime::_wrong_method_ctr = 0;
 129 int SharedRuntime::_resolve_static_ctr = 0;
 130 int SharedRuntime::_resolve_virtual_ctr = 0;
 131 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 132 int SharedRuntime::_implicit_null_throws = 0;
 133 int SharedRuntime::_implicit_div0_throws = 0;
 134 int SharedRuntime::_throw_null_ctr = 0;
 135 
 136 int SharedRuntime::_nof_normal_calls = 0;
 137 int SharedRuntime::_nof_optimized_calls = 0;
 138 int SharedRuntime::_nof_inlined_calls = 0;
 139 int SharedRuntime::_nof_megamorphic_calls = 0;
 140 int SharedRuntime::_nof_static_calls = 0;
 141 int SharedRuntime::_nof_inlined_static_calls = 0;
 142 int SharedRuntime::_nof_interface_calls = 0;
 143 int SharedRuntime::_nof_optimized_interface_calls = 0;
 144 int SharedRuntime::_nof_inlined_interface_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 146 int SharedRuntime::_nof_removable_exceptions = 0;
 147 
 148 int SharedRuntime::_new_instance_ctr=0;
 149 int SharedRuntime::_new_array_ctr=0;
 150 int SharedRuntime::_multi1_ctr=0;
 151 int SharedRuntime::_multi2_ctr=0;
 152 int SharedRuntime::_multi3_ctr=0;
 153 int SharedRuntime::_multi4_ctr=0;
 154 int SharedRuntime::_multi5_ctr=0;
 155 int SharedRuntime::_mon_enter_stub_ctr=0;
 156 int SharedRuntime::_mon_exit_stub_ctr=0;
 157 int SharedRuntime::_mon_enter_ctr=0;
 158 int SharedRuntime::_mon_exit_ctr=0;
 159 int SharedRuntime::_partial_subtype_ctr=0;
 160 int SharedRuntime::_jbyte_array_copy_ctr=0;
 161 int SharedRuntime::_jshort_array_copy_ctr=0;
 162 int SharedRuntime::_jint_array_copy_ctr=0;
 163 int SharedRuntime::_jlong_array_copy_ctr=0;
 164 int SharedRuntime::_oop_array_copy_ctr=0;
 165 int SharedRuntime::_checkcast_array_copy_ctr=0;
 166 int SharedRuntime::_unsafe_array_copy_ctr=0;
 167 int SharedRuntime::_generic_array_copy_ctr=0;
 168 int SharedRuntime::_slow_array_copy_ctr=0;
 169 int SharedRuntime::_find_handler_ctr=0;
 170 int SharedRuntime::_rethrow_ctr=0;
 171 
 172 int     SharedRuntime::_ICmiss_index                    = 0;
 173 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 174 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 175 
 176 
 177 void SharedRuntime::trace_ic_miss(address at) {
 178   for (int i = 0; i < _ICmiss_index; i++) {
 179     if (_ICmiss_at[i] == at) {
 180       _ICmiss_count[i]++;
 181       return;
 182     }
 183   }
 184   int index = _ICmiss_index++;
 185   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 186   _ICmiss_at[index] = at;
 187   _ICmiss_count[index] = 1;
 188 }
 189 
 190 void SharedRuntime::print_ic_miss_histogram() {
 191   if (ICMissHistogram) {
 192     tty->print_cr("IC Miss Histogram:");
 193     int tot_misses = 0;
 194     for (int i = 0; i < _ICmiss_index; i++) {
 195       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 196       tot_misses += _ICmiss_count[i];
 197     }
 198     tty->print_cr("Total IC misses: %7d", tot_misses);
 199   }
 200 }
 201 #endif // PRODUCT
 202 
 203 #if INCLUDE_ALL_GCS
 204 
 205 // G1 write-barrier pre: executed before a pointer store.
 206 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 207   if (orig == NULL) {
 208     assert(false, "should be optimized out");
 209     return;
 210   }
 211   assert(orig->is_oop(true /* ignore mark word */), "Error");
 212   // store the original value that was in the field reference
 213   thread->satb_mark_queue().enqueue(orig);
 214 JRT_END
 215 
 216 // G1 write-barrier post: executed after a pointer store.
 217 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 218   thread->dirty_card_queue().enqueue(card_addr);
 219 JRT_END
 220 
 221 #endif // INCLUDE_ALL_GCS
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 225   return x * y;
 226 JRT_END
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 230   if (x == min_jlong && y == CONST64(-1)) {
 231     return x;
 232   } else {
 233     return x / y;
 234   }
 235 JRT_END
 236 
 237 
 238 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 239   if (x == min_jlong && y == CONST64(-1)) {
 240     return 0;
 241   } else {
 242     return x % y;
 243   }
 244 JRT_END
 245 
 246 
 247 const juint  float_sign_mask  = 0x7FFFFFFF;
 248 const juint  float_infinity   = 0x7F800000;
 249 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 250 const julong double_infinity  = CONST64(0x7FF0000000000000);
 251 
 252 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 253 #ifdef _WIN64
 254   // 64-bit Windows on amd64 returns the wrong values for
 255   // infinity operands.
 256   union { jfloat f; juint i; } xbits, ybits;
 257   xbits.f = x;
 258   ybits.f = y;
 259   // x Mod Infinity == x unless x is infinity
 260   if (((xbits.i & float_sign_mask) != float_infinity) &&
 261        ((ybits.i & float_sign_mask) == float_infinity) ) {
 262     return x;
 263   }
 264   return ((jfloat)fmod_winx64((double)x, (double)y));
 265 #else
 266   return ((jfloat)fmod((double)x,(double)y));
 267 #endif
 268 JRT_END
 269 
 270 
 271 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 272 #ifdef _WIN64
 273   union { jdouble d; julong l; } xbits, ybits;
 274   xbits.d = x;
 275   ybits.d = y;
 276   // x Mod Infinity == x unless x is infinity
 277   if (((xbits.l & double_sign_mask) != double_infinity) &&
 278        ((ybits.l & double_sign_mask) == double_infinity) ) {
 279     return x;
 280   }
 281   return ((jdouble)fmod_winx64((double)x, (double)y));
 282 #else
 283   return ((jdouble)fmod((double)x,(double)y));
 284 #endif
 285 JRT_END
 286 
 287 #ifdef __SOFTFP__
 288 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 289   return x + y;
 290 JRT_END
 291 
 292 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 293   return x - y;
 294 JRT_END
 295 
 296 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 297   return x * y;
 298 JRT_END
 299 
 300 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 301   return x / y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 305   return x + y;
 306 JRT_END
 307 
 308 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 309   return x - y;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 313   return x * y;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 317   return x / y;
 318 JRT_END
 319 
 320 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 321   return (jfloat)x;
 322 JRT_END
 323 
 324 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 325   return (jdouble)x;
 326 JRT_END
 327 
 328 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 329   return (jdouble)x;
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 333   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 334 JRT_END
 335 
 336 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 337   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 338 JRT_END
 339 
 340 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 341   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 342 JRT_END
 343 
 344 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 345   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 346 JRT_END
 347 
 348 // Functions to return the opposite of the aeabi functions for nan.
 349 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 350   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 354   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 358   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 362   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 366   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 370   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 374   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 375 JRT_END
 376 
 377 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 378   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 379 JRT_END
 380 
 381 // Intrinsics make gcc generate code for these.
 382 float  SharedRuntime::fneg(float f)   {
 383   return -f;
 384 }
 385 
 386 double SharedRuntime::dneg(double f)  {
 387   return -f;
 388 }
 389 
 390 #endif // __SOFTFP__
 391 
 392 #if defined(__SOFTFP__) || defined(E500V2)
 393 // Intrinsics make gcc generate code for these.
 394 double SharedRuntime::dabs(double f)  {
 395   return (f <= (double)0.0) ? (double)0.0 - f : f;
 396 }
 397 
 398 #endif
 399 
 400 #if defined(__SOFTFP__) || defined(PPC)
 401 double SharedRuntime::dsqrt(double f) {
 402   return sqrt(f);
 403 }
 404 #endif
 405 
 406 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jint)
 410     return max_jint;
 411   if (x <= (jfloat) min_jint)
 412     return min_jint;
 413   return (jint) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jfloat) max_jlong)
 421     return max_jlong;
 422   if (x <= (jfloat) min_jlong)
 423     return min_jlong;
 424   return (jlong) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jint)
 432     return max_jint;
 433   if (x <= (jdouble) min_jint)
 434     return min_jint;
 435   return (jint) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 440   if (g_isnan(x))
 441     return 0;
 442   if (x >= (jdouble) max_jlong)
 443     return max_jlong;
 444   if (x <= (jdouble) min_jlong)
 445     return min_jlong;
 446   return (jlong) x;
 447 JRT_END
 448 
 449 
 450 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 451   return (jfloat)x;
 452 JRT_END
 453 
 454 
 455 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 456   return (jfloat)x;
 457 JRT_END
 458 
 459 
 460 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 461   return (jdouble)x;
 462 JRT_END
 463 
 464 // Exception handling across interpreter/compiler boundaries
 465 //
 466 // exception_handler_for_return_address(...) returns the continuation address.
 467 // The continuation address is the entry point of the exception handler of the
 468 // previous frame depending on the return address.
 469 
 470 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 471   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 472   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 473 
 474   // Reset method handle flag.
 475   thread->set_is_method_handle_return(false);
 476 
 477 #if INCLUDE_JVMCI
 478   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 479   // and other exception handler continuations do not read it
 480   thread->set_exception_pc(NULL);
 481 #endif // INCLUDE_JVMCI
 482 
 483   // The fastest case first
 484   CodeBlob* blob = CodeCache::find_blob(return_address);
 485   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 486   if (nm != NULL) {
 487     // Set flag if return address is a method handle call site.
 488     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 489     // native nmethods don't have exception handlers
 490     assert(!nm->is_native_method(), "no exception handler");
 491     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 492     if (nm->is_deopt_pc(return_address)) {
 493       // If we come here because of a stack overflow, the stack may be
 494       // unguarded. Reguard the stack otherwise if we return to the
 495       // deopt blob and the stack bang causes a stack overflow we
 496       // crash.
 497       bool guard_pages_enabled = thread->stack_guards_enabled();
 498       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 499       if (thread->reserved_stack_activation() != thread->stack_base()) {
 500         thread->set_reserved_stack_activation(thread->stack_base());
 501       }
 502       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 503       return SharedRuntime::deopt_blob()->unpack_with_exception();
 504     } else {
 505       return nm->exception_begin();
 506     }
 507   }
 508 
 509   // Entry code
 510   if (StubRoutines::returns_to_call_stub(return_address)) {
 511     return StubRoutines::catch_exception_entry();
 512   }
 513   // Interpreted code
 514   if (Interpreter::contains(return_address)) {
 515     return Interpreter::rethrow_exception_entry();
 516   }
 517 
 518 #if INCLUDE_AOT
 519   // AOT Compiled code
 520   if (UseAOT && AOTLoader::contains(return_address)) {
 521       AOTCompiledMethod* aotm = AOTLoader::find_aot((address) return_address);
 522       // Set flag if return address is a method handle call site.
 523       thread->set_is_method_handle_return(aotm->is_method_handle_return(return_address));
 524       return aotm->exception_begin();
 525   }
 526 #endif
 527 
 528   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 529   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 530 
 531 #ifndef PRODUCT
 532   { ResourceMark rm;
 533     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 534     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 535     tty->print_cr("b) other problem");
 536   }
 537 #endif // PRODUCT
 538 
 539   ShouldNotReachHere();
 540   return NULL;
 541 }
 542 
 543 
 544 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 545   return raw_exception_handler_for_return_address(thread, return_address);
 546 JRT_END
 547 
 548 
 549 address SharedRuntime::get_poll_stub(address pc) {
 550   address stub;
 551   // Look up the code blob
 552   CodeBlob *cb = CodeCache::find_blob(pc);
 553 
 554   // Should be an nmethod
 555   assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 556 
 557   // Look up the relocation information
 558   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 559     "safepoint polling: type must be poll");
 560 
 561 #ifdef ASSERT
 562   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 563     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 564     Disassembler::decode(cb);
 565     fatal("Only polling locations are used for safepoint");
 566   }
 567 #endif
 568 
 569   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 570   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 571   if (at_poll_return) {
 572     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 573            "polling page return stub not created yet");
 574     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 575   } else if (has_wide_vectors) {
 576     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 577            "polling page vectors safepoint stub not created yet");
 578     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 579   } else {
 580     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 581            "polling page safepoint stub not created yet");
 582     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 583   }
 584   log_debug(safepoint)("... found polling page %s exception at pc = "
 585                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 586                        at_poll_return ? "return" : "loop",
 587                        (intptr_t)pc, (intptr_t)stub);
 588   return stub;
 589 }
 590 
 591 
 592 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 593   assert(caller.is_interpreted_frame(), "");
 594   int args_size = ArgumentSizeComputer(sig).size() + 1;
 595   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 596   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 597   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 598   return result;
 599 }
 600 
 601 
 602 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 603   if (JvmtiExport::can_post_on_exceptions()) {
 604     vframeStream vfst(thread, true);
 605     methodHandle method = methodHandle(thread, vfst.method());
 606     address bcp = method()->bcp_from(vfst.bci());
 607     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 608   }
 609   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 610 }
 611 
 612 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 613   Handle h_exception = Exceptions::new_exception(thread, name, message);
 614   throw_and_post_jvmti_exception(thread, h_exception);
 615 }
 616 
 617 // The interpreter code to call this tracing function is only
 618 // called/generated when UL is on for redefine, class and has the right level
 619 // and tags. Since obsolete methods are never compiled, we don't have
 620 // to modify the compilers to generate calls to this function.
 621 //
 622 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 623     JavaThread* thread, Method* method))
 624   if (method->is_obsolete()) {
 625     // We are calling an obsolete method, but this is not necessarily
 626     // an error. Our method could have been redefined just after we
 627     // fetched the Method* from the constant pool.
 628     ResourceMark rm;
 629     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 630   }
 631   return 0;
 632 JRT_END
 633 
 634 // ret_pc points into caller; we are returning caller's exception handler
 635 // for given exception
 636 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 637                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 638   assert(cm != NULL, "must exist");
 639   ResourceMark rm;
 640 
 641 #if INCLUDE_JVMCI
 642   if (cm->is_compiled_by_jvmci()) {
 643     // lookup exception handler for this pc
 644     int catch_pco = ret_pc - cm->code_begin();
 645     ExceptionHandlerTable table(cm);
 646     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 647     if (t != NULL) {
 648       return cm->code_begin() + t->pco();
 649     } else {
 650       // there is no exception handler for this pc => deoptimize
 651       cm->make_not_entrant();
 652 
 653       // Use Deoptimization::deoptimize for all of its side-effects:
 654       // revoking biases of monitors, gathering traps statistics, logging...
 655       // it also patches the return pc but we do not care about that
 656       // since we return a continuation to the deopt_blob below.
 657       JavaThread* thread = JavaThread::current();
 658       RegisterMap reg_map(thread, UseBiasedLocking);
 659       frame runtime_frame = thread->last_frame();
 660       frame caller_frame = runtime_frame.sender(&reg_map);
 661       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 662 
 663       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 664     }
 665   }
 666 #endif // INCLUDE_JVMCI
 667 
 668   nmethod* nm = cm->as_nmethod();
 669   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 670   // determine handler bci, if any
 671   EXCEPTION_MARK;
 672 
 673   int handler_bci = -1;
 674   int scope_depth = 0;
 675   if (!force_unwind) {
 676     int bci = sd->bci();
 677     bool recursive_exception = false;
 678     do {
 679       bool skip_scope_increment = false;
 680       // exception handler lookup
 681       KlassHandle ek (THREAD, exception->klass());
 682       methodHandle mh(THREAD, sd->method());
 683       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 684       if (HAS_PENDING_EXCEPTION) {
 685         recursive_exception = true;
 686         // We threw an exception while trying to find the exception handler.
 687         // Transfer the new exception to the exception handle which will
 688         // be set into thread local storage, and do another lookup for an
 689         // exception handler for this exception, this time starting at the
 690         // BCI of the exception handler which caused the exception to be
 691         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 692         // argument to ensure that the correct exception is thrown (4870175).
 693         recursive_exception_occurred = true;
 694         exception = Handle(THREAD, PENDING_EXCEPTION);
 695         CLEAR_PENDING_EXCEPTION;
 696         if (handler_bci >= 0) {
 697           bci = handler_bci;
 698           handler_bci = -1;
 699           skip_scope_increment = true;
 700         }
 701       }
 702       else {
 703         recursive_exception = false;
 704       }
 705       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 706         sd = sd->sender();
 707         if (sd != NULL) {
 708           bci = sd->bci();
 709         }
 710         ++scope_depth;
 711       }
 712     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 713   }
 714 
 715   // found handling method => lookup exception handler
 716   int catch_pco = ret_pc - nm->code_begin();
 717 
 718   ExceptionHandlerTable table(nm);
 719   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 720   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 721     // Allow abbreviated catch tables.  The idea is to allow a method
 722     // to materialize its exceptions without committing to the exact
 723     // routing of exceptions.  In particular this is needed for adding
 724     // a synthetic handler to unlock monitors when inlining
 725     // synchronized methods since the unlock path isn't represented in
 726     // the bytecodes.
 727     t = table.entry_for(catch_pco, -1, 0);
 728   }
 729 
 730 #ifdef COMPILER1
 731   if (t == NULL && nm->is_compiled_by_c1()) {
 732     assert(nm->unwind_handler_begin() != NULL, "");
 733     return nm->unwind_handler_begin();
 734   }
 735 #endif
 736 
 737   if (t == NULL) {
 738     ttyLocker ttyl;
 739     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 740     tty->print_cr("   Exception:");
 741     exception->print();
 742     tty->cr();
 743     tty->print_cr(" Compiled exception table :");
 744     table.print();
 745     nm->print_code();
 746     guarantee(false, "missing exception handler");
 747     return NULL;
 748   }
 749 
 750   return nm->code_begin() + t->pco();
 751 }
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 754   // These errors occur only at call sites
 755   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 756 JRT_END
 757 
 758 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 759   // These errors occur only at call sites
 760   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 761 JRT_END
 762 
 763 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 764   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 765 JRT_END
 766 
 767 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 768   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 772   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 773   // cache sites (when the callee activation is not yet set up) so we are at a call site
 774   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 775 JRT_END
 776 
 777 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 778   throw_StackOverflowError_common(thread, false);
 779 JRT_END
 780 
 781 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 782   throw_StackOverflowError_common(thread, true);
 783 JRT_END
 784 
 785 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 786   // We avoid using the normal exception construction in this case because
 787   // it performs an upcall to Java, and we're already out of stack space.
 788   Thread* THREAD = thread;
 789   Klass* k = SystemDictionary::StackOverflowError_klass();
 790   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 791   if (delayed) {
 792     java_lang_Throwable::set_message(exception_oop,
 793                                      Universe::delayed_stack_overflow_error_message());
 794   }
 795   Handle exception (thread, exception_oop);
 796   if (StackTraceInThrowable) {
 797     java_lang_Throwable::fill_in_stack_trace(exception);
 798   }
 799   // Increment counter for hs_err file reporting
 800   Atomic::inc(&Exceptions::_stack_overflow_errors);
 801   throw_and_post_jvmti_exception(thread, exception);
 802 }
 803 
 804 #if INCLUDE_JVMCI
 805 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 806   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 807   thread->set_jvmci_implicit_exception_pc(pc);
 808   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 809   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 810 }
 811 #endif // INCLUDE_JVMCI
 812 
 813 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 814                                                            address pc,
 815                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 816 {
 817   address target_pc = NULL;
 818 
 819   if (Interpreter::contains(pc)) {
 820 #ifdef CC_INTERP
 821     // C++ interpreter doesn't throw implicit exceptions
 822     ShouldNotReachHere();
 823 #else
 824     switch (exception_kind) {
 825       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 826       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 827       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 828       default:                      ShouldNotReachHere();
 829     }
 830 #endif // !CC_INTERP
 831   } else {
 832     switch (exception_kind) {
 833       case STACK_OVERFLOW: {
 834         // Stack overflow only occurs upon frame setup; the callee is
 835         // going to be unwound. Dispatch to a shared runtime stub
 836         // which will cause the StackOverflowError to be fabricated
 837         // and processed.
 838         // Stack overflow should never occur during deoptimization:
 839         // the compiled method bangs the stack by as much as the
 840         // interpreter would need in case of a deoptimization. The
 841         // deoptimization blob and uncommon trap blob bang the stack
 842         // in a debug VM to verify the correctness of the compiled
 843         // method stack banging.
 844         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 845         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 846         return StubRoutines::throw_StackOverflowError_entry();
 847       }
 848 
 849       case IMPLICIT_NULL: {
 850         if (VtableStubs::contains(pc)) {
 851           // We haven't yet entered the callee frame. Fabricate an
 852           // exception and begin dispatching it in the caller. Since
 853           // the caller was at a call site, it's safe to destroy all
 854           // caller-saved registers, as these entry points do.
 855           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 856 
 857           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 858           if (vt_stub == NULL) return NULL;
 859 
 860           if (vt_stub->is_abstract_method_error(pc)) {
 861             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 862             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 863             return StubRoutines::throw_AbstractMethodError_entry();
 864           } else {
 865             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 866             return StubRoutines::throw_NullPointerException_at_call_entry();
 867           }
 868         } else {
 869           CodeBlob* cb = CodeCache::find_blob(pc);
 870 
 871           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 872           if (cb == NULL) return NULL;
 873 
 874           // Exception happened in CodeCache. Must be either:
 875           // 1. Inline-cache check in C2I handler blob,
 876           // 2. Inline-cache check in nmethod, or
 877           // 3. Implicit null exception in nmethod
 878 
 879           if (!cb->is_compiled()) {
 880             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 881             if (!is_in_blob) {
 882               // Allow normal crash reporting to handle this
 883               return NULL;
 884             }
 885             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 886             // There is no handler here, so we will simply unwind.
 887             return StubRoutines::throw_NullPointerException_at_call_entry();
 888           }
 889 
 890           // Otherwise, it's a compiled method.  Consult its exception handlers.
 891           CompiledMethod* cm = (CompiledMethod*)cb;
 892           if (cm->inlinecache_check_contains(pc)) {
 893             // exception happened inside inline-cache check code
 894             // => the nmethod is not yet active (i.e., the frame
 895             // is not set up yet) => use return address pushed by
 896             // caller => don't push another return address
 897             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 898             return StubRoutines::throw_NullPointerException_at_call_entry();
 899           }
 900 
 901           if (cm->method()->is_method_handle_intrinsic()) {
 902             // exception happened inside MH dispatch code, similar to a vtable stub
 903             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 904             return StubRoutines::throw_NullPointerException_at_call_entry();
 905           }
 906 
 907 #ifndef PRODUCT
 908           _implicit_null_throws++;
 909 #endif
 910 #if INCLUDE_JVMCI
 911           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 912             // If there's no PcDesc then we'll die way down inside of
 913             // deopt instead of just getting normal error reporting,
 914             // so only go there if it will succeed.
 915             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 916           } else {
 917 #endif // INCLUDE_JVMCI
 918           assert (cm->is_nmethod(), "Expect nmethod");
 919           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 920 #if INCLUDE_JVMCI
 921           }
 922 #endif // INCLUDE_JVMCI
 923           // If there's an unexpected fault, target_pc might be NULL,
 924           // in which case we want to fall through into the normal
 925           // error handling code.
 926         }
 927 
 928         break; // fall through
 929       }
 930 
 931 
 932       case IMPLICIT_DIVIDE_BY_ZERO: {
 933         CompiledMethod* cm = CodeCache::find_compiled(pc);
 934         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 935 #ifndef PRODUCT
 936         _implicit_div0_throws++;
 937 #endif
 938 #if INCLUDE_JVMCI
 939         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 940           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 941         } else {
 942 #endif // INCLUDE_JVMCI
 943         target_pc = cm->continuation_for_implicit_exception(pc);
 944 #if INCLUDE_JVMCI
 945         }
 946 #endif // INCLUDE_JVMCI
 947         // If there's an unexpected fault, target_pc might be NULL,
 948         // in which case we want to fall through into the normal
 949         // error handling code.
 950         break; // fall through
 951       }
 952 
 953       default: ShouldNotReachHere();
 954     }
 955 
 956     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 957 
 958     if (exception_kind == IMPLICIT_NULL) {
 959 #ifndef PRODUCT
 960       // for AbortVMOnException flag
 961       Exceptions::debug_check_abort("java.lang.NullPointerException");
 962 #endif //PRODUCT
 963       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 964     } else {
 965 #ifndef PRODUCT
 966       // for AbortVMOnException flag
 967       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 968 #endif //PRODUCT
 969       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 970     }
 971     return target_pc;
 972   }
 973 
 974   ShouldNotReachHere();
 975   return NULL;
 976 }
 977 
 978 
 979 /**
 980  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 981  * installed in the native function entry of all native Java methods before
 982  * they get linked to their actual native methods.
 983  *
 984  * \note
 985  * This method actually never gets called!  The reason is because
 986  * the interpreter's native entries call NativeLookup::lookup() which
 987  * throws the exception when the lookup fails.  The exception is then
 988  * caught and forwarded on the return from NativeLookup::lookup() call
 989  * before the call to the native function.  This might change in the future.
 990  */
 991 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 992 {
 993   // We return a bad value here to make sure that the exception is
 994   // forwarded before we look at the return value.
 995   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 996 }
 997 JNI_END
 998 
 999 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
1000   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
1001 }
1002 
1003 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1004 #if INCLUDE_JVMCI
1005   if (!obj->klass()->has_finalizer()) {
1006     return;
1007   }
1008 #endif // INCLUDE_JVMCI
1009   assert(obj->is_oop(), "must be a valid oop");
1010   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1011   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1012 JRT_END
1013 
1014 
1015 jlong SharedRuntime::get_java_tid(Thread* thread) {
1016   if (thread != NULL) {
1017     if (thread->is_Java_thread()) {
1018       oop obj = ((JavaThread*)thread)->threadObj();
1019       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1020     }
1021   }
1022   return 0;
1023 }
1024 
1025 /**
1026  * This function ought to be a void function, but cannot be because
1027  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1028  * 6254741.  Once that is fixed we can remove the dummy return value.
1029  */
1030 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1031   return dtrace_object_alloc_base(Thread::current(), o, size);
1032 }
1033 
1034 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1035   assert(DTraceAllocProbes, "wrong call");
1036   Klass* klass = o->klass();
1037   Symbol* name = klass->name();
1038   HOTSPOT_OBJECT_ALLOC(
1039                    get_java_tid(thread),
1040                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1041   return 0;
1042 }
1043 
1044 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1045     JavaThread* thread, Method* method))
1046   assert(DTraceMethodProbes, "wrong call");
1047   Symbol* kname = method->klass_name();
1048   Symbol* name = method->name();
1049   Symbol* sig = method->signature();
1050   HOTSPOT_METHOD_ENTRY(
1051       get_java_tid(thread),
1052       (char *) kname->bytes(), kname->utf8_length(),
1053       (char *) name->bytes(), name->utf8_length(),
1054       (char *) sig->bytes(), sig->utf8_length());
1055   return 0;
1056 JRT_END
1057 
1058 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1059     JavaThread* thread, Method* method))
1060   assert(DTraceMethodProbes, "wrong call");
1061   Symbol* kname = method->klass_name();
1062   Symbol* name = method->name();
1063   Symbol* sig = method->signature();
1064   HOTSPOT_METHOD_RETURN(
1065       get_java_tid(thread),
1066       (char *) kname->bytes(), kname->utf8_length(),
1067       (char *) name->bytes(), name->utf8_length(),
1068       (char *) sig->bytes(), sig->utf8_length());
1069   return 0;
1070 JRT_END
1071 
1072 
1073 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1074 // for a call current in progress, i.e., arguments has been pushed on stack
1075 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1076 // vtable updates, etc.  Caller frame must be compiled.
1077 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1078   ResourceMark rm(THREAD);
1079 
1080   // last java frame on stack (which includes native call frames)
1081   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1082 
1083   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1084 }
1085 
1086 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1087   CompiledMethod* caller = vfst.nm();
1088 
1089   nmethodLocker caller_lock(caller);
1090 
1091   address pc = vfst.frame_pc();
1092   { // Get call instruction under lock because another thread may be busy patching it.
1093     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1094     return caller->attached_method_before_pc(pc);
1095   }
1096   return NULL;
1097 }
1098 
1099 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1100 // for a call current in progress, i.e., arguments has been pushed on stack
1101 // but callee has not been invoked yet.  Caller frame must be compiled.
1102 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1103                                               vframeStream& vfst,
1104                                               Bytecodes::Code& bc,
1105                                               CallInfo& callinfo, TRAPS) {
1106   Handle receiver;
1107   Handle nullHandle;  //create a handy null handle for exception returns
1108 
1109   assert(!vfst.at_end(), "Java frame must exist");
1110 
1111   // Find caller and bci from vframe
1112   methodHandle caller(THREAD, vfst.method());
1113   int          bci   = vfst.bci();
1114 
1115   Bytecode_invoke bytecode(caller, bci);
1116   int bytecode_index = bytecode.index();
1117 
1118   methodHandle attached_method = extract_attached_method(vfst);
1119   if (attached_method.not_null()) {
1120     methodHandle callee = bytecode.static_target(CHECK_NH);
1121     vmIntrinsics::ID id = callee->intrinsic_id();
1122     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1123     // it attaches statically resolved method to the call site.
1124     if (MethodHandles::is_signature_polymorphic(id) &&
1125         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1126       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1127 
1128       // Adjust invocation mode according to the attached method.
1129       switch (bc) {
1130         case Bytecodes::_invokeinterface:
1131           if (!attached_method->method_holder()->is_interface()) {
1132             bc = Bytecodes::_invokevirtual;
1133           }
1134           break;
1135         case Bytecodes::_invokehandle:
1136           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1137             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1138                                               : Bytecodes::_invokevirtual;
1139           }
1140           break;
1141       }
1142     }
1143   } else {
1144     bc = bytecode.invoke_code();
1145   }
1146 
1147   bool has_receiver = bc != Bytecodes::_invokestatic &&
1148                       bc != Bytecodes::_invokedynamic &&
1149                       bc != Bytecodes::_invokehandle;
1150 
1151   // Find receiver for non-static call
1152   if (has_receiver) {
1153     // This register map must be update since we need to find the receiver for
1154     // compiled frames. The receiver might be in a register.
1155     RegisterMap reg_map2(thread);
1156     frame stubFrame   = thread->last_frame();
1157     // Caller-frame is a compiled frame
1158     frame callerFrame = stubFrame.sender(&reg_map2);
1159 
1160     if (attached_method.is_null()) {
1161       methodHandle callee = bytecode.static_target(CHECK_NH);
1162       if (callee.is_null()) {
1163         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1164       }
1165     }
1166 
1167     // Retrieve from a compiled argument list
1168     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1169 
1170     if (receiver.is_null()) {
1171       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1172     }
1173   }
1174 
1175   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1176 
1177   // Resolve method
1178   if (attached_method.not_null()) {
1179     // Parameterized by attached method.
1180     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1181   } else {
1182     // Parameterized by bytecode.
1183     constantPoolHandle constants(THREAD, caller->constants());
1184     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1185   }
1186 
1187 #ifdef ASSERT
1188   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1189   if (has_receiver) {
1190     assert(receiver.not_null(), "should have thrown exception");
1191     KlassHandle receiver_klass(THREAD, receiver->klass());
1192     Klass* rk = NULL;
1193     if (attached_method.not_null()) {
1194       // In case there's resolved method attached, use its holder during the check.
1195       rk = attached_method->method_holder();
1196     } else {
1197       // Klass is already loaded.
1198       constantPoolHandle constants(THREAD, caller->constants());
1199       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1200     }
1201     KlassHandle static_receiver_klass(THREAD, rk);
1202     methodHandle callee = callinfo.selected_method();
1203     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1204            "actual receiver must be subclass of static receiver klass");
1205     if (receiver_klass->is_instance_klass()) {
1206       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1207         tty->print_cr("ERROR: Klass not yet initialized!!");
1208         receiver_klass()->print();
1209       }
1210       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1211     }
1212   }
1213 #endif
1214 
1215   return receiver;
1216 }
1217 
1218 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1219   ResourceMark rm(THREAD);
1220   // We need first to check if any Java activations (compiled, interpreted)
1221   // exist on the stack since last JavaCall.  If not, we need
1222   // to get the target method from the JavaCall wrapper.
1223   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1224   methodHandle callee_method;
1225   if (vfst.at_end()) {
1226     // No Java frames were found on stack since we did the JavaCall.
1227     // Hence the stack can only contain an entry_frame.  We need to
1228     // find the target method from the stub frame.
1229     RegisterMap reg_map(thread, false);
1230     frame fr = thread->last_frame();
1231     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1232     fr = fr.sender(&reg_map);
1233     assert(fr.is_entry_frame(), "must be");
1234     // fr is now pointing to the entry frame.
1235     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1236   } else {
1237     Bytecodes::Code bc;
1238     CallInfo callinfo;
1239     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1240     callee_method = callinfo.selected_method();
1241   }
1242   assert(callee_method()->is_method(), "must be");
1243   return callee_method;
1244 }
1245 
1246 // Resolves a call.
1247 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1248                                            bool is_virtual,
1249                                            bool is_optimized, TRAPS) {
1250   methodHandle callee_method;
1251   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1252   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1253     int retry_count = 0;
1254     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1255            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1256       // If has a pending exception then there is no need to re-try to
1257       // resolve this method.
1258       // If the method has been redefined, we need to try again.
1259       // Hack: we have no way to update the vtables of arrays, so don't
1260       // require that java.lang.Object has been updated.
1261 
1262       // It is very unlikely that method is redefined more than 100 times
1263       // in the middle of resolve. If it is looping here more than 100 times
1264       // means then there could be a bug here.
1265       guarantee((retry_count++ < 100),
1266                 "Could not resolve to latest version of redefined method");
1267       // method is redefined in the middle of resolve so re-try.
1268       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1269     }
1270   }
1271   return callee_method;
1272 }
1273 
1274 // Resolves a call.  The compilers generate code for calls that go here
1275 // and are patched with the real destination of the call.
1276 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1277                                            bool is_virtual,
1278                                            bool is_optimized, TRAPS) {
1279 
1280   ResourceMark rm(thread);
1281   RegisterMap cbl_map(thread, false);
1282   frame caller_frame = thread->last_frame().sender(&cbl_map);
1283 
1284   CodeBlob* caller_cb = caller_frame.cb();
1285   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1286   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1287 
1288   // make sure caller is not getting deoptimized
1289   // and removed before we are done with it.
1290   // CLEANUP - with lazy deopt shouldn't need this lock
1291   nmethodLocker caller_lock(caller_nm);
1292 
1293   // determine call info & receiver
1294   // note: a) receiver is NULL for static calls
1295   //       b) an exception is thrown if receiver is NULL for non-static calls
1296   CallInfo call_info;
1297   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1298   Handle receiver = find_callee_info(thread, invoke_code,
1299                                      call_info, CHECK_(methodHandle()));
1300   methodHandle callee_method = call_info.selected_method();
1301 
1302   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1303          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1304          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1305          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1306          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1307 
1308   assert(caller_nm->is_alive(), "It should be alive");
1309 
1310 #ifndef PRODUCT
1311   // tracing/debugging/statistics
1312   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1313                 (is_virtual) ? (&_resolve_virtual_ctr) :
1314                                (&_resolve_static_ctr);
1315   Atomic::inc(addr);
1316 
1317   if (TraceCallFixup) {
1318     ResourceMark rm(thread);
1319     tty->print("resolving %s%s (%s) call to",
1320       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1321       Bytecodes::name(invoke_code));
1322     callee_method->print_short_name(tty);
1323     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1324                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1325   }
1326 #endif
1327 
1328   // JSR 292 key invariant:
1329   // If the resolved method is a MethodHandle invoke target, the call
1330   // site must be a MethodHandle call site, because the lambda form might tail-call
1331   // leaving the stack in a state unknown to either caller or callee
1332   // TODO detune for now but we might need it again
1333 //  assert(!callee_method->is_compiled_lambda_form() ||
1334 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1335 
1336   // Compute entry points. This might require generation of C2I converter
1337   // frames, so we cannot be holding any locks here. Furthermore, the
1338   // computation of the entry points is independent of patching the call.  We
1339   // always return the entry-point, but we only patch the stub if the call has
1340   // not been deoptimized.  Return values: For a virtual call this is an
1341   // (cached_oop, destination address) pair. For a static call/optimized
1342   // virtual this is just a destination address.
1343 
1344   StaticCallInfo static_call_info;
1345   CompiledICInfo virtual_call_info;
1346 
1347   // Make sure the callee nmethod does not get deoptimized and removed before
1348   // we are done patching the code.
1349   CompiledMethod* callee = callee_method->code();
1350 
1351   if (callee != NULL) {
1352     assert(callee->is_compiled(), "must be nmethod for patching");
1353   }
1354 
1355   if (callee != NULL && !callee->is_in_use()) {
1356     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1357     callee = NULL;
1358   }
1359   nmethodLocker nl_callee(callee);
1360 #ifdef ASSERT
1361   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1362 #endif
1363 
1364   bool is_nmethod = caller_nm->is_nmethod();
1365 
1366   if (is_virtual) {
1367     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1368     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1369     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1370     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1371                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1372                      CHECK_(methodHandle()));
1373   } else {
1374     // static call
1375     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1376   }
1377 
1378   // grab lock, check for deoptimization and potentially patch caller
1379   {
1380     MutexLocker ml_patch(CompiledIC_lock);
1381 
1382     // Lock blocks for safepoint during which both nmethods can change state.
1383 
1384     // Now that we are ready to patch if the Method* was redefined then
1385     // don't update call site and let the caller retry.
1386     // Don't update call site if callee nmethod was unloaded or deoptimized.
1387     // Don't update call site if callee nmethod was replaced by an other nmethod
1388     // which may happen when multiply alive nmethod (tiered compilation)
1389     // will be supported.
1390     if (!callee_method->is_old() &&
1391         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1392 #ifdef ASSERT
1393       // We must not try to patch to jump to an already unloaded method.
1394       if (dest_entry_point != 0) {
1395         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1396         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1397                "should not call unloaded nmethod");
1398       }
1399 #endif
1400       if (is_virtual) {
1401         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1402         if (inline_cache->is_clean()) {
1403           inline_cache->set_to_monomorphic(virtual_call_info);
1404         }
1405       } else {
1406         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1407         if (ssc->is_clean()) ssc->set(static_call_info);
1408       }
1409     }
1410 
1411   } // unlock CompiledIC_lock
1412 
1413   return callee_method;
1414 }
1415 
1416 
1417 // Inline caches exist only in compiled code
1418 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1419 #ifdef ASSERT
1420   RegisterMap reg_map(thread, false);
1421   frame stub_frame = thread->last_frame();
1422   assert(stub_frame.is_runtime_frame(), "sanity check");
1423   frame caller_frame = stub_frame.sender(&reg_map);
1424   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1425 #endif /* ASSERT */
1426 
1427   methodHandle callee_method;
1428   JRT_BLOCK
1429     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1430     // Return Method* through TLS
1431     thread->set_vm_result_2(callee_method());
1432   JRT_BLOCK_END
1433   // return compiled code entry point after potential safepoints
1434   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1435   return callee_method->verified_code_entry();
1436 JRT_END
1437 
1438 
1439 // Handle call site that has been made non-entrant
1440 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1441   // 6243940 We might end up in here if the callee is deoptimized
1442   // as we race to call it.  We don't want to take a safepoint if
1443   // the caller was interpreted because the caller frame will look
1444   // interpreted to the stack walkers and arguments are now
1445   // "compiled" so it is much better to make this transition
1446   // invisible to the stack walking code. The i2c path will
1447   // place the callee method in the callee_target. It is stashed
1448   // there because if we try and find the callee by normal means a
1449   // safepoint is possible and have trouble gc'ing the compiled args.
1450   RegisterMap reg_map(thread, false);
1451   frame stub_frame = thread->last_frame();
1452   assert(stub_frame.is_runtime_frame(), "sanity check");
1453   frame caller_frame = stub_frame.sender(&reg_map);
1454 
1455   if (caller_frame.is_interpreted_frame() ||
1456       caller_frame.is_entry_frame()) {
1457     Method* callee = thread->callee_target();
1458     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1459     thread->set_vm_result_2(callee);
1460     thread->set_callee_target(NULL);
1461     return callee->get_c2i_entry();
1462   }
1463 
1464   // Must be compiled to compiled path which is safe to stackwalk
1465   methodHandle callee_method;
1466   JRT_BLOCK
1467     // Force resolving of caller (if we called from compiled frame)
1468     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1469     thread->set_vm_result_2(callee_method());
1470   JRT_BLOCK_END
1471   // return compiled code entry point after potential safepoints
1472   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1473   return callee_method->verified_code_entry();
1474 JRT_END
1475 
1476 // Handle abstract method call
1477 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1478   return StubRoutines::throw_AbstractMethodError_entry();
1479 JRT_END
1480 
1481 
1482 // resolve a static call and patch code
1483 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1484   methodHandle callee_method;
1485   JRT_BLOCK
1486     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1487     thread->set_vm_result_2(callee_method());
1488   JRT_BLOCK_END
1489   // return compiled code entry point after potential safepoints
1490   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1491   return callee_method->verified_code_entry();
1492 JRT_END
1493 
1494 
1495 // resolve virtual call and update inline cache to monomorphic
1496 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1497   methodHandle callee_method;
1498   JRT_BLOCK
1499     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1500     thread->set_vm_result_2(callee_method());
1501   JRT_BLOCK_END
1502   // return compiled code entry point after potential safepoints
1503   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1504   return callee_method->verified_code_entry();
1505 JRT_END
1506 
1507 
1508 // Resolve a virtual call that can be statically bound (e.g., always
1509 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1510 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1511   methodHandle callee_method;
1512   JRT_BLOCK
1513     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1514     thread->set_vm_result_2(callee_method());
1515   JRT_BLOCK_END
1516   // return compiled code entry point after potential safepoints
1517   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1518   return callee_method->verified_code_entry();
1519 JRT_END
1520 
1521 
1522 
1523 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1524   ResourceMark rm(thread);
1525   CallInfo call_info;
1526   Bytecodes::Code bc;
1527 
1528   // receiver is NULL for static calls. An exception is thrown for NULL
1529   // receivers for non-static calls
1530   Handle receiver = find_callee_info(thread, bc, call_info,
1531                                      CHECK_(methodHandle()));
1532   // Compiler1 can produce virtual call sites that can actually be statically bound
1533   // If we fell thru to below we would think that the site was going megamorphic
1534   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1535   // we'd try and do a vtable dispatch however methods that can be statically bound
1536   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1537   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1538   // plain ic_miss) and the site will be converted to an optimized virtual call site
1539   // never to miss again. I don't believe C2 will produce code like this but if it
1540   // did this would still be the correct thing to do for it too, hence no ifdef.
1541   //
1542   if (call_info.resolved_method()->can_be_statically_bound()) {
1543     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1544     if (TraceCallFixup) {
1545       RegisterMap reg_map(thread, false);
1546       frame caller_frame = thread->last_frame().sender(&reg_map);
1547       ResourceMark rm(thread);
1548       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1549       callee_method->print_short_name(tty);
1550       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1551       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1552     }
1553     return callee_method;
1554   }
1555 
1556   methodHandle callee_method = call_info.selected_method();
1557 
1558   bool should_be_mono = false;
1559 
1560 #ifndef PRODUCT
1561   Atomic::inc(&_ic_miss_ctr);
1562 
1563   // Statistics & Tracing
1564   if (TraceCallFixup) {
1565     ResourceMark rm(thread);
1566     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1567     callee_method->print_short_name(tty);
1568     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1569   }
1570 
1571   if (ICMissHistogram) {
1572     MutexLocker m(VMStatistic_lock);
1573     RegisterMap reg_map(thread, false);
1574     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1575     // produce statistics under the lock
1576     trace_ic_miss(f.pc());
1577   }
1578 #endif
1579 
1580   // install an event collector so that when a vtable stub is created the
1581   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1582   // event can't be posted when the stub is created as locks are held
1583   // - instead the event will be deferred until the event collector goes
1584   // out of scope.
1585   JvmtiDynamicCodeEventCollector event_collector;
1586 
1587   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1588   { MutexLocker ml_patch (CompiledIC_lock);
1589     RegisterMap reg_map(thread, false);
1590     frame caller_frame = thread->last_frame().sender(&reg_map);
1591     CodeBlob* cb = caller_frame.cb();
1592     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1593     if (cb->is_compiled()) {
1594       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1595       bool should_be_mono = false;
1596       if (inline_cache->is_optimized()) {
1597         if (TraceCallFixup) {
1598           ResourceMark rm(thread);
1599           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1600           callee_method->print_short_name(tty);
1601           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1602         }
1603         should_be_mono = true;
1604       } else if (inline_cache->is_icholder_call()) {
1605         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1606         if (ic_oop != NULL) {
1607 
1608           if (receiver()->klass() == ic_oop->holder_klass()) {
1609             // This isn't a real miss. We must have seen that compiled code
1610             // is now available and we want the call site converted to a
1611             // monomorphic compiled call site.
1612             // We can't assert for callee_method->code() != NULL because it
1613             // could have been deoptimized in the meantime
1614             if (TraceCallFixup) {
1615               ResourceMark rm(thread);
1616               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1617               callee_method->print_short_name(tty);
1618               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1619             }
1620             should_be_mono = true;
1621           }
1622         }
1623       }
1624 
1625       if (should_be_mono) {
1626 
1627         // We have a path that was monomorphic but was going interpreted
1628         // and now we have (or had) a compiled entry. We correct the IC
1629         // by using a new icBuffer.
1630         CompiledICInfo info;
1631         KlassHandle receiver_klass(THREAD, receiver()->klass());
1632         inline_cache->compute_monomorphic_entry(callee_method,
1633                                                 receiver_klass,
1634                                                 inline_cache->is_optimized(),
1635                                                 false, caller_nm->is_nmethod(),
1636                                                 info, CHECK_(methodHandle()));
1637         inline_cache->set_to_monomorphic(info);
1638       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1639         // Potential change to megamorphic
1640         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1641         if (!successful) {
1642           inline_cache->set_to_clean();
1643         }
1644       } else {
1645         // Either clean or megamorphic
1646       }
1647     } else {
1648       fatal("Unimplemented");
1649     }
1650   } // Release CompiledIC_lock
1651 
1652   return callee_method;
1653 }
1654 
1655 //
1656 // Resets a call-site in compiled code so it will get resolved again.
1657 // This routines handles both virtual call sites, optimized virtual call
1658 // sites, and static call sites. Typically used to change a call sites
1659 // destination from compiled to interpreted.
1660 //
1661 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1662   ResourceMark rm(thread);
1663   RegisterMap reg_map(thread, false);
1664   frame stub_frame = thread->last_frame();
1665   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1666   frame caller = stub_frame.sender(&reg_map);
1667 
1668   // Do nothing if the frame isn't a live compiled frame.
1669   // nmethod could be deoptimized by the time we get here
1670   // so no update to the caller is needed.
1671 
1672   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1673 
1674     address pc = caller.pc();
1675 
1676     // Check for static or virtual call
1677     bool is_static_call = false;
1678     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1679 
1680     // Default call_addr is the location of the "basic" call.
1681     // Determine the address of the call we a reresolving. With
1682     // Inline Caches we will always find a recognizable call.
1683     // With Inline Caches disabled we may or may not find a
1684     // recognizable call. We will always find a call for static
1685     // calls and for optimized virtual calls. For vanilla virtual
1686     // calls it depends on the state of the UseInlineCaches switch.
1687     //
1688     // With Inline Caches disabled we can get here for a virtual call
1689     // for two reasons:
1690     //   1 - calling an abstract method. The vtable for abstract methods
1691     //       will run us thru handle_wrong_method and we will eventually
1692     //       end up in the interpreter to throw the ame.
1693     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1694     //       call and between the time we fetch the entry address and
1695     //       we jump to it the target gets deoptimized. Similar to 1
1696     //       we will wind up in the interprter (thru a c2i with c2).
1697     //
1698     address call_addr = NULL;
1699     {
1700       // Get call instruction under lock because another thread may be
1701       // busy patching it.
1702       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1703       // Location of call instruction
1704       call_addr = caller_nm->call_instruction_address(pc);
1705     }
1706     // Make sure nmethod doesn't get deoptimized and removed until
1707     // this is done with it.
1708     // CLEANUP - with lazy deopt shouldn't need this lock
1709     nmethodLocker nmlock(caller_nm);
1710 
1711     if (call_addr != NULL) {
1712       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1713       int ret = iter.next(); // Get item
1714       if (ret) {
1715         assert(iter.addr() == call_addr, "must find call");
1716         if (iter.type() == relocInfo::static_call_type) {
1717           is_static_call = true;
1718         } else {
1719           assert(iter.type() == relocInfo::virtual_call_type ||
1720                  iter.type() == relocInfo::opt_virtual_call_type
1721                 , "unexpected relocInfo. type");
1722         }
1723       } else {
1724         assert(!UseInlineCaches, "relocation info. must exist for this address");
1725       }
1726 
1727       // Cleaning the inline cache will force a new resolve. This is more robust
1728       // than directly setting it to the new destination, since resolving of calls
1729       // is always done through the same code path. (experience shows that it
1730       // leads to very hard to track down bugs, if an inline cache gets updated
1731       // to a wrong method). It should not be performance critical, since the
1732       // resolve is only done once.
1733 
1734       bool is_nmethod = caller_nm->is_nmethod();
1735       MutexLocker ml(CompiledIC_lock);
1736       if (is_static_call) {
1737         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1738         ssc->set_to_clean();
1739       } else {
1740         // compiled, dispatched call (which used to call an interpreted method)
1741         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1742         inline_cache->set_to_clean();
1743       }
1744     }
1745   }
1746 
1747   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1748 
1749 
1750 #ifndef PRODUCT
1751   Atomic::inc(&_wrong_method_ctr);
1752 
1753   if (TraceCallFixup) {
1754     ResourceMark rm(thread);
1755     tty->print("handle_wrong_method reresolving call to");
1756     callee_method->print_short_name(tty);
1757     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1758   }
1759 #endif
1760 
1761   return callee_method;
1762 }
1763 
1764 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1765   // The faulting unsafe accesses should be changed to throw the error
1766   // synchronously instead. Meanwhile the faulting instruction will be
1767   // skipped over (effectively turning it into a no-op) and an
1768   // asynchronous exception will be raised which the thread will
1769   // handle at a later point. If the instruction is a load it will
1770   // return garbage.
1771 
1772   // Request an async exception.
1773   thread->set_pending_unsafe_access_error();
1774 
1775   // Return address of next instruction to execute.
1776   return next_pc;
1777 }
1778 
1779 #ifdef ASSERT
1780 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1781                                                                 const BasicType* sig_bt,
1782                                                                 const VMRegPair* regs) {
1783   ResourceMark rm;
1784   const int total_args_passed = method->size_of_parameters();
1785   const VMRegPair*    regs_with_member_name = regs;
1786         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1787 
1788   const int member_arg_pos = total_args_passed - 1;
1789   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1790   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1791 
1792   const bool is_outgoing = method->is_method_handle_intrinsic();
1793   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1794 
1795   for (int i = 0; i < member_arg_pos; i++) {
1796     VMReg a =    regs_with_member_name[i].first();
1797     VMReg b = regs_without_member_name[i].first();
1798     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1799   }
1800   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1801 }
1802 #endif
1803 
1804 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1805   if (destination != entry_point) {
1806     CodeBlob* callee = CodeCache::find_blob(destination);
1807     // callee == cb seems weird. It means calling interpreter thru stub.
1808     if (callee == cb || callee->is_adapter_blob()) {
1809       // static call or optimized virtual
1810       if (TraceCallFixup) {
1811         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1812         moop->print_short_name(tty);
1813         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1814       }
1815       return true;
1816     } else {
1817       if (TraceCallFixup) {
1818         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1819         moop->print_short_name(tty);
1820         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1821       }
1822       // assert is too strong could also be resolve destinations.
1823       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1824     }
1825   } else {
1826     if (TraceCallFixup) {
1827       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1828       moop->print_short_name(tty);
1829       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1830     }
1831   }
1832   return false;
1833 }
1834 
1835 // ---------------------------------------------------------------------------
1836 // We are calling the interpreter via a c2i. Normally this would mean that
1837 // we were called by a compiled method. However we could have lost a race
1838 // where we went int -> i2c -> c2i and so the caller could in fact be
1839 // interpreted. If the caller is compiled we attempt to patch the caller
1840 // so he no longer calls into the interpreter.
1841 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1842   Method* moop(method);
1843 
1844   address entry_point = moop->from_compiled_entry_no_trampoline();
1845 
1846   // It's possible that deoptimization can occur at a call site which hasn't
1847   // been resolved yet, in which case this function will be called from
1848   // an nmethod that has been patched for deopt and we can ignore the
1849   // request for a fixup.
1850   // Also it is possible that we lost a race in that from_compiled_entry
1851   // is now back to the i2c in that case we don't need to patch and if
1852   // we did we'd leap into space because the callsite needs to use
1853   // "to interpreter" stub in order to load up the Method*. Don't
1854   // ask me how I know this...
1855 
1856   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1857   if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1858     return;
1859   }
1860 
1861   // The check above makes sure this is a nmethod.
1862   CompiledMethod* nm = cb->as_compiled_method_or_null();
1863   assert(nm, "must be");
1864 
1865   // Get the return PC for the passed caller PC.
1866   address return_pc = caller_pc + frame::pc_return_offset;
1867 
1868   // There is a benign race here. We could be attempting to patch to a compiled
1869   // entry point at the same time the callee is being deoptimized. If that is
1870   // the case then entry_point may in fact point to a c2i and we'd patch the
1871   // call site with the same old data. clear_code will set code() to NULL
1872   // at the end of it. If we happen to see that NULL then we can skip trying
1873   // to patch. If we hit the window where the callee has a c2i in the
1874   // from_compiled_entry and the NULL isn't present yet then we lose the race
1875   // and patch the code with the same old data. Asi es la vida.
1876 
1877   if (moop->code() == NULL) return;
1878 
1879   if (nm->is_in_use()) {
1880 
1881     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1882     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1883     if (NativeCall::is_call_before(return_pc)) {
1884       ResourceMark mark;
1885       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1886       //
1887       // bug 6281185. We might get here after resolving a call site to a vanilla
1888       // virtual call. Because the resolvee uses the verified entry it may then
1889       // see compiled code and attempt to patch the site by calling us. This would
1890       // then incorrectly convert the call site to optimized and its downhill from
1891       // there. If you're lucky you'll get the assert in the bugid, if not you've
1892       // just made a call site that could be megamorphic into a monomorphic site
1893       // for the rest of its life! Just another racing bug in the life of
1894       // fixup_callers_callsite ...
1895       //
1896       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1897       iter.next();
1898       assert(iter.has_current(), "must have a reloc at java call site");
1899       relocInfo::relocType typ = iter.reloc()->type();
1900       if (typ != relocInfo::static_call_type &&
1901            typ != relocInfo::opt_virtual_call_type &&
1902            typ != relocInfo::static_stub_type) {
1903         return;
1904       }
1905       address destination = call->destination();
1906       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1907         call->set_destination_mt_safe(entry_point);
1908       }
1909     }
1910   }
1911 IRT_END
1912 
1913 
1914 // same as JVM_Arraycopy, but called directly from compiled code
1915 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1916                                                 oopDesc* dest, jint dest_pos,
1917                                                 jint length,
1918                                                 JavaThread* thread)) {
1919 #ifndef PRODUCT
1920   _slow_array_copy_ctr++;
1921 #endif
1922   // Check if we have null pointers
1923   if (src == NULL || dest == NULL) {
1924     THROW(vmSymbols::java_lang_NullPointerException());
1925   }
1926   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1927   // even though the copy_array API also performs dynamic checks to ensure
1928   // that src and dest are truly arrays (and are conformable).
1929   // The copy_array mechanism is awkward and could be removed, but
1930   // the compilers don't call this function except as a last resort,
1931   // so it probably doesn't matter.
1932   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1933                                         (arrayOopDesc*)dest, dest_pos,
1934                                         length, thread);
1935 }
1936 JRT_END
1937 
1938 // The caller of generate_class_cast_message() (or one of its callers)
1939 // must use a ResourceMark in order to correctly free the result.
1940 char* SharedRuntime::generate_class_cast_message(
1941     JavaThread* thread, Klass* caster_klass) {
1942 
1943   // Get target class name from the checkcast instruction
1944   vframeStream vfst(thread, true);
1945   assert(!vfst.at_end(), "Java frame must exist");
1946   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1947   Klass* target_klass = vfst.method()->constants()->klass_at(
1948     cc.index(), thread);
1949   return generate_class_cast_message(caster_klass, target_klass);
1950 }
1951 
1952 char* SharedRuntime::generate_class_cast_message(
1953     Klass* caster_klass, Klass* target_klass) {
1954 
1955   const char* caster_klass_name = caster_klass->external_name();
1956   Klass* c_klass = caster_klass->is_objArray_klass() ?
1957     ObjArrayKlass::cast(caster_klass)->bottom_klass() : caster_klass;
1958   ModuleEntry* caster_module;
1959   const char* caster_module_name;
1960   if (c_klass->is_instance_klass()) {
1961     caster_module = InstanceKlass::cast(c_klass)->module();
1962     caster_module_name = caster_module->is_named() ?
1963       caster_module->name()->as_C_string() : UNNAMED_MODULE;
1964   } else {
1965     caster_module_name = "java.base";
1966   }
1967   const char* target_klass_name = target_klass->external_name();
1968   Klass* t_klass = target_klass->is_objArray_klass() ?
1969     ObjArrayKlass::cast(target_klass)->bottom_klass() : target_klass;
1970   ModuleEntry* target_module;
1971   const char* target_module_name;
1972   if (t_klass->is_instance_klass()) {
1973     target_module = InstanceKlass::cast(t_klass)->module();
1974     target_module_name = target_module->is_named() ?
1975       target_module->name()->as_C_string(): UNNAMED_MODULE;
1976   } else {
1977     target_module_name = "java.base";
1978   }
1979 
1980   size_t msglen = strlen(caster_klass_name) + strlen(caster_module_name) +
1981      strlen(target_klass_name) + strlen(target_module_name) + 50;
1982 
1983   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1984   if (NULL == message) {
1985     // Shouldn't happen, but don't cause even more problems if it does
1986     message = const_cast<char*>(caster_klass_name);
1987   } else {
1988     jio_snprintf(message, msglen, "%s (in module: %s) cannot be cast to %s (in module: %s)",
1989       caster_klass_name, caster_module_name, target_klass_name, target_module_name);
1990   }
1991   return message;
1992 }
1993 
1994 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1995   (void) JavaThread::current()->reguard_stack();
1996 JRT_END
1997 
1998 
1999 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2000 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2001   // Disable ObjectSynchronizer::quick_enter() in default config
2002   // on AARCH64 until JDK-8153107 is resolved.
2003   if (AARCH64_ONLY((SyncFlags & 256) != 0 &&) !SafepointSynchronize::is_synchronizing()) {
2004     // Only try quick_enter() if we're not trying to reach a safepoint
2005     // so that the calling thread reaches the safepoint more quickly.
2006     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2007   }
2008   // NO_ASYNC required because an async exception on the state transition destructor
2009   // would leave you with the lock held and it would never be released.
2010   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2011   // and the model is that an exception implies the method failed.
2012   JRT_BLOCK_NO_ASYNC
2013   oop obj(_obj);
2014   if (PrintBiasedLockingStatistics) {
2015     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2016   }
2017   Handle h_obj(THREAD, obj);
2018   if (UseBiasedLocking) {
2019     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2020     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2021   } else {
2022     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2023   }
2024   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2025   JRT_BLOCK_END
2026 JRT_END
2027 
2028 // Handles the uncommon cases of monitor unlocking in compiled code
2029 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2030    oop obj(_obj);
2031   assert(JavaThread::current() == THREAD, "invariant");
2032   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2033   // testing was unable to ever fire the assert that guarded it so I have removed it.
2034   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2035 #undef MIGHT_HAVE_PENDING
2036 #ifdef MIGHT_HAVE_PENDING
2037   // Save and restore any pending_exception around the exception mark.
2038   // While the slow_exit must not throw an exception, we could come into
2039   // this routine with one set.
2040   oop pending_excep = NULL;
2041   const char* pending_file;
2042   int pending_line;
2043   if (HAS_PENDING_EXCEPTION) {
2044     pending_excep = PENDING_EXCEPTION;
2045     pending_file  = THREAD->exception_file();
2046     pending_line  = THREAD->exception_line();
2047     CLEAR_PENDING_EXCEPTION;
2048   }
2049 #endif /* MIGHT_HAVE_PENDING */
2050 
2051   {
2052     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2053     EXCEPTION_MARK;
2054     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2055   }
2056 
2057 #ifdef MIGHT_HAVE_PENDING
2058   if (pending_excep != NULL) {
2059     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2060   }
2061 #endif /* MIGHT_HAVE_PENDING */
2062 JRT_END
2063 
2064 #ifndef PRODUCT
2065 
2066 void SharedRuntime::print_statistics() {
2067   ttyLocker ttyl;
2068   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2069 
2070   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2071 
2072   SharedRuntime::print_ic_miss_histogram();
2073 
2074   if (CountRemovableExceptions) {
2075     if (_nof_removable_exceptions > 0) {
2076       Unimplemented(); // this counter is not yet incremented
2077       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2078     }
2079   }
2080 
2081   // Dump the JRT_ENTRY counters
2082   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2083   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2084   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2085   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2086   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2087   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2088   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2089 
2090   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2091   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2092   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2093   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2094   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2095 
2096   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2097   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2098   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2099   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2100   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2101   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2102   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2103   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2104   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2105   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2106   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2107   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2108   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2109   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2110   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2111   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2112 
2113   AdapterHandlerLibrary::print_statistics();
2114 
2115   if (xtty != NULL)  xtty->tail("statistics");
2116 }
2117 
2118 inline double percent(int x, int y) {
2119   return 100.0 * x / MAX2(y, 1);
2120 }
2121 
2122 class MethodArityHistogram {
2123  public:
2124   enum { MAX_ARITY = 256 };
2125  private:
2126   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2127   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2128   static int _max_arity;                      // max. arity seen
2129   static int _max_size;                       // max. arg size seen
2130 
2131   static void add_method_to_histogram(nmethod* nm) {
2132     Method* m = nm->method();
2133     ArgumentCount args(m->signature());
2134     int arity   = args.size() + (m->is_static() ? 0 : 1);
2135     int argsize = m->size_of_parameters();
2136     arity   = MIN2(arity, MAX_ARITY-1);
2137     argsize = MIN2(argsize, MAX_ARITY-1);
2138     int count = nm->method()->compiled_invocation_count();
2139     _arity_histogram[arity]  += count;
2140     _size_histogram[argsize] += count;
2141     _max_arity = MAX2(_max_arity, arity);
2142     _max_size  = MAX2(_max_size, argsize);
2143   }
2144 
2145   void print_histogram_helper(int n, int* histo, const char* name) {
2146     const int N = MIN2(5, n);
2147     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2148     double sum = 0;
2149     double weighted_sum = 0;
2150     int i;
2151     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2152     double rest = sum;
2153     double percent = sum / 100;
2154     for (i = 0; i <= N; i++) {
2155       rest -= histo[i];
2156       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2157     }
2158     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2159     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2160   }
2161 
2162   void print_histogram() {
2163     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2164     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2165     tty->print_cr("\nSame for parameter size (in words):");
2166     print_histogram_helper(_max_size, _size_histogram, "size");
2167     tty->cr();
2168   }
2169 
2170  public:
2171   MethodArityHistogram() {
2172     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2173     _max_arity = _max_size = 0;
2174     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2175     CodeCache::nmethods_do(add_method_to_histogram);
2176     print_histogram();
2177   }
2178 };
2179 
2180 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2181 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2182 int MethodArityHistogram::_max_arity;
2183 int MethodArityHistogram::_max_size;
2184 
2185 void SharedRuntime::print_call_statistics(int comp_total) {
2186   tty->print_cr("Calls from compiled code:");
2187   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2188   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2189   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2190   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2191   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2192   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2193   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2194   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2195   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2196   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2197   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2198   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2199   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2200   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2201   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2202   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2203   tty->cr();
2204   tty->print_cr("Note 1: counter updates are not MT-safe.");
2205   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2206   tty->print_cr("        %% in nested categories are relative to their category");
2207   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2208   tty->cr();
2209 
2210   MethodArityHistogram h;
2211 }
2212 #endif
2213 
2214 
2215 // A simple wrapper class around the calling convention information
2216 // that allows sharing of adapters for the same calling convention.
2217 class AdapterFingerPrint : public CHeapObj<mtCode> {
2218  private:
2219   enum {
2220     _basic_type_bits = 4,
2221     _basic_type_mask = right_n_bits(_basic_type_bits),
2222     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2223     _compact_int_count = 3
2224   };
2225   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2226   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2227 
2228   union {
2229     int  _compact[_compact_int_count];
2230     int* _fingerprint;
2231   } _value;
2232   int _length; // A negative length indicates the fingerprint is in the compact form,
2233                // Otherwise _value._fingerprint is the array.
2234 
2235   // Remap BasicTypes that are handled equivalently by the adapters.
2236   // These are correct for the current system but someday it might be
2237   // necessary to make this mapping platform dependent.
2238   static int adapter_encoding(BasicType in) {
2239     switch (in) {
2240       case T_BOOLEAN:
2241       case T_BYTE:
2242       case T_SHORT:
2243       case T_CHAR:
2244         // There are all promoted to T_INT in the calling convention
2245         return T_INT;
2246 
2247       case T_OBJECT:
2248       case T_ARRAY:
2249         // In other words, we assume that any register good enough for
2250         // an int or long is good enough for a managed pointer.
2251 #ifdef _LP64
2252         return T_LONG;
2253 #else
2254         return T_INT;
2255 #endif
2256 
2257       case T_INT:
2258       case T_LONG:
2259       case T_FLOAT:
2260       case T_DOUBLE:
2261       case T_VOID:
2262         return in;
2263 
2264       default:
2265         ShouldNotReachHere();
2266         return T_CONFLICT;
2267     }
2268   }
2269 
2270  public:
2271   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2272     // The fingerprint is based on the BasicType signature encoded
2273     // into an array of ints with eight entries per int.
2274     int* ptr;
2275     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2276     if (len <= _compact_int_count) {
2277       assert(_compact_int_count == 3, "else change next line");
2278       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2279       // Storing the signature encoded as signed chars hits about 98%
2280       // of the time.
2281       _length = -len;
2282       ptr = _value._compact;
2283     } else {
2284       _length = len;
2285       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2286       ptr = _value._fingerprint;
2287     }
2288 
2289     // Now pack the BasicTypes with 8 per int
2290     int sig_index = 0;
2291     for (int index = 0; index < len; index++) {
2292       int value = 0;
2293       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2294         int bt = ((sig_index < total_args_passed)
2295                   ? adapter_encoding(sig_bt[sig_index++])
2296                   : 0);
2297         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2298         value = (value << _basic_type_bits) | bt;
2299       }
2300       ptr[index] = value;
2301     }
2302   }
2303 
2304   ~AdapterFingerPrint() {
2305     if (_length > 0) {
2306       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2307     }
2308   }
2309 
2310   int value(int index) {
2311     if (_length < 0) {
2312       return _value._compact[index];
2313     }
2314     return _value._fingerprint[index];
2315   }
2316   int length() {
2317     if (_length < 0) return -_length;
2318     return _length;
2319   }
2320 
2321   bool is_compact() {
2322     return _length <= 0;
2323   }
2324 
2325   unsigned int compute_hash() {
2326     int hash = 0;
2327     for (int i = 0; i < length(); i++) {
2328       int v = value(i);
2329       hash = (hash << 8) ^ v ^ (hash >> 5);
2330     }
2331     return (unsigned int)hash;
2332   }
2333 
2334   const char* as_string() {
2335     stringStream st;
2336     st.print("0x");
2337     for (int i = 0; i < length(); i++) {
2338       st.print("%08x", value(i));
2339     }
2340     return st.as_string();
2341   }
2342 
2343   bool equals(AdapterFingerPrint* other) {
2344     if (other->_length != _length) {
2345       return false;
2346     }
2347     if (_length < 0) {
2348       assert(_compact_int_count == 3, "else change next line");
2349       return _value._compact[0] == other->_value._compact[0] &&
2350              _value._compact[1] == other->_value._compact[1] &&
2351              _value._compact[2] == other->_value._compact[2];
2352     } else {
2353       for (int i = 0; i < _length; i++) {
2354         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2355           return false;
2356         }
2357       }
2358     }
2359     return true;
2360   }
2361 };
2362 
2363 
2364 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2365 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2366   friend class AdapterHandlerTableIterator;
2367 
2368  private:
2369 
2370 #ifndef PRODUCT
2371   static int _lookups; // number of calls to lookup
2372   static int _buckets; // number of buckets checked
2373   static int _equals;  // number of buckets checked with matching hash
2374   static int _hits;    // number of successful lookups
2375   static int _compact; // number of equals calls with compact signature
2376 #endif
2377 
2378   AdapterHandlerEntry* bucket(int i) {
2379     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2380   }
2381 
2382  public:
2383   AdapterHandlerTable()
2384     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2385 
2386   // Create a new entry suitable for insertion in the table
2387   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2388     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2389     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2390     if (DumpSharedSpaces) {
2391       ((CDSAdapterHandlerEntry*)entry)->init();
2392     }
2393     return entry;
2394   }
2395 
2396   // Insert an entry into the table
2397   void add(AdapterHandlerEntry* entry) {
2398     int index = hash_to_index(entry->hash());
2399     add_entry(index, entry);
2400   }
2401 
2402   void free_entry(AdapterHandlerEntry* entry) {
2403     entry->deallocate();
2404     BasicHashtable<mtCode>::free_entry(entry);
2405   }
2406 
2407   // Find a entry with the same fingerprint if it exists
2408   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2409     NOT_PRODUCT(_lookups++);
2410     AdapterFingerPrint fp(total_args_passed, sig_bt);
2411     unsigned int hash = fp.compute_hash();
2412     int index = hash_to_index(hash);
2413     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2414       NOT_PRODUCT(_buckets++);
2415       if (e->hash() == hash) {
2416         NOT_PRODUCT(_equals++);
2417         if (fp.equals(e->fingerprint())) {
2418 #ifndef PRODUCT
2419           if (fp.is_compact()) _compact++;
2420           _hits++;
2421 #endif
2422           return e;
2423         }
2424       }
2425     }
2426     return NULL;
2427   }
2428 
2429 #ifndef PRODUCT
2430   void print_statistics() {
2431     ResourceMark rm;
2432     int longest = 0;
2433     int empty = 0;
2434     int total = 0;
2435     int nonempty = 0;
2436     for (int index = 0; index < table_size(); index++) {
2437       int count = 0;
2438       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2439         count++;
2440       }
2441       if (count != 0) nonempty++;
2442       if (count == 0) empty++;
2443       if (count > longest) longest = count;
2444       total += count;
2445     }
2446     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2447                   empty, longest, total, total / (double)nonempty);
2448     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2449                   _lookups, _buckets, _equals, _hits, _compact);
2450   }
2451 #endif
2452 };
2453 
2454 
2455 #ifndef PRODUCT
2456 
2457 int AdapterHandlerTable::_lookups;
2458 int AdapterHandlerTable::_buckets;
2459 int AdapterHandlerTable::_equals;
2460 int AdapterHandlerTable::_hits;
2461 int AdapterHandlerTable::_compact;
2462 
2463 #endif
2464 
2465 class AdapterHandlerTableIterator : public StackObj {
2466  private:
2467   AdapterHandlerTable* _table;
2468   int _index;
2469   AdapterHandlerEntry* _current;
2470 
2471   void scan() {
2472     while (_index < _table->table_size()) {
2473       AdapterHandlerEntry* a = _table->bucket(_index);
2474       _index++;
2475       if (a != NULL) {
2476         _current = a;
2477         return;
2478       }
2479     }
2480   }
2481 
2482  public:
2483   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2484     scan();
2485   }
2486   bool has_next() {
2487     return _current != NULL;
2488   }
2489   AdapterHandlerEntry* next() {
2490     if (_current != NULL) {
2491       AdapterHandlerEntry* result = _current;
2492       _current = _current->next();
2493       if (_current == NULL) scan();
2494       return result;
2495     } else {
2496       return NULL;
2497     }
2498   }
2499 };
2500 
2501 
2502 // ---------------------------------------------------------------------------
2503 // Implementation of AdapterHandlerLibrary
2504 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2505 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2506 const int AdapterHandlerLibrary_size = 16*K;
2507 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2508 
2509 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2510   // Should be called only when AdapterHandlerLibrary_lock is active.
2511   if (_buffer == NULL) // Initialize lazily
2512       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2513   return _buffer;
2514 }
2515 
2516 extern "C" void unexpected_adapter_call() {
2517   ShouldNotCallThis();
2518 }
2519 
2520 void AdapterHandlerLibrary::initialize() {
2521   if (_adapters != NULL) return;
2522   _adapters = new AdapterHandlerTable();
2523 
2524   if (!CodeCacheExtensions::skip_compiler_support()) {
2525     // Create a special handler for abstract methods.  Abstract methods
2526     // are never compiled so an i2c entry is somewhat meaningless, but
2527     // throw AbstractMethodError just in case.
2528     // Pass wrong_method_abstract for the c2i transitions to return
2529     // AbstractMethodError for invalid invocations.
2530     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2531     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2532                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2533                                                                 wrong_method_abstract, wrong_method_abstract);
2534   } else {
2535     // Adapters are not supposed to be used.
2536     // Generate a special one to cause an error if used (and store this
2537     // singleton in place of the useless _abstract_method_error adapter).
2538     address entry = (address) &unexpected_adapter_call;
2539     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2540                                                                 entry,
2541                                                                 entry,
2542                                                                 entry);
2543 
2544   }
2545 }
2546 
2547 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2548                                                       address i2c_entry,
2549                                                       address c2i_entry,
2550                                                       address c2i_unverified_entry) {
2551   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2552 }
2553 
2554 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2555   AdapterHandlerEntry* entry = get_adapter0(method);
2556   if (method->is_shared()) {
2557     MutexLocker mu(AdapterHandlerLibrary_lock);
2558     if (method->adapter() == NULL) {
2559       method->update_adapter_trampoline(entry);
2560     }
2561     address trampoline = method->from_compiled_entry();
2562     if (*(int*)trampoline == 0) {
2563       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2564       MacroAssembler _masm(&buffer);
2565       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2566 
2567       if (PrintInterpreter) {
2568         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2569       }
2570     }
2571   }
2572 
2573   return entry;
2574 }
2575 
2576 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2577   // Use customized signature handler.  Need to lock around updates to
2578   // the AdapterHandlerTable (it is not safe for concurrent readers
2579   // and a single writer: this could be fixed if it becomes a
2580   // problem).
2581 
2582   ResourceMark rm;
2583 
2584   NOT_PRODUCT(int insts_size);
2585   AdapterBlob* new_adapter = NULL;
2586   AdapterHandlerEntry* entry = NULL;
2587   AdapterFingerPrint* fingerprint = NULL;
2588   {
2589     MutexLocker mu(AdapterHandlerLibrary_lock);
2590     // make sure data structure is initialized
2591     initialize();
2592 
2593     // during dump time, always generate adapters, even if the
2594     // compiler has been turned off.
2595     if (!DumpSharedSpaces && CodeCacheExtensions::skip_compiler_support()) {
2596       // adapters are useless and should not be used, including the
2597       // abstract_method_handler. However, some callers check that
2598       // an adapter was installed.
2599       // Return the singleton adapter, stored into _abstract_method_handler
2600       // and modified to cause an error if we ever call it.
2601       return _abstract_method_handler;
2602     }
2603 
2604     if (method->is_abstract()) {
2605       return _abstract_method_handler;
2606     }
2607 
2608     // Fill in the signature array, for the calling-convention call.
2609     int total_args_passed = method->size_of_parameters(); // All args on stack
2610 
2611     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2612     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2613     int i = 0;
2614     if (!method->is_static())  // Pass in receiver first
2615       sig_bt[i++] = T_OBJECT;
2616     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2617       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2618       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2619         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2620     }
2621     assert(i == total_args_passed, "");
2622 
2623     // Lookup method signature's fingerprint
2624     entry = _adapters->lookup(total_args_passed, sig_bt);
2625 
2626 #ifdef ASSERT
2627     AdapterHandlerEntry* shared_entry = NULL;
2628     // Start adapter sharing verification only after the VM is booted.
2629     if (VerifyAdapterSharing && (entry != NULL)) {
2630       shared_entry = entry;
2631       entry = NULL;
2632     }
2633 #endif
2634 
2635     if (entry != NULL) {
2636       return entry;
2637     }
2638 
2639     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2640     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2641 
2642     // Make a C heap allocated version of the fingerprint to store in the adapter
2643     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2644 
2645     // StubRoutines::code2() is initialized after this function can be called. As a result,
2646     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2647     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2648     // stub that ensure that an I2C stub is called from an interpreter frame.
2649     bool contains_all_checks = StubRoutines::code2() != NULL;
2650 
2651     // Create I2C & C2I handlers
2652     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2653     if (buf != NULL) {
2654       CodeBuffer buffer(buf);
2655       short buffer_locs[20];
2656       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2657                                              sizeof(buffer_locs)/sizeof(relocInfo));
2658 
2659       MacroAssembler _masm(&buffer);
2660       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2661                                                      total_args_passed,
2662                                                      comp_args_on_stack,
2663                                                      sig_bt,
2664                                                      regs,
2665                                                      fingerprint);
2666 #ifdef ASSERT
2667       if (VerifyAdapterSharing) {
2668         if (shared_entry != NULL) {
2669           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2670           // Release the one just created and return the original
2671           _adapters->free_entry(entry);
2672           return shared_entry;
2673         } else  {
2674           entry->save_code(buf->code_begin(), buffer.insts_size());
2675         }
2676       }
2677 #endif
2678 
2679       new_adapter = AdapterBlob::create(&buffer);
2680       NOT_PRODUCT(insts_size = buffer.insts_size());
2681     }
2682     if (new_adapter == NULL) {
2683       // CodeCache is full, disable compilation
2684       // Ought to log this but compile log is only per compile thread
2685       // and we're some non descript Java thread.
2686       return NULL; // Out of CodeCache space
2687     }
2688     entry->relocate(new_adapter->content_begin());
2689 #ifndef PRODUCT
2690     // debugging suppport
2691     if (PrintAdapterHandlers || PrintStubCode) {
2692       ttyLocker ttyl;
2693       entry->print_adapter_on(tty);
2694       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2695                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2696                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2697       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2698       if (Verbose || PrintStubCode) {
2699         address first_pc = entry->base_address();
2700         if (first_pc != NULL) {
2701           Disassembler::decode(first_pc, first_pc + insts_size);
2702           tty->cr();
2703         }
2704       }
2705     }
2706 #endif
2707     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2708     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2709     if (contains_all_checks || !VerifyAdapterCalls) {
2710       _adapters->add(entry);
2711     }
2712   }
2713   // Outside of the lock
2714   if (new_adapter != NULL) {
2715     char blob_id[256];
2716     jio_snprintf(blob_id,
2717                  sizeof(blob_id),
2718                  "%s(%s)@" PTR_FORMAT,
2719                  new_adapter->name(),
2720                  fingerprint->as_string(),
2721                  new_adapter->content_begin());
2722     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2723 
2724     if (JvmtiExport::should_post_dynamic_code_generated()) {
2725       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2726     }
2727   }
2728   return entry;
2729 }
2730 
2731 address AdapterHandlerEntry::base_address() {
2732   address base = _i2c_entry;
2733   if (base == NULL)  base = _c2i_entry;
2734   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2735   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2736   return base;
2737 }
2738 
2739 void AdapterHandlerEntry::relocate(address new_base) {
2740   address old_base = base_address();
2741   assert(old_base != NULL, "");
2742   ptrdiff_t delta = new_base - old_base;
2743   if (_i2c_entry != NULL)
2744     _i2c_entry += delta;
2745   if (_c2i_entry != NULL)
2746     _c2i_entry += delta;
2747   if (_c2i_unverified_entry != NULL)
2748     _c2i_unverified_entry += delta;
2749   assert(base_address() == new_base, "");
2750 }
2751 
2752 
2753 void AdapterHandlerEntry::deallocate() {
2754   delete _fingerprint;
2755 #ifdef ASSERT
2756   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2757 #endif
2758 }
2759 
2760 
2761 #ifdef ASSERT
2762 // Capture the code before relocation so that it can be compared
2763 // against other versions.  If the code is captured after relocation
2764 // then relative instructions won't be equivalent.
2765 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2766   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2767   _saved_code_length = length;
2768   memcpy(_saved_code, buffer, length);
2769 }
2770 
2771 
2772 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2773   if (length != _saved_code_length) {
2774     return false;
2775   }
2776 
2777   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2778 }
2779 #endif
2780 
2781 
2782 /**
2783  * Create a native wrapper for this native method.  The wrapper converts the
2784  * Java-compiled calling convention to the native convention, handles
2785  * arguments, and transitions to native.  On return from the native we transition
2786  * back to java blocking if a safepoint is in progress.
2787  */
2788 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2789   ResourceMark rm;
2790   nmethod* nm = NULL;
2791 
2792   assert(method->is_native(), "must be native");
2793   assert(method->is_method_handle_intrinsic() ||
2794          method->has_native_function(), "must have something valid to call!");
2795 
2796   {
2797     // Perform the work while holding the lock, but perform any printing outside the lock
2798     MutexLocker mu(AdapterHandlerLibrary_lock);
2799     // See if somebody beat us to it
2800     if (method->code() != NULL) {
2801       return;
2802     }
2803 
2804     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2805     assert(compile_id > 0, "Must generate native wrapper");
2806 
2807 
2808     ResourceMark rm;
2809     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2810     if (buf != NULL) {
2811       CodeBuffer buffer(buf);
2812       double locs_buf[20];
2813       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2814       MacroAssembler _masm(&buffer);
2815 
2816       // Fill in the signature array, for the calling-convention call.
2817       const int total_args_passed = method->size_of_parameters();
2818 
2819       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2820       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2821       int i=0;
2822       if (!method->is_static())  // Pass in receiver first
2823         sig_bt[i++] = T_OBJECT;
2824       SignatureStream ss(method->signature());
2825       for (; !ss.at_return_type(); ss.next()) {
2826         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2827         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2828           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2829       }
2830       assert(i == total_args_passed, "");
2831       BasicType ret_type = ss.type();
2832 
2833       // Now get the compiled-Java layout as input (or output) arguments.
2834       // NOTE: Stubs for compiled entry points of method handle intrinsics
2835       // are just trampolines so the argument registers must be outgoing ones.
2836       const bool is_outgoing = method->is_method_handle_intrinsic();
2837       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2838 
2839       // Generate the compiled-to-native wrapper code
2840       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2841 
2842       if (nm != NULL) {
2843         method->set_code(method, nm);
2844 
2845         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2846         if (directive->PrintAssemblyOption) {
2847           nm->print_code();
2848         }
2849         DirectivesStack::release(directive);
2850       }
2851     }
2852   } // Unlock AdapterHandlerLibrary_lock
2853 
2854 
2855   // Install the generated code.
2856   if (nm != NULL) {
2857     if (PrintCompilation) {
2858       ttyLocker ttyl;
2859       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2860     }
2861     nm->post_compiled_method_load_event();
2862   }
2863 }
2864 
2865 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2866   assert(thread == JavaThread::current(), "must be");
2867   // The code is about to enter a JNI lazy critical native method and
2868   // _needs_gc is true, so if this thread is already in a critical
2869   // section then just return, otherwise this thread should block
2870   // until needs_gc has been cleared.
2871   if (thread->in_critical()) {
2872     return;
2873   }
2874   // Lock and unlock a critical section to give the system a chance to block
2875   GCLocker::lock_critical(thread);
2876   GCLocker::unlock_critical(thread);
2877 JRT_END
2878 
2879 // -------------------------------------------------------------------------
2880 // Java-Java calling convention
2881 // (what you use when Java calls Java)
2882 
2883 //------------------------------name_for_receiver----------------------------------
2884 // For a given signature, return the VMReg for parameter 0.
2885 VMReg SharedRuntime::name_for_receiver() {
2886   VMRegPair regs;
2887   BasicType sig_bt = T_OBJECT;
2888   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2889   // Return argument 0 register.  In the LP64 build pointers
2890   // take 2 registers, but the VM wants only the 'main' name.
2891   return regs.first();
2892 }
2893 
2894 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2895   // This method is returning a data structure allocating as a
2896   // ResourceObject, so do not put any ResourceMarks in here.
2897   char *s = sig->as_C_string();
2898   int len = (int)strlen(s);
2899   s++; len--;                   // Skip opening paren
2900 
2901   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2902   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2903   int cnt = 0;
2904   if (has_receiver) {
2905     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2906   }
2907 
2908   while (*s != ')') {          // Find closing right paren
2909     switch (*s++) {            // Switch on signature character
2910     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2911     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2912     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2913     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2914     case 'I': sig_bt[cnt++] = T_INT;     break;
2915     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2916     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2917     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2918     case 'V': sig_bt[cnt++] = T_VOID;    break;
2919     case 'L':                   // Oop
2920       while (*s++ != ';');   // Skip signature
2921       sig_bt[cnt++] = T_OBJECT;
2922       break;
2923     case '[': {                 // Array
2924       do {                      // Skip optional size
2925         while (*s >= '0' && *s <= '9') s++;
2926       } while (*s++ == '[');   // Nested arrays?
2927       // Skip element type
2928       if (s[-1] == 'L')
2929         while (*s++ != ';'); // Skip signature
2930       sig_bt[cnt++] = T_ARRAY;
2931       break;
2932     }
2933     default : ShouldNotReachHere();
2934     }
2935   }
2936 
2937   if (has_appendix) {
2938     sig_bt[cnt++] = T_OBJECT;
2939   }
2940 
2941   assert(cnt < 256, "grow table size");
2942 
2943   int comp_args_on_stack;
2944   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2945 
2946   // the calling convention doesn't count out_preserve_stack_slots so
2947   // we must add that in to get "true" stack offsets.
2948 
2949   if (comp_args_on_stack) {
2950     for (int i = 0; i < cnt; i++) {
2951       VMReg reg1 = regs[i].first();
2952       if (reg1->is_stack()) {
2953         // Yuck
2954         reg1 = reg1->bias(out_preserve_stack_slots());
2955       }
2956       VMReg reg2 = regs[i].second();
2957       if (reg2->is_stack()) {
2958         // Yuck
2959         reg2 = reg2->bias(out_preserve_stack_slots());
2960       }
2961       regs[i].set_pair(reg2, reg1);
2962     }
2963   }
2964 
2965   // results
2966   *arg_size = cnt;
2967   return regs;
2968 }
2969 
2970 // OSR Migration Code
2971 //
2972 // This code is used convert interpreter frames into compiled frames.  It is
2973 // called from very start of a compiled OSR nmethod.  A temp array is
2974 // allocated to hold the interesting bits of the interpreter frame.  All
2975 // active locks are inflated to allow them to move.  The displaced headers and
2976 // active interpreter locals are copied into the temp buffer.  Then we return
2977 // back to the compiled code.  The compiled code then pops the current
2978 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2979 // copies the interpreter locals and displaced headers where it wants.
2980 // Finally it calls back to free the temp buffer.
2981 //
2982 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2983 
2984 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2985 
2986   //
2987   // This code is dependent on the memory layout of the interpreter local
2988   // array and the monitors. On all of our platforms the layout is identical
2989   // so this code is shared. If some platform lays the their arrays out
2990   // differently then this code could move to platform specific code or
2991   // the code here could be modified to copy items one at a time using
2992   // frame accessor methods and be platform independent.
2993 
2994   frame fr = thread->last_frame();
2995   assert(fr.is_interpreted_frame(), "");
2996   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2997 
2998   // Figure out how many monitors are active.
2999   int active_monitor_count = 0;
3000   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3001        kptr < fr.interpreter_frame_monitor_begin();
3002        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3003     if (kptr->obj() != NULL) active_monitor_count++;
3004   }
3005 
3006   // QQQ we could place number of active monitors in the array so that compiled code
3007   // could double check it.
3008 
3009   Method* moop = fr.interpreter_frame_method();
3010   int max_locals = moop->max_locals();
3011   // Allocate temp buffer, 1 word per local & 2 per active monitor
3012   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3013   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3014 
3015   // Copy the locals.  Order is preserved so that loading of longs works.
3016   // Since there's no GC I can copy the oops blindly.
3017   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3018   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3019                        (HeapWord*)&buf[0],
3020                        max_locals);
3021 
3022   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3023   int i = max_locals;
3024   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3025        kptr2 < fr.interpreter_frame_monitor_begin();
3026        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3027     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3028       BasicLock *lock = kptr2->lock();
3029       // Inflate so the displaced header becomes position-independent
3030       if (lock->displaced_header()->is_unlocked())
3031         ObjectSynchronizer::inflate_helper(kptr2->obj());
3032       // Now the displaced header is free to move
3033       buf[i++] = (intptr_t)lock->displaced_header();
3034       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3035     }
3036   }
3037   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3038 
3039   return buf;
3040 JRT_END
3041 
3042 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3043   FREE_C_HEAP_ARRAY(intptr_t, buf);
3044 JRT_END
3045 
3046 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3047   AdapterHandlerTableIterator iter(_adapters);
3048   while (iter.has_next()) {
3049     AdapterHandlerEntry* a = iter.next();
3050     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3051   }
3052   return false;
3053 }
3054 
3055 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3056   AdapterHandlerTableIterator iter(_adapters);
3057   while (iter.has_next()) {
3058     AdapterHandlerEntry* a = iter.next();
3059     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3060       st->print("Adapter for signature: ");
3061       a->print_adapter_on(tty);
3062       return;
3063     }
3064   }
3065   assert(false, "Should have found handler");
3066 }
3067 
3068 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3069   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3070                p2i(this), fingerprint()->as_string(),
3071                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3072 
3073 }
3074 
3075 #if INCLUDE_CDS
3076 
3077 void CDSAdapterHandlerEntry::init() {
3078   assert(DumpSharedSpaces, "used during dump time only");
3079   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3080   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3081 };
3082 
3083 #endif // INCLUDE_CDS
3084 
3085 
3086 #ifndef PRODUCT
3087 
3088 void AdapterHandlerLibrary::print_statistics() {
3089   _adapters->print_statistics();
3090 }
3091 
3092 #endif /* PRODUCT */
3093 
3094 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3095   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3096   thread->enable_stack_reserved_zone();
3097   thread->set_reserved_stack_activation(thread->stack_base());
3098 JRT_END
3099 
3100 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3101   frame activation;
3102   CompiledMethod* nm = NULL;
3103   int count = 1;
3104 
3105   assert(fr.is_java_frame(), "Must start on Java frame");
3106 
3107   while (true) {
3108     Method* method = NULL;
3109     if (fr.is_interpreted_frame()) {
3110       method = fr.interpreter_frame_method();
3111     } else {
3112       CodeBlob* cb = fr.cb();
3113       if (cb != NULL && cb->is_compiled()) {
3114         nm = cb->as_compiled_method();
3115         method = nm->method();
3116       }
3117     }
3118     if ((method != NULL) && method->has_reserved_stack_access()) {
3119       ResourceMark rm(thread);
3120       activation = fr;
3121       warning("Potentially dangerous stack overflow in "
3122               "ReservedStackAccess annotated method %s [%d]",
3123               method->name_and_sig_as_C_string(), count++);
3124       EventReservedStackActivation event;
3125       if (event.should_commit()) {
3126         event.set_method(method);
3127         event.commit();
3128       }
3129     }
3130     if (fr.is_first_java_frame()) {
3131       break;
3132     } else {
3133       fr = fr.java_sender();
3134     }
3135   }
3136   return activation;
3137 }
3138