--- /dev/null 2017-04-26 21:17:57.475168268 +0200 +++ new/src/java.desktop/share/classes/sun/java2d/marlin/DMarlinRenderingEngine.java 2017-04-26 23:16:39.402939087 +0200 @@ -0,0 +1,1111 @@ +/* + * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package sun.java2d.marlin; + +import java.awt.BasicStroke; +import java.awt.Shape; +import java.awt.geom.AffineTransform; +import java.awt.geom.Path2D; +import java.awt.geom.PathIterator; +import java.security.AccessController; +import static sun.java2d.marlin.MarlinUtils.logInfo; +import sun.java2d.ReentrantContextProvider; +import sun.java2d.ReentrantContextProviderCLQ; +import sun.java2d.ReentrantContextProviderTL; +import sun.java2d.pipe.AATileGenerator; +import sun.java2d.pipe.Region; +import sun.java2d.pipe.RenderingEngine; +import sun.security.action.GetPropertyAction; + +/** + * Marlin RendererEngine implementation (derived from Pisces) + */ +public final class DMarlinRenderingEngine extends RenderingEngine + implements MarlinConst +{ + private static enum NormMode { + ON_WITH_AA { + @Override + PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx, + final PathIterator src) + { + // NormalizingPathIterator NearestPixelCenter: + return rdrCtx.nPCPathIterator.init(src); + } + }, + ON_NO_AA{ + @Override + PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx, + final PathIterator src) + { + // NearestPixel NormalizingPathIterator: + return rdrCtx.nPQPathIterator.init(src); + } + }, + OFF{ + @Override + PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx, + final PathIterator src) + { + // return original path iterator if normalization is disabled: + return src; + } + }; + + abstract PathIterator getNormalizingPathIterator(DRendererContext rdrCtx, + PathIterator src); + } + + private static final float MIN_PEN_SIZE = 1.0f / NORM_SUBPIXELS; + + static final double UPPER_BND = Float.MAX_VALUE / 2.0d; + static final double LOWER_BND = -UPPER_BND; + + /** + * Public constructor + */ + public DMarlinRenderingEngine() { + super(); + logSettings(DMarlinRenderingEngine.class.getName()); + } + + /** + * Create a widened path as specified by the parameters. + *

+ * The specified {@code src} {@link Shape} is widened according + * to the specified attribute parameters as per the + * {@link BasicStroke} specification. + * + * @param src the source path to be widened + * @param width the width of the widened path as per {@code BasicStroke} + * @param caps the end cap decorations as per {@code BasicStroke} + * @param join the segment join decorations as per {@code BasicStroke} + * @param miterlimit the miter limit as per {@code BasicStroke} + * @param dashes the dash length array as per {@code BasicStroke} + * @param dashphase the initial dash phase as per {@code BasicStroke} + * @return the widened path stored in a new {@code Shape} object + * @since 1.7 + */ + @Override + public Shape createStrokedShape(Shape src, + float width, + int caps, + int join, + float miterlimit, + float[] dashes, + float dashphase) + { + final DRendererContext rdrCtx = getRendererContext(); + try { + // initialize a large copyable Path2D to avoid a lot of array growing: + final Path2D.Double p2d = rdrCtx.getPath2D(); + + strokeTo(rdrCtx, + src, + null, + width, + NormMode.OFF, + caps, + join, + miterlimit, + dashes, + dashphase, + rdrCtx.transformerPC2D.wrapPath2d(p2d) + ); + + // Use Path2D copy constructor (trim) + return new Path2D.Double(p2d); + + } finally { + // recycle the DRendererContext instance + returnRendererContext(rdrCtx); + } + } + + /** + * Sends the geometry for a widened path as specified by the parameters + * to the specified consumer. + *

+ * The specified {@code src} {@link Shape} is widened according + * to the parameters specified by the {@link BasicStroke} object. + * Adjustments are made to the path as appropriate for the + * {@link VALUE_STROKE_NORMALIZE} hint if the {@code normalize} + * boolean parameter is true. + * Adjustments are made to the path as appropriate for the + * {@link VALUE_ANTIALIAS_ON} hint if the {@code antialias} + * boolean parameter is true. + *

+ * The geometry of the widened path is forwarded to the indicated + * {@link DPathConsumer2D} object as it is calculated. + * + * @param src the source path to be widened + * @param bs the {@code BasicSroke} object specifying the + * decorations to be applied to the widened path + * @param normalize indicates whether stroke normalization should + * be applied + * @param antialias indicates whether or not adjustments appropriate + * to antialiased rendering should be applied + * @param consumer the {@code DPathConsumer2D} instance to forward + * the widened geometry to + * @since 1.7 + */ + @Override + public void strokeTo(Shape src, + AffineTransform at, + BasicStroke bs, + boolean thin, + boolean normalize, + boolean antialias, + final sun.awt.geom.PathConsumer2D consumer) + { + final NormMode norm = (normalize) ? + ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA) + : NormMode.OFF; + + final DRendererContext rdrCtx = getRendererContext(); + try { + strokeTo(rdrCtx, src, at, bs, thin, norm, antialias, + rdrCtx.p2dAdapter.init(consumer)); + } finally { + // recycle the DRendererContext instance + returnRendererContext(rdrCtx); + } + } + + final void strokeTo(final DRendererContext rdrCtx, + Shape src, + AffineTransform at, + BasicStroke bs, + boolean thin, + NormMode normalize, + boolean antialias, + DPathConsumer2D pc2d) + { + double lw; + if (thin) { + if (antialias) { + lw = userSpaceLineWidth(at, MIN_PEN_SIZE); + } else { + lw = userSpaceLineWidth(at, 1.0d); + } + } else { + lw = bs.getLineWidth(); + } + strokeTo(rdrCtx, + src, + at, + lw, + normalize, + bs.getEndCap(), + bs.getLineJoin(), + bs.getMiterLimit(), + bs.getDashArray(), + bs.getDashPhase(), + pc2d); + } + + private final double userSpaceLineWidth(AffineTransform at, double lw) { + + double widthScale; + + if (at == null) { + widthScale = 1.0d; + } else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM | + AffineTransform.TYPE_GENERAL_SCALE)) != 0) { + widthScale = Math.sqrt(at.getDeterminant()); + } else { + // First calculate the "maximum scale" of this transform. + double A = at.getScaleX(); // m00 + double C = at.getShearX(); // m01 + double B = at.getShearY(); // m10 + double D = at.getScaleY(); // m11 + + /* + * Given a 2 x 2 affine matrix [ A B ] such that + * [ C D ] + * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to + * find the maximum magnitude (norm) of the vector v' + * with the constraint (x^2 + y^2 = 1). + * The equation to maximize is + * |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2) + * or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2). + * Since sqrt is monotonic we can maximize |v'|^2 + * instead and plug in the substitution y = sqrt(1 - x^2). + * Trigonometric equalities can then be used to get + * rid of most of the sqrt terms. + */ + + double EA = A*A + B*B; // x^2 coefficient + double EB = 2.0d * (A*C + B*D); // xy coefficient + double EC = C*C + D*D; // y^2 coefficient + + /* + * There is a lot of calculus omitted here. + * + * Conceptually, in the interests of understanding the + * terms that the calculus produced we can consider + * that EA and EC end up providing the lengths along + * the major axes and the hypot term ends up being an + * adjustment for the additional length along the off-axis + * angle of rotated or sheared ellipses as well as an + * adjustment for the fact that the equation below + * averages the two major axis lengths. (Notice that + * the hypot term contains a part which resolves to the + * difference of these two axis lengths in the absence + * of rotation.) + * + * In the calculus, the ratio of the EB and (EA-EC) terms + * ends up being the tangent of 2*theta where theta is + * the angle that the long axis of the ellipse makes + * with the horizontal axis. Thus, this equation is + * calculating the length of the hypotenuse of a triangle + * along that axis. + */ + + double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC)); + // sqrt omitted, compare to squared limits below. + double widthsquared = ((EA + EC + hypot) / 2.0d); + + widthScale = Math.sqrt(widthsquared); + } + + return (lw / widthScale); + } + + final void strokeTo(final DRendererContext rdrCtx, + Shape src, + AffineTransform at, + double width, + NormMode norm, + int caps, + int join, + float miterlimit, + float[] dashes, + float dashphase, + DPathConsumer2D pc2d) + { + // We use strokerat so that in Stroker and Dasher we can work only + // with the pre-transformation coordinates. This will repeat a lot of + // computations done in the path iterator, but the alternative is to + // work with transformed paths and compute untransformed coordinates + // as needed. This would be faster but I do not think the complexity + // of working with both untransformed and transformed coordinates in + // the same code is worth it. + // However, if a path's width is constant after a transformation, + // we can skip all this untransforming. + + // As pathTo() will check transformed coordinates for invalid values + // (NaN / Infinity) to ignore such points, it is necessary to apply the + // transformation before the path processing. + AffineTransform strokerat = null; + + int dashLen = -1; + boolean recycleDashes = false; + double[] dashesD = null; + + // Ensure converting dashes to double precision: + if (dashes != null) { + recycleDashes = true; + dashLen = dashes.length; + dashesD = rdrCtx.dasher.copyDashArray(dashes); + } + + if (at != null && !at.isIdentity()) { + final double a = at.getScaleX(); + final double b = at.getShearX(); + final double c = at.getShearY(); + final double d = at.getScaleY(); + final double det = a * d - c * b; + + if (Math.abs(det) <= (2.0d * Double.MIN_VALUE)) { + // this rendering engine takes one dimensional curves and turns + // them into 2D shapes by giving them width. + // However, if everything is to be passed through a singular + // transformation, these 2D shapes will be squashed down to 1D + // again so, nothing can be drawn. + + // Every path needs an initial moveTo and a pathDone. If these + // are not there this causes a SIGSEGV in libawt.so (at the time + // of writing of this comment (September 16, 2010)). Actually, + // I am not sure if the moveTo is necessary to avoid the SIGSEGV + // but the pathDone is definitely needed. + pc2d.moveTo(0.0d, 0.0d); + pc2d.pathDone(); + return; + } + + // If the transform is a constant multiple of an orthogonal transformation + // then every length is just multiplied by a constant, so we just + // need to transform input paths to stroker and tell stroker + // the scaled width. This condition is satisfied if + // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we + // leave a bit of room for error. + if (nearZero(a*b + c*d) && nearZero(a*a + c*c - (b*b + d*d))) { + final double scale = Math.sqrt(a*a + c*c); + + if (dashesD != null) { + for (int i = 0; i < dashLen; i++) { + dashesD[i] *= scale; + } + dashphase *= scale; + } + width *= scale; + + // by now strokerat == null. Input paths to + // stroker (and maybe dasher) will have the full transform at + // applied to them and nothing will happen to the output paths. + } else { + strokerat = at; + + // by now strokerat == at. Input paths to + // stroker (and maybe dasher) will have the full transform at + // applied to them, then they will be normalized, and then + // the inverse of *only the non translation part of at* will + // be applied to the normalized paths. This won't cause problems + // in stroker, because, suppose at = T*A, where T is just the + // translation part of at, and A is the rest. T*A has already + // been applied to Stroker/Dasher's input. Then Ainv will be + // applied. Ainv*T*A is not equal to T, but it is a translation, + // which means that none of stroker's assumptions about its + // input will be violated. After all this, A will be applied + // to stroker's output. + } + } else { + // either at is null or it's the identity. In either case + // we don't transform the path. + at = null; + } + + if (USE_SIMPLIFIER) { + // Use simplifier after stroker before Renderer + // to remove collinear segments (notably due to cap square) + pc2d = rdrCtx.simplifier.init(pc2d); + } + + final DTransformingPathConsumer2D transformerPC2D = rdrCtx.transformerPC2D; + pc2d = transformerPC2D.deltaTransformConsumer(pc2d, strokerat); + + pc2d = rdrCtx.stroker.init(pc2d, width, caps, join, miterlimit); + + if (dashesD != null) { + pc2d = rdrCtx.dasher.init(pc2d, dashesD, dashLen, dashphase, + recycleDashes); + } + pc2d = transformerPC2D.inverseDeltaTransformConsumer(pc2d, strokerat); + + final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx, + src.getPathIterator(at)); + + pathTo(rdrCtx, pi, pc2d); + + /* + * Pipeline seems to be: + * shape.getPathIterator(at) + * -> (NormalizingPathIterator) + * -> (inverseDeltaTransformConsumer) + * -> (Dasher) + * -> Stroker + * -> (deltaTransformConsumer) + * + * -> (CollinearSimplifier) to remove redundant segments + * + * -> pc2d = Renderer (bounding box) + */ + } + + private static boolean nearZero(final double num) { + return Math.abs(num) < 2.0d * Math.ulp(num); + } + + abstract static class NormalizingPathIterator implements PathIterator { + + private PathIterator src; + + // the adjustment applied to the current position. + private double curx_adjust, cury_adjust; + // the adjustment applied to the last moveTo position. + private double movx_adjust, movy_adjust; + + private final double[] tmp; + + NormalizingPathIterator(final double[] tmp) { + this.tmp = tmp; + } + + final NormalizingPathIterator init(final PathIterator src) { + this.src = src; + return this; // fluent API + } + + /** + * Disposes this path iterator: + * clean up before reusing this instance + */ + final void dispose() { + // free source PathIterator: + this.src = null; + } + + @Override + public final int currentSegment(final double[] coords) { + int lastCoord; + final int type = src.currentSegment(coords); + + switch(type) { + case PathIterator.SEG_MOVETO: + case PathIterator.SEG_LINETO: + lastCoord = 0; + break; + case PathIterator.SEG_QUADTO: + lastCoord = 2; + break; + case PathIterator.SEG_CUBICTO: + lastCoord = 4; + break; + case PathIterator.SEG_CLOSE: + // we don't want to deal with this case later. We just exit now + curx_adjust = movx_adjust; + cury_adjust = movy_adjust; + return type; + default: + throw new InternalError("Unrecognized curve type"); + } + + // normalize endpoint + double coord, x_adjust, y_adjust; + + coord = coords[lastCoord]; + x_adjust = normCoord(coord); // new coord + coords[lastCoord] = x_adjust; + x_adjust -= coord; + + coord = coords[lastCoord + 1]; + y_adjust = normCoord(coord); // new coord + coords[lastCoord + 1] = y_adjust; + y_adjust -= coord; + + // now that the end points are done, normalize the control points + switch(type) { + case PathIterator.SEG_MOVETO: + movx_adjust = x_adjust; + movy_adjust = y_adjust; + break; + case PathIterator.SEG_LINETO: + break; + case PathIterator.SEG_QUADTO: + coords[0] += (curx_adjust + x_adjust) / 2.0d; + coords[1] += (cury_adjust + y_adjust) / 2.0d; + break; + case PathIterator.SEG_CUBICTO: + coords[0] += curx_adjust; + coords[1] += cury_adjust; + coords[2] += x_adjust; + coords[3] += y_adjust; + break; + case PathIterator.SEG_CLOSE: + // handled earlier + default: + } + curx_adjust = x_adjust; + cury_adjust = y_adjust; + return type; + } + + abstract double normCoord(final double coord); + + @Override + public final int currentSegment(final float[] coords) { + final double[] _tmp = tmp; // dirty + int type = this.currentSegment(_tmp); + for (int i = 0; i < 6; i++) { + coords[i] = (float)_tmp[i]; + } + return type; + } + + @Override + public final int getWindingRule() { + return src.getWindingRule(); + } + + @Override + public final boolean isDone() { + if (src.isDone()) { + // Dispose this instance: + dispose(); + return true; + } + return false; + } + + @Override + public final void next() { + src.next(); + } + + static final class NearestPixelCenter + extends NormalizingPathIterator + { + NearestPixelCenter(final double[] tmp) { + super(tmp); + } + + @Override + double normCoord(final double coord) { + // round to nearest pixel center + return Math.floor(coord) + 0.5d; + } + } + + static final class NearestPixelQuarter + extends NormalizingPathIterator + { + NearestPixelQuarter(final double[] tmp) { + super(tmp); + } + + @Override + double normCoord(final double coord) { + // round to nearest (0.25, 0.25) pixel quarter + return Math.floor(coord + 0.25d) + 0.25d; + } + } + } + + private static void pathTo(final DRendererContext rdrCtx, final PathIterator pi, + final DPathConsumer2D pc2d) + { + // mark context as DIRTY: + rdrCtx.dirty = true; + + final double[] coords = rdrCtx.double6; + + pathToLoop(coords, pi, pc2d); + + // mark context as CLEAN: + rdrCtx.dirty = false; + } + + private static void pathToLoop(final double[] coords, final PathIterator pi, + final DPathConsumer2D pc2d) + { + // ported from DuctusRenderingEngine.feedConsumer() but simplified: + // - removed skip flag = !subpathStarted + // - removed pathClosed (ie subpathStarted not set to false) + boolean subpathStarted = false; + + for (; !pi.isDone(); pi.next()) { + switch (pi.currentSegment(coords)) { + case PathIterator.SEG_MOVETO: + /* Checking SEG_MOVETO coordinates if they are out of the + * [LOWER_BND, UPPER_BND] range. This check also handles NaN + * and Infinity values. Skipping next path segment in case of + * invalid data. + */ + if (coords[0] < UPPER_BND && coords[0] > LOWER_BND && + coords[1] < UPPER_BND && coords[1] > LOWER_BND) + { + pc2d.moveTo(coords[0], coords[1]); + subpathStarted = true; + } + break; + case PathIterator.SEG_LINETO: + /* Checking SEG_LINETO coordinates if they are out of the + * [LOWER_BND, UPPER_BND] range. This check also handles NaN + * and Infinity values. Ignoring current path segment in case + * of invalid data. If segment is skipped its endpoint + * (if valid) is used to begin new subpath. + */ + if (coords[0] < UPPER_BND && coords[0] > LOWER_BND && + coords[1] < UPPER_BND && coords[1] > LOWER_BND) + { + if (subpathStarted) { + pc2d.lineTo(coords[0], coords[1]); + } else { + pc2d.moveTo(coords[0], coords[1]); + subpathStarted = true; + } + } + break; + case PathIterator.SEG_QUADTO: + // Quadratic curves take two points + /* Checking SEG_QUADTO coordinates if they are out of the + * [LOWER_BND, UPPER_BND] range. This check also handles NaN + * and Infinity values. Ignoring current path segment in case + * of invalid endpoints's data. Equivalent to the SEG_LINETO + * if endpoint coordinates are valid but there are invalid data + * among other coordinates + */ + if (coords[2] < UPPER_BND && coords[2] > LOWER_BND && + coords[3] < UPPER_BND && coords[3] > LOWER_BND) + { + if (subpathStarted) { + if (coords[0] < UPPER_BND && coords[0] > LOWER_BND && + coords[1] < UPPER_BND && coords[1] > LOWER_BND) + { + pc2d.quadTo(coords[0], coords[1], + coords[2], coords[3]); + } else { + pc2d.lineTo(coords[2], coords[3]); + } + } else { + pc2d.moveTo(coords[2], coords[3]); + subpathStarted = true; + } + } + break; + case PathIterator.SEG_CUBICTO: + // Cubic curves take three points + /* Checking SEG_CUBICTO coordinates if they are out of the + * [LOWER_BND, UPPER_BND] range. This check also handles NaN + * and Infinity values. Ignoring current path segment in case + * of invalid endpoints's data. Equivalent to the SEG_LINETO + * if endpoint coordinates are valid but there are invalid data + * among other coordinates + */ + if (coords[4] < UPPER_BND && coords[4] > LOWER_BND && + coords[5] < UPPER_BND && coords[5] > LOWER_BND) + { + if (subpathStarted) { + if (coords[0] < UPPER_BND && coords[0] > LOWER_BND && + coords[1] < UPPER_BND && coords[1] > LOWER_BND && + coords[2] < UPPER_BND && coords[2] > LOWER_BND && + coords[3] < UPPER_BND && coords[3] > LOWER_BND) + { + pc2d.curveTo(coords[0], coords[1], + coords[2], coords[3], + coords[4], coords[5]); + } else { + pc2d.lineTo(coords[4], coords[5]); + } + } else { + pc2d.moveTo(coords[4], coords[5]); + subpathStarted = true; + } + } + break; + case PathIterator.SEG_CLOSE: + if (subpathStarted) { + pc2d.closePath(); + // do not set subpathStarted to false + // in case of missing moveTo() after close() + } + break; + default: + } + } + pc2d.pathDone(); + } + + /** + * Construct an antialiased tile generator for the given shape with + * the given rendering attributes and store the bounds of the tile + * iteration in the bbox parameter. + * The {@code at} parameter specifies a transform that should affect + * both the shape and the {@code BasicStroke} attributes. + * The {@code clip} parameter specifies the current clip in effect + * in device coordinates and can be used to prune the data for the + * operation, but the renderer is not required to perform any + * clipping. + * If the {@code BasicStroke} parameter is null then the shape + * should be filled as is, otherwise the attributes of the + * {@code BasicStroke} should be used to specify a draw operation. + * The {@code thin} parameter indicates whether or not the + * transformed {@code BasicStroke} represents coordinates smaller + * than the minimum resolution of the antialiasing rasterizer as + * specified by the {@code getMinimumAAPenWidth()} method. + *

+ * Upon returning, this method will fill the {@code bbox} parameter + * with 4 values indicating the bounds of the iteration of the + * tile generator. + * The iteration order of the tiles will be as specified by the + * pseudo-code: + *

+     *     for (y = bbox[1]; y < bbox[3]; y += tileheight) {
+     *         for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
+     *         }
+     *     }
+     * 
+ * If there is no output to be rendered, this method may return + * null. + * + * @param s the shape to be rendered (fill or draw) + * @param at the transform to be applied to the shape and the + * stroke attributes + * @param clip the current clip in effect in device coordinates + * @param bs if non-null, a {@code BasicStroke} whose attributes + * should be applied to this operation + * @param thin true if the transformed stroke attributes are smaller + * than the minimum dropout pen width + * @param normalize true if the {@code VALUE_STROKE_NORMALIZE} + * {@code RenderingHint} is in effect + * @param bbox returns the bounds of the iteration + * @return the {@code AATileGenerator} instance to be consulted + * for tile coverages, or null if there is no output to render + * @since 1.7 + */ + @Override + public AATileGenerator getAATileGenerator(Shape s, + AffineTransform at, + Region clip, + BasicStroke bs, + boolean thin, + boolean normalize, + int[] bbox) + { + MarlinTileGenerator ptg = null; + DRenderer r = null; + + final DRendererContext rdrCtx = getRendererContext(); + try { + // Test if at is identity: + final AffineTransform _at = (at != null && !at.isIdentity()) ? at + : null; + + final NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF; + + if (bs == null) { + // fill shape: + final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx, + s.getPathIterator(_at)); + + // note: Winding rule may be EvenOdd ONLY for fill operations ! + r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(), + clip.getWidth(), clip.getHeight(), + pi.getWindingRule()); + + // TODO: subdivide quad/cubic curves into monotonic curves ? + pathTo(rdrCtx, pi, r); + } else { + // draw shape with given stroke: + r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(), + clip.getWidth(), clip.getHeight(), + PathIterator.WIND_NON_ZERO); + + strokeTo(rdrCtx, s, _at, bs, thin, norm, true, r); + } + if (r.endRendering()) { + ptg = rdrCtx.ptg.init(); + ptg.getBbox(bbox); + // note: do not returnRendererContext(rdrCtx) + // as it will be called later by MarlinTileGenerator.dispose() + r = null; + } + } finally { + if (r != null) { + // dispose renderer and recycle the RendererContext instance: + r.dispose(); + } + } + + // Return null to cancel AA tile generation (nothing to render) + return ptg; + } + + @Override + public final AATileGenerator getAATileGenerator(double x, double y, + double dx1, double dy1, + double dx2, double dy2, + double lw1, double lw2, + Region clip, + int[] bbox) + { + // REMIND: Deal with large coordinates! + double ldx1, ldy1, ldx2, ldy2; + boolean innerpgram = (lw1 > 0.0d && lw2 > 0.0d); + + if (innerpgram) { + ldx1 = dx1 * lw1; + ldy1 = dy1 * lw1; + ldx2 = dx2 * lw2; + ldy2 = dy2 * lw2; + x -= (ldx1 + ldx2) / 2.0d; + y -= (ldy1 + ldy2) / 2.0d; + dx1 += ldx1; + dy1 += ldy1; + dx2 += ldx2; + dy2 += ldy2; + if (lw1 > 1.0d && lw2 > 1.0d) { + // Inner parallelogram was entirely consumed by stroke... + innerpgram = false; + } + } else { + ldx1 = ldy1 = ldx2 = ldy2 = 0.0d; + } + + MarlinTileGenerator ptg = null; + DRenderer r = null; + + final DRendererContext rdrCtx = getRendererContext(); + try { + r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(), + clip.getWidth(), clip.getHeight(), + DRenderer.WIND_EVEN_ODD); + + r.moveTo( x, y); + r.lineTo( (x+dx1), (y+dy1)); + r.lineTo( (x+dx1+dx2), (y+dy1+dy2)); + r.lineTo( (x+dx2), (y+dy2)); + r.closePath(); + + if (innerpgram) { + x += ldx1 + ldx2; + y += ldy1 + ldy2; + dx1 -= 2.0d * ldx1; + dy1 -= 2.0d * ldy1; + dx2 -= 2.0d * ldx2; + dy2 -= 2.0d * ldy2; + r.moveTo( x, y); + r.lineTo( (x+dx1), (y+dy1)); + r.lineTo( (x+dx1+dx2), (y+dy1+dy2)); + r.lineTo( (x+dx2), (y+dy2)); + r.closePath(); + } + r.pathDone(); + + if (r.endRendering()) { + ptg = rdrCtx.ptg.init(); + ptg.getBbox(bbox); + // note: do not returnRendererContext(rdrCtx) + // as it will be called later by MarlinTileGenerator.dispose() + r = null; + } + } finally { + if (r != null) { + // dispose renderer and recycle the RendererContext instance: + r.dispose(); + } + } + + // Return null to cancel AA tile generation (nothing to render) + return ptg; + } + + /** + * Returns the minimum pen width that the antialiasing rasterizer + * can represent without dropouts occuring. + * @since 1.7 + */ + @Override + public float getMinimumAAPenSize() { + return MIN_PEN_SIZE; + } + + static { + if (PathIterator.WIND_NON_ZERO != DRenderer.WIND_NON_ZERO || + PathIterator.WIND_EVEN_ODD != DRenderer.WIND_EVEN_ODD || + BasicStroke.JOIN_MITER != DStroker.JOIN_MITER || + BasicStroke.JOIN_ROUND != DStroker.JOIN_ROUND || + BasicStroke.JOIN_BEVEL != DStroker.JOIN_BEVEL || + BasicStroke.CAP_BUTT != DStroker.CAP_BUTT || + BasicStroke.CAP_ROUND != DStroker.CAP_ROUND || + BasicStroke.CAP_SQUARE != DStroker.CAP_SQUARE) + { + throw new InternalError("mismatched renderer constants"); + } + } + + // --- DRendererContext handling --- + // use ThreadLocal or ConcurrentLinkedQueue to get one DRendererContext + private static final boolean USE_THREAD_LOCAL; + + // reference type stored in either TL or CLQ + static final int REF_TYPE; + + // Per-thread DRendererContext + private static final ReentrantContextProvider RDR_CTX_PROVIDER; + + // Static initializer to use TL or CLQ mode + static { + USE_THREAD_LOCAL = MarlinProperties.isUseThreadLocal(); + + // Soft reference by default: + final String refType = AccessController.doPrivileged( + new GetPropertyAction("sun.java2d.renderer.useRef", + "soft")); + + // Java 1.6 does not support strings in switch: + if ("hard".equalsIgnoreCase(refType)) { + REF_TYPE = ReentrantContextProvider.REF_HARD; + } else if ("weak".equalsIgnoreCase(refType)) { + REF_TYPE = ReentrantContextProvider.REF_WEAK; + } else { + REF_TYPE = ReentrantContextProvider.REF_SOFT; + } + + if (USE_THREAD_LOCAL) { + RDR_CTX_PROVIDER = new ReentrantContextProviderTL(REF_TYPE) + { + @Override + protected DRendererContext newContext() { + return DRendererContext.createContext(); + } + }; + } else { + RDR_CTX_PROVIDER = new ReentrantContextProviderCLQ(REF_TYPE) + { + @Override + protected DRendererContext newContext() { + return DRendererContext.createContext(); + } + }; + } + } + + private static boolean SETTINGS_LOGGED = !ENABLE_LOGS; + + private static void logSettings(final String reClass) { + // log information at startup + if (SETTINGS_LOGGED) { + return; + } + SETTINGS_LOGGED = true; + + String refType; + switch (REF_TYPE) { + default: + case ReentrantContextProvider.REF_HARD: + refType = "hard"; + break; + case ReentrantContextProvider.REF_SOFT: + refType = "soft"; + break; + case ReentrantContextProvider.REF_WEAK: + refType = "weak"; + break; + } + + logInfo("==========================================================" + + "====================="); + + logInfo("Marlin software rasterizer = ENABLED"); + logInfo("Version = [" + + Version.getVersion() + "]"); + logInfo("sun.java2d.renderer = " + + reClass); + logInfo("sun.java2d.renderer.useThreadLocal = " + + USE_THREAD_LOCAL); + logInfo("sun.java2d.renderer.useRef = " + + refType); + + logInfo("sun.java2d.renderer.edges = " + + MarlinConst.INITIAL_EDGES_COUNT); + logInfo("sun.java2d.renderer.pixelsize = " + + MarlinConst.INITIAL_PIXEL_DIM); + + logInfo("sun.java2d.renderer.subPixel_log2_X = " + + MarlinConst.SUBPIXEL_LG_POSITIONS_X); + logInfo("sun.java2d.renderer.subPixel_log2_Y = " + + MarlinConst.SUBPIXEL_LG_POSITIONS_Y); + + logInfo("sun.java2d.renderer.tileSize_log2 = " + + MarlinConst.TILE_H_LG); + logInfo("sun.java2d.renderer.tileWidth_log2 = " + + MarlinConst.TILE_W_LG); + logInfo("sun.java2d.renderer.blockSize_log2 = " + + MarlinConst.BLOCK_SIZE_LG); + + // RLE / blockFlags settings + + logInfo("sun.java2d.renderer.forceRLE = " + + MarlinProperties.isForceRLE()); + logInfo("sun.java2d.renderer.forceNoRLE = " + + MarlinProperties.isForceNoRLE()); + logInfo("sun.java2d.renderer.useTileFlags = " + + MarlinProperties.isUseTileFlags()); + logInfo("sun.java2d.renderer.useTileFlags.useHeuristics = " + + MarlinProperties.isUseTileFlagsWithHeuristics()); + logInfo("sun.java2d.renderer.rleMinWidth = " + + MarlinCache.RLE_MIN_WIDTH); + + // optimisation parameters + logInfo("sun.java2d.renderer.useSimplifier = " + + MarlinConst.USE_SIMPLIFIER); + + // debugging parameters + logInfo("sun.java2d.renderer.doStats = " + + MarlinConst.DO_STATS); + logInfo("sun.java2d.renderer.doMonitors = " + + MarlinConst.DO_MONITORS); + logInfo("sun.java2d.renderer.doChecks = " + + MarlinConst.DO_CHECKS); + + // logging parameters + logInfo("sun.java2d.renderer.useLogger = " + + MarlinConst.USE_LOGGER); + logInfo("sun.java2d.renderer.logCreateContext = " + + MarlinConst.LOG_CREATE_CONTEXT); + logInfo("sun.java2d.renderer.logUnsafeMalloc = " + + MarlinConst.LOG_UNSAFE_MALLOC); + + // quality settings + logInfo("sun.java2d.renderer.cubic_dec_d2 = " + + MarlinProperties.getCubicDecD2()); + logInfo("sun.java2d.renderer.cubic_inc_d1 = " + + MarlinProperties.getCubicIncD1()); + logInfo("sun.java2d.renderer.quad_dec_d2 = " + + MarlinProperties.getQuadDecD2()); + + logInfo("Renderer settings:"); + logInfo("CUB_DEC_BND = " + DRenderer.CUB_DEC_BND); + logInfo("CUB_INC_BND = " + DRenderer.CUB_INC_BND); + logInfo("QUAD_DEC_BND = " + DRenderer.QUAD_DEC_BND); + + logInfo("INITIAL_EDGES_CAPACITY = " + + MarlinConst.INITIAL_EDGES_CAPACITY); + logInfo("INITIAL_CROSSING_COUNT = " + + DRenderer.INITIAL_CROSSING_COUNT); + + logInfo("==========================================================" + + "====================="); + } + + /** + * Get the DRendererContext instance dedicated to the current thread + * @return DRendererContext instance + */ + @SuppressWarnings({"unchecked"}) + static DRendererContext getRendererContext() { + final DRendererContext rdrCtx = RDR_CTX_PROVIDER.acquire(); + if (DO_MONITORS) { + rdrCtx.stats.mon_pre_getAATileGenerator.start(); + } + return rdrCtx; + } + + /** + * Reset and return the given DRendererContext instance for reuse + * @param rdrCtx DRendererContext instance + */ + static void returnRendererContext(final DRendererContext rdrCtx) { + rdrCtx.dispose(); + + if (DO_MONITORS) { + rdrCtx.stats.mon_pre_getAATileGenerator.stop(); + } + RDR_CTX_PROVIDER.release(rdrCtx); + } +}