--- old/src/java.desktop/share/classes/sun/java2d/marlin/Helpers.java 2017-04-26 23:16:34.475035351 +0200 +++ new/src/java.desktop/share/classes/sun/java2d/marlin/Helpers.java 2017-04-26 23:16:34.363037540 +0200 @@ -52,27 +52,27 @@ { int ret = off; float t; - if (a != 0f) { + if (a != 0.0f) { final float dis = b*b - 4*a*c; - if (dis > 0f) { - final float sqrtDis = (float)Math.sqrt(dis); + if (dis > 0.0f) { + final float sqrtDis = (float) Math.sqrt(dis); // depending on the sign of b we use a slightly different // algorithm than the traditional one to find one of the roots // so we can avoid adding numbers of different signs (which // might result in loss of precision). - if (b >= 0f) { - zeroes[ret++] = (2f * c) / (-b - sqrtDis); - zeroes[ret++] = (-b - sqrtDis) / (2f * a); + if (b >= 0.0f) { + zeroes[ret++] = (2.0f * c) / (-b - sqrtDis); + zeroes[ret++] = (-b - sqrtDis) / (2.0f * a); } else { - zeroes[ret++] = (-b + sqrtDis) / (2f * a); - zeroes[ret++] = (2f * c) / (-b + sqrtDis); + zeroes[ret++] = (-b + sqrtDis) / (2.0f * a); + zeroes[ret++] = (2.0f * c) / (-b + sqrtDis); } - } else if (dis == 0f) { - t = (-b) / (2f * a); + } else if (dis == 0.0f) { + t = (-b) / (2.0f * a); zeroes[ret++] = t; } } else { - if (b != 0f) { + if (b != 0.0f) { t = (-c) / b; zeroes[ret++] = t; } @@ -85,7 +85,7 @@ float[] pts, final int off, final float A, final float B) { - if (d == 0f) { + if (d == 0.0f) { int num = quadraticRoots(a, b, c, pts, off); return filterOutNotInAB(pts, off, num, A, B) - off; } @@ -109,8 +109,8 @@ // q = Q/2 // instead and use those values for simplicity of the code. double sq_A = a * a; - double p = (1.0/3.0) * ((-1.0/3.0) * sq_A + b); - double q = (1.0/2.0) * ((2.0/27.0) * a * sq_A - (1.0/3.0) * a * b + c); + double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b); + double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c); // use Cardano's formula @@ -118,30 +118,30 @@ double D = q * q + cb_p; int num; - if (D < 0.0) { + if (D < 0.0d) { // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method - final double phi = (1.0/3.0) * acos(-q / sqrt(-cb_p)); - final double t = 2.0 * sqrt(-p); + final double phi = (1.0d/3.0d) * acos(-q / sqrt(-cb_p)); + final double t = 2.0d * sqrt(-p); - pts[ off+0 ] = (float)( t * cos(phi)); - pts[ off+1 ] = (float)(-t * cos(phi + (PI / 3.0))); - pts[ off+2 ] = (float)(-t * cos(phi - (PI / 3.0))); + pts[ off+0 ] = (float) ( t * cos(phi)); + pts[ off+1 ] = (float) (-t * cos(phi + (PI / 3.0d))); + pts[ off+2 ] = (float) (-t * cos(phi - (PI / 3.0d))); num = 3; } else { final double sqrt_D = sqrt(D); final double u = cbrt(sqrt_D - q); final double v = - cbrt(sqrt_D + q); - pts[ off ] = (float)(u + v); + pts[ off ] = (float) (u + v); num = 1; - if (within(D, 0.0, 1e-8)) { - pts[off+1] = -(pts[off] / 2f); + if (within(D, 0.0d, 1e-8d)) { + pts[off+1] = -(pts[off] / 2.0f); num = 2; } } - final float sub = (1f/3f) * a; + final float sub = (1.0f/3.0f) * a; for (int i = 0; i < num; ++i) { pts[ off+i ] -= sub; @@ -178,7 +178,7 @@ static float polyLineLength(float[] poly, final int off, final int nCoords) { assert nCoords % 2 == 0 && poly.length >= off + nCoords : ""; - float acc = 0; + float acc = 0.0f; for (int i = off + 2; i < off + nCoords; i += 2) { acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]); } @@ -188,7 +188,7 @@ static float linelen(float x1, float y1, float x2, float y2) { final float dx = x2 - x1; final float dy = y2 - y1; - return (float)Math.sqrt(dx*dx + dy*dy); + return (float) Math.sqrt(dx*dx + dy*dy); } static void subdivide(float[] src, int srcoff, float[] left, int leftoff, @@ -218,8 +218,8 @@ } // Most of these are copied from classes in java.awt.geom because we need - // float versions of these functions, and Line2D, CubicCurve2D, - // QuadCurve2D don't provide them. + // both float and double versions of these functions, and Line2D, CubicCurve2D, + // QuadCurve2D don't provide the float version. /** * Subdivides the cubic curve specified by the coordinates * stored in the `src` array at indices `srcoff` @@ -268,18 +268,18 @@ right[rightoff + 6] = x2; right[rightoff + 7] = y2; } - x1 = (x1 + ctrlx1) / 2f; - y1 = (y1 + ctrly1) / 2f; - x2 = (x2 + ctrlx2) / 2f; - y2 = (y2 + ctrly2) / 2f; - float centerx = (ctrlx1 + ctrlx2) / 2f; - float centery = (ctrly1 + ctrly2) / 2f; - ctrlx1 = (x1 + centerx) / 2f; - ctrly1 = (y1 + centery) / 2f; - ctrlx2 = (x2 + centerx) / 2f; - ctrly2 = (y2 + centery) / 2f; - centerx = (ctrlx1 + ctrlx2) / 2f; - centery = (ctrly1 + ctrly2) / 2f; + x1 = (x1 + ctrlx1) / 2.0f; + y1 = (y1 + ctrly1) / 2.0f; + x2 = (x2 + ctrlx2) / 2.0f; + y2 = (y2 + ctrly2) / 2.0f; + float centerx = (ctrlx1 + ctrlx2) / 2.0f; + float centery = (ctrly1 + ctrly2) / 2.0f; + ctrlx1 = (x1 + centerx) / 2.0f; + ctrly1 = (y1 + centery) / 2.0f; + ctrlx2 = (x2 + centerx) / 2.0f; + ctrly2 = (y2 + centery) / 2.0f; + centerx = (ctrlx1 + ctrlx2) / 2.0f; + centery = (ctrly1 + ctrly2) / 2.0f; if (left != null) { left[leftoff + 2] = x1; left[leftoff + 3] = y1; @@ -367,12 +367,12 @@ right[rightoff + 4] = x2; right[rightoff + 5] = y2; } - x1 = (x1 + ctrlx) / 2f; - y1 = (y1 + ctrly) / 2f; - x2 = (x2 + ctrlx) / 2f; - y2 = (y2 + ctrly) / 2f; - ctrlx = (x1 + x2) / 2f; - ctrly = (y1 + y2) / 2f; + x1 = (x1 + ctrlx) / 2.0f; + y1 = (y1 + ctrly) / 2.0f; + x2 = (x2 + ctrlx) / 2.0f; + y2 = (y2 + ctrly) / 2.0f; + ctrlx = (x1 + x2) / 2.0f; + ctrly = (y1 + y2) / 2.0f; if (left != null) { left[leftoff + 2] = x1; left[leftoff + 3] = y1;