< prev index next >

src/java.desktop/share/classes/sun/java2d/marlin/Stroker.java

Print this page

        

*** 24,39 **** */ package sun.java2d.marlin; import java.util.Arrays; - import static java.lang.Math.ulp; - import static java.lang.Math.sqrt; import sun.awt.geom.PathConsumer2D; - import sun.java2d.marlin.Curve.BreakPtrIterator; - // TODO: some of the arithmetic here is too verbose and prone to hard to // debug typos. We should consider making a small Point/Vector class that // has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such final class Stroker implements PathConsumer2D, MarlinConst { --- 24,35 ----
*** 73,83 **** public static final int CAP_SQUARE = 2; // pisces used to use fixed point arithmetic with 16 decimal digits. I // didn't want to change the values of the constant below when I converted // it to floating point, so that's why the divisions by 2^16 are there. ! private static final float ROUND_JOIN_THRESHOLD = 1000/65536f; private static final float C = 0.5522847498307933f; private static final int MAX_N_CURVES = 11; --- 69,79 ---- public static final int CAP_SQUARE = 2; // pisces used to use fixed point arithmetic with 16 decimal digits. I // didn't want to change the values of the constant below when I converted // it to floating point, so that's why the divisions by 2^16 are there. ! private static final float ROUND_JOIN_THRESHOLD = 1000.0f/65536.0f; private static final float C = 0.5522847498307933f; private static final int MAX_N_CURVES = 11;
*** 110,122 **** private float smx, smy, cmx, cmy; private final PolyStack reverse; // This is where the curve to be processed is put. We give it ! // enough room to store 2 curves: one for the current subdivision, the ! // other for the rest of the curve. ! private final float[] middle = new float[2 * 8]; private final float[] lp = new float[8]; private final float[] rp = new float[8]; private final float[] subdivTs = new float[MAX_N_CURVES - 1]; // per-thread renderer context --- 106,117 ---- private float smx, smy, cmx, cmy; private final PolyStack reverse; // This is where the curve to be processed is put. We give it ! // enough room to store all curves. ! private final float[] middle = new float[MAX_N_CURVES * 6 + 2]; private final float[] lp = new float[8]; private final float[] rp = new float[8]; private final float[] subdivTs = new float[MAX_N_CURVES - 1]; // per-thread renderer context
*** 156,167 **** int joinStyle, float miterLimit) { this.out = pc2d; ! this.lineWidth2 = lineWidth / 2f; ! this.invHalfLineWidth2Sq = 1f / (2f * lineWidth2 * lineWidth2); this.capStyle = capStyle; this.joinStyle = joinStyle; float limit = miterLimit * lineWidth2; this.miterLimitSq = limit * limit; --- 151,162 ---- int joinStyle, float miterLimit) { this.out = pc2d; ! this.lineWidth2 = lineWidth / 2.0f; ! this.invHalfLineWidth2Sq = 1.0f / (2.0f * lineWidth2 * lineWidth2); this.capStyle = capStyle; this.joinStyle = joinStyle; float limit = miterLimit * lineWidth2; this.miterLimitSq = limit * limit;
*** 180,209 **** void dispose() { reverse.dispose(); if (DO_CLEAN_DIRTY) { // Force zero-fill dirty arrays: ! Arrays.fill(offset0, 0f); ! Arrays.fill(offset1, 0f); ! Arrays.fill(offset2, 0f); ! Arrays.fill(miter, 0f); ! Arrays.fill(middle, 0f); ! Arrays.fill(lp, 0f); ! Arrays.fill(rp, 0f); ! Arrays.fill(subdivTs, 0f); } } private static void computeOffset(final float lx, final float ly, final float w, final float[] m) { float len = lx*lx + ly*ly; ! if (len == 0f) { ! m[0] = 0f; ! m[1] = 0f; } else { ! len = (float) sqrt(len); m[0] = (ly * w) / len; m[1] = -(lx * w) / len; } } --- 175,204 ---- void dispose() { reverse.dispose(); if (DO_CLEAN_DIRTY) { // Force zero-fill dirty arrays: ! Arrays.fill(offset0, 0.0f); ! Arrays.fill(offset1, 0.0f); ! Arrays.fill(offset2, 0.0f); ! Arrays.fill(miter, 0.0f); ! Arrays.fill(middle, 0.0f); ! Arrays.fill(lp, 0.0f); ! Arrays.fill(rp, 0.0f); ! Arrays.fill(subdivTs, 0.0f); } } private static void computeOffset(final float lx, final float ly, final float w, final float[] m) { float len = lx*lx + ly*ly; ! if (len == 0.0f) { ! m[0] = 0.0f; ! m[1] = 0.0f; } else { ! len = (float) Math.sqrt(len); m[0] = (ly * w) / len; m[1] = -(lx * w) / len; } }
*** 224,234 **** private void drawRoundJoin(float x, float y, float omx, float omy, float mx, float my, boolean rev, float threshold) { ! if ((omx == 0f && omy == 0f) || (mx == 0f && my == 0f)) { return; } float domx = omx - mx; float domy = omy - my; --- 219,229 ---- private void drawRoundJoin(float x, float y, float omx, float omy, float mx, float my, boolean rev, float threshold) { ! if ((omx == 0.0f && omy == 0.0f) || (mx == 0.0f && my == 0.0f)) { return; } float domx = omx - mx; float domy = omy - my;
*** 256,266 **** // (ext is the angle between omx,omy and mx,my). final float cosext = omx * mx + omy * my; // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only // need 1 curve to approximate the circle section that joins omx,omy // and mx,my. ! final int numCurves = (cosext >= 0f) ? 1 : 2; switch (numCurves) { case 1: drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev); break; --- 251,261 ---- // (ext is the angle between omx,omy and mx,my). final float cosext = omx * mx + omy * my; // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only // need 1 curve to approximate the circle section that joins omx,omy // and mx,my. ! final int numCurves = (cosext >= 0.0f) ? 1 : 2; switch (numCurves) { case 1: drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev); break;
*** 278,288 **** // perpendicular bisector goes through the origin). This scaling doesn't // have numerical problems because we know that lineWidth2 divided by // this normal's length is at least 0.5 and at most sqrt(2)/2 (because // we know the angle of the arc is > 90 degrees). float nx = my - omy, ny = omx - mx; ! float nlen = (float) sqrt(nx*nx + ny*ny); float scale = lineWidth2/nlen; float mmx = nx * scale, mmy = ny * scale; // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've // computed the wrong intersection so we get the other one. --- 273,283 ---- // perpendicular bisector goes through the origin). This scaling doesn't // have numerical problems because we know that lineWidth2 divided by // this normal's length is at least 0.5 and at most sqrt(2)/2 (because // we know the angle of the arc is > 90 degrees). float nx = my - omy, ny = omx - mx; ! float nlen = (float) Math.sqrt(nx*nx + ny*ny); float scale = lineWidth2/nlen; float mmx = nx * scale, mmy = ny * scale; // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've // computed the wrong intersection so we get the other one.
*** 316,327 **** // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that // define the bezier curve we're computing. // It is computed using the constraints that P1-P0 and P3-P2 are parallel // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|. ! float cv = (float) ((4.0 / 3.0) * sqrt(0.5 - cosext2) / ! (1.0 + sqrt(cosext2 + 0.5))); // if clockwise, we need to negate cv. if (rev) { // rev is equivalent to isCW(omx, omy, mx, my) cv = -cv; } final float x1 = cx + omx; --- 311,322 ---- // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that // define the bezier curve we're computing. // It is computed using the constraints that P1-P0 and P3-P2 are parallel // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|. ! float cv = (float) ((4.0d / 3.0d) * Math.sqrt(0.5d - cosext2) / ! (1.0d + Math.sqrt(cosext2 + 0.5d))); // if clockwise, we need to negate cv. if (rev) { // rev is equivalent to isCW(omx, omy, mx, my) cv = -cv; } final float x1 = cx + omx;
*** 346,385 **** emitCurveTo(cx - my - Cmx, cy + mx - Cmy, cx - mx - Cmy, cy - my + Cmx, cx - mx, cy - my); } ! // Put the intersection point of the lines (x0, y0) -> (x1, y1) ! // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]. ! // If the lines are parallel, it will put a non finite number in m. ! private static void computeIntersection(final float x0, final float y0, ! final float x1, final float y1, ! final float x0p, final float y0p, ! final float x1p, final float y1p, ! final float[] m, int off) { float x10 = x1 - x0; float y10 = y1 - y0; float x10p = x1p - x0p; float y10p = y1p - y0p; float den = x10*y10p - x10p*y10; float t = x10p*(y0-y0p) - y10p*(x0-x0p); t /= den; m[off++] = x0 + t*x10; m[off] = y0 + t*y10; } private void drawMiter(final float pdx, final float pdy, final float x0, final float y0, final float dx, final float dy, float omx, float omy, float mx, float my, boolean rev) { if ((mx == omx && my == omy) || ! (pdx == 0f && pdy == 0f) || ! (dx == 0f && dy == 0f)) { return; } if (rev) { --- 341,422 ---- emitCurveTo(cx - my - Cmx, cy + mx - Cmy, cx - mx - Cmy, cy - my + Cmx, cx - mx, cy - my); } ! // Return the intersection point of the lines (x0, y0) -> (x1, y1) ! // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1] ! private static void computeMiter(final float x0, final float y0, ! final float x1, final float y1, ! final float x0p, final float y0p, ! final float x1p, final float y1p, ! final float[] m, int off) { float x10 = x1 - x0; float y10 = y1 - y0; float x10p = x1p - x0p; float y10p = y1p - y0p; + // if this is 0, the lines are parallel. If they go in the + // same direction, there is no intersection so m[off] and + // m[off+1] will contain infinity, so no miter will be drawn. + // If they go in the same direction that means that the start of the + // current segment and the end of the previous segment have the same + // tangent, in which case this method won't even be involved in + // miter drawing because it won't be called by drawMiter (because + // (mx == omx && my == omy) will be true, and drawMiter will return + // immediately). float den = x10*y10p - x10p*y10; float t = x10p*(y0-y0p) - y10p*(x0-x0p); t /= den; m[off++] = x0 + t*x10; m[off] = y0 + t*y10; } + // Return the intersection point of the lines (x0, y0) -> (x1, y1) + // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1] + private static void safeComputeMiter(final float x0, final float y0, + final float x1, final float y1, + final float x0p, final float y0p, + final float x1p, final float y1p, + final float[] m, int off) + { + float x10 = x1 - x0; + float y10 = y1 - y0; + float x10p = x1p - x0p; + float y10p = y1p - y0p; + + // if this is 0, the lines are parallel. If they go in the + // same direction, there is no intersection so m[off] and + // m[off+1] will contain infinity, so no miter will be drawn. + // If they go in the same direction that means that the start of the + // current segment and the end of the previous segment have the same + // tangent, in which case this method won't even be involved in + // miter drawing because it won't be called by drawMiter (because + // (mx == omx && my == omy) will be true, and drawMiter will return + // immediately). + float den = x10*y10p - x10p*y10; + if (den == 0.0f) { + m[off++] = (x0 + x0p) / 2.0f; + m[off] = (y0 + y0p) / 2.0f; + return; + } + float t = x10p*(y0-y0p) - y10p*(x0-x0p); + t /= den; + m[off++] = x0 + t*x10; + m[off] = y0 + t*y10; + } + private void drawMiter(final float pdx, final float pdy, final float x0, final float y0, final float dx, final float dy, float omx, float omy, float mx, float my, boolean rev) { if ((mx == omx && my == omy) || ! (pdx == 0.0f && pdy == 0.0f) || ! (dx == 0.0f && dy == 0.0f)) { return; } if (rev) {
*** 387,399 **** omy = -omy; mx = -mx; my = -my; } ! computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy, ! (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, ! miter, 0); final float miterX = miter[0]; final float miterY = miter[1]; float lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0); --- 424,436 ---- omy = -omy; mx = -mx; my = -my; } ! computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy, ! (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, ! miter, 0); final float miterX = miter[0]; final float miterY = miter[1]; float lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
*** 412,432 **** if (prev == DRAWING_OP_TO) { finish(); } this.sx0 = this.cx0 = x0; this.sy0 = this.cy0 = y0; ! this.cdx = this.sdx = 1f; ! this.cdy = this.sdy = 0f; this.prev = MOVE_TO; } @Override public void lineTo(float x1, float y1) { float dx = x1 - cx0; float dy = y1 - cy0; ! if (dx == 0f && dy == 0f) { ! dx = 1f; } computeOffset(dx, dy, lineWidth2, offset0); final float mx = offset0[0]; final float my = offset0[1]; --- 449,469 ---- if (prev == DRAWING_OP_TO) { finish(); } this.sx0 = this.cx0 = x0; this.sy0 = this.cy0 = y0; ! this.cdx = this.sdx = 1.0f; ! this.cdy = this.sdy = 0.0f; this.prev = MOVE_TO; } @Override public void lineTo(float x1, float y1) { float dx = x1 - cx0; float dy = y1 - cy0; ! if (dx == 0.0f && dy == 0.0f) { ! dx = 1.0f; } computeOffset(dx, dy, lineWidth2, offset0); final float mx = offset0[0]; final float my = offset0[1];
*** 452,465 **** if (prev != DRAWING_OP_TO) { if (prev == CLOSE) { return; } emitMoveTo(cx0, cy0 - lineWidth2); ! this.cmx = this.smx = 0f; this.cmy = this.smy = -lineWidth2; ! this.cdx = this.sdx = 1f; ! this.cdy = this.sdy = 0f; finish(); return; } if (cx0 != sx0 || cy0 != sy0) { --- 489,502 ---- if (prev != DRAWING_OP_TO) { if (prev == CLOSE) { return; } emitMoveTo(cx0, cy0 - lineWidth2); ! this.cmx = this.smx = 0.0f; this.cmy = this.smy = -lineWidth2; ! this.cdx = this.sdx = 1.0f; ! this.cdy = this.sdy = 0.0f; finish(); return; } if (cx0 != sx0 || cy0 != sy0) {
*** 638,648 **** private int computeOffsetCubic(float[] pts, final int off, float[] leftOff, float[] rightOff) { // if p1=p2 or p3=p4 it means that the derivative at the endpoint // vanishes, which creates problems with computeOffset. Usually ! // this happens when this stroker object is trying to winden // a curve with a cusp. What happens is that curveTo splits // the input curve at the cusp, and passes it to this function. // because of inaccuracies in the splitting, we consider points // equal if they're very close to each other. final float x1 = pts[off + 0], y1 = pts[off + 1]; --- 675,685 ---- private int computeOffsetCubic(float[] pts, final int off, float[] leftOff, float[] rightOff) { // if p1=p2 or p3=p4 it means that the derivative at the endpoint // vanishes, which creates problems with computeOffset. Usually ! // this happens when this stroker object is trying to widen // a curve with a cusp. What happens is that curveTo splits // the input curve at the cusp, and passes it to this function. // because of inaccuracies in the splitting, we consider points // equal if they're very close to each other. final float x1 = pts[off + 0], y1 = pts[off + 1];
*** 655,666 **** float dx1 = x2 - x1; float dy1 = y2 - y1; // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, // in which case ignore if p1 == p2 ! final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * ulp(y2)); ! final boolean p3eqp4 = within(x3,y3,x4,y4, 6f * ulp(y4)); if (p1eqp2 && p3eqp4) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } else if (p1eqp2) { dx1 = x3 - x1; --- 692,703 ---- float dx1 = x2 - x1; float dy1 = y2 - y1; // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, // in which case ignore if p1 == p2 ! final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0f * Math.ulp(y2)); ! final boolean p3eqp4 = within(x3, y3, x4, y4, 6.0f * Math.ulp(y4)); if (p1eqp2 && p3eqp4) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } else if (p1eqp2) { dx1 = x3 - x1;
*** 672,682 **** // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line float dotsq = (dx1 * dx4 + dy1 * dy4); dotsq *= dotsq; float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4; ! if (Helpers.within(dotsq, l1sq * l4sq, 4f * ulp(dotsq))) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } // What we're trying to do in this function is to approximate an ideal --- 709,719 ---- // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line float dotsq = (dx1 * dx4 + dy1 * dy4); dotsq *= dotsq; float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4; ! if (Helpers.within(dotsq, l1sq * l4sq, 4.0f * Math.ulp(dotsq))) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } // What we're trying to do in this function is to approximate an ideal
*** 724,735 **** // [dy1, dy4][c2] // At this point we are left with a simple linear system and we solve it by // getting the inverse of the matrix above. Then we use [c1,c2] to compute // p2p and p3p. ! float x = (x1 + 3f * (x2 + x3) + x4) / 8f; ! float y = (y1 + 3f * (y2 + y3) + y4) / 8f; // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to // c*B'(0.5) for some constant c. float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2; // this computes the offsets at t=0, 0.5, 1, using the property that --- 761,772 ---- // [dy1, dy4][c2] // At this point we are left with a simple linear system and we solve it by // getting the inverse of the matrix above. Then we use [c1,c2] to compute // p2p and p3p. ! float x = (x1 + 3.0f * (x2 + x3) + x4) / 8.0f; ! float y = (y1 + 3.0f * (y2 + y3) + y4) / 8.0f; // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to // c*B'(0.5) for some constant c. float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2; // this computes the offsets at t=0, 0.5, 1, using the property that
*** 743,756 **** float xi = x + offset1[0]; // interpolation float yi = y + offset1[1]; // point float x4p = x4 + offset2[0]; // end float y4p = y4 + offset2[1]; // point ! float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4)); ! float two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p; ! float two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p; float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y); float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x); float x2p, y2p, x3p, y3p; x2p = x1p + c1*dx1; --- 780,793 ---- float xi = x + offset1[0]; // interpolation float yi = y + offset1[1]; // point float x4p = x4 + offset2[0]; // end float y4p = y4 + offset2[1]; // point ! float invdet43 = 4.0f / (3.0f * (dx1 * dy4 - dy1 * dx4)); ! float two_pi_m_p1_m_p4x = 2.0f * xi - x1p - x4p; ! float two_pi_m_p1_m_p4y = 2.0f * yi - y1p - y4p; float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y); float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x); float x2p, y2p, x3p, y3p; x2p = x1p + c1*dx1;
*** 762,776 **** leftOff[2] = x2p; leftOff[3] = y2p; leftOff[4] = x3p; leftOff[5] = y3p; leftOff[6] = x4p; leftOff[7] = y4p; x1p = x1 - offset0[0]; y1p = y1 - offset0[1]; ! xi = xi - 2f * offset1[0]; yi = yi - 2f * offset1[1]; x4p = x4 - offset2[0]; y4p = y4 - offset2[1]; ! two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p; ! two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p; c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y); c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x); x2p = x1p + c1*dx1; y2p = y1p + c1*dy1; --- 799,813 ---- leftOff[2] = x2p; leftOff[3] = y2p; leftOff[4] = x3p; leftOff[5] = y3p; leftOff[6] = x4p; leftOff[7] = y4p; x1p = x1 - offset0[0]; y1p = y1 - offset0[1]; ! xi = xi - 2.0f * offset1[0]; yi = yi - 2.0f * offset1[1]; x4p = x4 - offset2[0]; y4p = y4 - offset2[1]; ! two_pi_m_p1_m_p4x = 2.0f * xi - x1p - x4p; ! two_pi_m_p1_m_p4y = 2.0f * yi - y1p - y4p; c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y); c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x); x2p = x1p + c1*dx1; y2p = y1p + c1*dy1;
*** 782,791 **** --- 819,830 ---- rightOff[4] = x3p; rightOff[5] = y3p; rightOff[6] = x4p; rightOff[7] = y4p; return 8; } + // compute offset curves using bezier spline through t=0.5 (i.e. + // ComputedCurve(0.5) == IdealParallelCurve(0.5)) // return the kind of curve in the right and left arrays. private int computeOffsetQuad(float[] pts, final int off, float[] leftOff, float[] rightOff) { final float x1 = pts[off + 0], y1 = pts[off + 1];
*** 795,967 **** final float dx3 = x3 - x2; final float dy3 = y3 - y2; final float dx1 = x2 - x1; final float dy1 = y2 - y1; ! // this computes the offsets at t = 0, 1 ! computeOffset(dx1, dy1, lineWidth2, offset0); ! computeOffset(dx3, dy3, lineWidth2, offset1); ! leftOff[0] = x1 + offset0[0]; leftOff[1] = y1 + offset0[1]; ! leftOff[4] = x3 + offset1[0]; leftOff[5] = y3 + offset1[1]; ! rightOff[0] = x1 - offset0[0]; rightOff[1] = y1 - offset0[1]; ! rightOff[4] = x3 - offset1[0]; rightOff[5] = y3 - offset1[1]; ! ! float x1p = leftOff[0]; // start ! float y1p = leftOff[1]; // point ! float x3p = leftOff[4]; // end ! float y3p = leftOff[5]; // point ! ! // Corner cases: ! // 1. If the two control vectors are parallel, we'll end up with NaN's ! // in leftOff (and rightOff in the body of the if below), so we'll ! // do getLineOffsets, which is right. ! // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0) ! // or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1) ! // or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that ! // computeIntersection will put NaN's in leftOff and right off, and ! // we will do getLineOffsets, which is right. ! computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2); ! float cx = leftOff[2]; ! float cy = leftOff[3]; ! ! if (!(isFinite(cx) && isFinite(cy))) { ! // maybe the right path is not degenerate. ! x1p = rightOff[0]; ! y1p = rightOff[1]; ! x3p = rightOff[4]; ! y3p = rightOff[5]; ! computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2); ! cx = rightOff[2]; ! cy = rightOff[3]; ! if (!(isFinite(cx) && isFinite(cy))) { ! // both are degenerate. This curve is a line. ! getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); ! return 4; ! } ! // {left,right}Off[0,1,4,5] are already set to the correct values. ! leftOff[2] = 2f * x2 - cx; ! leftOff[3] = 2f * y2 - cy; ! return 6; } ! // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2)) ! // == 2*(x2, y2) - (left_x2, left_y2) ! rightOff[2] = 2f * x2 - cx; ! rightOff[3] = 2f * y2 - cy; ! return 6; ! } ! ! private static boolean isFinite(float x) { ! return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY); ! } ! ! // If this class is compiled with ecj, then Hotspot crashes when OSR ! // compiling this function. See bugs 7004570 and 6675699 ! // TODO: until those are fixed, we should work around that by ! // manually inlining this into curveTo and quadTo. ! /******************************* WORKAROUND ********************************** ! private void somethingTo(final int type) { ! // need these so we can update the state at the end of this method ! final float xf = middle[type-2], yf = middle[type-1]; ! float dxs = middle[2] - middle[0]; ! float dys = middle[3] - middle[1]; ! float dxf = middle[type - 2] - middle[type - 4]; ! float dyf = middle[type - 1] - middle[type - 3]; ! switch(type) { ! case 6: ! if ((dxs == 0f && dys == 0f) || ! (dxf == 0f && dyf == 0f)) { ! dxs = dxf = middle[4] - middle[0]; ! dys = dyf = middle[5] - middle[1]; ! } ! break; ! case 8: ! boolean p1eqp2 = (dxs == 0f && dys == 0f); ! boolean p3eqp4 = (dxf == 0f && dyf == 0f); ! if (p1eqp2) { ! dxs = middle[4] - middle[0]; ! dys = middle[5] - middle[1]; ! if (dxs == 0f && dys == 0f) { ! dxs = middle[6] - middle[0]; ! dys = middle[7] - middle[1]; ! } ! } ! if (p3eqp4) { ! dxf = middle[6] - middle[2]; ! dyf = middle[7] - middle[3]; ! if (dxf == 0f && dyf == 0f) { ! dxf = middle[6] - middle[0]; ! dyf = middle[7] - middle[1]; ! } ! } ! } ! if (dxs == 0f && dys == 0f) { ! // this happens iff the "curve" is just a point ! lineTo(middle[0], middle[1]); ! return; ! } ! // if these vectors are too small, normalize them, to avoid future ! // precision problems. ! if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) sqrt(dxs*dxs + dys*dys); ! dxs /= len; ! dys /= len; ! } ! if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) sqrt(dxf*dxf + dyf*dyf); ! dxf /= len; ! dyf /= len; } ! computeOffset(dxs, dys, lineWidth2, offset0); ! final float mx = offset0[0]; ! final float my = offset0[1]; ! drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my); ! ! int nSplits = findSubdivPoints(curve, middle, subdivTs, type, lineWidth2); ! ! int kind = 0; ! BreakPtrIterator it = curve.breakPtsAtTs(middle, type, subdivTs, nSplits); ! while(it.hasNext()) { ! int curCurveOff = it.next(); ! switch (type) { ! case 8: ! kind = computeOffsetCubic(middle, curCurveOff, lp, rp); ! break; ! case 6: ! kind = computeOffsetQuad(middle, curCurveOff, lp, rp); ! break; ! } ! emitLineTo(lp[0], lp[1]); ! switch(kind) { ! case 8: ! emitCurveTo(lp[2], lp[3], lp[4], lp[5], lp[6], lp[7]); ! emitCurveToRev(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5]); ! break; ! case 6: ! emitQuadTo(lp[2], lp[3], lp[4], lp[5]); ! emitQuadToRev(rp[0], rp[1], rp[2], rp[3]); ! break; ! case 4: ! emitLineTo(lp[2], lp[3]); ! emitLineTo(rp[0], rp[1], true); ! break; ! } ! emitLineTo(rp[kind - 2], rp[kind - 1], true); ! } ! this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2; ! this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2; ! this.cdx = dxf; ! this.cdy = dyf; ! this.cx0 = xf; ! this.cy0 = yf; ! this.prev = DRAWING_OP_TO; } - ****************************** END WORKAROUND *******************************/ // finds values of t where the curve in pts should be subdivided in order // to get good offset curves a distance of w away from the middle curve. // Stores the points in ts, and returns how many of them there were. private static int findSubdivPoints(final Curve c, float[] pts, float[] ts, --- 834,890 ---- final float dx3 = x3 - x2; final float dy3 = y3 - y2; final float dx1 = x2 - x1; final float dy1 = y2 - y1; ! // if p1=p2 or p3=p4 it means that the derivative at the endpoint ! // vanishes, which creates problems with computeOffset. Usually ! // this happens when this stroker object is trying to widen ! // a curve with a cusp. What happens is that curveTo splits ! // the input curve at the cusp, and passes it to this function. ! // because of inaccuracies in the splitting, we consider points ! // equal if they're very close to each other. ! // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, ! // in which case ignore. ! final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0f * Math.ulp(y2)); ! final boolean p2eqp3 = within(x2, y2, x3, y3, 6.0f * Math.ulp(y3)); ! if (p1eqp2 || p2eqp3) { ! getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); ! return 4; } ! // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line ! float dotsq = (dx1 * dx3 + dy1 * dy3); ! dotsq *= dotsq; ! float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3; ! if (Helpers.within(dotsq, l1sq * l3sq, 4.0f * Math.ulp(dotsq))) { ! getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); ! return 4; } ! // this computes the offsets at t=0, 0.5, 1, using the property that ! // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to ! // the (dx/dt, dy/dt) vectors at the endpoints. ! computeOffset(dx1, dy1, lineWidth2, offset0); ! computeOffset(dx3, dy3, lineWidth2, offset1); ! float x1p = x1 + offset0[0]; // start ! float y1p = y1 + offset0[1]; // point ! float x3p = x3 + offset1[0]; // end ! float y3p = y3 + offset1[1]; // point ! safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2); ! leftOff[0] = x1p; leftOff[1] = y1p; ! leftOff[4] = x3p; leftOff[5] = y3p; ! x1p = x1 - offset0[0]; y1p = y1 - offset0[1]; ! x3p = x3 - offset1[0]; y3p = y3 - offset1[1]; ! safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2); ! rightOff[0] = x1p; rightOff[1] = y1p; ! rightOff[4] = x3p; rightOff[5] = y3p; ! return 6; } // finds values of t where the curve in pts should be subdivided in order // to get good offset curves a distance of w away from the middle curve. // Stores the points in ts, and returns how many of them there were. private static int findSubdivPoints(final Curve c, float[] pts, float[] ts,
*** 969,983 **** { final float x12 = pts[2] - pts[0]; final float y12 = pts[3] - pts[1]; // if the curve is already parallel to either axis we gain nothing // from rotating it. ! if (y12 != 0f && x12 != 0f) { // we rotate it so that the first vector in the control polygon is // parallel to the x-axis. This will ensure that rotated quarter // circles won't be subdivided. ! final float hypot = (float) sqrt(x12 * x12 + y12 * y12); final float cos = x12 / hypot; final float sin = y12 / hypot; final float x1 = cos * pts[0] + sin * pts[1]; final float y1 = cos * pts[1] - sin * pts[0]; final float x2 = cos * pts[2] + sin * pts[3]; --- 892,906 ---- { final float x12 = pts[2] - pts[0]; final float y12 = pts[3] - pts[1]; // if the curve is already parallel to either axis we gain nothing // from rotating it. ! if (y12 != 0.0f && x12 != 0.0f) { // we rotate it so that the first vector in the control polygon is // parallel to the x-axis. This will ensure that rotated quarter // circles won't be subdivided. ! final float hypot = (float) Math.sqrt(x12 * x12 + y12 * y12); final float cos = x12 / hypot; final float sin = y12 / hypot; final float x1 = cos * pts[0] + sin * pts[1]; final float y1 = cos * pts[1] - sin * pts[0]; final float x2 = cos * pts[2] + sin * pts[3];
*** 1029,1099 **** mid[0] = cx0; mid[1] = cy0; mid[2] = x1; mid[3] = y1; mid[4] = x2; mid[5] = y2; mid[6] = x3; mid[7] = y3; - // inlined version of somethingTo(8); - // See the TODO on somethingTo - // need these so we can update the state at the end of this method final float xf = mid[6], yf = mid[7]; float dxs = mid[2] - mid[0]; float dys = mid[3] - mid[1]; float dxf = mid[6] - mid[4]; float dyf = mid[7] - mid[5]; ! boolean p1eqp2 = (dxs == 0f && dys == 0f); ! boolean p3eqp4 = (dxf == 0f && dyf == 0f); if (p1eqp2) { dxs = mid[4] - mid[0]; dys = mid[5] - mid[1]; ! if (dxs == 0f && dys == 0f) { dxs = mid[6] - mid[0]; dys = mid[7] - mid[1]; } } if (p3eqp4) { dxf = mid[6] - mid[2]; dyf = mid[7] - mid[3]; ! if (dxf == 0f && dyf == 0f) { dxf = mid[6] - mid[0]; dyf = mid[7] - mid[1]; } } ! if (dxs == 0f && dys == 0f) { // this happens if the "curve" is just a point lineTo(mid[0], mid[1]); return; } // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } computeOffset(dxs, dys, lineWidth2, offset0); drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]); ! int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2); final float[] l = lp; final float[] r = rp; int kind = 0; ! BreakPtrIterator it = curve.breakPtsAtTs(mid, 8, subdivTs, nSplits); ! while(it.hasNext()) { ! int curCurveOff = it.next(); - kind = computeOffsetCubic(mid, curCurveOff, l, r); emitLineTo(l[0], l[1]); switch(kind) { case 8: emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]); --- 952,1025 ---- mid[0] = cx0; mid[1] = cy0; mid[2] = x1; mid[3] = y1; mid[4] = x2; mid[5] = y2; mid[6] = x3; mid[7] = y3; // need these so we can update the state at the end of this method final float xf = mid[6], yf = mid[7]; float dxs = mid[2] - mid[0]; float dys = mid[3] - mid[1]; float dxf = mid[6] - mid[4]; float dyf = mid[7] - mid[5]; ! boolean p1eqp2 = (dxs == 0.0f && dys == 0.0f); ! boolean p3eqp4 = (dxf == 0.0f && dyf == 0.0f); if (p1eqp2) { dxs = mid[4] - mid[0]; dys = mid[5] - mid[1]; ! if (dxs == 0.0f && dys == 0.0f) { dxs = mid[6] - mid[0]; dys = mid[7] - mid[1]; } } if (p3eqp4) { dxf = mid[6] - mid[2]; dyf = mid[7] - mid[3]; ! if (dxf == 0.0f && dyf == 0.0f) { dxf = mid[6] - mid[0]; dyf = mid[7] - mid[1]; } } ! if (dxs == 0.0f && dys == 0.0f) { // this happens if the "curve" is just a point lineTo(mid[0], mid[1]); return; } // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) Math.sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) Math.sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } computeOffset(dxs, dys, lineWidth2, offset0); drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]); ! final int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2); ! ! float prevT = 0.0f; ! for (int i = 0, off = 0; i < nSplits; i++, off += 6) { ! final float t = subdivTs[i]; ! Helpers.subdivideCubicAt((t - prevT) / (1.0f - prevT), ! mid, off, mid, off, mid, off + 6); ! prevT = t; ! } final float[] l = lp; final float[] r = rp; int kind = 0; ! for (int i = 0, off = 0; i <= nSplits; i++, off += 6) { ! kind = computeOffsetCubic(mid, off, l, r); emitLineTo(l[0], l[1]); switch(kind) { case 8: emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
*** 1106,1117 **** default: } emitLineToRev(r[kind - 2], r[kind - 1]); } ! this.cmx = (l[kind - 2] - r[kind - 2]) / 2f; ! this.cmy = (l[kind - 1] - r[kind - 1]) / 2f; this.cdx = dxf; this.cdy = dyf; this.cx0 = xf; this.cy0 = yf; this.prev = DRAWING_OP_TO; --- 1032,1043 ---- default: } emitLineToRev(r[kind - 2], r[kind - 1]); } ! this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0f; ! this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0f; this.cdx = dxf; this.cdy = dyf; this.cx0 = xf; this.cy0 = yf; this.prev = DRAWING_OP_TO;
*** 1122,1176 **** mid[0] = cx0; mid[1] = cy0; mid[2] = x1; mid[3] = y1; mid[4] = x2; mid[5] = y2; - // inlined version of somethingTo(8); - // See the TODO on somethingTo - // need these so we can update the state at the end of this method final float xf = mid[4], yf = mid[5]; float dxs = mid[2] - mid[0]; float dys = mid[3] - mid[1]; float dxf = mid[4] - mid[2]; float dyf = mid[5] - mid[3]; ! if ((dxs == 0f && dys == 0f) || (dxf == 0f && dyf == 0f)) { dxs = dxf = mid[4] - mid[0]; dys = dyf = mid[5] - mid[1]; } ! if (dxs == 0f && dys == 0f) { // this happens if the "curve" is just a point lineTo(mid[0], mid[1]); return; } // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } computeOffset(dxs, dys, lineWidth2, offset0); drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]); int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2); final float[] l = lp; final float[] r = rp; int kind = 0; ! BreakPtrIterator it = curve.breakPtsAtTs(mid, 6, subdivTs, nSplits); ! while(it.hasNext()) { ! int curCurveOff = it.next(); - kind = computeOffsetQuad(mid, curCurveOff, l, r); emitLineTo(l[0], l[1]); switch(kind) { case 6: emitQuadTo(l[2], l[3], l[4], l[5]); --- 1048,1105 ---- mid[0] = cx0; mid[1] = cy0; mid[2] = x1; mid[3] = y1; mid[4] = x2; mid[5] = y2; // need these so we can update the state at the end of this method final float xf = mid[4], yf = mid[5]; float dxs = mid[2] - mid[0]; float dys = mid[3] - mid[1]; float dxf = mid[4] - mid[2]; float dyf = mid[5] - mid[3]; ! if ((dxs == 0.0f && dys == 0.0f) || (dxf == 0.0f && dyf == 0.0f)) { dxs = dxf = mid[4] - mid[0]; dys = dyf = mid[5] - mid[1]; } ! if (dxs == 0.0f && dys == 0.0f) { // this happens if the "curve" is just a point lineTo(mid[0], mid[1]); return; } // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ! float len = (float) Math.sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ! float len = (float) Math.sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } computeOffset(dxs, dys, lineWidth2, offset0); drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]); int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2); + float prevt = 0.0f; + for (int i = 0, off = 0; i < nSplits; i++, off += 4) { + final float t = subdivTs[i]; + Helpers.subdivideQuadAt((t - prevt) / (1.0f - prevt), + mid, off, mid, off, mid, off + 4); + prevt = t; + } + final float[] l = lp; final float[] r = rp; int kind = 0; ! for (int i = 0, off = 0; i <= nSplits; i++, off += 4) { ! kind = computeOffsetQuad(mid, off, l, r); emitLineTo(l[0], l[1]); switch(kind) { case 6: emitQuadTo(l[2], l[3], l[4], l[5]);
*** 1183,1194 **** default: } emitLineToRev(r[kind - 2], r[kind - 1]); } ! this.cmx = (l[kind - 2] - r[kind - 2]) / 2f; ! this.cmy = (l[kind - 1] - r[kind - 1]) / 2f; this.cdx = dxf; this.cdy = dyf; this.cx0 = xf; this.cy0 = yf; this.prev = DRAWING_OP_TO; --- 1112,1123 ---- default: } emitLineToRev(r[kind - 2], r[kind - 1]); } ! this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0f; ! this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0f; this.cdx = dxf; this.cdy = dyf; this.cx0 = xf; this.cy0 = yf; this.prev = DRAWING_OP_TO;
*** 1203,1217 **** static final class PolyStack { private static final byte TYPE_LINETO = (byte) 0; private static final byte TYPE_QUADTO = (byte) 1; private static final byte TYPE_CUBICTO = (byte) 2; ! // curves capacity = edges count (4096) = half edges x 2 (coords) ! private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT; ! // types capacity = half edges count (2048) ! private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT >> 1; float[] curves; int end; byte[] curveTypes; int numCurves; --- 1132,1146 ---- static final class PolyStack { private static final byte TYPE_LINETO = (byte) 0; private static final byte TYPE_QUADTO = (byte) 1; private static final byte TYPE_CUBICTO = (byte) 2; ! // curves capacity = edges count (8192) = edges x 2 (coords) ! private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1; ! // types capacity = edges count (4096) ! private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT; float[] curves; int end; byte[] curveTypes; int numCurves;
*** 1233,1246 **** * @param rdrCtx per-thread renderer context */ PolyStack(final RendererContext rdrCtx) { this.rdrCtx = rdrCtx; ! curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 16K curves = curves_ref.initial; ! curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 2K curveTypes = curveTypes_ref.initial; numCurves = 0; end = 0; if (DO_STATS) { --- 1162,1175 ---- * @param rdrCtx per-thread renderer context */ PolyStack(final RendererContext rdrCtx) { this.rdrCtx = rdrCtx; ! curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 32K curves = curves_ref.initial; ! curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K curveTypes = curveTypes_ref.initial; numCurves = 0; end = 0; if (DO_STATS) {
*** 1367,1377 **** @Override public String toString() { String ret = ""; int nc = numCurves; ! int e = end; int len; while (nc != 0) { switch(curveTypes[--nc]) { case TYPE_LINETO: len = 2; --- 1296,1306 ---- @Override public String toString() { String ret = ""; int nc = numCurves; ! int last = end; int len; while (nc != 0) { switch(curveTypes[--nc]) { case TYPE_LINETO: len = 2;
*** 1386,1397 **** ret += "cubic: "; break; default: len = 0; } ! e -= len; ! ret += Arrays.toString(Arrays.copyOfRange(curves, e, e+len)) + "\n"; } return ret; } } --- 1315,1326 ---- ret += "cubic: "; break; default: len = 0; } ! last -= len; ! ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len)) + "\n"; } return ret; } }
< prev index next >